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Preface 
 
 
Welcome dear reader, 
 
The research in this master thesis focuses on developing a model to indicate how the reliability of a soft drink 
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Marcel, who was willing to answer all my questions about how the production line works in the factory and how the 
data had to be interpreted. 
 
In addition, I would like to thank my supervisor at TU Delft, Dr. ir Y. Pang, for his patience and feedback during the 
process. I would also like to express my thanks for the feedback from Prof. dr. R.R. Negenborn during the milestones 
in this process. 
 
Finally, I would like to thank my friends and family. Over the past months, they supported me with good advice, nice 
walks and positive energy. This helped me a lot during the many beautiful, but sometimes also very difficult moments 
throughout the process.  
 
With the completion of my graduation project, my time at Delft University of Technology also officially comes to an end. 
Over the past few years, this was a place where I was allowed to grow as a person and make many wonderful 
friendships. I am looking forward to the new adventures and challenges that will now cross my path.  
 
 
  
Enjoy reading my thesis! 
 
Pauline Freling 
September 2023 
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Summary 
One of the biggest contemporary challenges within the beverage industry are the problems and consequences 
surrounding unplanned downtime in production lines. These are times when production lines shut down due to the 
failure of a component in the line. A production line within the beverage industry consists of tanks, pipes, valves and 
pumps. Once a valve or pump fails then the liquid cannot be pumped to the next tank. The moment the line shuts 
down during production, any liquid (syrup or soft drink) in the line has to be flushed out according to Food and 
Consumer Product Safety Authority rules. Unplanned stoppages not only cause the line to shut down at that time, but 
also cause delays in production planning. One of the causes of unplanned downtime can be traced back to the 
maintenance strategy used in the overall process industry and thus also in most beverage plants. The most common 
maintenance strategy within this industry is corrective maintenance. Here, maintenance is carried out only at the 
moment a component is broken. However, this does cause a lot of unplanned downtime and also causes high costs of 
flushing and overtime to catch up. Looking at other industries such as aviation and marine, these industries are many 
steps ahead in terms of proactive maintenance strategies. Proactive means that maintenance is performed even 
before a component has a chance to fail. In the aviation industry, this is a reassuring thought, after all, if a component 
suddenly fails there and, for example, the aircraft comes to a standstill, the consequences are incalculable.  
Within proactive maintenance strategies, there are a few more subcategories. There is preventive maintenance and 
condition-related maintenance. Preventive maintenance is often schedule-based, but does not look at the condition of 
the component. If the schedule says that the component needs to be replaced then it happens. Condition-related 
maintenance works on the basis of condition data on, for example, the valves and pumps to determine what the 
condition is and then make a prediction on how long the component can still function before it will fail. This is also 
known as predictive maintenance and has been on the rise in recent years. Within the beverage industry, this 
development of predictive maintenance is still hardly used, one of the reasons being that it is perceived as very difficult 
to develop a predictive maintenance strategy. In addition, it requires investment but is not yet seen as a sustainable 
investment that saves money on maintenance in the long run. However, predictive maintenance is already known to 
help reduce unplanned downtime and improve the reliability of components in the line, and so the reliability of the line 
itself. 
Line reliability is defined in this thesis as: ''The ability of a system or component to perform its required functions for a 
specified time under specified conditions". This research will look at what is already being done within the beverage 
industry, particularly focusing on the soft drink industry, to move from corrective to predictive maintenance. It will also 
look at what benefits this would bring to soft drink manufacturers. This research focuses on the question: 
 
How can a predictive maintenance strategy contribute to improving the reliability of a soft drink production line? 
 
For this research, the focus is on a production line at a soft drink manufacturer in the Netherlands. Within this 
production line are several valves and pumps. These are the components within the scope of this research. All other 
components are left out of consideration. 
First, it will be examined what data is already being collected regarding the condition of the components within the 
production line. Next, the methods for using the condition data to create a model for predicting the failure probability of 
a component are examined. This research has shown that there is only limited data available that can be used to 
determine the condition of the valves. The condition data used for the valves is the time it takes the valve to open or 
close, this is called the looptijd. It is known that if the looptijd increases, i.e. the valve takes longer to open or close, 
this indicates that valve needs maintenance. 
No condition data is available on the pumps. The choice was made to determine, based on literature, which 
parameters are needed to determine the condition of the pumps. The parameters used in this research for the 
condition of the pumps are the probability of cavitation, which is determined using the Net Positive Suction Head 
margin, and at how much percent of the Best Efficiency Point the pump is operating at. Cavitation is the formation and 
imploding of vapour bubbles on the impeller of the pump, this puts a lot of forces on the impeller and this causes 
fatigue phenomena and reduction in service life. 
A pump functions best when it operates near its BEP. The further the pump is away from its BEP, the more likely it is 
to fail and the shorter its lifetime is. 
 
In this research, the best method to fit the available data and knowledge was considered in order to arrive at a model 
to predict whether a component needs maintenance. This revealed that a Bayesian Network is the most accessible 
method for this research. In the BN, the parameters and all components in the line are represented as nodes with 
connections to indicate the relationships between them. This allows determining, based on the condition data collected 
from the line, and a synthetic dataset for the pumps, the probability of failure of a component and therefore the 
probability of unplanned downtime of the line. The model, with the BN method, is coded in Python using the PGMPY 
package. 
 
To demonstrate the impact of using or not using the model on production line reliability, two situations are considered. 
Both situations work with a production schedule for a year, this is based on the available historical production 
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schedules.  In the first situation, the model is not used, assuming only corrective maintenance and a small part of 
preventive maintenance in the two production free weeks per year. 
In the second situation, the model is used and predictive maintenance and preventive maintenance are used based on 
the condition data. Because there was not enough data available from the production line regarding the condition 
monitoring data (running time, probability of cavitation and at what percentage of BEP), it was chosen to work with a 
synthetic dataset in this research. That is, a data set is created for the condition monitoring data based on historical 
data and assumptions from the literature. For this, historical process data is also used to determine how long a 
particular process takes and what products are produced across the line. Before starting production, the operator can 
enter this synthetic process data set for the valves and pumps into the model. After entering this data into the model, 
feedback is provided on the probability of failure and which components, if any, could fail during the process. Based on 
this data, the operator can decide whether or not to start the process. 
To indicate how the model affects the reliability of the production line, KPIs are used. The first KPI looks at the ratio 
between the number of hours of planned maintenance performed during planned downtime hours compared to the 
total number of hours of downtime, also called the Maintenance Downtime Index (MDI). The total number of hours of 
downtime is the number of hours of planned downtime plus the number of hours of unplanned downtime. Line 
reliability increases as the KPI value increases.  
The second, third and fourth KPI look at maintenance costs. It determines what percentage of the total maintenance 
cost goes on corrective, preventive and predictive maintenance. If a larger percentage is spent on predictive 
maintenance compared to corrective maintenance, this is an indication that the reliability of the line is increasing. 
Based on these KPIs, the two situations can be compared. 
 
The results showed that line reliability improves when the developed model is used. In the case of the first KPI, there 
are fewer total hours of downtime. This is because there are fewer unplanned downtime hours. In addition, more hours 
of downtime were used to carry out planned maintenance. For the situation where the model is used, there is a 5% 
reduction in downtime hours. Looking at the cost KPIs, it can be seen that the total maintenance costs in the situation 
where the model is used are 53% lower than in the situation without the model. In addition, the percentage of 
corrective maintenance costs drops dramatically. The results from the KPIs indicate that line reliability improves the 
moment predictive maintenance is used instead of corrective maintenance.  
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Samenvatting 
Een van de grootste hedendaagse uitdagingen binnen de beverage industrie zijn de problemen en gevolgen rondom 
ongeplande stilstand in de productielijnen. Dit zijn momenten waarop de productielijnen stilvallen als gevolg van het 
falen van een component in de lijn. Een productielijn binnen de beverage industrie bestaat uit tanks, leidingen, kleppen 
en pompen. Zodra er een klep of een pomp faalt dan kan de vloeistof niet naar de volgende tank worden gepompt. Op 
het moment dat de lijn stilvalt tijdens het produceren moet alle vloeistof (siroop of frisdrank) die in de lijn zit worden 
weggespoeld volgens de regels van de Voedsel en Waren autoriteit. Ongeplande stilstanden zorgen niet alleen voor 
het stil vallen van de lijn op dat moment, maar ook voor vertraging in de productie planning. Een van de oorzaken van 
de ongeplande stilstanden is te herleiden naar de onderhoudsstrategie die wordt gebruikt in de algehele proces 
industrie en daarmee ook in de meeste beverage fabrieken. De meest voorkomende onderhoudsstrategie binnen deze 
industrie is correctief onderhoud. Hierbij wordt er pas onderhoud uitgevoerd op het moment dat er een component 
kapot is. Dit zorgt echter wel voor veel ongeplande stilstand en zorgt ook voor hoge kosten van het wegspoelen en de 
overuren om de opgelopen achterstand in te lopen. Kijkend naar andere industrieën zoals de luchtvaart en de marine 
lopen deze industrieën vele stappen voor op het gebied van proactieve onderhoudsstrategieën. Proactief wil zeggen 
dat er al onderhoud wordt uitgevoerd voordat een component de kans krijgt om te falen. In de luchtvaart industrie is 
dat een geruststellende gedachte, immers als er daar ineens een component faalt en bijvoorbeeld het vliegtuig valt stil 
dan zijn de gevolgen niet te overzien.  
Binnen de proactieve onderhoud strategieën zijn er nog enkele vertakkingen. Er is preventief onderhoud en conditie 
gerelateerd onderhoud. Preventief onderhoud is vaak op basis van een schema, maar kijkt niet naar de conditie van 
het component. Als er op het schema staat dat het component vervangen moet worden dan gebeurd dat. Conditie 
gerelateerd onderhoud werkt op basis van conditie data over bijvoorbeeld de kleppen en de pompen om te bepalen 
wat de toestand is en daarmee een voorspelling te doen over hoe lang het component nog kan functioneren alvorens 
het zal falen. Dit wordt ook wel voorspellend onderhoud genoemd en is de laatste jaren bezig aan een opmars. Binnen 
de beverage industrie wordt er nog nauwelijks gebruik gemaakt van deze ontwikkeling, een van de redenen hiervan is 
dat het als zeer moeilijk wordt ervaren om een voorspellend onderhoudsstrategie te ontwikkelen. Daarnaast moet er 
worden geïnvesteerd, maar wordt het nog niet gezien als een duurzame investering die op de lange termijn geld 
bespaart op onderhoud. 
Van het voorspellend onderhoud is echter al bekent dat het bijdraagt aan het reduceren van ongeplande stilstand en 
de betrouwbaarheid van de componenten in de lijn, en daarmee ook de betrouwbaarheid van de lijn zelf, verbetert. De 
betrouwbaarheid van de lijn is in dit onderzoek gedefinieerd als: ''Het vermogen van een systeem of onderdeel om 
gedurende een bepaalde tijd onder bepaalde omstandigheden de vereiste functies te vervullen”. In dit onderzoek zal 
er worden gekeken naar wat er al gedaan wordt binnen de beverage industrie, met name gericht op de frisdrank 
industrie, om van correctief naar voorspellend onderhoud te gaan. Ook wordt er gekeken naar welke voordelen dat 
zou opleveren voor de frisdrank fabrikanten. Dit onderzoek richt zich op de vraag: 
 

Hoe kan een voorspellend onderhoudsstrategie bijdragen aan het verbeteren van de  
betrouwbaarheid van de frisdrank productielijn? 

 
Voor dit onderzoek ligt de focus op een productielijn bij een frisdrank fabrikant in Nederland. Binnen deze productielijn 
zitten meerdere kleppen en pompen. Dit zijn de componenten die binnen de scope van dit onderzoek vallen. Alle 
andere componenten worden buiten beschouwing gelaten. 
Allereerst wordt er gekeken welke data er alreeds wordt verzameld met betrekking tot de conditie van de 
componenten binnen de productielijn. Vervolgens wordt er gekeken welke methodes er zijn om met de conditie data 
tot een model te komen waarmee er voorspellingen gedaan kunnen worden over de faalkans van een component. In 
dit onderzoek is naar voren gekomen dat er slechts gelimiteerd data beschikbaar is die kan worden gebruikt voor het 
bepalen van de conditie van de kleppen. De conditie data die voor de kleppen wordt gebruikt is de tijd die de klep 
erover doet om open of dicht te gaan, dit heet de looptijd. Er is bekend dat als de looptijd hoger wordt, dat wil zeggen 
dat de klep er langer over doet om open of dicht te gaan, dit aangeeft dat klep onderhoud nodig heeft.  
Voor de pompen is geen conditie data beschikbaar. Hier is gekozen om op basis van literatuur te bepalen welke 
parameters nodig zijn om de conditie van de pompen te kunnen vast stellen. De gebruikte paramaters in dit onderzoek 
voor de conditie van de pompen zijn de kans op cavitatie, wat wordt bepaalt met de Net Positive Suction Head marge, 
en op hoeveel procent van het Best Efficiency Point de pomp opereert. Cavitatie is het vormen en imploderen van 
dampbellen op de waaier van de pomp. Hierdoor komen er veel krachten op de waaier terecht en dat zorgt voor 
vermoeiingsverschijnselen en reductie van levensduur. 
Een pomp functioneert het beste als deze in de buurt van zijn BEP werkt. Hoe verder de pomp van het BEP af zit hoe 
meer kans op falen en hoe korter de levensduur van de pomp is. 
 
In dit onderzoek is er gekeken met behulp van het onderzoek van Sikorska naar welke methode het beste past bij de 
beschikbare data en kennis om op basis daarvan tot een model te komen waarmee kan worden voorspeld of een 
component onderhoud nodig heeft. Hier is uit voort gekomen dat een Bayesian Network voor dit onderzoek de meest 
toegankelijke methode is. In het BN zijn de parameters en alle componenten in de lijn weergegeven als nodes met 
verbindingen om de onderlinge relaties aan te duiden. Hiermee kan er worden bepaald op basis van de conditie data 
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die uit de lijn wordt verzameld, en een synthetische dataset voor de pompen, wat de kans is op falen van een 
component en daarmee de kans op ongeplande stilstand van de lijn. Het model, met daarin het BN, is gemodelleerd in 
Python met het PGMPY package. 
 
Om aan te kunnen tonen wat de invloed is van het wel of niet gebruiken van het model op de betrouwbaarheid van de 
productielijn wordt er gekeken naar twee situaties. Beide situaties werken met een productie planning voor een jaar, 
dit is gebaseerd op de beschikbare historische productieplanningen.  In de eerste situatie wordt het model niet 
gebruikt, hiermee wordt er aangenomen dat er alleen wordt gewerkt met correctief onderhoud en een klein stukje 
preventief onderhoud in de twee productie vrije weken per jaar. 
In de tweede situatie wordt er wel gebruik gemaakt van het model en wordt er gewerkt met voorspellend onderhoud en 
preventief onderhoud op basis van de conditie data. Omdat er niet voldoende data beschikbaar was van de 
productielijn omtrent de conditie monitoring data (looptijd, kans op cavitatie en op hoeveel procent van het BEP), is 
ervoor gekozen om in dit onderzoek te werken met een synthetische dataset. Dat wil zeggen dat er op basis van 
historische data en aannames uit de literatuur een data set wordt gecreëerd voor de conditie monitoring data. Hiervoor 
wordt ook de historische proces data gebruikt om te bepalen hoe lang een bepaald proces duurt en welke producten 
er over de lijn worden geproduceerd. Alvorens een productie wordt gestart kan de operator deze synthetische proces 
dataset voor de kleppen en de pompen invoeren in het model. Na het invoeren van deze data in het model wordt er 
teruggekoppeld wat de kans op falen is en welke componenten eventueel kunnen falen gedurende het proces. Op 
basis van deze data kan de operator beslissen over het wel of niet starten van het proces. 
Om aan te kunnen geven wat de invloed is van het model op de betrouwbaarheid van de productielijn wordt er 
gewerkt met Key performance indicators (KPIs). De eerste KPI kijkt naar de ratio tussen het aantal uur gepland 
onderhoud dat wordt uitgevoerd tijdens geplande stilstand uren ten opzichte van het totaal aantal uur stilstand. Het 
totaal aantal uur stilstand is het aantal uur geplande uur stilstand plus het aantal uur ongeplande stilstand, ook wel 
genaamd de Maintenance Downtime Index (MDI). De betrouwbaarheid van de lijn neemt toe als de KPI waarde hoger 
wordt.  
De tweede, derde en vierde KPI kijken naar de onderhoudskosten. Er wordt bepaald hoeveel procent van de totale 
onderhoudskosten op gaat aan correctief, preventief en voorspellend onderhoud. Indien er een groter percentage 
opgaat aan voorspellend onderhoud in vergelijking met correctief onderhoud dan is dit een indicatie dat de 
betrouwbaarheid van de lijn toeneemt. 
Op basis van deze KPIs kunnen beide situaties worden vergeleken.  
 
Uit de resultaten is naar voren gekomen dat de betrouwbaarheid van de lijn verbeterd als het ontwikkelde model wordt 
gebruikt. In het geval van de eerste KPI is er minder totaal aantal uur stilstand. Dit komt omdat er minder ongeplande 
stilstand uren zijn. Daarnaast zijn er meer uren van de stilstand gebruikt om gepland onderhoud uit te voeren. Voor de 
situatie waarin het model wordt gebruikt is er  een reductie van 5% op het aantal stilstand uren. Als er wordt gekeken 
naar de kosten KPIs dan valt daaruit op te maken dat de totale onderhoudskosten in de situatie waarbij het model 
wordt gebruikt 53% lager zijn dan in de situatie zonder model. Daarnaast daalt het percentage van de correctief 
onderhoudskosten drastisch. De resultaten uit de KPIs wijzen erop dat de betrouwbaarheid van de lijn verbeterd op 
het moment dat er wordt gewerkt met voorspellend onderhoud in plaats van correctief onderhoud. 
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LTV4.4  Looptijd of line segment 4 valve 4 
LTV4.5  Looptijd of line segment 4 valve 5 
BP4.1  Parameter BEP of line segment 4 pump 1  
GP4.1  Parameter cavitation of line segment 4 pump 1 
P4.1  Pump; line segment 4 pump 1 
V4.1  Valve; line segment 4 valve 1 
V4.2  Valve; line segment 4 valve 2 
V4.3  Valve; line segment 4 valve 3 
V4.4  Valve; line segment 4 valve 4 
V4.5  Valve; line segment 4 valve 5 
LSIV  Line segment 4 (or IV) 
 
LTV5.1  Looptijd of line segment 5 valve 1 
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LTV5.2  Looptijd of line segment 5 valve 2 
LTV5.3  Looptijd of line segment 5 valve 3 
LTV5.4  Looptijd of line segment 5 valve 4 
BP5.1  Parameter BEP of line segment 5 pump 1  
GP5.1  Parameter cavitation of line segment 5 pump 1 
P5.1  Pump; line segment 5 pump 1 
V5.1  Valve; line segment 5 valve 1 
V5.2  Valve; line segment 5 valve 2 
V5.3  Valve; line segment 5 valve 3 
V5.4  Valve; line segment 5 valve 4 
LSV  Line segment 5 (or V) 
 
JP1  Joint probability line segment 1 
JP2  Joint probability line segment 2 
JP3  Joint probability line segment 3 
JP4  Joint probability line segment 4 
JP5  Joint probability line segment 5 
 
PL  Production line 
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1. Introduction 
 
Fresh, sparkling water with or without a flavour, who doesn't drink it? About 1,458,000,000 litres of carbonated soft 
drinks are consumed in the Netherlands annually. Converted, that is 85L per person per year in the Netherlands, 
which is equivalent to 57 bottles of 1.5L with carbonated soft drinks [1]. 
The soft drink industry is part of the much larger beverage industry. In this industry, a distinction is made between 
alcoholic and non-alcoholic beverage [2], as shown in Figure 1. Within alcoholic beverages, a distinction can be made 
on the basis of the produced beverage: fruit/juice or grain-based. For the non-alcoholic beverage, a distinction can be 
made between non-carbonated, in which case no carbon dioxide is added, and carbonated drinks, to which carbon 
dioxide is added [2].  

 
 
Within this research, the focus is on carbonated soft drinks. In this research, the carbonated soft drinks are defined as: 
‘’water-based flavoured drinks usually with added carbon dioxide and with nutritive, non-nutritive, and/or intense 
sweeteners with other permitted food additives’’ [3]. 
 
 

1.1 History of soft drinks 
The origins of carbonated soft drinks can be traced back to 1767, when Joseph Priestly experimented with 
impregnating water with fixed air [4]. However, it became well known among the wider public after 1783 when Jacob 
Schweppe started producing carbonated waters in glass bottles under the brand name ''Schweppes'' [5]. 
Over time, more brands were added, providing a wide variety of flavours and colours. Packaging also became 
increasingly diverse. Where it used to be sold only in glass bottles, soft drinks also became available in cans since 
1948 [6]. Later, in 1978, soft drinks were first sold in PET bottles [7]. In the early years, the process of producing soft 
drinks was completely manual, see Figure 2, even the glass bottles were blown piece by piece. By the time of the 
second industrial revolution around 1890, automated machines emerged [7]. 
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Figure 1: Overview beverage industry, with highlight on the carbonated soft drinks [2] 
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Nowadays, all soft drinks are produced in soft drink factories and it is an automated process.  
 
There are a number of large soft drink producers in the Netherlands that produce for both national and international 
markets. This industry is responsible for every imaginable type, flavour and colour of soft drink on the market. This 
research includes a case study performed in collaboration with a soft drink producer in the Netherlands. 
 
Soft drinks consist mostly of water to which sugar, flavourings and colourings are added. Therefore, inside soft drink 
factories several processes must take place to turn the raw ingredients into soft drinks. These processes are defined 
by Koss [9] as different production lines with the following classification, see also Figure 3: 

• The container line: this is where the bottles and cans are unwrapped or shaped. Afterwards, these are 
cleaned/washed and prepared to be filled.  

• The product line: here the ingredients are compounded, mixed and subjected to other processes to comply 
with the laws and regulations of the food and commodity authorities. Other processes can include heating to 
kill bacteria or, for example, adding carbon dioxide for carbonated soft drinks. Furthermore, the product is 
prepared to be put into bottles and cans.  

• The filling/closing line: this is where the container line and product line meet. The bottles and cans are filled 
and then sealed with a lid or cap. 

• The container treatment line: here, the bottles and cans are subjected to a heating process or 
pasteurization, if necessary. Afterwards, the bottles and cans are labelled and checked for the last time.  

• The product packaging line: here the individual products are assembled in, for example, crates or as trays.  

• The storage preparation line: here the bulk packaging is loaded onto pallets and sealed. These are then 
stored until the product is transported to the customer. 

 

After each production batch, the lines have to be cleaned before a new batch can be started. 
This research focuses on the product line of a soft drink producer in the Netherlands. The soft drink producer has 
several lines through which the different types of soft drinks are produced, in this research the focus is on one of those 
lines. All other lines as defined by Koss [9] will be disregarded. 
 
 
 
 

Figure 2: Early soft drink production manual equipment [8] 
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Figure 3: Different lines in soft drink factory defined by Koss [9] 
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1.2 Production line 
The production line within the soft drink factory is responsible for bringing together and mixing all the ingredients to 
obtain the soft drink [9]. This part of the line is also responsible for carbonisation, adding the carbon dioxide to the soft 
drink, heating and cooling. Once the soft drink is ready on this line it only has to go to the fill and packaging lines. 
Figure 4 is an example of the product line.  
In principle, the line is only used between Monday morning and Friday afternoon, in case there are run-offs, work 
continues over the weekend to make up those hours. It works with a batch process, meaning that one batch of a 
particular soft drink is produced each time, then it is cleaned and then a new batch can be started.  
To do this, the line consists of all kinds of different components. For instance, there are tanks where all the ingredients 
are stored, there are pumps to pump the ingredients through pipes to the next tank and valves for dosing and sending 
them to the right destination.  
 
 

 
In this research, a case study will be done on the valves and pumps in a part of one production line at a Dutch soft 
drink manufacturer. For this purpose, 25 valves and 6 pumps are be included in this research. Chapter 2 looks at the 
operation of the valves and pumps in more detail. 
 

 
1.3 Problem definition 
The problem that is considered in this research can be divided into a practical problem of the soft drink company and a 
scientific problem.  
 
A well-known problem within the soft drink manufacturing industry are unplanned downtimes [10]. This is the 
unexpected stoppage of a production line due to the failure of components within that line. Maintenance must then be 
carried out immediately such that the line can be restarted afterwards. As a result of the unplanned downtimes, a lot of 
production time is lost and batches have to be rejected because quality cannot be guaranteed. All in all, unplanned 
downtimes cause unnecessary production losses and lower line reliability [10]. 
The process industry, and therefore also the soft drink industry, is known to be a slow adopter when it comes to 
adopting new technologies and strategies [11]. This is also reflected when looking at current maintenance strategies. 
In this industry, there is still a lot of either corrective maintenance or preventive maintenance. Corrective maintenance 
is defined as carrying out maintenance after equipment has failed. Whereas preventive maintenance is defined as 
replacing parts on a fixed schedule or carrying out maintenance without any further reason. 
However, these maintenance strategies still result in many unplanned downtimes. This is also the case at the soft 
drink product line for this research. The company suffers from unplanned line downtimes due to the failure of mainly 
valves and pumps. It uses mainly corrective maintenance, where maintenance is carried out if a component is broken. 
Furthermore, the company has been collecting data for several years that can say something about the condition of 
the equipment in the line. However, so far no step has been taken to integrate the data to form a predictive 
maintenance strategy for the valves and pumps within a production line. The aim of the predictive maintenance 
strategy is to reduce the number of unplanned downtimes and thus improve the reliability of the production line. 
 
Within the literature, there is a considerable amount of information on the ways that maintenance strategies can be 
adapted to reduce unplanned downtimes. In many cases, data is collected to form an idea of the condition of the 

Figure 4: Production line, the valves are indicated with the blue circles and de pumps with orange circles [2] 
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equipment within a system. Models are then used to determine the expected remaining useful life. This can indicate 
when a component needs maintenance so that it does not reach the end of its useful life and fail. From research by 
Jimenez and Vingerhoeds [12], this emerges as characteristics of a predictive maintenance strategy. Predictive 
maintenance is already used in many other industries, such as aviation [13] and marine [14], to prevent unplanned 
downtimes.  
For the beverage industry, there are some studies by Tsarouhas [15] [16] in which equipment in the production line is 
monitored and data is collected to determine whether the line needs maintenance or not. This is often done at system 
level rather than component level. It can then be determined when which line needs maintenance, but not so much 
which component within the line. 
In contrast to previous research looking at how condition monitoring of an entire system is used to set up a predictive 
maintenance strategy, this research will focus on the component level. 
Within the literature, few examples can be found for the beverage industry on how the condition monitoring data of 
components can be used. Whereas in the aviation and oil industries there are numerous examples of models where 
condition monitoring data is used as a tool for, for instance, a maintenance plan, this is still a grey area for the soft 
drink industry. This research will look at how the beverage industry can use condition monitoring data at component 
level for a predictive maintenance strategy. It will also look at what benefits the predictive maintenance strategy brings 
to the soft drink industry. 
 
 

1.4 Research objectives 
In line with the problem statement for this research, the following research objectives can be defined. 
It is necessary to investigate what information condition monitoring data provide at the component level. It is then 
necessary to determine how condition monitoring data can be related to component failure probability. It is also 
necessary to examine how the condition of a component affects the failure probability of the entire production line. The 
failure probability should also be related to the probability of unplanned downtime. All the above should be brought 
together in an accessible model.  
 
Part of the model should be able to determine, using a method, the failure probability of the whole system from given 
input data; this is forward reasoning. To determine which method can best do this, a survey of existing methods is first 
carried out and which method best suits this research. In addition, the method must also be capable of being updated 
as new data becomes available. 
 
The aim of the research is to arrive at an accessible method that can be used to create a model. The model will 
therefore include the method described earlier and some additions to be able to arrive at a working model. A final 
model should be able to determine a failure probability for the entire line based on input data, condition monitoring 
data of the system and defined relationships between the data. This can then be used to calculate the probability of 
unplanned downtime. The model must be able to perform these actions on both existing data and a synthetic dataset.  
Using the model's output, it should become possible to determine whether a component needs maintenance before 
the next process is started. This will allow then to perform predictive maintenance. Indeed, synthetic data can be run 
through the model to determine whether a component can perform its function long enough until the next scheduled 
stopping point.  
 
The model should further provide insight into how line reliability changes when timely maintenance is performed 
compared to the situation where no model would be used. 
 
 

1.5 Research questions 
In this research, a main research question has been formulated to arrive at a solution to the previously stated problem. 
To formulate an answer to the main research question, some sub-research questions have been drawn up and will be 
answered throughout the research. The answer to the main question is further supported by the outputs of the model. 
 
Main question: 
How can a predictive maintenance strategy contribute to improving the reliability of a soft drink production line? 
 
Sub-research questions: 

1. What are the main components in the soft drink production line? 
2. What is the best maintenance strategy for this problem compared to the current maintenance strategy? 
3. Based on the available data and knowledge, what kind of method is most appropriate to develop a model with 

for this problem? 
4. What are the steps to develop and verify the method of the model? 
5. In what way is the implementation of the model contributing to the reliability of the production line? 
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1.6 Methodology 
To arrive at a predictive maintenance strategy that can improve production line reliability, a literature review must first 
be conducted. It will consist of a chapter on the process and function of valves and pumps. Then, different 
maintenance strategies will be discussed. Here, the current maintenance strategy and its shortcomings should be 
discussed. Next, a predictive maintenance strategy will be examined and how this type of maintenance strategy can 
complement the shortcomings of the current maintenance strategy. Current applications of predictive maintenance are 
also discussed with a focus on the beverage industry. It will then be considered how a predictive maintenance strategy 
can be modelled. The model will consist of several parts. This includes a part that can determine the probability of 
failure of the production line based on a method. For the method, the first step is to see what methods are available to 
determine this. These methods are then subjected to some previously established criteria specific to this research. 
This allows the best method for this research to be determined.  
Once the method is chosen, it will be determined which factors contribute to the likelihood of unplanned downtime in 
which way. Theoretical approaches will be used to link certain variables. The relationships between the variables and 
the probability of downtime will be incorporated into the method, creating a method that reflects the components in the 
production line. 
 
Then the method will be subjected to some verifications.  
The method is part of the model. In this model, the method is used to determine the probability of failure of the 
production line. In addition, the model determines some other factors that, finally, can be used to indicate whether or 
not maintenance is required before starting new production.  
 
To determine the effect of the model (and thus the predictive maintenance strategy) on line reliability, a synthetic 
dataset is created. This makes it possible to compare two situations, namely the situation where the model is not used 
(corrective maintenance) and the situation where the model is used (predictive maintenance). It is done on the basis of 
KPIs. By comparing the values of the KPIs of the two situations, the impact of a predictive maintenance strategy on the 
reliability of the production line can be determined. 
 
In short, data analysis, theoretical relationships and a model containing a method for determining probability of failure 
are used to determine the impact of the predictive maintenance strategy on the reliability of the soft drink production 
line. 
 
 

1.7 Thesis outline 
The structure of the thesis is based on the sub-research questions. Chapter 2 looks at the processes that take place in 
a soft drink factory. It also considers the valves and pumps used and the ways in which these components can fail. 
The different types of downtime and the current maintenance strategy are briefly discussed. 
Chapter 3 focuses on the second sub-research question and looks at the different maintenance strategies. More 
explanation is given of the different types of methods that can serve as a basis for modelling a predictive maintenance 
strategy. Finally, the criteria to be met by a method for this research are briefly touched upon. 
Chapter 4 starts with a data analysis to determine what data are available and how they can be related to the failure 
probability. This is done for the production line in general and specifically for the valves and pumps. Methods are then 
discussed. The different methods are subjected to a number of criteria, ultimately leaving one method that best fits this 
research. A brief general explanation of the chosen method is then given.  
Chapter 5 deals with the fourth sub-research question. Here, the model created for this research is explained step by 
step. Next, verification is carried out.  
Chapter 6 discusses the performance of the model and thus partially addresses the fifth sub-research question. Here, 
it looks at the KPIs that can reflect the reliability of the production line. Next, the flowchart of the full model for this 
research is discussed. It then discusses the two situations, with and without the model, and how to calculate the KPIs 
for these. 
Chapter 7 presents the results of the model as described in the flowchart for both situations. It also looks at the fifth 
sub-research question here to answer it based on the results from the model. This also looks at the outcomes of the 
KPIs for both situations. Finally, the results are briefly compared. 
Chapter 8 brings forward the conclusion of this research. Chapter 9 presents the discussion and Chapter 10 closes 
this thesis with the recommendations for a follow-up research. 
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2. Production process and components 
 
This chapter focuses on the sub-research question: What are the main components in the soft drink production line?  
To answer this question, first, the production process will be looked at in more detail. There will be also discussed 
what happens in the line when producing. It also looks at the CIP (Clean-In-Place) process. After it is clear what 
processes take place, the valves and pumps in the line are looked at. The operation of these components and known 
failures are identified. This is followed up by looking at what downtimes of the production line are and how valves and 
pumps affect them. The chapter concludes with a brief review of the current maintenance strategy and desires for a 
different strategy. 
 

2.1 Production process 
As stated in Chapter 1.2, only the production line is considered. Defined by Koss [9], this is the line where all the 
ingredients are processed and mixed to arrive at the final product.  
Before the products can be mixed, these must first be collected. First, the main ingredient of soft drinks; water. Soft 
drinks consist of at least 85% water [17]. Most soft drink factories pump the water themselves or otherwise extract it 
from the earth's surface or other water sources such as rivers or lakes [17]. The water must undergo some treatments, 
including filtering, venting and pH processing, so that it complies with Food and Commodity Authority Regulations. The 
water is then stored in tanks ready to use. 
 
Another main ingredient in soft drinks is sugar. There are soft drink factories that process sugar beet into sugar 
themselves. Other factories use ready-made sugar. Sugar is dissolved in water to make a syrup. In zero and light 
products, sweeteners are used instead of sugar. These too are dissolved in water to make a syrup [18]. 
After dissolving the sugar or sweetener in water, flavouring and colouring agents must also be added to make a syrup. 
This can be done through metering valves connected to tanks containing fruit juice extracts and colourings. 
Alternatively, there is a premix of the flavourings and colourings that has to be dissolved with sugar in water [7]. All this 
has to be mixed well in so-called mixing tanks. After mixing in the tank, the syrup is pasteurised. After pasteurisation, 
the syrup must be de-aerated. This is because air may have entered the syrup during mixing. De-aerating can be done 
by letting the syrup rest for a while in a tank or by using a vacuum de-aerator [19]. 
 
After de-aerating the syrup, the next step is to mix the right amount of syrup with water and carbon dioxide. In many 
cases, the water is first impregnated with the carbon dioxide gas under high pressure and low temperature. The lower 
the temperature of the water, the better the carbon dioxide can dissolve in it. The process of adding the water with the 
carbon dioxide gas is called carbonisation. The carbonated water is then mixed with the syrup to become a carbonated 
soft drink. In many cases, it is then pasteurised again to avoid unwanted processes [17]. After this, the soft drink is 
ready to go to the filling line. 
 

2.1.1 Production line case study 
The line analysed for this research starts at the point the syrup is mixed. After this, therefore, the steps of heating, 
cooling, resting and carbonisation still have to take place. 
 
Below, see Figure 5, is a schematic representation of the line that is central to this research. 
 

 
Figure 5: Schematic overview of the production line for this research 
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The follow-up steps such as filling the bottles or cans are beyond the scope of this research. 
 
Besides the production process, there is another process that takes place within the soft drink factory. This is the 
cleaning process of all equipment within the process, i.e. the valves, tanks, pipes and pumps. It is called the Clean-In-
Place (CIP) system. This will be briefly addressed as it affects the lifetime of the components. It also provides 
background information on what to do when the line needs cleaning after maintenance has been carried out. 
 

2.2 Clean-In-Place 
There are many different ways in which CIP can be carried out.  
The purpose of the CIP system is to clean the production line and thereby also remove bacteria [7] [20]. There are 
many different ways in which CIP can be carried out, but three ways of cleaning can always be distinguished [21]. 
 

1. Mechanical: using impact and turbulence to remove residues, often this is done using only water pumped 
through the line at high speed to create turbulence which is then used to flush away the residues left behind.  

2. Chemical: using chemical actions to clean up the remaining residues, smaller residues are flushed out of the 
line. 

3. Sterilisation: to kill the micro-organisms.  
 
 
Cleaning the line can be done in many different ways, but generally there are a few steps that are always performed. 
First, everything will be flushed with water and then cleaned with different cleaning agents. After using cleaning 
agents, rinsing is always done with water. Appendix B provides an overview of all the different steps, cleaning agents, 
temperature and time frame.  
Which type of CIP is used depends on the type of product that is produced. 
 
Often, the water and cleaning agents for CIP are stored in tanks in another part of the factory. Through pipes, pumps 
and valves, it is pumped into the right part of the line that has to be cleaned.  
 
There are some factors to consider during the CIP process. For example, it is important that the flow rate is 1.5 m/s 
[20]. This is because then the cleaning agents can do their job best. If the flow rate is higher than this it can give ''water 
hammer'' causing the equipment within the system to break down [20]. Water hammer can occur in pipelines that 
pump fluid and contain valves to direct the fluid in the right direction. If a pump stops pumping or a valve suddenly 
closes when it should have been open, the fluid comes to a sudden stop. The momentum of the liquid then causes a 
pressure wave that is reflected back into the pipe. As a result of the resulting interplay of forces, the valve or pump 
may fail and have to be replaced. This creates unplanned downtime [20]. Furthermore, the total time of cleaning is 
difficult to determine because it depends on many factors, which must be taken into account when making the 
production planning.  
CIP makes extensive use of water pumped through the line at high speed. In addition, various chemical cleaning 
agents, often at high temperature, are pumped through the line and components. All this affects the service life of 
valves and pumps within the line [21]. Therefore, for this research, CIP, or rather the influence of CIP on service life, 
must be included. 
 
 

2.3 Valves and Pumps 
From the description of the production process and CIP, it can be seen that different types of equipment are needed to 
run the entire process. Within this research, the main focus will be on valves and pumps within the production process. 
 

2.3.1 Valves; types and working principles 
Many valves are used in most soft drink factories, as is the case in 
the factory in this research. The valves ensure that the products go 
to the right tanks or pipes, so that it can be further processed there 
into the final product. There are also metering valves that ensure 
that the right amount flows into or out of a tank. Other valves are 
usually located in the pipes or in a valve matrix [22]. A common type 
of valve is the valve with double seat. In this, two chambers 
separated by a stem can separate liquids. This type of valve can 
also be used to direct fluids to another line [23]. See Figure 6 [23] 
and Figure 7 [24] for an example of the double seat valve. 
 
 
 
 Figure 6: Double seat valve [23] 

Figure 7: Double seat valve [24] 
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Another commonly used type of valve is the butterfly valve. This is a type of valve that can only be open or closed. It 
works with a disc in the centre that can be turned 90 degrees so that the valve is open. To close, the disc is turned 90 
degrees again. This causes the disc to fall back into the rubber which ensures that nothing can pass [25], see Figure 8 
[26] and Figure 9 [27]. 
All valves in the line are air-operated [22]. 

 
 
 
 
The operator controls the Programmable Logic Controllers (PLCs) connected to the valves. The PLCs transmit the 
command and then send a signal when the valves are in the desired position. Also, the PLC logs if anything changes 
in the position of the valve [28]. Furthermore, the valves can be classified by diameter in addition to the type. In this 
research, twelve double seat valves and thirteen butterfly valves will be included. This gives a total of 25 valves. 
 

2.3.2 Valve failures 
The most common problem with valves is leakage. This is usually caused by wear of either the stem or the seat [29].  
Also, the O-rings between the different chambers can have wear which prevents the valve from closing properly. 
Possible causes for this wear include frequent use, cleaning agents, water hammer and influence of process 
parameters such as temperature or pressure [30]. It is noteworthy here that both the production process and CIP 
influence valve failures. 
Another type of failure is when a valve has been stationary in a certain position for too long, causing the valve to 
malfunction [31]. 
Failure due to water hammer suddenly involves a lot of water being pumped through the pipes, often because 
something else malfunctions at that point, putting a lot of force on the valves. This can knock the O-rings out of the 
valves or the stem can no longer hold and fails [31]. 
If a valve fails then it causes downtime of the entire production line. Only when maintenance has been carried out or 
the valve is replaced can the process be restarted, after cleaning. 
 
 

2.3.3 Pumps; working principle 
Soft drink factories often use centrifugal pumps. 
The pumps are used to transport the liquids through the pipes [32]. In many cases, centrifugal pumps are used that 
operate with impellers to provide energy to the liquid (syrup, water or cleaning fluid) to be pumped, see Figure 10 [33] 
and Figure 11 [34]. The inlet (suction side) is where the liquid is sent into the pump. It then reaches the impeller which 
processes it to the outlet (discharge) of the pump. Centrifugal pumps can also fail. There will be six centrifugal pumps 
involved in this research. 

Figure 8: Butterfly valve [26] Figure 9: Butterfly valve [27] 



       

2023.MME.8809     9 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

2.3.4 Pump failures  
Centrifugal pump failures can be classified into three categories [29]: 

1. Hydraulic failures → These include all failures caused by pressure changes. This leads to cavitation and high 
thrust on the impellers. 

2. Mechanical failures → The failures that occur to parts of the pump. These include fatigue, failing bearings, 
leaking seals and degradation of lubricants due to high temperatures.  

3. Corrosion and erosion → Corrosion occurs due to a chemical attack on the material which changes as a 
result. Erosion is defined as the physical wear and tear of equipment [35]. 

 
It is known that if the pumps build up too much pressure and the fluid has nowhere to go that then the pumps clamp 
and break down. If a pump fails, it causes downtime for the entire production line. Only when maintenance has been 
carried out or the pump replaced can the process be restarted, after cleaning. 
 
 

2.4 Different types of downtimes 
One of the biggest challenges currently facing the soft drink industry is to reduce downtimes. Downtime (DT) is defined 
as: ‘’period of time in which production machinery is not allowed to perform its output because it is not working’’ [36]. 
Two categories can be distinguished within downtimes [36], see also Figure 12 (based on [36]): 

- Planned downtimes: these are organized 
stops of the process to perform maintenance, 
cleaning or preparing the process for another 
product, for example. 

- Unplanned downtimes: these are the 
moments when the process suddenly stops 
due to equipment failure. 

 
 

 
 
 
Within the soft drink industry, the biggest problem is unplanned downtimes, due to equipment failure in the production 
line [37]. 
There are known examples where unplanned downtimes are 37% of operational time. This means that only 63% of the 
operating time can be used to produce products [38]. On average, beverage manufacturers lose about 25 hours of 
total operating time per month to unplanned downtimes [39]. 
An annoying consequence of unplanned downtimes within the beverage industry is that it causes wastage of products. 
This is due to the very strict laws and regulations of the Food and Consumer Product Safety Authority. Due to 
unplanned downtimes, quality can no longer be guaranteed and the batch has to be rejected [40].   
 
Unplanned downtimes due to equipment failure within the beverage industry often do not happen all at once. In this 
case, it is often a gradual degradation of the equipment, which is reflected in the output of the products, think of 
varying product quality [41]. By using condition monitoring tools, the condition of equipment can be monitored. Chapter 
3 will take a closer look at different maintenance strategies that use condition monitoring techniques. 
 
 

 owntimes

Planned

Scheduled 
maintenance

Set up time Cleaning

 nplanned

E uipment 
failure

Figure 10: Centrifugal pump schematic [33] Figure 11: Centrifugal pump [34] 

Figure 12: Overview of types of downtimes [36] 
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2.4.1 Condition monitoring of valves 
If valves can no longer close properly, this causes major problems, for example, fluid can enter pipes where it is not 
wanted. If there is a leak, the result may be that fluid leaks out of the system. One of the possible consequences could 
then be that the composition of the product is affected and thus food safety. Also, fewer bottles or cans may then be 
filled than previously calculated. Once failure occurs within the valves during producing then the entire line must be 
shut down, usually this is an unplanned downtime, to allow maintenance to be carried out. After maintenance, the line 
has to be cleaned before new production can be started. 
For valves, there are several condition monitoring techniques that can be used. Some of those are: valve torque, travel 
time (time between valve opening and closing) (in Dutch called: looptijd) [42], position monitoring, acoustic monitoring 
and valve flow coefficient [29]. 
 

2.4.2 Condition monitoring of pumps 
The consequences are significant if the pumps come to a stop. Most of the time it causes an unplanned downtime. 
Fluid can then no longer be transported through the rest of the line. There are a few scenarios that can then occur; the 
liquid comes to a standstill in the line and has a chance to adhere to the equipment there with all the consequences. 
Another possibility is that all liquid is let out of the system through the valves, however, there is always a chance that 
something will be left behind, but cleaning is not an option because those liquids cannot be pumped either. Either way, 
in both cases it creates an undesirable situation that should be avoided if at all possible.  
 
There are also condition monitoring techniques for centrifugal pumps. Some of them are: vibration monitoring, 
lubricant sampling, head-flow measurement, shut-off head method, temperature difference and thermography [29] 
[32]. 
 

2.4.3 Case study at soft drink factory 
In this research, data available on the valves and pumps in a single production line will be used. In the case of the 
valves, this is historical data on the looptijd, the time between the command open or close and whether the valve is in 
the correct position. In addition, it is known where in the line a particular valve is located, which processes have 
occurred and when valves have failed as well as what position the valve was in during the failure. The historical data is 
supplemented with real-time data on looptijd, valve position, type of process (production or CIP) and moments of 
failure. There is also a lot of knowledge on the factory floor about how to interpret the data. 
From the previously mentioned condition monitoring techniques for valves, looptijd, position monitoring and process 
monitoring are used. 
For the pumps, head-flow measurement, pressure differences and pump performance measures will have to be 
considered. Because it is clear when a production process was going on and when cleaning was done, it is possible to 
see how this affects unplanned downtimes. 
 
 

2.5 Current maintenance strategy and requirements 
Currently, the plant uses a combination of corrective and preventive maintenance. In many cases in the production 
line, the ''Fix it, when it is broken'' principle, or corrective maintenance [43], prevails and maintenance is carried out the 
moment a component from the line fails. This component is then repaired or replaced. Fixed maintenance moments 
are also used, during which maintenance is carried out on the lines scheduled at that time. This falls under the 
preventive maintenance principle [43]. 
At the moment, only the real-time data coming in is looked at; if this shows deviating values, the operator can 
intervene. In many cases, this first involves resetting the components not working properly in the line and controlling 
them again. If this does not work, the entire line will have to be shut down to perform maintenance and there is thus an 
unplanned downtime. After there has been an unplanned downtime, the entire line has to be cleaned before a new 
batch can be started. This comes at the cost of production time over that line. So far, no other way of maintenance has 
been tried to reduce the number of unplanned downtimes. As a result, the line is down several times a month. 
However, data has been collected and stored for several years with which nothing is currently being done. This data 
could play a major role in improving the maintenance strategy to reduce unplanned downtimes. The company wants to 
use the data to determine the condition of individual components in the line. In addition, the company also wants to 
look at how, based on the data and expert knowledge, a forecast can be made about the expected time in which a 
component will fail. Based on those forecasts, it can then determine when a component needs maintenance so that 
the amount of unplanned downtimes will reduce. To improve the maintenance strategy from reactive to proactive, it is 
therefore necessary to look at ways of creating the desired output based on data and expert knowledge.  
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2.6 Conclusion 
This chapter focuses on the sub-research question: What are the most important parts of the soft drink production 
line? Clearly, the valves and pumps are the most important parts of the production line. In the production line used in 
this study, there are 25 valves and six pumps. It was then investigated how these components function and in what 
ways these components can fail. It was also recorded how the valves and pumps cause unplanned downtime and 
what the consequences are. In addition, the techniques that can be used to determine the condition of the components 
are discussed. 
The case study is carried out at a soft drink factory in the Netherlands. This factory currently operates with mainly a 
corrective maintenance strategy. There are a few moments during a calendar year when the line is scheduled to stop 
and maintenance is carried out on the components currently on a list, often based on data from the manufacturer on 
how often a component needs maintenance. With these modes of maintenance, many unplanned downtimes are 
experienced. Steps have been taken in recent years by collecting data on the condition of valves and pumps in the 
line. However, this is not currently being used to reduce the number of unplanned downtimes. It can be gathered from 
the literature that one of the ways to reduce unplanned downtimes is to work with a proactive maintenance strategy 
instead of a reactive maintenance strategy (reactive includes the corrective maintenance strategy).  
The case study will therefore need to look further into the ways of moving from the reactive to a proactive maintenance 
strategy and how this contributes to reducing the number of unplanned downtimes. Chapter 3 will elaborate on the 
different maintenance strategies and which proactive maintenance strategy is the best fit for this research.  
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3. Maintenance strategies 
The central sub-research question in this chapter is: What is the best maintenance strategy for this problem compared 
to the current maintenance strategy?   
To answer this research question, different maintenance strategies will first be discussed. Then it will be examined 
which of the maintenance strategies best suits the requirements that have emerged in Chapter 2.5. 
The best-fit maintenance strategy, for the problem in this research, will then be discussed in more detail to clarify what 
the functionalities and essential elements are. 
 

3.1 Maintenance standard EN 13306 
When looking at the term maintenance, there are many different forms and definitions. This research will use the 
definition of maintenance as stated in EN 13306 [43]; ‘’combination of all technical  administrative and managerial 
actions during the life cycle of an item intended to retain it in, or restore it to, a state in which it can perform the 
re uired function’’. 
 
Within EN 13306 [43], the first distinction is whether maintenance is performed before or after the failure of a 
component. This is also called reactive or proactive by Shukla et al [44]. Reactive maintenance takes place after the 
failure of a component. Proactive maintenance, on the other hand, takes place before the component has a chance to 
fail. The overall scheme can be seen in Figure 13 [43]. 
 

 

3.1.1 Corrective maintenance 
Corrective maintenance falls under the category of reactive maintenance. It is also known as: ''run-to-failure'' [44] or 
''break-down maintenance'' [45]. Corrective maintenance is characterised by the system continuing to function 
throughout its lifetime and only being replaced after failure. The definition of corrective maintenance according to EN 
13306 is as follows: ''maintenance carried out after fault recognition and intended to restore an item into a state in 
which it can perform a required function'' [43]. 
According to Merkt [46] systems with corrective maintenance are set up to deal with pre-known failures and damages. 
However, as time goes by, new failures and associated patterns emerge with the use of the system. 
 
Corrective maintenance can be further divided, according to EN 13306, into immediate corrective and deferred 
corrective maintenance. As the name suggests, immediate corrective maintenance involves immediate maintenance of 
the failing component to avoid unpleasant consequences [47]. 
With deferred corrective maintenance, on the other hand, maintenance is carried out later because other things have 
higher priority or parts are out of stock [48]. 
 
Inside the proactive maintenance category, there is the preventive maintenance category according to EN 13306. With 
this strategy, maintenance is carried out before a component has a chance to fail. 
 

 aintenance

Corrective

Immediate  eferred

Preventive

Predetermined
Condition 
based

Predictive
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condition based 
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Figure 13: Overview of different maintenance strategies based on EN13306 [43] 
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3.1.2 Preventive maintenance 
When maintenance is carried out before a failure has occurred, it is called preventive maintenance. According to EN 
13306, preventive maintenance has the following definition: ''maintenance carried out intended to assess and/or to 
mitigate degradation and reduce the probability of failure of an item'' [43]. 
According to Merkt [46] the biggest challenge of preventive maintenance is that it does nothing with the past. This 
means that no data from the past is kept and analysed regarding, for example, abnormal behaviour or maintenance 
actions that were carried out to prevent failure. Preventive maintenance defines a set of actions to be performed 
before the system or component even has a chance to fail. 
 
In line with EN 13306, this category is further divided into predetermined maintenance and condition-based 
maintenance. 
 

3.1.3 Predetermined maintenance 
Predetermined maintenance is defined according to EN 13306 as follows: ''preventive maintenance carried out in 
accordance with established intervals of time or number of units of use but without previous condition investigation''. 
These intervals are determined with the knowledge that exists about the possible failure options and after how much 
time or cycles this should/could happen. Equipment degradation is not monitored here. According to Kothamasu et al 
[49], the underlying assumption is that each component is assumed to always go off the same operational curve. This 
can then be used to determine when maintenance should take place. Merkt [46] states that predetermined 
maintenance includes time-based maintenance. In which maintenance is carried out based on a pre-conceived time 
schedule. With this, the parts are used until it may fail according to the manufacturer, once that moment is reached the 
part is replaced without actually being at the end of its service life. Again, there is no monitoring of the actual 
degradation but is based on pre-supplied specifications. 
Kothamasu et al [49] argue that time-based maintenance is also known as constant time interval. In addition to this 
strategy, Kothamasu et al [49] suggest that there are two other strategies that are common in preventive maintenance. 
These are age-based maintenance and imperfect maintenance. Age-based maintenance, as the name suggests, is 
based on the age of a component. If the component fails at time t, then the next maintenance moment can be 
scheduled after t time has elapsed again. According to Kothamasu et al [49], compared to the constant time interval 
strategy, this strategy reduces the number of maintenance moments.  
Imperfect maintenance, where the other strategies assume that a component works as new again and thus starts a life 
cycle anew, here it is assumed that a component no longer works as new. It is brought back to a working state, but not 
starting a new life cycle. The imperfect maintenance strategy takes the uncertainty of a component's current state into 
account when planning maintenance moments. 
 

3.1.4 Condition-based maintenance 
Condition-based maintenance is defined according to EN 13306 as:  
 

Preventive maintenance that includes assessment of physical condition, analysis and possible consequent 
maintenance actions. Condition assessment can be done by operator observation, and/or inspection, and/or 
testing, and/or condition monitoring of system parameters, etc. according to a schedule, on demand or 
continuously [43]. 

 
Merkt [46] explains condition-based maintenance with that it is a strategy of monitoring equipment and intervening 
when there is evidence of degradation or other deviations from normal behaviour of the system or component. In 
addition, Key performance indicators (KPIs) or other health indicators can also be calculated and analysed to detect 
patterns or disturbances. 
 
According to EN 13306 [43], condition-based maintenance is further split into predictive maintenance and non-
predictive condition-based maintenance. 
 

3.1.5 Predictive maintenance 
Predictive maintenance (PdM) is used in EN 13306 with the following definition: ''condition-based maintenance carried 
out following a forecast derived from repeated analysis or known characteristics and evaluation of the significant 
parameters of the degradation of the item''.  
Merkt [46] adds that predictive maintenance uses both historical and real-time data. The data is processed into 
prognostic models using machine learning and other methods, which can be used to make accurate predictions about 
the future status of the equipment. Predictive models assume that at a certain point in the equipment's life-time the 
failure rate will increase. This can then be used to predict when maintenance is required to prevent failure. 
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3.1.6 Non predictive condition-based maintenance 
Non-predictive condition-based maintenance does not use prognosis on the degradation of the component. Only the 
degradation is monitored but no analyses are performed. This makes it similar to normal condition-based maintenance 
[43]. 
 

3.1.7 Prescriptive maintenance 
Merkt [46] states that in addition to these maintenance terms, there is another term that is not specified in the EN 
13306 standards, namely prescriptive maintenance. Prescriptive maintenance is defined by Merkt [46] as: 

 
A recommendation of one or more courses of action based on the results of corrective and predictive 
maintenance models. When a predictive model raises an alarm before the fault occurs, the prescriptive model 
will work in the direction of reducing the probability that this alarm will rise in the future, by modifying the 
working parameters and variables of the asset or the process affected by the fault. When the fault is 
confirmed, the prescriptive models will work to minimize its impact of the work context and to re-routing assets 
to the non-faulty production lines [46].  

 
Marques and Giacotto [50] state that: 

 
In other words  the prescriptive maintenance not only is based on the failures’ prediction accordingly to the 
analysis of data patterns and trends  but also taking the specific company’s maintenance process into 
consideration to provide detailed recommendations, and supports the solution-finding process [50]. 

 
Prescriptive maintenance is several steps further than predictive maintenance. It uses self-learning systems that can 
detect abnormalities, predict and indicate where the problem is and how to fix it. The system also learns from the 
failure so that it can provide even more detailed information next time. 
 
 

3.2 Maintenance strategy for this problem 
Chapter 2.5 listed some requirements to be considered in the process of choosing a maintenance strategy for the 
problem of unplanned downtimes. The current maintenance strategy is closest to corrective maintenance, namely 
repairing or replacing at the time an unplanned downtime occurs, in a few cases there is predetermined maintenance. 
This manifests itself in the fact that there are maintenance moments in which the replacement of parts is put at the top 
of a list, often based on the knowledge or data of the supplier who has determined in advance the time interval at 
which maintenance must be performed. Here, there is no further reasoning as to why a part should be replaced. 
In summary from Chapter 2.5, the proactive maintenance strategy should ensure that, based on condition monitoring 
data and expert knowledge, a signal can be given in time that a certain component in the line is not functioning 
properly and which needs maintenance or replacement.  
 
Combining both the requirements and the earlier given descriptions of the different maintenance strategies, it can be 
seen that condition-based maintenance strategies should be looked at. That leaves predictive, non-predictive and 
prescriptive maintenance as possible options. For the problem in this research, prescriptive maintenance is too 
complex, as it also requires data on how maintenance is performed on the various components and which parts of, for 
instance, a valve need to be replaced and also the method how to replace that specific part. This requires much more 
detailed data than is currently available. 
There is data available from the past few years that can be used to draw up trends and analyses on how certain 
components fail, which is why non-predictive condition-based maintenance is also discarded, as this strategy does not 
use analyses. 
The most suitable option for a proactive maintenance strategy in this research is predictive maintenance. 
 
 

3.3 Predictive maintenance 
As defined earlier in Chapter 3.1.5, PdM can be used to predict the approaching end-of-life, in other words; failure, of a 
component or system based on condition monitoring and historical data. Many examples can be found in other 
industries where PdM is already widely used.  Within the oil and gas industry, it is used to monitor pumps, engines and 
compressors and carry out timely maintenance [51]. One of the driving forces behind this is the very costly downtimes 
it can reduce [52]. 
 
PdM is also increasingly being used within aviation engineering. Here, the PdM strategy is applied to critical 
components [13]. It ensures that the parts that are likely to fail can be ordered and replaced in time. This not only 
prevents an aircraft from being grounded unnecessarily, but also improves safety [53]. 
 
Furthermore, many other examples can be found within the literature where PdM has been applied, including for wind 
turbines [54] [55] [56], marine industry [14] [57], car production lines [58] and rail networks [59]. 
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From the above examples, it can be seen that many forms and applications of PdM are possible. It is therefore 
important to examine what are essential features of a predictive maintenance strategy.  
 
Now the first thing it will be looked at is what exactly makes a maintenance strategy predictive. 
PdM has two main applications: diagnostic and prognostic. According to Jimenez and Vingerhoeds [12], the 
diagnostics approach is used to determine the current health condition of a component or system. Jimenez et al [60] 
add that diagnostics is also used to identify the cause of faults. 
Prognostics, according to Jimenez and Vingerhoeds [12], is dedicated to predicting the future health status or failures 
of the system and/ or the Remaining Useful Lifetime (RUL). 
 
Jardine et al [61] argue that diagnostics can be viewed as a posterior event analysis and prognostics as a prior event 
analysis. Predictive maintenance can use either diagnostic or prognostic approaches or a combination of both. From 
the descriptions of both approaches, it can also be seen that both approaches complement each other. Suppose the 
prognostic approach fails and a fault suddenly occurs anyway, diagnostics is important to find out what caused the 
fault.  
Diagnostics and prognostics can be performed in two ways according to Vingerhoeds et al [62]. The first is on-line. For 
on-line applications, data is collected, processed and analysed in real time while the system is operating. With this, 
alarms or other notifications for maintenance can then be issued while the system is operating [62]. On-line must take 
into account that there is only a limited time frame to gather the information, process it and plot actions.  
The other way is off-line. With this, data is collected that is later used and analysed [62]. 
 
Since it is apparent from the descriptions that diagnostics and prognostics can both be used and are complementary to 
each other, both will be discussed in more detail. Diagnostics will be discussed first. 
 
 

3.3.1 Diagnostics  
Diagnostics is also known as condition monitoring, anomaly detection or root cause failure method. For condition 
monitoring, sensors can be used to monitor the functions of the equipment.  
 
There are several commonly used condition monitoring techniques known that can be used for individual equipment 
within the system. Some commonly used techniques are described below. 

- Vibration monitoring: This technique is capable of detecting many different forms of fatigue, wear, 
misalignment, turbulence and so on. It is commonly used to determine the condition of pumps, motors and 
turbines [63]. 

- Process parameters: This often falls under the normal monitoring of systems, but can be used as a basis for 
determining the condition of the system. This is because it is also applicable to non-mechanical parts of a 
system such as pipes and boilers. These include: Process efficiency, heat loss, machine temperature, fluid 
pressure and looptijd [29]. 

- Acoustic monitoring: based on frequencies, it can be checked and determined whether the equipment is still 
working properly [29]. 

- Visual inspection: based on inspectors' observations, the condition of the equipment is determined [64].   
 
In addition to the above techniques, many others can be found in the literature that can determine the condition of the 
equipment within a system. 
In Chapter 2.4, condition monitoring techniques for valves and centrifugal pumps were already discussed. There it was 
noted that, according to source [29]: for valves, looptijd, position monitoring, acoustic monitoring and valve flow 
coefficients can be applied. For centrifugal pumps, vibration monitoring, lubricant sampling and temperature difference 
are commonly used techniques. 
 
Besides monitoring the equipment, what meanings can be derived from the data should also be considered. Based on 
the data collected, the first step is to analyse whether the data falls within the margins defined as safe. One way to do 
this is with anomaly detection. In fact, anomaly detection is also known as outlier detection [65]. If the analysis shows 
abnormal values, a notification can be issued. Based on this, further investigation can then be done. 
 
Based on condition monitoring and analysis of the data, a diagnosis can be made about the state of the system and 
whether any abnormalities have been detected.  
 
Earlier, Jimenez and Vingerhoeds stated that diagnostics can also be used to identify the cause of a failure. This is 
done on the basis of observed symptoms [12]. 
 
All this together explains the first part of a predictive maintenance strategy. As indicated earlier, there is also the 
prognostic part. 
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3.3.2 Prognostics 
As stated earlier, the prognostic part of a predictive maintenance strategy is to determine what the RUL is or to predict 
what the future condition or failure may be of the equipment. 
Within a prognostic approach, a distinction can be made between roughly three types of models. These models 
themselves have other models underneath them as shown in Figure 14 [51]. It is also possible to use a combination of 
the models [60] [66]. 

• Knowledge-based models 

• Data-driven models 

• Physics-based models 
 

 
 
 
Knowledge-based models 
These models are based on experience and knowledge [44]. Experience and knowledge can be gained from facts, 
rules/laws or expert knowledge gathered over the years on the operation and maintenance of the system [62] [67]. It 
can be used to describe and predict component failures or degradation [68] [69]. Within the literature, three 
subcategories can be distinguished for knowledge-based models [60]: 

 
Rule-based models  
 ''If Then'' relationships are used. The input is compared with knowledge in the database and then it is 
determined what a logical output would be [70]. 
 
Case-based models  
These models are based on the knowledge previously gained from other cases or obtained from previous 
experiences or situations [71]. The new case is compared with others to see what the best solution is. Useful 
when no clear relationship between facts can be found [62] [71]. 

 
Fuzzy knowledge-based models 
It is similar to the rule-based models but instead of just being right or wrong, it is now possible for it to be partly 
right or partly wrong [72] [73]. Other terms like hot, cold, big, small can also appear here. 

 
There are some caveats about knowledge-based models. It is limited when looking at prognostics. It is difficult to 
predict anything just based on past knowledge/experience. However, it can serve as a supplement or basis if other 
models are used for the RUL [60]. 
 
 
Data-driven models 
These models are based on data. This data can include operational data, environmental data, equipment data and 
many other types of data. With the information obtained from the data, something can be determined about the health 
condition of the component or system, such as degradation or RUL [60]. Data-driven models can be divided into two 
different subcategories according to Sikorska et al [72]: 
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Figure 14: Overview of different prognostic PdM models [51] 
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Life expectancy models (LEM): these models aim to determine the life expectancy of individual components 
with respect to the expected risk of deterioration under known operating conditions [72]. LEM models can be 
divided into two sub categories: 

 
Statistical models   
These models analyse the behaviour of random variables by comparing it with recorded data from the 
past. For predictive maintenance, it is employed to be able to determine degradation and RUL, first a 
distribution function has to be established with which a trend analysis can be done [60]. Examples of 
statistical approaches include: regression analysis [74], autoregressive models [72] and Bayesian 
models [75]. 

 
Stochastic models  
This type of models are probability models that focus on the evolution of a random variable over time 
[76] For this, historical data is used in most cases [77]. Two stochastic processes have been identified 
that can both be used: Gaussian processes and Markov processes. 

 
Artificial Neural Network (ANN): these models can directly or indirectly calculate an expected output for RUL. 
For this purpose, an observation dataset is used to create a mathematical representation of the component. 
The physical understanding of the failure processes is not considered [72]. Common known sub categories 
are: 
 

Machine learning models 
These models use specialised learning algorithms, like AI, to build models from data [78]. Machine 
learning models, unlike physics-based, statistical or stochastic-based models, are able to work with 
complex relationships. The most important thing about machine learning models is the learning 
process. This depends on the application and the data available for the system [79]. Machine learning 
can also be divided into several subcategories like supervised learning, unsupervised learning and 
reinforcement learning [80][81]. 

 
  Deep Learning 

Deep Learning (DL) is a combination of machine learning and AI. It can be compared to data 
processing in the human brain [82]. The technology behind DL uses multiple layers to keep the 
relevant data and make connections in order to build computational models. A very large database is 
needed to create these kinds of models [82]. 

 
 
Physics-based models 
This type of model uses the laws of physics to determine the degradation of components. With the necessary 
mathematical and physics capabilities and knowledge, it is possible to simulate the behaviour of a system in a model. 
Those models can accurately simulate how cracks or other fatigue phenomena occur, for example [83] [84]. It is very 
dependent on accuracies in describing physics phenomena. Also, it is difficult to include external influences in these 
models, although this can have a major impact on the behaviour of the system [75]. 
 
 
 

3.4 Model selection 
To determine which model or method is the best fit, the complexity of the system must be considered [12]. It is also 
necessary to determine how much expert knowledge there is about both the system and modelling techniques [61]. In 
addition to this knowledge, the data can also be looked at, both the data per se and the knowledge present about this 
data. Here, it is important to be able to form a complete picture of what is present in terms of data and knowledge so 
that a model can be chosen that matches it. As an example, it is irrational to choose a physical model if there is no 
knowledge about how the degradation of components can be described mathematically and physically. Another 
example could be that if few data are available, a deep learning method should not be chosen, because this method 
needs a lot of data to build a mathematical model with. 
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3.5 Conclusion 
This chapter has answered the sub-research question: What is the best maintenance strategy for this problem 
compared to the current maintenance strategy?   
The current maintenance strategy is a kind of combination of corrective and preventive maintenance. Corrective 
maintenance is reflected in that a component is replaced or repaired only when it is broken and therefore has caused 
unplanned downtime. Preventive maintenance is that there are scheduled maintenance moments when replacement 
of parts is started at the top of a list. However, there is no reasoning or rationale behind this. The proactive 
maintenance strategy therefore requires looking at how data combined with expert knowledge can be used to predict 
when a component is going to fail. The best-suited maintenance strategy is therefore predictive maintenance, with 
which data-based analyses can be done to see when a particular component degrades and consequently increases 
the likelihood of failure. For PdM, there are two applications, diagnostic and prognostic, which are complimentary to 
each other to be able to form a picture of the current condition and predict when a failure will occur. For both 
applications, there are different ways and methods that can be used. As indicated in Chapter 3.4, data analysis can be 
used to see which method best fits the problem statement. The Chapter 4 will elaborate on the data analysis and 
which method best fits the outcomes from the data analysis. 
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4. Model development 
 
Within this chapter, the central sub-research question is: Based on the available data and knowledge, what kind of 
method is most appropriate to develop a model with for this problem?  
To answer this sub-research question, this chapter first conducts a data analysis. It will provide a picture of the 
available data and knowledge. In order to determine which method fits best, the second part of the chapter looks at the 
methods in more detail. In the third part of the chapter, a method is chosen based on established criteria. This method 
is then briefly explained so that the basic principles are clear. 
 

4.1 Data analysis 
To determine the best method and model to be used in this research, a data analysis must first be done. The purpose 
of this is to identify what data is available and usable, what knowledge about the data is present and how this can be 
used in the predictive maintenance strategy to improve the reliability of the production line. 
 

4.1.1 Overall line analysis 
As previously stated in Chapter 2.1, here the focus will be on part of a production line. It concerns the piece between 
the lemonade storage tank and the filling process. In this piece of line there is a cooling and heating section, a storage 
tank, carbonisation tank and filter. Only the valves and pumps in this part of the line will be included. This amounts to 
25 valves and six pumps. 
The parts in the line all have a PLC that can be used to control the component and give reports back to the operator. 
This data is all stored in a database. 
 
For data analysis, data between 01-02-2021 and 03-02-2023 was used. The line is most frequently used between 
Monday morning and Friday evening. Sometimes there is run-out and production is completed on weekends. This 
gives the dataset used in the further research. Furthermore, besides data on and from the components, data is also 
available on when the line was used for production and when for cleaning. 
 
The historical data can be divided into production planning data and process data. Process data refers to the data that 
follows from the PLCs and other sensors from the line. The historical production schedule data will be used to 
understand how long the processes take and when the line is down. 
The historical data used is from the period 01-02-2021 to 03-02-2023. In terms of hours, that is 17568 hours.  
 
From this analysis, it can be seen that on average in a year (8784 hours), the line is in use 57% of the time, see Figure 
15. Of this, 53% is for production and 4% for cleaning. The remaining 43% is spent on scheduled and unscheduled 
downtimes and weekends. Scheduled downtimes in this research are the times when the line is stopped outside 
weekends. Every year, there are two weeks when the line is not used. These weeks can be used for preventive 
maintenance. 

 
 
 
When zooming in further, the time the line is in use is 57% of the time, which corresponds to 4985 hours. Since the 
production process consists of the steps; start-up, effective production and shutdown, another distinction can be made 
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Figure 15: Pie chart of the hours of the production line 



       

2023.MME.8809     20 

 

between this. Shutdown is the last step of the production process. It means that the production process is stopped 
either because production is finished or because failure of one of the components occurs. Together, this gives the 
distribution of time as shown in Figure 16. 
 

 
 
Finally, attention is paid to the number of hours the line is down. This could be due to planned downtimes. In these, the 
line is made ready for the next process or planned downtime weeks to carry out preventive maintenance. Weekends 
are not considered here. Then it comes down to a total of 862 hours of downtimes on an annual average (excluding 
weekends, including planned downtime weeks). Of this, 54% is planned downtime and 46% is unplanned downtime, 
as shown in Figure 17. 
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Figure 16: Pie chart of time production line in use hours 

Figure 17: Pie chart of downtime hours 
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4.1.2 Valve analysis 
When looking at valve data, the analysis should clarify the behaviour of the valves and how this is reflected in the data 
in combination with expert knowledge. First, the analysis looked at what kind of data logs are stored.  
In the case of the valves, data is stored on looptijd, which is the time it takes the valve to open or close, and command 
open or close. Looptijd is Dutch for run time, both terms can be used and have the same definition in this research. In 
the case of the butterfly valve, this is the time it takes the valve to turn the disc in the centre 90 degrees so that the 
valve is either open or closed. In the case of mixproof valves, looptijd is the time it takes the valve to open or close a 
particular seat. The expert knowledge was used to determine when the valve will fail, in other words, what are the 
anomalies and trends to look out for when analysing the data. 
This research will look at looptijd to determine the failure probability of a valve. 
 
Results of analysis 
Most valves in the system have a maximum looptijd of 15 seconds. If the valve takes 15 seconds to open or close, a 
signal is fed back to the PLC indicating that the valve is not yet in the correct position. This was pointed out by the 
experts. It is possible for a valve to restore itself when it is reopened and closed. In that case, good signals would be 
transmitted to the PLC. Therefore, if this is the case, there was a false fault signal earlier. To filter out the false fault 
signals, a check is made after how much time the PLC receives normal signals again from the valve. If this is within 30 
minutes of giving the 15-second looptijd message, it means the valve did not fail. If the valve did fail, it takes more than 
30 minutes to stop the process, repair the valve and restart the process.  
 
Some valves have a different maximum looptijd, such as 20, 25, 30 or 50 seconds. However, the principle here is the 
same as described above for the looptijd of 15 seconds. The first analysis of the data looked at how often each valve 
failed. An overview of this is shown in Figure 18. Figure 18 shows that often only one valve failed at a time. There are 
three times when three valves failed at the same time. 
This shows that there were 70 unplanned downtimes, spread over 57 unique failure moments, in the 2-year time 
frame. 

 
 
 
 
 
 

Figure 18: Overview of valve failures 01-02-2021 till 03-02-2023 
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From the data analysis, it can be further observed that just before failure, the valve already shows more high looptijd 
values. Figure 19 shows how the looptijd of valve V5.2 increase more and more. Until finally the value of 15 seconds 
looptijd is reached and the valve fails. 

 
The data analysis further shows that four of the 25 valves have no dates on which the valves fail. It was decided to 
leave these valves out of the research. The research will subsequently focus on the 21 valves for which there is data 
on failure. 
Furthermore, it was concluded from expert knowledge that the higher the looptijd, the higher the probability of failure. 
According to experts, the logistic function [85] best represents the relationship between the looptijd and the failure 
probability of a valve. The logistic function for this research expresses the probability of failure given a certain value for 
the looptijd. This can be expressed using the following Eq. 4.1 [85]: 
 

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =  
𝐿

(1 + 𝑒(−𝑘∗(𝑙𝑜𝑜𝑝𝑡𝑖𝑗𝑑−𝓂)))
 

Eq. 4.1 
 
L   is the maximum value, in this case 1, because then probability of failure is 100% 
k   is the slope of the graph  
m   is the average looptijd 
looptijd   is the time it takes for the valve to open or close 

 
Chapter 5.2.1 shows how the parameters of Eq. 4.1 are determined for each valve. 
 

Figure 19: Increasing looptijd of valve V5.2 
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This function gives the following graph, see Figure 20 with different values for m: 

 
 
The value of m, average looptijd, determined when the graph passes through the point of 0.5 failure probability. For 
each valve, an unique logistic function can be constructed that best represents the behaviour of the valve. For this, 
parameter k can also still be used to determine the correct shape of the graph. 
 
If a valve has a looptijd different than 15 seconds then a logistic function can also be constructed.  
 
In short, a probability of failure can be determined from the incoming input data using the logistic function of the valve. 
 
 

4.1.3 Pump analysis 
There are six pumps in the line section being analysed. These are all centrifugal pumps. Since there is only data 
available on the type of pump, theoretical data and knowledge is used for the pumps. It is chosen for this to still be 
able to paint a picture of what parameters are needed and how that can be used in the later model.  
As stated earlier in Chapter 2.3.4, the ways in which a pump fails can be divided into three categories. If really specific 
causes are considered, the examples below are the common known causes of pump failure within the case study soft 
drink factory. 

• Cavitation 

• Leaking shaft seal 

• O-ring leaking 
 
All these failure mechanisms affect the pump performance.  
Cavitation causes many problems when it occurs. Cavitation occurs when the pressure in the pump is lower than the 
vapour pressure of a liquid, vapour pressure being the point at which a liquid turns into gas. Often this occurs at the 
inlet (suction side) of the pump because this is where the pressure is reduced. This creates gas and/or air bubbles. 
Then the action of the pump increases the pressure again (to above the vapour pressure of the liquid), but now there 
are bubbles in the liquid that implode, often this happens in the pump at the impeller [86][87]. This creates irregularities 
on the surface of the impeller which can leave liquid behind, this causes cavitation. This process is shown in Figure 21. 
 

Figure 20: Graph of logistic function with different m-values 
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Briefly, cavitation can be said to be caused by the temperature of the fluid, the vapour point and the inlet pressure [90]. 
Temperature affects the vapour pressure of the fluid. 
Cavitation causes vibration and noise. The vibrations in particular have a major impact on the other mechanical parts 
in the pump. These cause bearings to get out of alignment and change the interplay of forces on the components. This 
affects the service life of the mechanical components and the overall life of the pump [91]. 
 
The shaft seal can fail mainly because it gets dry, so it is important to apply enough lubrication so that the pump can 
keep working. Often, this type of failure is only noticeable when oil or other type of seal leaks from the pump [92]. 
 
For the O-ring, it ensures that no leakage occurs between different parts of the pump. The ring is exposed to the 
temperature and pressure in the pump. The rubber of the ring has a certain life span that depends on the temperature 
and the type of fluid forced through the pump. Failure of the O-ring produces leakage and can be observed when 
moisture is encountered at the pump [92]. 
 

4.1.3.1 NPSH margin 
Of the failure mechanisms mentioned earlier, cavitation is the one that can be used quantitatively in this research. 
To determine whether cavitation is likely to occur, this research looks at the difference between NPHSA (Net Positive 
Suction Head Available) and NPSHR (Net Positive Suction Head Required). 
NPSHR [m] is given by the manufacturer and NPSHA [m] can be determined using Eq. 4.2 [93]: 

 

𝑁𝑃𝑆𝐻𝐴 =
𝑝𝑖

𝜌𝑔
+

𝑉𝑖
2

2𝑔
−

𝑝𝑣

𝜌𝑔
 

Eq. 4.2 
pi   is the pressure at inlet of the pump [Pa] or [N/m2] or [kg/(ms2)] 
Vi  is velocity at pump inlet [m/s] 
Ρ  is fluid density [kg/m3] 
g   is acceleration of gravity [m/s2]= 9.81 m/s2 
pv   is vapor pressure of the liquid [Pa] or [N/m2] or [kg/(ms2)] 
NPSHA   is net positive suction head available [m] 

 
For the segment of line being analysed, the liquid pumped through the line consists of sugar and water. Or by water 
and detergents if cleaning is done. The inlet pressure (pI) and inlet velocity (Vi) should be measured by sensors.  
 
The vapour pressure (pV) and density (ρ) can be calculated. These depend on the composition of the li uid. See 
Appendix C for the calculations. 
 
To prevent cavitation from occurring, the minimum must apply, see Eq. 4.3 [94]: 

𝑁𝑃𝑆𝐻𝐴 > 𝑁𝑃𝑆𝐻𝑅 
Eq. 4.3 

 

Figure 21: Cavitation occurrence [88] [89] 
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Another way is to determine the NPSH margin. In ANSI/HI 9.6.1-2012 Guideline for NPSH Margin [95], values are 
given for the minimum margin the NPSH margin must meet [96], see Eq. 4.4 for the NPSH margin. 
 

𝑁𝑃𝑆𝐻 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑁𝑃𝑆𝐻𝐴

𝑁𝑃𝑆𝐻𝑅

 

Eq. 4.4 
 
In this research, according to ANSI/HI 9.6.1-2012 Guideline for NPSH Margin [95], the margin is equal to 1.1 [96]. If it 
is lower than this margin, 𝑁𝑃𝑆𝐻𝑅 >  𝑁𝑃𝑆𝐻𝐴 resulting in cavitation will occur, as shown in Figure 22. 
 

 

4.1.3.2 Pump efficiency 
Besides looking at whether and when there is a risk of cavitation, the performance of the pump can also be looked at 
to determine its condition. In this research, efficiency is used to determine whether the pump is in good condition. 
Pump efficiency averages between 40% and 92% [99]. 
The pump will have the longest life if it is operating at the BEP (Best Efficiency Point). This is the point at which the 
head-flow curve reaches maximum efficiency [35]. It is not realistic to assume that a pump will always operate at or 
around the BEP. Therefore, a POR (Preferred Operating Region) is often given. 
This is often between 80-110% of the BEP [100]. In addition, an AOR (Allowable Operating Region) can also be 
determined, which is a wider region than POR. In the AOR, the pump life is shorter and there will be more noise and 
vibrations than in the POR, see Figure 23. Anything outside these regions should be avoided, as this causes damage 
to the pump and a consequence is pump failure [99]. 

 
 
 
Pump efficiency can be determined using Eq. 4.5 [93]: 

 
 
 
 
 
 
 

Figure 22: NPSH margin [97] [98]  

Figure 23: Graphical view of BEP, POR and AOR [96]  
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𝜂
𝐶𝑃

=
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

=
𝜌𝑔𝐻𝑄

𝑇𝜔
 

Eq. 4.5 
 
ηCP  is pump efficiency 
ρ  is fluid density [kg/m3] 
g  is acceleration of gravity [m/s2]= 9.81 m/s2 
H  is head [m] 
Q  is flow [m3/s] 
T  is shaft torque [Nm] or [kg·m2/s2] 
ω  is shaft angular velocity [1/s] 

 
Pin is the input power on the suction side of the pump. Pout is the output power at the discharge side of the pump. 
Based on the given data from the manufacturer, the input power can be determined. However, a flow meter is needed 
to determine what the flow rate is at the inlet of the pump [35]. 
Another way is to place a watt or power meter just before the inlet of the pump to use it to determine the Pin. 
 
Pout depends on more factors. Here, the head and flow rate at the outlet of the pump have to be taken into account. 
For this, flow meters and pressure sensors should be used. The pressure sensors should be present both at the inlet 
and at the outlet. The pressure sensors can be used to determine the difference in height and thus the head [35]. 
 
If it is assumed that there are no further losses then the head can be calculated using the Eq. 4.6 [93]: 
 

𝐻 ≈
𝑝2 − 𝑝1

𝜌𝑔
 

         Eq. 4.6 
ρ  is fluid density [kg/m3] 
g  is acceleration of gravity [m/s2]= 9.81 m/s2 
H  is head [m] 
p1  is pressure at inlet of the pump [Pa] or [N/m2] or [kg/(ms2)] 
p2  is pressure at outlet of the pump [Pa] or [N/m2] or [kg/(ms2)] 

 
 
Head of a pump indicates the height to which water can be pumped against gravity. This is expressed in metres [93]. 
This can then be used to determine what the values of Pout are. Enter this in Eq. 4.5 and the efficiency value comes 
out. 
 
Repeating this for all values observed by the sensors can determine what the pump’s efficiency curve is. 
 
Checking whether there is a chance of cavitation and determining the pump efficiency curve are two of the many ways 
to look at the condition of a pump. The values from the analyses given earlier of whether or not cavitation is likely to 
occur and determining efficiency can also be used to determine the failure probability of the pump.  
 
One way to determine the failure probability using the options given earlier is to use the reliability curve of the pump 
[35]. 
 
Furthermore, some other failures are shown when those will occur, see Figure 24. 
 
The reliability curve is maximum at the BEP point of the pump. As more deviation from this point occurs, the reliability 
of the pump decreases, as shown in Figure 24 [101]. 
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The pump efficiency is used to determine the BEP. The BEP is the point at which the reliability curve is maximum. In 
addition, it was previously stated that the POR is between 80-110% of the BEP. In the reliability curve, see Figure 25, 
this is reflected at the point where better practice is stated. 
The AOR is determined by the ANSI/HI 9.6.1-2012 Guideline for NPSH Margin [95]. This is the point at which 
cavitation will occur. 
 
Barringer and Nelson [97] [102] have linked the reliability curve to the Mean Time Between Failure (MTBF). 
 

 
 
The values in the red box in Figure 25 show how Barringer and Nelson [100] link reliability to MTBF. At the moment 
the pump is operating at its BEP the reliability equals 1. The MTBF then equals the values given by the manufacturer 
or experienced during operation. As soon as the pump operates between 90% and 105% of the BEP, the reliability of 
the pump decreases and the  TB  reduces by 8% (0.92η). Note that η here stands for the  TB  and not efficiency 
(ηCP). 
Once the pump is operating at the edge of the POR then it can be seen in the curve that the first problems may arise. 
The  TB  is reduced by 47% (0.53η).   
If the pump falls below the AO  value then cavitation will occur and the  TB  is further reduced by 90% (0.1η). 
 
By relating the reliability to the MTBF, the probability of failure can be determined. 

Figure 24: Pump curve reliability  [101]  

Figure 25: Pump curve reliability Barringer [100] [103]  
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Figure 25 also shows the point at which cavitation occurs. By looking at which point on the reliability curve belongs to 
it, the influence of cavitation on the lifetime of the pump can be determined. 
 
In short, the curves for the pumps in this research need to be established to determine the condition of the pump and 
how that affects the failure probability. But first it has to be determined how to find the BEP and related efficiency 
curve. 
 

4.1.3.3 BEP 
The best efficiency point (BEP) is the point at which the pump will perform best and have the longest lifespan. The 
pump will never be able to reach 100% efficiency. According to the API610 standard, the BEP of most single stage 
centrifugal pumps is between 80-85% of the shut-off head [104] [105] [106]. 
By establishing a formula for the head flow rate given by the manufacturer, the BEP can be determined. 
 
It is assumed, in this research, that the BEP is at 85% of the shut-off head.  
It is further assumed that a pump can achieve a maximum efficiency of 80%. 
 
Based on the above assumptions and the manufacturer’s data [90] [107], the H-q, NPSHR-Q and efficiency curves can 
be prepared. Once these curves are established, the reliability curve of each pump can be determined. 
 
Figure 26 shows an example of the pump curve of one of the pumps in the line. The pump charts also indicate the 
different operating regions. In Appendix D all the curves for all the different centrifugal pumps in the line can be found. 

 

4.1.4. Data conclusion 
All in all, this research uses several functions that can be constructed from data. For the valves, a logistic function will 
be needed to relate the looptijd of the valve to the probability of failure. It will also look at how often each valve has 
failed in the given time frame.  
For the pumps, too little data is available to find the right parameters that say something about the condition.  
Therefore, the manufacturers’ data and the theoretical way of determining pump curves and related reliability will be 
used. This data and curves can be used to determine the condition of each pump. For each unique pump, proprietary 
curves can be established that can be used to express the pump’s behaviour and probability of failure. 
 
For the data for the pumps, a synthetic dataset will have to be used. In this data, there should be data on pressure, 
density and flow velocity. This can then be used to determine whether the pump is operating within or outside the 
NPSH margin. In addition, this can be used to determine at what percentage of BEP the pump is performing. Once this 
is known, it can be related to Barringer's reliability curve. 
 
By performing the analyses, a clear picture has emerged of what data is available and how that is related to the 
conditions of the components in the part of the production line. Based on this, a method should be chosen to develop 
the basis of a model for the improved maintenance strategy. 

 

Figure 26: Pump curves of pumps P4.1 and P5.1 
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4.2 Method selection 
As stated earlier in Chapter 3.4, data analysis can be used to see which method best fits the available data and the 
complexity of the system. In this research, the aim is to start predicting from the condition monitoring data when a 
failure will occur so that timely maintenance can be carried out. If unplanned downtime does occur, it would be 
desirable to be able to reason back what caused it.  
 
Looking at the listed categories and corresponding explanation for prognostic models (knowledge-based, data-driven 
and physics-based) in Chapter 3.3.2, a data-driven model is the best fit. Within the data-driven models, an LEM or 
ANN should then still be chosen. Because there is not enough data and knowledge available to create a mathematical 
representation of each component, ANN is discarded. An LEM model will therefore be used in this research.  
As indicated earlier, a statistical or stochastic approach can also be chosen within the LEM. Sikorska et al [72] have 
investigated the different methods that fall under these categories and thus created the overview shown in Figure 27 
based on [72]. These methods will be discussed further in the following sections, so that a choice can then be made as 
to which method of LEM best suits this research. 

 
 

4.2.1 LEM stochastic methods 
Stochastic methods provide information about the reliability of a component as failure probabilities with respect to time, 
this includes the MTBF. Stochastic models work with the evolution of a random variable over time [108]. Historical data 
is used for this purpose [109]. Stochastic methods rely on the assumption that the time to failure of identical 
components can be considered statistically identical and independent random variables. Therefore they can be 
described by probability density functions (PDFs). Because it depends on the number of times failures occur in a 
dataset, censored data, such as data from times when there was no failure, can also be used to improve the accuracy 
of the method [110] [111]. There are numerous types of stochastic methods, some are highlighted below. 
 

4.2.1.1 Aggregate reliability functions 
Performing reliability analysis based on aggregated failure data is one of the ways most often used to analyse asset 
performance.  
The method uses the analysis of failure times of a population of equipment. The analysis then determines a probability 
function and also a related hazard-rate function for this population. The probability function provides information on 
when a failure is expected to occur, it does not address the course of a single failure [72]. Several distributions can be 
used to model the failure data. Of these, Gaussian and Weibull functions are the most commonly used. Gaussian 
functions are employed when monotonic and gradual degradation are modelled [112]. Weibull functions are frequently 
used when multiple failure types need to be described. Even the well-known bathtub curve is composed of three 
Weibull functions, each describing a different dominant failure mode [72]. 
To shape the data to the different distributions, it is necessary to have a large dataset of the failures.  In addition, 
reliability analysis is not enough to say anything about the RUL if the failure distribution is exponential.  

Figure 27: LEM overview [72] 
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The last point of interest is if there are too many different failure modes taken together then this will not give a reliable 
forecast about the RUL [72]. 
 

4.2.1.2 Conditional probability functions 
Another subcategory of stochastic methods are the methods based on conditional probability functions. Here, the 
current state is described by a condition reliability function then the predicted expected behaviour is updated using 
Bayes theory.  
A conditional reliability function is defined as the probability that a component continues to function without failure for a 
time frame t, given that the component has already survived to a given time, T [113]. The RUL function is defined as 
the conditional expected time to failure, given the current state [114]. Again, there are several methods that can be 
used, these differ in how the conditional reliability function is determined as what information is used in determining the 
current state. 
 
4.2.1.2.1 RUL PDF 
This method is actually an extension of the aggregate reliability function method. Namely, it uses the probability 
density function (PDF) which is constructed using the aggregate reliability method. Information is then retrieved to 
locate a specific point on the distribution. The distribution is then adjusted using Bayes theory to account for this 
information. With each new observation, this process is repeated. The final distribution is called the RUL PDF, here the 
confidence interval can also be derived [115]. The accuracy of the prognosis on the RUL increases as end-of-life is 
approached. 
 
4.2.1.2.2 Bayesian networks (static) 
Bayesian networks or Bayesian Belief networks (BN) are probabilistic graphical models that represent a random set of 
variables with associated probabilistic interdependencies [72]. BN models are a separate method because they can 
also be used as statistical methods, it depends on the type of information used to build the final model [66].  
A BN consists of a collection of nodes that serve to represent the random variables that can take on different states. 
Lines can be drawn between the different nodes to indicate correlation. Conditional probabilities can be used to 
indicate how strong the relationship is between the nodes. This gives each node a conditional probability table that 
indicates the probability for each state of the node based on the states of the linked nodes [116].  
 
BNs, because of the structure and conditional probabilities at each node, have the ability to determine the probability 
that a particular event may occur in the near future. The advantage of the BN method, because probabilities are used, 
is that the confidence interval is immediately determined [117]. 
Bayesian inferencing is used to update the states and probabilities of the nodes when new data is imported into the 
trained BN model [116] [118]. 
 
Dynamic Bayesian network 
Dynamic BNs are used when time series data are modelled [119]. The arrows are then used to model a time step. 
Some methods of this are also known: 
 
Markov methods 
Markov methods assume that a component is in only one of a finite number of states at each moment in time. 
Probabilities are defined both for the states and for the transition state between different states. Based on this, 
probabilities for future failures can then also be determined. Markov methods further rely on the principle that future 
states are independent of previous past states [72]. In a Markov method, the time a component spends in a given state 
is assumed to be exponentially distributed. In addition, it is assumed that there is a constant failure rate [120].  Semi-
Markov methods differ from Markov methods in that they do not assume that the time a component spends in a given 
state must necessarily be exponentially distributed. Semi-Markov methods also allow for other distributions [72]. One 
of the major drawbacks of Makov methods is that a separate model must be created for each potential failure mode. In 
addition, these types of methods and models are computationally intensive, even for a model with only a few states 
[66]. 
 
Kalman filters 
Bayesian estimation with Kalman filters are used when the state of a dynamical system needs to be determined from a 
series of incomplete and noisy measurements in order to minimise the mean squared error. Kalman filters are defined 
by the state estimate and error covariance, this applies to any instant. The assumptions associated with Kalman filters 
are that process noise and measurement noises are Gaussian, white, independent of each other and additive [121]. 
Kalman filters determine the posterior PDF by extrapolating from the previous state. Kalman filters are very complex 
and require a lot of computing power, as both all covariance and model parameters have to be recalculated for each 
iteration [72]. 
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Particle filters 
Particle filters are used for estimating the posterior distributions in BN models, this type is not bound by the 
assumptions of Gaussian noise like the Kalman filters. This method is better known as Monte Carlo simulation and 
used when the posterior distribution is multivariate or non-standard [122]. Particle filters use Sequential Importance 
Sampling to simulate the next state in each iteration of the filter. This is done by taking a set of random samples 
‘’particles’’ from the theoretical density function and then adjusting the corresponding particle weights for each 
iteration. In the process, dynamic noise is also generated at each cycle [72]. Establishing a good working model is very 
complex, if too many iterations are done then the filter starts to distort resulting in the posterior PDF approaching zero 
[78]. 
 

4.2.2 LEM Statistical methods 
Within life expectancy methods, there is also the subcategory of statistical methods. Statistical methods use 
comparisons based on inspection results of similar components to estimate the occurrence and progression of failures. 
By comparing with components that e hibit ‘’healthy’’ behaviour  future deterioration can be determined. Statistical 
methods are used as an alternative to ANN if there is no suitable model of the physical process [72]. The models use 
condition or process monitoring data. There are several statistical methods that can be used, some of which will be 
discussed below. 
 

4.2.2.1 Trend evaluation 
The easiest way to predict the RUL is to use trend analysis of a single monotonic parameter correlated with the 
remaining lifetime. The parameter is plotted against time, in addition some alarm levels are determined that indicate 
that a component is heading towards the end of life. The trend can then be analysed using regression methods [72]. 
As soon as new data arrives, the moment in the graph can be checked to which it corresponds and the RUL can be 
calculated on that basis. The corresponding confidence levels can only be determined if interpolation has taken place. 
If extrapolation has been used, it is not possible to determine the confidence levels. In addition, this model struggles 
when it comes to the reliability of the expected RUL when multiple failure modes are used in the same model. 
 

4.2.2.2 Autoregressive methods 
ARMA, ARIMA and ARMAX methods are used to model and predict times series data [72]. This involves the 
assumption that the future value is a linear function of past observations and random errors [123]. The methods differ 
among themselves in how which linear function is used to relate inputs, outputs and noise.  
ARMA and ARMAX methods should only be used for stationary data, this because they can remove temporal trends. 
In addition, the autocorrelation should also be time-independent [123]. To show that the stationarity assumption is 
correct, a trend analysis should be done before modelling. ARIMA methods use integration and therefore have no 
condition that it can only be used for stationary data.  
 
ARMA methods are especially suitable for short-term forecasts. For the long term, there is too much influence of 
dynamic noise and sensitivity of initial conditions and accumulation of systematic errors [72].  
 

4.2.2.3 Proportional hazards modelling 
PHM base the model on the influence of covariates on the lifetime of the component [124]. Covariates are explanatory 
or additional variables. PHM assumes that there is a multiplicative relationship between the covariates. PHM models 
model component deterioration as the product of a baseline hazard rate and a positive function. The positive function 
gives the effect of the operating environment on the baseline hazard and is represented as a vector of covariates with 
the corresponding vector of unknown regression parameters. The RUL is derived from the corresponding survival 
function [124]. 
 
PHM is subject to a number of assumptions [72]: 

Times to failure are independent and identically distributed; 
Individual covariates are independent; 
The effect of the covariates is assumed to be time independent; 
All influential covariates are included in the model; 
Covariates have a multiplicative effect on the baseline hazard rate; 
The ratio of any two hazard rates is constant with respect to time. 
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4.3 LEM method selection 
A model must be created in which one of the above methods is the basis for determining the probability of failure of the 
production line. Thus, the method is a part of the model. In the model, the method comes in handy to process the data 
to determine the probability of failure. Within the model, further work can be done based on this outcome to ultimately 
determine whether or not maintenance should be carried out before starting new production. The model is used to 
determine whether maintenance is needed, the method is there to serve as a basis for the model. 
To choose from the above methods as base for the model of predictive maintenance, the first step is to determine 
what kind of data is available and what other requirements emerged from the earlier research.  
The available data is historical data, consisting of condition monitoring data and process data from the past, there is 
also expert knowledge about the data and there is real-time condition monitoring data and information about the 
processes. The first data analysis shows that several variables influence the lifespan of the valves and pumps. In 
addition, there are some variables that indicate that a component is coming to the end of its lifetime. The failure data 
shows that there is not a single parameter responsible for failure, but that it is a combination of several factors. The 
method must therefore be able to take these relationships into account and display them clearly; in other words, the 
complexity must not become too great, otherwise it becomes unclear which variables have which influence. As soon 
as an unplanned downtime occurs, the condition monitoring data shows which component is responsible. Based on 
expert knowledge and historical data, it can also be determined which factors play what role in these kinds of 
downtimes.  
In addition, the model must be trained on the historical data, so the method should also be capable of that. So that, 
when reading in the new condition monitoring data, it can first determine the current state of the component and then 
make a prognosis on the expected RUL, given that the future processes are known. Here, it is important that the 
method can make use of both healthy condition data and failure condition data. So that a complete picture emerges 
and all types of condition data can be used. 
In short, the desired final model, with one of the methods described earlier as basis, must meet the following 
requirements: 

• The model must be able to process both condition monitoring data and expert knowledge and be trainable 
based on the historical data. 

• The relationships between the variables must be clearly expressed in the model; in other words, the model 
must represent the components in the line. The complexity should not become too high because then the 
relationships between the variables are no longer clearly visible. 

• To make the model flexible for future adaptations, such as new relationships between variables or other types 
of data, it should not be computationally intensive. 

• Because it works with different components within a line that each have their own failure mode, the model 
must be able to withstand multi-variate failure modes without sacrificing accuracy. 

 
Using the descriptions from Chapter 4.2.2 and Appendix E: Table E1 [72], the methods can be evaluated against the 
criteria. 
Criterium 1: The method must be able to work with expert knowledge. 
Looking at Appendix E: Table E1, it can be said that ARMA methods are then discarded, these are not suitable 
according to Sikorska et al [72] if expert data or historical data are present.  
 
Criterium 2: The method should not become too complex with all kinds of underlying assumptions or other ways of 
bringing different variables together. 
Looking at the complexity of the methods, using Appendix E: Table E1 and the descriptions given earlier, it can be 
assumed that Kalman, Particle filters and PHM methods are too complex for this research. These work with all kinds of 
underlying functions where the variables affecting the failure modes have to be transformed into other kinds of data. In 
doing so, it is then no longer clear which factors have a direct influence on the failures of the various components. 
 
Criterium 3: Calculation intensity must be low. 
Because it should be a method in which it should be relatively easy to add relationships between variables, the method 
should not be computationally intensive. Markov methods then drop out because a separate model has to be created 
for each failure mode, making it very complex and these models and methods are therefore also computationally 
intensive, see Appendix E: Table E1. 
 
Criterium 4: The method should be able to work for multiple failure modes without sacrificing accuracy.  
This allows trend extrapolation to be discarded, as this method works best when there is only one failure mode that 
can be derived from a single parameter. This is not the case in this research. In addition, the threshold for determining 
the RUL becomes unreliable if several failure modes have to be captured in the same model. 
ARF is then also discarded. If too many failure modes have to be used, it is not possible to make reliable forecasts for 
the RUL.  
 
Looking at the pros and cons and the descriptions, it can be concluded that the biggest difference in the methods is 
between using and not using condition monitoring data and clearly showing when what is used. RUL PDF does not 
use the times when failures have occurred but only looks at the times when no failures have occurred. Because the 



       

2023.MME.8809     33 

 

failure data is essential in the desired model, it is better to choose BN. This is because the failure data contains a lot of 
information about which factors have an influence and can therefore be used well if a forecast has to be given based 
on the future processes.   
Figure 28, which is a copy of Figure 27 [72], shows at which criterium which method was discarded. 

 
 
 
 

4.4 Bayesian Network 
A BN is often used to simplify the representation of a complex model by visualising the relationships between different 
variables. A BN is a DAG (directed acyclic graph) that consists of nodes and arc. The nodes represent the variables 
within the system. The arcs are the connections between the nodes, indicating which nodes affect each other [125]. 
There are different types of nodes. Looking at the example in Figure 29 [126], nodes A and B are the parent nodes of 
child node C. Nodes A and B affect node C, which is shown by the arcs from A to C and B to C. Since there is no arc 
between node A and B, it can be assumed that these nodes are independent of each other. Node C in turn is the 
parent node of child node D, which can be seen by the arc between node C and D. Another name for nodes A and B 
can also be root nodes because the nodes mark the beginning of the BN. Node D can also be called leaf node 
because it is the last node in the BN [127]. Chapter 4.4.2 will go into more detail on the calculations for this BN, that 
serves as an example to give an idea of what calculations can be performed. This will later be used on a larger scale 
in the model. 

 
 
 
 

A B

C

 

Figure 29: Example BN 

Figure 28: LEM overview [72], with criteria for selection 
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A BN, defined by Jensen [128] as  𝒩 = (𝒳, 𝒢, 𝒫), consists of: 
 

- A set of discrete random variables, 𝒳, represented by the nodes of 𝒢 

- A DAG 𝒢 = (𝑉, 𝐸) with nodes 𝑉 = {𝓋1, … , 𝓋𝑛} and directed arcs E 

- A set of conditional probability distributions, 𝒫, containing one distribution, 𝑃(𝑋𝓋|𝑋𝑝𝑎(𝓋)), for each random 

variable 𝑋𝓋 ∈ 𝒳. The set of variables represented by the parents, 𝑝𝑎(𝓋), of 𝓋 ∈ 𝑉 in 𝒢 = (𝑉, 𝐸) is sometimes 
called the conditioning variables of 𝑋𝓋, the conditioned variable. 

 
A BN encodes a joint probability distribution over a set of random variables, 𝒳, of a problem domain. The set of 

conditional probability distributions, 𝒫, specifies a multiplicative factorization of the joint probability distribution over 𝒳 
as represented by the chain rule of BN [128], see Eq. 4.7: 
 

𝑃(𝒳) = ∏ 𝑃(𝑋𝓋|𝑋𝑝𝑎(𝓋))

𝓋∈𝑉

 

Eq. 4.7 
 
Looking at the example BN of Figure 29, than this BN can be written as followed: 
Nodes: V={A, B, C, D} 
Set of directed arcs: E={(A,C), (B,C), (C,D)} 
The joint probability defined in Eq. 4.7 can be written as: 
 

𝑃(𝐴, 𝐵, 𝐶, 𝐷) = 𝑃(𝐴)𝑃(𝐵)𝑃(𝐶|𝐴, 𝐵)𝑃(𝐷|𝐶) 
 

4.4.1 Probability theory 
The underlying theory of probability will be further explained here, and the main assumptions and formulas will also be 
discussed. 
 
Conditional probabilities 
Conditional probabilities can be determined in addition to probabilities for individual events. This is noted as P(A|B), 
which is the probability of A given that event B will occur [129]. The conditional probability can be calculated with 
Eq. 4.8. 
 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

Eq. 4.8 
P(B)  is probability of event B 
P(A|B)  is probability of event A given that event B will occur 
P(A∩B)  represents that both events A and B occur 

 
Using the fundamental rule, it is possible to see how the probability of that both events A and B occur if the probability 
of A given B and the probability of B are known [129]. This will give the following Eq. 4.9: 
 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) 
Eq. 4.9 

P(A)  is probability of event A 
P(B|A)  is probability of event B given that event A will occur 
P(A∩B)  represents that both events A and B occur 

 
Since it holds that P(A∩B)=P(B∩A) it can be stated that, Eq. 4.10: 
 

𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) 
Eq. 4.10 

P(A)  is probability of event A 
P(B)  is probability of event B 
P(A|B)  is probability of event A given that event B will occur 
P(B|A)  is probability of event B given that event A will occur 
P(A∩B)  represents that both events A and B occur 

 
With this, Eq. 4.8 can then be converted to Eq. 4.11: 
 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Eq. 4.11 
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P(A)  is prior probability of event A 
P(B)  is marginal probability of event B 
P(A|B)  is posterior probability of event A given that event B will occur 
P(B|A)  is likelihood probability of event B given that event A will occur 

 
Eq. 4.11 is known as the Bayes' rule [129] [130]. This is an important formula for the BN. Bayes' rule ensures that the 
belief about an event A can be updated if there is information about another event B.  
In Eq. 4.11, P(A) stands for the prior probability of event A. This is the probability formed about the probability of a 
possible outcome occurring without looking at data or other evidence. 
P(A|B) is the posterior probability of A given B. It is the updated probability of event A after new information has been 
considered. In this case, information about event B.  
P(B|A) is the likelihood probability. This is the probability of B given A.  
P(B) is the marginal probability of B. It is the probability of event B among all possible values of A. This can be done 
with the following Eq. 4.12: 
 

𝑃(𝐵) = ∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

𝑘

𝑖=0

 

Eq. 4.12 
P(Ai)  is probability of event A in state i 
P(B)  is probability of event B 
P(B|Ai)  is probability of event B given that event A in state i will occur 
i  indicates in which state A is 

 
If the information about event B says nothing about the probability of A, then it is called independent events A and B. 
Eq. 4.13 should then apply: 

𝑃(𝐴|𝐵) = 𝑃(𝐴) 
Eq 4.13 

P(A)  is probability of event A 
P(A|B)  is probability of event A given that event B will occur 

 
If Eq. 4.13 is put in the Bayes' rule [130], Eq. 4.11, it can be seen that, see Eq. 4.14: 
 

𝑃(𝐵|𝐴) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
=

𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐴)
=

𝑃(𝐴)𝑃(𝐵)

𝑃(𝐴)
= 𝑃(𝐵) 

Eq. 4.14 
If two events are independent then the fundamental rule is written as [129], Eq. 4.15: 
 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐴) ∙ 𝑃(𝐵) 
Eq. 4.15 

 
However, events A and B can be conditional independent over a given event C. That is, the if information comes in 
about, say, event B, nothing changes about the belief of event A if there is already knowledge about event C.  
If A and B are conditional independent given event C then Eq. 4.16 and Eq. 4.17 apply: 
 

𝑃(𝐴|𝐵 ∩ 𝐶) = 𝑃(𝐴|𝐶) 
Eq. 4.16 

P(A|B∩C) is probability of event A given that event B and event C occur 
P(A|C)  is probability of event A given that event C occur 

 
𝑃(𝐵|𝐴 ∩ 𝐶) = 𝑃(𝐵|𝐶) 

Eq 4.17 
P(B|A∩C) is probability of event B given that event A and event C occur 
P(B|C)  is probability of event B given that event C occur 

 
For the multiplication rule it will follow that, see Eq. 4.18: 
 

𝑃(𝐴 ∩ 𝐵|𝐶) = 𝑃(𝐴|𝐶) ∙ 𝑃(𝐵|𝐶) 
Eq. 4.18 

 
 
To apply the above explanation and formulas in a BN for this research, some conversions need to be made. Instead of 
events, it will be called variables. For each outcome, the variable has an associated state. Suppose there is a variable 
A then the corresponding set of states of A is; sp(A)= (a1, a2, ...., an). These states must be mutually exclusive and 
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exhaustive. By exhaustive is meant that the variable must be in one of the states (without knowing in which one). Each 
variable has a finite number of states [130]. In this research, uppercase letters (e.g. A) are used to indicate variables 
and lowercase letters (e.g. a) for states. [128]. In addition, there is a probability distribution of A, given as P(A). This 
can be used to express the probability that node A is in a given state. The following Eq. 4.19 and Eq. 4.20 must hold: 
 

𝑃(𝐴) = (𝑎1, … , 𝑎𝑛)              𝑎𝑖 ≥ 0 
Eq. 4.19 

∑ 𝑎𝑖 = 𝑎1 + ⋯ + 𝑎𝑛 = 1

𝑛

𝑖=1

 

Eq. 4.20 
 
Eq.4.20 states that the probabilities associated with the possible states of node A must add up to 1. Suppose node A 
has two states and P(a1) is 0.65, then it follows from Eq. 4.20 that P(a2) must equal 0.35. It follows that 𝑃(𝑎1)  =  1 −
 𝑃(𝑎2). If node A has only two states.  
 
For each node in the BN, it is necessary to determine its states and the probabilities associated with them. Suppose 
node D in the example BN of Figure 29 has two possible states: d (true) and ¬d (not true). Then P(d) means the 
probability of node D being in the true state. P(¬d) is the probability that node D is in the not true state. These 
probabilities are complementary to each other because node D has only 2 possible states. Since the arcs in the BN 
indicate which nodes are connected, it is also possible to look at which nodes are independent and which nodes are 
dependent. In the example, see Figure 29, nodes A and B are conditional independent of node C, see Eq. 4.18.  
In a BN, each node must have a conditional probability table. This is the probability of a given state given the states of 
the parent nodes. For this, the formulas described earlier can be used. For root nodes A and B, the conditional 
probability will contain the marginal probabilities of the states, this is because there is no influence of parent nodes 
[130]. 
 
With a BN, it is possible to calculate the other probabilities based on evidence, i.e. information about a particular node 
being in a particular state. This can be done with the joint distribution of the entire BN [129].  
In addition, it is possible to do forward or backward inference with a BN [131]. 
Forward inference is that there is evidence for certain causes and then it can be calculated what then are the expected 
consequences. This is also known as predictive or causal inference [132]. 
Backward inference has evidence that a particular consequence has been observed and then reasoning back to what 
the possible cause may have been. This is also known as diagnostic inference  [133]. 
 
In the example, see Figure 29, then forward inference is when there is information about node A, for example, and it 
looks at what then impacts node D. 
Backward inference is when there is information about node D and it is reasoned back what might be the cause of that 
[133]. 
 
 

4.4.2 Example calculations 
In this section, a generic example will be used to show how the above equations can be applied to a BN. The BN 
shown in Figure 29 will be used for this purpose. 
As indicated earlier, the lowercase letter serves to indicate that a node is in a particular state. In this example, each 
node can have 2 states; true and not true. True is indicated by the lowercase letter and not true is indicated by ¬ in 
front of the lowercase letter. Values are assumed for the probabilities [134], see Table 4.1, this can be based on 
knowledge or on a dataset. 
 
 

 
As stated earlier, based on these probabilities, it is possible to determine the marginal probabilities of the nodes. 
Suppose P(d), probability of node D is in the true (d) state, needs to be determined. 

Table 4.1: Values of nodes for calculations example BN [134] 

P(d | c) 0.4 

P(d | ¬c) 0.1 

P(c | a,b) 0.3 

P(c | ¬a,b) 0.5 

P(c | a, ¬b) 0.7 

P(c | ¬a,¬b) 0.9 

P(a) 0.6 

P(b) 0.2 
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As shown in Figure 29, node D depends only on node C. To determine P(d), it is necessary to marginalise over node 
D: 

𝑃(𝑑) = 𝑃(𝑑, 𝑐) + 𝑃(𝑑, ¬𝑐) 
 

Next, node C must be eliminated to determine the marginal probability of P(d). This can be done by conditioning over 
C, see the next step in the calculation. Since node C is eliminated and both states (c and ¬c) of node C are used to do 
this, calculating P(d) can be written as Eq. 4.21: 

 
𝑃(𝑑) = 𝑃(𝑑, 𝑐) + 𝑃(𝑑, ¬𝑐) 

 
= 𝑃(𝑑|𝑐)𝑃(𝑐) + 𝑃(𝑑|¬𝑐)𝑃(¬𝑐) 

 

= ∑ 𝑃(𝑑|𝐶)𝑃(𝐶)

𝐶

 

Eq. 4.21 
 
To eliminate C and fill in Eq. 4.21, P(c) and P(¬c) must be determined. However, only one of the two probabilities 
needs to be calculated because the probabilities are complementary to each other so that 𝑃(¬𝑐) = 1 − 𝑃(𝑐). Node C 
has parent nodes A and B. Here again, the uppercase letters indicate that both states of node A and node B are used. 
Node A has states a and ¬a. Node B has states b and ¬b. Both nodes must be eliminated to ensure that P(c) can be 
calculated. Once P(c) is calculated, P(¬c) can also be calculated. By entering this in Eq. 4.21, it can be determined 
what P(d) is. But first Eq. 4.22 applies: 
 

𝑃(𝑐) = ∑ 𝑃(𝑐, 𝐴, 𝐵)

𝐴,𝐵

=  ∑ 𝑃(𝑐|𝐴, 𝐵)𝑃(𝐴, 𝐵) = ∑ 𝑃(𝑐|𝐴, 𝐵)𝑃(𝐴)𝑃(𝐵)

𝐴,𝐵𝐴,𝐵

 

Eq. 4.22 
P(A,B) may be written as P(A)P(B) if nodes A and B are independent. 
Filling in Eq. 4.22 with the values of Table 4.1 gives: 

𝑃(𝑐) = ∑ 𝑃(𝑐|𝐴, 𝐵)𝑃(𝐴)𝑃(𝐵)

𝐴,𝐵

= 𝑃(𝑐|𝑎, 𝑏)𝑃(𝑎)𝑃(𝑏) + 𝑃(𝑐|¬𝑎, 𝑏)𝑃(¬𝑎)𝑃(𝑏) + 𝑃(𝑐|𝑎, ¬𝑏)𝑃(𝑎)𝑃(¬𝑏) + 𝑃(𝑐|¬𝑎, ¬𝑏)𝑃(¬𝑎)𝑃(¬𝑏)

= (0.3 ∗ 0.6 ∗ 0.2) + (0.5 ∗ (1 − 0.6) ∗ 0.2) + (0.7 ∗ 0.6 ∗ (1 − 0.2)) + (0.9 ∗ (1 − 0.6) ∗ (1 − 0.2)) = 0.70 

 
Now that it is known what P(c) is, it is also known what P(¬c) is, namely 1-P(c). 
This can be used to calculate P(d) by filling in Eq. 4.21 with the values of Table 4.1: 
 

𝑃(𝑑) = ∑ 𝑃(𝑑|𝐶)𝑃(𝐶) = 0.4 ∗ 0.7 + 0.1 ∗ (1 − 0.7) = 0.31

𝐶

 

 
Inference example 
Now that the probabilities of P(d) and P(c) are known, it can be looked at how to work with inferences. Suppose it is 
given that P(d) is true, this is the evidence, and now, based on this information, the probability that P(b) is true must be 
found out. 
For this, Bayes' rule, like Eq. 4.11, is then used to determine the probability of P(b|d), or the posterior probability of b, 
see Eq. 4.23. 
 

𝑃(𝑏|𝑑) =
𝑃(𝑑|𝑏)𝑃(𝑏)

𝑃(𝑑)
       𝐵𝑎𝑦𝑒𝑠′𝑟𝑢𝑙𝑒 

 
  

𝑃(𝑏|𝑑) =
𝑃(𝑑|𝑏)𝑃(𝑏)

𝑃(𝑑)
=

∑ 𝑃(𝑑|𝐶) ∑ 𝑃(𝐶|𝐴, 𝑏)𝑃(𝐴)𝑃(𝑏)𝐴𝐶

∑ 𝑃(𝑑|𝐶) ∑ 𝑃(𝐶|𝐴, 𝐵)𝑃(𝐴)𝑃(𝐵)𝐴,𝐵𝐶

 

 
Eq. 4.23 

 
Below the partial line is actually P(d) as calculated earlier, 𝑃(𝑑) = 0.31. 
 
Above the partial line, the following is calculated, by using the values of Table 4.1: 
 

∑ 𝑃(𝐶|𝐴, 𝑏)𝑃(𝐴)

𝐴

= (𝑃(𝐶|𝑎, 𝑏)𝑃(𝑎) + 𝑃(𝐶|¬𝑎, 𝑏)𝑃(¬𝑎)) = ((0.3 ∗ 0.6) + (0.5 ∗ (1 − 0.6))) = 0.38 
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∑ 𝑃(𝑑|𝐶) ∑ 𝑃(𝐶|𝐴, 𝑏)𝑃(𝐴) 𝑃(𝑏)

𝐴𝐶

= (0.4 ∗ 0.38 ∗ 0.2) + (0.1 ∗ (1 − 0.38) ∗ 0.2) = 0.0428 

 
Entering these values in Eq. 4.23 then gives: 
 

𝑃(𝑏|𝑑) =
𝑃(𝑑|𝑏)𝑃(𝑏)

𝑃(𝑑)
=

∑ 𝑃(𝑑|𝐶) ∑ 𝑃(𝐶|𝐴, 𝑏)𝑃(𝐴)𝑃(𝑏)𝐴𝐶

∑ 𝑃(𝑑|𝐶) ∑ 𝑃(𝐶|𝐴, 𝐵)𝑃(𝐴)𝑃(𝐵)𝐴,𝐵𝐶

=
0.0428

0.31
= 0.138 

 
 
So the probability that b is true given d is true (𝑃(𝑏|𝑑)) is 0.138. 
 
This is how a BN can be used to update probabilities when information about another node is known. 
The above example gives an idea of how a BN should be constructed and what calculations can be performed with it. 
This is a general example, in Chapter 5 the BN specifically for this research will be discussed. 
 
 
 
 
 

4.5 Conclusion 
This chapter considered the sub-research question: Based on the available data and knowledge, what kind of model is 
most appropriate to develop a model with for this problem?  
To answer this question, a data analysis was performed, complemented by expert knowledge on what the data say. 
For valves, the behaviour of the looptijd parameter and how it affects the state of the valve was looked at. Based on 
the behaviour, it can be determined that a logistic function is needed to relate the failure probability to the looptijd. In 
addition, for each valve, the number of times each valve failed in the given period was considered.  
Insufficient data were available for the pumps. The choice was made to construct the pump curves based on the data 
from the manufacturers of the pumps and underlying pump theories. With these curves, it is possible to determine the 
BEP of the pump and then, based on assumptions, determine the reliability curve of each pump. By relating this curve 
to the MTBF of the pump, the failure probability can be determined.  
 
Next, it examined which method best suited the available data and knowledge to create a model. This showed that a 
BN best suited the combination of data and expert knowledge in this study. The terms and calculations associated with 
a BN have been briefly discussed. Chapter 5 elaborates on how the method contributes to the model for this research.  
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5. Method for the model 
This chapter looks at the sub-research question: What are the steps to develop and verify the method of the model? 
To answer this sub-research question, the structure of the BN is first considered. It then looks at the nodes to be 
included in the BN and the relationships between them. This is followed by the corresponding CPTs. Finally, the model 
needs to be verified. 
 

5.1 Multi-layer structure 
Within this research, a BN will be made in which there will be several layers in the network. In the literature, this is 
called a multi-layer structure model with a bottom-up approach by Verbert er al [135], as shown in Figure 30. It is an 
approach where at the component level, for each individual component, the output, in this case the probability of 
failure of the component, is considered. In the next layer, one can determine what the forecast is of the potential failure 
of a part of the line given the component’s probabilities of failure.  inally  in the highest layer  all forecasts come 
together to arrive at a system output. 
 

 
 
 
 
 
 

5.2 Bayesian Network 
Looking at the roadmap for drafting a BN, the variables that belong in the BN were considered. Then, using the 
knowledge present in the company, it was determined which variables affect each other. This allows the arcs between 
the nodes to be created. Next, there is the step of setting up the conditional probabilities of each node. To do this, it is 
necessary to know how many states each node can assume and what the independent nodes are. 
 
For this research, it was decided to divide the line into 5 line segments. This makes the calculations and indications 
clearer. Line segment 1 (LSI) has two valves (V1.1 and V1.2) and one pump (P1.1). Line segment 2 (LSII) has two 
valves (V2.1 and V2.2) and two pumps (P2.1 and P2.2). Line segment 3 (LSIII) has 8 valves (V3.1, V3.2, V3.3, V3.4, 
V3.5, V3.6, V3.7 and V3.8) and 1 pump (P3.1). Line segment 4 (LSIV) has 5 valves (V4.1, V4.2, V4.3, V4.4 and V4.5) 
and 1 pump (P5.1). Line segment 5 (LSV) has 4 valves (V5.1, V5.2, V5.3 and V5.4) and 1 pump (P5.1). 
 
The first layer contains the parameters that have a relation to the failure probability of the valves and pumps in the line. 
In the case of the valves  this is the ‘’looptijd’’ (LT) and in the case of the pumps, it is the parameter B and parameter 
G.  
The second layer then contains the nodes that represent the condition of the valves and pumps, this is the probability 
of failure given the parameters of the parent nodes.  
Then there is a layer where all component nodes come together in the child node of line segment. Here the probability 
of failure of the line segment given the probability of failure of the individual components can be determined.  
Finally, there is a child node in which all line segments come together with which the probability of failure of the entire 
line can be determined. This can then also be used to determine the probability of downtime. 
 

Figure 30: Multi-layer structure [135] 



       

2023.MME.8809     40 

 

Figure 31 shows the schematic overview of the BN to be used in this research. Appendix F shows the complete BN 
and also a list of all the symbols used in the BN. 

 
 
The BN can thus be divided into the component level, subsystem level and overall system level.  
 
The number of states of each node and its relationship with the other nodes is determined. 
 
Now that it is known which nodes are linked together, the mathematical underpinnings and how the conditional 
probability tables are set up can be looked at. The equations of Chapter 4.4 will be used. 
The part of the BN of line segment 1 will be used to explain the mathematical background, see Figure 32. 
In line segment there are two valves (V1.1 and V1.2) and one pump (P1.1). 
 
 

 
 
 
 
 
Starting with the upper nodes. These are the variables that affect the probability of valve and pump failure. In the case 
of the valves, this is the looptijd, the time how long it takes for a valve to open or close. For the pump, these are two 
variables, B and G, related to reliability and cavitation. 
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Figure 31: BN with multi-layer structure 

Figure 32: Line segment 1, part of BN 
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Valves  
The variable ‘’ ooptijd’’ ( TVX.X) has 15, 20, 25, 30 or 50 possible states, it depends on the specific valve [130][136]. 
The states can be written as  if ‘’looptijd’’ has 15 states: 
 

Ω𝐿𝑇𝑉𝑥.𝑥
= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} 

Or if ‘’looptijd’’ has 20 possible states: 

Ω𝐿𝑇𝑉𝑥.𝑥
= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} 

 
The same thing can be done for all the different looptijd nodes (so it can also be done for the valves with looptijd 25 or 
30 or 50 states, it depends on the maximum looptijd of the specific valve) to give the specific amount of states for each 
unique valve. 
 
x.x should be replaced, the first x indicates the number of the specific line segment and the second x is the number of 
the valve in that specific line segment. For example LTV1.2 indicated the looptijd of the second valve in line segment 1. 
 
In this BN, the LT is a root node and there is no parent node to influence it.  
It must apply that all individual probabilities of a given state of LTVx.x added together must equal 1, as earlier explained 
with Eq. 4.19 and Eq. 4.20 [129], see Eq. 5.1 for the LTVx.x nodes: 
 

∑ 𝑃(𝐿𝑇𝑉𝑥.𝑥 = 𝑖 ) = 𝑃(𝐿𝑇𝑉𝑥.𝑥 = 1 ) + ⋯ + 𝑃(𝐿𝑇𝑉𝑥.𝑥 = 𝑘 ) = 1

𝑘

𝑖=1

 

 
Eq. 5.1 

 
k depends on the amount of possible states of looptijd, this varies between 15, 20, 25, 30 or 50 states. The amount of 
states is defined for every valve in the network. 
 
Pumps  
For the pumps, two parameters are defined that indicate the probability of failure of the pump. The parameter B is 
related to the BEP. This is the deviation from the BEP at which the pump operates. Parameter G is for determining 
whether there is a chance of cavitation. Both parameters can be determined as described earlier in Chapter 4.1.3.3. 
 
For parameter BPx.x, 5 states can be determined, see Figure 33 [96]: 
State 1: Pump performs at BEP  
State 2: Pump performs at -10% of BEP or +5% of BEP 
State 3: Pump performs between -20% and -10% or between +10% and +5% of BEP 
State 4: Pump performs between -30% and -20% or between +15% and +10% of BEP 
State 5: Pump performs at more than -30% or +15% of BEP 

 
 
 

Figure 33: States of BPx.x 
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Variable BPx.x has 5 possible states. 

Ω𝐵𝑃𝑥.𝑥
= {1,2,3,4,5} 

 
The x.x can be changed; the first x is for the line segment number and the second x is for the number of the pump in 
that specific line part. For example, BP3.1 stands for the first pump in line segment 3. 
 
Following on from Eq. 4.19 and Eq. 4.20, there must be stated that, see Eq. 5.2: 
 

∑ 𝑃(𝐵𝑃𝑥.𝑥 = 𝑖) = 𝑃(𝐵𝑃𝑥.𝑥 = 1) + ⋯ + 𝑃(𝐵𝑃𝑥.𝑥 = 5) = 1

5

𝑖=1

 

Eq. 5.2 
 

The second parameter, GPx,x, is to determine whether cavitation occurs. This can be expressed in 2 states. 
State 1: No cavitation  NPSH margin ≥ 1.1 (see Eq. 4.4 and Figure 22) 
State 2: Cavitation, NPSH margin < 1.1 (see Eq. 4.4 and Figure 22) 
 
Variable GPx.x has 2 possible states. 

Ω𝐺𝑃𝑥.𝑥
= {1,2} 

 
The x.x can be changed; the first x is for the line segment number and the second x is for the number of the pump in 
that specific line part. For example, GP3.1 stands for the first pump in line segment 3. 
 
 
Following on from Eq. 4.19 and Eq. 4.20, there must be stated that, see Eq. 5.3. 
 

∑ 𝑃(𝐺𝑃𝑥.𝑥 = 𝑖) = 𝑃(𝐺𝑃𝑥.𝑥 = 1) + 𝑃(𝐺𝑃𝑥.𝑥 = 2) = 1

2

𝑖=1

 

Eq. 5.3 
 
 

5.2.1 Component nodes 
Then, the nodes representing the probability of failure of each component given the parent nodes can now be looked 
at. In the example, these are nodes V1.1, V1.2 and P1.1, see Figure 32. 
 
V1.1 
Node V1.1 has 1 parent node LTV1.1. Node V1.1 represent the probability of failure of valve 1.1, it has 2 possible states: 

Ω𝑉1.1
= {𝑙𝑜𝑤, ℎ𝑖𝑔ℎ} = {0,1} 

 
As stated earlier in Chapter 4.1.2, a logistic function can be constructed for each valve to determine the probability of 
failure based on the looptijd of the valve. For this purpose, see Eq. 4.1. 
 
The value for m can be calculated by adding up all times of maturity and then taking the average. 
The value for k can be calculated using expert knowledge. It has been explained that at the time the looptijd has a 
value of 15 seconds that it is assumed 99% of the valve fails. Since the value of m has already been calculated earlier 
in Chapter 4.1.2, by combining this knowledge, the value of k can be determined. It is assumed for this example that 
m=8 seconds. With this, Eq. 4.1 can be filled in: 

0.99 =
1

(1 + 𝑒(−𝑘∗(15−8))
 

This rewrite gives: 

𝑒−7𝑘 =
1

0.99
− 1 

 
−7𝑘 = ln(0.010101) 

 

𝑘 =
ln (0.010101)

−7
= 0.6564 

Filling the k into Eq. 4.1 gives: 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =
1

(1 + 𝑒(−0.6564∗(𝑙𝑜𝑜𝑝𝑡𝑖𝑗𝑑−𝓂))
 

Eq. 5.4 
Eq. 5.4 will provide a curve, as can be seen in Figure 34. 



       

2023.MME.8809     43 

 

 

 
 
 
 
From the curve in Figure 34, it can be determined what the probability of failure is given a given looptijd. Since node 
V1.1 has only 2 possible states, this can also be used to determine the probability of not failing.  
 
For the local conditional probability of the V1.1 node, using Eq. 4.7, it can be stated that Eq. 5.5: 
 

𝑃(𝐿𝑇𝑉1.1, 𝑉1.1) = 𝑃(𝐿𝑇𝑉1.1)𝑃(𝑉1.1|𝐿𝑇𝑉1.1) 
 

Eq. 5.5 
 
V1.2 
The same thing can be done for node V1.2, see Eq. 5.6, keep in mind to change the average looptijd (Eq. 5.4). 
  

𝑃(𝐿𝑇𝑉1.2, 𝑉1.2) = 𝑃(𝐿𝑇𝑉1.2)𝑃(𝑉1.2|𝐿𝑇𝑉1.2) 
Eq. 5.6 

 
P1.1 
Node P1.1 represents the probability of failure of pump 1.1 also this node has 2 possible states. 
 

Ω𝑃𝑥.𝑥
= {𝑙𝑜𝑤, ℎ𝑖𝑔ℎ} = {0,1} 

 
Node P1.1 has two parent nodes: BP1.1 and GP1.1. 
Depending on the values obtained from parameters B and G, the reliability curve as explained in Chapter 4.1.3 can be 
used. This determines the probability of failure of the pump given the condition of the parent nodes. 
 
The local conditional probability if the P1.1 node, using Eq. 4.7, can be written as Eq. 5.7: 

 
𝑃(𝑃1.1, 𝐵𝑃1.1, 𝐺𝑃1.1) = 𝑃(𝐺𝑃1.1)𝑃(𝐵𝑃1.1)𝑃(𝑃1.1|𝐵𝑃1.1, 𝐺𝑃1.1) 

Eq. 5.7 
 

5.2.2 Subsystem level nodes 
Line segment 1 (LSI) 
Next, the node LSI (line segment 1) can be looked at. This is the child node of V1.1, V1.2 and P1.1, see Figure 32. 
The node LSI represents the probability of failure of line segment 1. The joint probability can be written using the local 
conditional probabilities of the other nodes, just like Eq. 4.7 [130]. This will give Eq. 5.8. 
 
 

𝑃(𝐿𝑆𝐼 , 𝑉1.1, 𝑉1.2, 𝑃1.1, 𝐿𝑇𝑉1.1, 𝐿𝑇𝑉1.2, 𝐵𝑃1.1, 𝐺𝑃1.1)
= 𝑃(𝐺𝑃1.1) ∙ 𝑃(𝐵𝑃1.1) ∙ 𝑃(𝐿𝑇𝑉1.1) ∙ 𝑃(𝐿𝑇𝑉1.2) ∙ 𝑃(𝑃1.1|𝐵𝑃1.1, 𝐺𝑃1.1) ∙ 𝑃(𝑉1.1|𝐿𝑇𝑉1.1) ∙ 𝑃(𝑉1.2|𝐿𝑇𝑉1.2)
∙ 𝑃(𝐿𝑆𝐼|𝑉1.1, 𝑉1.2, 𝑃1.1) 

Eq. 5.8 
 
Hereafter, the notation JP1 will be used to refer to Eq. 5.8. 
 
This can be done for each defined line segment of the production line. This determines the probability of failure of each 
line segment separately. 

Figure 34: Example of logistic function 
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Line segment 2 (LSII): 
Line segment 2 consists of 2 valves and 2 pumps. The local conditional probabilities are determined in the same way 
as for line segment 1. 
This gives the following for the joint probability of line segment 2, by filling in Eq. 4.7, see Eq. 5.9: 
 

𝑃(𝐿𝑆𝐼𝐼 , 𝑉2.1, 𝑉2.2, 𝑃2.1, 𝑃2.2, 𝐿𝑇𝑉2.1, 𝐿𝑇𝑉2.2, 𝐵𝑃2.1, 𝐺𝑃2.1, 𝐵𝑃2.2, 𝐺𝑃2.2)
= 𝑃(𝐺𝑃2.1) ∙ 𝑃(𝐵𝑃2.1) ∙ 𝑃(𝐺𝑃2.2) ∙ 𝑃(𝐵𝑃2.2) ∙ 𝑃(𝐿𝑇𝑉2.1) ∙ 𝑃(𝐿𝑇𝑉2.2) ∙ 𝑃(𝑃2.1|𝐵𝑃2.1, 𝐺𝑃2.1)

∙ 𝑃(𝑃2.2|𝐵𝑃2.2, 𝐺𝑃2.2) ∙ 𝑃(𝑉2.1|𝐿𝑇𝑉2.1) ∙ 𝑃(𝑉2.2|𝐿𝑇𝑉2.2) ∙ 𝑃(𝐿𝑆𝐼𝐼|𝑉2.1, 𝑉2.2, 𝑃2.1, 𝑃2.2) 

Eq. 5.9 
Hereafter, the notation JP2 will be used to refer to Eq. 5.9. 
 
Line segment 3 (LSIII): 
Line segment 3 consists of 8 valves and 1 pump. The local conditional probabilities are determined in the same way as 
for line segment 1. 
This gives the following for the joint probability of line segment 3, by filling in Eq. 4.7, see Eq. 5.10: 
 
 

𝑃(𝐿𝑆𝐼𝐼𝐼 , 𝑉3.1, 𝑉3.2, 𝑉3.3, 𝑉3.4, 𝑉3.5, 𝑉3.6, 𝑉3.7, 𝑉3.8,
𝑃3.1, 𝐿𝑇𝑉3.1, 𝐿𝑇𝑉3.2, 𝐿𝑇𝑉3.3, 𝐿𝑇𝑉3.4, 𝐿𝑇𝑉3.5, 𝐿𝑇𝑉3.6, 𝐿𝑇𝑉3.7, 𝐿𝑇𝑉3.8, 𝐵𝑃3.1, 𝐺𝑃3.1)
= 𝑃(𝐺𝑃3.1) ∙ 𝑃(𝐵𝑃3.1) ∙ 𝑃(𝐿𝑇𝑉3.1) ∙ 𝑃(𝐿𝑇𝑉3.2) ∙ 𝑃(𝐿𝑇𝑉3.3) ∙ 𝑃(𝐿𝑇𝑉3.4) ∙ 𝑃(𝐿𝑇𝑉3.5) ∙ 𝑃(𝐿𝑇𝑉3.6) ∙ 𝑃(𝐿𝑇𝑉3.7)
∙ 𝑃(𝐿𝑇𝑉3.8) ∙ 𝑃(𝑃3.1|𝐵𝑃3.1, 𝐺𝑃3.1) ∙ 𝑃(𝑉3.1|𝐿𝑇𝑉3.1) ∙ 𝑃(𝑉3.2|𝐿𝑇𝑉3.2) ∙ 𝑃(𝑉3.3|𝐿𝑇𝑉3.3) ∙ 𝑃(𝑉3.4|𝐿𝑇𝑉3.4)
∙ 𝑃(𝑉3.5|𝐿𝑇𝑉3.5) ∙ 𝑃(𝑉3.6|𝐿𝑇𝑉3.6) ∙ 𝑃(𝑉3.7|𝐿𝑇𝑉3.7) ∙ 𝑃(𝑉3.8|𝐿𝑇𝑉3.8)
∙ 𝑃(𝐿𝑆𝐼𝐼𝐼|𝑉3.1, 𝑉3.2, 𝑉3.3, 𝑉3.4, 𝑉3.5, 𝑉3.6, 𝑉3.7, 𝑉3.8, 𝑃3.1) 

Eq. 5.10 
Hereafter, the notation JP3 will be used to refer to Eq. 5.10. 
 
Line segment 4 (LSIV): 
Line segment 4 consists of 5 valves and 1 pump. The local conditional probabilities are determined in the same way as 
for line segment 1. 
This gives the following for the joint probability of line segment 4, by filling in Eq. 4.7, see Eq. 5.11: 
 

𝑃(𝐿𝑆𝐼𝑉, 𝑉4.1, 𝑉4.2, 𝑉4.3, 𝑉4.4, 𝑉4.5, 𝑃4.1, 𝐿𝑇𝑉4.1, 𝐿𝑇𝑉4.2, 𝐿𝑇𝑉4.3, 𝐿𝑇𝑉4.4, 𝐿𝑇𝑉4.5, 𝐵𝑃4.1, 𝐺𝑃4.1)
= 𝑃(𝐺𝑃4.1) ∙ 𝑃(𝐵𝑃4.1) ∙ 𝑃(𝐿𝑇𝑉4.1) ∙ 𝑃(𝐿𝑇𝑉4.2) ∙ 𝑃(𝐿𝑇𝑉4.3) ∙ 𝑃(𝐿𝑇𝑉4.4) ∙ 𝑃(𝐿𝑇𝑉4.5) ∙ 𝑃(𝑃4.1|𝐵𝑃4.1, 𝐺𝑃4.1)

∙ 𝑃(𝑉4.1|𝐿𝑇𝑉4.1) ∙ 𝑃(𝑉4.2|𝐿𝑇𝑉4.2) ∙ 𝑃(𝑉4.3|𝐿𝑇𝑉4.3) ∙ 𝑃(𝑉4.4|𝐿𝑇𝑉4.4) ∙ 𝑃(𝑉4.5|𝐿𝑇𝑉4.5)

∙ 𝑃(𝐿𝑆𝐼𝑉|𝑉4.1, 𝑉4.2, 𝑉4.3, 𝑉4.4, 𝑉4.5, 𝑃4.1) 

Eq. 5.11 
Hereafter, the notation JP4 will be used to refer to Eq. 5.11. 
 
Line segment 5 (LSV): 
Line segment 5 consists of 4 valves and 1 pump. The local conditional probabilities are determined in the same way as 
for line segment 1. 
This gives the following for the joint probability of line segment 5, by filling in Eq. 4.7, see Eq. 5.12: 
 
 

𝑃(𝐿𝑆𝑉, 𝑉5.1, 𝑉5.2, 𝑉5.3, 𝑉5.4, 𝑃5.1, 𝐿𝑇𝑉5.1, 𝐿𝑇𝑉5.2, , 𝐿𝑇𝑉5.3, 𝐿𝑇𝑉5.4, 𝐵𝑃5.1, 𝐺𝑃5.1)
= 𝑃(𝐺𝑃5.1) ∙ 𝑃(𝐵𝑃5.1) ∙ 𝑃(𝐿𝑇𝑉5.1) ∙ 𝑃(𝐿𝑇𝑉5.2) ∙ 𝑃(𝐿𝑇𝑉5.3) ∙ 𝑃(𝐿𝑇𝑉5.4) ∙ 𝑃(𝑃5.1|𝐵𝑃5.1, 𝐺𝑃5.1) ∙ 𝑃(𝑉5.1|𝐿𝑇𝑉5.1)

∙ 𝑃(𝑉5.2|𝐿𝑇𝑉5.2) ∙ 𝑃(𝑉5.3|𝐿𝑇𝑉5.3) ∙ 𝑃(𝑉5.4|𝐿𝑇𝑉5.4) ∙ 𝑃(𝐿𝑆𝑉|𝑉5.1, 𝑉5.2, 𝑉5.3, 𝑉5.4, 𝑃5.1) 

 
Eq. 5.12 

Hereafter, the notation JP5 will be used to refer to Eq. 5.12. 
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5.2.3 Overall system level node 
PL 
Finally, there is the leaf node. This is the node PL that indicates the probability of failure of the entire production line. 
This is a child node of LSI, LSII, LSIII, LSIV and LSV, see Figure 35. 
 

 
 
The joint probability of the whole BN can be written as, Eq. 5.13: 
 

𝑃(𝑃𝐿, 𝐿𝑆𝐼 , 𝐿𝑆𝐼𝐼 , 𝐿𝑆𝐼𝐼𝐼 , 𝐿𝑆𝐼𝑉 , 𝐿𝑆𝑉 , … … … , 𝐺𝑃5.1) = 𝑃(𝑃𝐿 |𝐿𝑆𝐼 , 𝐿𝑆𝐼𝐼 , 𝐿𝑆𝐼𝐼𝐼 , 𝐿𝑆𝐼𝑉 , 𝐿𝑆𝑉) ∙ 𝐽𝑃1 ∙ 𝐽𝑃2 ∙ 𝐽𝑃3 ∙ 𝐽𝑃4 ∙ 𝐽𝑃5 
 

Eq. 5.13 
Eq. 5.13 can be written as Eq. 5.14: 
LSi  i = I, II, III, IV, V 
Vj  j = 1.1, 1.2, 2.1, 2.2, 3.1, …, 3.8, 4.1, …, 4.5, 5.1, …, 5.4 
LTVj  j = 1.1, 1.2, 2.1, 2.2, 3.1, …, 3.8, 4.1, …, 4.5, 5.1, …, 5.4 
Pk  k = 1.1, 2.1, 2.2, 3.1, 4.1, 5.1 
BPk  k = 1.1, 2.1, 2.2, 3.1, 4.1, 5.1 
GPk  k = 1.1, 2.1, 2.2, 3.1, 4.1, 5.1 
 

𝑃(𝑃𝐿, {𝐿𝑆𝑖}, {𝑉𝑗}, {𝑃𝑘}, {𝐿𝑇𝑉𝑗}, {𝐵𝑃𝑘}, {𝐺𝑃𝑘}) = 

 
𝑃(𝑃𝐿 |{𝐿𝑆𝑖}) ∙ 

𝑃(𝐿𝑆𝐼  | 𝑉1.1, 𝑉1.2, 𝑃1.1) ∙ 𝑃(𝑃1.1 | 𝐵𝑃1.1, 𝐺𝑃1.1)  ∙ (∏ 𝑃(𝑉1.𝑚 |𝐿𝑇𝑉1.𝑚))  ∙

2

𝑚=1

 

 

𝑃(𝐿𝑆𝐼𝐼  | 𝑉2.1, 𝑉2.2, 𝑃2.1, 𝑃2.2) ∙  (∏ 𝑃(𝑃2.𝑛 |𝐵𝑃2.𝑛 , 𝐺𝑃2.𝑛))  ∙

2

𝑛=1

 (∏ 𝑃(𝑉2.𝑞 |𝐿𝑇𝑉2.q))  ∙

2

q=1

 

 

𝑃(𝐿𝑆𝐼𝐼𝐼  | 𝑉3.1, … , 𝑉3.8, 𝑃3.1) ∙  𝑃(𝑃3.1 | 𝐵𝑃3.1, 𝐺𝑃3.1) ∙  (∏ 𝑃(𝑉3.𝑟 |𝐿𝑇𝑉3.𝑟))  ∙ 

8

𝑟=1

 

 

𝑃(𝐿𝑆𝐼𝑉  | 𝑉4.1, … , 𝑉4.5, 𝑃4.1) ∙   𝑃(𝑃4.1 | 𝐵𝑃4.1, 𝐺𝑃4.1) ∙  (∏ 𝑃(𝑉4.𝑡  |𝐿𝑇𝑉4.𝑡))  ∙ 

5

𝑡=1

 

 

𝑃(𝐿𝑆𝑉  | 𝑉5.1, … , 𝑉5.4, 𝑃5.1) ∙   𝑃(𝑃5.1 | 𝐵𝑃5.1, 𝐺𝑃5.1) ∙  (∏ 𝑃(𝑉5.𝑤  |𝐿𝑇𝑉5.𝑤))  ∙

4

𝑤=1

 

 

 ( ∏ (𝑃(𝐵𝑃𝑘)𝑃(𝐺𝑃𝑘)))

5.1

𝑘=1.1

∙ ( ∏ (𝑃(𝐿𝑇𝑉𝑗)))

5.4

𝑗=1.1

 

 
 

Eq. 5.14 

 SI  SII  SIII  SIV  SV

P 

Figure 35: Last section of BN 
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5.3 Conditional probability tables 
Before inferences can be performed with the model, probabilities have to be determined. These must be included in 
the model which is programmed in Python using the PGMPY package [137].  
 
For the looptijd (LTVx.x) nodes, it was assumed that there is a uniform distribution on the probability of occurrence of a 
given looptijd. All the CPTs can be found in Appendix G. 
 
For every valve (Vx.x nodes), as shown in Chapter 5.2, a unique logistic function representing the probability of failure 
of the valve was determined. Based on this, the CPT was constructed for each VX.X node. All the CPTs can be found in 
Appendix G. 
 
For the GPx.x nodes, a uniform distribution was assumed because there is no knowledge of whether a particular state 
occurs more frequently. 
 
For the Bpx.x nodes, consideration was given to what is logical for the occurrence of certain states. Chapter 4.1.3 
described that most pumps operate in state 3 or 4, hence the probabilities are higher. It is further assumed that the 
pumps hardly ever operate in state 1.  
 
For the Px.x nodes, in terms of the influence of the Bpx.x nodes, the reliability function as explained in Chapter 4.1.3 has 
been considered. It is assumed to be the probability of failure given the state of Bpx.x and that the state of node Gpx.x is 
in the lowest state. For the influence of node Gpx.x on node Px.x, it is assumed that the probability of failure increases as 
Bpx.x also deteriorates. The highest probability of failure is when both node Gpx.x and Bpx.x are in their highest state. 
 
For the LS nodes, assumptions have been made about what the probability of failure is given the condition of a 
particular component. It was assumed here that if nothing is in bad condition then there is a 1% chance of failure of the 
line segment. If 1 component fails then the probability of failure is already higher than the probability of not failing. This 
increases to the point where all components are in a poor condition, here the probability of failure then equals 99%. A 
1% margin was chosen because there can always be a failure in the PLCs that results in wrong values being issued.  
 
For the PL node, assumptions have been made about the probability of failure of the production line given the states of 
the different line segments. Here, it has been assumed that there is a 10% probability of failure if all line segments are 
in state 0. 
Further, the probabilities of failure increase if several line segments are in state 1. 
 
The above BN including all nodes and tables is programmed in Python with the PGMPY package [137]. This makes it 
possible to perform inferences and other calculations. However, validation and verification of the BN should be 
considered first. 
 
 

5.4 Forward inference 
As stated earlier, the BN can be used to perform inferences. In this research, only forward inference is used. This 
involves entering values for the LTVx.x, BPx.x and GPx.x nodes as evidence to ultimately determine the probability of 

failure of the PL node. In other words, it is determined: 𝑃(𝑃𝐿| {𝐿𝑇𝑉𝑗}, {𝐵𝑃𝑘}, {𝐺𝑃𝑘}) with k = 1.1, 2.1, 2.2, 3.1, 4.1, 5.1 and j 
= 1.1, 1.2, 2.1, 2.2, 3.1, …, 3.8, 4.1, …, 4.5, 5.1, …, 5.4. 
Here, the previously defined relations between all nodes in Chapter 5.2.1, Chapter 5.2.2 and Chapter 5.2.3 are used in 
addition to the Bayes rule, as explained in Chapter 4.4 with Eq. 4.11. Furthermore, Eq. 5.14 is used. 
As explained earlier in the example of Chapter 4.4.2, node elimination is also used here, this is performed on the 
component level nodes (Vx.x and Px.x nodes) and the sub system nodes (LSx nodes). This makes it possible to perform 
forward inference to the PL node from the LTVx.x, BPx.x and GPx.x nodes. All is done by using the PGMPY package, 
which includes a module to perform inference using the Bayes rule. 
 
 

5.5 BN verification 
Now that the BN has been built, it is necessary to look at the verification of the BN. Verification is determining whether 
the BN accurately reflects the specifications and descriptions previously given [138] [139].  
In this research, two different verification methods are used. First, some checks are performed to determine whether 
the nodes and the relationships between them are correctly defined. The second way to verify is with a sensitivity 
analysis. It also examines whether the outcomes of the BN in known situations match expectations. 
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5.5.1 Verification of nodes and relations 
To determine whether the nodes are defined correctly, it is possible to look at the CPTs, see Appendix G.  
For verification, the values in the CPTs were checked to see if they match the model described earlier. 
The LTVx.x nodes and GPx.x nodes should therefore have a uniform distribution, looking at the CPTs in Appendix G, this 
is met. 
Furthermore, the Vx.x nodes should have increasing failure probabilities given a higher LTVx.x. Looking at the CPTs in 
Appendix G, this is met. 
For the BPx.x nodes, there must be a clear difference between the 5 states. State 1 and state 2 should additionally have 
a lower probability because it is less likely that a pump often operates in one of these two states. This is also met 
according to the CPTs in Appendix G.  
For the LSx nodes, there should be a clear distinction in the probability of failure if more components fail at the same 
time each time. So suppose 3 components fail simultaneously then a higher probability of failure should be given than 
if only 2 components fail simultaneously. This is also in order for this model according to the CPTs. 
Finally, there is the PL node. For this, the same applies as for the LSx nodes. If 3 line segments fail simultaneously 
then this should give a higher failure probability than if only 2 line segments fail simultaneously. 
All in all, it can be seen from the CPTs in Appendix G that the nodes are correctly defined in the model. 
 
To check whether the relationships between the nodes are well defined, tests are performed to determine 
independence. For instance, the LSx nodes must depend on the valves and pumps in that particular line segment. 
Furthermore, the PL node must depend on the LS nodes but not directly on the other nodes. 
 
The PL is correctly defined if it depends only on the LSx nodes and is independent of the other nodes in the BN.  
The independence check for the PL node gives the following result: 
 
(PL ⊥ G2.1, LT1.2, P1.1, P5.1, LT3.7, B2.2, LT3.1, LT5.3, LT5.4, V3.6, LT3.2, V5.2, V4.5, LT3.3, B3.1, B4.1, V3.2, 
G1.1, V3.8, V4.3, LT5.1, V2.1, LT3.6, G3.1, V3.5, LT4.4, V5.4, B2.1, LT4.5, V3.7, V2.2, V3.3, LT2.2, V4.4, P2.2, 
LT4.3, G4.1, LT2.1, P2.1, LT4.2, B5.1, G2.2, P4.1, P3.1, V4.1, LT3.8, LT3.4, G5.1, LT3.5, B1.1, LT5.2, V3.1, V3.4, 
V5.1, LT1.1, V4.2, V1.1, LT4.1, V5.3, V1.2 | LS1, LS2, LS3, LS4, LS5) 
 
This shows the PL node given the LS nodes is independent of all other nodes, these are shown in light grey. 
 
The independence checks for the LS nodes can be found in Appendix H.  
 
From the results of the checks, it can be seen that the values and relationships are well constructed in the BN. 
 
 

5.5.2 Verification: Sensitivity analysis 
Verification can be performed using sensitivity analysis [140]. This involves looking at how a small change in the 
values of the variables affects the BN. This can provide insight into which nodes have a large influence on the 
outcome and which nodes have less influence.  
Moreover, known scenarios can be used to determine whether the BN is a good representation of the proposed 
system [138]. In this research, verification is used to determine which nodes to use as evidence, due to the limitation of 
the PGMPY package used [137]. It also considers the situation where the all evidence nodes are set to the worst state 
and set to the best state. The results can be used to determine whether the BN meets expectations. 
 
To determine which nodes can be temporarily excluded for this research, it can be considered how each node affects 
the outcomes of the PL node. To determine this with the constraints in the BN, 2 nodes were each fixed to exclude and 
then varied across the remaining nodes. By running the BN, it is possible to determine how the combination of 
eliminated nodes affects the value of the PL node. The aim is to determine which nodes have the least impact on the 
PL value. 
 
Looking at the number of parent nodes of the different line segments, it is noticeable that line segment 3 has the most 
parent nodes. Due to the limitations of the package, the choice was made to see which 3 nodes of line segment 3 
have the least influence on the outcome of the PL node. To determine sensitivity, the first scenario considered was 
where all the remaining LT, G and B nodes are in the worst state. Worst case PL(0) gives the probability of non-failure 
at the time when all LT, G and B nodes are in their worst state. For the LT nodes, this can vary in 15, 20, 25, 30 or 50. 
For the G nodes it is state 2 and for the B nodes it is state 5. 
The results from the BN for the PL(0) can be found in Table 5.1. The top rows of this table show for which nodes no 
evidence was entered. Forward inference was then performed with the remaining LT, B and G nodes to determine the 
value of PL(0). PL(0) is the probability of non-failure of the production line. 
 
If this is averaged then the deviation from the mean can be looked at to determine which combination has the least 
and most impact. From the values of Table 5.1 for worst case PL(0), the average is taken. It can then be determined 
what the deviation from the mean is for each combination. The average for PL(0), in the case where all the remaining 
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LT, G and B nodes are at their worst state, is equal to 0.0179. The deviation of each combination from this mean is 
shown in Figure 36. 
 
Next, the scenario in which all LT, except excluded LT nodes, B and G nodes are in the best state was also 
considered. In the best state means state 1.  
The average for PL(0), based on the values of Table 5.1, in the case that all the remaining LT, G and B nodes are at 
the best state, is equal to 0.5147. The deviation of each combination from this average for PL(0) is shown in Figure 37. 
 
 
 

 
 
 
 
 

 

LT3.1 
LT3.2 
LT3.3 

LT3.1 
LT3.2 
LT3.4 

LT3.1 
LT3.2 
LT3.5 

LT3.1 
LT3.2 
LT3.6 

LT3.1 
LT3.2 
LT3.7 

LT3.1 
LT3.2 
LT3.8 

LT3.1 
LT3.3 
LT3.4 

LT3.1 
LT3.3 
LT3.5 

LT3.1 
LT3.3 
LT3.6 

LT3.1 
LT3.3 
LT3.7 

LT3.1 
LT3.3 
LT3.8 

LT3.1 
LT3.4 
LT3.5 

LT3.1 
LT3.4 
LT3.6 

LT3.1 
LT3.4 
LT3.7 

Worst 
case 
PL(0) 

0.0166 0.017 0.018 0.0182 0.017 0.017 0.0177 0.0172 0.0173 0.0176 0.0174 0.0176 0.0177 0.0178 

Best 
case 
PL(0) 

0.5241 0.5174 0.5234 0.5164 0.5262 0.5172 0.5190 0.5237 0.5240 0.5277 0.5179 0.5193 0.5172 0.5255 

               

 

LT3.1 
LT3.4 
LT3.8 

LT3.1 
LT3.5 
LT3.6 

LT3.1 
LT3.5 
LT3.7 

LT3.1 
LT3.5 
LT3.8 

LT3.1 
LT3.6 
LT3.7 

LT3.1 
LT3.6 
LT3.8 

LT3.1 
LT3.7 
LT3.8 

LT3.2 
LT3.3 
LT3.4 

LT3.2 
LT3.3 
LT3.5 

LT3.2 
LT3.3 
LT3.6 

LT3.2 
LT3.3 
LT3.7 

LT3.2 
LT3.3 
LT3.8 

LT3.2 
LT3.4 
LT3.5 

LT3.2 
LT3.4 
LT3.6 

Worst 
case 
PL(0) 

0.017 0.0182 0.0182 0.0173 0.0185 0.0176 0.0179 0.0177 0.0183 0.0177 0.0175 0.0174 0.0185 0.0179 

Best 
case 
PL(0) 

0.5172 0.5246 0.5259 0.5167 0.5181 0.5138 0.5179 0.5214 0.5183 0.5165 0.5219 0.5252 0.5088 0.5109 

               

 

LT3.2 
LT3.4 
LT3.7 

LT3.2 
LT3.4 
LT3.8 

LT3.2 
LT3.5 
LT3.6 

LT3.2 
LT3.5 
LT3.7 

LT3.2 
LT3.5 
LT3.8 

LT3.2 
LT3.6 
LT3.7 

LT3.2 
LT3.6 
LT3.8 

LT3.2 
LT3.7 
LT3.8 

LT3.3 
LT3.4 
LT3.5 

LT3.3 
LT3.4 
LT3.6 

LT3.3 
LT3.4 
LT3.7 

LT3.3 
LT3.4 
LT3.8 

LT3.3 
LT3.5 
LT3.6 

LT3.3 
LT3.5 
LT3.7 

Worst 
case 
PL(0) 

0.0179 0.017 0.0189 0.018 0.0182 0.0188 0.0182 0.0174 0.0183 0.018 0.0192 0.0183 0.0171 0.0184 

Best 
case 
PL(0) 

0.5195 0.5134 0.5109 0.5159 0.5106 0.5084 0.5014 0.5084 0.5134 0.5109 0.5056 0.5096 0.5191 0.5191 

               

 

LT3.3 
LT3.5 
LT3.8 

LT3.3 
LT3.6 
LT3.7 

LT3.3 
LT3.6 
LT3.8 

LT3.3 
LT3.7 
LT3.8 

LT3.4 
LT3.5 
LT3.6 

LT3.4 
LT3.5 
LT3.7 

LT3.4. 
LT3.5 
LT3.8 

LT3.4 
LT3.6 
LT3.7 

LT3.4 
LT3.6 
LT3.8 

LT3.4 
LT3.7 
LT3.8 

LT3.5 
LT3.6 
LT3.7 

LT3.5 
LT3.6 
LT3.8 

LT3.5 
LT3.7 
LT3.8 

LT3.6 
LT3.7 
LT3.8 

Worst 
case 
PL(0) 

0.0179 0.0187 0.0182 0.0191 0.018 0.0179 0.0177 0.0178 0.0181 0.0181 0.0186 0.0175 0.0176 0.0179 

Best 
case 
PL(0) 

0.5093 0.5121 0.5071 0.5083 0.5100 0.5099 0.5072 0.5028 0.5014 0.5080 0.5130 0.5090 0.5097 0.4908 

 

Table 5.1: Values best and worst case scenarios for all different combinations of LT nodes of LS3 
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Figure 36: Worst case scenario PL(0) Figure 37: Best case scenario PL(0) 
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To determine which combinations of LT nodes have the least impact on the outcomes for PL(0), Figure 36 and Figure 
37 are combined in Figure 38. 
 
It can be seen from Figure 38 that there are some combinations that have little deviation from the mean. These are the 
combinations: 
LT3.1, LT3.2, LT3.6 
LT3.1, LT3.6, LT3.8 
LT3.2, LT3.3, LT3.6 
LT3.2, LT3.4, LT3.8 
LT3.2, LT3.5, LT3.7 
LT3.3, LT3.4, LT3.5 
 
Thus, if evidence is used to determine the output of the BN, one of 
these combinations can be chosen to provide no evidence for. After 
all, verification has shown that these combinations have little impact 
on the average value of PL(0) in the best and worst case scenarios. 
 
  

Figure 38: Combination of Figure 36 
and Figure 37 
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Now the research will continue to see if the BN performs as expected. 
 
For this part of the verification of the BN, some inferences can be made to check whether the BN does what was 
thought of beforehand with the data. Here, it is necessary to see how the BN works with data. This can be real data or 
synthetic data.  
It needs to be established whether the BN gives the outputs that can be expected when certain data is entered as 
evidence. 
 
It looks at what happens when all component nodes are set to the lowest and highest positions. The BN should be 
constructed based on the assumption that if all component nodes are in the lowest state, there is a low probability of 
failure and hence low probability of downtime. The opposite is true for the expectation if all component nodes are in 
the highest state. The BN should then give a high probability of failure and hence downtime. 
 
 
First, the failure probability of the production line is examined if all component-level nodes (nodes Vx.x and Px.x) are set 
to their lowest values (in this case, all set to state 0). If all component-level nodes are in a particular state, this is also 
called introductory evidence. That is the obtained proof of whether a node will definitely be in a particular state. Based 
on this, exact inference can be used to calculate the failure probability of the node PL. Variable elimination was used in 
this case. This involves eliminating variables that are not needed to arrive at an outcome for the desired variable [141]. 
If for the component-level nodes (nodes Vx.x and Px.x), see Figure 31, it is assumed that they are all in state 0, this is 
the proof that is introduced to determine what happens to the outcome of node PL. 
It is assumed that if all component-level nodes are in the best state, state 0, then there is a low probability of failure. In 
other words, a low value should come out of the inference for PL(1).  
For this case, subsystem-level nodes (LSx) are eliminated according to BN's variable elimination techniques [141]. 
 
At the point when for all component-level nodes state 0 is entered as evidence then it follows from the inference with 
the BN that: 
 
PL(0) = 0.8741 
PL(1) = 0.1259 
 
Thus, there is 12.6% probability of failure of the production line at this time, given that all component-level nodes are in 
the lowest state. This corresponds to the assumption given earlier that there is a low probability of failure of the 
production line if all components are in a healthy state. 
 
It was then assumed that if all component-level nodes are in the worst state, state 1, then there is a high probability of 
failure of the PL node. In other words, the value of PL(1) must be high.  
If all component-level nodes (nodes Vx.x and Px.x) are in the worst state (state 1), then the output of the BN with 
inference is: 
 
PL(0) = 0.0123 
PL(1) = 0.9877 
 
This shows that the probability of failure of the production line is 98.8% at the time when all component-level nodes are 
in the worst condition. This matches the earlier assumption. The failure probability of the production line increases 
dramatically the moment all components are in a bad state. 
 
If more data becomes available for the looptijd of the valves, the logistic function for each valve has to be adjusted. 
This is because the logistic function, parameter m, see Chapter 4.1.2, is based on the average looptijd in the historical 
data. As a result, the CPTs of the VX.X nodes will change.  
Currently, theoretical data from the pumps are used, but when data from sensors at the pumps become available, the 
BN has to be validated again. 
 

5.5.3. Verification conclusion 
All in all, it can be concluded that based on the verification in several areas, the BN meets the specifications and 
descriptions described earlier. The first verification looked at definition of the nodes and the relationships between 
them. This showed that the BN created in PGMPY corresponds to the BN as stated in Chapter 5.2. All nodes are 
present, have a CPT and the interrelationships are in order. Next, sensitivity analysis was used to see which LT nodes 
from line segment 3 have the least impact on the outcomes of the PL node. This was done because there are 
limitations in PGMPY for the number of evidence values that can be entered to perform inference. This showed that 
there are a number of combinations of different LT nodes that have little impact on the outcomes for the PL nodes. In 
further use of the BN, one can choose between these combinations which LT nodes are not assigned evidence. 
Furthermore, it has been examined whether the BN responds as expected. For this, the component-level nodes 
(nodes Vx.x and Px.x), see Figure 31, were first set to the best state, state 0. The BN works properly if a low probability 
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of failure for the production line then comes out of the inference. In other words, a low value for the PL(1). The 
inference shows that this is indeed the case. At the time when all component-level nodes are in the healthy state, it 
follows from the inference that PL(1)=0.1259. Thus, there is a low probability of failure of the production line. 
Next, the scenario where all component-level nodes are in the worst state, state 1, was considered. The BN works 
properly if, in this case, a high value comes out of the inference for the PL(1). After entering the evidence and 
performing inference, it follows that: PL(1)=0.9877. This establishes that the BN is verified and that it works as 
previously described and specified. 
 

5.6 Conclusion 
This chapter answers the sub-research question: What are the steps to develop and verify the method of the model? 
In order to create the BN, it is first necessary to determine which nodes to include and the relationships between them. 
In this research, there should be nodes representing the parameters that affect the failure probability of the valves, in 
this research the looptijd (LTVx.x), and pumps, in this research the cavitation (GPx.x) and BEP (BPx.x). There must also be 
nodes to represent the valves (Vx.x) and pumps (Px.x) in the production line. The production line in this research is 
divided into five different line segments. So there should be nodes representing the line segments (LSX). Finally, there 
should be a node (PL) representing the probability of failure of the entire production line. After that, all the different 
probabilities and CPTs need to be set up for the BN. All nodes and probabilities are then programmed in Python using 
the PGMPY package. This makes it possible to perform forward inferences and determine whether the BN satisfies the 
previously described functionalities. The BN is then subjected to some verification to check if the BN is then still 
satisfactory. Now that all this has been done, it is possible to move on to determining the BN performance. 
The BN forms the basis of the final model. However, some other steps are needed to arrive at a complete model with 
which to determine whether reliability improves. In the final model MTBF will also be used. In Chapter 6 a more 
detailed explanation will be given about the complete model, the role of the BN and how to determine whether the 
reliability improves. 
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6. Model performance 
 
In this chapter the model, with BN, and the sub-research question: In what way is the implementation of the model 
contributing to the reliability of the production line?, will be discussed in more detail. 
As mentioned earlier, the BN is part of the model. The model contains more functionalities that can ultimately be used 
to determine whether maintenance is needed or not.  
To determine the contribution of the model to improving production line reliability, the definition of reliability is first 
considered. Then some KPIs are set up to test the influence of the model on reliability compared to the situation if the 
model were not used. Following this, the flowchart of the model, with the BN, is discussed and also some assumptions 
made. 
 

6.1 Reliability 
It is important to establish the definition of reliability for this research so that this can be used to determine what the 
model contributes to improving reliability. In this research, the following definition for reliability is used: ''The ability of a 
system or component to perform its required functions under stated conditions for a specified period of time.'' [142]. 
 
The reliability of the line and its components is linked to the duration during which it can perform its function correctly 
[143]. In equation form, reliability R(t) is given as [144] Eq. 6.1. 
 

𝑅(𝑡) = 𝑒−𝜆𝑡 
Eq. 6.1 

λ  failure rate 
t  time 

 
The failure rate can be determined using the mean time between failure (MTBF) [144], see Eq. 6.2. 

𝑀𝑇𝐵𝐹 =
1

𝜆
 

Eq. 6.2 
λ  failure rate 

 
This is the time between failures. It is possible to determine this both at component level and system level. 
 
The probability of failure of a system can be linked to reliability with Eq. 6.3. 
 

𝑅(𝑡) = 1 − 𝐹(𝑡) 
Eq. 6.3 

 
Here, F(t) is the formula for the cumulative failure probability [143]. 
 
From the above equations and the definition of reliability, it can be inferred that reliability improves when a component 
can perform its function correctly for longer. In other words, if the MTBF improves, reliability also improves. By 
performing timely maintenance, it is possible to improve component reliability. Performing the maintenance ensures 
that the component does not have the opportunity to fail. This increases the time between failures. Looking at Eq. 6.1, 
this indicates that component reliability improves. Implicitly, this will also improve the reliability of the line [145]. 
 
To achieve higher reliability within a certain time interval, it is necessary to look at how failures can be predicted and 
prevented [146]. Predicting and preventing failures improves reliability as the MTBF becomes longer. Improved 
reliability results in fewer unplanned downtimes and lower maintenance costs [147].  
Implicitly, it is indicated that predicting failures allows timely intervention and leads to fewer unplanned downtimes and 
lower maintenance costs. This is consistent with a predictive maintenance strategy, see Chapter 3.2. 
 
This research looks at how a predictive maintenance strategy can help improve the reliability of a soft drink production 
line. For this purpose, a model was created that can be used to determine the condition of the components in the 
production line and the condition of the entire production line. 
To determine how a predictive maintenance strategy improves reliability, it is compared with the current corrective 
maintenance strategy. According to Barringer [147], increased reliability results in fewer unplanned downtimes and 
lower maintenance costs. For this research, KPIs are used to determine what the improvement is with the PdM versus 
the corrective maintenance strategy. 
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6.2 Key Performance Indicators 
In order to determine what the reliability of the line is and how it changes when a different maintenance strategy is 
applied, a Key Performance Indicator (KPI) for reliability has to be identified. A KPI is defined as: ''the critical (key) 
quantifiable indicator(s) of progress towards an intended result.'' [148].  
 

6.2.1 Maintenance downtime index 
The first KPI that will be used is the Maintenance Downtime Index (MDI) [149]. This is the ratio between the number of 
hours of downtime used for scheduled maintenance and the total number of hours of downtime, see Eq. 6.4. 
 

𝑀𝐷𝐼 =
𝐷𝑇 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝐷𝑇 ℎ𝑜𝑢𝑟𝑠
=

𝐷𝑇 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 + 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝐷𝑇 ℎ𝑜𝑢𝑟𝑠
 

 
Eq. 6.4 

This KPI provides insight into how many hours of the total downtime (DT) are used for planned maintenance. From 
this, it can be deduced how many hours of the total DT were used for unscheduled maintenance. 
The lower the MDI, the more hours go into unscheduled maintenance [149]. 
 
If components receive more frequent maintenance at scheduled maintenance times, this benefits the MTBF. As a 
result, a component will be able to perform its function for longer and the MTBF increases. Implicitly, a higher MDI is 
an indication of improved reliability and fewer unplanned downtimes.  
 

6.2.2 Cost key performance indicators 
The second, third and fourth KPIs look at costs. According to Peng et al [150], reliability and maintenance costs are 
linked, see Figure 39. 
 

 
 
If a component reaches the end of its service life, reliability drops and maintenance costs rise [150] [151]. 
 
Furthermore, it is known that there are differences between the maintenance costs of different maintenance strategies 
[152], see Figure 40. 

 
 
 
 

Figure 39: Reliability and maintenance costs [150] 

Figure 40: Costs for different maintenance strategies [152] 
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In this research, maintenance costs and reliability are linked, see Figure 39. Maintenance costs are lowest when 
maintenance is performed just before the end of a component's lifetime. Figure 40 shows that the lowest maintenance 
costs are observed when predictive maintenance is correctly used. Predicting when maintenance is needed can 
improve the reliability of a component. This is because a component then receives maintenance at the right time, 
increasing the mean time between failure. The MTBF is linked to reliability, see Eq. 6.1 and Eq. 6.2. 
All in all, it can be observed that if there are low total maintenance costs that this indicates that components have 
received maintenance at the right time. In this research, this indicates that the reliability of the components is 
increasing. 
 
A brief overview of the costs considered in this research will be given for each maintenance strategy. 
 

6.2.2.1 Corrective maintenance costs 
For corrective maintenance, the costs are made up of replacement cost of (parts of) component(s), labour cost and 
cost of production loss [153]. 
The replacement cost is made up of the number of components and the cost per component, see Eq. 6.5. A 
component consists of parts. As an example, a valve has at least a stem or disc and an O-ring. Pumps, for example, 
have an impeller and bearings. If too many parts of a component are broken, then a choice can be made to replace 
the entire component (valve or pump). 
 

𝐶𝑅 = ∑(𝑃𝑖 ∗ 𝐶𝑖)

𝑛

𝑖=1

 

 
Eq. 6.5 

i  stands for unique parts/components. 
Pi  represents the number of part or component i to be replaced. 
Ci is the price of the part or component i, in €.  
CR  is the total cost of replacing part(s) or component(s), in €. 

 
The cost for the man-hours required consists of the the number of hours worked (Hj) times the cost per hour for wages 
(Sj). A summation sign is used in Eq. 6.6 because multiple mechanics may be needed who may be paid different 
wages. 
 

𝐶𝐿 = ∑(𝑆𝑗 ∗ 𝐻𝑗)

𝑛

𝑗=1

 

Eq. 6.6 
 j is the number of mechanics. 
Sj  is the hourly wage of mechanic j, in €/Hr. 
Hj  is the number of hours mechanic j worked, in Hr. 
CL  is the total wage cost, in €. 

 
Finally, there is the cost of production loss, Eq. 6.7. This consists of two types of cost. The first kind are costs incurred 
because the batch has to be rejected. The second kind is the cost of production loss. The cost of rejecting the batch 
depends on how much soft drink is left in the line/tank and should no longer be used (according to food and 
commodity authority rules). The cost of production loss is the number of hours the line cannot be used times the loss 
in revenue per hour. This calculates the time the line is out of use for both repair and cleaning. 
 

𝐶𝐿𝑃 = (𝐵 ∗ 𝐶𝐵) + (𝐿𝑃𝐻 ∗ 𝐶𝐿𝑃𝐻) 
Eq. 6.7 

b  is the number of litres to be discarded from the current production batch, in L.  
CB are the costs involved, in €/L. 
LPH  are the number of production loss hours, in Hr. 
CLPH  are the average cost per hour of production loss, in €/Hr. 
CLP  are the cost of lost production, in €. 

 
This gives the overall equation for the cost of corrective maintenance (CCorr), see Eq. 6.8. 
 

𝐶𝐶𝑜𝑟𝑟 = 𝐶𝑅 + 𝐶𝐿 + 𝐶𝐿𝑃 
Eq. 6.8 

6.2.2.2 Preventive maintenance costs 
For preventive maintenance, costs can be split into different cost items [153], Eq. 6.9. There are the costs of corrective 
maintenance the moment a component does fail earlier than planned. There are also the costs of replacing a 
component as scheduled. 



       

2023.MME.8809     56 

 

𝐶𝑝𝑟𝑒𝑣 = 𝐶𝐶𝑜𝑟𝑟 + 𝐶𝑃𝑟𝑒𝑣,𝑅 + 𝐶𝑃𝑟𝑒𝑣,𝐿 

Eq. 6.9 
CPrev,R is the cost of replacing one or more parts or component(s) based on a defined schedule. This consists of the 
cost per part or component times the number, see Eq. 6.10. 

𝐶𝑃𝑟𝑒𝑣,𝑅 = ∑(𝑃𝑙 ∗ 𝐶𝑙)

𝑛

𝑙=1

 

Eq. 6.10 
l  represents the number of unique parts or components to be replaced. 
Pl  are the parts or components l to be replaced. 
Cl  are the cost per part or component l, in €. 
CPrev,R  are the total replacement cost for preventive maintenance, in €. 

 
Besides the cost of the parts or components, there are also costs for the mechanics who have to carry out the 
maintenance. This consists of the wages per mechanic and the number of hours they worked, see Eq. 6.11. 
 

𝐶𝑃𝑟𝑒𝑣,𝐿 = ∑ (𝑆𝑚 ∗ 𝐻𝑚)

𝑛

𝑚=1

 

Eq. 6.11 
m  is the number of mechanics. 
Sm  is the hourly wage of mechanic m, in €/Hr. 
Hm  is the number of hours mechanic m worked, in Hr. 
CPrev,L  is the total wage cost for preventive maintenance, in €. 

 
 
For preventive maintenance, this research assumes that maintenance is carried out at times when the line is not in 
use. As a result, there is no loss of production hours. 
 

6.2.2.3 Predictive maintenance costs 
For predictive maintenance, the costs can be made up of costs for inspection and replacing components that are at the 
end of their useful life according to condition monitoring, Eq. 6.12 [153]. 
 

𝐶𝑃𝑑𝑀 = 𝐶𝑖𝑛𝑠𝑝 + 𝐶𝐶𝑅 + 𝐶𝐿𝑅 

Eq. 6.12 
 
In this, Cinsp is the cost of the additional checks to be carried out. This can be represented by the Eq. 6.13. 
 

𝐶𝑖𝑛𝑠𝑝 = ∑(𝐼𝐻𝑞 ∗ 𝐶𝐼𝑞)

𝑛

𝑞=1

 

Eq. 6.13 
q  is the number of mechanics. 
IHq  is the number of hours inspections are done by mechanic q, in Hr. 
CIq  is the labour cost of mechanic q, in €/Hr. 
Cinsp  is the total cost incurred for inspections, in €. 

 
CCR are the costs incurred for replacing the components or parts that are due for replacement according to condition 
monitoring. This can be determined using Eq. 6.14: 
 

𝐶𝐶𝑅 = ∑(𝑃𝑠 ∗ 𝐶𝑠)

𝑛

𝑠=1

 

Eq. 6.14 
s  is the number of unique parts or components. 
Ps  is the number of parts or component s to be replaced based on condition monitoring. 
Cs  is the price per part or component s to be replaced, in €. 
CCR  is the total cost of replacing part(s) or component(s), in €. 

 
The cost of man-hours required consists of the number of hours worked (Hr) times the cost per hour for wages (Sr). A 
summation sign, in Eq. 6.15, is used because multiple mechanics may be needed who may be paid different wages. 
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𝐶𝐿𝑅 = ∑(𝑆𝑟 ∗ 𝐻𝑟)

𝑛

𝑟=1

 

 
r  is the number of mechanics.        Eq. 6.15 
Sr  is the hourly wage of mechanic r, in €/Hr. 
Hr  is the number of hours worked by mechanic r, in Hr. 
CLR  is the total wage cost, in €. 

 
6.2.2.4 Cost KPIs 
From the above, the following KPIs can be derived based on the maintenance standard EN15341 [154]. For the 
second KPI, Eq. 6.16, this research looks at the ratio between the cost of corrective maintenance to the total 
maintenance cost. 
 

𝐸15 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
∗ 100 

Eq. 6.16 
 
 
The third KPI, Eq. 6.17, looks at the cost of preventive maintenance relative to total maintenance costs. 
 

𝐸16 =
𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
∗ 100 

Eq. 6.17 
 
The fourth KPI, Eq. 6.18, looks at the cost of condition-based maintenance costs relative to total maintenance costs. In 
this research, condition-based maintenance costs are assumed to be the same as predictive maintenance costs. 
 

𝐸17 =
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
∗ 100 

 
Eq. 6.18 

In this research, the total maintenance cost is determined by adding the corrective, preventive and predictive 
maintenance costs. 
 
It is assumed in this research that the reliability of the components, and hence the reliability of the production line, 
increases at the time when there are lower total maintenance costs in the situation where the model is used. In 
addition, it should be noted that the cost item for predictive maintenance is higher in the case where the model is used. 
 

6.3 Overview of the model 
Before looking at a comparison between the current situation and the situation where the predictive maintenance 
model is used, there are some steps that need to be done. 
The model consists of a part that works based on the method chosen earlier in Chapter 4.2, namely the BN. In 
addition, there is another part of the model that works with the MTBF. Both parts are needed to eventually use the 
model. First, the BN used in the model will be looked at. Then the use of the MTBF part will be covered. The overall 
model is shown with a flow chart in Chapter 6.3.4. 
 

6.3.1 BN 
The BN is first used to determine what the outputs are for the PL and LS nodes based on historical data. This can be 
used to determine whether clear trends are visible. As input, the values are used from the process data. Next, forward 
inference can be used to determine what the outputs are based on the given input evidence. 
 
This shows that there are already indications of potential problems about 2 hours in advance. By determining the 
values of both PL and LS nodes associated with the indications on failure and the failure itself, this can be used later 
for prediction. Table 6.1 shows the values of PL and the LS nodes at which there is an indication that something is 
going to fail soon and the value at which something might fail. So this does not necessarily mean that something will 
fail immediately, but there is that chance. 
 

 PL(1) LS1(1) LS2(1) LS3(1) LS4(1) LS5(1) 

Warning 0.6025 0.5073 0.5270 0.5799 0.5111 0.5421 

Potential failure 0.6031 0.5167 0.5327 0.5828 0.5115 0.5485 

 

Table 6.1: Warning and potential failure values of PL and LS nodes 
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These values were arrived at by performing inference with evidence values. For this, 1 node from the LS was set to 
the worst state each time and the other nodes were all set to the state that occurs most often in the historical process 
data. 
 

6.3.2 MTBF 
The historical process data was also used to determine the MTBF of the various valves. For the pumps it is assumed 
that, based on the manufacturers data, the pump requires maintenance once a year on average. 
Eq. 6.19 is used to determine the MTBF for the valves and pumps [155]. 
 

𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑢𝑠𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 

Eq. 6.19 
 
For total time in use, the number of hours the line was used to produce plus the number of hours the line was cleaned 
has been chosen. See Appendix I: Table I.1 for the MTBF for every component. 
 
To determine how far into its life a component is, a piece of code has been written. This can be used to track how 
many hours are left of the MTBF of each individual component. 
It is assumed that there is a critical zone of 2% of the MTBF. As soon as a component enters the 2% zone then a 
signal is returned with the time remaining. 
 

6.3.3 Cost analysis 
It is assumed that the average cost for the parts of a valve is €160.-. Once a valve needs maintenance then a sum of 
€160.- is charged. For pumps, it is assumed that the average cost for parts is €1,000.-. Furthermore, it is assumed that 
at least two mechanics are always needed to carry out the repairs. If several components need maintenance at the 
same time, then two mechanics are charged extra per component. The idea behind this is that this allows for the most 
efficient work possible. In this research, the hourly wage of a mechanic was set at €75,- per hour. Then there is the 
cost of flushing away the soft drinks in case of an unplanned downtime. As no data on this is available, it is assumed in 
this research that this is a fixed amount of €1,000.-. Table 6.2 shows the summary of all costs. 
 
 

 

     [€] 

Repair maintenance per valve 160,- 

Repair maintenance per pump 1000,- 

Wages per hour per mechanic 75,- 

Rinse away soft drinks 1000,- 

 
 
Since the service life of a valve and pump is between 10 and 20 years [33] [34], it is assumed that in the time frame 
considered in this research, only repairs are done and not complete replacements. 
 
Furthermore, it is assumed that inspecting a valve takes 30 minutes on average. Repairing a valve on average 1 hour. 
Inspecting a pump averages 1 hour and repairing a pump averages 2 hours. Inspecting a valve requires 1 mechanics 
and inspecting a pump requires 2 mechanics. Only labour costs are charged for inspections where no parts are 
replaced. See Table 6.3 for the overview. 
 
 
 

 Time [hr] Number of mechanics 

Inspection of valve 0.5 1 

Inspection of pump 1 2 

Repair maintenance of valve 1 2 

Repair maintenance of pump 2 2 

 
 
 
 
 
 
 

Table 6.2: Summary of all the costs 

Table 6.3: Summary of the hours for inspection and maintenance 
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6.3.4 Flow chart of the model 
For the PdM model, the previously discovered times between processes are used. Indeed, historical data has shown 
that there is often a period of time between processes. Using this time to carry out inspections and minor maintenance 
can potentially reduce the number of unplanned downtimes. 
 
It is assumed that the different types of soft drinks that have crossed the line in the past are the same as those that 
should cross the line in the near future. As a result, the process data can be used to create a dataset for the PdM 
model. 
 
Pump dataset 
To arrive at a dataset for the pumps, assumptions were made about the type of product that crossed the line. These 
include whether they are, for example, sugary soft drinks or just flavoured water. In addition, assumptions were made 
about the temperatures and speeds at which these products crossed the line. This applies to both the production 
processes and the CIP processes. As indicated earlier in Chapter 4.1.3, Eq. 4.2, the occurrence of cavitation depends 
on the velocity, density and vapour pressure of the liquid passing through the pumps. Chemically, this can be further 
derived as shown in Appendix C. the NPSHR was determined based on assumptions about the pump curves, as 
explained in Chapter 4.1.3. Based on this and the pump characteristics, a random dataset was then created for the 
pumps using the Scikit package in Python. This took into account the expectations in which states the pumps will 
operate most often. 
 
To show how the BN method and the MTBF are used in the model to decide when maintenance should be carried out, 
a flow chart has been created, see Figure 41. 
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Figure 41: Flow chart 
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The flow chart distinguishes between the BN section (sections framed in light blue), the MTBF section (sections 
framed in purple) and the general section (sections framed in pink). 
 
Starting from start, it is first necessary to determine how long and which processes are sent across the line based on 
the schedule. Then, based on the historical process data, a dataset can be generated that matches the data for the 
future process. (See previous assumption about the future processes matching the historical processes). 
The dataset with how long and which process are used to determine the MTBF (the purple part). The dataset created 
is used in the BN (the blue part).  
 
MTBF section (purple) 
The time to planned downtime should be entered in the code for MTBF. The code uses a time ticker to determine how 
long each component has been in use. Once the time is added of future production then the code checks if there are 
any components that are coming or are within 2% of end of life. If not then from this section there is no indication that 
any components will fail until the next scheduled downtime. If there are components within the 2% margin, then it is 
necessary to determine which components they are and the remaining life of those components. 
As output data from this section, a list of the critical components and their expected remaining life is given. 
 
BN section (blue) 
The dataset created from the historical data contains values for LT, G and B nodes for every 15 minutes. This was 
chosen because the analysis showed that valves are often open or closed for longer periods of time. No data was 
available for the pumps, here it is assumed that little changes in 15 minutes. 
The data is used as evidence to then do inferences to determine the output values for the PL and LS nodes. 
As indicated earlier, values have been identified for the PL and LS nodes that indicate whether a potential failure is 
approaching. Hence, after doing the inferences, it is necessary to check whether the values of the PL node fall within 
safe region. In this research  the P  node should have as output a value P (1)≤ 0.6025. Anything above this may 
indicate that a component is failing in the short term. 
If the value of PL(1) exceeds 0.6025, then the output values of LS nodes should be looked at. For these nodes too, 
there are indicator values that indicate that a there may be a component failure in the near future. See Table 6.1 for 
the values of LS nodes at the warnings. 
 
If all LS values are also within the safe range, there is no indication from the BN that a potential failure will occur during 
the process. It is then assumed that production can be carried out without any problems. 
 
If there are alarming LS values, it must be determined whether it is a warning value or a value that indicates that more 
is already going on. In the case that it is a warning value, then it must be taken into account that a potential failure may 
occur in the next two hours. The component(s) responsible for this must then be determined. Then the time until the 
next scheduled downtime has to be considered. As output data, it is given which components have a critical value and 
how much time is left until the next stop. 
 
If the value of the LS nodes already exceeds the warning value(s) then it is only necessary to determine which 
component(s) are causing this. This is collected and used as output data. 
 
General section (pink part at the bottom) 
A list is made of the critical components based on the output data, along with how much time is left from MTBF and 
from the BN. It then needs to be determined whether there is enough time to complete production without unplanned 
downtime or not. In case there is enough time left then production can be completed before maintenance is carried 
out. It can then be calculated how much time is needed for maintenance and then what the cost will be. 
If there is not enough time to fully complete production then maintenance/inspections must be carried out before any 
production can be started at all. Then it has to be redetermined what the schedule is then and whether more 
components need maintenance. Finally, again the time for maintenance and the costs must be calculated. 
Once maintenance has been performed on a component then the usage time must be reset in the MTBF code.  
 
To calculate costs, the formulas given earlier for the KPIs in Chapter 6.2 can be used. 
 
A choice can be made to carry out an inspection and decide on the basis of this whether a component needs 
maintenance. If the time a component is used is longer than the MTBF then after inspection (i.e. when no maintenance 
is required), the usage time is not reset but counts up until maintenance is required. 
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6.3.4.1 Preparations before use of the model 
Before the model can be used, planning needs to be determined. For this research, a synthetic schedule was created 
based on historical production schedules. This determines how long each process takes and when there are planned 
downtimes. This takes into account the findings from the data analysis of Chapter 4.1. In short, it amounts to about 
5,000 hours of line operation. It also takes into account the two stop weeks per year when preventive maintenance can 
be performed.  
 
Once the schedule is known, the data needed for the input of the BN can be considered. Based on the processes 
scheduled, a dataset can be created using the historical process data. Here, the values to be entered as evidence are 
determined for each 15 minutes.  
In the case of pump data, no historical data is available. To solve this, it was decided to create a random dataset. This 
is done based on previous knowledge that a pump is most likely to be in state 3 or 4. The dataset will be based on this 
with some deviations to the other states. 
 
In the MTBF part, all that remains to be determined is how much time of life the component is at before the schedule 
kicks in. In this research, it was chosen to set these start times to random, the values used for this research can be 
found in Appendix I: Table I.1.  
 

6.3.4.2 Verification of the dataset 
Looking at the synthetic schedule, it can be seen that according to this schedule, the line will be in operation for 5059 
hours. Of this, 4746.5 hours are for production and 312.5 hours for cleaning. This is in line with the hours determined 
earlier based on the historical schedules. Further, the synthetic schedule includes 2 stop weeks. This also corresponds 
to the historical schedules. In total, there are 518.5 hours for scheduled downtime. This includes the 200 hours 
counted for the stop weeks (100 hours per stop week).  
In addition, the number of failures of each component can be looked at. Based on historical data, it is known of each 
component how often they fail per year. 
 
If this is compared with the number of failures per component from the synthetic dataset, it can be seen that it almost 
matches. See Appendix I Table I.1 column name: ''Number of failures in synthetic dataset''. It should be noted that a 
number of components receive maintenance during stop weeks. 
 

6.3.4.3 Assumptions 
There are also some assumptions that are made. These are listed below. 
 
Assumption 6.1: 
That x number of hours of maintenance can be done by bringing forward a scheduled downtime. 
This could be because there would be a planned downtime after the specific process in which the line stopped. By 
bringing it forward, maintenance can then be done without delay. 
 
Assumption 6.2: 
Planned downtime can be used to perform maintenance. 
 
Assumption 6.3: 
If the planned downtime time is too short for full maintenance then it is assumed that the remaining time needed for 
maintenance is counted as unplanned downtime time. 
 
Assumption 6.4: 
It is assumed that all parts for the valves and pumps are always in stock. Therefore, there is no waiting time for the 
part to be replaced. As a result, there is no delay in production planning caused by waiting for parts. 
Now the model is ready to be used.  
 
 
Using the synthetic dataset, the impact of the model can be determined. This is done by using the dataset for the case 
where the model is used and the case where the model is not used. 
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6.4 Conclusion 
This chapter looked at the sub-research question: In what way is the implementation of the model contributing to the 
reliability of the production line? 
 
Reliability in this research is related to the time a component can perform its expected function under known 
conditions. To determine how reliability can improve using the model, working with a BN and with the MTBF, some 
KPIs have been established. Using a synthetic dataset, two situations can be compared with the KPIs. In the first 
situation, the model will not be used, this corresponds to the current situation where corrective and a small part of 
preventive maintenance is used. The second situation uses the model as described in the flow chart of Figure 41.  
The first KPI relates to the number of hours of downtime used to perform planned maintenance compared to the total 
number of hours of downtime, this is defined as the MDI. The moment more components receive maintenance during 
planned downtime hours then this ensures that fewer hours of unplanned downtime are needed. Performing 
maintenance on time ensures that components can perform their required function for longer. This in turn is related to 
reliability, which is all about being able to perform the requested function for as long as possible without failure. MDI is 
therefore seen in this research as an indicator that there are fewer unplanned downtime hours. 
 
KPI two, three and four are cost-related. These KPIs provide insight into the percentage of corrective, preventive and 
predictive maintenance costs related to the total maintenance costs. These KPIs can be used to determine how the 
model affects different cost items. As stated earlier in Chapter 6.2.2, maintenance costs and reliability are linked. 
Lower total maitenance costs and highest percentage of predictive maintenance costs would indicate that reliability is 
increasing in this research.  
 
A flow chart is then used to explain how the model works and what preparations and assumptions need to be made. 
Furthermore, how a synthetic dataset was created based on historical production schedules was discussed in detail. 
Chapter 7 discusses the results obtained and the comparison between the situation with and without the model. 
Chapter 7 will therefore continue on the sub-research question of Chapter 6, but with the results. 
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7. Results 
 
This chapter continues with the sub-research question: In what way is the implementation of the model contributing to 
the reliability of the production line? 
In Chapter 6.2 and Chapter 6.3, the KPIs and the flow chart were explained. In this chapter the difference between 
using and not using the model is examined. First, the results of not using the model are presented. Then the results 
when the model is used. Next, a comparison is made between using and not using the model. The chapter concludes 
with the results arising from the KPIs defined earlier. 
 
To determine the impact of the predictive maintenance strategy compared to the current corrective maintenance, some 
KPIs were set up in Chapter 6.2. To calculate these, results are needed. This relates to the number of hours of 
downtime, both planned and unplanned, as well as for calculating costs. 
This will be calculated on an annual basis, as the synthetic dataset is for one year. See Appendix J for a part of the 
synthetic production planning. 
 
 

7.1 Without model 
The moment the model is not used and corrective maintenance is used, the following results are obtained. First, the 
overview of when there was failure of one or more components in the line. This is plotted against the number of hours 
the line is in use. Figure 42 shows the timeline of failures. 

 
 
In Figure 42, the pink crosses indicate the times when a component failed. The green crosses indicate preventive 
maintenance performed during the stop weeks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                

            

                             

           
           

           
           

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

Figure 42: Overview of failure and maintenance without model 
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Furthermore, there are 38 unscheduled downtimes. 
14 components receive maintenance during stop weeks.  
A total of 57 hours of maintenance were carried out. Of these, 22 hours were performed during scheduled downtime 
hours. 14 hours of this during stop weeks during which preventive maintenance is performed and 8 hours of 
maintenance performed during a planned stop, see Assumption 6.2. The remaining 35 hours of maintenance were 
performed during unscheduled downtimes, see Figure 43 for the distribution of the maintenance hours. 
 

 
 
 
The cost analysis shows that the total maintenance cost comes to €49 120.-. This consists of three cost items, see 
Table 7.1 for the cost items and associated amounts. 
 
 

Cost of spare parts  €    12,720.00  

Salary  €      8,400.00  

Cost of unplanned DT  €    28,000.00  

Total  €     9,120.00  

 
 
 
 
 
 

7.2 With model 
The model has been run for the entire synthetic schedule. Based on this, it can be seen that indeed, there is often an 
indication from the PL and LS values an hour or 2 before failure. In Figure 44 and Figure 45, this is illustrated. 
 
 
 

14%

25%

61%

Maintenance hours
Corrective maintenance (57 hours total)

Scheduled for change

Scheduled for preventive
maintenance

Unscheduled

Figure 43: Pie chart of maintenance hours, without model  

Table 7.1: Maintenance costs without model 
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Figure 44 and Figure 45 shows that in most cases a warning value was detected before there was a failure. However, 
on the dark blue markings, there was no warning but still a failure. Corrective maintenance was therefore carried out 
here. 
 
 
Furthermore, an overview was given of how much time of the MTBF had elapsed at the time maintenance was 
performed. This overview can be found in Figure 46. It is in order of when which component had maintenance. 
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The orange/ yellow bars indicate that preventive maintenance was performed on that component and then the time is 
use was reset. The pink bars indicate that a component had an inspection at that point only because 75% of the MTBF 
had elapsed at the time of the scheduled stop week. 
The bright blue bars indicate the time of components that have had corrective maintenance. 
 
Furthermore, using the model gives the following results. 
There are 2 unplanned downtimes. 
14 components receive maintenance during stop weeks. The rest of the maintenance takes place during scheduled 
downtime hours as much as possible, otherwise Assumption 6.2 and Assumption 6.3 apply. 
A total of 57 hours and 50 minutes of maintenance will be performed. This is 37 hours during scheduled downtimes. 14 
hours during stop weeks during which preventive maintenance is performed and 6 hours and 50 minutes during 
unplanned downtimes, see Figure 47. 
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Figure 46: Overview of time used by every component on moment of maintenance  
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The cost analysis shows that the total maintenance cost comes to €23 120.-. This consists of three cost items, see 
Table 7.2 for the cost items and associated amounts. 
 
 
 
 
 
 
 
 
 
 

7.3 Comparison 
Comparing the use or non-use of the model shows that almost the same number of hours were used for maintenance. 
There is a big difference between the number of hours used for maintenance during unplanned downtimes. If the 
model is not used, 35 hours of unplanned downtimes are needed for maintenance, compared to 6:50 hours if the 
model is used. The difference is clearly visible in Figure 48. 
 

 
 
When looking at costs, component and labour cost items are the same in both cases. The difference is in the costs 
that cause unplanned downtimes, see Figure 49. 
 
 

Cost of spare parts € 12,720.00 

Salary €   8,400.00 

Cost of unplanned DT €   2,000.00 

Total €   ,120.00 
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Figure 47: Pie chart of maintenance hours with model 

Table 7.2: Maintenance costs with model 

Figure 48: Comparison of maintenance hours with and without model 
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Instead of looking at the specific cost items, as in Figure 49, it is possible to look at how costs relate to different 
maintenance strategies. For this, maintenance costs are split into costs for corrective maintenance, preventive 
maintenance and predictive maintenance. This then gives the result as visible in Figure 50. The costs are then for 
replacement parts, wages and unplanned downtime costs, but divided by the type of maintenance performed. 
 

 
 
Calculating the KPIs further requires the total number of hours of downtimes. This involves adding the number of hours 
of planned downtime to the total number of hours of unplanned downtime. As indicated earlier when validating the 
synthetic data, in this research it is that there are 518:25 hours of planned downtime.  
In the case of not using a model, 35 hours of unplanned downtime should be added to this. The total downtime in the 
case of no model comes to 553:25 hours. 
In case the model is used, 6:50 should be added. This brings the total downtime using the model to 525:15 hours. 
 

7.4 Results KPIs 
The results found earlier can be used when completing the KPIs. 
 

7.4.1 Results MDI KPI 
For the KPI where the MDI is determined, it is important to know how much time of the total downtime was used for 
planned maintenance. Total downtime should be calculated by adding planned downtime to unplanned downtime. 
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€- €      ,   €      ,   €      ,   €      ,   €      ,   €      ,   
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With model

Maintenance costs

Cost of spare parts Salary Cost of unplanned DT

Without model

With model

Without model With model

Corrective maintenance costs €      ,   €     ,   

Preventive maintenance costs €     ,   €     ,   

Predictive maintenance costs €- €      ,   

Maintenance costs

Corrective maintenance costs Preventive maintenance costs Predictive maintenance costs

Figure 49: Comparison of maintenance costs with and without model 

Figure 50: Comparison of type of maintenance costs with and without model 
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Next, the number of hours of the downtimes used for planned maintenance should be determined. After that, Eq. 6.4 
can be entered. This will show the results in Table 7.3. 
 
 

 
The MDI when the model is not used is calculated with Eq. 6.4. Entering the hours here gives: 
 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑑𝑒𝑙 =
22: 00 ℎ𝑜𝑢𝑟𝑠

553: 25 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 3.98% 

 
This can also be done when the model is used. Eq. 6.4 will then be like: 
 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 =
51: 00 ℎ𝑜𝑢𝑟𝑠

525: 15 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 9.71% 

 
Looking at the relationship given earlier, see Chapter 6.2.1, between MDI and reliability, it can be seen that the 
reliability in the case that the model is used is better than when the model is not used. This is due to the fact that the 
number of hours of downtime used to perform planned maintenance in the case the model is used is 29 hours more 
than the situation without the model, see Table 7.3. In addition, the total number of hours of downtime is 28 hours and 
10 minutes less if the model is used. The difference can be seen in Table 7.3 in the number of hours of unscheduled 
maintenance. The results of the MDI show that at the time the model is used, more scheduled downtime hours are 
used to perform maintenance. This results in fewer hours being required for unplanned maintenance and hence fewer 
hours of unplanned DT. Since there are fewer hours for unplanned downtime, it can be concluded that the reliability of 
the production line improves when the model is used compared to the situation when the model is not used. 
 

7.4.2 Results cost KPIs 
Then there are the three KPIs related to costs. For this, the results given earlier can be used from Figure 50. 
Furthermore, it can be extracted from Table 7.1 that the total maintenance cost without model comes down to 
€49,120.-. 
From Table 7.2 it can be e tracted that the total maintenance cost with model comes down to €23,120.-. 
Then, if Eq. 6.16, Eq. 6.17 and Eq. 6.18 are filled in, it gives the results as shown in Table 7.4. 
 
 

KPI Without model With model 

E15 (corrective maintenance) 89.68% 11.33% 

E16 (preventive maintenance) 10.32% 21.93% 

E17 (predictive maintenance) 0.00% 66.74% 

 
Chapter 6.2.2 describes the relationship between reliability and maintenance costs. Building on that, several things 
can be concluded from the results. First, the total maintenance costs are the lowest when using the model. There is a 
difference of €26 000.- in total maintenance costs. Furthermore, it can be seen from Figure 50 that there are no 
predictive maintenance costs in the situation without the model, this is logical as the situation without the model only 
uses preventive and corrective maintenance. It can also be seen from Figure 50 that the preventive maintenance costs 
are the same in both situations. However, because the cost KPIs are divided by the total maintenance costs, this is not 
reflected in Table 7.4 KPI E16. Looking at the relationship between maintenance costs and reliability, in the situation 
where the model is used it can be seen that the low total maintenance costs (Figure 50) and that the highest cost item 
is in predictive maintenance costs, see Table 7.4 E17, contribute to improved reliability. More components receive 
maintenance before they can fail. In addition, the cost item of preventive maintenance (E16, Table 7.4) is lower than 
predictive maintenance (E17, Table 7.4) so it can be observed that few components get maintenance too early. There 

 

Without model 
Time used for 
maintenance 

With model 
Time used for 
maintenance 

Scheduled for change and PdM 318:25:00 8:00:00 318:25:00 37:00:00 

Scheduled for preventive maintenance 200:00:00 14:00:00 200:00:00 14:00:00 

Unscheduled 35:00:00 35:00:00 6:50:00 6:50:00 

Total downtime 553:25:00  525:15:00  

     

Maintenance during planned DT  22:00:00  51:00:00 

MDI  3.98%  9.71% 

Table 7.3: Comparison of maintenance hours with and without model 

Table 7.4: Results cost KPIs 
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is also low corrective maintenance cost percentage (E15, Table 7.4) indicating that only a few components have 
caused unplanned downtime. All this implies that the components get a better MTBF and can perform their function for 
longer, resulting in improved reliability of the production line in case the model is used. 
 
 

7.5 Conclusion 
In this chapter, following on from Chapter 6, the sub-research question : In what way is the implementation of the 
model contributing to the reliability of the production line? has been explored in more detail. 
To obtain the results between using and not using the model, a synthetic dataset was created based on the historical 
production schedules. Next, the results were examined to see what the results would be if the model was not used. 
This showed, for the results without the model, that 57 hours of maintenance were performed, 61% of which caused 
unscheduled downtime hours and cost €49 120.-. If the model is used then a total of 57 hours and 50 minutes of 
maintenance was performed, of which 12% caused unplanned downtime hours. The maintenance cost comes out to 
€23 120.-. During the comparison, it emerged that the difference is made in the unplanned maintenance costs. 
After that, results of the KPIs were looked at. This shows that the MDI KPI is better if the model is used. MDIwith model 

comes out at 9.71%, versus MDIwithout model at 3.98%. 
The cost KPIs reveal that there are large differences in the outcomes of E15 and E17. As stated earlier in Chapter 
6.2.1, a higher MDI is a good indication that the reliability of the line is improving. In this case it will mean that the 
model does a good job of improving reliability compared to the situation when the model is not used. 
Looking at costs, Chapter 6.2.2 had stated that an indication of improved reliability is that there are lower total 
maintenance costs and there should be a higher percentage of predicitve maintenance costs. In addition, there should 
be a low percentage of corrective maintenance costs. Looking at total maintenance costs, there is a difference of 
€26 000.- here, see Figure 49. In the situation without the model, the largest cost item is corrective maintenance costs, 
which in this case results in a high percentage for the E15 KPI. In the situation where the model is used, there is a 
clear shift from corrective to predictive maintenance costs. The percentage of corrective maintenance costs (E15 KPI) 
is still only 11.3%, see Table 7.4. The predicitive maintenance cost (E17 KPI) is 66.7%, see Table 7.4. The lower 
maintenance costs and the higher percentage of predictive maintenance costs imply that line reliability improves when 
the model is used.  
In short, in answer to the sub-research question, it can be stated that implementing the model contributes to the 
improvement of reliability because fewer unplanned downtime hours are needed to perform maintenance. In addition, 
in the situation where the model is used, there are lower total maintenance costs and the costs that are there come 
from predicitve maintenance actions. Earlier it had been stated that these are indications that the reliability of the 
components and hence the reliability of the production line is improving. 
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8. Conclusion 
 
This research focused on the main question: 
 

 
How can a predictive maintenance strategy contribute to improving  

the reliability of a soft drink production line? 
 

 
The soft drink production line in this research consists of a collection of valves, pumps, tanks and pipes to mix syrup 
and water. To make this into soft drinks, carbonation is often required. In this research, the focus is on the butterfly 
valves, double seat valves and centrifugal pumps within the production line. These are the components that cause 
many unplanned downtimes to be experienced in a Dutch soft drink factory.  One of the causes of the unplanned 
downtimes can be found in the corrective maintenance strategy, falls under the reactive maintenance strategies, that is 
applied. This involves replacing or repairing components only when they have failed and often caused unplanned 
downtimes. A solution that has emerged in recent years is a predictive maintenance strategy, this falls under proactive 
maintenance strategies. This involves looking at how condition monitoring data and historical data can be used to 
create a model that predicts whether a component needs maintenance or not. There are several methods that can be 
used for this purpose. Based on established criteria for this research, it was determined that a Bayesian Network (BN) 
is the most appropriate method for the model to be developed in this research. The model should provide insight into 
how a predictive maintenance strategy can contribute to improving the reliability of the soft drink production line. 
Reliability in this research is defined as the time a component can perform its requested function under known 
conditions.  
 
The predictive maintenance strategy used for this research was created based on historical data. This created a BN 
that can be used to determine the probability of unplanned production line downtime. In this BN, valves and pumps are 
represented as components in the production line. To determine the condition of the valves, the running time of each 
valve is used. This is coupled with a logistic function that can be used to determine the probability of failure of each 
individual valve. For the pumps, the probability of cavitation is used, which can be determined with the NPSH margin. 
It also looks at what percentage of the best efficiency point (BEP) the centrifugal pumps are operating at. Indeed, this 
can be linked to the failure probability for the pumps. 
 
The production line in the BN, for this research, is divided into five line segments. The looptijd, probability of cavitation 
and at what percentage of BEP are the parameters that indicate the condition of the valves and pumps. This can then 
be compiled into the different line segments. In each line segment, there are some valves and at least 1 pump. Based 
on the conditions of the valves and pumps, the probability of failure of each line segment can be determined. If this is 
known then the probability of failure of the entire production line can be determined. All this is done by entering 
evidence for looptijd, cavitation probability and percentage of BEP. Forward inference can then be used to determine 
the failure probability of the node for the entire production line. 
 
Besides the BN, the mean time between failure (MTBF) is also used in the model. The MTBF is determined based on 
the historical failures of each individual component. The historical production schedule was used as the basis for the 
synthetic production schedule. Then, based on that planning, a synthetic dataset was also created based on the 
historical process data. With these datasets, the flowchart can be followed. For predictive maintenance, the model is 
used to run the synthetic data through the model and flowchart before a process starts. From this, it then follows 
whether maintenance is needed or not. Based on this, the operator can make a decision on whether to start production 
or not, or whether maintenance should be performed first. By using the outcomes based on the flowchart to perform 
timely maintenance, reliability can be improved. To demonstrate this, four key performance indicators (KPIs) are 
looked at and calculated for two situations. The first KPI looks at the ratio of downtime hours used for scheduled 
maintenance to total downtime hours. This KPI is known by the maintenance downtime index (MDI). The second, third 
and fourth KPIs look at the cost of corrective, preventive and predictive maintenance relative to total maintenance 
costs. These KPIs can be qualitatively related to reliability. The higher the MDI the better the reliability of the line. More 
downtime hours are then used for planned maintenance, relative to the total number of downtime hours. For the cost 
KPIs, the reliability of the line improves if there is less cost for corrective maintenance and more for predictive 
maintenance.  
In the first situation, the synthetic datasets are used to determine what happens when the model is not used. This is 
also called the current situation. Here, only the corrective maintenance and preventive maintenance are used, which 
takes place during the scheduled stop weeks. For this, the outcomes for the various KPIs are determined. The second 
situation is when the model is used. With this, a predictive maintenance strategy is then applied. The KPIs are also 
calculated for this. 
After this, the differences between the two situations were examined. What stands out here is that in situation with the 
model, 50 minutes more time is needed to perform maintenance compared to if the model is not used. However, only 
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24% of DT time is needed for unplanned DTs. This contrasts with the situation where the model is not used, where 
61% goes on unplanned DTs. Looking at the first KPI, the MDI, there is a difference of 5.73% in favour of the situation 
where the model is used. This is the first indication that the reliability of the production line improves if the model is 
used, as more hours of total DT are used for planned maintenance.  
Next, the costs were looked at. Here, the first thing that stands out is the difference in total maintenance costs. In the 
situation that the model is not used  the total maintenance costs are €49 120.-. This is €26 000.- more than in the 
situation where the model is used  where the total maintenance costs are €23 120.-. In other words, in the situation 
where the model is used, the total costs are 47% of the total maintenance costs of the situation without the model. 
The gain achieved by the model here can be traced back to the reduction in corrective maintenance costs, the second 
KPI. In addition, in the situation where the model is used, the value of the fourth KPI, namely the proportion of total 
maintenance costs used for predictive maintenance, increases. This KPI points in favour of the situation where the 
model is used. With this, the final indications are in indicating that the reliability of the line is being improved.  
In short, it can be concluded that based on this research, the predictive maintenance strategy contributes to improving 
the reliability of the production line. This is based on that the MDI is better in the case where the model is used 
compared to the situation where the model is not used. In addition, there is a big difference in total maintenance costs 
and cost KPIs pointing in favour of the situation with the model. All this suggests that the number of unplanned DTs 
can be reduced if the model is used. Because of this reduction, it can be qualitatively inferred that the reliability of the 
line improves. 
In short, in answer to the main research question, a model for a predictive maintenance strategy was created in this 
study. A Bayesian Network is one of the methods used in this model. The model is able to determine in advance of a 
production based on the type of product and the duration of the production whether a component in the production line 
could possibly fail. Based on the results from the model, a decision can be made on whether or not to execute 
maintenance. Two situations were compared, one where the model is not used and one where the model is used, to 
determine how the model with the predictive maintenance strategy contributes to improving the reliability of the soft 
drink production line. It emerged in this study that when the model is used, fewer unscheduled maintenance hours are 
required, resulting in fewer unplanned downtime hours. This provides the first indication that the model contributes to 
improving reliability. In addition, total maintenance costs are much lower when the model is used. Furthermore, most 
of the maintenance costs are incurred for predictive maintenance. Thereby, the costs for corrective maintenance have 
decreased tremendously when the model is used, fewer components have needed corrective maintenance. This 
indicates that the reliability of the components and thus the production line improves when the model is used with the 
predictive maintenance strategy. The reduction in unplanned downtime hours and lower maintenance costs reflect this.  
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9. Discussion 
Within this research, an accessible way to increase the reliability of components in a production line based on 
condition monitoring data was investigated. In the specific case of the soft drink industry.  
Based on theory and available data, a Bayesian network was chosen as method for the model in this research. This 
method makes it easy to add nodes if more parameters are needed. Moreover, it gives a graphical representation of 
the system and which nodes affect each other.  
There are other techniques such as an ANN that can give more reliable results. However, more knowledge must then 
be available about the components, influences, behaviour and lifetime. ANN can only be used if there is a large 
dataset to build, validate and verify the model. 
 
Chapter 2.4 mentioned some techniques for monitoring the condition of valves and pumps. During the case study it 
was found that there was not enough data available to use most of these techniques. This resulted in the condition of 
valves now being dependent on only one parameter, namely looptijd. Despite the use of different types of valves, 
mixproof and butterfly valves, it was chosen to approach all valves in the same way in this research. This was done 
with the idea that both types should both open and close, albeit in different ways. 
Even less data was available for the pumps. It was chosen to generate the pump data with a random data generator 
based on theory and the manufacturer's pump curves. As a result, much of the model is based on assumptions. To get 
a more accurate and better picture of the condition of the components in the pipe, more and different parameters need 
to be added to the model. These parameters need to be trained with data collected on the specific line.  
Furthermore, more research needs to be done on the lifetime of the pumps and valves to give an accurate value to 
this. This would give a better understanding of the specific reliability of the components and the production line. 
Maintenance records are also essential. In this research, it was assumed that valves and pumps only receive 
maintenance where parts are replaced. No valve or pump was completely replaced. In addition, it was assumed that 
after performing maintenance, the operating time is restored to 0 and 100% of the MTBF can be used again. However, 
it is not entirely realistic. If a valve or pump only gets certain replacement parts, it is more plausible that there is less 
than 100% of the MTBF left until the next time a part will fail. Although, due to the lack of data on this, the 100% MTBF 
rule after maintenance has been carried out was still used for this research. When more data is available on the failure 
of components and the influence of certain components on the MTBF, this can be adjusted.  
 
For the BN, only the valves and pumps are included in the line through which liquid flows. The valves through which 
gas flows were not included in this research. Moreover, the pipeline section to be analysed was divided into 5 sections. 
It was taken into account that there are at least 1 pump and some valves in each pipe segment. Nevertheless, the 
differences in the number of components are large, this can be clearly seen in line segment 3. Here there are 8 valves 
and 1 pump. Here there are 8 valves and 1 pump. It is therefore difficult to define appropriate prior probabilities for this 
in the CPT of LS3. This is because there are 512 possible combinations of the valves and pump states.  
 
In the BN, all components are assumed to be independent of each other. If V1.1 fails, it does not necessarily mean 
that V1.2 also fails. However, it happens that multiple components fail simultaneously, often caused by water hammer. 
The model currently does not consider interrelationships between the different components and the different line 
segments. 
 
The BN is modelled in Python with the package PGMPY. Here, it is important to define all nodes correctly and to make 
assumptions about the prior probabilities of the nodes. However, this has the consequence that, as mentioned earlier, 
for line segment 3, a very large number of values have to be entered, namely 512. This makes it difficult to check all 
these values.  
The model also has a limitation in the number of values that can be entered as proofs. In this case, 32 evidence values 
can be entered, but in the model for this research, there are 35 nodes for which it is desirable to enter evidence. For 
this research, it was chosen to see which nodes have the least impact on the failure probability of a line. The 3 nodes 
that emerge from this analysis with the least influence are considered nodes for which no evidence is added. This 
affects the overall failure probability given the nodes for which evidence is introduced. 
 
Otherwise, only verification of the BN was done. It was not possible to perform a validation. Validation should be done 
with existing data coming directly from the system. In this study, there was no condition monitoring data available from 
the production line in the case study on the parameters in the BN to do the validation. 
 
To arrive at the results, synthetic datasets are used. The first is the synthetic production planning. This is created 
based on the historical production schedules. For this, it has been assumed that the processes in the past are the 
same processes that should cross the line in the near future. The synthetic process dataset is based on the historical 
process data. Here, the assumption is that the past processes produce almost the same data for the future processes. 
However if a new product or other type of CIP is sent across the line then data has to be collected before it can be 
included in the model. 
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For the pumps, the data were derived from the pump curves and randomized. As more data becomes available, the 
model has to be adjusted to the new values. This is especially true for the pumps, but also for the logistic functions of 
the valves. If the mean changes, the values of k and m become different. This affects the failure probability of the 
valves.  
 
Looking at the results in Chapter 7.1, situation where the model is not used, a number of things stand out. These 
include when comparing the failure moments in Figure 42 with the previously defined synthetic dataset based on the 
MTBF, see Appendix I. As soon as no model is used, there are a number of components that operate longer than the 
MTBF found earlier. This is the case for V3.3, V3.6, V3.7, V4.1, P4.1 and V5.4. The reason for this is that these 
components were given timely MTBF. One reason is that these components received timely maintenance during the 
stop weeks when preventive maintenance was performed. This is consistent with the explanation in Chapter 6.1 that 
reliability increases as the MTBF of components gets longer, in other words as the time between failures of a 
component gets longer.  
However, there are also components that fail more often, such as V3.8. In addition, there are also components that 
continue to fail as often despite performing preventive maintenance. This is the case for components V1.2 and P2.2. 
For these components, preventive maintenance does not improve reliability. If a component subsequently fails despite 
preventive maintenance, double costs arise. First the cost of preventive maintenance and then the cost of corrective 
maintenance. However, this will only show up in the cost KPIs and total maintenance costs. In the MDI, this will have 
no impact. After all, if fewer hours of preventive maintenance had been done, the total number of hours of downtime 
would also have been lower, the percentage remains the same. 
 
When looking at the results in Chapter 7.2, situation where the model does get used, there are by some striking things. 
First of all, it can be seen from Figure 46 that few components complete the entire MTBF time. Most of the 
components receive maintenance earlier. There are some components that could have undergone many more hours 
of production during the stop week when preventive maintenance is performed. Furthermore, Figure 46 shows that 
component V1.2 lasted longer than its MTBF once but caused unplanned downtime as a result. Then again, the latest 
V1.2 shows that maintenance was only performed after the MTBF had expired without causing any unplanned 
downtime. This may be due to the length of productions. In the former case, it could be that the production took a few 
hours too long and the choice was made to risk it, with the result that one time it went well and another time it did not. 
 
Looking at the results of that come from the KPIs, a few things stand out. First of all, there is a difference of 50 minutes 
in the total number of maintenance hours. This is because in the situation where the model is used, some planned DT 
hours were just not long enough to perform the maintenance. The time needed for maintenance outside the scheduled 
DT hours were added to the unscheduled DT hours.  
When looking at the total DT hours for both situations, there is a difference of 28 hours and 10 minutes. The reason for 
this is due to the difference in hours of unscheduled DT.  
The total number of DT hours is important for calculating the MDI. Since there are very many more hours of DT 
scheduled than maintenance, the percentages that come from the MDI calculations are very low. If the MDI calculation 
is approached slightly differently and only the ratio between the number of hours of DT used for planned maintenance 
versus the total number of hours used for maintenance is considered, the following results follow. For the situation 
where the model is not used, a total of 57 maintenance hours are required, see Table 7.3. 22 hours of this is used for 
maintenance during scheduled DT hours. Entering this in Eq. 6.4 then gives: 
 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑑𝑒𝑙 =
22: 00 ℎ𝑜𝑢𝑟𝑠

57: 00 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 38.6% 

 
 
In the situation when the model is used, there is a total of 57 hours and 50 minutes of DT for maintenance, see Table 
7.3. 51 hours of this is maintenance during scheduled DT hours. Entering this in Eq. 6.4 then gives: 
 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 =
51: 00 ℎ𝑜𝑢𝑟𝑠

57: 50 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 88.2% 

 
This already gives a much bigger difference for the MDI outcomes. This does make it clearer that for the situation 
where the model is used, most of the maintenance hours can be performed during scheduled DTs. As more scheduled 
DT hours are used to perform maintenance, there are fewer hours of unscheduled DTs.  
It should still be noted that an assumption has been made about the time it takes to perform maintenance on a valve or 
a pump. If the repair time is much longer than estimated beforehand, the number of hours of unplanned DT will 
increase further and so will the total number of hours of DT. As a result, the MDI value may then be lower than it is 
currently. This then applies to both situations because the same hours were charged for carrying out maintenance 
within this research for both situations. 
 
Looking at the cost KPIs, it should be noted that the total maintenance costs of the situation where the model is used 
are 53% lower than the total maintenance costs in the situation without the model. This creates a slightly distorted 
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picture when determining Eq. 6.16, Eq. 6.17 and Eq. 6.18. Nevertheless, it still clearly shows that in the situation 
where the model is used most of the costs go to predictive maintenance and that in situation without the model most of 
the costs go to corrective maintenance. 
 
Finally, it should be noted that the model cannot prevent unplanned DTs. The model will only help reduce the number 
of unplanned DTs. The results also show that there are 2 components that still cause unplanned DT. 
 
In short, it can be concluded that a model has been created in this research based on literature, theories and 
assumptions. This is a step towards providing insight into what a predictive maintenance strategy can do for reliability, 
with a focus on a soft drink production line. However, there are still snags in the model and research. Further research 
and data collection is therefore needed to validate the operation of the model in this study and then to be able to use it 
in the soft drink industry.  
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10. Recommendations 
As mentioned earlier in the discussion, one of the biggest uncertainties in this research is that little data was available 
to use multiple parameters for the valves. In a follow-up research, it is advisable to look at the difference in behaviour 
of a butterfly valve and a double seat mixproof valve.  
 
Now, looptijd has been used to determine whether a valve is still functioning or not. However, Chapter 2.4.1 mentions 
other techniques that can help with valve condition monitoring. Some of these are valve torque, acoustic monitoring or 
valve flow coefficient. In addition, the pressure build-up on the valve can also be monitored. This can be used to 
determine at which processes and pressures the valves suffer.  
For pumps, the choice has now been made to work with the NPSH margin and the BEP. However, there are also 
techniques available for pumps such as vibration monitoring, lubricant sampling or measuring energy consumption, 
see Chapter 2.4.2 for more possible techniques. This adds other techniques to map the whole spectrum of possible 
failures of centrifugal pumps. It is important that in a follow-up study the various techniques are examined in more 
detail so that a choice can be made as to which combination of techniques is the best combination to represent the 
condition of the valves and pumps.  
 
In addition, no data were available on pump condition monitoring. To improve the model and results, ways in which 
these data do become available should be explored. It is advisable to actively work on this in the future to get more out 
of the results of the model. 
 
For the case study, no data was available on how maintenance was carried out in the past. It is therefore not known 
whether only certain components in a valve or pump were replaced or whether a whole new valve or pump was 
installed. In order to form a complete picture in the future of the influence of the various processes that cross the line, it 
is necessary to keep track of which components have been serviced to which. In this way, more insight can be 
gathered about the influence of the processes, the lifetime of certain components and thus a model can be refined. By 
combining this data with both production planning and data from sensors that can be placed that can monitor 
condition, process-specific information can be gathered. For example, which processes were at which temperatures 
and how is this reflected in the condition monitoring data up to the time of failure of the component. This would make it 
possible to determine component degradation based on multiple factors. A follow-up study could therefore reveal 
which factors and values should be considered essential for predicting maintenance.   
 
In the situation that more data, as described earlier about maintenance data and other condition monitoring 
parameters, and knowledge becomes available then more complex models such as an ANN can also be explored. 
Knowledge here refers to more insight about the influences of processes on component parts. For example, what the 
degradation looks like of a valve when multiple production and cleaning processes at different temperatures have gone 
through it. Or what happens to the O-ring the moment the line has been idle for a long time. 
 
Another option, if there is more data and knowledge available, that then also comes within reach is the creation of a 
digital twin of the production line and the behaviour of all components belonging to the processes passing over the 
line. This will make it possible to make more accurate predictions about the expected life of the components on the line 
based on which processes are expected to occur in the future. This makes it possible to align both production and 
maintenance planning.  
This also makes it possible to see what other factors, such as production quantity/loss or maintenance costs, should 
be tracked and taken into account when considering when to carry out maintenance. 
For follow-up research, there are still many possibilities that can be explored in terms of the degradation processes of 
the different components, what data should be collected and how this data should be interpreted. Research can also 
be done into what other ways of modelling then come within reach. 
 
In this research, it was chosen to work with the failure probability, this was done because there was no reliable data 
available on the lifetime of the components. In a follow-up research, however, it would be better to work with the 
reliability/survival function. By linking it to the degradation of service life, a more accurate time factor can be given to 
the model.  
 
For this research, on the advice of the company, the model did not distinguish between the importance of the 
components. If it turns out, however, that certain components are more important, for example because the delivery 
time is longer or because one component affects the other components, then weighting factors can be used. By 
adding weighting factors, this can also play a role in decision-making. 
 
Within this research, the Python PGMPY package was used. It was found that a limited number of evidence values 
can be used. In the future, it is advisable to use a professional software package specifically for calculating and 
analysing a BN. This will prevent certain nodes from not being able to be used. 
 



       

2023.MME.8809     78 

 

In addition, many assumptions about cost and duration of repairs have been made in this research. To achieve 
accurate results, it is important to track what a repair really costs and how long it takes. Even if a component has to be 
completely replaced, this can be included. This research only looked at the cost of mechanics. It did not look at what 
the cost of a downtime  is in terms of delays and overtime of other staff. It is recommended that a follow-up research 
does include these costs further and use them in decision-making. 
Also, this research used the assumption that all parts are always in stock and can be used immediately when 
maintenance is required. However, in today's world, it is not entirely plausible that all parts are always in stock and 
sometimes it will be necessary to wait for a part. In a follow-up research, it is important to look at the costs and 
production loss hours this entails. 
 
Finally, it should be stated that the results in this research are largely based on assumptions. Much data and research 
is still needed to demonstrate whether the model actually achieves the results currently obtained from the synthetic 
datasets. A follow-up research can use the way of thinking behind the model and see if it can be applied to other 
production lines or maybe even in other industries. 
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Appendix A: Scientific paper 
 

Reliability improvement of a soft drink production line using a Bayesian network 
 

P.M.H. Freling 
Delft University of Technology, The Netherlands 
 
 

This paper contributes to the research 
on how a Bayesian network (BN) can contribute 
to improving reliability with specific application 
to soft drink production lines. The soft drink 
production industry is mostly using a corrective 
maintenance strategy. However, this 
maintenance strategy often causes the industry 
to face unplanned downtimes of the production 
lines. Unplanned downtimes are caused by 
equipment failure in the line. As a result, 
unplanned downtimes reduce the reliability of 
the production line. This paper discusses the 
research underlying how applying a BN can help 
improve the reliability of production lines of the 
soft drink industry. 
 
Bayesian Network (BN) – Reliability – Soft drink 
production lines – Maintenance – Downtime (DT) 
– Mean Time Between Failure (MTBF) – 
Predictive maintenance (PdM) – Key 
Performance Indicator (KPI) – Maintenance 
Downtime Index (MDI) 
 

Introduction 
One of the solutions to reducing unplanned 
downtimes can be found in a different maintenance 
strategy. Within the maintenance strategies, 
according to EN13306 [1], a distinction can be made 
between reactive and proactive maintenance. 
Reactive maintenance is when maintenance is 
performed only at the moment when, in this case, 
components in the line have failed. Proactive 
maintenance, on the other hand, is a strategy to 
perform timely maintenance just before a 
component fails. Within both categories, different 
forms of maintenance strategies can be found, see 
Figure 1 [2]. 

Figure 1: Different maintenance strategies [2] 

 
Currently, the corrective maintenance strategy, 
which falls under reactive maintenance strategies, is 
mainly used within the soft drink industry, see Figure 
1.  
 

 
This means that maintenance is carried out only 
when a component has failed. As a result, when a 
component fails, it causes a downtime.  Two types 
of downtimes can be distinguished [3]; planned and 
unplanned. Planned downtimes include downtimes 
that are scheduled in advance for cleaning, line 
rebuilds or maintenance. Unplanned downtime 
include downtimes caused by the failure of 
components in the production line. 
The moment unplanned downtime occurs, the line 
falls silent. As a result, nothing can be  
produced and sometimes everything in the line has 
to be discarded.  
 
Next, it can then be determined which component is 
causing the unplanned downtime. After replacement 
or repair, the line has to be cleaned before new 
production can be started. Line reliability is strongly 
influenced by the number and duration of unplanned 
downtimes. The definition of reliability in this 
research is defined as: ''The ability of a system or 
component to perform its required functions under 
stated conditions for a specified period of time.'' [4]. 
If there are many unplanned downtimes of the 
production line then this is an indication that 
reliability is poor [5,6]. 
 
In recent years, the beverage industry has been 
slowly looking at how to improve line reliability. One 
development in this is that there is growing interest 
in ways to monitor the condition of equipment in the 
line and how the resulting data can be used [6]. 
Some companies are already using sensors to 
collect data on the condition of equipment in the line. 
However, they often stop at the point of data 
collection and, in some cases, a simple analysis 
after a line has stopped. This research will address, 
through a literature and case study, how condition 
monitoring data can be used in a BN [7]. The aim is 
to provide insight into how reliability can be 
improved when a predictive maintenance strategy is 
applied. It is expected that with the PdM strategy, 
the number of unplanned downtimes can be 
reduced and thus the reliability of the production line 
can be improved. This research focuses on valves 
and pumps within a soft drink production line. The 
main research question is as follows: 
 
How can a predictive maintenance strategy 
contribute to improving the reliability of a soft drink 
production line?
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For this research, a case study was also done for an 
existing production line of a Dutch soft drink 
manufacturer. The line analysed for this research 
starts at the point the syrup is mixed. After this, the 
steps of heating, cooling, resting and carbonisation 
still have to take place, as can be seen in Figure 2.  

Figure 2: Components production line 

 
To transport the soft drink through the line, valves 
and pumps are used. The valves and pumps are the 
components in the production line that are the focus 
of this research. It will be examined how condition 
monitoring techniques and data for the valves and 
pumps can be used to create a PdM strategy to 
improve the reliability of the production line [8]. 
 

The model 
The model for PdM in this research is composed of 
several parts. There is a general part, a BN-based 
part and an MTBF part. To clarify when to use which 
part, a flow chart has been created, the flow chart 
can be found in Appendix A1. 
 
The BN is made up of several layers. In the BN, all 
components from the production line are 
represented. The complete BN can be seen in 
Figure 3. 

The production line (the PL node) is divided into five 
line segments, in the BN of Figure 3 the LS nodes. 
In each line segment there are a number of valves 
and one or two pumps. The valves are denoted by 
the Vx.x nodes and the pumps by the Px.x nodes. 
Here, the first x represents the line segment to which 
the component belongs and the second x indicates 
the component number within that specific line 
segment. (As an example, V1.2 is the second valve 
from line segment 1).  
 
Valves 
The condition of the valves is determined by the run 
time, in Dutch: looptijd, (LTVx.x nodes), which is the 
time it takes a valve to open or close. It is known that 
once the looptijd increases this is an indication that 
the valve is about to fail. In this research, the 
relationship between looptijd and the probability of 
failure is represented by a logistic function [9]. 
 
Pumps 
For pumps, there are two parameters that determine 
the probability of failure of a pump. The first is the 
parameter (BPx.x)is at what percentage of the BEP 
the pump operates at [10]. It is known that the further 
from the BEP the pump operates the earlier the 
pump fails. The other parameter (GPx.x) indicates 
whether cavitation occurs or not based on the NPSH 
margin [11] [12]. Both parameters are represented 
in the BN as parent nodes of the Px.x nodes. 
 
Inference 
By entering evidence values for the LT, B and G 
nodes, forward inference can be performed to 
determine the probability of failure and hence DT for 
the line segments and the entire production line.  
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The flowchart, see Appendix A1, distinguishes 
between the BN section (sections framed in light 
blue), the MTBF section (sections framed in purple) 
and the general section (sections framed in pink). 
 
Starting at the beginning (pink section at the top), it 
is first necessary to determine how long and which 
processes are sent across the line based on the 
schedule. Then, based on the historical process 
data, a synthetic dataset corresponding to the data 
for the future process can be generated.  
The production planning dataset showing how long 
and which process goes over the line is used to 
determine the MTBF (the purple part). The synthetic 
process dataset is used in the BN (the blue part).  
 
MTBF part (purple) 
The time until planned downtime should be entered 
in the code for MTBF. The MTBF is determined from 
the historical data is unique for each component. 
The code uses a time counter to determine how long 
each component has been in service. Once the time 
of future production is added, the code checks for 
components that are soon or within 2% of the end of 
their useful life. If not, then from this section there is 
no indication that any components will fail until the 
next scheduled downtime. If there are components 
within the 2% margin, then it is necessary to 
determine which components they are and the 
remaining life of those components. 
As output data from this section, a list of the critical 
components and their expected remaining life in 
hours is given. 
 
BN section (blue) 
The dataset created from the historical data 
contains values for LT, G and B nodes for every 15 
minutes. The data is used as evidence to then make 
inferences with the BN to determine the output 
values for the PL and LS nodes. 
As indicated earlier, values have been identified for 
the PL and LS nodes that indicate whether a 
potential failure is approaching. Therefore, after 
performing the inferences, it is necessary to check 
whether the values of the PL node are within the 
safe range. For the PL and LS nodes, there are 
indicator values that indicate that a component 
failure may occur in the near future. See Table 1 for 
the values of the PL and LS nodes at warnings and 
possible failures. 
 

If all PL and LS values are within the safe range, 
there is no indication from the BN that a potential 
failure will occur during the process. It is then 
assumed that production can be carried out without 
any problems. 
 
If there are alarming LS values, it must be 
determined whether it is a warning value or a value 
that indicates that more is already going on. In the 
case that it is a warning value, then it must be taken 
into account that a potential failure may occur in the 
next two hours. The component(s) responsible for 
this must then be determined. Then the time until the 
next scheduled downtime has to be considered. As 
output data, it is given which components have a 
critical value and how much time is left until the next 
stop. 
 
If the value of the LS nodes already exceeds the 
warning value(s) then it is only necessary to 
determine which component(s) are causing this. 
This is collected and used as output data. 
 
General section (pink part at the bottom) 
A list is made of the critical components based on 
the output data, along with how much time is left 
from MTBF and from the BN. It then needs to be 
determined whether there is enough time to 
complete production without unplanned downtime 
or not. In case there is enough time left then 
production can be completed before maintenance is 
carried out. It can then be calculated how much time 
is needed for maintenance and then what the cost 
will be. 
If there is not enough time to fully run the complete 
production then maintenance/inspections must be 
carried out before any production can be started at 
all. Then it has to be redetermined what the 
schedule is then and whether more components 
need maintenance. Afterwards, the time for 
maintenance and the costs must be calculated. 
Once maintenance has been performed on a 
component then the usage time must be reset in the 
MTBF code.  
 
With this model, it is possible, based on the 
synthetic datasets, for both planning and process 
data, to see prior to a production if there are 
components in the line that cannot survive it. In this 
way, it is possible to predict whether maintenance is 
needed or not. In this research, a synthetic 
production schedule for a year was used.

   

Table 1: Warning and Failure values BN 

  PL(1) LS1(1) LS2(1) LS3(1) LS4(1) LS5(1) 

Warning 0.6025 0.5073 0.5270 0.5799 0.5111 0.5421 

Potential failure 0.6031 0.5167 0.5327 0.5828 0.5115 0.5485 
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To determine whether the model contributes to 
improving reliability, two situations are used, both of 
which are tested against some KPIs.  
 
In the first situation, the model is not used and the 
current combination of corrective and a small piece 
of preventive maintenance is used. Here, the 
synthetic datasets are analysed and the KPIs are 
calculated. 
 
The second situation does use the model. This then 
works with PdM. For this situation, the flow chart is 
used and the KPIs are calculated. 
 
The first KPI focuses on the ratio of the number of 
hours of DT used for planned maintenance to the 
total number of hours of DT [13], see Eq. 1. 
 

𝑀𝐷𝐼 =
𝐷𝑇 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝐷𝑇 ℎ𝑜𝑢𝑟𝑠

=
𝐷𝑇 ℎ𝑜𝑢𝑟𝑠 𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 + 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝐷𝑇 ℎ𝑜𝑢𝑟𝑠
 

 
(Eq. 1) 

To determine whether the reliability of the line is 
improving, the MDI must increase. Indeed, this 
means that more DT hours are used for planned 
maintenance. In addition, the total number of DT 
hours is composed of both planned DT hours and 
unplanned DT hours [13]. A higher MDI is caused 
either by more hours of planned maintenance during 
DT hours (higher numerator) or by the total number 
of DT hours decreasing (lower denominator). This is 
a first indication that line reliability is improving. 
 
The second, third and fourth KPI are related to 
costs. These are the costs focused on corrective, 
preventive and predictive maintenance relative to 
total maintenance costs [14]. It is assumed within 
this research that predictive maintenance costs are 
equal to condition-based maintenance costs. This 
can be determined using Eq. 2, Eq. 3 and Eq. 4. 
 

𝐸15 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
∗ 100  

     (Eq. 2) 
 

𝐸16 =
𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
∗ 100  

     (Eq. 3) 
 

𝐸17 =
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
∗ 100 

     (Eq. 4) 
 

It is assumed that line reliability increases when total 
maintenance costs decrease. In addition, an 
indicator of improved reliability is when a lower 
percentage goes to corrective maintenance costs 
and a higher percentage goes to predictive 
maintenance costs. This indicates that fewer 
corrective maintenance actions are needed, which 
in turn is an indication that the reliability of the line is 
increasing. 
 
By comparing the outcomes of the KPIs for both 
situations, the impact of the model, with the PdM 
strategy, on the reliability of the production line can 
be determined. 
 

Results 
This research looked at a period of one year. The 
synthetic datasets are based on this. The results are 
therefore also based on one year of production. 
 
In the situation where the model is not used, the 
findings are that 57 hours of maintenance were 
required. 22 hours of this was used for maintenance 
during scheduled DT hours. 35 hours is during 
unscheduled DT hours. Looking at the costs, the 
total maintenance cost is €49 120.-.  
 
In the situation where the model is used, the findings 
are that 57 hours and 50 minutes of maintenance 
was performed. 51 hours of this is maintenance 
performed during the scheduled DT hours. 6:50 
hours of maintenance took place during 
unscheduled DT hours. In this research, 
unscheduled DT hours are determined by the hours 
needed for corrective maintenance and the hours 
left to complete repairs when the scheduled DT 
hours are just too short. Of the 6:50 hours of 
unscheduled DT, 2 hours are for corrective 
maintenance, where the line stopped and had to be 
flushed empty, and the remaining hours are the 
hours needed on top of the scheduled DT hours to 
complete the maintenance. Suppose there was 50 
minutes of scheduled DT, but maintenance was 
required and the maintenance took 1 hour, that's 10 
minutes of unscheduled DT. The total maintenance 
cost comes out to €23 120.-. 
 
 

Table 2: Hours downtime  

Without model 
Time used for 
maintenance 

With model 
Time used for 
maintenance 

Scheduled for change and PdM 318:25:00 8:00:00 318:25:00 37:00:00 

Scheduled for preventive maintenance 200:00:00 14:00:00 200:00:00 14:00:00 

Unscheduled 35:00:00 35:00:00 6:50:00 6:50:00 

Total downtime 553:25:00  525:15:00  

     

Maintenance during planned DT  22:00:00  51:00:00 
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KPIs 
The overall results serve as the basis for calculating 
the KPIs. 
MDI  
To determine the MDI [13], Eq. 1 has to be filled in. 
This involves determining what the total number of 
DT hours was in both situations. Then it is necessary 
to determine how many hours of the DTs were used 
for planned maintenance, see Table 2 for the 
results. Filling in the numbers from Table 2 in Eq. 1 
then gives the following results: 
 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑑𝑒𝑙 =
22: 00 ℎ𝑜𝑢𝑟𝑠

553: 25 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 3.98% 

 
This can also be done when the model is used. Eq. 
1 will then be like: 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 =
51: 00 ℎ𝑜𝑢𝑟𝑠

525: 15 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 9.71% 

 
From this, it can be seen that in the situation where 
the model is used, the MDI is higher compared to 
the situation without the model. This is caused by 
both a lower total number of DT hours and by more 
hours of planned maintenance times DT hours. 
Here, the first indication that the model contributes 
to improving reliability is in its favour. 

 
Cost KPIs 
For cost KPIs, the percentage of corrective, 
preventive and predictive maintenance costs 
relative to total maintenance costs was considered 
[14]. It should be noted that the total maintenance 
costs of the two situations already differ enormously. 
In the situation where the model is used, total 
maintenance costs are 53% lower than when the 
model is not used, see Figure 4. The reason for this 
is that there were 28:10 more unplanned DT hours 
in the situation without the model. As a result, the 
line had to be emptied before maintenance could be 
carried out. This ticks up in the costs involved. In the 
situation where the model is used, there are only 2 
times when the line has to be emptied for corrective 
maintenance. 

 
 
 

If Eq. 2, Eq. 3 and Eq. 4 are then entered, this gives 
the following results, see Table 3. 

It can be inferred that when the model is used, the 
largest part of maintenance costs is spent on 
predictive maintenance and the smallest part on 
corrective maintenance. Because of the difference 
in total maintenance costs, the percentage of E16, 
Eq. 3, is higher in the situation with the model. When 
looking at the numbers, see Figure 4, it is the same 
in both situations. 
In the situation where the model is used, besides the 
reduction in total maintenance costs, it can be seen 
from the second, third and fourth KPI that costs shift 
from corrective to predictive maintenance. With this, 
it can be determined that fewer corrective 
maintenance actions are needed, thereby improving 
the reliability of the line. This is the second indication 
that reliability improves when the model is used. 
 

Discussion 
As can be seen in the results, using the model 
ensures that there is an increase in the number of 
hours that planned maintenance is performed during 
pre-scheduled DT hours. In addition, there is a 
reduction in the total number of DT hours. This 
indicates an increase in line reliability.  
 
However, the model works on many assumptions. 
An average time for maintenance is assumed for 
valves and pumps. In the situation that more time 
may needed than planned, this will result in a lower 
MDI. This is because more unscheduled DT hours 
will then be needed to carry out the maintenance 
and the number of DT hours used for planned 
maintenance will remain the same. Keeping the 
same number in the numerator but a higher number 
for the denominator results in a lower MDI. To 
calculate the MDI, the total number of hours of 
planned DT and number of hours of unscheduled 
DT are used. Because the line has a large number 
of hours of scheduled downtime due to the lack of 
production, the value of the MDI calculation ends up 
to be low in both situations. Approaching the 
calculation for MDI slightly differently and looking at 
the ratio between the number of hours of DT used 
for scheduled maintenance compared to the total 
number of hours of DT for maintenance gives the 
following results. 
 
For the situation where the model is not used, a total 
of 57 maintenance hours are required, see Table 2. 
22 hours of this is used for maintenance during 
scheduled DT hours. Entering this in Eq. 1 then 
gives: 

 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑑𝑒𝑙 =
22: 00 ℎ𝑜𝑢𝑟𝑠

57: 00 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 38.6% 

Figure 4: Maintenance costs 

Table 3: Cost KPIs results 

KPI Without model With model 

E15 89.68% 11.33% 

E16 10.32% 21.93% 

E17 0.00% 66.74% 
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In the situation when the model is used, there is a 
total of 57 hours and 50 minutes of DT for 
maintenance, see Table 2. 51 hours of this is 
maintenance during scheduled DT hours. Entering 
this in Eq. 1 then gives: 
 

𝑀𝐷𝐼𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 =
51: 00 ℎ𝑜𝑢𝑟𝑠

57: 50 ℎ𝑜𝑢𝑟𝑠
∗ 100 = 88.2% 

 
Here it can be clearly seen that despite requiring a 
little more time for maintenance, the MDI still works 
out in favour of the situation with the model. 
 
When looking at costs, it had been noted earlier that 
total maintenance costs are 53% lower when the 
model is used. To calculate the total maintenance 
costs, several assumptions were made for both 
situations, including that all parts are always in stock 
and that in the time span of the synthetic dataset 
only repairs are carried out and no complete valves 
or pumps are replaced. If this is not the case, the 
total maintenance costs will be many times higher. 
This is due to the fact that there is then a need to 
take into account that there will be schedule 
outages, requiring employees to work overtime to 
make up for lost time. In addition, the cost of 
replacing a component is many times higher than 
carrying out a repair. 
This model is based on historical data for the valves 
and assumptions for the dates of the pumps. For the 
valves in the BN, only looptijd was considered and 
no other parameters. This was done because no 
other data was available. For the pumps, no data 
was available so it was assumed that in the BN, the 
condition of the pumps can be determined with the 
probability of cavitation and at what percentage of 
BEP the pump is operating. However, there are 
many other possible ways in which the condition of 
the valves and pumps can be determined. It is 
therefore impossible to say whether other 
parameters need to be included to achieve a better 
model. In addition, the model works with the MTBF 
of each component. For the valves, this is 
determined based on historical failure data. For the 
pumps, based on the manufacturers' data, there is 
a need to perform maintenance on the pump at least 
every year for seals and bearings. Although, this 
may give a slightly distorted view of how long a 
pump can operate without maintenance. The 
moment sufficient data is available for the pumps 
then it can be determined whether the MTBF 
assumption is correct. If less frequent maintenance 
is required on the pumps then this will not only give 
a reduction in the total number of hours of 
maintenance but also a reduction in costs. 
 
Finally, the model relies on assumptions to indicate 
what a predictive maintenance strategy can deliver 
in terms of reduction in unplanned DTs and 
reduction in maintenance costs. It is assumed that 
these are the indications that the reliability of the line 
improves. However, the results also show that the 
model does not detect all failures in time and 

unplanned DTs still occur. Albeit to a lesser extent 
than when the model is not used, but completely 
eliminating unplanned DTs is not possible with this 
model. 
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Appendix B: CIP 
There are many different ways in which CIP can be carried out. Looking at the different studies, it can be established 
that a general CIP process includes at least the following steps [9] [12]. 
 
The first step within CIP is to clean the system to flush away product residues. This is also called the product flush. 
Water is pumped into the system for cleaning.  
The second step is the pre-rinse. Clean drinking water at 25 degrees Celsius is used for this. Another option for this 
step is to use water with alkaline, at 45 degrees Celsius. This step takes between 3 and 10 minutes and s meant to 
remove 95% of product residues.  
The third step is cleaning with a chemical liquid. For this, water is heated and a caustic is added to create an alkaline 
wash containing between 1-3% caustic. This is then heated between 55-90° C, depending on the chemicals used. The 
system is then cleaned with this liquid for between 10 and 30 minutes. Once the liquid comes out of the system, it is 
cleaned to be used again later.  
The fourth step is to clean the system again with room-temperature water to flush out the chemicals and other dirt from 
the system.  
The fifth step is cleaning with an acidic solution. This can remove the residual alkaline liquid that has not been flushed 
away with the water from step four. On average, the acid solution contains between 0.5 and 2% acid. The temperature 
of the acid solution is between 50 and 70° C and it is kept in the system for between 3 and 20 minutes.  
The sixth step is again cleaning the system with water. Only when no more residues of the aforementioned fluids are 
detected in the water at the outlet then this step is complete.  
The seventh step is to disinfect the system. This can be done either with water and disinfectants at room temperature, 
or water and disinfectants between 70-95° C. The choice depends on the type of disinfection and which micro-
organisms need to be removed with this step. This step takes between 10 and 60 minutes.  
The eighth and second-to-last step is cleaning with fresh water to remove the residues of the disinfectant liquid. This 
takes between 5 and 10 minutes.  
The final step is drying the system so that it is ready for the next production process. 
 
All steps are summarised in Figure 51. 

 
  

Figure 51: Steps of CIP 
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Appendix C: Vapour pressure and density 
 
Vapour pressure 
To determine whether cavitation is occurring, the NPSHa must be considered. This depends on the inlet velocity, 
density and vapour pressure of the fluid to be pumped. Vapour pressure and density depend on temperature. 
 
Raoult's law: 

𝑃𝐴 = 𝑋𝐴𝑃𝐴
𝑂 

 
 
Looking at an X amount of sugar (sucrose) dissolved in water, the vapour pressure of the mixture can be determined. 
This is needed to determine the vapour pressure from inside the pump. Note that the mole mass depends on the 
temperature. 
 
An example is given below. 
The vapour pressure is to be determined from a mixture of sugar (C12H22O11)  and water (H2O) ,where there are 158.0 
g of suger (sucrose) dissolved in 641.6 g of water at 25°C. The molar mass of sucrose is 342.3 g/mol. The molar mass 
of water is 18.01528 g/mol. The vapour pressure of water at 25°C is 23.76 mmHg. 
 
Then Raoult's law must be used: 
 

𝑃𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑋𝐻2𝑂𝑃𝐻2𝑂
𝑂  

 
 
 
First, determine the number of mol of both sucrose and water. It is given that 158.0 g of sucrose is dissolved. 

𝑚𝑜𝑙𝑒𝑠 𝐶12𝐻22𝑂11 = 158 ∗ (
1

342,3
) = 0,462 𝑚𝑜𝑙 

 

𝑚𝑜𝑙𝑒𝑠 𝐻2𝑂 = 641,6 ∗ (
1

18
) = 35,6 𝑚𝑜𝑙 

 
 
Next, the mole fraction of H2O needs to be determined: 
 

𝑋𝐻2𝑂 = (
𝑚𝑜𝑙 𝐻2𝑂

𝑚𝑜𝑙 𝐻2𝑂 + 𝑚𝑜𝑙 𝐶12𝐻22𝑂11

) = (
35,6

35,6 + 0,462
) = 0,987 

 
Then, finally, the vapour pressure can be determined for the solution of the sugar in the water. 
 

𝑃𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = (0,987)(23,76) = 23,5 𝑚𝑚𝐻𝑔 
 
Adding the sugar reduces the vapour pressure. The more sugar is dissolved in the water the lower the vapour 
pressure will be. 
 
Here are the tables shown that can be used to determine the correct vapour pressure for each liquid and temperature.  
 
 
 
Density 
The density of the liquid can be determined by dividing the total mass by the total volume of the liquid. Note here that 
the density of water changes as the temperature changes. 

 

𝜌 =
𝑚 

𝑉
 

 
m: mass in kg 
V: volume in L or in m3 

 
 
Here are the tables shown that can be used to determine the correct vapour pressure and density for some liquid 
compositions and temperatures. 
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1000L 30 degrees     
sugar 
[%] 

Vapour pressure [mm 
Hg] 

Vapour pressure 
[Pa] 

density 
[kg/L] density [kg/m3] 

0,25 30,94065239 4125,081044 1,1435 1143,5  
0,20 31,15110544 4153,139143 1,1144 1114,4  
0,17 31,27875711 4170,157966 1,095 1095  
0,14 31,36444103 4181,581549 1,081143 1081,143  
0,13 31,4259318 4189,779645 1,07075 1070,75  
0,11 31,47220834 4195,949343 1,062667 1062,667  
0,10 31,50829554 4200,760574 1,0562 1056,2  
0,09 31,53722494 4204,61751 1,050909 1050,909  

 

1000L 40 degrees    
sugar 
[%] 

Vapour pressure 
[mm Hg] 

Vapour 
pressure [Pa] 

density 
[kg/L] 

density 
[kg/m3] 

0,09 54,8572 7313,692278 1,045455 1045,455 

0,10 54,80658 7306,943155 1,0508 1050,8 

0,11 54,74343 7298,524246 1,057333 1057,333 

0,13 54,66246 7287,7284 1,0655 1065,5 

0,14 54,55486 7273,383521 1,076 1076 

0,17 54,40494 7253,395303 1,09 1090 

0,20 54,18159 7223,618119 1,1096 1109,6 

0,25 53,81339 7174,529091 1,139 1139 
 

1000L 50 degrees    
sugar 
[%] 

Vapour pressure 
[mm Hg] 

Vapour 
pressure [Pa] 

density 
[kg/L] 

density 
[kg/m3] 

0,09 91,7851 12237,01 1,041818 1041,818 

0,10 91,70006 12225,67 1,0472 1047,2 

0,11 91,59398 12211,53 1,053778 1053,778 

0,13 91,45796 12193,39 1,062 1062 

0,14 91,27721 12169,29 1,072571 1072,571 

0,17 91,02537 12135,72 1,086667 1086,667 

0,20 90,65021 12085,7 1,1064 1106,4 

0,25 90,03176 12003,25 1,136 1136 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000L 60 degrees    
sugar 
[%] 

Vapour pressure 
[mm Hg] 

Vapour 
pressure [Pa] 

density 
[kg/L] 

density 
[kg/m3] 

0,09 148,159 19752,90341 1,037273 1037,273 

0,10 148,021 19734,50996 1,0427 1042,7 

0,11 147,8489 19711,56627 1,049333 1049,333 

0,13 147,6282 19682,14551 1,057625 1057,625 

0,14 147,335 19643,05417 1,068286 1068,286 

0,17 146,9265 19588,58645 1,0825 1082,5 

0,20 146,3179 19507,44889 1,1024 1102,4 

0,25 145,3147 19373,70308 1,13225 1132,25 
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1000L 100 degrees    
sugar 
[%] 

Vapour pressure 
[mm Hg] 

Vapour 
pressure [Pa] 

density 
[kg/L] 

density 
[kg/m3] 

0 759,8125021 101300,002 0,958 958 

0,09 753,273994 100428,2726 1,014545455 1014,545 

0,10 752,5544329 100332,339 1,0202 1020,2 

0,11 751,6569125 100212,6795 1,027111111 1027,111 

0,13 750,5060985 100059,2503 1,03575 1035,75 

0,14 748,9771504 99855,40727 1,046857143 1046,857 

0,17 746,8470589 99571,41843 1,061666667 1061,667 

0,20 743,6745427 99148,45105 1,0824 1082,4 

0,25 738,44649 98451,43468 1,1135 1113,5 
  

1000L 70 degrees    
sugar 
[%] 

Vapour pressure 
[mm Hg] 

Vapour 
pressure [Pa] 

density 
[kg/L] 

density 
[kg/m3] 

0,09 231,7488 30897,29 1,032727 1032,727 

0,10 231,5319 30868,38 1,0382 1038,2 

0,11 231,2613 30832,31 1,044889 1044,889 

0,13 230,9144 30786,06 1,05325 1053,25 

0,14 230,4535 30724,6 1,064 1064 

0,17 229,8112 30638,98 1,078333 1078,333 

0,20 228,8546 30511,43 1,0984 1098,4 

0,25 227,2777 30301,2 1,1285 1128,5 

1000L 80 degrees    
sugar 
[%] 

Vapour pressure 
[mm Hg] 

Vapour 
pressure [Pa] 

density 
[kg/L] 

density 
[kg/m3] 

0 355,1542 47350 0,972 972 

0,09 352,1416 46948,35 1,027273 1027,273 

0,10 351,81 46904,15 1,0328 1032,8 

0,11 351,3964 46849 1,039556 1039,556 

0,13 350,8661 46778,3 1,048 1048 

0,14 350,1614 46684,35 1,058857 1058,857 

0,17 349,1797 46553,46 1,073333 1073,333 

0,20 347,7173 46358,5 1,0936 1093,6 

0,25 345,3071 46037,16 1,124 1124 

1000L 90 degrees    
sugar 
[%] 

Vapour pressure 
[mm Hg] 

Vapour 
pressure [Pa] 

density 
[kg/L] 

density 
[kg/m3] 

0,09 521,3755 69511,01423 1,020909 1020,909 

0,10 520,881 69445,09129 1,0265 1026,5 

0,11 520,2643 69362,86324 1,033333 1033,333 

0,13 519,4734 69257,42716 1,041875 1041,875 

0,14 518,4227 69117,34333 1,052857 1052,857 

0,17 516,9588 68922,1753 1,0675 1067,5 

0,20 514,7784 68631,48116 1,088 1088 

0,25 511,1851 68152,40208 1,11875 1118,75 
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Appendix D: Pump curves  
Pump curve of P1.1 and P2.2 
 

Pump curve of P2.1  
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Pump curve of P3.1  
 

Pump curve of P4.1 and P5.1 
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Appendix E: Method selection  
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Appendix F: Overall Bayesian Network 
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Appendix G: Conditional probability tables 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Node LTV1.1 Probability 

LT1.1(1) 0,04 

LT1.1(2) 0,04 

LT1.1(3) 0,04 

LT1.1(4) 0,04 

LT1.1(5) 0,04 

LT1.1(6) 0,04 

LT1.1(7) 0,04 

LT1.1(8) 0,04 

LT1.1(9) 0,04 

LT1.1(10) 0,04 

LT1.1(11) 0,04 

LT1.1(12) 0,04 

LT1.1(13) 0,04 

LT1.1(14) 0,04 

LT1.1(15) 0,04 

LT1.1(16) 0,04 

LT1.1(17) 0,04 

LT1.1(18) 0,04 

LT1.1(19) 0,04 

LT1.1(20) 0,04 

LT1.1(21) 0,04 

LT1.1(22) 0,04 

LT1.1(23) 0,04 

LT1.1(24) 0,04 

LT1.1(25) 0,04 

 

Node LTV1.2 Probability 

LT1.2(1) 0,03333 

LT1.2(2) 0,03333 

LT1.2(3) 0,03333 

LT1.2(4) 0,03333 

LT1.2(5) 0,03333 

LT1.2(6) 0,03333 

LT1.2(7) 0,03333 

LT1.2(8) 0,03333 

LT1.2(9) 0,03333 

LT1.2(10) 0,03333 

LT1.2(11) 0,03333 

LT1.2(12) 0,03333 

LT1.2(13) 0,03333 

LT1.2(14) 0,03333 

LT1.2(15) 0,03333 

LT1.2(16) 0,03333 

LT1.2(17) 0,03333 

LT1.2(18) 0,03333 

LT1.2(19) 0,03333 

LT1.2(20) 0,03333 

LT1.2(21) 0,03333 

LT1.2(22) 0,03333 

LT1.2(23) 0,03333 

LT1.2(24) 0,03333 

LT1.2(25) 0,03333 

LT1.2(26) 0,03333 

LT1.2(27) 0,03333 

LT1.2(28) 0,03333 

LT1.2(29) 0,03333 

LT1.2(30) 0,03333 

 

Node GP1.1 Probability 

G1.1(1) 0,5 

G1.1(2) 0,5 

  

  

Node BP1.1 Probability 

B1.1(1) 0,05 

B1.1(2) 0,10 

B1.1(3) 0,35 

B1.1(4) 0,30 

B1.1(5) 0,20 

 

G1.1 B1.1 P1.1(0) P1.1(1) 

G1.1(1) B1.1(1) 0,95 0,05 

G1.1(1) B1.1(2) 0,92 0,08 

G1.1(1) B1.1(3) 0,53 0,47 

G1.1(1) B1.1(4) 0,10 0,90 

G1.1(1) B1.1(5) 0,05 0,95 

G1.1(2) B1.1(1) 0,30 0,70 

G1.1(2) B1.1(2) 0,20 0,80 

G1.1(2) B1.1(3) 0,15 0,85 

G1.1(2) B1.1(4) 0,10 0,90 

G1.1(2) B1.1(5) 0,01 0,99 

 

LT1.1 V1.1(0) V1.1(1) 

LT1.1(1) 0,9964 0,0036 

LT1.1(2) 0,9945 0,0055 

LT1.1(3) 0,9916 0,0084 

LT1.1(4) 0,9871 0,0129 

LT1.1(5) 0,9804 0,0196 

LT1.1(6) 0,9704 0,0296 

LT1.1(7) 0,9554 0,0446 

LT1.1(8) 0,9333 0,0667 

LT1.1(9) 0,9014 0,0986 

LT1.1(10) 0,8566 0,1434 

LT1.1(11) 0,796 0,204 

LT1.1(12) 0,7183 0,2817 

LT1.1(13) 0,6249 0,3751 

LT1.1(14) 0,5213 0,4787 

LT1.1(15) 0,4157 0,5843 

LT1.1(16) 0,3174 0,6826 

LT1.1(17) 0,233 0,767 

LT1.1(18) 0,1656 0,8344 

LT1.1(19) 0,1148 0,8852 

LT1.1(20) 0,0782 0,9218 

LT1.1(21) 0,0525 0,9475 

LT1.1(22) 0,0349 0,9651 

LT1.1(23) 0,0231 0,9769 

LT1.1(24) 0,0152 0,9848 

LT1.1(25) 0,0100 0,9900 
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LT1.2 V1.2(0) V1.2(1) 

LT1.2(1) 0,9956 0,0044 

LT1.2(2) 0,9938 0,0062 

LT1.2(3) 0,9913 0,0087 

LT1.2(4) 0,9877 0,0123 

LT1.2(5) 0,9827 0,0173 

LT1.2(6) 0,9758 0,0242 

LT1.2(7) 0,9661 0,0339 

LT1.2(8) 0,9528 0,0472 

LT1.2(9) 0,9346 0,0654 

LT1.2(10) 0,9101 0,0899 

LT1.2(11) 0,8775 0,1225 

LT1.2(12) 0,8353 0,1647 

LT1.2(13) 0,7822 0,2178 

LT1.2(14) 0,7177 0,2823 

LT1.2(15) 0,6428 0,3572 

LT1.2(16) 0,5602 0,4398 

LT1.2(17) 0,4741 0,5259 

LT1.2(18) 0,3896 0,6104 

LT1.2(19) 0,3112 0,6888 

LT1.2(20) 0,2423 0,7577 

LT1.2(21) 0,1846 0,8154 

LT1.2(22) 0,1381 0,8619 

LT1.2(23) 0,1019 0,8981 

LT1.2(24) 0,0743 0,9257 

LT1.2(25) 0,0538 0,9462 

LT1.2(26) 0,0387 0,9613 

LT1.2(27) 0,0277 0,9723 

LT1.2(28) 0,0198 0,9802 

LT1.2(29) 0,0141 0,9859 

LT1.2(30) 0,0101 0,9900 

 

V1.1 V1.2 P1.1 LS1(0) LS1(1) 

V1.1(0) V1.2(0) P1.1(0) 0,99 0,01 

V1.1(0) V1.2(0) P1.1(1) 0,40 0,60 

V1.1(0) V1.2(1) P1.1(0) 0,20 0,80 

V1.1(0) V1.2(1) P1.1(1) 0,30 0,70 

V1.1(1) V1.2(0) P1.1(0) 0,50 0,50 

V1.1(1) V1.2(0) P1.1(1) 0,30 0,70 

V1.1(1) V1.2(1) P1.1(0) 0,20 0,80 

V1.1(1) V1.2(1) P1.1(1) 0,01 0,99 

 

Node LTV2.1 Probability 

LT2.1(1) 0,0666667 

LT2.1(2) 0,0666667 

LT2.1(3) 0,0666667 

LT2.1(4) 0,0666667 

LT2.1(5) 0,0666667 

LT2.1(6) 0,0666667 

LT2.1(7) 0,0666667 

LT2.1(8) 0,0666667 

LT2.1(9) 0,0666667 

LT2.1(10) 0,0666667 

LT2.1(11) 0,0666667 

LT2.1(12) 0,0666667 

LT2.1(13) 0,0666667 

LT2.1(14) 0,0666667 

LT2.1(15) 0,0666667 

 

Node LTV2.2 Probability 

LT2.2(1) 0,0666667 

LT2.2(2) 0,0666667 

LT2.2(3) 0,0666667 

LT2.2(4) 0,0666667 

LT2.2(5) 0,0666667 

LT2.2(6) 0,0666667 

LT2.2(7) 0,0666667 

LT2.2(8) 0,0666667 

LT2.2(9) 0,0666667 

LT2.2(10) 0,0666667 

LT2.2(11) 0,0666667 

LT2.2(12) 0,0666667 

LT2.2(13) 0,0666667 

LT2.2(14) 0,0666667 

LT2.2(15) 0,0666667 

 

Node Gp2.1 Probability 

G2.1(1) 0,5 

G2.1(2) 0,5 

  

Node Bp1.2 Probability 

B2.1(1) 0,02 

B2.1(2) 0,10 

B2.1(3) 0,35 

B2.1(4) 0,33 

B2.1(5) 0,20 

 

Node Gp2.2 Probability 

G2.2(1) 0,5 

G2.2(2) 0,5 

  

Node Bp2.2 Probability 

B2.2(1) 0,05 

B2.2(2) 0,09 

B2.2(3) 0,33 

B2.2(4) 0,32 

B2.2(5) 0,21 

 

G2.1 B2.1 P2.1(0) P2.1(1) 

G2.1(1) B2.1(1) 0,95 0,05 

G2.1(1) B2.1(2) 0,92 0,08 

G2.1(1) B2.1(3) 0,53 0,47 

G2.1(1) B2.1(4) 0,10 0,90 

G2.1(1) B2.1(5) 0,05 0,95 

G2.1(2) B2.1(1) 0,25 0,75 

G2.1(2) B2.1(2) 0,20 0,80 

G2.1(2) B2.1(3) 0,15 0,85 

G2.1(2) B2.1(4) 0,10 0,90 

G2.1(2) B2.1(5) 0,01 0,99 

 

G2.2 B2.2 P2.2(0) P2.2(1) 

G2.2(1) B2.2(1) 0,95 0,05 

G2.2(1) B2.2(2) 0,92 0,08 

G2.2(1) B2.2(3) 0,53 0,47 

G2.2(1) B2.2(4) 0,10 0,90 

G2.2(1) B2.2(5) 0,05 0,95 

G2.2(2) B2.2(1) 0,40 0,60 

G2.2(2) B2.2(2) 0,35 0,65 

G2.2(2) B2.2(3) 0,15 0,85 

G2.2(2) B2.2(4) 0,10 0,90 

G2.2(2) B2.2(5) 0,01 0,99 
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LT2.1 V2.1(0) V2.1(1) 

LT2.1(1) 0,9747 0,0253 

LT2.1(2) 0,9554 0,0446 

LT2.1(3) 0,9223 0,0777 

LT2.1(4) 0,8682 0,1318 

LT2.1(5) 0,7852 0,2148 

LT2.1(6) 0,6697 0,3303 

LT2.1(7) 0,5294 0,4706 

LT2.1(8) 0,3843 0,6157 

LT2.1(9) 0,2572 0,7428 

LT2.1(10) 0,1612 0,8388 

LT2.1(11) 0,0963 0,9037 

LT2.1(12) 0,0558 0,9442 

LT2.1(13) 0,0318 0,9682 

LT2.1(14) 0,0179 0,9821 

LT2.1(15) 0,0100 0,9900 

 

LT2.2 V2.2(0) V2.2(1) 

LT2.2(1) 0,9958 0,0042 

LT2.2(2) 0,9913 0,0087 

LT2.2(3) 0,9824 0,0176 

LT2.2(4) 0,9645 0,0355 

LT2.2(5) 0,9299 0,0701 

LT2.2(6) 0,8661 0,1339 

LT2.2(7) 0,7593 0,2407 

LT2.2(8) 0,6061 0,3939 

LT2.2(9) 0,4287 0,5713 

LT2.2(10) 0,2679 0,7321 

LT2.2(11) 0,1515 0,8485 

LT2.2(12) 0,0801 0,9199 

LT2.2(13) 0,0407 0,9593 

LT2.2(14) 0,0203 0,9797 

LT2.2(15) 0,0100 0,9900 

 

V2.1 V2.2 P2.1 P2.2 LS1(0) LS1(1) 

V2.1(0) V2.2(0) P2.1(0) P2.2(0) 0,99 0,01 

V2.1(0) V2.2(0) P2.1(0) P2.2(1) 0,45 0,55 

V2.1(0) V2.2(0) P2.1(1) P2.2(0) 0,49 0,51 

V2.1(0) V2.2(0) P2.1(1) P2.2(1) 0,19 0,81 

V2.1(0) V2.2(1) P2.1(0) P2.2(0) 0,48 0,52 

V2.1(0) V2.2(1) P2.1(0) P2.2(1) 0,35 0,65 

V2.1(0) V2.2(1) P2.1(1) P2.2(0) 0,31 0,69 

V2.1(0) V2.2(1) P2.1(1) P2.2(1) 0,23 0,77 

V2.1(1) V2.2(0) P2.1(0) P2.2(0) 0,44 0,56 

V2.1(1) V2.2(0) P2.1(0) P2.2(1) 0,22 0,78 

V2.1(1) V2.2(0) P2.1(1) P2.2(0) 0,28 0,72 

V2.1(1) V2.2(0) P2.1(1) P2.2(1) 0,20 0,80 

V2.1(1) V2.2(1) P2.1(0) P2.2(0) 0,25 0,75 

V2.1(1) V2.2(1) P2.1(0) P2.2(1) 0,15 0,85 

V2.1(1) V2.2(1) P2.1(1) P2.2(0) 0,05 0,95 

V2.1(1) V2.2(1) P2.1(1) P2.2(1) 0,01 0,99 
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  Node LTv3.1 Probability  Node LTv3.2 Probability 

LT3.1(1) 0,05  LT3.2(1) 0,05 

LT3.1(2) 0,05  LT3.2(2) 0,05 

LT3.1(3) 0,05  LT3.2(3) 0,05 

LT3.1(4) 0,05  LT3.2(4) 0,05 

LT3.1(5) 0,05  LT3.2(5) 0,05 

LT3.1(6) 0,05  LT3.2(6) 0,05 

LT3.1(7) 0,05  LT3.2(7) 0,05 

LT3.1(8) 0,05  LT3.2(8) 0,05 

LT3.1(9) 0,05  LT3.2(9) 0,05 

LT3.1(10) 0,05  LT3.2(10) 0,05 

LT3.1(11) 0,05  LT3.2(11) 0,05 

LT3.1(12) 0,05  LT3.2(12) 0,05 

LT3.1(13) 0,05  LT3.2(13) 0,05 

LT3.1(14) 0,05  LT3.2(14) 0,05 

LT3.1(15) 0,05  LT3.2(15) 0,05 

LT3.1(16) 0,05  LT3.2(16) 0,05 

LT3.1(17) 0,05  LT3.2(17) 0,05 

LT3.1(18) 0,05  LT3.2(18) 0,05 

LT3.1(19) 0,05  LT3.2(19) 0,05 

LT3.1(20) 0,05  LT3.2(20) 0,05 

 

Node LTv3.3 Probability 

LT3.3(1) 0,0667 

LT3.3(2) 0,0667 

LT3.3(3) 0,0667 

LT3.3(4) 0,0667 

LT3.3(5) 0,0667 

LT3.3(6) 0,0667 

LT3.3(7) 0,0667 

LT3.3(8) 0,0667 

LT3.3(9) 0,0667 

LT3.3(10) 0,0667 

LT3.3(11) 0,0667 

LT3.3(12) 0,0667 

LT3.3(13) 0,0667 

LT3.3(14) 0,0667 

LT3.3(15) 0,0667 

 

Node LTv3.4 Probability 

LT3.4(1) 0,0667 

LT3.4(2) 0,0667 

LT3.4(3) 0,0667 

LT3.4(4) 0,0667 

LT3.4(5) 0,0667 

LT3.4(6) 0,0667 

LT3.4(7) 0,0667 

LT3.4(8) 0,0667 

LT3.4(9) 0,0667 

LT3.4(10) 0,0667 

LT3.4(11) 0,0667 

LT3.4(12) 0,0667 

LT3.4(13) 0,0667 

LT3.4(14) 0,0667 

LT3.4(15) 0,0667 

 

Node LTv3.5 Probability 

LT3.5(1) 0,0667 

LT3.5(2) 0,0667 

LT3.5(3) 0,0667 

LT3.5(4) 0,0667 

LT3.5(5) 0,0667 

LT3.5(6) 0,0667 

LT3.5(7) 0,0667 

LT3.5(8) 0,0667 

LT3.5(9) 0,0667 

LT3.5(10) 0,0667 

LT3.5(11) 0,0667 

LT3.5(12) 0,0667 

LT3.5(13) 0,0667 

LT3.5(14) 0,0667 

LT3.5(15) 0,0667 

 

Node LTv3.6 Probability 

LT3.6(1) 0,0333 

LT3.6(2) 0,0333 

LT3.6(3) 0,0333 

LT3.6(4) 0,0333 

LT3.6(5) 0,0333 

LT3.6(6) 0,0333 

LT3.6(7) 0,0333 

LT3.6(8) 0,0333 

LT3.6(9) 0,0333 

LT3.6(10) 0,0333 

LT3.6(11) 0,0333 

LT3.6(12) 0,0333 

LT3.6(13) 0,0333 

LT3.6(14) 0,0333 

LT3.6(15) 0,0333 

LT3.6(16) 0,0333 

LT3.6(17) 0,0333 

LT3.6(18) 0,0333 

LT3.6(19) 0,0333 

LT3.6(20) 0,0333 

LT3.6(21) 0,0333 

LT3.6(22) 0,0333 

LT3.6(23) 0,0333 

LT3.6(24) 0,0333 

LT3.6(25) 0,0333 

LT3.6(26) 0,0333 

LT3.6(27) 0,0333 

LT3.6(28) 0,0333 

LT3.6(29) 0,0333 

LT3.6(30) 0,0333 
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Node LTv3.7 Probability 

LT3.7(1) 0,0333 

LT3.7(2) 0,0333 

LT3.7(3) 0,0333 

LT3.7(4) 0,0333 

LT3.7(5) 0,0333 

LT3.7(6) 0,0333 

LT3.7(7) 0,0333 

LT3.7(8) 0,0333 

LT3.7(9) 0,0333 

LT3.7(10) 0,0333 

LT3.7(11) 0,0333 

LT3.7(12) 0,0333 

LT3.7(13) 0,0333 

LT3.7(14) 0,0333 

LT3.7(15) 0,0333 

LT3.7(16) 0,0333 

LT3.7(17) 0,0333 

LT3.7(18) 0,0333 

LT3.7(19) 0,0333 

LT3.7(20) 0,0333 

LT3.7(21) 0,0333 

LT3.7(22) 0,0333 

LT3.7(23) 0,0333 

LT3.7(24) 0,0333 

LT3.7(25) 0,0333 

LT3.7(26) 0,0333 

LT3.7(27) 0,0333 

LT3.7(28) 0,0333 

LT3.7(29) 0,0333 

LT3.7(30) 0,0333 

 

Node LTv3.8 Probability 

LT3.8(1) 0,0667 

LT3.8(2) 0,0667 

LT3.8(3) 0,0667 

LT3.8(4) 0,0667 

LT3.8(5) 0,0667 

LT3.8(6) 0,0667 

LT3.8(7) 0,0667 

LT3.8(8) 0,0667 

LT3.8(9) 0,0667 

LT3.8(10) 0,0667 

LT3.8(11) 0,0667 

LT3.8(12) 0,0667 

LT3.8(13) 0,0667 

LT3.8(14) 0,0667 

LT3.8(15) 0,0667 

 

Node Gp3.1 Probability 

G3.1(1) 0,5 

G3.1(2) 0,5 

  

Node Bp3.1 Probability 

B3.1(1) 0,05 

B3.1(2) 0,08 

B3.1(3) 0,35 

B3.1(4) 0,32 

B3.1(5) 0,2 

 

G3.1      B3.1      P3.1(0)   P3.1(1)  

 G3.1(1)   B3.1(1)  0,95 0,05 

 G3.1(1)   B3.1(2)  0,92 0,08 

 G3.1(1)   B3.1(3)  0,53 0,47 

 G3.1(1)   B3.1(4)  0,10 0,90 

 G3.1(1)   B3.1(5)  0,05 0,95 

 G3.1(2)   B3.1(1)  0,28 0,72 

 G3.1(2)   B3.1(2)  0,19 0,81 

 G3.1(2)   B3.1(3)  0,15 0,85 

 G3.1(2)   B3.1(4)  0,09 0,91 

 G3.1(2)   B3.1(5)  0,01 0,99 

 

LT3.1 V3.1(0) V3.1(1) 

LT3.1(1) 0,997 0,003 

LT3.1(2) 0,995 0,005 

LT3.1(3) 0,991 0,009 

LT3.1(4) 0,985 0,015 

LT3.1(5) 0,974 0,026 

LT3.1(6) 0,955 0,045 

LT3.1(7) 0,925 0,075 

LT3.1(8) 0,878 0,123 

LT3.1(9) 0,806 0,194 

LT3.1(10) 0,706 0,294 

LT3.1(11) 0,581 0,419 

LT3.1(12) 0,446 0,555 

LT3.1(13) 0,317 0,683 

LT3.1(14) 0,212 0,788 

LT3.1(15) 0,135 0,865 

LT3.1(16) 0,083 0,917 

LT3.1(17) 0,050 0,951 

LT3.1(18) 0,029 0,971 

LT3.1(19) 0,017 0,983 

LT3.1(20) 0,010 0,990 

 

LT3.2 V3.2(0) V3.2(1) 

LT3.2(1) 0,9926 0,0074 

LT3.2(2) 0,9878 0,0122 

LT3.2(3) 0,9801 0,0199 

LT3.2(4) 0,9676 0,0324 

LT3.2(5) 0,9477 0,0523 

LT3.2(6) 0,9166 0,0834 

LT3.2(7) 0,8697 0,1303 

LT3.2(8) 0,8019 0,1981 

LT3.2(9) 0,7108 0,2892 

LT3.2(10) 0,5986 0,4014 

LT3.2(11) 0,475 0,525 

LT3.2(12) 0,3545 0,6455 

LT3.2(13) 0,25 0,75 

LT3.2(14) 0,1682 0,8318 

LT3.2(15) 0,1093 0,8907 

LT3.2(16) 0,0693 0,9307 

LT3.2(17) 0,0432 0,9568 

LT3.2(18) 0,0267 0,9733 

LT3.2(19) 0,0164 0,9836 

LT3.2(20) 0,01 0,99 
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LT3.3 V3.3(0) V3.3(1) 

LT3.3(1) 0,9912 0,0088 

LT3.3(2) 0,9831 0,0169 

LT3.3(3) 0,9676 0,0324 

LT3.3(4) 0,9388 0,0612 

LT3.3(5) 0,8874 0,1126 

LT3.3(6) 0,8019 0,1981 

LT3.3(7) 0,6754 0,3246 

LT3.3(8) 0,5166 0,4834 

LT3.3(9) 0,3545 0,6455 

LT3.3(10) 0,2201 0,7799 

LT3.3(11) 0,1266 0,8734 

LT3.3(12) 0,0693 0,9307 

LT3.3(13) 0,0369 0,9631 

LT3.3(14) 0,0193 0,9807 

LT3.3(15) 0,01 0,99 

 

LT3.4 V3.4(0) V3.4(1) 

LT3.4(1) 0,9855 0,0145 

LT3.4(2) 0,9731 0,0269 

LT3.4(3) 0,9507 0,0493 

LT3.4(4) 0,9113 0,0887 

LT3.4(5) 0,8455 0,1545 

LT3.4(6) 0,7446 0,2554 

LT3.4(7) 0,6084 0,3916 

LT3.4(8) 0,4529 0,5471 

LT3.4(9) 0,3061 0,6939 

LT3.4(10) 0,1903 0,8097 

LT3.4(11) 0,1113 0,8887 

LT3.4(12) 0,0626 0,9374 

LT3.4(13) 0,0344 0,9656 

LT3.4(14) 0,0186 0,9814 

LT3.4(15) 0,01 0,99 

 

LT3.5 V3.5(0) V3.5(1) 

LT3.5(1) 0,9934 0,0066 

LT3.5(2) 0,9869 0,0131 

LT3.5(3) 0,9743 0,0257 

LT3.5(4) 0,9502 0,0498 

LT3.5(5) 0,9058 0,0942 

LT3.5(6) 0,8288 0,1712 

LT3.5(7) 0,7092 0,2908 

LT3.5(8) 0,5513 0,4487 

LT3.5(9) 0,3822 0,6178 

LT3.5(10) 0,2376 0,7624 

LT3.5(11) 0,1357 0,8643 

LT3.5(12) 0,0733 0,9267 

LT3.5(13) 0,0383 0,9617 

LT3.5(14) 0,0197 0,9803 

LT3.5(15) 0,01 0,99 

 

LT3.6 V3.6(0) V3.6(1) 

LT3.6(1) 0,9937 0,0063 

LT3.6(2) 0,9912 0,0088 

LT3.6(3) 0,9878 0,0122 

LT3.6(4) 0,9831 0,0169 

LT3.6(5) 0,9766 0,0234 

LT3.6(6) 0,9676 0,0324 

LT3.6(7) 0,9554 0,0446 

LT3.6(8) 0,9388 0,0612 

LT3.6(9) 0,9166 0,0834 

LT3.6(10) 0,8874 0,1126 

LT3.6(11) 0,8496 0,1504 

LT3.6(12) 0,8019 0,1981 

LT3.6(13) 0,7437 0,2563 

LT3.6(14) 0,6754 0,3246 

LT3.6(15) 0,5986 0,4014 

LT3.6(16) 0,5166 0,4834 

LT3.6(17) 0,4338 0,5662 

LT3.6(18) 0,3545 0,6455 

LT3.6(19) 0,2824 0,7176 

LT3.6(20) 0,2201 0,7799 

LT3.6(21) 0,1682 0,8318 

LT3.6(22) 0,1266 0,8734 

LT3.6(23) 0,0941 0,9059 

LT3.6(24) 0,0693 0,9307 

LT3.6(25) 0,0507 0,9493 

LT3.6(26) 0,0369 0,9631 

LT3.6(27) 0,0267 0,9733 

LT3.6(28) 0,0193 0,9807 

LT3.6(29) 0,0149 0,9861 

LT3.6(30) 0,01 0,99 

 

LT3.7 V3.7(0) V3.7(1) 

LT3.7(1) 0,989 0,011 

LT3.7(2) 0,985 0,015 

LT3.7(3) 0,979 0,021 

LT3.7(4) 0,972 0,028 

LT3.7(5) 0,962 0,038 

LT3.7(6) 0,948 0,052 

LT3.7(7) 0,931 0,070 

LT3.7(8) 0,907 0,093 

LT3.7(9) 0,878 0,123 

LT3.7(10) 0,840 0,160 

LT3.7(11) 0,793 0,207 

LT3.7(12) 0,737 0,263 

LT3.7(13) 0,672 0,328 

LT3.7(14) 0,600 0,400 

LT3.7(15) 0,523 0,477 

LT3.7(16) 0,446 0,555 

LT3.7(17) 0,370 0,630 

LT3.7(18) 0,301 0,699 

LT3.7(19) 0,239 0,761 

LT3.7(20) 0,187 0,813 

LT3.7(21) 0,144 0,856 

LT3.7(22) 0,110 0,890 

LT3.7(23) 0,083 0,917 

LT3.7(24) 0,062 0,938 

LT3.7(25) 0,046 0,954 

LT3.7(26) 0,034 0,966 

LT3.7(27) 0,025 0,975 

LT3.7(28) 0,019 0,982 

LT3.7(29) 0,014 0,986 

LT3.7(30) 0,010 0,990 
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LT3.8 V3.8(0) V3.8(1) 

LT3.8(1) 0,972 0,028 

LT3.8(2) 0,951 0,049 

LT3.8(3) 0,9157 0,0843 

LT3.8(4) 0,8585 0,1415 

LT3.8(5) 0,7723 0,2277 

LT3.8(6) 0,6547 0,3453 

LT3.8(7) 0,5145 0,4855 

LT3.8(8) 0,372 0,628 

LT3.8(9) 0,2488 0,7512 

LT3.8(10) 0,1562 0,8438 

LT3.8(11) 0,0938 0,9062 

LT3.8(12) 0,0547 0,9453 

LT3.8(13) 0,0313 0,9687 

LT3.8(14) 0,0178 0,9822 

LT3.8(15) 0,01 0,99 

 

V3.1  V3.2     V3.3     V3.4     V3.5     V3.6     V3.7     V3.8     P3.1     LS3(0)   LS3(1)  

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,99 0,01 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,38 0,62 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,49 0,51 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,38 0,62 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,38 0,62 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,38 0,62 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,32 0,68 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,29 0,71 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,34 0,66 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,43 0,57 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,45 0,55 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,47 0,53 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,28 0,72 
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V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,44 0,56 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,31 0,69 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,43 0,57 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,34 0,66 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,25 0,75 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,44 0,56 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,45 0,55 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,38 0,62 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,46 0,54 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,34 0,66 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,33 0,67 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,32 0,68 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,38 0,62 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,34 0,66 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,32 0,68 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,33 0,67 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,21 0,79 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,32 0,68 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,27 0,73 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,29 0,71 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,32 0,68 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,32 0,68 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,31 0,69 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,18 0,82 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,47 0,53 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,42 0,58 
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V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,31 0,69 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,32 0,68 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,35 0,65 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,43 0,57 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,39 0,61 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,36 0,64 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,22 0,78 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,24 0,76 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,25 0,75 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,35 0,65 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,48 0,62 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,35 0,65 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,33 0,67 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,34 0,66 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,24 0,76 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,25 0,75 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,34 0,66 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,33 0,67 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,12 0,88 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,28 0,72 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,25 0,75 
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V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,18 0,82 

 V3.1(0)   V3.2(0)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,09 0,91 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,49 0,51 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,38 0,62 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,35 0,65 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,34 0,66 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,38 0,62 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,35 0,65 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,34 0,66 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,31 0,69 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,31 0,69 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,43 0,57 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,38 0,62 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,23 0,77 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,31 0,69 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,27 0,73 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,20 0,80 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,28 0,82 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,45 0,55 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,38 0,62 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,43 0,57 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,41 0,59 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,31 0,69 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,20 0,80 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,32 0,68 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,31 0,69 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,25 0,75 
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  V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,43 0,57 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,18 0,82 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,20 0,80 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(0)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,08 0,92 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,61 0,59 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,43 0,57 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,35 0,65 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,33 0,67 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,32 0,68 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,26 0,74 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,23 0,77 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,39 0,61 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,20 0,80 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,10 0,90 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,44 0,56 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,32 0,68 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,47 0,63 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,35 0,65 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,22 0,78 
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V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,45 0,55 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,31 0,69 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,08 0,92 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,25 0,75 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,35 0,65 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,30 0,70 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,11 0,89 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,28 0,72 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,23 0,77 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,22 0,78 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,12 0,88 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,24 0,76 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,11 0,89 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,15 0,85 

 V3.1(0)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,05 0,95 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,48 0,52 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,45 0,55 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,39 0,61 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,46 0,54 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,44 0,56 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,35 0,65 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,43 0,57 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,39 0,61 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,42 0,58 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,38 0,62 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,41 0,59 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,36 0,64 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,40 0,60 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,44 0,56 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,40 0,60 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,42 0,58 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,38 0,62 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,41 0,59 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,36 0,64 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,40 0,60 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,24 0,76 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,42 0,58 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,38 0,62 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,41 0,59 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,36 0,64 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,40 0,60 

 V3.1(1)   V3.2(0)   V3.3(0)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,24 0,76 
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V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,28 0,72 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,21 0,79 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,20 0,80 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,18 0,82 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,23 0,77 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,11 0,89 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,12 0,88 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(0)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,06 0,94 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,31 0,69 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,32 0,68 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,31 0,69 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,30 0,70 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,28 0,72 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,17 0,83 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,18 0,82 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,08 0,92 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,22 0,78 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,12 0,88 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,16 0,84 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,11 0,89 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,18 0,82 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,09 0,91 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,10 0,90 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(0)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,13 0,87 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(0)  0,35 0,65 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(0)   P3.1(1)  0,12 0,88 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(0)  0,13 0,87 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(0)   V3.8(1)   P3.1(1)  0,14 0,86 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(0)  0,15 0,85 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(0)   P3.1(1)  0,12 0,88 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(0)  0,13 0,87 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(0)   V3.7(1)   V3.8(1)   P3.1(1)  0,12 0,88 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(0)  0,27 0,73 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(0)   P3.1(1)  0,20 0,80 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(0)  0,21 0,79 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(0)   V3.8(1)   P3.1(1)  0,11 0,89 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(0)  0,22 0,78 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(0)   P3.1(1)  0,08 0,92 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(0)  0,10 0,90 

 V3.1(1)   V3.2(1)   V3.3(1)   V3.4(1)   V3.5(1)   V3.6(1)   V3.7(1)   V3.8(1)   P3.1(1)  0,01 0,99 
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Node 
LTv4.1 Probability 

 LT4.1(1)   0,0667 

 LT4.1(2)   0,0667 

 LT4.1(3)   0,0667 

 LT4.1(4)   0,0667 

 LT4.1(5)   0,0667 

 LT4.1(6)   0,0667 

 LT4.1(7)   0,0667 

 LT4.1(8)   0,0667 

 LT4.1(9)   0,0667 

 LT4.1(10)  0,0667 

 LT4.1(11)  0,0667 

 LT4.1(12)  0,0667 

 LT4.1(13)  0,0667 

 LT4.1(14)  0,0667 

 LT4.1(15)  0,0667 

  
Node 
LTv4.4 Probability 

 LT4.4(1)   0,0667 

 LT4.4(2)   0,0667 

 LT4.4(3)   0,0667 

 LT4.4(4)   0,0667 

 LT4.4(5)   0,0667 

 LT4.4(6)   0,0667 

 LT4.4(7)   0,0667 

 LT4.4(8)   0,0667 

 LT4.4(9)   0,0667 

 LT4.4(10)  0,0667 

 LT4.4(11)  0,0667 

 LT4.4(12)  0,0667 

 LT4.4(13)  0,0667 

 LT4.4(14)  0,0667 

 LT4.4(15)  0,0667 

 

Node 
LTv4.2 Probability 

 LT4.2(1)   0,0667 

 LT4.2(2)   0,0667 

 LT4.2(3)   0,0667 

 LT4.2(4)   0,0667 

 LT4.2(5)   0,0667 

 LT4.2(6)   0,0667 

 LT4.2(7)   0,0667 

 LT4.2(8)   0,0667 

 LT4.2(9)   0,0667 

 LT4.2(10)  0,0667 

 LT4.2(11)  0,0667 

 LT4.2(12)  0,0667 

 LT4.2(13)  0,0667 

 LT4.2(14)  0,0667 

 LT4.2(15)  0,0667 

  
Node 
LTv4.5 Probability 

 LT4.5(1)   0,0667 

 LT4.5(2)   0,0667 

 LT4.5(3)   0,0667 

 LT4.5(4)   0,0667 

 LT4.5(5)   0,0667 

 LT4.5(6)   0,0667 

 LT4.5(7)   0,0667 

 LT4.5(8)   0,0667 

 LT4.5(9)   0,0667 

 LT4.5(10)  0,0667 

 LT4.5(11)  0,0667 

 LT4.5(12)  0,0667 

 LT4.5(13)  0,0667 

 LT4.5(14)  0,0667 

 LT4.5(15)  0,0667 

 

Node 
LTv4.3 Probability 

 LT4.3(1)   0,0667 

 LT4.3(2)   0,0667 

 LT4.3(3)   0,0667 

 LT4.3(4)   0,0667 

 LT4.3(5)   0,0667 

 LT4.3(6)   0,0667 

 LT4.3(7)   0,0667 

 LT4.3(8)   0,0667 

 LT4.3(9)   0,0667 

 LT4.3(10)  0,0667 

 LT4.3(11)  0,0667 

 LT4.3(12)  0,0667 

 LT4.3(13)  0,0667 

 LT4.3(14)  0,0667 

 LT4.3(15)  0,0667 

  

  

  

Node Gp4.1 Probability 

G4.1(1) 0,5 

G4.1(2) 0,5 

  

  

Node Bp4.1 Probability 

B4.1(1) 0,02 

B4.1(2) 0,09 

B4.1(3) 0,33 

B4.1(4) 0,33 

B4.1(5) 0,23 
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LT4.1 V4.1(0) V4.1(1)  LT4.2 V4.2(0) V4.2(1) 

LT4.1(1) 0,990 0,010  LT4.2(1) 0,987 0,013 

LT4.1(2) 0,981 0,019  LT4.2(2) 0,976 0,024 

LT4.1(3) 0,964 0,036  LT4.2(3) 0,955 0,045 

LT4.1(4) 0,933 0,068  LT4.2(4) 0,919 0,081 

LT4.1(5) 0,878 0,123  LT4.2(5) 0,857 0,143 

LT4.1(6) 0,788 0,212  LT4.2(6) 0,759 0,241 

LT4.1(7) 0,659 0,342  LT4.2(7) 0,625 0,375 

LT4.1(8) 0,500 0,500  LT4.2(8) 0,468 0,532 

LT4.1(9) 0,342 0,659  LT4.2(9) 0,317 0,683 

LT4.1(10) 0,212 0,788  LT4.2(10) 0,197 0,803 

LT4.1(11) 0,123 0,878  LT4.2(11) 0,115 0,885 

LT4.1(12) 0,068 0,933  LT4.2(12) 0,064 0,936 

LT4.1(13) 0,036 0,964  LT4.2(13) 0,035 0,965 

LT4.1(14) 0,019 0,981  LT4.2(14) 0,019 0,981 

LT4.1(15) 0,010 0,990  LT4.2(15) 0,010 0,990 

 

LT4.3 V4.3(0) V4.3(1)  LT4.4 V4.4(0) V4.4(1) 

LT4.3(1) 0,992 0,008  LT4.4(1) 0,977 0,023 

LT4.3(2) 0,985 0,015  LT4.4(2) 0,959 0,041 

LT4.3(3) 0,971 0,029  LT4.4(3) 0,929 0,071 

LT4.3(4) 0,945 0,055  LT4.4(4) 0,878 0,123 

LT4.3(5) 0,897 0,103  LT4.4(5) 0,798 0,202 

LT4.3(6) 0,816 0,184  LT4.4(6) 0,685 0,315 

LT4.3(7) 0,692 0,308  LT4.4(7) 0,545 0,455 

LT4.3(8) 0,534 0,466  LT4.4(8) 0,397 0,603 

LT4.3(9) 0,368 0,632  LT4.4(9) 0,266 0,734 

LT4.3(10) 0,229 0,771  LT4.4(10) 0,166 0,834 

LT4.3(11) 0,131 0,869  LT4.4(11) 0,099 0,901 

LT4.3(12) 0,071 0,929  LT4.4(12) 0,057 0,943 

LT4.3(13) 0,038 0,962  LT4.4(13) 0,032 0,968 

LT4.3(14) 0,020 0,981  LT4.4(14) 0,018 0,982 

LT4.3(15) 0,010 0,990  LT4.4(15) 0,010 0,990 

 

LT4.5 V4.5(0) V4.5(1) 

LT4.5(1) 0,996 0,004 

LT4.5(2) 0,993 0,008 

LT4.5(3) 0,985 0,015 

LT4.5(4) 0,969 0,031 

LT4.5(5) 0,937 0,063 

LT4.5(6) 0,878 0,123 

LT4.5(7) 0,776 0,224 

LT4.5(8) 0,625 0,375 

LT4.5(9) 0,446 0,555 

LT4.5(10) 0,279 0,721 

LT4.5(11) 0,157 0,843 

LT4.5(12) 0,083 0,917 

LT4.5(13) 0,042 0,958 

LT4.5(14) 0,021 0,980 

LT4.5(15) 0,010 0,990 

 

G4.1      B4.1      P4.1(0)   P4.1(1)  

 G4.1(1)   B4.1(1)  0,95 0,05 

 G4.1(1)   B4.1(2)  0,92 0,08 

 G4.1(1)   B4.1(3)  0,53 0,47 

 G4.1(1)   B4.1(4)  0,10 0,90 

 G4.1(1)   B4.1(5)  0,05 0,95 

 G4.1(2)   B4.1(1)  0,21 0,79 

 G4.1(2)   B4.1(2)  0,20 0,80 

 G4.1(2)   B4.1(3)  0,12 0,88 

 G4.1(2)   B4.1(4)  0,07 0,93 

 G4.1(2)   B4.1(5)  0,01 0,99 
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V4.1     V4.2     V4.3     V4.4     V4.5     P4.1     LS4(0)   LS4(1)  

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(0)  0,999 0,001 

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(1)  0,490 0,510 

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(0)  0,470 0,530 

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(1)  0,430 0,570 

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(0)  0,480 0,520 

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(1)  0,460 0,540 

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(0)  0,420 0,580 

 V4.1(0)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(1)  0,320 0,680 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(0)  0,490 0,510 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(1)  0,410 0,590 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(0)  0,420 0,580 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(1)  0,330 0,670 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(0)  0,410 0,590 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(1)  0,340 0,660 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(0)  0,350 0,650 

 V4.1(0)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(1)  0,180 0,820 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(0)  0,490 0,510 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(1)  0,430 0,570 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(0)  0,420 0,580 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(1)  0,330 0,670 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(0)  0,410 0,590 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(1)  0,320 0,680 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(0)  0,310 0,690 

 V4.1(0)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(1)  0,220 0,780 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(0)  0,450 0,550 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(1)  0,300 0,700 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(0)  0,320 0,680 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(1)  0,210 0,790 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(0)  0,290 0,710 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(1)  0,130 0,870 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(0)  0,120 0,880 

 V4.1(0)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(1)  0,070 0,930 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(0)  0,490 0,510 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(1)  0,390 0,610 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(0)  0,380 0,620 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(1)  0,310 0,690 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(0)  0,460 0,540 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(1)  0,400 0,600 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(0)  0,300 0,700 

 V4.1(1)   V4.2(0)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(1)  0,200 0,800 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(0)  0,310 0,690 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(1)  0,210 0,790 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(0)  0,220 0,780 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(1)  0,170 0,830 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(0)  0,230 0,770 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(1)  0,170 0,830 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(0)  0,190 0,810 

 V4.1(1)   V4.2(0)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(1)  0,100 0,900 

 V4.1(1)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(0)  0,390 0,610 

 V4.1(1)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(0)   P4.1(1)  0,280 0,720 
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V4.1(1)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(0)  0,270 0,730 

 V4.1(1)   V4.2(1)   V4.3(0)   V4.4(0)   V4.5(1)   P4.1(1)  0,180 0,820 

 V4.1(1)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(0)  0,260 0,740 

 V4.1(1)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(0)   P4.1(1)  0,170 0,830 

 V4.1(1)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(0)  0,160 0,840 

 V4.1(1)   V4.2(1)   V4.3(0)   V4.4(1)   V4.5(1)   P4.1(1)  0,090 0,910 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(0)  0,250 0,750 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(0)   P4.1(1)  0,130 0,870 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(0)  0,140 0,860 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(0)   V4.5(1)   P4.1(1)  0,060 0,940 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(0)  0,150 0,850 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(0)   P4.1(1)  0,070 0,930 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(0)  0,080 0,920 

 V4.1(1)   V4.2(1)   V4.3(1)   V4.4(1)   V4.5(1)   P4.1(1)  0,010 0,990 

 

Node LTv5.2 Probability  Node LTv5.3 Probability  Node LTv5.4 Probability 

 LT5.2(1)   0,0667   LT5.3(1)   0,0667   LT5.4(1)   0,0667 

 LT5.2(2)   0,0667   LT5.3(2)   0,0667   LT5.4(2)   0,0667 

 LT5.2(3)   0,0667   LT5.3(3)   0,0667   LT5.4(3)   0,0667 

 LT5.2(4)   0,0667   LT5.3(4)   0,0667   LT5.4(4)   0,0667 

 LT5.2(5)   0,0667   LT5.3(5)   0,0667   LT5.4(5)   0,0667 

 LT5.2(6)   0,0667   LT5.3(6)   0,0667   LT5.4(6)   0,0667 

 LT5.2(7)   0,0667   LT5.3(7)   0,0667   LT5.4(7)   0,0667 

 LT5.2(8)   0,0667   LT5.3(8)   0,0667   LT5.4(8)   0,0667 

 LT5.2(9)   0,0667   LT5.3(9)   0,0667   LT5.4(9)   0,0667 

 LT5.2(10)  0,0667   LT5.3(10)  0,0667   LT5.4(10)  0,0667 

 LT5.2(11)  0,0667   LT5.3(11)  0,0667   LT5.4(11)  0,0667 

 LT5.2(12)  0,0667   LT5.3(12)  0,0667   LT5.4(12)  0,0667 

 LT5.2(13)  0,0667   LT5.3(13)  0,0667   LT5.4(13)  0,0667 

 LT5.2(14)  0,0667   LT5.3(14)  0,0667   LT5.4(14)  0,0667 

 LT5.2(15)  0,0667   LT5.3(15)  0,0667   LT5.4(15)  0,0667 

 

Node Gp5.1 Probability 

 G5.1(1)  0,5 

 G5.1(2)  0,5 

  

  

Node Bp5.1 Probability 

 B5.1(1)  0,01 

 B5.1(2)  0,05 

 B5.1(3)  0,36 

 B5.1(4)  0,32 

 B5.1(5)  0,26 

 

G5.1      B5.1      P5.1(0)   P5.1(1)  

 G5.1(1)   B5.1(1)  0,95 0,05 

 G5.1(1)   B5.1(2)  0,92 0,08 

 G5.1(1)   B5.1(3)  0,53 0,47 

 G5.1(1)   B5.1(4)  0,10 0,90 

 G5.1(1)   B5.1(5)  0,05 0,95 

 G5.1(2)   B5.1(1)  0,27 0,73 

 G5.1(2)   B5.1(2)  0,20 0,80 

 G5.1(2)   B5.1(3)  0,11 0,89 

 G5.1(2)   B5.1(4)  0,08 0,92 

 G5.1(2)   B5.1(5)  0,01 0,99 
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LT5.1 V5.1(0) V5.1(1) 

LT5.1(1) 0,9929 0,0071 

LT5.1(2) 0,9914 0,0086 

LT5.1(3) 0,9896 0,0104 

LT5.1(4) 0,9874 0,0126 

LT5.1(5) 0,9847 0,0153 

LT5.1(6) 0,9815 0,0185 

LT5.1(7) 0,9776 0,0224 

LT5.1(8) 0,9729 0,0271 

LT5.1(9) 0,9673 0,0327 

LT5.1(10) 0,9606 0,0394 

LT5.1(11) 0,9525 0,0475 

LT5.1(12) 0,9429 0,0571 

LT5.1(13) 0,9314 0,0686 

LT5.1(14) 0,9179 0,0821 

LT5.1(15) 0,902 0,098 

LT5.1(16) 0,8834 0,1166 

LT5.1(17) 0,8618 0,1382 

LT5.1(18) 0,8369 0,1631 

LT5.1(19) 0,8086 0,1914 

LT5.1(20) 0,7766 0,2234 

LT5.1(21) 0,741 0,259 

LT5.1(22) 0,702 0,298 

LT5.1(23) 0,6597 0,3403 

LT5.1(24) 0,6147 0,3853 

LT5.1(25) 0,5677 0,4323 

LT5.1(26) 0,5195 0,4805 

LT5.1(27) 0,4708 0,5292 

LT5.1(28) 0,4227 0,5773 

LT5.1(29) 0,3761 0,6239 

LT5.1(30) 0,3316 0,6684 

LT5.1(31) 0,2899 0,7101 

LT5.1(32) 0,2515 0,7485 

LT5.1(33) 0,2167 0,7833 

LT5.1(34) 0,1855 0,8145 

LT5.1(35) 0,1578 0,8422 

LT5.1(36) 0,1336 0,8664 

LT5.1(37) 0,1127 0,8873 

LT5.1(38) 0,0946 0,9054 

LT5.1(39) 0,0792 0,9208 

LT5.1(40) 0,0661 0,9339 

LT5.1(41) 0,0551 0,9449 

LT5.1(42) 0,0458 0,9542 

LT5.1(43) 0,038 0,962 

LT5.1(44) 0,0315 0,9685 

LT5.1(45) 0,026 0,974 

LT5.1(46) 0,0215 0,9785 

LT5.1(47) 0,0178 0,9822 

LT5.1(48) 0,0147 0,9853 

LT5.1(49) 0,0121 0,9879 

LT5.1(50) 0,01 0,99 

 

Node LTv5.1 Probability 

 LT5.1(1)   0,02 

 LT5.1(2)   0,02 

 LT5.1(3)   0,02 

 LT5.1(4)   0,02 

 LT5.1(5)   0,02 

 LT5.1(6)   0,02 

 LT5.1(7)   0,02 

 LT5.1(8)   0,02 

 LT5.1(9)   0,02 

 LT5.1(10)  0,02 

 LT5.1(11)  0,02 

 LT5.1(12)  0,02 

 LT5.1(13)  0,02 

 LT5.1(14)  0,02 

 LT5.1(15)  0,02 

 LT5.1(16)  0,02 

 LT5.1(17)  0,02 

 LT5.1(18)  0,02 

 LT5.1(19)  0,02 

 LT5.1(20)  0,02 

 LT5.1(21)  0,02 

 LT5.1(22)  0,02 

 LT5.1(23)  0,02 

 LT5.1(24)  0,02 

 LT5.1(25)  0,02 

 LT5.1(26)  0,02 

 LT5.1(27)  0,02 

 LT5.1(28)  0,02 

 LT5.1(29)  0,02 

 LT5.1(30)  0,02 

 LT5.1(31)  0,02 

 LT5.1(32)  0,02 

 LT5.1(33)  0,02 

 LT5.1(34)  0,02 

 LT5.1(35)  0,02 

 LT5.1(36)  0,02 

 LT5.1(37)  0,02 

 LT5.1(38)  0,02 

 LT5.1(39)  0,02 

 LT5.1(40)  0,02 

 LT5.1(41)  0,02 

 LT5.1(42)  0,02 

 LT5.1(43)  0,02 

 LT5.1(44)  0,02 

 LT5.1(45)  0,02 

 LT5.1(46)  0,02 

 LT5.1(47)  0,02 

 LT5.1(48)  0,02 

 LT5.1(49)  0,02 

 LT5.1(50)  0,02 

 

LT5.2 V5.2(0) V5.2(1) 

LT5.2(1) 0,982 0,018 

LT5.2(2) 0,967 0,033 

LT5.2(3) 0,940 0,060 

LT5.2(4) 0,895 0,105 

LT5.2(5) 0,822 0,178 

LT5.2(6) 0,715 0,285 

LT5.2(7) 0,576 0,424 

LT5.2(8) 0,424 0,576 

LT5.2(9) 0,285 0,715 

LT5.2(10) 0,178 0,822 

LT5.2(11) 0,105 0,895 

LT5.2(12) 0,060 0,940 

LT5.2(13) 0,033 0,967 

LT5.2(14) 0,018 0,982 

LT5.2(15) 0,010 0,990 

 

LT5.3 V5.3(0) V5.3(1) 

LT5.3(1) 0,992 0,008 

LT5.3(2) 0,985 0,015 

LT5.3(3) 0,971 0,029 

LT5.3(4) 0,945 0,055 

LT5.3(5) 0,897 0,103 

LT5.3(6) 0,816 0,184 

LT5.3(7) 0,692 0,308 

LT5.3(8) 0,534 0,466 

LT5.3(9) 0,368 0,632 

LT5.3(10) 0,229 0,771 

LT5.3(11) 0,131 0,869 

LT5.3(12) 0,071 0,929 

LT5.3(13) 0,038 0,962 

LT5.3(14) 0,020 0,981 

LT5.3(15) 0,010 0,990 

 

LT5.4 V5.4(0) V5.4(1) 

LT5.4(1) 0,972 0,028 

LT5.4(2) 0,951 0,049 

LT5.4(3) 0,916 0,084 

LT5.4(4) 0,859 0,142 

LT5.4(5) 0,772 0,228 

LT5.4(6) 0,655 0,345 

LT5.4(7) 0,515 0,486 

LT5.4(8) 0,372 0,628 

LT5.4(9) 0,249 0,751 

LT5.4(10) 0,156 0,844 

LT5.4(11) 0,094 0,906 

LT5.4(12) 0,055 0,945 

LT5.4(13) 0,031 0,969 

LT5.4(14) 0,018 0,982 

LT5.4(15) 0,010 0,990 
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V5.1     V5.2     V5.3     V5.4     P5.1     LS5(0)   LS5(1)  

 V5.1(0)   V5.2(0)   V5.3(0)   V5.4(0)   P5.1(0)  0,99 0,01 

 V5.1(0)   V5.2(0)   V5.3(0)   V5.4(0)   P5.1(1)  0,40 0,60 

 V5.1(0)   V5.2(0)   V5.3(0)   V5.4(1)   P5.1(0)  0,46 0,54 

 V5.1(0)   V5.2(0)   V5.3(0)   V5.4(1)   P5.1(1)  0,31 0,69 

 V5.1(0)   V5.2(0)   V5.3(1)   V5.4(0)   P5.1(0)  0,47 0,53 

 V5.1(0)   V5.2(0)   V5.3(1)   V5.4(0)   P5.1(1)  0,32 0,68 

 V5.1(0)   V5.2(0)   V5.3(1)   V5.4(1)   P5.1(0)  0,35 0,65 

 V5.1(0)   V5.2(0)   V5.3(1)   V5.4(1)   P5.1(1)  0,34 0,66 

 V5.1(0)   V5.2(1)   V5.3(0)   V5.4(0)   P5.1(0)  0,48 0,52 

 V5.1(0)   V5.2(1)   V5.3(0)   V5.4(0)   P5.1(1)  0,31 0,69 

 V5.1(0)   V5.2(1)   V5.3(0)   V5.4(1)   P5.1(0)  0,34 0,66 

 V5.1(0)   V5.2(1)   V5.3(0)   V5.4(1)   P5.1(1)  0,24 0,76 

 V5.1(0)   V5.2(1)   V5.3(1)   V5.4(0)   P5.1(0)  0,40 0,60 

 V5.1(0)   V5.2(1)   V5.3(1)   V5.4(0)   P5.1(1)  0,28 0,72 

 V5.1(0)   V5.2(1)   V5.3(1)   V5.4(1)   P5.1(0)  0,27 0,73 

 V5.1(0)   V5.2(1)   V5.3(1)   V5.4(1)   P5.1(1)  0,04 0,96 

 V5.1(1)   V5.2(0)   V5.3(0)   V5.4(0)   P5.1(0)  0,45 0,55 

 V5.1(1)   V5.2(0)   V5.3(0)   V5.4(0)   P5.1(1)  0,37 0,63 

 V5.1(1)   V5.2(0)   V5.3(0)   V5.4(1)   P5.1(0)  0,38 0,62 

 V5.1(1)   V5.2(0)   V5.3(0)   V5.4(1)   P5.1(1)  0,26 0,74 

 V5.1(1)   V5.2(0)   V5.3(1)   V5.4(0)   P5.1(0)  0,31 0,69 

 V5.1(1)   V5.2(0)   V5.3(1)   V5.4(0)   P5.1(1)  0,17 0,83 

 V5.1(1)   V5.2(0)   V5.3(1)   V5.4(1)   P5.1(0)  0,08 0,92 

 V5.1(1)   V5.2(0)   V5.3(1)   V5.4(1)   P5.1(1)  0,07 0,93 

 V5.1(1)   V5.2(1)   V5.3(0)   V5.4(0)   P5.1(0)  0,33 0,67 

 V5.1(1)   V5.2(1)   V5.3(0)   V5.4(0)   P5.1(1)  0,16 0,84 

 V5.1(1)   V5.2(1)   V5.3(0)   V5.4(1)   P5.1(0)  0,14 0,86 

 V5.1(1)   V5.2(1)   V5.3(0)   V5.4(1)   P5.1(1)  0,09 0,91 

 V5.1(1)   V5.2(1)   V5.3(1)   V5.4(0)   P5.1(0)  0,15 0,85 

 V5.1(1)   V5.2(1)   V5.3(1)   V5.4(0)   P5.1(1)  0,08 0,92 

 V5.1(1)   V5.2(1)   V5.3(1)   V5.4(1)   P5.1(0)  0,10 0,90 

 V5.1(1)   V5.2(1)   V5.3(1)   V5.4(1)   P5.1(1)  0,01 0,99 
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LS1     LS2     LS3     LS4     LS5     PL(0)   PL(1)  

 LS1(0)   LS2(0)   LS3(0)   LS4(0)   LS5(0)  0,90 0,10 

 LS1(0)   LS2(0)   LS3(0)   LS4(0)   LS5(1)  0,30 0,70 

 LS1(0)   LS2(0)   LS3(0)   LS4(1)   LS5(0)  0,30 0,70 

 LS1(0)   LS2(0)   LS3(0)   LS4(1)   LS5(1)  0,20 0,80 

 LS1(0)   LS2(0)   LS3(1)   LS4(0)   LS5(0)  0,25 0,75 

 LS1(0)   LS2(0)   LS3(1)   LS4(0)   LS5(1)  0,19 0,81 

 LS1(0)   LS2(0)   LS3(1)   LS4(1)   LS5(0)  0,17 0,83 

 LS1(0)   LS2(0)   LS3(1)   LS4(1)   LS5(1)  0,11 0,89 

 LS1(0)   LS2(1)   LS3(0)   LS4(0)   LS5(0)  0,26 0,74 

 LS1(0)   LS2(1)   LS3(0)   LS4(0)   LS5(1)  0,20 0,80 

 LS1(0)   LS2(1)   LS3(0)   LS4(1)   LS5(0)  0,23 0,77 

 LS1(0)   LS2(1)   LS3(0)   LS4(1)   LS5(1)  0,16 0,84 

 LS1(0)   LS2(1)   LS3(1)   LS4(0)   LS5(0)  0,26 0,74 

 LS1(0)   LS2(1)   LS3(1)   LS4(0)   LS5(1)  0,20 0,80 

 LS1(0)   LS2(1)   LS3(1)   LS4(1)   LS5(0)  0,18 0,82 

 LS1(0)   LS2(1)   LS3(1)   LS4(1)   LS5(1)  0,05 0,95 

 LS1(1)   LS2(0)   LS3(0)   LS4(0)   LS5(0)  0,22 0,78 

 LS1(1)   LS2(0)   LS3(0)   LS4(0)   LS5(1)  0,11 0,89 

 LS1(1)   LS2(0)   LS3(0)   LS4(1)   LS5(0)  0,15 0,85 

 LS1(1)   LS2(0)   LS3(0)   LS4(1)   LS5(1)  0,14 0,86 

 LS1(1)   LS2(0)   LS3(1)   LS4(0)   LS5(0)  0,27 0,73 

 LS1(1)   LS2(0)   LS3(1)   LS4(0)   LS5(1)  0,17 0,83 

 LS1(1)   LS2(0)   LS3(1)   LS4(1)   LS5(0)  0,16 0,84 

 LS1(1)   LS2(0)   LS3(1)   LS4(1)   LS5(1)  0,06 0,94 

 LS1(1)   LS2(1)   LS3(0)   LS4(0)   LS5(0)  0,28 0,72 

 LS1(1)   LS2(1)   LS3(0)   LS4(0)   LS5(1)  0,19 0,81 

 LS1(1)   LS2(1)   LS3(0)   LS4(1)   LS5(0)  0,20 0,80 

 LS1(1)   LS2(1)   LS3(0)   LS4(1)   LS5(1)  0,05 0,95 

 LS1(1)   LS2(1)   LS3(1)   LS4(0)   LS5(0)  0,15 0,85 

 LS1(1)   LS2(1)   LS3(1)   LS4(0)   LS5(1)  0,06 0,94 

 LS1(1)   LS2(1)   LS3(1)   LS4(1)   LS5(0)  0,05 0,95 

 LS1(1)   LS2(1)   LS3(1)   LS4(1)   LS5(1)  0,01 0,99 
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Appendix H: Independence checks 
Line segment 1 
(LS1 ⟂ G2.1, LT1.2, P5.1, LT3.7, B2.2, LT3.1, LT5.3, LT5.4, V3.6, LT3.2, V5.2, V4.5, LT3.3, B3.1, B4.1, V3.2, G1.1, 
V3.8, V4.3, LT5.1, V2.1, LT3.6, LS4, G3.1, V3.5, LT4.4, LS3, V5.4, B2.1, LT4.5, V3.7, V2.2, V3.3, LS2, LT2.2, V4.4, 
P2.2, LT4.3, G4.1, LT2.1, P2.1, LT4.2, B5.1, G2.2, P4.1, P3.1, V4.1, LT3.8, LT3.4, G5.1, LT3.5, B1.1, LT5.2, V3.1, 
LT4.1, V3.4, V5.1, LT1.1, V4.2, LS5, V5.3 | P1.1, V1.1, V1.2) 
 
Line segment 2 
(LS2 ⟂ G2.1, LT1.2, P1.1, P5.1, LT3.7, B2.2, LT3.1, LT5.3, LT5.4, V3.6, LT3.2, V5.2, V4.5, LT3.3, B3.1, B4.1, V3.2, 
G1.1, V3.8, V4.3, LT5.1, LS4, LT3.6, G3.1, V3.5, LT4.4, LS3, V5.4, B2.1, LT4.5, V3.7, V3.3, LT2.2, V4.4, LT4.3, G4.1, 
LT2.1, LT4.2, B5.1, G2.2, P4.1, P3.1, V4.1, LT3.8, LT3.4, LS1, G5.1, LT3.5, B1.1, LT5.2, V3.1, LT4.1, V3.4, V5.1, 
LT1.1, V4.2, V1.1, LS5, V5.3, V1.2 | V2.1, P2.1, V2.2, P2.2) 
 
Line segment 3 
(LS3 ⟂ G2.1, LT1.2, P1.1, P5.1, LT3.7, B2.2, LT3.1, LT5.3, LT5.4, LT3.2, V5.2, V4.5, LT3.3, B3.1, B4.1, G1.1, V4.3, 
LT5.1, V2.1, LS4, LT3.6, G3.1, LT4.4, V5.4, B2.1, LT4.5, V2.2, LS2, LT2.2, V4.4, P2.2, LT4.3, G4.1, LT2.1, P2.1, 
LT4.2, B5.1, G2.2, P4.1, V4.1, LT3.8, LT3.4, LS1, G5.1, LT3.5, B1.1, LT5.2, LT4.1, V5.1, LT1.1, V4.2, V1.1, LS5, 
V5.3, V1.2 | V3.1, V3.2, V3.3, V3.4, V3.5, V3.6, V3.7, V3.8, P3.1) 
 
Line segment 4 
(LS4 ⟂ G2.1, LT1.2, P1.1, P5.1, LT3.7, B2.2, LT3.1, LT5.3, LT5.4, V3.6, LT3.2, V5.2, LT3.3, B3.1, B4.1, V3.2, G1.1, 
V3.8, LT5.1, V2.1, G3.1, LT3.6, V3.5, LT4.4, LS3, V5.4, B2.1, LT4.5, V3.7, V2.2, V3.3, LS2, LT2.2, P2.2, LT4.3, G4.1, 
LT2.1, P2.1, LT4.2, B5.1, G2.2, P3.1, LT3.8, LT3.4, LS1, G5.1, LT3.5, B1.1, LT5.2, V3.1, LT4.1, V3.4, V5.1, LT1.1, 
V1.1, LS5, V5.3, V1.2 | V4.1, V4.2, V4.3, V4.4, V4.5, P4.1) 
 
Line segment 5 
(LS5 ⟂ G2.1, LT1.2, P1.1, LT3.7, B2.2, LT3.1, LT5.3, LT5.4, V3.6, LT3.2, V4.5, LT3.3, B3.1, B4.1, V3.2, G1.1, V3.8, 
V4.3, LT5.1, V2.1, LT3.6, LS4, G3.1, V3.5, LT4.4, LS3, B2.1, LT4.5, V3.7, V2.2, V3.3, LS2, LT2.2, V4.4, P2.2, LT4.3, 
G4.1, LT2.1, P2.1, LT4.2, B5.1, G2.2, P4.1, P3.1, V4.1, LT3.8, LT3.4, LS1, G5.1, LT3.5, B1.1, LT5.2, V3.1, V3.4, 
LT1.1, V4.2, V1.1, LT4.1, V1.2 | P5.1, V5.1, V5.2, V5.3, V5.4) 
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Appendix I: Mean Time Between Failure  
Start values of MTBF and verification of number of failures 
 

Component MTBF [hr] Start time MTBF  code Number of failures in synthetic dataset 

V1.1 3323:41:07 1723:00:00 2 

V1.2 586:31:58 380:00:00 8 

P1.1 4985:31:40 2485:00:00 1 

V2.1 4985:31:40 3285:00:00 1 

V2.2 4985:31:40 1885:00:00 1 

P2.1 4985:31:40 185:00:00 1 

P2.2 4985:31:40 3085:00:00 1 

V3.1 4985:31:40 2185:00:00 1 

V3.2 4985:31:40 2585:00:00 1 

V3.3 3323:41:07 3223:00:00 2 

V3.4 4985:31:40 2485:00:00 1 

V3.5 3323:41:07 2121:00:00 2 

V3.6 1107:53:42 107:00:00 4 

V3.7 4985:31:40 3485:00:00 1 

V3.8 767:00:15 167:00:00 6 

P3.1 4985:31:40 1185:00:00 1 

V4.1 4985:31:40 3885:00:00 1 

V4.2 4985:31:40 1185:00:00 1 

V4.3 4985:31:40 2785:00:00 1 

V4.4 4985:31:40 585:00:00 1 

V4.5 4985:31:40 4585:00:00 1 

P4.1 4985:31:40 1185:00:00 1 

V5.1 4985:31:40 285:00:00 1 

V5.2 4985:31:40 2285:00:00 1 

V5.3 4985:31:40 4685:00:00 1 

V5.4 3323:41:07 2623:00:00 2 

P5.1 4985:31:40 4385:00:00 1 
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Appendix J: Synthetic production planning 
Synthetic production planning example 
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