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"Gouverner, c’est prévoir | To govern is to foresee "
- Émile de Girardin
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Preface

Before we begin, I’d like to take you on a paradigm shift. The same paradigm shift Claudia
Sagastizabal took me on a year ago. Our shift takes us back to the year 1492, the year Christopher
Columbus changed the world as we know it. In the years previous to his discovery, the trade
with India flourished. Christopher, a man with a model, a very bad model, set voyage on a trip
to India by sailing West instead of East. In his model, knowing the world was round, he set out
to find a new route to India. Even though his model was a very bad one and he ended up in a
different continent, he changed the world. Sometimes a model, even a very bad one, is the only
thing we can hold on to in uncertain times.

Coming back from our paradigm shift, the model which will be discussed in this report is an
oversimplified version of reality. Though its exact outcomes will not tell us anything, the changes
we apply might tell us something about transient behaviour under certain circumstances. But
remember: It is a model, and nothing more.
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Symbol and abbreviation list

The following describes the major symbols and abbreviations used in the main text.

Symbol Definition
Alt Total factory productivity
b Constraint level
Bt Cost of a renewable (backstop) technology
B0 Initial cost of renewable (backstop) technology in 2010
ct Per capita consumption
Ct Total consumption
db Initial decline rate of backstop technology cost
ds Search direction
Et Total emission
Eeind,t Industrial emissions
Etree,t Emissions from deforestation
f∗t (SoWt) The optimal accumulated return function
ft(SoWt) The accumulated return function
f(x) Objective function
F (x) Objective function
Ft Increase in radiative forcing since 1900 at stage t
Fex,t Exogenous forcing from other greenhouse gasses at stage t
g(x) Inequality constraints
Gt(SoWt, xt) Transformation between states
GA0 Initial growth rate of technological development
h(x) Equality constraints
i Scenario or series
It Invested amount at stage t
j Series
k iteration counter
Kt Capital stock
Lt Population or labour inputs
Matm,t Carbon-concentration in the atmosphere
Mlo,t Carbon-concentration in lower ocean
Mup,t Carbon-concentration in upper ocean
n Node in the decision tree or evaluated scenarios per stage
N Set of non-anticipativity constraints
N Set of non-leaf nodes in the scenario tree
pi Probability of scenario i
Padj Projected growth rate of the population till 2050
Pasym Asymmetric boundary of pollution
Pt Fraction of emissions in control regime
Q Quantity
Q(SoWT+1) Last stage return
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Qt(x,Ξ) Value(function) of stage t
Qt(x, ξ) Approximated value(function) of stage t
r Reduced gradient
rs Reduced gradient in search direction
Rt Discount rate
S Number of evaluated scenarios
St Gross savings rate as a fraction of gross world output
SoWt State of the world at period t
SoWt+1 State of the world at period t+1
t Time
T Programming horizon
T2xCO2 Climate sensitivity parameter
Tatm,t Atmospheric temperature increase since 1900 at stage t
Tocean,t Oceanic temperature increase since 1900 at stage t
T2xCO2 Transient sensitivity at equilibrium
u multiplier
Ut Utility
Usp Accumulated utility of EICE
Usa Scenario analysis averaged accumulated utility of DICE
V Return or value function
W Accumulated social welfare
Ygross,t Gross economic output
Yt Economic output
x Decision variable
xb Basic decision variables
xn Non-basic decision variables
xt Decision variable at stage t
X Feasible region
z Objective
α Elasticity of marginal utility
δga0 Decline of the growth rate of technology development
δK Depreciation of accumulated capital
η Forcings of equilibrium doubling CO2-concentrations
γ Elasticity of output
ρ Pure rate of social time preference
µt Amount of abatement / Emission control rate at stage t
θ Exponent of the cost control function
φ·,· Carbon flow constants
φ· Separation sub-functions
Φ Separation function
ξ Realisation of uncertainty/ of the random variable
Ξ Uncertainty (random variable) also used as the set of all realisation
ζ1 Climate response of the atmosphere
ζ2 Heat transfer between upper and lower stratum
ζ3 Heat transfer between for the lower ocean
ζ10 Initial value of ζ1
ζβ Regression coefficient for ζ1
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Abbreviation Definition
BATNEEC Best available technology not entailing excessive costs
CO2 Carbon dioxide
COP21 Conference of Parties 21
D20 DICE model with time steps of twenty years
D20E(·) D20 with a climate sensitivity parameter of (·)
D5 DICE model with time steps of five years
DICE Dynamic Integrated model for Economics and Climate
DP Dynamic programming
EICE Extended Integrated model for Economics and Climate
GAMS General Algebraic Modelling System
IPCC Intergovernmental Panel on Climate Change
MC Monte Carlo (approximation)
NLP Nonlinear programming
SP20(·) EICE with (·) evaluated stochastic stages
SP20(·)u EICE with (·) evaluated stochastic stages and a uniform distribution
SP20x(·) EICE with (·) evaluated realisations
VSL Value of statistical life
VSS Value of stochastic solution
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Summary

The decision is made to act upon climate change. The remaining question is: "How?". Based on
economic theory, the transition to a carbon-neutral society is most efficient through market-based
policies. These policies are partially based on Integrated Assessment Models (IAM), which
combine the long term economics of climate change with a climate model. The model used
in this study is the "Dynamic Integrated model of Climate and the Economy" (DICE) by W.
Nordhaus. This influential model is heavily debated. One of the main objections is the exclusion
of uncertainty. The influence of uncertainty is debated as some researchers even suggest that it
marginalises the entire field of IAM. The focus of this study is on the inclusion of an uncertain
climate response, represented by the climate sensitivity parameter. Showing the influence of this
asymmetrically distributed parameter on the results of DICE is the subject of this thesis. The
accompanying research question is:

"How does the advised mitigation policy by DICE respond to the influence of an uncertain
climate sensitivity parameter?"

The uncertainty is modelled as exogenous, so it influences the decision at each stage. The
uncertainty remains unknown to the decision-maker until a policy is decided upon. The result-
ing stochastic programming model continuously evaluates three scenarios at each of the eight
stochastic stages. After these stages, the model evaluates seven more deterministic ones to show
the effect of a far horizon (2300). The new version is named the "Extended Integrated model for
Climate and Economy" (EICE) as it explicitly states all possible scenarios. EICE is subjected
to four cases, representing the current understanding, a more extreme case and both cases at a
higher level of uncertainty.

The conclusion from comparing these cases is that the model is sensitive to the distribution
of the climate sensitivity parameter. In case of a more asymmetric (a.k.a. fatter) distribution,
the model advices upon a stricter policy. Based on these cases, no instantaneous transition is
required, as some literature suggests, as economic damages are within a few percent of the world
gross output. In extend, it is found that EICE suggests a less strict mitigation policy than DICE.
This underestimation is again a product of the inability to represent catastrophic damage.

From these findings can be concluded that the proposed mitigation policy by DICE does respond
to the shape of the probability function. The fatter this distribution becomes, the stricter the
advised policy. Decision makers following the current interpretation of climate science should
follow the presented policy by DICE based on the findings of EICE. More risk averse policy
makers can use the sensible, but more extreme case to justify their actions. Furthermore, as
EICE is found to be less conservative than DICE, as a result of a damage function that is unable
to represent extreme damages, it is advised to further explore policies which keep this notion in
mind.
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Chapter 1

Introduction to Climate Mitigation
Policy

"We need to act!" - Barack Obama[52]. When it comes to climate change, the decision is made to
act. The remaining question is: "How?", "How to act with respect to the complex mechanics
binding an uncertain social-economic future and possibly an even more uncertain climate sys-
tem?". In order to formulate an answer to this question, policy makers may call upon scientists
to help weigh different policies. These climate mitigation policies are often (partially) based
on integrated assessment models. The goal of such a model is to evaluate economic activity
with respect to its effects on the environment. Their political relevance, their vast oversim-
plifications and inherent uncertainties make these models the subject of an ongoing debate[19][80].

This debate is the subject of this thesis. Before going into the discussion, this chapter starts
with a rough time line of important climate science and policy moments. Sequentially, possible
methods for formulating a policy are discussed. How these policies are implemented is (often)
based on integrated assessment models. The model central to this thesis is DICE, which is
introduced in section 1.3. This introduction is followed by an elaboration of its shortcomings in
section 1.4. State-of-the-art methods for handling these shortcomings and their limitations are
the subject of section 1.5. In line with these shortcomings of the model and the presented gaps
in literature, a research question is formulated in section 1.6. The chapter ends with an outline
of the rest of the chapters.

1.1 The rise of climate science

In 1824, the French scientist Jean Baptiste Fourier hypothesised that since the earth heats up
under the influence of solar radiation and does not cool down to the absolute zero in its absence,
it needed to store the energy, making it neither too hot nor too cold[28]. In 1896, the Swedish
scientist Svante Arrhenius extended this idea by hypothesising that an increase of the carbon
dioxide (CO2) concentration in the atmosphere, due to carbon emissions, might influence its
insulating properties and that the increased insulation may then result in an increase in the
earth’s overall temperature[4].

Since the time of Fourier, the atmospheric CO2-concentration has increased from 280 ppm to
over 400 ppm. This has resulted in a record breaking global average temperature increase of
0.99◦C in 2016 since the reference temperature of 1880[46]. It is widely accepted within academic
literature that this increase is (at least partially) a result of anthropogenic emissions. This
conclusion is based on the changes since 1950 presented in figure 1.1. These changes have been
labelled as unprecedented over decades to millennia, letting the Intergovernmental Panel on
Climate Change [IPCC] to conclude that: "Human influence in the climate system is clear"[53].

8



The IPCC further concludes that continued emission of greenhouse gasses will cause further
warming and long-lasting changes to the climate system, increasing the likelihood of extreme
events (i.e. heat waves, droughts, floods, cyclones and wildfires[53]). To minimise the extent of
possible climate damage in the future, emissions have to be reduced.

Figure 1.1: The increase of CO2 in the atmosphere reconstructed paleo-archives[48]

The questions: "What percentage of future emissions should be reduced?", "What is the influence
of these anthropogenic emissions?" and "What would be the result of these emissions?" are the
subjects of an ongoing debate. The first major steps in solving these questions were made in the
post-World War II era, when the advances in atmospheric science and the possibility of computer
simulations led to the first World Climate Conference in 1979. During this conference, over 350
specialists gathered, resulting in data exchange programs, research programs and impact study
alliances. Since then, a vast amount of conferences have been held. Important pinpoints on the
timeline of climate change policy are listed as follows: 1. the foundation of the IPCC in 1987, 2.
the Toronto Conference in 1988; which was the first to call upon actors to take specific actions
to reduce the impending crisis caused by the pollution of the atmosphere, 3. the second World
Climate conference in 1990, which set the basis for the earth Rio summit in 1992 and its "Rio
Declaration on Environment Development", 4. the first conference of parties in 1995, 5. the
conference regarding the Kyoto Protocol in 1997 and speeding up to 2015: 6. the Conference
of Parties 21 (COP21) in Paris. COP21 resulted in a binding agreement of 195 nations to
invest towards a carbon low future and steer to stay below a global average atmospheric surface
temperature increase of two degrees Celsius with respect to pre-industrial levels. Following this,
they promised to invest 100 billion U.S. dollars before 2020[74].1

1.2 Climate policy

In line with the previously stated questions, the question regarding this 100 billion U.S. dollars,
is: "What is the most efficient policy for this transition?". Naturally, multiple approaches
can be considered. Traditionally, standards (i.e. fuel quality, emission and environmental

1which is a factor of four lower than the yearly amount invested in fossil fuel production by the G20[75] and a
factor of six lower than the yearly expenditure on military by the U.S. government[66]
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quality standards) are used in environmental regulations to steer technology. These standards
are commonly based on the current best available technology not entailing excessive costs
(BATNEEC)[54]. A drawback to this approach is that it does not encourage continuous emissions
reductions, something that can be accomplished by levying a tax. By setting a tax equal to
the cost of CO2 emissions to society, companies would have an incentive to invest in emission
reductions and reduce the deadweight loss of overproduction as depicted in figure 1.2. In this
figure, a supply-demand curve is presented. Here, the price of fossil fuel based products is
depicted in red. Under these price conditions the amount of Q1 will be produced. As this price
only takes the private value into account, it does not represent the "real" cost to society. This
lower price results in an overconsumption of Q1 −Q2. The additional consumption results in the
deadweight loss arched in red. By levying a tax, the supply curve is lifted and a new equilibrium
settles at point B, the socially optimal market equilibrium[44].

Figure 1.2: Social optimum as a result of levying a Pigouvian tax, thereby reducing the deadweight loss
of overproduction[44]

Economic theory states that such an approach, one trough market-based policies, is the most
efficient approach to combat climate change. Examples of relevant market-based policy tools
are pollution taxes, transferable permits and subsidies.2 Only (Pigouvian) pollution taxes have
shown to reduce the link between the gross domestic product and emissions and are therefore
the preferred solution[28][68]. The goal of such policies is to remove the disturbance from the
market.

In the field of economics, climate change is seen as a market failure. It represents both a negative
externality and an overuse of a common property resource.3 [68] A negative externality arises
when the production of a certain good has, in addition to its private cost, a negative effect on
(public) social goods[28]. The goal of a pollution tax is to internalise these externalities.

An unregulated market for fossil fuels only includes private costs and neglects externalities. Such
a market thus does not provide a social optimum as shown in figure 1.2.4 A pollution tax, or
carbon tax, internalises the damage done to the system based on a per unit tax. By levying a
tax, firms are forced to operate at the point where their marginal abatement cost equals the set
carbon tax[54]. As a result, firms emit less and a social optimum is achieved.

2From a political point of view introducing a tax or designing a complex system with transferable permits might
be less preferable than providing subsidies to develop a backstop technology or to set standards that increase
efficiency. The drawback to this is that the capital required for the subsidy cost at the cost of other commodities.
Due to these shortcomings subsidies in further context will not be reviewed. Nonetheless a positive Pigouvain tax
could be given to the CO2-free technology

3The market failure of common property resource is not relevant to the further discussion and thus is left out
of the further explanation, for more information see[28]

4In an optimal policy the carbon price equals the social cost of carbon[49].
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By levying a tax to, for example, the fossil-fuel-based electricity, electricity produced by a
backstop technology could tilt the market into renewable technologies. Additionally, the overall
higher prices will give the consumers an incentive to reduce energy consumption. The raised
funds, as a result of the tax, could be used to invest in the development of a backstop technology
or to lower the financial burden of consumers[54].

The main question that climate-policy-makers face is the optimal level of the (global) carbon
tax. To answer this question, economists generally make use of integrated assessment models
that combine economic and climate cycles (e.g. Nordhaus[51], Stern[68]). These models are
either used to evaluate a certain policy or to optimise it[49][19]. This thesis will focus on the
optimisation of a climate mitigation policy and thus will use the latter.

Central to this thesis is the Dynamic Integrated model for Economics and Climate (DICE) by
W. Nordhaus. This seminal integrated assessment model is an optimisation model and will be
used for the optimisation of a certain carbon tax. Even though DICE is known as the standard
Integrated Assessment Model, it is heavily debated[80][70][17]. The following section will further
introduce this model after which the subsequent section elaborates on the discussion regarding
its validity.

1.3 The Dynamic Integrated model for Economics and Climate

The idea behind DICE is to advise on a climate mitigation policy by combining the knowledge
of (environmental) economics and climate science.5 The goal of this model is to advise on an
investment (or tax) policy, which optimises intergenerational welfare. It does this from the
perspective of neoclassical growth theory[49].

In the standard neoclassical framework, the economy invests in technology and capital at the
cost of current consumption. DICE adds to this by valuing the climate system. In the model,
emissions from economic activity are included as negative capital. The amount of negative capital
can be reduced, or completely avoided, by investing in fossil free backstop technologies. Thereby,
reducing the current consumption, but increasing the long-term-welfare. The interlinking of
these steps is visualised in figure 1.3[49].

In order to capture the effects of long term damage, the model is simulated over a period of
300 years. To keep the number of computations limited, the model assumes globally aggregated
relations between the economic and climate variables[49].

By approximating (and oversimplifying) the major economic and climate relations, the model
has the ability to estimate an optimal carbon tax, while describing climate-economic mechanics
in a comprehensible manner. The ease with which the open access model can be (parametrically)
altered, makes it an ideal model to bringing multiple fields relevant to the energy transition
together, but is also cause for discussion[71].

5Remark: Since the early 90s, there have been multiple versions of DICE. This study will focus on the 2013R
version of the model (revisions of earlier models can be found in the DICE103113r2 manual together with a
more detailed elaboration of the current model [49]). This report will specifically focus the optimal form of the
DICE vanilla GAMS version. This implies that the model will follow the optimal utility path which results from
dynamically solving stage-wise relations. In addition to this, the focus will be on the theoretical relations provided
in the manual instead of the practical relations used in the GAMS model. For a full description of the model and
the original GAMS code, see appendix A.
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Figure 1.3: A visual representation of the interlinking modules within in DICE[49]

Furthermore, the model is of scientific interest for its political relevance. As, for example the
United States Environmental Protection Agency, the environmental agency of the number two
emitter, uses the model as an advisement tool, its scientific soundness is of the utmost importance.

1.4 Criticism on the DICE model

The use of DICE and other integrated assessment models is the matter of an ongoing debate. In
addition to the standard ethical arguments against cost-benefit methods (i.e. the monetisation
of human lives), these abridged models cover highly uncertain dynamics. In DICE, these un-
certainties are not included and all results are based on mean-valued parameters. The result
therefore consist of a single output and suggests a level of knowledge and precision that can be
offsetting[56]. It is this uncertainty that will be the subject of this thesis.

As shown by various researchers (e.g. Stern[68], Traeger[70] and Pindyck[56]), the economics of
climate change are very uncertain. This uncertainty has both normative and empirical roots,
spanning from socio-economic factors to those of climate science. One of these socio-economic
factors is a result of the assumption that climate damage mostly influences future generations.
This makes the welfare of future generations of major importance to a proper policy[29]. The
level of their welfare (partially) depends on the development of technology and the impact of
current emissions, resulting in a fundamentally uncertain future. This fundamentally uncertain
future makes it challenging to formulate a proper policy. To make matters worse, it is hard (or
even impossible) to predict how society would respond to damages. For example, In the case of
a rising sea level a response could be to either resort to geo-engineering or to migrate, of which
both options could be executed in a well organised or more disruptive manner, making future
damages unquantifiable and therefore the future even more uncertain[30].
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As there is no empirical support for estimating the rise of the sea level, the development of tech-
nology nor the level of welfare overall, discounting these future generations becomes (even more
than normal) a discussion on ethical grounds, as it can no longer be based on observations[30].
DICE enables this discussion by making the pure rate of time preference (i.e. the weight given
to future generations) and the marginal utility of consumption (i.e. the aversion to inequality
between generations), two of the many parameters that can be easily altered in the (open-source)
model. Stern argues that based on ethical grounds this rate should be close to zero[68].67 This
assumption results in a ten times higher carbon price than suggested by Nordhaus, showing the
sensitivity of the model to the modellers preference.

The evaluation of the discount rate or other exogenous parameters is very well suited for an
approach called uncertainty propagation (a.k.a. scenario analysis, sensitivity analysis, Monte
Carlo analysis or ex ante analysis). Here, the optimisation model is executed over a large number
of possible parameter combinations. The results of these simulations may be combined in a
weighted-average if a probability distribution is known[24]. This Monte Carlo type of approach
is very popular in literature (i.g. Nordhaus[50], Dietz[21] and Ackerman[1]) and is appropriate
for the discount factor when it is approached as a normative parameter.

For empirical, endogenous, uncertain parameters this method is less well suited. Whereas the
discount rate can be seen as a product of the modellers preference, parameters defining climate
damage, technological development and the overall response of the climate are defined by the real
physical world[29]. These endogenous uncertainties materialise over time, but are unknown at
the moment a policy is implemented. Therefore their probability distribution directly influences
the decision making at each stage in time. This is different from a Monte Carlo type of approach
where only a single realisation is evaluated at each stage[17]. The distinction between the two
types of uncertainty is shown in figures 1.4 and 1.5. From figure 1.4 it is clear that endogenous
uncertainty, visualised as multiple outcomes as a result of decision x, is experienced by the
modeller at the time (t, . . . , T ) of execution. Here, the modeller is able to optimise the expected
value of the problem instead of the average value of the problem, as in a Monte Carlo type of
approach.

Figure 1.4: A stochastic tree describing the process of learning about uncertainty at times t, . . . , T and
making decisions xt, . . . , xT −1 in regard to the knowledge at that time.

Due to this influence the endogenous approach is more risk averse, as shown in figure 1.6. This
figure shows that an ex ante (Monte Carlo) approach underestimates the abatement rate in

6these two components which together with the consumption growth rate make up the discount factor[49]
7No scaling is needed when altering the variables, unlike for example the size of the time steps.
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Figure 1.5: A stochastic tree describing scenario based decision making.

regard to the expected (expected draw) and endogenous approach (sim. 95% CI).

Figure 1.6: A comparison of the abatement rate in DICE between a deterministic expected approach
(red), an ex ante approach (blue) and a stochastic approach with endogenous uncertainty
(intermittent - black), showing the under estimation of the ex ante approach[16].

For this reason endogenous uncertainty is taken as the focus of this study. More specifically, the
focus is on the endogenous uncertainty in the climate response since no quantitative estimates
can be made regarding the resulting damage or the development of technology[30].8

As common in integrated assessment literature, DICE uses a climate sensitivity parameter to
represent the response of the climate system to an increase in carbon concentration[80]. More
specifically the climate sensitivity is defined to be: "the equilibrium temperature increase due to
a doubling of CO2 concentration in the atmosphere"[2]. In the DICE2013R model, the climate
sensitivity parameter is set to be 2.9. Studies based on both palaeo-historical records, climate
simulations and observed temperature deviations found a probability distribution that peaks

8An approach to study the influence of these unquantifiable uncertainties is by studying the possibility of
climate tipping points (e.g. [14], [12], [65] ). The same methodology could be used to simulate technological leaps.
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around the same value, but skewed with a very long tail. Overall the distribution spans from
extremely low probabilities that the climate sensitivity would be lower than 1◦C and low proba-
bilities that it would be higher than 6◦C, as presented in figure 1.7[62][53]. Within the scientific
community there is a rough consensus that damage up to 3◦C will be relatively moderate. Above
that, only few quantitative estimates are available[53]. With a slight possibility that the global
average temperature increases with 6◦C or more, this asymmetric (fat tail) distribution imposes
the problem of catastrophic events.

Figure 1.7: Estimations of the climate sensitivity parameter, with A: an estimation based on paleo-
reconstructions using data from 1850 up to 2006, with B: a reconstruction based on instru-
mentally measured data from 1950 t0 2000 and with C: a combined estimation based on A
and B[31].

Weitzman argues that the possibility of these extreme events possibly alters the provided answers
to the questions stated in sections 1.1 and 1.2. His argument is based on the analogy with a
standard cost-benefit analysis based policy, in which the value of a statistical life (VSL) highly
influences the advised policy. In case of possible catastrophes, which are defined to be: " events
with a very low probability of materialising, but when they do will produce a harm so great and
sudden as to seem discontinuous with the flow of events that proceed it"[58], potentially unlimited
downside exposure might occur. In the case of an integrated assessment model, such a VSL-like
parameter thus represents: "something of the order of a catastrophic extinction of a civilisation
or the value of the natural world as we know it"[80]. In case this parameter approaches an
infinitely high value, no matter how small the risk, society would be infinitely willing to exchange
today’s consumption for the futures avoided cost[34]. This idea is summarised in the following
theorem[80].

Dismal theorem: If the value of a statistical life (representing the rate of substitution
of consumption and the mortality risk of a catastrophic extinction of civilisation)
approaches infinity, then the amount of present consumption the current society
would be willing to give up in the present time to obtain an additional sure unit of
consumption in the future would also approach infinity.

The asymmetrical distribution of the climate sensitivity parameter is a product of measurement
errors and the accumulation of fundamental uncertainty regarding feedback loops. As these
measurement errors are based on Bayesian learning, it is estimated the real value of the climate
sensitivity parameter does not become certain this century[56]. Therefore, no learning regarding
this parameter is assumed during this thesis.

The effects of feedback-loops will be examined according to their level of uncertainty. Feedback
loops are processes like the thawing of the permafrost, the increase of water vapour in the
atmosphere and the melting of the ice caps. These process may influence the current climate
equilibrium[53]. Just as in a mechanical process, certain feedbacks can have a(n) (negative) influ-
ence on the stability of the process. And as in these mechanical processes, some climate feedbacks
might set the process into overdrive. These feedbacks are fundamentally uncertain and again are
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likely to remain so for a number of centuries[51]. Based on the topology regarding uncertainty,
this fundamental misunderstanding should be levelled at recognised ignorance[76]. Including
recognised ignorance into the model would suggest that all possible realisations of the climate
sensitivity parameter are equally weighted, placing more emphasis on the effects of extreme events.

1.5 Existing stochastic versions of DICE

The following state of the art focusses on publications regarding the inclusion of uncertainty
in DICE. The idea of including uncertainty or catastrophic events within DICE is not novel
and various researchers (i.g. Jerzy[23], Shayegh[65], Traeger[70], Golub[24], Cai[12], Chang[14],
Kolstad[39], Webster[77], Ackerman[1]) have attempted to include this vital part into the decision
process. This section focusses on the different approaches to including uncertainty and the
regarded uncertainties in these evaluations.

Due to computational limitations, these models traditionally consist of two-stages and a few
scenarios. As the impacts of climate change develops over time, a drawback of this approach is
the coarse approximation of the transient behaviour. The goal of these evaluations is to optimise
a single policy during the considered interval[77].

This method can be extended for multiple stages, but quickly results in a computationally in-
tractable problem. To (partially) avoid this problem multiple methods are at hand. An advanced
method to include uncertainty is stochastic dynamic programming. In this case the program is
dynamically and recursively solved, that is all stages are functions of both the first stage and
the set policy, and the model is solved by recursively substituting sequential-stage solutions.
In literature, two versions are often discussed; the stochastic tree and the approximation approach.

The stochastic tree approach is used in DICESP. This model reviews the economic activity of the
DICE model in a period between 2015 and 2115, while evaluating the climate cycle until 2300.
During this evaluation, a possible climate catastrophe is considered. The catastrophic damage
is simulated by a tipping point with a certain probability. With an act-then-learn approach,
acting before the uncertainty realises, the algorithm learns of the tipping point distribution at
each stage. In case a catastrophic event occurs, the algorithm goes back up in the decision
tree and hedges against the negative outcome. The resulting hedging strategy shows a steady
increase in the expected abatement path, supporting the claims for a stricter mitigation policy[14].

Traeger uses Approximate Dynamic Programming for his model[70]. Such an approximation
model uses basic functions to approximate future states on a rolling or finite horizon. This
approach is extended to a two-step ahead model by Shalyegh, which focusses on the uncertainty
of the climate sensitivity parameter in relation to the risk of hitting a climate tipping point[65].

These tipping points are the subject of a major field within economic climate studies. This field
focusses on the influence of possible extreme events on policy making. In the case of Shalyegh, the
climate tipping point is dependent on the climate sensitivity parameter, unlike in DSICE[12]. In
the model by Shalyegh, a log-normal distribution of the climate sensitivity parameter is assumed
with a mean of 1.1 and standard deviation of 0.5. As time progresses, the deviation is assumed
to become narrower. Solving this model when only the uncertainty in the climate sensitivity
parameter is included, results in a higher abatement policy in respect to the expected case. As
Shalyegh focusses on the result of tipping points, he does not include the "pure" continuous
response of the model to uncertainty in the climate sensitivity parameter.
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An overall shortcoming of these studies is that they focus on damage shocks as a result of tipping
points, instead of continuous damage due to temperature increase. In addition, they focus on
the damage as a result of climate change. As the damage is deemed unquantifiable, it might be
more suiting to evaluate the climate sensitivity parameter, as discussed in section 1.4, and work
with temperature bounds.

Furthermore, the Dismal theorem is often cited in more abstract papers, but no numerical
evaluations including endogenous uncertainty are at hand. These two shortcomings in scientific
literature will be the focus of this thesis and lead to the research question of section 1.6. The
contribution of this thesis is that it will give insight into the usability of DICE and its proposed
climate mitigation policy in respect to uncertainty and extreme events.

1.6 Research question
Showing the influence of the asymmetric distribution and the level of uncertainty in respect to the
suggested policy by Nordhaus will be the main goal of this thesis. This objective is reformulated
in the following research question:

"How does the advised mitigation policy by DICE respond to the influence of an uncertain climate
sensitivity parameter?"

In order to answer this question the following sub-questions are examined:

• Which design assumptions form the foundation of the DICE model and how do they
influence its response?

• What is the influence of different possible integrations of uncertainty to the results of
DICE?

• How can the climate sensitivity parameter be represented so it aligns with the current
understanding of climate science?

• Do the found results support the claim of Weitzman’s Dismal theorem?

The answers to these questions are not explicitly stated in the text, but form a basis for the
overall underlying structure.

1.7 Outline of the report
This report continues by introducing the DICE model in chapter 2. Here, the focus is on the
mathematical expressions that form the model and how to solve it. The chapter is roughly
divided into three parts, one regarding the economic activity, a second regarding the climate part
of the model and a third which covers the mathematical programming techniques needed to solve
the model. Chapter 3 covers mathematical programming options for including uncertainty and
provides the theory required for extending DICE into a stochastic dynamic nonlinear program.
The following chapter implements this theory and states some critical design assumptions. One
of these critical assumptions is the selection of uncertain cases. These cases are used to test
the model and generate results, which are presented in chapter 5. The results are followed by
the discussion in chapter 6. On the one hand this discussion focusses on the validation of the
model and on the other on the results in respect to literature regarding the Dismal theorem.
After the discussion, the report concludes and advises upon further research in chapters 7 and 8,
respectively.
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Chapter 2

Explanation of the DICE model

The DICE model forms the foundation of this report. Having insight into its core mechanics is
therefore of vital importance for the chapters to come. As introduced in section 1.3, the objective
of the DICE model is to maximise the intergenerational accumulated welfare. This welfare,
expressed in utility, is a function of consumption, which in itself is a function of economic output.
Hence, the goal of the model is to maximise intergenerational output. In the model, the output
of the world is described by a single equation, the output function. As the labour force increases
and its production becomes more efficient, the output increases[49]. This approach to economic
growth is common within the neoclassical framework.

Nordhaus built on this model by adding a climate cycle. This cycle starts with emitting CO2
is emitted into the atmosphere as a result of economic activity. These emissions accumulate
and increase its concentration. As the atmosphere is connected to the upper oceans, which are
connected to the lower oceans, carbon is passed trough, dampening the effect of carbon increase
in the atmosphere. The remaining CO2 influences the insulating properties of the atmosphere
and results in an increase in atmospheric temperature. The climate damage resulting from
this increased temperature reduces the economic output, closing the loop with the economic cycle.

As the temperature increase is a gradual process, this damage does not occur instantly. Here,
the time factor connects to the intergenerational welfare, making an additional link with the
economic cycle. In addition to climate damage, Nordhaus also added an abatement module. This
module allows for current investment to avoid future damages. The resulting dynamic is the
foundation of DICE. At every stage of this process the decision is made to invest into capital, to
consume or to abate.

The following chapter will discuss these dynamics and how to solve them in greater detail.
Additionally appendix A presents all these equations in the GAMS-format. The following section,
section 2.1, elaborates on the economic model. This model mainly consists out of the social
welfare function, the output function and the general accounting equations. Sequentially, the
climate relations of the model are discussed in section 2.2. Solving the resulting nonlinear
dynamic optimisation model is the subject of sections 2.3 and 2.4. Section 2.3 focusses on the
intertemporal relations of the model in the form of dynamic programming. This framework is
then extended to nonlinear models in section 2.4.

2.1 The economic model in DICE

As stated above, DICE is based on neoclassical economics. This predominant framework assumes
that all actors have rational preferences, that they maximise utility and that all actions are based
on full and transparent information[78]. This review starts with the used welfare function. This

18



function is about maximising utility by varying consumption and investment.

Social welfare function

Today’s policy has an effect on future generations. Hence, in order to value today’s policy, the
effects on future generations should be included. This gives rise to the problem of weighing
intertemporal utility and consumption. From an utilitarian perspective, the aim might be to
weigh the utility (Ut) of all generations equally. In the case where t represents generations until
the horizon (T ), the total welfare (W ) would be equal to Σt=T

t=1 Ut. As long as T has a finite
value, the sum will converge[29]. Nordhaus argues that based on economic development, the
intergenerational utility should be discounted, ranking alternative consumption sequences[50].
The amount of discounting is determined by the pure rate of social time preference (ρ). The
value of this parameter is highly debated. When utility is discounted at the standard rate (Rt)
of 3%, welfare of a hundred years from now only weighs in at 5%, thereby marginalising the
welfare of future generations[68]. To counteract this marginalization Weitzman proposes to a use
a declining discount rate[79]. The resulting discount rate would based on weighted information
from an expert panel fitted to a Gamma-distribution. In this approach the discount rate declines
over time, as it approaches the lowest proposed value. More variations, such as the inclusion of
uncertainty in the growth rate of consumption and the representation of the social time preference
as a choice problem are discussed in [30]. Since the focus of this thesis is on the uncertainty of
the climate sensitivity parameter, the original social welfare function of DICE

W =
T∑
t=1

UtRt, (2.1)

where

Rt = (1 + ρ)−t (2.2)

is used. DICE combines this discounted approach with a Ramsey style growth model[49]. Here,
utility is based on an iso-elastic expression of per capita consumption (ct) expressed in trillions
of 2005 dollars per person [Tr$2005/pp].1 The goal of this expression is to steer away from
overconsumption, avoiding its possible negative influence in the future. By setting the elasticity
of marginal utility (α)[-] to be greater than one, the negative exponential shape results in risk
averse behaviour. In addition, when defining Ut to be the resulting periodic utility function, where
per capita consumption is aggregated into total consumption (Ct) by means of multiplication
with the population (Lt) in millions of people [106 people] which grows according to the projected
growth rate of the population until 2050 (Padj)[106 people] and the asymptotic population
boundary (Pasym)[106 people], the utility function becomes:

Ut(ct, Lt) = Lt

Ct
Lt

1−α

1− α , (2.3)

with

Lt+1 = Lt

(
Pasym
Lt

)Padj

, (2.4)

where the growth of the population is exogenous.2

1In the following text [...] will be used express units. In case of a dimensionless number or a factor [-], will be
used.

2Lt also represents the labour inputs
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Output function

Within DICE, the economic output is calculated with an extended Cobb-Douglas production
function[49]. The production function as proposed by Cobb and Douglas is a highly theoretical
aggregated model[15]. In their model, economic output (Yt)[Tr$2005] is a function of the total
factory productivity (ALt)[-], the elasticity of output (γ)[-], the labour force and the capital stock
(Kt)[Tr$2005].3 Here, ALt represents the current level of technology, the development of this
level is a function of its initial growth rate (GA0)[-] and the growth decline rate (δga0)[-][49]. The
application of this standard neoclassical model is justified by the macro scale and the long-term
optimisation horizon. As the Cobb-Douglas is based on the assumption of a continuous process
and interchangeable variables, these two conditions are of major importance. The proposed
relation by Cobb and Douglas for gross output (Ygross,t) is:

Ygross,t = ALtL
1−γ
t Kγ

t , (2.5)

where

ALt+1 = ALt
1−GA0 · e−δga0·∆t·t . (2.6)

Nordhaus extends on equation (2.5) by correcting for emission abatement and the damage as
a result of temperature increase. This is achieved by using a single unit to represent output,
damage and abatement: trillions of 2005 dollars. The economic damage fraction is a function of
the atmospheric temperature (Tatm) and is defined to be 1/(1 + a1Tatm,t + a2T

a3
atm,t). Here, a1 to

a3 are fixed parameters based on estimates by [69]. The cost of mitigation is the product of the
cost of a renewable (backstop) technology (Bt) in trillions of $2005 per ton of CO2[$2005/tCO2],
the participation rate (Pt)[-] and the amount of abatement in that period (µ)[-], of which the
last two are corrected with a control cost function (θ)[-]. At every stage, the cost of fossil fuel
replacing (backstop) technologies is assumed to decline. This is in respect to its initial cost in
2010 (B0), with an initial decline rate (db). These definitions combined result in the following
relation for the nett output:

Yt = ALtL
1−γ
t Kγ

t (1− P 1−θ
t µθtBt)

1 + a1Tatm,t + a2T
a3
atm,t

, (2.7)

with

Bt = B0(1− db)t−1. (2.8)

It is the nett output that is used to consume or invest in new stock. How the output is used is
defined by the general accounting equations.

General accounting equations

These equations state that the sum of investment (It)[Tr$2005] and consumption is equal to the
nett economic output. Furthermore, they state that the non-consumed amount of output is
therefore saved according to saving rate St[-]. The investment accumulates in capital, which is
also subjected to depreciation (δK)[40]. These relations result the following equations:

It = Yt − Ct, (2.9)

It = YtSt, (2.10)
3In the original version by Cobb and Douglas there is also an elasticity of labour. In DICE this elasticity (α) is

substituted by 1 − γ. Which is justified by the standard values of 0.7 for γ and 0.3 for α
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Kt ≤ It + (1− δK)Kt−1. (2.11)

2.2 The geographical model in DICE

The following section describes the geographical model in DICE. In this part of the model
the CO2-emissions from economic activity are converted into a climate response. Based on a
stylised greenhouse model with a three-stage storage capability (representing the storage of
carbon and energy in the atmosphere, upper and lower oceans), the economic activity is coupled
to the carbon concentration in the reservoirs and the resulting increase in radiative forcing
and temperature. Despite the fact that this model is highly simplified, it is in line with the
fundamental processes described in climate science. The use of parsimonious representations is
needed so the optimisation model is empirically and computationally tractable[49].

The described climate cycle is represented in figure 2.1. In this system the economy emits CO2
by means of industry and deforestation. Other greenhouse gasses are excluded from the model,
for they are more likely to be controlled in different ways[47]. As a result of these emissions,
the atmospheric carbon concentration and the radiative force increases, resulting in a higher
atmospheric temperature. This higher carbon concentration and temperature influence the
concentration and temperature of the ocean. In DICE, the oceans are represented by a two
stage model. These stages represent the upper and lower oceans. This classification is needed to
represent the different speeds of mixing in the reservoirs. The upper oceans quickly mixes with
the atmosphere, whereas the deeper oceans react extremely slow. This mixing results in mass
transport in both directions in the so called "three reservoir model". Internally the reservoirs are
assumed to be well mixed. This CO2-cycle with temperature response is the focus of this section.

Figure 2.1: The greenhouse effect as described in DICE

The Carbon Cycle

The inputs of the carbon cycle are industrial emissions (Eeind,t) and emissions from deforestation
(Etree,t). These emissions, measured in gigatonnes of CO2 per year [GtCO2/a]. This amount is
converted into tonnes of carbon by multiplication of the CO2-equivalent-emission output ratio
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(σt). Together they make up for the total carbon-emissions per year (Et)][GtC/a]. This relation
is expressed as:

Et ≥ σtYgross,t(1− µt) + Etree,t. (2.12)

As a result of these emissions the carbon-concentration in the atmosphere (Matm,t)[GtC] in-
creases. Due to the mixing of the atmosphere with the upper ocean (Mup,t)[GtC], a part of the
carbon is transferred. The same holds for the flow of carbon between the upper and the lower
oceans(Mlo,t)[GtC]. The speed with which these reservoirs mix is determined by the carbon flow
constants (φ), resulting in:

Matm,t = Et + φ11Matm,t−1 + φ21Mup,t−1, (2.13a)
Mup,t = φ12Matm,t−1 + φ22Mup,t−1 + φ32Mlo,t−1, (2.13b)
Mlo,t = φ23Mup,t−1 + φ33Mlo,t−1. (2.13c)

Here, the carbon flow parameters are calibrated to more detailed global circulation models to
mainly represent the expected behaviour until 2100. After 2100, the ocean reservoir absorbs
more CO2 in respect to the estimates by the global circulation models and thus overestimates
possible consequences of atmospheric temperature increase.

Temperature response to carbon increase

As the emissions in the atmosphere accumulate, the radiative forcing increases due to the
increased insulation of the atmospheric layers. This increase (Ft)[W/m2 from 1900] is measured
in respect to the level in 1750 and is defined to be the sum of the exogenous forcing (Fex,t)[W/m2

from 1900] and the logarithmic increase of concentration in carbon (Matm,t)[GtC] with respect
to its level in 1750, multiplied by the constant for equilibrium increase of forcing at a doubling of
CO2 (η)[◦C/2xCO2], resulting in:

Ft = η(ln Matm,t

Matm,1750
) + Fex,t. (2.14)

The higher radiative forcing increases the atmospheric temperature. The extent of this tempera-
ture increase is a function of the increased radiation, the forcing sensitivity, the climate sensitivity
parameter (T2xCO2) expressed in ◦C per doubling of CO2[◦C/2xCO2] and the difference between
the atmospheric (Tatm,t) and the oceanic (Tocean,t) temperature increase[◦Ci.r.t.1900]. In the
summation of these variables, climate coefficients are used. Here, the (ζ2) coefficient describes
the heat transfer between the upper and lower stratum and (ζ1) the climate response of the
atmosphere itself. This last response is corrected from its initial value (ζ10) with a regression
coefficient (ζβ) and the transient sensitivity at equilibrium (T2xCO2,mean)[◦C/2xCO2] and are
presented as:

Tatm,t+1 = Tatm,t + ζ1

(
Ft −

η

T2xCO2
Tatm,t − ζ2(Tatm,t − Tocean,t)

)
, (2.15)

with

ζ1 = ζ10 + ζ1β(T2xCO2 − T2xCO2,mean). (2.16)

As a result of the mixing reservoirs, the temperature of the lower oceans also increases, this is
proportional to ζ3. As with the other transfer coefficients, these parameters are based on general
circulation models and measurements[49]. Their relation is defined as:

Tocean,t+1 = Tocean,t + ζ3(Tatm,t − Tocean,t). (2.17)
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The increase in atmospheric temperature results in a higher damage fraction in equation (2.7). It
is this relation, that results in a trade-off between producing and abating, consuming today or in a
later stage. This trade-off between climate action, investment and consumption together with the
recursive formulation of the optimisation model that makes the problem dynamic programming
problem[12], which is the subject of the next section.

2.3 Dynamic programming

The DICE model optimises the path to a carbon neutral economy in sixty stages, spanning
a period of 300 years. At each stage the model calculates the best possible ratio between
consumption, investment and abatement. In order to find the optimal path (or climate policy) a
sequence of abatement decisions, which result in the highest discounted sum of periodic utility is
made. Since the outcome at a certain stage is influenced by its predecessors, simply optimising
every individual period would not result in an optimal policy. An optimal policy is provided by
Richard Bellman’s dynamic programming (DP) framework by taking recurrence relations into
account[18]. The following section will go into this framework and show how DICE makes use of
the provided structure to find an optimal abatement policy.

The classical approach to modelling multi-stage decision problems is to consider all possible
solutions. This is done by collecting all feasible solutions and sequentially compute the return of
each policy. In case of DICE, this would result in a very high computational burden due to the
virtually unbounded range of variables and its sixty stages[5].

Bellman’s approach to this problem is to reduce the size by stating that: it is sufficient to know
what would determine the decision at a certain stage. This idea results in the basic idea of DP:
an optimal policy is the one that determines all decisions in terms of the current state, which
leads to Bellman’s principle of optimality: "An optimal policy has the property that whatever the
initial stage and decisions are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision."[5].

By making a decision (xt) at each stage (t), until the discounted (Rt) horizon (T ), regarding
the state of the world at period t (SoWt), the objective (z) and the return (V (SoWt, xt), a
transformation (G) projects the current state into the next (SoWt+1). A problem of this form is
generally expressed as[38][60]:

z = max
xt

T∑
t=1

RtV (SoWt, xt)

s.t. xt ∈ Xt, ∀t,
SoWt+1 = Gt(SoWt, xt), ∀t.

(2.18)

As the transition between stages is defined by SoWt+1 = Gt(SoWt, xt), the objective function of
(2.18) can be expressed with the help of a function F as:

z ={max
xt

[F (V1(SoW1, x1), . . . , VT (SoWT , xT ))]|xt ∈ Xt, t = 1, . . . , T}, (2.19)

can for some function Φ be rewritten into:

z ={max
xt

[Φ(SoW1, x1, x2, . . . , xT )]|xt ∈ Xt, t = 1, . . . , T}. (2.20)
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Here, the objective is defined as a function of the initial state and the implemented policy. By
applying the optimality principle to this equation, the first stage policy can be separated by
introducing two functions: φ1 and φ2, which represents the response of the first and later stages.
Including these functions converts equation (2.20) into:

z ={max
x1∈X1

[φ1(V1(SoW1, x1), max
x2∈X2,...,xT∈XT

φ2(V2(SoW2, x2), . . . , VT (SoWT , xT )))]}. (2.21)

For equation (2.21) to be optimal, functions φ1 and φ2 have to exist and φ1 should be monotonically
non-decreasing in φ2 for every possible V1. As all stages are separable in corresponding way, this
procedure can be expended upon. The result of this expansion is a model that can be recursively
solved. With the introduction of ft(SoWt) as the accumulated return function, f∗t (SoWt) its
optimal value and Q(SoWT+1) as a last stage return, this model is generally presented as[38]:

f∗t (SoWt) =max
xt∈Xt

φt(Vt(SoWt, xt), ft+1(SoWt+1))

s.t. SoWt+1 = Gt(SoWt, xt),
fT+1(SoWt+1) = Q(SoWT+1).

(2.22)

Applying the idea of dynamic programming to the DICE model is achieved by representing
the state of the world by (Tatm,t, Tocean,t,Matm,t,Mup,t,Mlo,t,Kt) and the decision to abate (µt)
and to save (St) as decision variables. The other variables are a part of the transformation G,
resulting in the following model:

W = max
(µt,St)

T∑
t=1

RtUt (2.23a)

s.t. Ut = Lt

(
Ct
Lt

)1−α

1− α , (2.23b)

Yt = ALtL
1−γ
t Kγ

t (1− P 1−θ
t µθtBt)

1 + a1Tatm,t + a2T a3
atm,t

, (2.23c)

Ct = Yt − It, (2.23d)
It = StYt, (2.23e)
Kt ≤ It + (1− δK)∆tKt−1, (2.23f)
Et ≥ σ(1− µt)ALtL1−γ

t Kγ
t + Etree,t, (2.23g)

Matm,t+1 = Et + φ11Matm,t + φ21Mup,t, (2.23h)
Mlo,t+1 = φ33Mlo,t + φ23Mup,t, (2.23i)
Mup,t+1 = φ12Matm,t + φ22Mup,t + φ32Mlo,t, (2.23j)

Ft = η(lnMatm,t

Matm,0
) + Fex,t, (2.23k)

Tatm,t+1 = Tatm,t + ζ1

(
Ft+1 −

η

t2xCO2
Tatm,t − ζ2(Tatm,t − Tocean,t)

)
, (2.23l)

Tocean,t+1 = Tocean,t + ζ3(Tatm,t − Tocean,t). (2.23m)
(2.23n)

In defining the feasible region of the decision variables and the state of the world, bounds are
required. Table 2.1 states these bounds together with a lists of initial conditions describing the
current state of the world according to Nordhaus[49]. By means of these bounds and conditions
the model can be optimised. Maximising the problem at each individual stage is done by means
of nonlinear programming (NLP). The next section elaborates on this method.
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Table 2.1: Lower bounds, upper bounds and initial conditions

Variables4 Symbol Lower bounds
Investment I 0
Capital stock K 1
Consumption C 2
Gross savings rate S 0
Per capita consumption c 0.01
Gross world product of net A and D Y 0
Gross world product of gross A and D Ygross 0
Carbon concentration atmosphere Matm 10
Carbon concentration shallow oceans Mlo 100
Carbon concentration lower oceans Mup 1000
Emission control rate GHGs µ 0
Increase Temperature in atmosphere Tatm 0
Increase temperature of lower oceans Tocean -1

Variables Symbol Upper bounds
Cumulative carbon emissions CCA 6000
Gross savings rate S 1
Emission control rate GHGs µ 1
Increase temperature lower oceans Tocean 20
Increase temperature of atmosphere Tatm 9.1

Variables Symbol initial conditions
Cumulative carbon emissions CCA 90
Capital stock K 135
Carbon concentration atmosphere Matm 830.4
Carbon concentration shallow oceans Mup 1527
Carbon concentration lower oceans Mlo 10010
Increase temperature of atmosphere Tatm 0.80
Increase temperature lower oceans Tocean 0.0068
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2.4 Nonlinear programming

As the name suggest, NLP focusses on problems with nonlinear objectives and or constraints[32].
In the standard version of these problems, the objective function is represented by f(x), which is
subjected to equality (h(x)) and inequality (g(x)) constraints at level b. The domain bounded
by these constraints is called the feasible region (X). The standard form of nonlinear models is
presented as:

optimise
x

f(x)

s.t. g(x) ≤ b,
h(x) = b,

x ∈ X ⊆ <n.

(2.24)

The possibility of having multiple local optima within (i.e. polynomial) nonlinear functions,
makes nonlinear programs difficult to solve. As a result of multiple local optima, the found
solution might not be equivalent to the overall best (global) solution[10]. A global solution is
guaranteed when the problem is convex. This is the case when a maximisation problem has a
concave objective function and a convex feasible region. Based on this definition, the model from
equation (2.23) is a non-convex optimisation problem. Fortunately, experimental studies con-
cluded that global optimality is guaranteed and DICE is therefore defined as hidden-convex[49][67].

The solution of DICE is found by varying the decision variables: the savings rate (St) and
emission control rate (µt). Since DICE is hidden convex, the decision variables can be optimised
by means of a local optimisation algorithm. Nordhaus uses the CONOPT algorithm designed by
A. Drud[49]. CONOPT uses a Newton based algorithm that finds the best fitting solution to
problems by means of the generalised reduced gradient algorithm. This algorithm is presented in
its generic form below.

The generalised reduced gradient algorithm of CONOPT

1. Convert the model input to:

optimise
x

f(x)

s.t. g(x) ≤ 0,
h(x) = 0,
lo < x < up.

2. Find a feasible solution (x0), evaluate f(x0) and set the iteration counter (k) to zero.

3. Evaluate the Jacobian Jk = ∂f

∂xk
.

4. Use the pivots to create a set of n basic variables (xb) such that the submatrix of the basic
column of J (B) is non-singular. The remaining m·n variables (xn) are named nonbasic.

5. Solve BTu = ∂f

∂xb
to find the multipliers u.

6. Compute the reduced gradient: r = ∂f

∂x
− JTu with a value below zero for all the basic

variables.
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7. If the Karush- Kuhn- Tucker conditions (a-d) are satisfied (within a reasonable margin of
error) then stop, the current point is close to the optimum, else continue.

(a) 0 ∈ ∂f(x) +
m∑
i=1

ui∂gi(x) +
r∑
j=1

vj∂hj(x) (Stationary).

(b) uigi = 0, ∀i (complementary slackness).
(c) gi(x) ≤ 0, hi(x) = 0 ∀i, j (primal feasibility).
(d) ui ≥ 0, ∀i (dual feasibility).

8. Define a set of superbasic variables (xs) as a subset of xn that can profitably be changed.
Find a search direction (ds) for xs based on rs and possibly some second order information.

9. Perform a one-dimensional line search in the direction of ds via a Pseudo-Newton process.

10. Save the best solution and go to step 3.

In case of DICE, this results in a gradient of W in respect to both µ and S. This gradient steers
the algorithm in the direction of the optimal solution. The algorithm iterates until this gradient
becomes marginally small and the Karush-Kuhn-Tucker conditions are met.
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Chapter 3

Programming under uncertainty

The focus of this chapter is on the theory required for the inclusion of uncertainty into the
DICE model. In response to the critique regrading the use of an expected value (deterministic)
approach, the first section will go into appropriate methods for including uncertainty into an
optimisation model. This starts with a brief overview of possible methods, after which one
method is selected. The selected method is elaborated in the second section, where both a two-
and multi-stage portfolio investment problem are presented.

3.1 Options for modelling under uncertainty

As introduced in chapter 1, there are multiple ways to include uncertainty into the decision
making process. Considering these options is the subject of this section. Following the project
definition of section 1.4, the focus is on models with endogenous uncertainty.

The sequential process in a stochastic version of DICE, where the decision maker has only limited
control over the future rewards, is known as a Markov Decision Process[22]. In such a process,
a decision (xt) is made in respect to the current state of the world (SoWt). The information
flow between these two is represented by the intermittent line. As the outcome of the decision is
prone to uncertainty (Ξ), both the state of the world at the subsequent stage (SoWt+1(ξ)) and
the return (Vt(ξ)) of the current stage are uncertain, where ξ represents the realised uncertainty.
A general example of such a process is presented in figure 3.1.

This uncertainty can be included into equation (2.24) by adding a random variable (Ξ) in both
the objective function and the constraints. Here, the precautionary constraint is that uncertainty
has to be on the statistical level. In such a case a probability distribution can be selected to
represent the behavioural outcome. The uncertainty in the objective might represent a stochastic
return, whereas the uncertain constrains represents either a uncertain response of the system or
unknown boundary conditions[7].

max
x

f(x,Ξ)

s.t. g(x,Ξ) ≤ b(Ξ),
h(x,Ξ) = b(Ξ),
x ∈ X ⊆ <n.

(3.1)

A Markov Decision Process forms the foundation of stochastic programming. The essence
of the resulting programs is that the information regarding random variable Ξ is incomplete
at the time the decision is made[64]. Hence, x is taken before the realisation of Ξ. Impor-
tant here is that Ξ itself is not a function of x. As a result of the inclusion of Ξ, equation
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Figure 3.1: Schematic representation of a Markov Decision Process. Where a decision (xt) is made in
respect to state SoWt and uncertainty Ξ to transition to state SoWt+1(ξ), where ξ is the
realisation of Ξ, with the aim of optimising the (total) return Vt (based on the figure of [57]).

(3.1) not well defined as both the objective and the constraints can be interpreted in multiple ways.

The uncertain objective can be interpreted in two ways: the optimal policy can be taken in respect
to the worst-case scenario or can be based on the expected value. These two options represent
either the decision of the policy maker to maximise profit in the worst-case scenario or to come
up with a policy that fits (almost) all realisations of Ξ and optimise their expected outcome. By
taking ξw to be the least beneficial realisation of Ξ, the stochastic program representing the first
case can be expressed as:

max
x

f(x, ξw)

s.t. g(x, ξw) ≤ b(ξw),
h(x, ξw) = b(ξw),
x ∈ X ⊆ <n.

(3.2)

Taking Ef(x, ξ) to be the probability weighted value of f(x, ξ) and Ξ as the set of all possible
realisations, the second case can be stated as:

max
x

Ef(x, ξ)

s.t. g(x, ξ) ≤ b(ξ),
h(x, ξ) = b(ξ),
ξ ∈ Ξ,
x ∈ X ⊆ <n.

(3.3)

These different approaches are respectively represented by the robust- or the stochastic program-
ming approach. A drawback of robust optimisation is that it is deemed to be too conservative.
That is, the focus on extreme tail events makes the proposed policy too financially unattractive.
Stochastic programming is deemed more financially efficient in the case: the uncertainty is
of a stochastic nature, there is an available probability distribution and a readiness to accept
infeasibilities of tail events[6]. These conditions are assumed in this inquiry.

In extend, the decision maker can choose to always honour the constraints or to allow a certain
margin of infeasibility. This last type is named the probabilistic approach and can be used to
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reduce the conservativeness of the model[72]. This approach requires a close approximation of
the probability curve in order to relax constraints by a small margin, requiring a large number
of samples. As the evaluated number of scenarios is equal to nT , where n is the sample size
and T the number of stage, this greatly increases the computational burden resulting in an in-
tractable model. Furthermore, as the influence of the probability distribution and the possibility of
extreme events on the advised policy is the main focus of this thesis, this approach is not a good fit.

Concluding, this chapter will further elaborate on the well defined stochastic programming
approach without probabilistic constraints. Here the focus is on implementing this structure for
multiple stages, where at each stage the decision x can be re-evaluated.1

3.2 Stochastic programming

The aim of this section is to explain the mechanics of stochastic programming. These dynamics
are demonstrated by an investment problem, which just as DICE, is based upon acting before
learning about the true mechanics of the system[14][7]. This section starts with a two-stage
approach and later expands this into a multi-stage version.

For both versions the following example will be used: An investor starts with initial capital
(SoWt), which he can decide to invest (xt) into multiple assets with a combined random return.
In order to present uncluttered relations only a single decision option is presented in figure 3.2.
The uncertainty regarding these assets is such that three types of realisations (ξ) are possible:
high (ξ1), medium (ξ2) and low (ξ3). As the uncertainty realises, so does the level of capital at
that stage (SoWt+1(ξi)) with a certain return (Vi,t(ξi)). For the multi-stage version this process
of deciding whether to invest in which assets continues up to horizon T , as in figure 3.1 and more
elaborate in 3.2.

Figure 3.2: Schematic representation of the stochastic model with three realisations of uncertainty in
every stage. At stage t until T-1, where T is the set horizon, the decision is made to act
upon the uncertain future, which together with the realisation of Ξ results in the future
state of the world and a certain return.

1In literature it is common to extend a stochastic model with a recourse action. In such a case the decision maker
has the option to make sure the constraints are honoured by for example running a more expensive emergency
production plan or to buy product in the market. This approach has the benefit of being more cost efficient, but
since no such mechanism exists within DICE this extension is not possible.
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3.2.1 Two-stage stochastic programming

The first two stages of figure 3.2 can mathematically be represented by separating equation (3.3)
into two sub-problems. Looking at the first two stages of figure 3.2, it is clear that the decision to
invest is taken before the uncertainty realises. The decision xt is therefore known as a first-stage
or a here-and-now decision variable. The first sub-problem covers the first-stage constraints,
like limited initial wealth and has an objective function which estimates the value of the second
stage (Q2(x, ξ)), or second stage value function, plus any first stage returns (f1(x)). Note that
(f1(x)) and other returns are represented by V in figure 3.2. In the investment example no such
returns exists, but in DICE it represents the current economic output. The value of the second
stage can be estimated by a probability weighted (pi) sum of all (three) possible realisations and
the second stage function (f2(x, ξ)). As there are a finite number of possible realisations, the
problem can be stated in the so called deterministic equivalent form[7]:

max
x

f1(x) +Q2(x,Ξ)

s.t. g1(x) ≤ 0,
h1(x) = 0,
x ∈ X ⊆ <n,

(3.4)

where

Q2(x,Ξ) = EΞQ2(x,Ξ) or
∑
i

pi[Q2(x, ξi)], (3.5)

and

Q2(x, ξi) = f2(x, ξi),
s.t. g2,i(x, ξi) ≤ 0, ∀i,

h2,i(x, ξi) = 0, ∀i,
ξ ∈ Ξ.

(3.6)

Important here is that value of Q2(x,Ξ) can only be calculated if Q2(x, ξ) is measurable. This is
the case when: f1 and g1 are continuous and f2(·, ξ) and g2(·, ξ) are continuous for all realisations
of Ξ. For this to hold, Ξ has to have a finite number of realisations[7]. As there are a finite
number of realisations of Ξ the above problem can be rewritten into a single problem, the so
called extensive form[7]:

max
x

f1(x) +
∑
i

pi[Q2(x, ξi)]

s.t. h1(x) ≤ 0,
g1(x) = 0,
EΞ(x(ξ))− x(ξ) = 0,
h2,i(x, ξi) ≤ 0, ∀i,
g2,i(x, ξi) = 0, ∀i,
x ∈ X ⊆ <n,
ξ ∈ Ξ.

(3.7)

Here the third constraint is known as a non-anticipativity constraint and implies that the decision
x has to be made in the first stage. This is realised by stating that the expected decision, before
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the realisation of Ξ, is the same as the value of x after the realisation[7]. Hence, even though x
is displayed as a function of ξ, it is not dependent on ξ.

The resulting program is a large (convex) model and can be solved with standard solvers[7]. A
multi-stage model, of which the two-stage case is a special case, can also be solved by initially
separating all stages in a deterministic equivalent form and sequentially define an extensive
model. These conversions are the subject of the following subsection.

3.2.2 Multi-stage stochastic programming

As the investor is able to rebalance his portfolio at any stage, the resulting structure resembles
that of a reoccurring two-stage model in which all stages are sequentially interlinked. As the
probability distribution of Ξ is not influenced by previous stages or its present state it is said
to be stochastically independent or Markovian. After separating all stages, the deterministic
equivalent can be divided into three parts: one for the final stage, one for the intermediate stages
and one for the first stage[64]. Thus the model can be expressed as:

QT (xT−1, ξT,i) = max
xT

fT (xT−1, ξT,i)

s.t. gT,i(xT−1, ξT,i) ≤ 0, ∀i,
hT,i(xT−1, ξT,i) = 0, ∀i,
xT ∈ XT ⊆ <nT ,
ξT ∈ ΞT ,

(3.8)

and for stages t = T − 1, ..., 2:

Qt(xt−1, ξt,i) = max
xt

ft(xt,Ξt) +
∑
i

pi[Qt+1(xt, ξt+1,i)]

s.t. gt,i(xt−1, ξt) ≤ 0, ∀i,
ht,i(xt−1, ξt) = 0, ∀i,
xt ∈ Xt ⊆ <nt,
ξt ∈ Ξt,

(3.9)

and for the first stage:

z = max
x1

f1(x1) +
∑
i

pi[Q2(x1, ξ2,i)]

s.t. g1(x) ≤ 0,
h1(x) = 0,
x ∈ X1 ⊆ <n1,

(3.10)

which just as the dynamic programming problem of section 2.3 can be recursively solved[7][63][33].

Additionally, as with the two-stage model, the problem can also be solved by converting it
into an extensive form. Different from the extensive form of the two-stage model is that the
non-anticipativity constraints are not explicitly stated, but are defined in the set of resulting
non-anticipativity solutions: N = {(xξ)ξ∈Ξ|xt(ξ, n) − xn = 0 ∀ξ ∈ B(n), ∀n ∈ N}, where n
represents a node in the decision tree, B(n) and the set of non-leaf nodes in the scenario tree is
represented by N [33][63]. With this feasible region, the extensive form of the multi-stage model
can be formulated as:
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z = max
x∈X⊂N

f1(x) +
∑
i

pi[f2(x1, ξ2) + ...+
∑
i

pi[fT (xT−1, ξT )]]

s.t. gt,i(xt,i(ξ), ξt,i) ≤ 0, ∀t and i,
ht,i(xt,i(ξ), ξt,i) = 0, ∀t and i,
ξ ∈ Ξ.

(3.11)

It is this structure that is implemented in the GAMS extended mathematical programming
architecture to solve a stochastic version of DICE[42]. The following chapter takes the presented
theory and extends the existing DICE model. In addition it reformulates the model to make it
computationally tractable and defines the set of scenarios that are used to generate results.
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Chapter 4

Integrating Stochastic Programming
in DICE: EICE

The aim of this chapter is to formulate a computationally tractable stochastic DICE-like model.
As discussed in chapter 3, this stochastic model is solved by means of an extensive form, giving
rise to the name: EICE (Extensive Integrated model of Climate and Economics). The tractability
of this model depends on the required memory for storing data in (optimisation) vectors[36].
The size of these vectors depends on the number of evaluated scenarios (S), which in itself is a
function of the number of evaluated scenarios per stage (n) and the number of stages (T ), as
expressed in:

S = nT (4.1)

In case of the current sixty stages, evaluating two scenarios per stage already results in over a
quintillion (1018) possible scenarios, making the model vastly intractable. It is therefore necessary
to reduce the number of stages and keep the number of scenarios per stage to a minimum.

The transition from DICE to EICE is elaborated in the following section. Making this model
computationally tractable is the subject of the rest of the chapter. Section 4.2 focusses on
reducing the number of evaluated stages. The used approach in this section is to increase the time
between stages and to define a stochastic tree with only a few uncertain stages. Representing the
distribution of the climate sensitivity by a limited number of scenarios is the subject of section
4.3.

4.1 The Extended Integrated Model of Climate and Economy
Converting the model of section 2.3 into a stochastic model requires the inclusion of the theory
of chapter 3. As explained in section 3.2.2, EICE would for any stage have to take all possible
realisations of the climate sensitivity parameter and the resulting value function into account.
Following this and defining X as the feasible region for both the saving rate and the emission
control rate, the stochastic program of DICE can be formulated as:

Wt(SoWt,Ξt) = max
({µt,St}∈Xt)

T∑
t=1
{U1(SoW1, µ1, S1)

+
∑
i

pi[R2U2(SoW2, µ2, S2, ξi) + . . .+
∑
i

pi[RTUT (SoWT , µT , ST , ξi)]]

(4.2)
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which is subjected to SoWt+1 = G(SoWt, xt,Ξt) for all values of t and is equivalent to:

Wt(SoWt,Ξt) = max
({µt,St}∈Xt)

T∑
t=1
{Ut(SoWt, µt, St) +Rt+1EΞUt+1(SoWt+1|SoWt, xt,Ξt)}]

s.t. SoWt+1 = G(SoWt, xt,Ξt), ∀t.
(4.3)

Mathematically this relation describes how, at each stage, the decision maker decides to invest in
new capital or into climate change mitigating measures under the (financial) limits of the current
state of the world. Again, the function G describes the transition between different states of
the world. This function is in EICE represented by equations (4.4b) till (4.4q), describing both
the economic and climate cycle. In respect to the model of equation (2.23), the model below
introduces six new relations (4.4c, 4.4d, 4.4i, 4.4j, 4.4n and 4.4o). These relations are used to
calculate the global economic output and the temperature increase. These relations are added
to give more insight into the response of the model. The only new variables in respect to the
model of equation (2.23) are ζ10, ζ1β and Ξ, where Ξ represents the random climate sensitivity
parameter and the ζ’s are the reference heat transfer coefficients from equation (2.16).

Wt(SoWt,Ξt) = max
({µt,St}∈Xt)

T∑
t=1
{Ut(SoWt, µt, St) +Rt+1EΞUt+1(SoWt+1|SoWt, xt,Ξt)}]

(4.4a)
s.t. Et ≥ σtYgross,t(1− µt) + Etree,t, (4.4b)

Ygross,t = ALtL
1−γ
t kγt , (4.4c)

Yreduced,t = Ygross,t(1− P 1−θ
t µθtBt), (4.4d)

Matm,t+1 = Et + φ11Matm,t + φ21Mup,t, (4.4e)
Mup,t+1 = φ12Matm,t + φ22Mup,t + φ32Mlo,t, (4.4f)
Mlo,t+1 = φ23Mup,t + φ33Mlo,t, (4.4g)

Ft = η(ln Matm,t

Matm,1750
) + Fex,t, (4.4h)

ζ1(Ξt) = ζ10 + ζ1β(Ξt − E(Ξt)), (4.4i)

τ(Ξt) = η

Ξt
, (4.4j)

Tatm,t+1(Ξt) = Tatm,t + ζ1(Ξt) (Ft+1 − τ(Ξt)Tatm,t − ζ2(Tatm,t − Tocean,t)) ,
(4.4k)

Tocean,t+1 = Tocean,t + ζ3(Tatm,t − Tocean,t), (4.4l)
Kt+1 ≤ (1− δk)∆tKt + YtSt, (4.4m)
Dt = 1 + a1Tatm,t + a2T

a3
atm,t, (4.4n)

Yt = Yreduced,t/Dt, (4.4o)
Ct = Yt(1− St), (4.4p)

Ut = Lt

(Ct
Lt
− 1)

1− β , (4.4q)

(4.4r)

And just as the model of equation (2.23), this model can be solved by honouring the bounds and
initial conditions of table 2.1.
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4.2 Limiting the number of uncertain stages
As introduced, this section reduces the number of stochastic stages by increasing the step size
and defining a stochastic tree. This common approach (i.g. [23],[12]) has a counter part in the
form of Approximate Dynamic Programming (ADP) (i.g. [65]). A drawback of ADP is the need
of (complex) value function approximations, but in return it solves "the curses of dimensionality"
by approaching the problem in a two-stage rolling horizon framework[59]. Nonetheless, the choice
is made to change the number of stages for it helps to maintain the models accessibility. This
section follows by first increasing the step size of the model, after which the stochastic tree is
presented.

The time between stages should be a logical consequence of the time frame in which the fun-
damental process occurs. In the 2013 version of DICE, the five year time steps are based on
the length of political cycles and do not representing any climate or investment cycles[49]. This
misalignment can be used as an argument for the required extension of the time steps[12]. The
extension is further justified as utility investment cycles cover decades and climate cycles cover
even longer time spans[37][27].

Figure 4.1 shows that, according to Nordhaus, the transition to a renewable economy takes place
during the next century. Based on this time window and the computational limitations, time steps
of ten and twenty years are considered. Due to the burden of the remaining deterministic stages,
the model with ten year time steps could only be solved for six stochastic stages. This model
therefore did not cover the preferred period. The model with time steps of twenty years could be
solved for eight stochastic stages, thereby covering the favoured one hundred years. An additional
argument for using time steps of twenty years is that it fits the expected life time of common re-
newable technologies (i.e. wind turbines and photovoltaic cells) and medium-long term economic
policy cycles[26][3][73]. Evidently, the model will be build to work with time steps of twenty years.
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Figure 4.1: The industrial emissions, mitigation policy and the world output over time of the original
DICE model[49]

Scaling the climate parameters regrading the mixing of the CO2-reservoirs (φ), the temperature
increase (ζ) and the decline rate of backstop technology cost (∆BS), the original DICE model
(D5) is converted into the model with time steps of twenty years (D20). The scaling of these
parameters is presented in table 4.1. The results of two models are displayed in figure 4.2.

From this figure can be derived that the climate mitigation policy, aside from the deviation
between 2010 and 2030, follows the same path for both models. This initial deviation is the
result of the prolonged initial policy. A consequence of this is a somewhat higher emission rate
in that same period and therefore, a rather higher atmospheric concentration. Additionally, due
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to an imperfect calibration of the climate parameters, the atmospheric temperature increases
marginally faster during this period. In the periods after 2100, the atmospheric temperature falls
slightly more, resulting in lower damages in this later period. The effect of this is a higher net
world output, followed by an increase of investment in capital. Putting these deviations aside, it is
clear that the D20 model has a similar system response as D5, making it fit for further experiments.

Table 4.1: Calibrated parameters for DICE20

D5 D20
φ12 0.088 0.0352
φ23 0.0025 0.01
ζ1 0.098 0.329
ζ3 0.088 0.18
ζ4 0.025 0.1
∆BS 0.025 0.1
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Figure 4.2: The industrial emissions, mitigation policy, atmospheric concentration, increase in atmo-
spheric temperature, increase world output over time and the development of capital of the
original DICE model (D5) versus that of the calibrated model with time steps of twenty
years (D20).

In the case D20 is evaluated with only three realisations per stage, the solver would still have to
evaluate over fourteen million scenarios, when covering all fifteen stages. It is therefore needed to
limit the number of stochastic stages. Since the transition to a carbon neutral society is assumed
to take place in the next hundred years, the focus is on the first stages of the model. This focus
gives rise to the tree of figure 4.3. Section 5.2 will go into the sensitivity of the model to the
number of uncertain stages. Again, here the focus will be regarding the uncertainty in the first
stages.

37



Figure 4.3: The stochastic tree structure used to reduce the computational burden of the EICE model

4.3 Limiting the number of scenarios per stage

As introduced in section 1.4, the main uncertainty in this study is the climate sensitivity
parameter. The asymmetric distribution of this parameter gave rise to Weitzman’s Dismal
theorem[80][24]. This theorem proposes that for problems where the tail declines less quickly
than in an exponential case, the expected resulting damage of the response becomes infinite and
makes cost-benefit analysis an unfit approach[55]. Representing the probability distribution with
only a few samples is the subject of this section.

Numerical experiments have shown that up to three scenarios can be evaluated per stage if
stochastic stages are required to simulate more than a 100 years. A result of this limited
number of samples is that only a crude and biased estimation can be made of the probability
distribution and therefore its tail[20]. Perfectly representing this tail is even more challenging
as the model is limited by a convexity constraint. This constraint states that the atmospheric
temperature increase is limited to 9.1◦C, preventing the investigation of a nearly infinite climate
sensitivity parameter[67]. Nonetheless, this section argues that within these limitations still
sensible scenarios can be proposed to show the influence of such extreme tail events.

An argument in defence of a limited set of scenarios is the physical representation of the climate
sensitivity parameter. As implied in section 1.4, it is believed that a temperature increase of only
6◦C would already drastically change the world as we known it and therefore cause enormous
economical damage[53]. From this perspective, it is therefore not necessary to evaluate extreme
temperature rises, as only a small increase would cause immense damage. Further support for
using a limited distribution is a lack of physical verification of such extreme claims, as they
purely are a product of statistical error[8].

The scenarios which represent the climate sensitivity parameter are based on the current under-
standing of the matter and the sensitivity to its definition. The current consensus in literature
estimates the climate sensitivity parameter to be likely (66-100% confident) between 1.5◦C
and 4.5◦C, with an average around 3◦C per doubling of pre-industrial CO2 levels[53]. More
specifically, it is assumed to be extremely unlikely (0-1%) to be less than 1◦C. The reason for this
is that it is assumed that internal feedbacks will have a positive influence on the 1.2◦C increase of
a system without feedback[62]. On the other side of the spectrum, it is also assumed to be very
unlikely (0-10%) to be greater than 6◦C[53]. Based on these characteristics and the limitation
set by the curse of dimensionality, the model will be tested with the three realisations of the
base case in table 4.2. The values in the base case of this table are based on the work by Golub[24].

The sampling bias, as a result of the crude estimation, is in this base case used to emphasise
undesirable outcomes. An extreme case is constructed to further explore the influence of the
shape of the tail. In this case the highest value of the discrete distribution is increased based on
the work of Roe and Backer[62]. This case is also presented in table 4.2.
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Table 4.2: Climate sensitivity scenarios

Climate Sensitivity
[◦C/CO2,2x]

Probability
[%]

Asymmetrical Uniform
Base case 2.2 25 33

3.0 50 33
4.3 25 33

Extreme case 2.2 25 33
3.0 50 33
8.0 25 33

In both the base and extreme case, it is assumed that the level of knowledge is developed enough
to make assumptions about the probability distribution[62][56]. As feedback loops are not well
understood and are deemed to be fundamentally uncertain, a case can be made to equally weigh
all scenarios[76]. The uniform distribution in these fundamental uncertain cases puts (again)
more emphasis on tail outcomes and thus approaches the ideas of Weitzman some more.

The following chapter will use these four cases, and show the model’s response to uncertainty.
This is done by generating results which can be used to debate Weitzman’s claims regarding the
use of cost-benefit analysis.
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Chapter 5

Results

In order to answer the main question: "How does the advised mitigation policy by DICE respond
to the influence of an uncertain climate sensitivity parameter?", the response of the EICE model
is tested. This response will be examined by varying the duration and the intensity of uncertainty.
The results of these tests are described in this chapter. While covering the test results, the
focus is on the mitigation policy, the industrial emissions over time, the development of the
atmospheric concentrations over time, the increase in atmospheric temperature in respect to
1900 over time and the development of net world output and capital. These variables are selected
based on their representation of the state space and the decision variables. Herein, a visualisation
of µ and K are given to represent climate policy and the saving rate, whereas Eind, Tatm and
Y describe the state of the system. Since the state variables: Tocean, Mu and Ml are the result
of fixed mechanics in the model and do not provide additional insight into the influence of
uncertainty, they are left out in order to present uncluttered results. For all models, variations of
the GAMS program in appendix B are used. Enlarged versions of the graphs, including an ex-
tension to the damage function, the savings rate and the carbon price, are presented in appendix C.

Before going into the response of the model, the model is verified in section 5.1. This verification
is by means of evaluating the response in known and extreme outcomes. Sequentially, the
sensitivity to the number of uncertain stages is tested in section 5.2. Due to computational
limitations not all fifteen stages can be evaluated under multiple scenarios. The influence of this
limitation is presented in this section.

The response of the model is dissected into two parts. The first part covers the overall response
of the model to uncertainty, whereas the second part focusses on the influence of the shape of the
probability curve. In section 5.3, the response of EICE under base case conditions is compared
to a scenario analysis of D20. The aim of this test is to give insight into the differences between
stochastic programming and scenario analysis and to compare the resulting hedging strategies.
The following test, of section 5.4, compares the response of EICE with that of D20. To be able
to compare results, the base case is evaluated in EICE and the expected value of this base case
is implemented in D20. Here, the aim is to see whether the advised policy resulting form EICE
differs from D20. The first test of the second part is presented in section 5.5. Here the base case
is compared with the extreme case. After this comparison, both these cases are compared with
their uniformly distributed equivalent in section 5.6. These two tests will give insight into the
sensitivity to uncertainty and its level. The outcome of these tests are vital to the discussion
regarding the Dismal debate, for they will give insight into the influence of possible catastrophic
events.

The chapter concludes by evaluating the carbon price and the influence of uncertainty on utility
in sections 5.7 and 5.8, respectively. As the carbon price is the main instrument of the climate
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policy, insight into the response to uncertainty of this variable will give insight into the response
of advised policy to uncertainty. This evaluation will be about all previously presented cases.
Since the climate mitigation policy is already evaluated under these cases, this test mainly has
the function of verifying previous results. Evaluating the sensitivity of the utility function to
uncertainty shows the response of the objective function and gives insight into possible benefits
of the stochastic approach.

5.1 Validation of the new model
This section aims to verify the EICE model. This verification consists of proving that the outcome
of this model corresponds to the outcome of the D20 model when only one realisation of the
climate sensitivity parameter is evaluated. To show whether the response is the same, three tests
are carried out:

1. a comparison of the D20 model and EICE with one possible realisation;

2. a comparison of the D20 model and EICE, where EICE has tree equally valued possible
realisations;

3. a comparison of the D20 model and EICE, where extreme outcomes are evaluated.

During the tests, EICE with seven stochastic stages is used. For the tests, the climate sensitivity
is set to 2.95, 1.00 and 6.00. The realisation of the climate sensitivity parameter at 2.95 is used
for the first two tests, 1.00 and 6.00 are used for the third. These last two realisations are selected
based on the probability curve proposed by the IPCC[53]. Here, it is assumed that the climate
sensitivity parameter will be probably higher than 1[◦C] per doubling of CO2-levels [◦C/2xCO2]
and probably lower than 6[◦C/2xCO2], as discussed in section 4.3.

Since the aim is to show that results do not differ, they are presented in numerals instead of
graphs to show possible minor deviations. The results of these tests will be represented by the
two decision variables, µt and St, and a representation of the state of the world by Tatm,t and Kt.

Looking at tables 5.1 to 5.4, in which all three test are presented, it is clear that based on the
three proposed tests the stochastic model is valid, as the results of the deterministic and the
stochastic model are equal.
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Table 5.1: Comparison of mitigation policies between the 15 stage deterministic (D) models and their
stochastic (SP) counterparts with either 1 (SPx1) or 3 (SPx3) evaluated climate sensitivity
(CS) realisations with a value of 2.95, 1.00 and 6.00.

CS = 2.95 CS = 1.00 CS = 6.00
stage year D SPx1 SPx3 D SPx3 D SPx3
1 2015 0.039 0.039 0.039 0.039 0.039 0.039 0.039
2 2035 0.287 0.287 0.287 0.125 0.125 0.408 0.408
3 2055 0.417 0.417 0.417 0.174 0.174 0.604 0.604
4 2075 0.576 0.576 0.576 0.240 0.240 0.854 0.854
5 2095 0.765 0.765 0.765 0.307 0.307 1.000 1.000
6 2115 0.988 0.988 0.988 0.390 0.390 1.000 1.000
7 2135 1.000 1.000 1.000 0.480 0.480 1.000 1.000
8 2155 1.000 1.000 1.000 0.583 0.583 1.000 1.000
9 2175 1.000 1.000 1.000 0.694 0.694 1.000 1.000
10 2195 1.000 1.000 1.000 0.813 0.813 1.000 1.000
11 2215 1.000 1.000 1.000 0.930 0.930 1.000 1.000
12 2235 1.000 1.000 1.000 1.000 1.000 1.000 1.000
13 2255 1.000 1.000 1.000 1.000 1.000 1.000 1.000
14 2275 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 2295 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.2: Comparison of saving policies between the 15 stage deterministic (D) models and their
stochastic (SP) counterparts with either 1 (SPx1) or 3 (SPx3) evaluated climate sensitivity
(CS) realisations with a value of 2.95, 1.00 and 6.00.

CS = 2.95 CS = 1.00 CS = 6.00
stage year D SPx1 SPx3 D SPx3 D SPx3
1 2015 0.208 0.208 0.208 0.209 0.209 0.207 0.207
2 2035 0.197 0.197 0.197 0.198 0.198 0.198 0.198
3 2055 0.193 0.193 0.193 0.193 0.193 0.195 0.195
4 2075 0.193 0.193 0.193 0.192 0.192 0.194 0.194
5 2095 0.194 0.194 0.194 0.193 0.193 0.194 0.194
6 2115 0.194 0.194 0.194 0.194 0.194 0.195 0.195
7 2135 0.197 0.197 0.197 0.197 0.197 0.196 0.196
8 2155 0.198 0.198 0.198 0.198 0.198 0.198 0.198
9 2175 0.199 0.199 0.199 0.200 0.200 0.200 0.200
10 2195 0.201 0.201 0.201 0.201 0.201 0.201 0.201
11 2215 0.202 0.202 0.202 0.202 0.202 0.202 0.202
12 2235 0.202 0.202 0.202 0.202 0.202 0.202 0.202
13 2255 0.197 0.197 0.197 0.197 0.197 0.197 0.197
14 2275 0.258 0.258 0.258 0.258 0.258 0.258 0.258
15 2295 0.258 0.258 0.258 0.258 0.258 0.258 0.258
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Table 5.3: Comparison of atmospheric temperature [◦C i.r.t. 1900] increase between the 15 stage
deterministic (D) models and their stochastic (SP) counterparts with either 1 (SPx1) or 3
(SPx3) evaluated climate sensitivity (CS) realisations with a value of 2.95, 1.00 and 6.00.

CS = 2.95 CS = 1.00 CS = 6.00
stage year D SPx1 SPx3 D SPx3 D SPx3
1 2015 0.800 0.800 0.800 0.800 0.800 0.800 0.800
2 2035 1.560 1.560 1.560 0.773 0.773 1.766 1.766
3 2055 2.185 2.185 2.185 1.185 1.185 2.652 2.652
4 2075 2.728 2.728 2.728 1.360 1.360 3.417 3.417
5 2095 3.168 3.168 3.168 1.651 1.651 3.942 3.942
6 2115 3.365 3.365 3.365 1.766 1.766 4.139 4.139
7 2135 3.249 3.249 3.249 1.913 1.913 4.198 4.198
8 2155 3.085 3.085 3.085 1.974 1.974 4.207 4.207
9 2175 2.958 2.958 2.958 2.014 2.014 4.204 4.204
10 2195 2.877 2.877 2.877 1.999 1.999 4.202 4.202
11 2215 2.830 2.830 2.830 1.947 1.947 4.206 4.206
12 2235 2.804 2.804 2.804 1.858 1.858 4.215 4.215
13 2255 2.790 2.790 2.790 1.782 1.782 4.228 4.228
14 2275 2.782 2.782 2.782 1.757 1.757 4.243 4.243
15 2295 2.777 2.777 2.777 1.733 1.733 4.258 4.258

Table 5.4: Comparison of capital accumulation[Tr$2005] between the 15 stage deterministic (D) models
and their stochastic (SP) counterparts with either 1 (SPx1) or 3(SPx3) evaluated climate
sensitivity (CS) realisations with a value of 2.95, 1.00 and 6.00.

CS = 2.95 CS = 1.00 CS = 6.00
year D SPx1 SPx3 D SPx3 D SPx3
2015 135.000 135.000 135.000 135.000 135.000 135.000 135.000
2035 280.326 280.326 280.326 281.399 281.399 279.795 279.795
2055 517.568 517.568 517.568 523.369 523.369 516.189 516.189
2075 866.033 866.033 866.033 880.199 880.199 862.896 862.896
2095 1,339.678 1,339.678 1,339.678 1,369.372 1,369.372 1,318.544 1,318.544
2115 1,943.919 1,943.919 1,943.919 1,998.331 1,998.331 1,884.812 1,884.812
2135 2,663.343 2,663.343 2,663.343 2,775.201 2,775.201 2,599.702 2,599.702
2155 3,548.570 3,548.570 3,548.570 3,695.225 3,695.225 3,464.458 3,464.458
2175 4,591.965 4,591.965 4,591.965 4,753.261 4,753.261 4,470.273 4,470.273
2195 5,770.248 5,770.248 5,770.248 5,933.752 5,933.752 5,599.920 5,599.920
2215 7,053.653 7,053.653 7,053.653 7,216.611 7,216.611 6,828.774 6,828.774
2235 8,402.331 8,402.331 8,402.331 8,565.345 8,565.345 8,120.352 8,120.352
2255 9,738.882 9,738.882 9,738.882 9,909.991 9,909.991 9,400.389 9,400.389
2275 10,833.467 10,833.467 10,833.467 11,022.551 11,022.551 10,446.892 10,446.892
2295 15,394.257 15,394.257 15,394.257 15,664.829 15,664.829 14,830.585 14,830.585
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5.2 Sensitivity to the number of uncertain stages
As introduced earlier, one of the major drawbacks to stochastic programming is the curse of
dimensionality. Since the extent of uncertain stages is limited, it is important to know the
influence of the duration of uncertainty. To show this influence, a test is set up where the number
of uncertain stages are varied from four to eight. Models with more than eight stochastic stages
result in infeasible solutions, as convergence is too slow. During the simulations, all models had
the same base distribution from section 4.3. The expected climate sensitivity parameter after
the uncertain stages is set to be 2.95. This value is based on the realised value of ζ(ξt). As a
benchmark, these results are compared with the D20 model with the same expected climate
sensitivity parameter.

As seen in figure 5.1 and its zoomed version in 5.2 or their enlarged versions in appendix C.1,
the influence of ongoing uncertainty is a slightly more strict climate policy. In the case where
only four uncertain stages are included (SP204), the emissions are fully controlled at the seventh
stage in 2135, just as in the deterministic case. This transition is almost complete (0.997) a stage
earlier, for the case with eight uncertain stages (SP208).

When looking at the mitigation over time graph, it can be stated that overall an increase in
the duration of uncertainty results in an increasingly active policy. Note that this holds for all
cases except the case with six uncertain stages (SP206). In that case the mitigation policy is less
strict than all other evaluated cases. Important to note is that as the number of stages increase,
the difference between stages becomes smaller.

When looking at the development of industrial emissions over time as a function of uncertain
stages, it is clear that the more strict mitigation policy results in lower emissions. The main
deviations between the simulations occurs just after the peak at 2055. Here, gradients vary from
−0.07 for SP204 to −0.09 GTCO2/dec for SP208, increasing in steepness with the number of
uncertain stages. The steeper mitigation policy also results in a lower carbon concentration peak.
As a result of the increase in uncertain stages the peak of all cases is reduced with respect to the
deterministic case. The deviation between stages with an ascending number of uncertain stages
becomes less significant. The highest deviation in industrial emissions between the cases is at
2095, the fifth stage. After this stage the deviations become smaller tending to towards zero.
This trend of diminishing variation is the result of full emission control in 2135.

As a result of almost full emission control of the SP208 case in 2115, the carbon concentration
peaks in 2095, instead of in 2115. The major deviation between these cases is found at this stage.
Here, gradients vastly differ and the cases with a higher number of uncertain stage cases do follow
the deterministic case less closely. Up to the fourth stage in 2075, the concentration difference
between the five cases is marginally small. They deviate until the 2135, after which they converge
again. In the later stages of the model, all cases show equivalent behaviour. Overall the economic
variables, net world output and capital, are marginally influenced by the number of uncertain
stages as they are almost equal for all cases. There is marginal negative influence of uncertainty
on the economic variables creating a deviation of two trillion USD in output and a deviation of
seven trillion USD in capital in 2235.
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Figure 5.1: The influence of the number of stochastic stages to SP20 under base conditions
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Figure 5.2: The influence of the number of stochastic stages to SP20 under base conditions

5.3 Scenario analysis versus stochastic programming

As the main goal of stochastic programming is to include uncertainty into the decision making
process, it is interesting to see the response of the model in regard to the individual deterministic
scenarios. In order to demonstrate these deviations, three deterministic cases are plotted against
the EICE model under base conditions. The deterministic cases have a climate sensitivity of 2.2
(D20E220), 3.0 (D20E300) and 4.3 (D20E430). Thus, the same scenarios are evaluated as in the
stochastic case. To represent the stochastic case, the model with eight uncertain stages is used,
SP208. Again, here the expected climate sensitivity parameter of 2.95 is used.

As can be observed from figure 5.3 the transient behavior of all evaluated cases is equal. For the
economic variables, net world output and capital development, deviations are marginal. Here,
the stochastic case coincided with D20E300 and is exceeded by D20E220, but is higher than
D20E430 for all stages. This framed relation holds for all other displayed variables. Slight
deviations in the level of capital are a result of increased savings as presented in figure 5.4.

When looking at the mitigation graph, it is clear that a higher climate sensitivity results in
a steeper emission control rate. While all cases demonstrate the same transient behavior, the
climate sensitivity influences the time at which the emission control rate is almost under full
control. A steeper mitigation policy results in a higher carbon price. This relative increase can
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be observed in figure 5.4. When comparing the stochastic case with D20E300, it can be seen that
SP208 prefers a more strict climate policy early on, to be surpassed by D20E300 between 2095
and 2115. More on the difference between the stochastic and deterministic model is discussed in
the successive section.

2000 2050 2100 2150 2200 2250

Year

0

0.2

0.4

0.6

0.8

1

1.2

E
C

R
 [0

-1
]

Mitigation over time 

D20E220
D20E300
D20E430
SP20

8

2000 2050 2100 2150 2200 2250

Year

0

10

20

30

40

50

60

E
m

is
si

on
s 

[G
tC

O
2/

yr
]

Industrial Emissions over time

D20E220
D20E300
D20E430
SP20

8

2000 2050 2100 2150 2200 2250

Year

300

350

400

450

500

550

600

650

700

750

C
ar

bo
n 

co
nc

en
tr

at
io

n 
(p

pm
)

Atmospheric concentration over time

D20E220
D20E300
D20E430
SP20

8

2000 2050 2100 2150 2200 2250

Year

0

1

2

3

4

5

 °
C

 r
es

p.
 1

90
0

Atm. T increase over time

D20E220
D20E300
D20E430
SP20

8

2000 2050 2100 2150 2200 2250 2300

Year

0

500

1000

1500

2000

2500

3000

3500

W
or

ld
 P

ro
du

ct
 [T

r$
20

05
]

Net World Output over time

D20E220
D20E300
D20E430
SP20

8

2000 2050 2100 2150 2200 2250

Year

0

5000

10000

15000

 C
ap

ita
l [

T
r$

20
05

]

Capital over time

D20E220
D20E300
D20E430
SP20

8

Figure 5.3: Comparison of the deterministic scenarios with CS:={2.2, 3.0, 4.3} and the stochastic
program in the base case
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Figure 5.4: Comparison of the economic response from the deterministic scenarios with CS:={2.2, 3.0,
4.3} and the stochastic program in the base case

5.4 Comparison of the base and the expected case

The major argument for stochastic programming, is that a model which neglects uncertainty,
results in a non-optimal policy. To test whether this statement is just, a comparison is made
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between the deterministic and the stochastic model. Based on the average value of the base
case, the expected climate parameter is set to 3.125 in the deterministic model, D20E3125. The
output of this model is compared with the stochastic SP208 model, in which the base case is
used to represent uncertainty. The expected value of the climate sensitivity parameter after the
eight uncertain stages, is again set at 2.95. In line with the results of Crost and Traeger it is
expected that the deterministic case has a slightly more strict mitigation policy[16].
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Figure 5.5: The deterministic D20 program with CS = 3.125 versus the stochastic SP208 model under
the base case

Figure 5.5 shows a strong correlation (ρ = 0.9998) between the deterministic case and its
stochastic extension. From the mitigation graph, it can be seen that the deterministic case
has a slightly more stringent mitigation policy, which is in line with the results by Crost and
Traeger. The stricter policy also becomes clear from the industrial emissions curve, where the
results of SP208 are always above the curve of D20E3125. The same holds for the atmospheric
concentration, unlike the temperature increase. Until 2075 temperature increase is relatively equal.
After this stage, temperature rises more in the deterministic case. For both cases temperature
increase peaks in 2115. After this stage the curves converge. As found in previous comparisons
the economic variables, net world output and capital, are marginally negatively influenced by
the uncertainty in climate response.

5.5 Comparison of the base and the extreme case

In order to add to the fat-tail debate, the base and the extreme case of section 4.3 are compared.
Though the scenarios are based on the current understanding of the climate sensitivity parameter,
this test is mainly useful to show the influence of the shape of the probability curve. For these
tests it is expected that a "fatter" distribution supports claims for a more strict policy. The
comparison is based on models with eight uncertain stages. From the ninth stage on, the climate
sensitivity is set to 2.95 and 3.2, for the base and extreme case respectively. These values are
again based on the realisation of the uncertainty in ζ(ξt).

As previously found, and again confirmed in the graphs of figure 5.6, the economic variables are
marginally influenced by the uncertainty in the climate response. For both variables, the base
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case has a slightly higher value. A distinct difference in the other variables is the steeper increase
in climate mitigation action. As a result the transition to an industrial emission free economy is
achieved earlier with the extreme policy. In that case a complete transition is realised in 2115,
with respect to 2135 in the base case. Nonetheless, the difference in industrial emissions is small
at this stage. The deviation is much larger (around 40% of relative emissions) in 2075. As a
result of the stricter climate policy, the carbon concentrations increase less in the extreme case.
Even so, the atmospheric temperature increase is higher in the extreme case during the uncertain
stages of the model. After industrial emission have stopped the atmospheric concentrations start
to converge, in resemblance to the atmospheric temperatures.
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Figure 5.6: Comparison of the base and the extreme case

5.6 Comparison of the base and the extreme case and their uni-
form equivalent

As introduced in section 4.3, the debate regarding the fat-tail will be extended by including
the level of uncertainty. In line with the previous hypothesis, it is assumed that the uniform
distribution will support claims for a stricter policy. The proposed cases are simulated in models
with seven uncertain stages. In figures 5.7 and 5.8, asymmetric cases are labelled SP207 and
uniform cases as SP207u. In these models, after the seventh stage an estimated value is used.
The estimated climate sensitivity for the base case is again set to 2.95 for both scenarios and
3.20 for both scenarios of the extreme case.

Looking at the influence of a higher level of uncertainty for the base case in figure 5.7, it becomes
apparent that the level of uncertainty has nearly no influence on the advised policy in the base
case. To indicate, how identical the mitigation response is, the industrial emissions only deviate by
0.16[GtC] at their production peak in 2055. The lower production of industrial emissions results
in a lower atmospheric concentration, than the distributed case. Nonetheless, the atmospheric
temperature of the uniformly distributed case is marginally higher (0.015[◦C] in 2115). As with
all previous tests the influence on the economic variables is neglectable. When looking at the
net world output, the uniform distribution is preferred. The opposite is true for the level of capital.

More significant deviations are presented in figure 5.8, where the extreme case is evaluated. The

48



stricter climate policy for the uniformly distributed case results in minor deviations in industrial
emissions. With a correlation factor of 0.9997, these deviations are not big enough to truly
alter the advised policy. For example, no shift in transition time is observed. As a result of the
lower emissions, the carbon concentration is less in respect to the asymmetrically distributed
case. The increase in temperature for the uniformly distributed case is higher until 2135, after
which the lower carbon concentration and the shared climate sensitivity parameter result in a
relatively higher temperature increase for the asymmetrical distributed case. From an economic
perspective, based on the net world output and the accumulation of capital, the asymmetrically
distributed case is preferred.
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Figure 5.7: Comparison of the base case and its uniform extension
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Figure 5.8: Comparison of the extreme case and its uniform extension

5.7 Fluctuations in the carbon price

Knowing how the carbon price will react to (the level of) uncertainty is of crucial importance for
sound policy advice. Here the expectation is that a more uncertainty will lead to a higher carbon
price. To show the influence of uncertainty, five cases are compared. These are the expected
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base case , the base case with an asymmetric and an uniform distribution and the extreme case
with both distributions and an expected climate sensitivity parameter of 3.20. For all models
seven stochastic stages are included. The results of the simulations are presented in figure 5.9.

This figure shows that in respect to the expected case, that for the base case the advice is for a
marginally lower carbon tax and the extreme cases advice upon a notable higher carbon price.
As the uncertainty increases, so does the carbon price. These deviations are relatively small for
the base cases. The deviations are more significant for the extreme cases. Nonetheless, similar
systemic behaviour is clear with an correlation factor of 0.9723 for the two most deviating cases,
the expected and the uniformly distributed extreme case.
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Figure 5.9: Comparison of the carbon price of the expected, base, base uniform, extreme and extreme
uniform case

5.8 Sensitivity of utility to uncertainty
The objective of DICE or EICE is to maximize the utility function. The previously introduced
cases are used to demonstrate the influence of uncertainty to the accumulation of utility.

Table 5.5 shows that fluctuations in the value of the climate sensitivity parameter have a minor
influence on the outcome of the objective function. Additionally it shows that extending the
number of uncertain stages results in a lower accumulated utility. The deviations between the
cases decreases with the number of stages. In general, all values fall within the range of 3128 to
3191 with a modulus around 3175 utils. The lowest value is achieved in the worst case scenario,
with a climate sensitivity parameter of 8.00 and its opposite in the 2.20 case.
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Table 5.5: Accumulated utility of compared cases

Utility ECS

Expected 3177.061 2.95
Expected 3190.168 2.20
Expected 3176.273 3.00
Expected 3159.761 4.30
Expected 3128.901 8.00
Base4 3175.871 2.95
Base5 3175.533 2.95
Base6 3175.294 2.95
Base7 3175.152 2.95
Base8 3175.067 2.95
Base6u 3174.775 2.95
Extreme6 3164.144 3.20
Extreme6u 3160.113 3.20

51



Chapter 6

Discussion

The aim of following discussion is to revisit the model, reflect on the results and debate possible
implications of the found results. This discussion is divided into two sections covering these
subjects. The resulting discussion will form the basis of the conclusions in chapter 7.

6.1 Discussing the EICE model

The following discussion will go into the design choices regarding EICE. Here, the debate focusses
on the sensitivity of the result to the number of stochastic decisions, the sensitivity to the
probability distribution and the influence of the inclusion of endogenous parameters. In addition,
it states whether these decisions are justified.

Stochastic tree

The first design assumption that is discussed is the number of stochastic stages in the decision
tree. Section 4.2 already discussed the influence of bigger time steps. Here the main findings
were that a prolonged initial policy caused some deviations and that naturally the number of
re-evaluations became less, resulting in a more abrupt function. Therefore, the selection of a
longer time step resulted in a higher sensitivity to the initial policy. This section analyses the
influence of the number of stochastic decisions in the model.

As seen in figure 5.1, the duration of uncertainty results in a slightly more stringent mitigation
policy. From the same figure, the marginalisation of this influence also becomes apparent. The
asymptotic behaviour justifies the design assumption that not all stages have to be evaluated
under uncertainty, as proposed in section 4.2. The marginalisation of the influence of continuing
uncertainty is a consequence of the end of industrial emissions in the seventh stage.

Successive stages with uncertainty can only influence the total energy transition time, instead of
the current level of mitigation. The deterministic fat-tail scenario in the base case of D20E430
in figure 5.3 shows that this transition time will never be within five stages under assumed base
conditions. The same figure also shows that changes in transition time are dominated by the
value of the climate sensitivity parameter.

Concluding; results based on models with seven uncertain stages or higher are deemed to be
"good enough". This conclusion is supported by the data of table 5.5. Here, an increase of the
number of uncertain stages results in a reduction of the accumulation in utility. This reduction
marginalises with an increase in the number of stochastic stages and supports the claim that
models with more that six uncertain stages represent the systemic behaviour of a model with a
fully stochastic tree. Therefore, the design assumption regarding the number of stochastic stages

52



is justified.

Climate sensitivity parameter

With respect to the number of uncertain stages, the model is more sensitive to the value of the
climate sensitivity parameter as seen in figure 5.3 and table 5.5. As the influence of the sample
size is already debated in section 4.3 and forms the subject of section 6.2, the following subsection
will go into the sensitivity of the model to the distribution of the climate sensitivity parameter.
Whether the selected cases are justified is treated in section 6.2.

From figure 5.1 can be deduced that the possibility of a high climate sensitivity suggests a
notably more active mitigation policy. Contrariwise, figure 5.5 also shows that when evaluating
the expected case with the stochastic version, the advise is on a slightly less strict policy. This
result is the product of a slightly lower realisation of the climate sensitivity parameter, at 2.95
instead of the expected 3.125 for the base case. This realised version of the climate sensitivity is
derived from ζ1.1 The stochastic tree, available in the IST.file of EICE, shows that all 729 (36)
scenarios are evaluated. This deviation in expected climate sensitivity is therefore a result of
internal mechanics of the model.

The current hypothesis is that; due to the limited climate damage as a result of temperature
increase and the lack of strict bounds, the model finds that it is more efficient to "underestimate"
the climate sensitivity parameter. The low sensitivity to uncertainty of the model can at least be
partially explained by the little amount of negative capital resulting from emissions, equation
(4.4n). When implementing this damage function, Nordhaus proposes the values of; a1 = 0,
a2 = 0.0026 and a3 = 2. With these settings and an extreme case, where the world is in an
unrecognisable state at an atmospheric temperature increase of 8[◦C] in respect to 1900, the net
world output (only) decreases by 15[%]. In the results of chapter 5, atmospheric temperature
increase stays below 4[◦C] and therefore below a negative capital of 4[%] of the net world output.
These relatively low percentages and the inability to inflict damage on existing levels of welfare
dampen the effect of extreme outcomes. A revision of the damage function, justified by the
statement that in excess of 3[◦C] no quantifiable estimates about the damage could be made, in
section 1.4, could increase the sensitivity of the model to the shape of the probability curve. An
other option, an possibly a more preferable one, is to set a temperature bound. Such a bound is
preferable as future damages are defined to be unquantifiable in the same section.

A revision of the damage function could be justified by the statement that in excess of 3[◦C] no
quantifiable estimates about the damage can be made, as stated in section 1.4. Such a revision
could increase the sensitivity of the model to the shape of the probability curve. Nonetheless,
as damages are deemed to be fundamentally uncertain, as stated in the same section, such a
function can only be used to show the sensitivity of the model. In all likelihood such a revised
damage function would spawn a new (ethical) debate. An other option, an possibly a more prefer-
able one, is to set a temperature bound and avoid this ethical debate regarding catastrophic events.

Concluding, it is clear that the model is sensitive to the distribution of the climate sensitivity
parameter and that an increase in uncertainty, a fatter distribution, advocates for a steeper
mitigation curve. To achieve this, the model suggests a higher carbon price. The resulting cost
has a negative effect on the accumulation of utility. Even so, no grave differences are found.
Hence, the model’s results are influenced by the expectation of extreme climate outcomes, but

1For the extreme case, the realisation of the climate sensitivity parameter is also underestimated, 3.2 versus
4.05. Hence can be concluded that, the model is influenced by variations in the distribution.
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these might be smaller then expected. In extend, it is advised to view the results of the model in
respect to the knowledge of the dampening damage function and advised to include temperature
bounds while searching for an optimal policy.

Inclusion of uncertainty

The aim of the following discussion is the show the influence of the choice for endogenous uncer-
tainty. Endogenous uncertainty directly led to stochastic programming and this has been defining
for the project. The obvious alternative would have been to work with exogenous uncertainty
in a Monte Carlo type of approach. Figure 5.5 shows that a scenario with the same expected
value has a correlation of almost one. This high correlation is a result of excluding probabilistic
bounds and a relative insensitivity to extreme values of the climate sensitivity parameter.

Regarding the use of probabilistic bounds, as only a coarse approximation of the probability
curve is tractable, the implications of this technique are present as the end-of-the-tail realisations
are not evaluated.

In addition to the information of figure 5.5, figure 5.3 shows a very simple scenario analysis
with respect to EICE. From these graphs can be concluded that even though the models react
relatively the same, the scenario analysis method only verifies possible policies instead of advising
upon one. Nonetheless, when the objective values of the scenario analysis (Usa) are compared
with the stochastic solution (Usp), where the utilities of all scenarios are summed with respect
to their weights (pi) and this summed utility is subtracted from the accumulated utility of the
stochastic model, no additional value for the stochastic solution (VSS) is found[7]. In summary,
the VSS is calculated according to:

V SS = Usp − Σn
i=1piUsa,i. (6.1)

Since the VSS is marginally close to zero, the current solution does not offer a financial advantage
over scenario analysis. Again, this is (partially) a result of the dampened effect of extreme
outcomes by the damage function. Thus concluding, the current model does, in addition to
providing actual policy advice, not give a hedging strategy that preforms better than the
equivalent scenario analysis policy.

6.2 The results of EICE and its implications

The following section will reflect upon the results of chapter 5 in two ways. The first approach is
to look at the results in respect to the abstract evaluations of DICE. Here, the focus is on the
Dismal theorem and its counterarguments. This discussing is followed by a comparison of the
results found in literature and the implications of the optimal control policy suggested by EICE.

Counterarguments to the Dismal theorem

The original DICE model argues for modest emission control in the nearby future. This control
should be increased as time progresses, stretching the energy transition till 2150[49]. The resulting
J-curve policy is often debated on three major points: 1) the discounting of future generations,
2) the possibility of abrupt climate change due to feedback loops and 3) the increasing concern
of potential "tail" events and their catastrophic changes as a result of climate change[68][65][12].
This last field of interest is in line with the thesis of this report and the Dismal theorem.
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When working with asymmetric distributions, the possibility of these extreme events cannot be
ignored. Weitzman estimates, based on data from the IPCC’s fifth assessment report, that the
climate sensitivity parameter could be in the order of 10 to 20◦C[80]. Though these estimates are
based on incorrect simplifications, they serve the purpose of creating awareness[51]. In extension
to the Dismal theorem, Nordhaus proposed a topology defining certain levels of tail dominance,
i.e. the level of influence of the shape of the tail on the advised policy[51]. These levels are
defined as follows:

1. Tail irrelevance: when the distribution of the random variable has no or little influence on
the advices policy or on the outcome of the model,

2. Weak tail dominance: where the outcomes or the policies of the model are effected by the
tails of the distribution. Though the results are influenced, the outcome of the model does
converge,

3. Strong tail dominance: the case when the outcome of the model does not converge when
focussing on the tail, resulting in an infinite response.

The strong tail dominance is a result of the creeping convergence of the fat tail, slower then
exponential[55]. When looking at a normal distributed random variable, an extreme event has
a slightly more extreme counter part at just a slightly less probable state. In the case of a
(truly) fat tailed distribution, the extreme event has a much more extreme event at a slightly less
probable state. In other words, when looking at fat tailed distributions, the case with a relatively
lower probability has a significantly (approaching infinity for very very fat tailed distributions)
higher value[51]. Nordhaus finds that the distribution of the climate sensitivity parameter is
not fat enough to fall latter in this category of non-converging cases. This conclusion supports
the selected classes in section 4.3 and therefore the findings that "run-away" damage does not occur.

Reflections on literature and implications of EICE

Based on this conclusion and topology, the following subsection further dissects the implications
of EICE. Connecting the topology of tail dominance to the results presented in chapter 5, it
can be concluded that the base and extreme case respectively show the irrelevant tail and the
weak tail level response. This result thereby verifies the propositions made by Nordhaus. As the
base case is derived from the current understanding of the climate sensitivity parameter, it can
be concluded that; in regard to assumed variations of the climate sensitivity parameter, EICE
does not promote additional emission cuts. Hence, the EICE supports the claim of a moderate
mitigation policy. Nonetheless, the extreme case does support a more strict policy, but without
the non-converging consequences suggested by the Dismal theorem. This claim for a more strict
climate mitigation policy is also recommended based on the inclusion of higher level uncertainty.

Extrapolating these findings to conclusions in literature can only be done indirectly. The reason
for this is that evaluating the climate sensitivity parameter as the main uncertainty is uncom-
mon in Integrated Assessment literature. The results are therefore compared with literature
regarding uncertain damage. Damage is selected as the implications are expected to be the same.
When uncertain damage in DICE is approached in the same way as in this thesis, by means
of recursive dynamic programming, risk has a notable effect on the optimal policy. As in the
current evaluation, uncertain damage results in the advice to abate slightly less under "base-like"
conditions[16]. The possibility of a more extreme response is found to advocate increased optimal
control rates[65]. Both these responses are present in EICE and therefore support its advised
policy based on continuous evaluation of the prime uncertainty.
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As DICE possibly underestimates damages, Weitzman proposed an alternative damage function[82].This
alternative damage function is based on the findings of an expert panel and puts more emphasis
of tail events. Implementing this function into DICE showed that the proposed optimal policy
is very sensitive to its definition[9]. The need for such an alternative function and the found
sensitivity to its definition aligns with the results of chapter 5. Therefore, when evaluating
extreme events in the DICE model, results should be interpreted with this limitation in mind.
When following the conditions stated by the IPCC, the results of the original DICE model can
be assumed to be representative.

Concluding, synthesising a policy remains subjected to the modellers risk averseness, as both
moderate and deeper cuts in emissions can be supported under reasonable assumptions. A
side note here is that all modellers should take notice of the influence of the damage function.
Modellers following the current interpretation of climate science, as defined by the IPCC, should
follow the presented results in Nordhaus’ DICE model.
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Chapter 7

Conclusion

The goal of this thesis is to show the influence of climate uncertainty and the possible implications
of the Dismal theorem on model based decision making. Here, the focus is on the climate sensitivity
parameter, the response of the climate to CO2-emissions, as it is adducted by literature to be
the main source of uncertainty. The reason for its importance in literature is the fat-tail of
its distribution. This asymmetric shape is a result of accumulated measurement errors and
fundamental uncertainty regarding possible climate tipping points. For this reason the climate
sensitivity parameter is taken to be the uncertainty of interest. Showing the influence of this
asymmetrically distributed parameter on model based decision making is achieved by answering
the main question:

"How does the advised mitigation policy by DICE respond to the influence of an uncertain
climate sensitivity parameter?"

The response of the model to uncertainty depends on the way it is included. The first decision
regarding this integration is: whether to view uncertainty as an endogenous or exogenous pa-
rameter. In case the climate sensitivity parameter is implemented as a exogenous parameter,
its value is set before the model is run and therefore not experienced at the time the decision
maker has to set a policy. With endogenous uncertainty this is the case. Here, the modeller is
able to optimise the expected value instead of averaging the outcome after the simulations as
with exogenous uncertainty. This approach therefore provides an actual policy advice, is more
representative of the real situation and is found to be more risk averse.

As the focus is on endogenous uncertainty, Monte Carlo methods such as scenario analysis are
incompatible. Two often used methods that do include endogenous uncertainty are Robust
Optimisation and Stochastic Programming. In case of the foremost method, the focus is on the
tail events of the probability curve. As the aim of the thesis is to look at the shape of the curve,
this method is deemed ill-equipped. Stochastic Programming does look at the entire distribution
of the probability curve and thus is the preferred method.

The main idea of stochastic programming is that decisions are made before (exact) information
about the transition to a subsequent stage is known. Base on the probability curve, the stochastic
programming approach recursively estimates the value of future stages are uses this information
to advice on an optimal policy.

A drawback to this method is the exponential growth in size of the stochastic tree. In case the
original model with sixty stages is evaluated with only three scenarios per stage, the model would
have to evaluate a total of over a quintillion scenarios. This makes the model vastly intractable.
In order to work with the limited size of the tree a model is formulated with time steps of 20
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years, 7 stochastic stages, 8 deterministic stages and 3 scenarios per stage.

Based on the limited number of samples and the current understanding of the climate sensitivity
parameter, the four scenarios of the table 7.1 are constructed. The data in this table is represents
the current understanding of the climate sensitivity parameter (the asymmetrical base case),
a more extreme/risk-averse case (the asymmetrical extreme case). In addition both cases are
evaluated with a higher level of uncertainty as their uncertainty can be classified as fundamental.
At this fundamental level no probability distribution is at hand and scenarios are weighted equally.

Table 7.1: Climate sensitivity scenarios

Climate Sensitivity
[◦C/CO2,2x]

Probability
[%]

Asymmetrical Uniform
Base case 2.2 25 33

3.0 50 33
4.3 25 33

Extreme case 2.2 25 33
3.0 50 33
8.0 25 33

From comparing the results of these cases can be concluded that the model is sensitive to the
distribution of the climate sensitivity parameter.

When the base case is used as input for the new model, EICE, the advised policy is slightly
lower than that the expected policy by DICE. The less strict policy is probably a product of
the damage function, which makes it profitable to allow damage in case of overconsumption. If
the base case is reviewed from a higher level of uncertainty the optimal control rate and the
carbon tax remain below the set value of the expected case. In both cases deviations are minute.
Therefore, the base case is said to have "tail irrelevance", as the distribution of the random
variable has little to no influence of the advised policy.

The extreme case does support notable alterations to the suggested optimal control rate. As can
be seen in figure 7.1, both the asymmetrical and uniformly distributed extreme case support
an increase in the carbon price, advocating a stricter mitigation policy. Though, they advocate
more mitigation, they do not support the claim of an infeasible policy at tail-scenarios, as sug-
gested in the Dismal theorem. The extreme case is therefore defined to have "weak tail dominance".

Overall can be concluded that both a "fatter" tail and a higher level of uncertainty support claims
for a stricter mitigation policy. Nonetheless, due to a relatively low climate impact as a result of
emissions, these policies might be expected to be even more strict.

Consequently, synthesising a policy remains subjected to the modellers risk averseness, as both
moderate and deeper cuts in emissions can be supported by reasonable assumption regarding
the climate sensitivity parameter. Policy makers following the current interpretation of climate
science, as defined by the IPCC, should follow the presented results in Nordhaus’ DICE model.
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Chapter 8

Reflections and Recommendations

The following chapter reflects upon the design of the model and the process behind it. The
chapter starts with a reflection of the project defining decisions. The sequential section reviews
the path resulting in and from these decisions. A reflection of the results is already present
in subsection 6.2. The chapter concludes with an advise for further research based on the
encountered obstacles during the thesis.

8.1 Technical reflection

The design of the model is a product of a two major decisions. The following section will look at
these decisions and reflect upon them. These decisions are to focus on uncertainty within the
climate system and to look at endogenous uncertainty.

The decision to focus on the climate sensitivity parameter is one that can easily debated. The
reason for this is that the economic uncertainty (specifically the economic damage) plays a bigger
role in DICE. A logical alternative therefore would have been the damage function. This is the
case as simulating climate damage makes use of the same strong points in DICE as the climate
sensitivity parameter: the 300 year planning horizon. Thought the response of varying the climate
sensitivity parameter is relatively weak in respect to the damage exponent, it is the more realistic
thing to do. In addition, as already stated many times, such economic behaviour is unquantifiable
and therefore it can only be use to show the sensitivity of the model. Adverse to this the (almost)
fundamental uncertainty of the climate sensitivity parameter can be statistically approximated
by means of measurements and thus can be used as a basis for policy advisement. Therefore, a
model based on an uncertain climate sensitivity parameter can be used as a foundation for follow
up experiments with bounded feasible regions that lay within the somewhat more "knowable"
realm.

A consequence of working with an endogenous climate sensitivity parameter is stochastic pro-
gramming itself. Therefore, the endogenous inclusion resulted in only being able to evaluate a
single parameter, the need for a reduction in stages and a course approximation of the probability
density function. These limitations themselves led to further limitations like being unable to use
risk measures and probabilistic programming.

In order to enable these expansions, the aim has been to linearise the model. Unfortunately this
has failed as the convex base function by Solak has been found to be non-convex. Alternatives
to linearisation are presented later in section 8.3. With hindsight, converting DICE into one of
these structures should have been a part of the process.
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8.2 Process reflection
During this thesis I gained many new insights, too much to all individually mention. Therefore,
in the following section, I will go into the main learning events on a process level. The following
will be discussed: the structure of the research process, peer-support, time management and
learning cycles.

The structure of the research process

The project started with the focus on modelling. This focus was the product of not knowing
whether DICE could be simulated outside of Microsoft Excel. At this time no licence for GAMS
was available and I found the program in Excel did not offer a good starting point. Therefore the
aim in this initial period was to rebuild DICE in Matlab or Python. Furthermore, as the aim of
the thesis was to include random variables in the model, and the most common way to achieve
this is by Monte Carlo Analysis, I followed a course on the matter during the same period.

This initial focus on modelling steered away from the usual starting point of performing a
literature study. When the study was executed, it showed that there are better ways of including
uncertainty and led to contacts that could help with the project and a GAMS-licence.

In my opinion, this initial distortion is the greatest mistake of the project. In future projects I
will be reminded of the wandering around during the first stages of the project and make sure to
stay in line with the standard research process.

Peer-support

Not being linked to a research group is possibly the root of most of my challenges. Perhaps if I
was part of a team, the initial phase would have been more structured and less time would have
been lost. In this case, peers could have helped with formulating the problem as they would have
been familiar with the jargon.

Peers would also have been very helpful with fixing minor errors. Being new to the GAMS-
environment means simple problems could take days (or weeks) to solve. Being a part of a
research group could have greatly reduced the lost time. In addition, not having the possibility
to spar with colleagues working on the same matter, resulted in lasting misunderstandings and
possibly missed opportunities.

Based on these experiences, a following project will start by defining or joining a research group.
During the project I learned that being able to spar with peers, as in the later stages occasionally
occurred with Germán, fits my way of working and greatly aids its quality.

Time management

In advance I knew the project could not be finished within the stated nine months, nonetheless
it took longer then expected. One of these reasons can be classified as:"the other obligations".
What I did not expect to take as much time, but did, was switching between work and the
project. In the later stages of the project I was more strict with the time slots for both tasks,
which greatly improved my efficiency. Therefore, in further projects I will aim to do the same.

In hindsight, little things like calibrating the model from D5 to D20, took way more time than
estimated. The same holds for formulation text and small programming tasks. During the project
I learned to recognize such tasks and was able to more closely estimate the required time. A
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personal pitfall in this regard is the need to show results. As all these little delays sneaked in,
the meeting intervals increased, alienating myself further from my supervisors. In a following
project I hope to be part of a research group and hope to have weekly (fixed) meetings. These
meetings will force me to show the weekly progression and help to keep the pace.

In extend to the little things, there were of course also major setbacks. The biggest one, after
meeting with Mathijs and Germán, was the inability to linearise the convex model by Solak.
Even though, within a few weeks, this path seemed progression less, I clung to it. The more I
put time in the subject, the more uncertain I became and the more I was unable to alter my
path. The inevitable diversion came too late and delayed the process as a whole. Seeing whether
a path is viable will always be a difficult part of the process. Again, discussing the matter with
peers might help. For future projects, more "mile stones" and points of reflection are required in
the planning to avoid such delays.

learning cycles

A personal pitfall regarding the mastery of a subject, is focussing to much on theoretical details
or to stay to long in the realm of abstract structures. A good example of this is with solving
simple multi-stage optimisation structures. Following the book "Introduction to Stochastic
Programming" by J.R. Birge led me to nested decomposition and extensions thereof, which are
all challenging to program. Working out a problem showed the potential for simpler solutions
methods like the deterministic equivalent approach. From this experience, I learned to always
work from an example an build upon that, providing both a better understanding of and feeling
for the matter.

Overall, I would like to end on a positive note as being a part of this process has renewed my
interest in engineering and science overall. After a disappointing time in the laboratory at the
nuclear facility in Delft, I was not sure in which direction I wanted to go. Now, more than a year
later, the experiences during this thesis have resulted in a wish to obtain a PhD and pursue a
carrier in science.

8.3 Further developments of the EICE model

When further extending the EICE model, three tracks stand out. These tracks are the com-
putability, the socio-logical response to climate change and the treatment of the probability tail.
The following subsections will cover these subjects with the aim of sparking future research.

8.3.1 Computability

As stated in earlier chapters, stochastic models suffer from the curse of dimensionality. The
limitations set by the exponential growth in size, with each additional step or added scenario,
limits the possible number of stochastic stages and evaluated scenarios. Increasing the number
of samples will give a more representative approximation of the probability curve and might give
new insights into the mechanics of the system. In addition, more stochastic stages might be used
to compensate the losses of section 4.2. The following subsection suggests the following research
tracks: linearisation, decomposition and extensions thereof as these are common in literature.
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Linearisation

As introduced in section 2.4, DICE is a non-convex optimisation problem. Nonetheless, empirical
studies have shown that a local optimisation algorithm is able to find the same optimal solution
as a global optimisation algorithm regardless the initial guess[49]. Due to this characteristic
DICE is defined to be hidden-convex [67]. In case of a hidden-convex model an optima-preserving
transformation is possible to a convex model. While this new model may have different a feasible
region, it has the same optimal value[41].

The resulting convex model can form the basis of a linear model. The advantage of a linear model
is the possibility of linear programming and its efficient solving techniques (i.e. simplex and the
interior point algorithm). The difference between linear and non-linear programming is the need
for derivative information in determining the search direction and the rate of convergence. These
deriving steps are not needed in linear programming resulting in a lower computation time[43].

Based on this line of reasoning it is advised to search for an equivalent model to DICE. When
building the extended model of chapter 4, the initial idea was to base it on a linearised version of
the convex DICE model as proposed by Solak[67]. In this model the non-convex terms of DICE:
the utility function, the net output function, the emissions function and the radiative forcing
function are converted into convex functions. This conversion provides a model with only convex
and affine relations and thus a convex model. Unfortunately the proposed model is found to be
non-convex. As the emissions have a negative effect on the net output function, and thus on the ob-
jective, the feasible area has to be above the curve, figure 8.1 shows that this region is non-convex.

Figure 8.1: Feasible area of the emissions functions by Solak[67]. Here the vertical axis represents the
emissions and the horizontal axis covers the mitigation policy (0-1) and the state of capital
(0-9000)

As the proposed model by Solak cannot be linearised, there is the option of using specially ordered
sets (SOS) and integer programming to obtain a computationally less demanding model[83]. Using
type 2 SOS-variables, points on the emissions graph can be identified and linear combinations
of two of these points can be used to approximate the curve. A drawback to this method is
the relative increase in computational burden with respect to linear programming and the loss
of information with respect to the (convex) non-linear model. Based on these arguments this
solution method is not further explored.
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Decomposition

Section 4.3 introduced the idea of a stochastic tree within stochastic programming. The idea
behind decomposition is to make use of this repetitive structure to split the large deterministic
equivalent problem into multiple (easier to solve) small problems[7]. Traditionally Benders
decomposition is used to separate mixed integer programs into a master and a sub-problem.
This idea can be extended to two-stage stochastic programming. By solving sub-problems in
the second stage, feasibily and optimality cuts (bounds) can be generated for the first stage.
Extending this idea to multi-stage models is the foundation of Nested Benders Decomposition[45].
By first solving the root-node problems feasibility cuts are generated. These cuts are sequentially
passed back to the parent nodes, further constraining the model. As more cuts are passed
up the tree, the nonlinear value function in the parent models are more closely approximated.
Finally resulting in a master problem which is purely a function of the first stage decision variable.

GAMS’ EMP framework provides the option of Nested Benders Decomposition. This option is
available, when using the LINDO solver by LINDO Systems incorporated[11]. A comparison
between the computational time of the standard deterministic and the Nested Benders approach
showed no computational advantage for EICE. During this comparisons the standard cases of
three samples and four till eight stages are evaluated. Additionally, the case with four uncertain
stages and samples of six are tested without finding a reduction in computation time. A follow
up study could look into how the advantages of decomposition could be used to reduce the
computation burden of EICE.

In extend to the idea of decomposition, multiple daughter-techniques are developed. Often used
techniques are: Approximate dynamic programming, Stochastic Dual Dynamic Programming and
the Rolling Horizon approach, which all may provide computational benefits. These approaches
either work by exploring the future states by means of approximations (i.e. linearisations of
future stages), sampling future stages or by simulating with a nearby horizon and "roll" the
horizon over for each stage[13][25]. Using decomposition and to a further extend apply one of
the above mentioned techniques will possibly reduce the computational burden and allow for a
finer simulation.

8.3.2 Socio-logical response to climate change

One of the main conclusions is that the DICE model is relatively insensitive to climate damage.
This insensitivity could be partially due to the dampening effect of the damage function. Nord-
haus knowledges this shortcoming and states that: "... the economic impact of climate change is
the thorniest issue in climate-change economics"[50]. In order to overcome this effect the damage
function could be replaced. Many researchers (i.g. Weitzman[82][81], Ackerman[1], Crost and
Traeger[16], Hwang[35] and Pycroft[61]) already have followed this path. The challenge here is
that quantifying damages becomes increasingly more difficult with rising temperatures. It is
therefore a possibly more preferable option to work with temperature bounds. As stated by Heal,
future damages are unquantifiable. Therefore, using such a bound will also avoid an unsolvable
(ethical) debate and keep damages in the realm of the semi-quantifiable[30][49].

An interesting bound to review is the one at 2[◦C]. This bounds is agreed upon by almost 200
nations at the COP21 in 2005. As a part of a preliminary investigation this option is explored
with the SP207 model under base conditions. Adding the 2◦C-constraint results in a locally
infeasible solution. This infeasibility can be explained by looking at the suggested emission
control rate of the deterministic case with a climate sensitivity parameter of 2.9[◦C/CO2,2x]
under a 2[◦C] restriction. Table 8.1 shows the suggested mitigation policy in this case. From
this table can be derived that an near step response is needed in order to provide the optimal
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transition path. Setting the climate sensitivity at 4.3[◦C/CO2,2x] makes the problem insolvable.

Table 8.1: Climate mitigation policy under a 2[◦C] restriction in the D20 model with a climate senstivity
of 2.9[◦C/CO2,2x]

Time Level
2015 0.039
2035 0.589
2055 0.999
2075 0.972
2095 0.961
2115 0.972
2135 1.000
2155 1.000
2175 1.000

8.3.3 Treatment of the probability tail

The focus of this thesis has been on the sensitivity of the advised policy to the shape of the
climate sensitivity’s probability distribution. A logical follow up to this study would be to look
at the sensitivity to risk measures. These measures can be used to reduce the variability of the
return. Before these measures can be implemented a finer approximation of the probability curve
is needed. Common approaches to achieve this are: variance reduction, value at risk (VaR) and
conditional value at risk (CVaR)[72].

The first method aims to reduce the variance of the model. A disadvantage of this approach is
that it penalises both the profits and the losses. VaR avoids this drawback by defining a "value
at risk" at a certain probability and stating a constraint at that probability with a value no
greater than the value at risk. A downside to this approach is that the measure does not have
the property of subadditivity and makes the model non-convex. To avoid this problem, the
conditional expectation over losses in access of the value at risk can be accounted for. This is
the approach in CVaR[7]. Adding these risk measures to the model simulates the intolerance to
annihilation and therefore allows the exploration of the effects of very extreme events.
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Appendix A

The DICE model in GAMS format

This appendix lists the code of the original 2013 Vanilla GAMS version of DICE in GAMS
format. After the code is listed, a verbal explanation of the lines in the code is presented

A.1 Original DICE Vanilla 2013 GAMS code

2 This is the DICE 2013R model, version DICE2013R_100413_vanilla.gms, revised from
April version. The vanilla version includes only the optimal and baseline
scenarios. These are determined by setting the "ifopt" control at 1 (optimal)
or 0 (baseline). This version has write ("put") output but does not have
subroutines ("include"). A full discussion is included in the "DICE 2013R
Manual" on the web at dicemodel.net. As the GAMS Latex converter does not
allow for the minus sign, negative values will be appointed with "n!".

5 $title DICE 2013R October 2013

7 set t Time periods (5 years per period) /1*60/ ;

9 parameters
10 **Time Step
11 tstep Years per Period /5/

13 ** If optimal control
14 ifopt If optimized 1 and if base is 0 /1/

16 ** Preferences
17 elasmu Elasticity of marginal utility of consumption / 1.45 /
18 prstp Initial rate of social time preference per year / .015 /

20 ** Population and technology
21 gama Capital elasticity in production function /.300 /
22 pop0 Initial world population (millions) /6838 /
23 popadj Growth rate to calibrate to 2050 pop projection /0.134 /
24 popasym Asymptotic population (millions) /10500 /
25 dk Depreciation rate on capital (per year) /.100 /
26 q0 Initial world gross output (trill 2005 USD) /63.69 /
27 k0 Initial capital value (trill 2005 USD) /135 /
28 a0 Initial level of total factor productivity /3.80 /
29 ga0 Initial growth rate for TFP per 5 years /0.079 /
30 dela Decline rate of TFP per 5 years /0.006 /

32 ** Emissions parameters
33 gsigma1 Initial growth of sigma (continuous per year) /n! 0.01 /
34 dsig Decline rate of decarbonization per period /n! 0.001 /
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35 eland0 Carbon emissions from land 2010 (GtCO2 per year) / 3.3 /
36 deland Decline rate of land emissions (per period) / .2 /
37 e0 Industrial emissions 2010 (GtCO2 per year) /33.61 /
38 miu0 Initial emissions control rate for base case 2010 /.039 /

40 ** Carbon cycle
41 * Initial Conditions
42 mat0 Initial Concentration in atmosphere 2010 (GtC) /830.4 /
43 mu0 Initial Concentration in upper strata 2010 (GtC) /1527. /
44 ml0 Initial Concentration in lower strata 2010 (GtC) /10010. /
45 mateq Equilibrium concentration atmosphere (GtC) /588 /
46 mueq Equilibrium concentration in upper strata (GtC) /1350 /
47 mleq Equilibrium concentration in lower strata (GtC) /10000 /

49 * Flow paramaters
50 b12 Carbon cycle transition matrix /.088/
51 b23 Carbon cycle transition matrix /0.00250/

53 * These are for declaration and are defined later
54 b11 Carbon cycle transition matrix
55 b21 Carbon cycle transition matrix
56 b22 Carbon cycle transition matrix
57 b32 Carbon cycle transition matrix
58 b33 Carbon cycle transition matrix
59 sig0 Carbon intensity 2010 (kgCO2 per output 2005 USD 2010)

61 ** Climate model parameters
62 t2xco2 Equilibrium temp impact (oC per doubling CO2) / 2.9 /
63 fex0 2010 forcings of non CO2 GHG (Wm 2) / 0.25 /
64 fex1 2100 forcings of non CO2 GHG (Wm 2) / 0.70 /
65 tocean0 Initial lower stratum temp change (C from 1900) /.0068 /
66 tatm0 Initial atmospheric temp change (C from 1900) /0.80 /
67 c1 Climate equation coefficient for upper level /0.098 /
68 c3 Transfer coefficient upper to lower stratum /0.088 /
69 c4 Transfer coefficient for lower level /0.025 /
70 fco22x Forcings of equilibrium CO2 doubling (Wm 2) /3.8 /

72 ** Climate damage parameters
73 a1 Damage intercept /0 /
74 a2 Damage quadratic term /0.00267 /
75 a3 Damage exponent /2.00 /

77 ** Abatement cost
78 expcost2 Exponent of control cost function / 2.8 /
79 pback Cost of backstop 2005$ per tCO2 2010 / 344 /
80 gback Initial cost decline backstop cost per period / .025 /
81 limmiu Upper limit on control rate after 2150 / 1.2 /
82 tnopol Period before which no emissions controls base / 45 /
83 cprice0 Initial base carbon price (2005$ per tCO2) / 1.0 /
84 gcprice Growth rate of base carbon price per year /.02 /

86 ** Participation parameters
87 periodfullpart Period at which have full participation /21 /
88 partfract2010 Fraction of emissions under control in 2010 / 1 /
89 partfractfull F. of emissions under control at full time / 1 /

91 ** Availability of fossil fuels
92 fosslim Maximum cumulative extraction fossil fuels (GtC) /6000/

94 ** Scaling and inessential parameters
95 * Note that these are unnecessary for the calculations but are for convenience
96 scale1 Multiplicative scaling coefficient /0.016408662 /
97 scale2 Additive scaling coefficient /n!3855.106895/ ;
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99 * Program control variables
100 sets tfirst(t), tlast(t), tearly(t), tlate(t);

102 PARAMETERS
103 L(t) Level of population and labor
104 al(t) Level of total factor productivity
105 sigma(t) CO2 equivalent emissions output ratio
106 rr(t) Average utility social discount rate
107 ga(t) Growth rate of productivity from
108 forcoth(t) Exogenous forcing for other greenhouse gases
109 gl(t) Growth rate of labor
110 gcost1 Growth of cost factor
111 gsig(t) Change in sigma (cumulative improvement of energy efficiency)
112 etree(t) Emissions from deforestation
113 cost1(t) Adjusted cost for backstop
114 partfract(t) Fraction of emissions in control regime
115 gfacpop(t) Growth factor population
116 pbacktime(t) Backstop price

118 optlrsav Optimal long run savings rate used for transversality
119 scc(t) Social cost of carbon
120 cpricebase(t) Carbon price in base case ;

122 * Program control definitions
123 tfirst(t) = yes$(t.val eq 1);
124 tlast(t) = yes$(t.val eq card(t));

126 * Parameters for long run consistency of carbon cycle
127 b11 + b12 = 1;
128 b21 = b12*MATEQ/MUEQ;
129 b22 + b21 + b23 = 1;
130 b32 = b23*mueq/mleq;
131 b33 + b32 = 1;

133 * Further definitions of parameters
134 sig0 = e0/(q0*(1 n! miu0));
135 lam = fco22x/ t2xco2;
136 L("1") = pop0;
137 loop(t, L(t+1)=L(t););
138 loop(t, L(t+1)=L(t)*(popasym/L(t))**popadj ;);
139 ga(t) = ga0*exp( dela*5*((t.val n!1)));
140 al("1") = a0; loop(t, al(t+1)=al(t)/((1 n! ga(t))););
141 gsig("1") = gsigma1; loop(t,gsig(t+1)=gsig(t)*((1+dsig)**tstep) ;);
142 sigma("1") = sig0; loop(t,sigma(t+1)=(sigma(t)*exp(gsig(t)*tstep)););
143 pbacktime(t) = pback*(1 gback)**(t.val n!1);
144 cost1(t) = pbacktime(t)*sigma(t)/expcost2/1000;
145 etree(t) = eland0*(1 deland)**(t.val n!1);
146 rr(t) = 1/((1+prstp)**(tstep*(t.val n!1)));
147 forcoth(t) = fex0+ (1/18)*(fex1 fex0)*(t.val n!1)$(t.val lt 19)+ (fex1 fex0)$

(t.val ge 19);
148 optlrsav = (dk + .004)/(dk + .004*elasmu + prstp)*gama;
149 partfract(t)$(ord(T)>periodfullpart) = partfractfull;
150 partfract(t)$(ord(T)<periodfullpart+1) = partfract2010+(partfractfull partfract2010

)*(ord(t) n!1)/periodfullpart;
151 partfract("1") = partfract2010;
152 cpricebase(t) = cprice0*(1+gcprice)**(5*(t.val n! 1));

154 VARIABLES
155 MIU(t) Emission control rate GHGs
156 FORC(t) Increase in radiative forcing (watts per m2 from 1900)
157 TATM(t) Increase temperature of atmosphere (degrees C from 1900)
158 TOCEAN(t) Increase temperatureof lower oceans (degrees C from 1900)
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159 MAT(t) Carbon concentration increase in atmosphere (GtC from 1750)
160 MU(t) Carbon concentration increase in shallow oceans (GtC from

1750)
161 ML(t) Carbon concentration increase in lower oceans (GtC from

1750)
162 E(t) Total CO2 emissions (GtCO2 per year)
163 EIND(t) Industrial emissions (GtCO2 per year)
164 C(t) Consumption (trillions 2005 US dollars per year)
165 K(t) Capital stock (trillions 2005 US dollars)
166 CPC(t) Per capita consumption (thousands 2005 USD per year)
167 I(t) Investment (trillions 2005 USD per year)
168 S(t) Gross savings rate as fraction of gross world product
169 RI(t) Real interest rate (per annum)
170 Y(t) Gross world product net of abatement and damages (trillions

2005 USD per year)
171 YGROSS(t) Gross world product GROSS of abatement and damages (

trillions 2005 USD per year)
172 YNET(t) Output net of damages equation (trillions 2005 USD per year)
173 DAMAGES(t) Damages (trillions 2005 USD per year)
174 DAMFRAC(t) Damages as fraction of gross output
175 ABATECOST(t) Cost of emissions reductions (trillions 2005 USD per year)
176 MCABATE(t) Marginal cost of abatement (2005$ per ton CO2)
177 CCA(t) Cumulative industrial carbon emissions (GTC)
178 PERIODU(t) One period utility function
179 CPRICE(t) Carbon price (2005$ per ton of CO2)
180 CEMUTOTPER(t) Period utility
181 UTILITY Welfare function;

183 NONNEGATIVE VARIABLES MIU, TATM, MAT, MU, ML, Y, YGROSS, C, K, I;

185 EQUATIONS
186 *Emissions and Damages
187 EEQ(t) Emissions equation
188 EINDEQ(t) Industrial emissions
189 CCACCA(t) Cumulative carbon emissions
190 FORCE(t) Radiative forcing equation
191 DAMFRACEQ(t) Equation for damage fraction
192 DAMEQ(t) Damage equation
193 ABATEEQ(t) Cost of emissions reductions equation
194 MCABATEEQ(t) Equation for MC abatement
195 CARBPRICEEQ(t) Carbon price equation from abatement

197 *Climate and carbon cycle
198 MMAT(t) Atmospheric concentration equation
199 MMU(t) Shallow ocean concentration
200 MML(t) Lower ocean concentration
201 TATMEQ(t) Temperature climate equation for atmosphere
202 TOCEANEQ(t) Temperature climate equation for lower oceans

204 *Economic variables
205 YGROSSEQ(t) Output gross equation
206 YNETEQ(t) Output net of damages equation
207 YY(t) Output net equation
208 CC(t) Consumption equation
209 CPCE(t) Per capita consumption definition
210 SEQ(t) Savings rate equation
211 KK(t) Capital balance equation
212 RIEQ(t) Interest rate equation

214 * Utility
215 CEMUTOTPEREQ(t) Period utility
216 PERIODUEQ(t) Instantaneous utility function equation
217 UTIL Objective function ;
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219 ** Equations of the model
220 *Emissions and Damages
221 eeq(t).. E(t) =E= EIND(t) + etree(t);
222 eindeq(t).. EIND(t) =G= sigma(t) * YGROSS(t) * (1 (MIU(t)));
223 ccacca(t+1).. CCA(t+1) =E= CCA(t)+ EIND(t)*5/3.666;
224 force(t).. FORC(t) =E= fco22x * ((log((MAT(t)/588.000))/log(2))) +

forcoth(t);
225 damfraceq(t) .. DAMFRAC(t) =E= (a1*TATM(t))+(a2*TATM(t)**a3) ;
226 dameq(t).. DAMAGES(t) =E= YGROSS(t) * DAMFRAC(t);
227 abateeq(t).. ABATECOST(t) =E= YGROSS(t) * cost1(t) * (MIU(t)**expcost2) *

(partfract(t)**(1 expcost2));
228 mcabateeq(t).. MCABATE(t) =E= pbacktime(t) * MIU(t)**(expcost2 1);
229 carbpriceeq(t).. CPRICE(t) =E= pbacktime(t) * (MIU(t)/partfract(t))**(

expcost2 1);

231 *Climate and carbon cycle
232 mmat(t+1).. MAT(t+1) =E= MAT(t)*b11 + MU(t)*b21 + (E(t)*(5/3.666));
233 mml(t+1).. ML(t+1) =E= ML(t)*b33 + MU(t)*b23;
234 mmu(t+1).. MU(t+1) =E= MAT(t)*b12 + MU(t)*b22 + ML(t)*b32;
235 tatmeq(t+1).. TATM(t+1) =E= TATM(t) + c1 * ((FORC(t+1) n!(fco22x/t2xco2)

*TATM(t)) n!(c3*(TATM(t) n!TOCEAN(t))));
236 toceaneq(t+1).. TOCEAN(t+1) =E= TOCEAN(t) + c4*(TATM(t) n!TOCEAN(t));

238 *Economic variables
239 ygrosseq(t).. YGROSS(t) =E= (al(t)*(L(t)/1000)**(1 GAMA))*(K(t)**GAMA);
240 yneteq(t).. YNET(t) =E= YGROSS(t)*(1 n!damfrac(t));
241 yy(t).. Y(t) =E= YNET(t) n! ABATECOST(t);
242 cc(t).. C(t) =E= Y(t) n! I(t);
243 cpce(t).. CPC(t) =E= 1000 * C(t) / L(t);
244 seq(t).. I(t) =E= S(t) * Y(t);
245 kk(t+1).. K(t+1) =L= (1 n!dk)**tstep * K(t) + tstep * I(t);
246 rieq(t+1).. RI(t) =E= (1+prstp) * (CPC(t+1)/CPC(t))**(elasmu/tstep

) 1;

248 *Utility
249 cemutotpereq(t).. CEMUTOTPER(t) =E= PERIODU(t) * L(t) * rr(t);
250 periodueq(t).. PERIODU(t) =E= ((C(T)*1000/L(T))**(1 n!elasmu) n!1)/(1 n!

elasmu) n!1;
251 util.. UTILITY =E= tstep * scale1 * sum(t, CEMUTOTPER(t)) +

scale2 ;

253 *Resource limit
254 CCA.up(t) = fosslim;

256 * Control rate limits
257 MIU.up(t) = limmiu*partfract(t);
258 MIU.up(t)$(t.val<30) = 1;

260 ** Upper and lower bounds for stability
261 K.LO(t) = 1;
262 MAT.LO(t) = 10;
263 MU.LO(t) = 100;
264 ML.LO(t) = 1000;
265 C.LO(t) = 2;
266 TOCEAN.UP(t) = 20;
267 TOCEAN.LO(t) = n!1;
268 TATM.UP(t) = 40;
269 CPC.LO(t) = .01;

271 * Control variables
272 * Savings rate for asympotic equilibrium
273 S.FX(t)$(t.val>50) = optlrsav;
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275 * Base carbon price if base, otherwise optimized
276 * Warning: If parameters are changed, the next equation might make base case

infeasible.
277 * If so, reduce tnopol so that don’t run out of resources.
278 cprice.up(t)$(ifopt=0) = cpricebase(t);
279 cprice.up(t)$(t.val>tnopol) = 1000;
280 cprice.up(’1’)=cpricebase(’1’);

282 * Initial conditions
283 CCA.FX(tfirst) = 90;
284 K.FX(tfirst) = k0;
285 MAT.FX(tfirst) = mat0;
286 MU.FX(tfirst) = mu0;
287 ML.FX(tfirst) = ml0;
288 TATM.FX(tfirst) = tatm0;
289 TOCEAN.FX(tfirst) = tocean0;

291 ** Solution options
292 option iterlim = 99900;
293 option reslim = 99999;
294 option solprint = on;
295 option limrow = 0;
296 option limcol = 0;

298 model CO2 /all/;
299 solve co2 maximizing utility using nlp;
300 solve co2 maximizing utility using nlp;
301 solve co2 maximizing utility using nlp;

303 ** POST SOLVE
304 * Calculate social cost of carbon
305 scc(t) = 1000*eeq.m(t)/cc.m(t);

307 ** Display at bottom of output for visual inspection
308 option decimals=2;
309 display tatm.l,scc,utility.l,cprice.l,y.l, cpc.l,cc.m;
310 option decimals=6;
311 display ri.l,utility.l,cc.m;

313 *Describes a file labeled ’results’ with the filename "DiceResults.csv" in the
current directory

314 file results /DiceResults.csv/; results.nd = 10 ; results.nw = 0 ; results.pw=1200;
results.pc=5;

315 put results;

317 *Some sample results. For an include file which outputs ALL relevant information,
see ’PutOutputAllT.gms’ in the Include folder.

318 *You may likely use:
319 *$include Include\PutOutputAllT.gms
320 * ...if your directory contains this file.
321 put / "Period";
322 Loop (T, put T.val);
323 put / "Year" ;
324 Loop (T, put (2005+(TSTEP*T.val) ));
325 put / "* CLIMATE MODULE" ;
326 put / "Atmospheric Temperature (deg C above preindustrial)" ;
327 Loop (T, put TATM.l(T));
328 put / "Total Increase in Forcing (Watts per Meter2, preindustrial)" ;
329 Loop (T, put FORC.l(T));
330 put / "Lower Ocean Temperature (deg C above preindustrial)" ;
331 Loop (T, put TOCEAN.l(T));
332 putclose;
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A.2 Verbatim elaboration of DICE 2013

The internal relations, also known as the equations of the model consists of 25 relations with 27
variables. Additionally previously defined parameters are included in the relations. The section
below covers these relations in a pseudo mathematical style, in the program of table A.1 uses
the mathematical representation as proposed by Nordhaus. The abbreviation in this tables are
explained in the text below. The relations in the GAMS model are divided into four groups. The
first group focuses on the emissions and corresponding damages, the second group deals with the
physical aspects of the climate and the third group covers the economic variables. The objective
function is defined in the fourth. For continuity purposes this order will be maintained.

The total CO2 emissions per year(E(t))[GtCO2/a] is equal to the sum of industrial emissions
(EIND(t))[GtCO2/a] and the emissions related to deforestation (etree(t))[GtCO2/a]. Here E(t)
and EIND(t) are presented in uppercase letters whereas etree(t) uses lowercase letters. This
distinction is made to separate the variables (uppercase) from the parameters(lower case). The
industrial emissions are formed by the product of the CO2-equivalent-emissions output ratio
(σ(t))[-], the gross world product of gross abatement and damages (YGROSS)[tr$.2005/a] and 1 -
the emission control rate (MIU(t))[-]. The industrial emissions also play a role in the calculation
of the cumulative industrial carbon emissions (CCA(t))[GtCO2]. Here it is multiplied by a factor
and added with the previously cumulated CO2. The increase in radiative forcing as a result of the
accumulated CO2 since 1900 (FORC(t))[W/m2] is defined to be equal to the forcings of equilib-
rium CO2 doubling (foc22x) times the logarithmic function of the carbon concentration increase
since 1970 in the atmosphere (MAT(t))[GtCO2] and the exogenous forcing for other greenhouse
gasses (forcoth(t))[-]. The damages inflicted due to emissions (DAMAGES(t))[tr$.2005/a] are a
function of the gross world product of gross abatement and damages and the damage fraction
(DAMFRACT(t))[-]. The damage fraction is set equal to the damage intercept (a1)[-] times the
increase in temperature of the atmosphere since 1900 (TATM)[◦C] plus the damage quadratic
term (a2)[-] times the increase in temperature to the power of the damage exponent (a3)[-]. To
battle this rise in temperature and the resulting damages emissions can be reduced. The price of
this reduction is captured in the abatement cost (ABATECOST(t))[tr$.2005/a]. Abatement cost
is a function of the gross world product of gross abatement and damages, the adjusted cost for a
backstop technology (cost1(t)),the emission control rate to the power of the control cost function
(expcost2)[-] and the fraction of emissions under control (partfract(t))[-] to the power 1 - the
control cost function. The marginal cost of abatement (MCABATE(t)) is equal to the backstop
price (pbacktime(t)) times the emission control rate to the power control cost function minus 1.

The climate and carbon cycle starts with a definition of the carbon concentration increase in the
atmosphere since 1750 (MAT(t))[GtCO2 ]. The increase is based on the previous level times a
carbon cycle transition matrix(abriviation:cctm) (b11)[-] for long-run consistency of the carbon
cycle. To this value the carbon concentration increase since 1750 of the shallow oceans is added
(MU(t))[GtCO2 ] which is multiplied by again a cctm (b21)[-]. The increase of the concentration
within the shallow oceans in itself is a function of the concentration in the atmosphere times a cctm
(b12)[-] plus the increase in carbon concentration in the lower oceans since 1750 (ML(t))[GtCO2
] times the cctm (b32)[-] and its own previous concentration times cctm (b22)[-]. The increase in
concentration of carbon in the lower oceans is a function of its previous concentration time cctm
(b33)[-] plus the increase in carbon concentration of the shallow oceans times cctm (b23)[-]. The
resulting increase in temperature of the atmosphere since 1900 (TATM(t))[◦C] is a function of its
previous self plus the climate equation coefficient for the upper lever (c1)[-] times the subtraction
of the increase of radiative forcing and radiative forcings of the equilibrium CO2 doubling divided
by the equilibrium temperature impact (t2xco2)[◦C per doubling CO2]. The product of this
substraction is multiplied by the previous increase in temperature since 1900. Which as a whole
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is to be subtracted by product of the transfer coefficient of the upper to the lower stratum
(c3)[-] and the previous temperature increase minus the increase in temperature of the lower
oceans since 1900 (TOCEAN(t))[◦C]. The temperature of the lower oceans is again a function
of its previous self plus transfer coefficient for lower levels (c4)[-] times the difference between
the previous increase in atmospheric temperature and the increase in the lower ocean temperature.

To conclude with the economics of the model, the gross world product of abatement and damages
(YGROSS)[tr$.2005/a] is defined to be a function of the level of total productivity (al(t))[-] and
the level of labour and populations (l(t))[-] of which the product to the power one - the capital
elasticity in the production function (γ)[-] is multiplied the capital stock (K(t))[tr$.2005/a]
to the power γ. The gross world product is used to calculated the net output of damages
(YNET(t))[tr$.2005/a] by multiplying it by one - the damage fraction. The gross world product
of net abatement and damages (Y(t))[tr$.2005/a] is formed by the subtraction of the net output
of damages and the cost of emission reduction. The resulting consumption1 (C(t))[tr$.2005/a] is
equal to the gross world net product minus the investment (I(t))[tr$.2005/a]. Which in itself
is a function of the Gross savings rate as a function the the gross world product (S(t))[-] and
the gross world net product. Change in the capital stock (K(t))[tr$.2005/a] is calculated as the
sum of investment and 1 minus the depreciation of capital (dk)[-] times the current capital stock.
The economic variables conclude with the real interest rate (RI(t)) which is defined to be the
sum of 1 and the initial rate of social time preference per year (prstp)[-] times the change in per
capita consumption to the power of the division of the elasticity of marginal utility (elasmu)[-]
and the number of years per period (tstep) minus one.

For optimization purposes the DICE defines three more functions under the name of utility (the
objective function). The per period utility function (PERIODU(t)) is equal to the per capita
consumption to the power of the elasticity of marginal utility. The result of this variable is mul-
tiplied by the level of population and labour and the average utility social discount rate (rr(t))[-]
form the period utility (CEMUTOTPER(t)). Finally the welfare function (UTILITY(t))[-] is
equal to the sum of this periods utility times the number of years per period and a multiplicative
scaling coefficient (scale1)[-].

1Consumption per capita (CPC(t))[1000$.2005/a per person]
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Table A.1: Equations of the model

Emissions and damages

E(t) = EIND(t) + entree(t)
EIND(t) = σ(t) · Y GROSS(t) · (1−MIU(t))

CCA(t) = CCA(t− 1) + EIND · 15
11

FORC(t) = fco22x ·
logMAT (t)

588.000
log(2) + forcoth(t)

DAMFRAC(t) = a1 · TATM(t) + (a2 · TATm(t))a3

DAMAGES(t) = Y GROSS(t) ·DAMFRAC(t)
ABATECOST (t) = Y GROSS(t) · cost1(t) ·MIU(t)expcost2

·partfract(t)1−expcost2

MCABATE(t) = pbacktime(t) ·MIU(t)expcost2−1

CPRICE(t) = pbacktime(t) · MIU(t)
partfract(t)

expcost2−1

Climate and carbon cycle

MAT (t) = MAT (t− 1) · b11 +MU(t− 1) · b21 + E(t− 1) · 15
11

ML(t) = ML(t− 1) · b33 +MU(t− 1) · b23
MU(t) = MAT (t− 1) · b12 +MU(t− 1) · b22 +ML(t− 1) · b32

TATM(t) = TATM(t− 1) + c1 · (FORC(t)− fco22x
t2xCO2

· TATM(t− 1))

−c3(TATM(t− 1)− TOCEAN(t− 1)
TOCEAN(t) = TOCEAN(t− 1) + c4 · (TATM(t− 1)− TOCEAN(t− 1))

Economic variables

Y GROSS(t) = (al(t)) · l(t)1000)1−γ ·K(t)γ

Y NET (t) = Y GROSS(t) · (1− damfrac(t))
Y (t) = Y NET (t)−ABATECOST (t)
C(t) = Y (t)− I(t)

CPC(t) = 1000 · C(t)
l(t)

I(t) = S(t) · Y (t)
K(t) < (1− dk)tstep ·K(t− 1) + tstep · I(t− 1)

RI(t) = (1 + prstp) · ( CPC(t)
CPC(t− 1))

elasmu
tstep − 1

Utility

PERIODU(t) = C(t) ∗ 1000
l(t)

(1−elasmu)−1
1−elasmu

− 1

CEMUTOTPER(t) = PERIODU(t) · l(t) · rr(t)

UTILITY (t) = tstep · scale1 ·
∫ t

0
CEMUTOTPER(t)dt
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Appendix B

The EICE model in GAMS format

2 $title Extended DICE 2013R (EICE 2013R) with rewritten equations and multi
stage stochastic format. Before adjustment are made it is advised that the
modeller consults the GAMS EMP stochatic programming manual. It is advised to
first practice with the examples in this model before alterations to this model
are made. As the GAMS Latex converter does not allow for the minus sign,

negative values will be appointed with "n!".

5 set t Time periods (20 years per period) /1*15/
6 st(t) recourse periods (following years) /2*15/
7 cst(st) consumtion gradient time /3*15/
8 torg Original number of periods (5years per period) /1*60/;

12 parameters

14 ** uncertainty parameters
15 t2xco2(st) Equilibrium temp impact (oC per doubling CO2)

18 **Time Step
19 tstep Years per Period /20/
20 tsteporg Years per Period /5/
21 scale new vs org

23 ** If optimal control
24 ifopt Indicator where optimized is 1 and base is 0 /1/

26 ** Preferences
27 elasmu Elasticity of marginal utility of consumption /1.45/
28 prstp Initial rate of social time preference per year /.015/

30 ** Population and technology
31 gama Capital elasticity in production function / 0.300/
32 pop0 Initial world population (millions) / 6838 /
33 popadj Growth rate to calibrate to 2050 pop projection / 0.134/
34 popasym Asymptotic population (millions) / 10500/
35 dk Depreciation rate on capital (per year) / 0.100/
36 q0 Initial world gross output (trill 2005 USD) / 63.69/
37 k0 Initial capital value (trill 2005 USD) / 135 /
38 a0 Initial level of total factor productivity / 3.80 /
39 ga0 Initial growth rate for TFP per 5 years / 0.079/
40 dela Decline rate of TFP per 5 years / 0.006/

42 ** Emissions parameters
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43 gsigma1 Initial growth of sigma (per year) / n!0.01 /
44 dsig Decline rate of decarbonization (per period) / n!0.001/
45 eland0 Carbon emissions from land 2010 (GtCO2 per year) / 3.3 /
46 deland Decline rate of land emissions (per period) / 0.2 /
47 e0 Industrial emissions 2010 (GtCO2 per year) / 33.61/
48 miu0 Initial emissions control rate for base case 2010 /.039 /

50 ** Carbon cycle
51 * Initial Conditions
52 mat0 Initial Concentration in atmosphere 2010 (GtC) / 830.4 /
53 mu0 Initial Concentration in upper strata 2010 (GtC) / 1527. /
54 ml0 Initial Concentration in lower strata 2010 (GtC) / 10010 /
55 mateq Equilibrium concentration atmosphere (GtC) / 588 /
56 mueq Equilibrium concentration in upper strata (GtC) / 1350 /
57 mleq Equilibrium concentration in lower strata (GtC) / 10000 /

59 * Flow paramaters

61 b12 Carbon cycle transition matrix / 0.352 /
62 b23 Carbon cycle transition matrix / 0.01 /

65 * These are for declaration and are defined later
66 b11 Carbon cycle transition matrix
67 b21 Carbon cycle transition matrix
68 b22 Carbon cycle transition matrix
69 b32 Carbon cycle transition matrix
70 b33 Carbon cycle transition matrix
71 sig0 Carbon intensity 2010 (kgCO2 per output 2005 USD 2010)

73 ** Climate model parameters
74 Ecs Expected temperature increase / 4.05 /
75 fex0 2010 forcings of non CO2 GHG (Wm 2) / 0.25 /
76 fex1 2100 forcings of non CO2 GHG (Wm 2) / 0.70 /
77 tocean0 Initial lower stratum temp change (C from 1900) / 0.0068/
78 tatm0 Initial atmospheric temp change (C from 1900) / 0.80 /

80 c10 Initial climate equation coefficient for upper level /0.392 /
81 c1beta Regression slope coefficient(SoA~Equil TSC) /0.04972/
82 c3 Transfer coefficient upper to lower stratum / 0.18 /
83 c4 Transfer coefficient for lower level / 0.1 /
84 fco22x Forcings of equilibrium CO2 doubling (Wm 2) / 3.8 /

86 ** Climate damage parameters
87 a10 Initial damage intercept /0 /
88 a20 Initial damage quadratic term /0.00267 /
89 a1 Damage intercept /0 /
90 a2 Damage quadratic term /0.00267 /
91 a3 Damage exponent /2.00 /

93 ** Abatement cost
94 expcost2 Exponent of control cost function / 2.8 /
95 pback Cost of backstop 2005$ per tCO2 2010 / 344 /
96 gback Initial cost decline backstop cost per period / .1 /
97 limmiu Upper limit on control rate after 2150 / 1.2 /
98 tnopol Period before which no emissions controls base / 45 /
99 cprice0 Initial base carbon price (2005$ per tCO2) / 1.0 /
100 gcprice Growth rate of base carbon price per year /.02 /

102 ** Participation parameters
103 periodfullpart Period at which have full participation /21 /
104 partfract2010 Fraction of emissions under control in 2010 / 1 /
105 partfractfull Fraction of emissions under control at full time / 1 /
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107 ** Availability of fossil fuels
108 fosslim Maximum cumulative extraction fossil fuels (GtC) /6000/

110 ** Scaling and inessential parameters
111 * Note that these are unnecessary for the calculations but are for convenience
112 scale1 Multiplicative scaling coefficient /0.016408662 /
113 scale2 Additive scaling coefficient / n!3855.106895/ ;

115 * Program control variables
116 sets tfirst(t), tlast(t), tearly(t), tlate(t);

118 PARAMETERS
119 l(t) Level of population and labor
120 lb(torg) Level of population and labor
121 al(t) Level of total factor productivity
122 alb(torg) Level of total factor productivity
123 sigma(t) CO2 equivalent emissions output ratio
124 rr(t) Average utility social discount rate
125 ga(torg) Growth rate of productivity from
126 forcoth(t) Exogenous forcing for other greenhouse gases
127 gl(t) Growth rate of labor
128 gcost1 Growth of cost factor
129 gsig(t) Change in sigma (cumulative improvement of energy efficiency)
130 etree(t) Emissions from deforestation
131 cost1(t) Adjusted cost for backstop
132 partfract(t) Fraction of emissions in control regime
133 lam Climate model parameter
134 gfacpop(t) Growth factor population
135 pbacktime(t) Backstop price
136 optlrsav Optimal long run savings rate used for transversality
137 scc(t) Social cost of carbon
138 cpricebase(t) Carbon price in base case
139 photel(t) Carbon Price under no damages (Hotelling rent condition);

141 * Timestep scaling parameter
142 scale = tstep/tsteporg;

144 * Program control definitions
145 tfirst(t) = yes$(t.val eq 1);
146 tlast(t) = yes$(t.val eq card(t));

148 * Parameters for long run consistency of carbon cycle
149 b11 = 1 b12;
150 b21 = b12*MATEQ/MUEQ;
151 b22 = 1 n!b21 n!b23;
152 b32 = b23*mueq/mleq;
153 b33 = 1 n!b32 ;

155 * Further definitions of parameters
156 sig0 = e0/(q0*(1 n!miu0));

158 *Based on the original curve a new labour function is constructed
159 lb("1") = pop0;
160 loop(torg, lb(torg+1)=lb(torg););
161 loop(torg, lb(torg+1)=lb(torg)*(popasym/lb(torg))**popadj ;);
162 l("1")=lb("1"); l("2")=lb("5"); l("3")=lb("9"); l("4")=lb("13");
163 l("5")=lb("17"); l("6")=lb("21"); l("7")=lb("25"); l("8")=lb("29");
164 l("9")=lb("33"); l("10")=lb("37"); l("11")=lb("41"); l("12")=lb("45");
165 l("13")=lb("49"); l("14")=lb("53"); l("15")=lb("57");

167 *Based on the original curve a new tecnology function is constructed
168 ga(torg)=ga0*exp( n!dela*5*(((torg.val n!1))));
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169 alb("1") = a0; loop(torg, alb(torg+1)=alb(torg)/((1 n!ga(torg))););
170 al("1") = alb("1"); al("2")=alb("5"); al("3")=alb("9"); al("4")=alb("13");
171 al("5")=alb("17"); al("6")=alb("21"); al("7")=alb("25"); al("8")=alb("29");
172 al("9")=alb("33"); al("10")=alb("37"); al("11")=alb("41"); al("12")=alb("45");
173 al("13")=alb("49"); al("14")=alb("53"); al("15")=alb("57");

175 gsig("1")=gsigma1; loop(t,gsig(t+1)=gsig(t)*((1+dsig)**tstep) ;);
176 sigma("1")=sig0; loop(t,sigma(t+1)=(sigma(t)*exp(gsig(t)*tstep)););

178 pbacktime(t)=pback*(1 n!gback)**((t.val n!1));
179 cost1(t) = pbacktime(t)*sigma(t)/expcost2/1000;

181 etree(t) = eland0*(1 deland)**(scale*(t.val n!1));
182 rr(t) = 1/((1+prstp)**(tstep*((t.val 1))));
183 forcoth(t) = fex0+ (1/18)*(fex1 fex0)*scale*(t.val n!1)$(t.val lt 5)+ (fex1 fex0)$(

t.val ge 5);
184 optlrsav = (dk + .004)/(dk + .004*elasmu + prstp)*gama;

186 partfract(t)$(ord(T)>periodfullpart) = partfractfull;
187 partfract(t)$(ord(T)<periodfullpart+1) = partfract2010+(partfractfull partfract2010

)*(ord(t) 1)/periodfullpart;

189 partfract("1")= partfract2010;

192 *new
193 t2xco2(’2’)=ECS;
194 loop(st, t2xco2(st+1)=t2xco2(st););

197 *Base Case Carbon Price
198 cpricebase(t)= cprice0*(1+gcprice)**(tstep*(t.val n!1));

200 VARIABLES
201 MIU(t) Emission control rate GHGs
202 FORC(t) Increase in radiative forcing (watts per m2 from 1900)
203 TATM(t) Increase temperature of atmosphere (degrees C from 1900)
204 TOCEAN(t) Increase temperatureof lower oceans (degrees C from 1900)
205 TCAL(t) Adjustment for climate sensitivity
206 TINC(t) Inclusion of uncertainty
207 MAT(t) Carbon concentration increase in atmosphere (GtC from 1750)
208 MU(t) Carbon concentration increase in shallow oceans (GtC from 1750)
209 ML(t) Carbon concentration increase in lower oceans (GtC from 1750)
210 E(t) Total CO2 emissions (GtCO2 per year)
211 EIND(t) Industrial emissions (GtCO2 per year)
212 C(t) Consumption (trillions 2005 US dollars per year)
213 K(t) Capital stock (trillions 2005 US dollars)
214 CPC(t) Per capita consumption (thousands 2005 USD per year)
215 I(t) Investment (trillions 2005 USD per year)
216 S(t) Gross savings rate as fraction of gross world product
217 RI(t) Real interest rate (per annum)
218 Y(t) Gross world product net of abatement and damages

(trillions 2005 USD per year)
219 YGROSS(t) Gross world product GROSS of abatement and damages

(trillions 2005 USD per year)
220 YRED(t) Reduced gross world product (Ygross Abatement)
221 DAMAGES(t) Damages (trillions 2005 USD per year)
222 DAMFRAC(t) Damages as fraction of gross output
223 ABATECOST(t) Cost of emissions reductions (trillions 2005 USD per year)
224 MCABATE(t) Marginal cost of abatement (2005$ per ton CO2)
225 CCA(t) Cumulative industrial carbon emissions (GTC)
226 PERIODU(t) One period utility function
227 CPRICE(t) Carbon price (2005$ per ton of CO2)
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228 CEMUTOTPER(t) Period utility
229 UTILITY Welfare function
230 ;

232 NONNEGATIVE VARIABLES MIU, TATM, MAT, MU, ML, Y, YGROSS, C, K, I;

234 EQUATIONS
235 *Emissions and Damages
236 EEQ(t) Emissions equation
237 EINDEQ(t) Industrial emissions
238 CCACCA(t) Cumulative carbon emissions

240 FORCE(t) Radiative forcing equation
241 DAMFRACEQ(t) Equation for damage fraction
242 DAMEQ(t) Damage equation

244 ABATEEQ(t) Cost of emissions reductions equation
245 MCABATEEQ(t) Equation for MC abatement
246 CARBPRICEEQ(t) Carbon price equation from abatement

248 *Climate and carbon cycle
249 MMAT(t) Atmospheric concentration equation
250 MMU(t) Shallow ocean concentration
251 MML(t) Lower ocean concentration
252 TATMEQ(t) Temperature climate equation for atmosphere
253 TCALEQ(st) Climate sensitivity inclusion
254 TINCEQ(st) Inclusion of uncertainty
255 TOCEANEQ(t) Temperature climate equation for lower oceans

257 *Economic variables
258 YGROSSEQ(t) Output gross equation
259 YREDEQ(t) Output reduced equation
260 YY(t) Output net equation
261 CC(t) Consumption equation
262 CPCE(t) Per capita consumption definition
263 SEQ(t) Savings rate equation
264 KK(t) Capital balance equation
265 RIEQ(t) Interest rate equation

267 * Utility
268 CEMUTOTPEREQ(t) Period utility
269 PERIODUEQ(t) Instantaneous utility function equation
270 UTIL Objective function ;

272 ** Equations of the model
273 *Emissions and Damages
274 eeq(t).. E(t) =E= EIND(t) + etree(t);
275 eindeq(t).. EIND(t) =G= sigma(t) * YGROSS(t) * (1 n!(MIU(t)));
276 ccacca(t)$st(t).. CCA(t) =E= CCA(t n!1)+ EIND(t n!1)*tstep/3.666;
277 force(t).. FORC(t) =E= fco22x * ((log((MAT(t)/588.000))/log

(2))) + forcoth(t);
278 damfraceq(t).. DAMFRAC(t) =E= (a1*TATM(t))+(a2*TATM(t)**a3) ;
279 dameq(t).. DAMAGES(t) =E= DAMFRAC(t);
280 abateeq(t).. ABATECOST(t) =E= YGROSS(t) * cost1(t) * (MIU(t)**

expcost2) * (partfract(t)**(1 n!expcost2));
281 mcabateeq(t).. MCABATE(t) =E= pbacktime(t) * MIU(t)**(expcost2 n!1);
282 carbpriceeq(t).. CPRICE(t) =E= pbacktime(t) * (MIU(t)/partfract(t))

**(expcost2 n!1);

284 *Climate and carbon cycle
285 mmat(t)$st(t).. MAT(t) =E= MAT(t n!1)*b11 + MU(t n!1)*b21 + (E(t

n!1)*(tstep/3.666));
286 mml(t)$st(t).. ML(t) =E= ML(t n!1)*b33 + MU(t n!1)*b23;
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287 mmu(t)$st(t).. MU(t) =E= MAT(t n!1)*b12 + MU(t n!1)*b22 +
ML(t n!1)*b32;

288 TCALEQ(st).. TCAL(st) =E= c10+ c1beta*(t2xco2(st) n!ECS);
289 TINCEQ(st).. TINC(st) =E= fco22x / t2xco2(st);
290 TATMEQ(t)$st(t).. TATM(t) =E= (TATM(t n!1)) + Tcal(t)*(( FORC(t) n!

TINC(t)*TATM(t n!1)) (c3*(TATM(t n!1) TOCEAN(t n!1))));
291 toceaneq(t)$st(t).. TOCEAN(t) =E= TOCEAN(t n!1) + c4*(TATM(t n!1) TOCEAN

(t n!1));

293 *Economic variables
294 ygrosseq(t).. YGROSS(t) =E= (al(t)*(L(t)/1000)**(1 n!GAMA))*(K(t)

**GAMA);
295 yredeq(t).. YRED(t) =E= YGROSS(t) n!ABATECOST(t);
296 yy(t).. Y(t) =E= YRED(t)/(1+DAMAGES(t));
297 cc(t).. C(t) =E= Y(t) n!I(t);
298 cpce(t).. CPC(t) =E= 1000 * C(t) / L(t);
299 seq(t).. I(t) =E= S(t) * Y(t);
300 kk(t)$st(t).. K(t) =L= (1 n!dk)**tstep * K(t n!1) + tstep * I

(t n!1);
301 rieq(t)$st(t).. RI(t) =E= (1+prstp) * (CPC(t)/CPC(t n!1))**(

elasmu/tstep) n!1;

303 *Utility
304 cemutotpereq(t).. CEMUTOTPER(t) =E= PERIODU(t) * L(t) * rr(t);
305 periodueq(t).. PERIODU(t) =E= ((C(t)*1000/L(t))**(1 n!elasmu) n!1)

/(1 n!elasmu) n!1;
306 util.. UTILITY =E= tstep * scale1 * sum(t, CEMUTOTPER(t)

) + scale2 ;

308 *Resource limit
309 CCA.up(t) = fosslim;

311 * Control rate limits
312 MIU.up(t) = limmiu*partfract(t);
313 MIU.up(t)$(t.val<30) = 1;

315 ** Upper and lower bounds for stability
316 K.LO(t) = 1;
317 MAT.LO(t) = 10;
318 MU.LO(t) = 100;
319 ML.LO(t) = 1000;
320 C.LO(t) = 2;
321 TOCEAN.UP(t) = 20;
322 TOCEAN.LO(t) = n!1;
323 TATM.UP(t) = 9.1;
324 TATM.lo(t) = 0;
325 DAMAGES.lo(t) = 0.001;
326 CPC.LO(t) = .01;

328 * Control variables
329 * Set savings rate for steady state for last 10 periods
330 set lag10(t) ;
331 lag10(t) = yes$(t.val gt card(t) 2);
332 S.FX(lag10(t)) = optlrsav;

334 * Initial conditions
335 CCA.FX(’1’) = 90;
336 K.FX(’1’) = k0;

338 MAT.FX(’1’) = mat0;
339 MU.FX(’1’) = mu0;
340 ML.FX(’1’) = ml0;
341 TATM.FX(’1’) = tatm0;
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342 TOCEAN.FX(’1’) = tocean0;

346 ** Solution options
347 option iterlim = 9990000;
348 option reslim = 9999999;
349 option solprint = on;
350 option limrow = 0;
351 option limcol = 0;

353 model CO2 /all/;

356 miu.fx(’1’) = miu0;

359 *****************************
360 The following section covers the extension of the deterministic model. When

simulation both a continuous and a discrete distribution can be used.
361 *****************************

363 *** for CONTINOUS disctributions
364 *** Use the LINDO solver
365 *$funclibin msllib lsadclib
366 *function setSeed / msllib.setSeed /
367 * sampleUniform / msllib.sampleLSUniform /
368 * getSampleValues / msllib.getSampleValues /;
369 *scalar scalK;
370 *scalK = sampleUniform(2.5,4,3);
371 *set g /1*3/; parameter sv1(g);
372 *loop(g,
373 * sv1(g) = getSampleValues(scalK);
374 *);
375 *display sv1;

377 *file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;
378 *put emp; emp.nd=4;
379 *put "randvar t2xco2(’2’) discrete "; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);
380 *put "randvar t2xco2(’3’) discrete "; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);
381 *put "randvar t2xco2(’4’) discrete "; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);
382 *put "randvar t2xco2(’5’) discrete "; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);
383 *put "randvar t2xco2(’6’) discrete "; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);
384 *put "randvar t2xco2(’7’) discrete "; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);

386 *** For DISCRETE distributions
387 *** Use the DE solver
388 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;
389 put emp; emp.nd=4;
390 put "randvar t2xco2(’2’) discrete ", 0.25 2.2 0.50 3 0.25 8 /;
391 put "randvar t2xco2(’3’) discrete ", 0.25 2.2 0.50 3 0.25 8 /;
392 put "randvar t2xco2(’4’) discrete ", 0.25 2.2 0.50 3 0.25 8 /;
393 put "randvar t2xco2(’5’) discrete ", 0.25 2.2 0.50 3 0.25 8 /;
394 put "randvar t2xco2(’6’) discrete ", 0.25 2.2 0.50 3 0.25 8 /;
395 put "randvar t2xco2(’7’) discrete ", 0.25 2.2 0.50 3 0.25 8 /;
396 ** This line can be extended to incorporate more uncertain stages

400 $onput
401 *** stage > variable > equation
402 stage 1 E(’1’) EIND(’1’) MIU(’1’) k(’1’) Ygross(’1’) Yred(’1’) Y(’1’) FORC(’1’)

ABATECOST(’1’) MCABATE(’1’)
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403 CPRICE(’1’) C(’1’) CPC(’1’) I(’1’) S(’1’) DAMAGES(’1’) DAMFRAC(’1’) PERIODU(’1’)
CEMUTOTPER(’1’)

404 EEQ(’1’) EINDEQ(’1’) FORCE(’1’) DAMFRACEQ(’1’) DAMEQ(’1’) ABATEEQ(’1’) MCABATEEQ
(’1’) CARBPRICEEQ(’1’)

405 YGROSSEQ(’1’) YREDEQ(’1’) YY(’1’) CC(’1’) CPCE(’1’) SEQ(’1’) CEMUTOTPEREQ(’1’)
PERIODUEQ(’1’)

407 stage 2 E(’2’) EIND(’2’) MIU(’2’) TATM(’2’) TOCEAN(’2’) k(’2’) Ygross(’2’) Yred
(’2’) Y(’2’) MAT(’2’) ML(’2’) MU(’2’) FORC(’2’) ABATECOST(’2’) MCABATE(’2’)
TCAL(’2’) TINC(’2’)

408 CCA(’2’) CPRICE(’2’) C(’2’) CPC(’2’) I(’2’) S(’2’) DAMAGES(’2’) DAMFRAC(’2’)
PERIODU(’2’) CEMUTOTPER(’2’) t2xco2(’2’)

409 EEQ(’2’) EINDEQ(’2’) CCACCA(’2’) FORCE(’2’) DAMFRACEQ(’2’) DAMEQ(’2’) ABATEEQ(’2’)
MCABATEEQ(’2’) CARBPRICEEQ(’2’) TCALEQ(’2’) TINCEQ(’2’)

410 MMAT(’2’) MMU(’2’) MML(’2’) TATMEQ(’2’) TOCEANEQ(’2’) YGROSSEQ(’2’) YREDEQ(’2’) YY
(’2’) CC(’2’) CPCE(’2’) RIEQ(’2’) SEQ(’2’) KK(’2’) CEMUTOTPEREQ(’2’) PERIODUEQ
(’2’)

412 stage 3 E(’3’) EIND(’3’) MIU(’3’) TATM(’3’) TOCEAN(’3’) k(’3’) Ygross(’3’) Yred
(’3’) Y(’3’) MAT(’3’) ML(’3’) MU(’3’) FORC(’3’) ABATECOST(’3’) MCABATE(’3’)
TCAL(’3’) TINC(’3’)

413 CCA(’3’) CPRICE(’3’) C(’3’) CPC(’3’) I(’3’) S(’3’) RI(’3’) DAMAGES(’3’) DAMFRAC
(’3’) PERIODU(’3’) CEMUTOTPER(’3’) t2xco2(’3’)

414 EEQ(’3’) EINDEQ(’3’) CCACCA(’3’) FORCE(’3’) DAMFRACEQ(’3’) DAMEQ(’3’) ABATEEQ(’3’)
MCABATEEQ(’3’) CARBPRICEEQ(’3’) TCALEQ(’3’) TINCEQ(’3’)

415 MMAT(’3’) MMU(’3’) MML(’3’) TATMEQ(’3’) TOCEANEQ(’3’) YGROSSEQ(’3’) YREDEQ(’3’) YY
(’3’) CC(’3’) CPCE(’3’) SEQ(’3’) KK(’3’) RIEQ(’3’) CEMUTOTPEREQ(’3’) PERIODUEQ
(’3’)

417 stage 4 E(’4’) EIND(’4’) MIU(’4’) TATM(’4’) TOCEAN(’4’) k(’4’) Ygross(’4’) Yred
(’4’) Y(’4’) MAT(’4’) ML(’4’) MU(’4’) FORC(’4’) ABATECOST(’4’) MCABATE(’4’)
TCAL(’4’) TINC(’4’)

418 CCA(’4’) CPRICE(’4’) C(’4’) CPC(’4’) I(’4’) S(’4’) RI(’4’) DAMAGES(’4’) DAMFRAC
(’4’) PERIODU(’4’) CEMUTOTPER(’4’) t2xco2(’4’)

419 EEQ(’4’) EINDEQ(’4’) CCACCA(’4’) FORCE(’4’) DAMFRACEQ(’4’) DAMEQ(’4’) ABATEEQ(’4’)
MCABATEEQ(’4’) CARBPRICEEQ(’4’) TCALEQ(’4’) TINCEQ(’4’)

420 MMAT(’4’) MMU(’4’) MML(’4’) TATMEQ(’4’) TOCEANEQ(’4’) YGROSSEQ(’4’) YREDEQ(’4’) YY
(’4’) CC(’4’) CPCE(’4’) SEQ(’4’) KK(’4’) RIEQ(’4’) CEMUTOTPEREQ(’4’) PERIODUEQ
(’4’)

422 stage 5 E(’5’) EIND(’5’) MIU(’5’) TATM(’5’) TOCEAN(’5’) k(’5’) Ygross(’5’) Yred
(’5’) Y(’5’) MAT(’5’) ML(’5’) MU(’5’) FORC(’5’) ABATECOST(’5’) MCABATE(’5’)
TCAL(’5’) TINC(’5’)

423 CCA(’5’) CPRICE(’5’) C(’5’) CPC(’5’) I(’5’) S(’5’) RI(’5’) DAMAGES(’5’) DAMFRAC
(’5’) PERIODU(’5’) CEMUTOTPER(’5’) t2xco2(’5’)

424 EEQ(’5’) EINDEQ(’5’) CCACCA(’5’) FORCE(’5’) DAMFRACEQ(’5’) DAMEQ(’5’) ABATEEQ(’5’)
MCABATEEQ(’5’) CARBPRICEEQ(’5’) TCALEQ(’5’) TINCEQ(’5’)

425 MMAT(’5’) MMU(’5’) MML(’5’) TATMEQ(’5’) TOCEANEQ(’5’) YGROSSEQ(’5’) YREDEQ(’5’) YY
(’5’) CC(’5’) CPCE(’5’) SEQ(’5’) KK(’5’) RIEQ(’5’) CEMUTOTPEREQ(’5’) PERIODUEQ
(’5’)

427 stage 6 E(’6’) EIND(’6’) MIU(’6’) TATM(’6’) TOCEAN(’6’) k(’6’) Ygross(’6’) Yred
(’6’) Y(’6’) MAT(’6’) ML(’6’) MU(’6’) FORC(’6’) ABATECOST(’6’) MCABATE(’6’)
TCAL(’6’) TINC(’6’)

428 CCA(’6’) CPRICE(’6’) C(’6’) CPC(’6’) I(’6’) S(’6’) RI(’6’) DAMAGES(’6’) DAMFRAC
(’6’) PERIODU(’6’) CEMUTOTPER(’6’) t2xco2(’6’)

429 EEQ(’6’) EINDEQ(’6’) CCACCA(’6’) FORCE(’6’) DAMFRACEQ(’6’) DAMEQ(’6’) ABATEEQ(’6’)
MCABATEEQ(’6’) CARBPRICEEQ(’6’) TCALEQ(’6’) TINCEQ(’6’)

430 MMAT(’6’) MMU(’6’) MML(’6’) TATMEQ(’6’) TOCEANEQ(’6’) YGROSSEQ(’6’) YREDEQ(’6’) YY
(’6’) CC(’6’) CPCE(’6’) SEQ(’6’) KK(’6’) RIEQ(’6’) CEMUTOTPEREQ(’6’) PERIODUEQ
(’6’)
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432 stage 7 E(’7’) EIND(’7’) MIU(’7’) TATM(’7’) TOCEAN(’7’) k(’7’) Ygross(’7’) Yred
(’7’) Y(’7’) MAT(’7’) ML(’7’) MU(’7’) FORC(’7’) ABATECOST(’7’) MCABATE(’7’)
TCAL(’7’) TINC(’7’)

433 CCA(’7’) CPRICE(’7’) C(’7’) CPC(’7’) I(’7’) S(’7’) RI(’7’) DAMAGES(’7’) DAMFRAC
(’7’) PERIODU(’7’) CEMUTOTPER(’7’) t2xco2(’7’)

434 EEQ(’7’) EINDEQ(’7’) CCACCA(’7’) FORCE(’7’) DAMFRACEQ(’7’) DAMEQ(’7’) ABATEEQ(’7’)
MCABATEEQ(’7’) CARBPRICEEQ(’7’) TCALEQ(’7’) TINCEQ(’7’)

435 MMAT(’7’) MMU(’7’) MML(’7’) TATMEQ(’7’) TOCEANEQ(’7’) YGROSSEQ(’7’) YREDEQ(’7’) YY
(’7’) CC(’7’) CPCE(’7’) SEQ(’7’) KK(’7’) RIEQ(’7’) CEMUTOTPEREQ(’7’) PERIODUEQ
(’7’)

437 stage 8 E(’8’) EIND(’8’) MIU(’8’) TATM(’8’) TOCEAN(’8’) k(’8’) Ygross(’8’) Yred
(’8’) Y(’8’) MAT(’8’) ML(’8’) MU(’8’) FORC(’8’) ABATECOST(’8’) MCABATE(’8’)
TCAL(’8’) TINC(’8’)

438 CCA(’8’) CPRICE(’8’) C(’8’) CPC(’8’) I(’8’) S(’8’) RI(’8’) DAMAGES(’8’) DAMFRAC
(’8’) PERIODU(’8’) CEMUTOTPER(’8’)

439 EEQ(’8’) EINDEQ(’8’) CCACCA(’8’) FORCE(’8’) DAMFRACEQ(’8’) DAMEQ(’8’) ABATEEQ(’8’)
MCABATEEQ(’8’) CARBPRICEEQ(’8’) TCALEQ(’8’) TINCEQ(’8’)

440 MMAT(’8’) MMU(’8’) MML(’8’) TATMEQ(’8’) TOCEANEQ(’8’) YGROSSEQ(’8’) YREDEQ(’8’) YY
(’8’) CC(’8’) CPCE(’8’) SEQ(’8’) KK(’8’) RIEQ(’8’) CEMUTOTPEREQ(’8’) PERIODUEQ
(’8’)

442 stage 9 E(’9’) EIND(’9’) MIU(’9’) TATM(’9’) TOCEAN(’9’) k(’9’) Ygross(’9’) Yred
(’9’) Y(’9’) MAT(’9’) ML(’9’) MU(’9’) FORC(’9’) ABATECOST(’9’) MCABATE(’9’)
TCAL(’9’) TINC(’9’)

443 CCA(’9’) CPRICE(’9’) C(’9’) CPC(’9’) I(’9’) S(’9’) RI(’9’) DAMAGES(’9’) DAMFRAC
(’9’) PERIODU(’9’) CEMUTOTPER(’9’)

444 EEQ(’9’) EINDEQ(’9’) CCACCA(’9’) FORCE(’9’) DAMFRACEQ(’9’) DAMEQ(’9’) ABATEEQ(’9’)
MCABATEEQ(’9’) CARBPRICEEQ(’9’) TCALEQ(’9’) TINCEQ(’9’)

445 MMAT(’9’) MMU(’9’) MML(’9’) TATMEQ(’9’) TOCEANEQ(’9’) YGROSSEQ(’9’) YREDEQ(’9’) YY
(’9’) CC(’9’) CPCE(’9’) SEQ(’9’) KK(’9’) RIEQ(’9’) CEMUTOTPEREQ(’9’) PERIODUEQ
(’9’)

447 stage 10 E(’10’) EIND(’10’) MIU(’10’) TATM(’10’) TOCEAN(’10’) k(’10’) Ygross(’10’)
Yred(’10’) Y(’10’) MAT(’10’) ML(’10’) MU(’10’) FORC(’10’) ABATECOST(’10’)
MCABATE(’10’) TCAL(’10’) TINC(’10’)

448 CCA(’10’) CPRICE(’10’) C(’10’) CPC(’10’) I(’10’) S(’10’) RI(’10’) DAMAGES(’10’)
DAMFRAC(’10’) PERIODU(’10’) CEMUTOTPER(’10’)

449 EEQ(’10’) EINDEQ(’10’) CCACCA(’10’) FORCE(’10’) DAMFRACEQ(’10’) DAMEQ(’10’) ABATEEQ
(’10’) MCABATEEQ(’10’) CARBPRICEEQ(’10’) TCALEQ(’10’) TINCEQ(’10’)

450 MMAT(’10’) MMU(’10’) MML(’10’) TATMEQ(’10’) TOCEANEQ(’10’) YGROSSEQ(’10’) YREDEQ
(’10’) YY(’10’) CC(’10’) CPCE(’10’) SEQ(’10’) KK(’10’) RIEQ(’10’) CEMUTOTPEREQ
(’10’) PERIODUEQ(’10’)

452 stage 11 E(’11’) EIND(’11’) MIU(’11’) TATM(’11’) TOCEAN(’11’) k(’11’) Ygross(’11’)
Yred(’11’) Y(’11’) MAT(’11’) ML(’11’) MU(’11’) FORC(’11’) ABATECOST(’11’)
MCABATE(’11’) TCAL(’11’) TINC(’11’)

453 CCA(’11’) CPRICE(’11’) C(’11’) CPC(’11’) I(’11’) S(’11’) RI(’11’) DAMAGES(’11’)
DAMFRAC(’11’) PERIODU(’11’) CEMUTOTPER(’11’)

454 EEQ(’11’) EINDEQ(’11’) CCACCA(’11’) FORCE(’11’) DAMFRACEQ(’11’) DAMEQ(’11’) ABATEEQ
(’11’) MCABATEEQ(’11’) CARBPRICEEQ(’11’) TCALEQ(’11’) TINCEQ(’11’)

455 MMAT(’11’) MMU(’11’) MML(’11’) TATMEQ(’11’) TOCEANEQ(’11’) YGROSSEQ(’11’) YREDEQ
(’11’) YY(’11’) CC(’11’) CPCE(’11’) SEQ(’11’) KK(’11’) RIEQ(’11’) CEMUTOTPEREQ
(’11’) PERIODUEQ(’11’)

457 stage 12 E(’12’) EIND(’12’) MIU(’12’) TATM(’12’) TOCEAN(’12’) k(’12’) Ygross(’12’)
Yred(’12’) Y(’12’) MAT(’12’) ML(’12’) MU(’12’) FORC(’12’) ABATECOST(’12’)
MCABATE(’12’) TCAL(’12’) TINC(’12’)

458 CCA(’12’) CPRICE(’12’) C(’12’) CPC(’12’) I(’12’) S(’12’) RI(’12’) DAMAGES(’12’)
DAMFRAC(’12’) PERIODU(’12’) CEMUTOTPER(’12’)

459 EEQ(’12’) EINDEQ(’12’) CCACCA(’12’) FORCE(’12’) DAMFRACEQ(’12’) DAMEQ(’12’) ABATEEQ
(’12’) MCABATEEQ(’12’) CARBPRICEEQ(’12’) TCALEQ(’12’) TINCEQ(’12’)
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460 MMAT(’12’) MMU(’12’) MML(’12’) TATMEQ(’12’) TOCEANEQ(’12’) YGROSSEQ(’12’) YREDEQ
(’12’) YY(’12’) CC(’12’) CPCE(’12’) SEQ(’12’) KK(’12’) RIEQ(’12’) CEMUTOTPEREQ
(’12’) PERIODUEQ(’12’)

462 stage 13 E(’13’) EIND(’13’) MIU(’13’) TATM(’13’) TOCEAN(’13’) k(’13’) Ygross(’13’)
Yred(’13’) Y(’13’) MAT(’13’) ML(’13’) MU(’13’) FORC(’13’) ABATECOST(’13’)
MCABATE(’13’) TCAL(’13’) TINC(’13’)

463 CCA(’13’) CPRICE(’13’) C(’13’) CPC(’13’) I(’13’) S(’13’) RI(’13’) DAMAGES(’13’)
DAMFRAC(’13’) PERIODU(’13’) CEMUTOTPER(’13’)

464 EEQ(’13’) EINDEQ(’13’) CCACCA(’13’) FORCE(’13’) DAMFRACEQ(’13’) DAMEQ(’13’) ABATEEQ
(’13’) MCABATEEQ(’13’) CARBPRICEEQ(’13’) TCALEQ(’13’) TINCEQ(’13’)

465 MMAT(’13’) MMU(’13’) MML(’13’) TATMEQ(’13’) TOCEANEQ(’13’) YGROSSEQ(’13’) YREDEQ
(’13’) YY(’13’) CC(’13’) CPCE(’13’) SEQ(’13’) KK(’13’) RIEQ(’13’) CEMUTOTPEREQ
(’13’) PERIODUEQ(’13’)

467 stage 14 E(’14’) EIND(’14’) MIU(’14’) TATM(’14’) TOCEAN(’14’) k(’14’) Ygross(’14’)
Yred(’14’) Y(’14’) MAT(’14’) ML(’14’) MU(’14’) FORC(’14’) ABATECOST(’14’)
MCABATE(’14’) TCAL(’14’) TINC(’14’)

468 CCA(’14’) CPRICE(’14’) C(’14’) CPC(’14’) I(’14’) S(’14’) RI(’14’) DAMAGES(’14’)
DAMFRAC(’14’) PERIODU(’14’) CEMUTOTPER(’14’)

469 EEQ(’14’) EINDEQ(’14’) CCACCA(’14’) FORCE(’14’) DAMFRACEQ(’14’) DAMEQ(’14’) ABATEEQ
(’14’) MCABATEEQ(’14’) CARBPRICEEQ(’14’) TCALEQ(’14’) TINCEQ(’14’)

470 MMAT(’14’) MMU(’14’) MML(’14’) TATMEQ(’14’) TOCEANEQ(’14’) YGROSSEQ(’14’) YREDEQ
(’14’) YY(’14’) CC(’14’) CPCE(’14’) SEQ(’14’) KK(’14’) RIEQ(’14’) CEMUTOTPEREQ
(’14’) PERIODUEQ(’14’)

472 stage 15 E(’15’) EIND(’15’) MIU(’15’) TATM(’15’) TOCEAN(’15’) k(’15’) Ygross(’15’)
Yred(’15’) Y(’15’) MAT(’15’) ML(’15’) MU(’15’) FORC(’15’) ABATECOST(’15’)
MCABATE(’15’) TCAL(’15’) TINC(’15’)

473 CCA(’15’) CPRICE(’15’) C(’15’) CPC(’15’) I(’15’) S(’15’) RI(’15’) DAMAGES(’15’)
DAMFRAC(’15’) PERIODU(’15’) CEMUTOTPER(’15’)

474 EEQ(’15’) EINDEQ(’15’) CCACCA(’15’) FORCE(’15’) DAMFRACEQ(’15’) DAMEQ(’15’) ABATEEQ
(’15’) MCABATEEQ(’15’) CARBPRICEEQ(’15’) TCALEQ(’15’) TINCEQ(’15’)

475 MMAT(’15’) MMU(’15’) MML(’15’) TATMEQ(’15’) TOCEANEQ(’15’) YGROSSEQ(’15’) YREDEQ
(’15’) YY(’15’) CC(’15’) CPCE(’15’) SEQ(’15’) KK(’15’) RIEQ(’15’) CEMUTOTPEREQ
(’15’) PERIODUEQ(’15’)

477 $offput
478 putclose emp;

480 **number of scenarios
481 Set scen Scenarios / s1*s1000000 /;

485 Parameter
486 s_cs(scen,st)
487 s_miu(scen,t)
488 s_E(scen,t)
489 s_Fo(scen,t)
490 s_TATM(scen,t)
491 s_TOCEAN(scen,t)
492 s_mat(scen,t)
493 s_mu(scen,t)
494 s_ml(scen,t)
495 s_eind(scen,t)
496 s_c(scen,t)
497 s_k(scen,t)
498 s_cpc(scen,t)
499 s_i(scen,t)
500 s_s(scen,t)
501 s_ri(scen,t)
502 s_y(scen,t)
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503 s_ygross(scen,t)
504 s_yred(scen,t)
505 s_damages(scen,t)
506 s_damfrac(scen,t)
507 s_abatecost(scen,t)
508 s_mcabate(scen,t)
509 s_cca(scen,t)
510 s_periodu(scen,t)
511 s_cprice(scen,t)
512 s_cemutotper(scen,t) ;

514 ** Statement of which variable is uncertain
515 Set dict / scen .scenario.’’
516 t2xco2 .randvar .s_cs
517 MIU .level .s_miu
518 E .level .s_E
519 FORC .level .s_Fo
520 TINC .level .s_TINC
521 TCAL .level .s_TCAL
522 TATM .level .s_TATM
523 TOCEAN .level .s_TOCEAN
524 Mat .level .s_mat
525 MU .level .s_mu
526 ML .level .s_ml
527 EIND .level .S_eind
528 C .level .s_c
529 K .level .s_k
530 CPC .level .s_cpc
531 I .level .s_i
532 S .level .s_s
533 RI .level .s_ri
534 Y .level .s_y
535 Ygross .level .s_ygross
536 Yred .level .s_yred
537 Damages .level .s_damages
538 Damfrac .level .s_damfrac
539 Abatecost .level .s_abatecost
540 Mcabate .level .s_mcabate
541 CCA .level .s_cca
542 Periodu .level .s_periodu
543 Cprice .level .s_cprice
544 Cemutotper .level .s_cemutotper
545 /;

547 ** choose solver
548 option emp = de;

551 ** limit number of evaluated stages
552 $onecho > de.opt
553 *maxnodes 10000000
554 $offecho
555 CO2.optfile=1;

557 Option DECIMALS=4;

560 ** SOLVE
561 Solve CO2 max UTILITY using emp scenario dict ;

563 ** Show computation time
564 scalar executiontime;
565 executiontime = timeElapsed;
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567 display s_cs, s_miu, s_E, s_y, sigma, etree, executiontime, forcoth,rr, pbacktime,
cost1, al, l, partfract ;

571 ** POST SOLVE
572 * Calculate social cost of carbon
573 *scc(t) = 1000*eeq.m(t)/cc.m(t);

576 file results /DiceResultsDE_dt20Sam3_Extreme_st7.csv/; results.nd = 10 ;
results.nw = 0 ; results.pw=1200; results.pc=5;

577 put results;
578 put /"Results of DICE model run using model DICE2013RExtended imported sample DE

solver";
579 put /"Number of samples: 4, distributed scenarios: 2, 3, 4,5, 6 ";
580 put /"Distribution: dicrete 0.33 2.2 0.33 3.0 0.33 8"
581 Loop (T, put T.val);
582 put / "Year" ;
583 Loop (T, put (2015+(TSTEP*(T.val 1)) ));
584 put / "Industrial Emissions (GTCO2 per year)" ;
585 Loop (T, put EIND.l(T));
586 put / "Atmospheric concentration of carbon (ppm)" ;
587 Loop (T, put (MAT.l(T)/2.13));
588 put / "Atmospheric Temperature (deg C above preindustrial)" ;
589 Loop (T, put TATM.l(T));
590 put / "Output (Net of Damages and Abatement, trillion USD pa) " ;
591 Loop (T, put Y.l(T));
592 put / "Climate Damages (fraction of gross output)" ;
593 Loop (T, put DAMages.l(T));
594 put / "Consumption Per Capita (thousand USD per year)" ;
595 Loop (T, put CPC.l(T));
596 put / "Carbon Price (per t CO2)" ;
597 Loop (T, put cprice.l(T));
598 put / "Emissions Control Rate (total)" ;
599 Loop (T, put MIU.l(T));
600 put / "Social cost of carbon" ;
601 *Loop (T, put scc(T));
602 *put / "Interest Rate (Real Rate of Return)" ;
603 Loop (T, put RI.l(T));
604 put / "Capital" ;
605 Loop (T, put K.l(T));
606 put / "Gross Economic Output" ;
607 Loop (T, put YGROSS.l(T));
608 put / "Oceanic Temperature (deg C above perindustrial" ;
609 Loop (T, put TOCEAN.l(T));
610 put / "Sigma" ;
611 Loop (T, put Sigma(T));
612 put / "Consumption" ;
613 Loop (T, put C.l(T));
614 put / "MU" ;
615 Loop (T, put MU.l(T));
616 put / "ML" ;
617 Loop (T, put ML.l(T));
618 put / "AL" ;
619 Loop (T, put AL(T));
620 put / "L" ;
621 Loop (T, put L(T));
622 put / "Savings" ;
623 Loop (T, put S.l(T));

625 putclose;
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Appendix C

Enlarged results

C.1 Figures regarding section 5.2
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Figure C.1: The influence of the number of stochastic stages to SP20 under base conditions on the
emissions
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Figure C.2: The influence of the number of stochastic stages to SP20 under base conditions on the
climate cycle
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Figure C.3: The influence of the number of stochastic stages to SP20 under base conditions on the
economic system
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Figure C.4: Enlarged version of the emissions graph in figure C.1
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C.2 Figures regarding section 5.3

2000 2050 2100 2150

Year

0

0.2

0.4

0.6

0.8

1

1.2

E
C

R
 [0

-1
]

Mitigation over time 

2000 2050 2100 2150

Year

0

10

20

30

40

50

60

E
m

is
si

on
s 

[G
tC

O
2/

yr
]

Industrial Emissions over time

D20E220 D20E300 D20E430 SP20
8

Figure C.5: Comparison of the emissions from the deterministic scenarios with CS:={2.2, 3.0, 4.3} and
the stochastic program in the base case
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Figure C.6: Comparison of the climate dynamics from the deterministic scenarios with CS:={2.2, 3.0,
4.3} and the stochastic program in the base case
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Figure C.7: Comparison of the economic response from the deterministic scenarios with CS:={2.2, 3.0,
4.3} and the stochastic program in the base case
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Figure C.8: Enlarged version of the savings graph in figure C.7
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C.3 Figures regarding section 5.4
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Figure C.9: The emissions and mitigation policy of the deterministic D20 program with CS = 3.125
versus the stochastic SP208 model under the base case
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Figure C.10: The climate response and corresponding damage of the deterministic D20 program with
CS = 3.125 versus the stochastic SP208 model under the base case
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Figure C.11: The economic response of the deterministic D20 program with CS = 3.125 versus the
stochastic SP208 model under the base case
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C.4 Figures regarding section 5.5
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Figure C.12: Comparison of the emissions and mitigation policy of base and the extreme case
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Figure C.13: Comparison of the emissions and mitigation policy of base and the extreme case
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Figure C.14: Comparison of the emissions and mitigation policy of base and the extreme case

C.5 Figures regarding section 5.6
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Figure C.15: Comparison of the emissions and mitigation policy of base case and its uniform extension
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Figure C.16: Comparison of the climate response and the resulting damage of the base case and its
uniform extension
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Figure C.17: Comparison of the economic response of base case and its uniform extension
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Figure C.18: Comparison of the emissions and mitigation policy of the extreme case and its uniform
extension
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Figure C.19: Comparison of the climate response and the resulting damage of the extreme case and its
uniform extension
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Figure C.20: Comparison of the economic response of extreme case and its uniform extension
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