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Abstract

Dependency management is an important task in software maintenance. However,
identifying and removing unused dependencies takes a lot of effort from developers as
existing tools may discover many false positives which are challenging to distinguish.
This paper proposes a decision framework to improve unused dependency detection.
It is applied to an industrial Maven project. Firstly, OPAL(a call graph tool) augments
the call graph of a dependency analysis tool DepClean to support dynamic features of
Java. Secondly, the classification of the relationship between dependencies simplifies
the comprehension of an unused dependency. Thirdly, a decision process prioritizes
the test of removing unnecessary dependencies. Results show that developers can fo-
cus their efforts on maintaining bloated dependencies by following the recommenda-
tion of the proposed decision process. It is particularly noteworthy that this decision
framework helps reduce one-third of false positives of unused dependencies in a given
industrial Maven project. In addition, our suggestions are compared to the motive of
removing dependencies in three open-source Maven projects. Results indicate that our
advice is consistent in the reasoning behind removing dependencies. Hence, this work
reduces the effort for developers to decide on dependency elimination.
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Chapter 1

Introduction

Modern software systems rely on package managers to gain benefits from the increasing
number and massive support of dependencies [12]. Software dependencies hosted on cen-
tralized code repositories by package managers allow software engineers to reuse code, re-
duce development costs and ease maintenance efforts. While the convenience of adding new
collections of software dependencies speeds up software development, software projects
might retain dependencies that gradually become obsolete throughout the process of devel-
opment [20]. ependencies that become obsolete and overlooked can increase complexity,
decrease maintainability, and in some cases bloat software size. Thus, it is important for
developers to properly clean outdated dependencies.

This is a problem we take seriously at ING Bank1. ING is a global bank and large soft-
ware organization that offers financial products and services to 38.5 million customers in
over 40 countries [3] and has 15,000 employees in software technology. Hence, at ING it
is quintessential that software projects are continuously maintained and meet high-quality
standards. Leaving unused dependencies in large software projects can lead to major prob-
lems downstream (e.g., in security, maintainability, scalability, etc.). However, deciding to
remove a dependency can be an intimidating task: one wrong decision could make core
business services temporarily unavailable.

The mainstream approaches to detecting unused dependencies rely on static dependency
analysis or dynamic dependency analysis [11]. The performance of the static approaches
depends on the soundness and precision of the call graph construction whereas the perfor-
mance of the dynamic approaches resorts to the coverage of route collections at run time.
Hence, static approaches tend to be quicker and more scalable. However, generating a call
graph has been considered an undecidable problem [10], meaning that it is difficult to confi-
dently say whether a dependency is being reached or not based on state-of-the-art call graph
generation tools.

Several static analysis tools have been developed to remove unused but declared depen-
dencies. For Java projects, fundamental efforts have been contributed by communities to

1www.ing.com
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1. INTRODUCTION

help developers analyze dependencies statically in JDK2 and Maven3. Also, advanced tools
[41, 16, 22] have been built to address prevalent dynamic language features: reflection, dy-
namic proxy and classloading [26]. Despite these efforts, finding unused dependencies of
Java projects is not a trivial goal. It has been demonstrated that all state-of-the-art static
analysis frameworks fail to capture complete dynamic language features in call graph [30].

These limitations give rise to false positives of the unused dependency detection, which
is a challenge when creating tools to help developers in removing these dependencies. When
they receive false alerts too often, they are likely to ignore warnings, filter alerts, or turn
away from using tools altogether [23]. To encourage the usage of tools, researchers start
to think that it is not only beneficial to pursue the precision of tools but also critical for
tool authors to present warnings from developers’ perspectives [32]. Specifically, we want
to improve developers’ comprehension of how unused dependencies are identified by static
analysis tools.

The underlying principle of current static dependency analysis tools is reachability. Any
dependency is classified as unnecessary if it cannot be reached from the application code.
Based on this binary result i.e., reachable or unreachable, tools provide recommendations
that help developers remove unused dependencies. However, we argue that the existing
analysis result produced by tools shows more information than a binary recommendation.
If we interpret the reachability in more detail, for example, complexity and evolution of
method calls between artifacts, tools may report the reasoning behind recommendations
and allow developers to be effective in their decision-making.

Making a decision on removing a dependency is far from an easy task, especially for
software in production. Developers need to balance the potential risk of making serious
errors and the future benefit of saving maintenance efforts. In this regard, the reasoning
behind such a decision should be adequate to minimize the potential risk; otherwise, devel-
opers will not take risks to reduce maintenance. Thus, we want to investigate which process
would enable developers to make such a decision. In other words, we examine several as-
pects of the results generated by static analysis tools and build a decision framework to
illustrate the process of decision making. As developers are given more information about
the unused dependencies, they have more evidence to support their last call.

To achieve this goal, we examined one web application at ING that had been actively
maintained in production for more than a decade. Since it had been developed for a long
time, we believed that there must be some unnecessary dependencies declared in the project.
These unnecessary dependencies may be declared by previous developers but ignored by
people who took over the job later. But before designing a framework that may help de-
velopers decide whether a dependency can be removed, it is ideal for us to identify all the
unused dependencies, point out the limitation of the state-of-the-art tool, and propose a
solution to fill the gap. However, the trickiest part of this research is that we may never
obtain the complete ground truth of which dependencies were indeed unnecessary. It was
not only because false positives of unused dependencies were unavoidable by current soft-
ware techniques, but also because there were so many dependencies in the legacy code that

2https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool
3https://maven.apache.org/shared/maven-dependency-analyzer/
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1.1. ING Bank

developers may not even fully comprehend.
Although the ground truth of whole unused dependencies are not available, they can

still be identified in a gradual manner: use the state-of-the-art tool to capture potentially
unused dependencies, interview developers to pick out false positives based on their expe-
riences, validate the candidates of unused dependencies by system and functionality tests,
and reiterate these processes to finalize the list of unused dependencies. Once the analysis
result is derived, it may help us design and verify a decision framework for recommending
the unused dependencies.

The results of this thesis show that two main approaches can reduce false positives of
unused dependencies. One approach is to increase the soundness of the dependency analysis
by different call graph tools; the other approach is to observe the history change of method
calls between dependencies. In addition to reducing the number of false positives, our deci-
sion framework also helps developers prioritize which unused dependencies can be removed
first and which unused dependencies may take more effort to investigate. Moreover, a de-
pendency visualization approach is also proposed to assist developers to comprehend and
explore the unused dependencies in the call graph.

For the remaining part of this thesis, the company ING bank and the contributions this
thesis makes are explained. Next, the state-of-the-art dependency analysis tool, the structure
of the given web application at ING, and a motivating example that gives a clear direction to
this thesis are further discussed. The chapter after described related work. This chapter was
followed by a description of the static call graph construction tools and software metrics
for unused dependency. In the chapter after that, our decision framework was presented in
detail. The following two chapters evaluate the decision framework via the ING project and
open-source projects. Finally, we draw the main conclusions and share our future work.

1.1 ING Bank

ING aims to make banking frictionless in a continually changing world. In this era when
tech companies like Google, Facebook, and Amazon keep bringing new experiences and
possibilities for customers, ING strives for serving their customers on these digital plat-
forms using new technologies. Vantage is an ING’s inhouse-developed platform that multi-
ple internal applications and teams frequently apply to deliver business value. This platform
was first built a decade ago and was gradually migrated into modern architecture to meet
customers’ demands. Since the platform team only wants to migrate functionalities or de-
pendencies that are being used, this thesis aims to find unused dependencies in Vantage, so
the platform team doesn’t need to migrate them.

The journey of migration is planned to take multiple years because there are hundreds
of components developed in the past decades. These components are shared as tools, web
applications, libraries, solutions, or plugins by a large number of EAR files which are de-
ployed on a self-possessed IBM WebSphere server. In this thesis, we focused on analyzing
one EAR file which packages 144 components via Maven as their dependencies. After find-
ing unused dependencies in this EAR file, the corresponding dependencies declared in the
POM file are removed.

3



1. INTRODUCTION

1.2 Contributions

This thesis makes the following contributions:

• Combine call graphs built by different tools to enhance the soundness in the aspect of
dynamic features.

• Develop a definition to classify dependencies based on a call graph and then design
a decision process accordingly to examine the history change of the relationship be-
tween dependencies.

• Apply these two approaches to filter out more than one-third of false positives of
detected unused dependencies in a project at ING. Also, developers may prioritize
which dependencies to be removed according to the recommendation of the decision
process.

• Establish a process to visualize the relationship between dependencies in a call graph.

4



Chapter 2

Background

This chapter aims to explain how existing static dependency analysis tools are insufficient
to identify unnecessary dependencies. Firstly, the limitation of static dependency analysis
is discussed, so we can know how the analysis result is affected. Secondly, a state-of-the-art
tool, DepClean is selected to exemplify how a static dependency analysis tool works. Next,
an Enterprise User Management Application at ING to be analyzed is presented. Last, the
result of analyzing ING’s application and the result of analyzing three open-source projects
by DepClean are given as motivating examples for this thesis.

2.1 Dependency analysis

To discuss the limitation of static dependency analysis, the difference between static and dy-
namic dependency analysis is firstly introduced. Next, soundness and precision are defined
to represent the limitation, which is caused by dynamic features and call graph algorithms.
Last, the limitation of static dependency analysis on false positive and false negative is
summarized.

2.1.1 Static vs. dynamic dependency analysis

Dependency describes relationships between an application software and its code library
while dependency analysis represents the process of finding these relationships[1]. De-
pendency analysis can be conducted in either a static or a dynamic manner. For the static
dependency analysis, a call graph of all the dependencies has to be built and a set of entry
methods have to be given. Based on the call graph and entry methods, all of the accessi-
ble classes can be found iteratively and applied to determine which dependency is used or
not. However, the main limitation of the static manner is the capability of detecting method
calls invoked by reflection, dynamic proxy, and callbacks from native code. These dynamic
features are prevalent and difficult for a static dependency analysis tool to accurately model.

Unlike the static manner, the dynamic dependency analysis tool does not have this lim-
itation. For the dynamic manner, the behavior of the system is monitored by logging every
method of entry and exit. There are several tools that can be used to manipulate bytecode
for instrumenting the code of monitoring. For example, there are low-level tools such as

5



2. BACKGROUND

the ASM library and high-level frameworks such as Javassist. Whenever the method is
triggered by test cases or run-time execution, all the traces are collected and saved in the
log files for building a directed call graph. Nevertheless, there are also a few limitations
in the dynamic dependency analysis. For instance, it takes a long time to get all possible
traces from run-time execution. Also, the coverage of built-in test cases is limited, and the
performance of the system may be affected due to excessive trace collection. Hence, this
thesis focuses on the static dependency analysis because the financial application is critical.
By using the static dependency analysis, the existing services in the production will not be
affected.

2.1.2 Soundness vs. Precision

Soundness is defined to evaluate what is the percentage of method calls invoked at run time
can be found in the call graph, while precision is to evaluate what is the percentage of
method calls in a call graph that is actually invoked at run time. These definitions of sound-
ness and precision are illustrated in Fig. 2.1. The requirement of soundness and precision
may differ based on the applications.

For the static dependency analysis, both soundness and precision may have implications
for the results. If the soundness is low, many of the method calls invoked at run-time are
missing in the call graph. Hence, some used dependencies would be considered unused
by the dependency analysis tool because those dependencies are not accessible from the
application code. In other words, low soundness would cause false positives.

In contrast, if the soundness is high but the precision is low, the call graph contains many
redundant routes that are never accessed at run time. Hence, some unused dependencies
would be considered as used by the dependency analysis tool because those dependencies
are accessible from the application code by the redundant routes. Specifically, low precision
would cause false negatives.

The limitation of the soundness is mainly caused by the dynamic features since the call
graph tool fails to capture the method calls invoked by the dynamic features at run time.
On the other hand, the limitation of the precision is mainly caused by the overestimation of
the call graph algorithm such as Class Hierarchy Analysis (CHA) and Rapid Type Analysis
(RTA).

2.1.3 Dynamic features

Dynamic features of Java include reflection, dynamic proxies, invokedynamic and so on [39].
These features are ubiquitous and are the main cause of the unsoundness. Generally, dy-
namic features are designed for a program to examine and modify its execution state at run
time [26]. Since the behavior of dynamic features can only be observed at run time, it poses
a great challenge for the static analysis tools. For example, when a Java class is accessed
via Class.forName, the string of the class name must be calculated at run time. To access
the string name statically, the static analysis needs to be performed conservatively. In other
words, we need to assume that all classes can be accessed as a candidate for Class.forName.

6



2.1. Dependency analysis

Figure 2.1: Definition of the soundness and precision

However, this approach creates a problem that the edges in the call graph would be over-
estimated [34]. By accepting all the possible call sites, the precision is compromised.

2.1.4 Call graph algorithms

There are three representative algorithms for the call graph construction. These algorithms
differ in their tradeoffs between soundness and precision. These algorithms are Reachability
analysis (RA), Class Hierarchy Analysis (CHA), and Rapid Type Analysis (RTA). Although
there are still many variants for the optimization, only these three algorithms are mentioned
because the OPAL framework combined with RTA supports more dynamic features than
other combinations of frameworks and algorithms [30].

Figure 2.2: Example of the class hierarchy [24]

RA is a general idea of finding all the reachable states for a system. In the context of
building a call graph, it represents a process that generates connections between the call
sites and their target methods by only matching the method names. Hence, the RA call
graph is conservative and its soundness must be high relative to other algorithms. Since this

7



2. BACKGROUND

algorithm searches for method calls simply based on method names, it is obvious that many
of the method calls are overestimated and never be invoked at run time.

CHA aims to improve the overestimation of RA by considering the class hierarchy.
The class hierarchy is retrieved from the relationship between classes by looking up the
inheritance. Fig. 2.2 shows an example of the class hierarchy. By referring to the class
hierarchy, we may filter out method calls that must not happen at run time. For example, if
a method2 of an object with type class C is called, there are two possible callers: C.method2
and F.method2. In contrast, if the class hierarchy is not available and RA is applied, another
two callers B.method2 and D.method2 would be falsely included. Hence, CHA provides
better precision than RA.

RTA further improves CHA by taking into account if the class is instantiated. It is
because only an instantiated object can call the target method. In other words, RTA prunes
unnecessary method calls that are invoked by uninstantiated classes. For example, if class
C in Fig. 2.2 is instantiated but class F is not, only C.method2 would be added to the call
graph. Hence, RTA provides better precision than CHA and the call graph built by RTA is a
subset of CHA as shown in Fig. 2.3.

Figure 2.3: Common algorithms for the call graph construction

2.1.5 The effect of the unsoundness and imprecision

Table 2.1 summarizes the effect of the unsoundness and imprecision on the result of the
static dependency analysis. To determine if the result of the static dependency analysis is
correct or not, we can rely on the result of the dynamic analysis and consider it as ground
truth [39]. When the static dependency analysis considers a dependency as used, it is still
possible that none of the methods in this dependency is invoked at run time. It is because the
call graph of the static dependency analysis is overestimated depending on the implementa-
tion of call graph algorithms (imprecision). On the other hand, when the static dependency
analysis considers a dependency as unused, it is still possible that some of the methods in
this dependency are invoked at run time. It is because the call graph of the static depen-
dency analysis fails to model and detect these method calls (unsoundness). In this work,
one goal is to reduce the number of false positives (or unsoundness) so that developers
may have less false alarms.

8



2.2. Mechanism of a state-of-the-art dependency analysis tool - DepClean

Table 2.1: The limitation of the static dependency analysis

Static dependency
analysis result

Static Analysis
Dynamic
analysis (GT♯)

Outcome⋆Is any class
in the call
graph

Is any class
accessible from
entry classes

Is any class
invoked at
run time

Used
Y Y Y TN
Y Y N FN

Unused

Y N Y FP
N N Y FP
Y N N TP
N N N TP

⋆TP: true positive, TN: true negative, FP: false positive, FN: false negative
♯GT: ground truth

2.2 Mechanism of a state-of-the-art dependency analysis tool -
DepClean

DepClean is a state-of-the-art dependency analysis tool that extends the Maven dependency
analyzer1. How DepClean executes the dependency analysis is exemplified in the following
steps.

STEP 1 Compile the source code of a Maven project and get all the class files as entry classes.
After compiling the source code by Maven command mvn compile, all the class files
of the source code are generated in a classes folder as shown in Fig. 2.4.

STEP 2 Download artifacts of all the dependencies in a Maven project.
After downloading all the artifacts by Maven command
mvn dependency:copy-dependencies -DoutputDirectory=./target/dependency
all the artifacts are saved in a dependency folder as shown in Fig.2.4.

Figure 2.4: Folders of the dependency analysis

STEP 3 Decompress artifacts of all the dependencies and create a
DependencyMap<dependency, Set<ClassName>>
The DependencyMap is used to find the corresponding dependency for each class.

1https://maven.apache.org/shared/maven-dependency-analyzer/

9
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2. BACKGROUND

STEP 4 Build a call graph of all entry class and dependency class files.
The call graph is a directed graph which is built by JGraphT library.
(org.jgrapht.graph.DefaultDirectedGraph)

STEP 5 Traverse the call graph from entry classes to find all the accessible classes.
(org.jgrapht.traverse.DepthFirstIterator)

STEP 6 Search the DependencyMap for each accessible class and find the corresponding de-
pendency.

STEP 7 Examine the usage of class files in every dependency.
Fig. 2.5 is an example of the dependency analysis result. The analyzed Maven project
is org.apache.commons.commons-collections4.
The project declares 14 dependencies and Fig. 2.5 shows the Maven dependency tree
of the project. Any class which is accessible from the entry classes is labeled in blue
color; otherwise, labeled in red color. If any class in a dependency is labeled by blue
color, the dependency is considered as used. Table. 2.2 summarizes the usage of all
the declared dependencies in this Maven example.

org.junit.jupiter:junit-jupiter-api:jar:5.8.1:test

org.junit.jupiter:junit-jupiter-engine:jar:5.8.1:test 

org.junit.vintage:junit-vintage-engine:jar:5.8.1:test

org.hamcrest:hamcrest:jar:2.2:test

org.easymock:easymock:jar:4.3:test

org.apache.commons:commons-lang3:jar:3.12.0:test

commons-io:commons-io:jar:2.11.0:test

commons-codec:commons-codec:jar:1.15:compile 

or
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om
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on
s:

co
m

m
on
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org.opentest4j:opentest4j:jar:1.2.0:test
org.junit.platform:junit-platform-commons:jar:1.8.1:test

org.apiguardian:apiguardian-api:jar:1.1.2:test

org.junit.platform:junit-platform-engine:jar:1.8.1:test

junit:junit:jar:4.13.2:test

org.objenesis:objenesis:jar:3.2:test

Figure 2.5: Example of the dependency analysis by DepClean
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Table 2.2: The example of the dependency analysis by DepClean

Example of a Dependency Analysis Result By DepClean

Used dependency (11)

org.junit.jupiter:junit-jupiter-api:jar:5.8.1:test
org.hamcrest:hamcrest:jar:2.2:test
org.easymock:easymock:jar:4.3:test
org.apache.commons:commons-lang3:jar:3.12.0:test
commons-io:commons-io:jar:2.11.0:test
commons-codec:commons-codec:jar:1.15:compile
org.opentest4j:opentest4j:jar:1.2.0:test
org.junit.platform:junit-platform-commons:jar:1.8.1:test
org.apiguardian:apiguardian-api:jar:1.1.2:test
junit:junit:jar:4.13.2:test
org.objenesis:objenesis:jar:3.2:test

Potentially unused depen-
dency (3)

org.junit.jupiter:junit-jupiter-engine:jar:5.8.1:test
org.junit.vintage:junit-vintage-engine:jar:5.8.1:test
org.junit.platform:junit-platform-engine:jar:1.8.1:test

2.3 An enterprise user management application at ING

The enterprise user management application is an EAR file (enterprise application) that runs
on an IBM WebSphere Application Server. The EAR file is composed of web application
archives (WAR) files, enterprise beans Java archive (JAR) files, and configurations. Since
the EAR file is developed and managed by Maven, all the information of JAR files, WAR
files, and their dependencies are declared in a Maven Project Object Model (POM) file.
Generally, every software release includes an EAR file and a POM file, with which the
dependency analysis is conducted.

The Maven project at ING has a distinct structure compared to generic Maven projects.
Normally, a web application’s dependency tree has a similar structure in Fig. 2.6a. Given
an EAR file and a POM file, the dependency analysis tool can identify how many depen-
dencies are assembled and how a deployable EAR file is built by multi-module Maven
projects. Nevertheless, developers of the provided Maven project at ING conventionally
exclude all the transitive dependencies of direct dependencies and manually migrate them
to a dependency-specific module as shown in Fig. 2.6b. The purpose of this extra step is
to fix versions of dependencies and prevent unsafe dependency updates. These updates that
may include unexpected vulnerable functionalities without notice [21]. Since transitive de-
pendencies are excluded, the provided POM file can not help us resolve the original Maven
dependency tree of a web application module.

Since the state-of-the-art dependency tool is designed for generic Maven projects, we
have to transform the structure of the Maven project at ING before applying the dependency
analysis tool. To resolve excluded transitive dependencies of the POM file in release, it is
necessary to retrieve the original POM file in the repository of direct dependencies. It is
because all the excluded transitive dependencies are declared in the POM file of every direct
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dependency. After obtaining POM files of all the declared dependencies, all the excluded
transitive dependencies can be remapped to the corresponding direct dependency like in
Fig. 2.6c. By doing so, we can apply the dependency analysis tool to analyze ING’s project.

2.4 Motivating example: analysis of applications at ING and
open-source projects

As there is no static analysis tool that can guarantee its finding on unused dependencies,
tools usually emphasize the result with a warning such as “potentially” unused dependencies
as shown in Table 2.2. This warning could notify developers that their analysis results
should be accepted with caution.

Table 2.3 summarizes the analyzed results of one ING’s project and three open-source
projects using the state-of-the-art tool DepClean2. The table presents the number of used
dependencies and potentially unused dependencies. Part of these projects possesses a sig-
nificant number of unused dependencies, which is unusual and unexpected. The hypothesis
is that some of the potentially unused dependencies may be false positives as shown in Ta-
ble 2.1 – i.e., a dependency that is being misclassified as unused. This happens, for example,
in cases where it is difficult to collect using static analysis all the possible entry methods
of a dependency. Hence, it may happen that all classes within the dependency become
unreachable from the application, and tools misclassify it as unused.

To reduce false positives and improve the recommendation, we propose a framework
that 1) combines different call graph tools, 2) considers the history of changes in the depen-
dencies of a project, and 3) guides developers through the decision process before yielding
final results. The framework will be discussed in Chapter 4.

Table 2.3: The summary of dependency analysis by DepClean

Project Name
Number of Dependencies

Used Potentially Unused

enterprise user management app 73 71
jenkins [core v2.343] 80 16
zipkin [zipkin-server v2.23.16] 94 22
onedev [server-core v7.0.9] 176 72

2https://github.com/castor-software/depclean/releases/tag/2.0.0
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application.jar component1.jar

component2.jar

library3.jar

library-api-1.jar

library-impl-1.jar

library-api-2.jar

library-impl-2.jar

(a) Example of a web app’s dependency tree

application.jar component1.jar

component2.jar

library3.jar

library-api-1.jar

library-impl-1.jar

library-impl-2.jar

dependencies.jar

deployment.ear

dependency-specific module

library-api-2.jar

(b) Exclusion and migration of transitive dependencies to one module

application.jar component1.jar

component2.jar

library3.jar

library-api-1.jar

library-impl-1.jar

library-impl-2.jar

dependencies.jar

deployment.ear

library-api-2.jar

(c) Mapping excluded dependencies to specific components

Figure 2.6: Preparation of dependencies for call graph constructions

13





Chapter 3

Related work

Dependency analysis is a well-explored domain in computer science. Over the past decades,
precision is a primary focus of research in static analysis while soundness is attracted at-
tention not until recently [38]. Since this work aims to improve unsoundness or reduce the
number of falsely detected unused dependencies, this chapter discusses literature reviews
of several dependency analysis tools, various ways related to evaluating the soundness of
the call graph construction, and the influence of unsoundness for the dependency analysis.
Lastly, some missing points of literature are described.

3.1 Dependency analysis tools

This section focuses on the dependency analysis tools for the Maven project of Java. First,
several frameworks that are designed to remove bloated dependencies are introduced. Next,
some empirical studies based on the dependency analysis tools are mentioned.

3.1.1 Dependency analysis tools for removing unused dependencies

Table 3.1: Representative dependency-debloated tools

Dependency analysis tools Type

DepClean (2021) [37] static
JShrink (2020) [11] static + dynamic
JDBL (2021) [35] dynamic

The topic of removing unused code has been explored primarily on C/C++ software
projects instead of Java. Until recently, some researchers start to pay attention to Java
and build frameworks to search for unused code in Java projects. Table 3.1 summarizes
three representative dependency-debloated tools. DepClean takes a purely static approach;
JShrink combines the static approach with the dynamic approach; JDBL is an exclusively
dynamic analysis tool.
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3. RELATED WORK

Figure 3.1: Overview of DepClean workflow [37]

The first team has conducted a study to find out the presence of unused dependencies
in Maven artifacts [37]. The authors develop a tool called DepClean, which extends the
maven-dependency-analyzer maintained by the Maven team. They collect a list of depen-
dencies declared in the POM and analyze the bytecode to identify all potentially unused
dependencies. They analyze the bytecode by using ASM library1, which captures annota-
tion, field, method, and limited dynamic features like class literals in each class. But when
analyzing a dependency that is invoked by other dynamic features, a used dependency may
be considered unused due to missing edges established by dynamic features.

1https://asm.ow2.io/
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Their goal is to generate a variant of the POM without those unused dependencies. The
workflow of DepClean is presented in Fig. 3.1. The inputs are the bytecode of the project
and the corresponding POM file while the outputs are a dependency usage report and an
updated POM file without declaring unused dependencies. DepClean requires the analyzed
project as a Maven project. One reason is that DepClean uses Apache Maven API2 to
manipulate the dependency. Another reason is that the report of dependency usage follows
the convention of Maven. Hence, DepClean not only tells which dependency may be unused
but also mentions whether the dependency is direct or transitive.

Figure 3.2: Web page of JShrink for visualization [27]

Another team has augmented the static reachability analysis with dynamic reachabil-
ity analysis [11]. Their tool, JShrink, uses test cases to find dynamic features invoked at
runtime and adds them back to amend the static call graph. Their analysis is fine-grained
down to the level of method and field. To preserve behaviors after removing unnecessary
bytecode, they build type dependency graphs using the ASM library to ensure type safety.
Compared to their work, our analysis is coarse-grained at the artifact level and purely static.
In our targeted scenario, test cases are not widely available or only include a few basic ones;

2https://maven.apache.org/ref/3.8.1/apidocs/index.html
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therefore, JShrink cannot provide much help. Also, our intention is to remove unused de-
pendencies for modules. Instead of removing redundant bytecode in each artifact, we notify
developers to refactor when the usage of an artifact is relatively low.

Additionally, the authors make use of this tool as a backend of WebJShrink3, a visual-
ization interface allowing developers to select removal options [27] as shown in Fig. 3.2.
The removal options range from aggressive ones to conservative alternatives. The most
aggressive one is removing both application and library code if the library is found unnec-
essary. The most conservative one is adding an exception message to the place where the
code is removed. Hence, if a method is removed incorrectly, an exception will be triggered
at run time, and developers will know which removed code should be reverted. The visual-
ization interface also presents the usage of dependencies in class and method levels to help
developers make decisions. Similar to the design intention of this visualization tool, we ac-
knowledge that the decision of removing dependency should be made by developers rather
than the tool’s authors. Inspired by the work, this thesis applies Neo4j bloom to visualize
the call graph and present the visualization to developers.

Figure 3.3: Overview of JDBL workflow [35]

The third team develops a purely dynamic dependency analysis tool Java DeBLoated
(JDBL). Since the soundness of the dynamic dependency analysis depends on the coverage
of the trace collection, JDBL integrates four coverage tools to collect traces: JaCoCo, JCov,
Yajta, and JVM class loader. It is because coverage tools support diverse corner cases.
When executing the coverage tools, traces are collected by the bytecode instrumentation.
Bytecode instrumentation is an approach to monitoring the project at runtime by adding
probes in the class files. Once the probe is activated at runtime, the coverage tool will report
the trace. After collecting all traces, any class and method that are not activated at runtime
will be considered bloated or unused.

The workflow of the JDBL has three phases and is presented in Fig. 3.3. For the Trace
phase, the coverage tools are triggered by a workload which is a set of test scenarios. When
the workload is replayed, the trace is collected accordingly. For the Remove phase, JDBL
replaces the implementation of unused methods with exceptions like JShrink so that the pro-
gram can pass validations in the next phase. For the Validate phase, the debloated program
is validated by Maven Build Life Cycles and test cases of the input workload. Although this
thesis does not take a dynamic approach to analyzing dependencies, the idea of applying
different tools to enhance the soundness of trace collections at runtime is necessary. In-
spired by this work, this thesis augments the call graph of DepClean by adding support of a
static call graph tool OPAL4 so that dynamic features of Java language can be detected.

3https://www.youtube.com/watch?v=yzVzcd-MJ1w
4https://github.com/fasten-project/fasten/tree/develop/analyzer/javacg-opal
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3.1.2 A longitudinal study of the dependency bloat

The authors who develop DepClean apply their dependency analysis tool to conduct a longi-
tudinal case study for investigating how unused dependencies increase, decrease or remain
stable over time in hundreds of single-module Maven projects [36]. Motivated by the fact
that bloated dependencies are prevalent in the Maven ecosystem, they want to understand
when the bloated dependencies happen, how the bloated dependencies evolve, and whether
bloated dependencies have an impact on maintenance.

Fig. 3.4 shows the workflow of the longitudinal case study. There are three procedures:
Collect, Filter, and Analyze.

- For the Collect procedure, hundreds of single-module Maven projects using Java as
the primary language are collected via GitHub API.

- For the Filter procedure, all the collected projects are sorted by the number of re-
leases, and only the first 500 projects are selected. Once projects are selected, the
procedure collects the commit of pom.xml in every release of all the filtered projects
and also collects the commit of pom.xml generated automatically for the update of
dependencies.

- For the Analyze procedure, the selected projects are checkouted or reverted according
to the collected commits. For every checkout, the DepClean is applied to analyze the
usage of dependencies. Eventually, the evolution of dependencies can be observed by
the usage of the dependency tree over time.

However, in this thesis, instead of removing unused dependencies from the pom.xml
based on a binary evaluation of the bytecode – i.e. used or unused, the relationship of
unused dependencies with other artifacts in the call graph is provided for more reasonings.

Figure 3.4: A longitudinal study of the dependency bloat by DepClean [36]

3.2 Static call graph construction tools

Call graph construction is a principal element of static analysis tools to determine unused
dependencies. Previous work has laid out the difficulties of building a sound and precise
call graph statically in Java. The main obstacle is posed by the usage of the Reflection API,
a great mechanism for developers to inspect and adapt the behavior of their software in the
runtime environment [26]. Since tools cannot correctly predict how software is evolving,
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tools simply consider all the possibilities, leading to unsoundness and imprecision. Accord-
ing to an empirical study [25], as many as 78% of 461 representatives open-source Java
projects contain at least one usage of the Reflection API. Likewise, the same study found
that 21% of open-source Java projects use dynamic proxies, a proxy mechanism that brings
the flexibility of forwarding method calls to different objects at runtime. This mechanism
also generates a dynamic layer against static analysis tools to model [16].

Many existing static analysis frameworks have implemented numerous call graph algo-
rithms to cope with these challenges. Previous work has conducted a comparative study
of four state-of-the-art frameworks: Soot, WALA, DOOP, and OPAL [30]. Their result in
Table. 3.2 helps us understand the performance of frameworks w.r.t the profile of language
features supports. A circle symbol indicates whether all, some or none of the tests pass.
Overall, OPAL with the Rapid Type Analysis (RTA) call graph algorithm [31] is the most
feature-completed option which enables users to solve prevalent Java dynamic features and
APIs among 23 categories grouped from predefined 122 test cases. OPAL is also the fastest
framework due to its scalability. This scalable feature ensures that data structures are im-
mutable while call graphs are constructed in parallel [14].

Moreover, OPAL provides an API5 to analyze merely a portion of dependencies by clas-
sifying them as project files or library files. Since this API only captures outgoing method
calls from project files to library files, it is efficient to analyze the provided enterprise user
management application with a normal laptop[39].

Other studies have built reflective analysis [26] and dynamic proxy support [16] on the
top of the DOOP framework with high accuracy. However, DOOP’s call graph generator
is so time-consuming and memory-intensive that it is impractical for real-world usage. As
far as we know, no studies have discussed the performance of applying these frameworks in
industrial software. In this work, the intention is to investigate how OPAL helps developers
to find unused dependencies in production code.

Table 3.2: Support of dynamic features in various call graph frameworks and algo-
rithms [30]

26/51 26/51 23/51 21/51 29/51 30/51 22/51 30/51 38/51 15/51sum

CL: Classloading, DP: Dynamic proxies, J8DIM: Interface default methods, J8SIM: Static interface methods, Lambda: Java 8 invokedynamics, 
JVMC: JVM calls, LIB: Library analysis, TR: Trivial reflection, LRR: Locally resolveable reflection, CSR: Context-sensitive reflection.

5https://www.opal-project.de/library/api/SNAPSHOT/org/opalj/br/analyses/Project$.ht
ml
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3.2. Static call graph construction tools

3.2.1 Frameworks to validate the soundness of the call graph

The soundness and precision of a call graph determine the correctness of the static depen-
dency analysis. This section describes three representative frameworks that aim to measure
the soundness of a call graph as shown in Table 3.3. Although this thesis does not pay at-
tention to the measure of soundness, these frameworks may enhance the understanding of
the cause of the unsoundness.

Table 3.3: Representative frameworks for measuring the soundness of a call graph

Framework names Type

Recall study (2020) [39] static + dynamic
Judge (2019) [11] static
A benchmark and tool evaluation (2018) [38] static

The first framework aims to measure the unsoundness of static call graph construction
tools. The study uses recall as a metric to quantify the unsoundness. Since the definition
of recall includes a factor of the ground truth, the authors resort to the dynamic analysis
to obtain the ground truth and assume the ground truth as an oracle. Hence, the recall
is measured by comparing the call graph built by static analysis tools and the call graph
inferred by dynamic analysis tools. The workflow of the framework is shown in Fig. 3.5.

- Extract test cases. The dynamic analysis tools rely on the quality of the test cases to
collect all possible traces. The higher coverage of the test cases, the better recall will
be. To get higher coverage, the authors combine the built-in test cases and generated
test cases. It is because many traces triggered by built-in test cases are independent
of the generated test cases.

- Unreflect test cases. Since JUnit test cases are invoked by reflection, the static anal-
ysis tools may have difficulty detecting methods in the test cases, which leads to bias
in the call graph and lowers the recall. To solve this problem, the authors design a
pre-analysis to unreflect the reflection methods in JUnit test cases. In other words, all
the methods using reflection API are rewritten so that they can be detected by static
analysis tools. In this way, JUnit test cases can be used as static drivers to trigger the
application code.

- Static call graph (SCG). To build a call graph statically, the authors apply the DOOP
framework which supports context sensitivity, and several dynamic language features.
Although this supports offer equal or superior recall to alternative frameworks like
soot and WALA, their analysis of performance indicates that it does not apply to
large software projects. Among 31 dependencies, 11 of them fail the call graph con-
struction due to timeout after 6 hours. In addition, the heap size of the JVM has to be
set to 384GB for the static analyses, which prevents the framework from scaling.

- Context call tree (CCT). The context call tree is a model of the call graph constructed
by the dynamic analysis. The node of the tree represents a method and the edge
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Figure 3.5: Workflow of the recall study. (SCG: static call graph, CCT: context call tree,
FN: false negative) [39]

represents the method invocation while the root represents the entry method. The
node and edge are observed by monitoring the runtime execution. Before executing
the software by test cases, the authors apply the ASM library to instrument the code
on method entry and exit. These instrumentations are logged and provided to model
the oracle.

- Compute recall. Recall is defined in the equation 3.1. The recall is proportional to
the method (M) coverage of the static call graph. The method set of the context call
tree (CCT) is considered an oracle even though its coverage is unlikely to be complete
except for analyzing trivial software.

recall =
MSCG ∩MCCT

MCCT
(3.1)
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The second framework also aims to understand the unsoundness of static call graph
construction tools. The study develops a toolchain that analyzes the call graph algorithms
by test cases profiling and uses the profiles to identify the unsoundness in the call graph.
The toolchain has two parallel pipelines as shown in Fig. 3.6.

The upper pipeline takes 122 test cases (grouped in 23 categories) as inputs and applies
them to various call graph algorithms offered by the frameworks: Soot, WALA, DOOP,
and OPAL. The profile is obtained by comparing the call graph edges and annotation in
the test cases. If the annotated method of a test case has the corresponding edge in the
call graph, it means that the language feature of the test case is supported. The output of
the upper pipeline is a profile about which language features are supported or not by the
corresponding framework and algorithm.

The input of the lower pipeline is a project bytecode for the investigation of the unsound-
ness. The lower pipeline has two parallel processes: Hermes and call graph computation.
Hermes is a framework for extracting different features in a Java bytecode [29]. The Judge
uses Hermes to find whether a project bytecode contains a specific feature and where the
feature locates. Specifically, Judge applies Hermes to identify all of the 23 categorized fea-
tures in a given Java bytecode. Next, the location of these features is compared with the call
graph to investigate the unsoundness.

An example of investigating unsoundness is presented in Fig. 3.7. There are 6 columns
in this table. The first and second columns are a profile of a specific call graph algorithm
obtained by the upper pipeline in Fig. 3.6. The third to sixth columns are the mapping be-
tween the algorithm profile and the features obtained by Hermes in a call graph. Hence,
we can know if any method in the call graph has a feature that the algorithm has difficulty
capturing like my in Fig. 3.7.

Figure 3.6: Call graph analysis toolchain -— Judge [30]
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Figure 3.7: Mapping between the algorithm profile and the call graph [30]

The third framework proposes a micro-benchmark to evaluate the recall of static call
graph construction tools. The micro-benchmark is a set of small Java programs, and each
of them uses a specific dynamic feature that poses challenges for static analysis tools to
model. The dynamic features include reflection, dynamic proxies, dynamic class loading,
invokedynamic, and serialization. These small Java programs are then used to build call
graphs by soot, WALA, and DOOP for evaluation.

A benchmark example of invocation is presented in List 3.1. The annotated source
(i.e. @Source) represents the entry method of the benchmark, which can be triggered by
an outside client. The annotated target (i.e. @Target) indicates which target method is
expected or unexpected by using values such as Expected.YES or Expected.NO. An oracle
of the benchmark can be generated by getting these annotated values at runtime. To evaluate
a call graph construction tool, a generated oracle of a specific benchmark is compared to a
call graph of the same benchmark constructed by the tool. Finally, the recall of the static
call graph to the oracle can be computed.

public class Basic {
public boolean TARGET = false;
public boolean TARGET2 = false;
@Source public void source() throws Exception {

Method m = Basic.class.getDeclaredMethod("target", null);
m.invoke(this , null);

}
@Target(expectation = Expected.YES) public void target() {

this.TARGET = true;
}
@Target(expectation = Expected.NO) public void target2() {

this.TARGET2 = true;
}

}

Listing 3.1: Example of basic invocation [38]
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3.3 Software metrics for unused dependency

A software metric is a common data analysis technique to support decision-making during
the software development [15]. For instance, software defect analysis tools identify a set of
features to help detect false alarms. The features computed from code analysis and warn-
ing history are considered as metrics [42]. These metrics may help developers understand
the detailed information of false alarms, prioritize them with strategies, and prune them by
heuristic rules [13]. Unlike software fault detection, there are only a few previous works on
designing metrics for unused code detection. Previous work investigated whether code sta-
bility and code centrality indicate the likelihood of unnecessary code. The authors reported
that 34% of recommendations for unnecessary code were confirmed as true positives [19].
Another work tried widely accepted objected-oriented metrics to predict dead code meth-
ods. It concluded that LOC, WMC, and RFC are useful indicators to discover dead code
[33]. However, these previous works focus on the code level instead of the dependency
level. In this work, our approach is inspired by software metrics and aims to contribute to
the classification of the unused dependency for decision making.

Moreover, previous studies on unused code detection mainly paid attention to the code
structure and history. On a larger scope, code dependency between entities in software can
be broadly defined by various coupling, which may occur among software modules, classes
or objects [9]. Systematic classification of such relations was provided by Fregnan et al.
[17]. They categorized code dependency proposed by communities over the years into four
groups: structural, dynamic, semantic and logical coupling. Prior research has verified that
these coupling relations are orthogonal and able to explore different aspects of a software
[18] [8] [7]. Likewise, Tàrrega NB et al. [40] extended several coupling metrics to measure
the degree of software dependency. However, these coupling metrics have not been applied
to detect unused dependencies.

3.4 What is missing?

As can be seen from the literature about dependency analysis tools in Table 3.1, various
types of tools have been proposed to identify bloated dependencies. However, there are two
missing points listed as follows.

• None of these tools can guarantee their findings on bloated dependencies due to the
unsoundness and the imprecision of the call graph construction. Hence, it would be
helpful if a tool reports to developers which bloated dependencies can be deleted with
high or low confidence.

• All of these tools merely provide binary recommendations of the dependency usage
i.e. used or unused, but the relationships between dependencies in the call graph
are lacking. However, the history change of these relationships may reveal the de-
pendency usages that dependency analysis tools do not pay attention to. Although a
tool like JDBL considers the history change of every dependency usage, it does not
consider the history change of the relationships between dependencies.
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• Although DepClean supports the visualization of dependency analysis results, its de-
pendency tree becomes ambiguous once it grows larger. User-friendly visualization
of dependencies and call graphs can help developers explore the usage of dependen-
cies.

In a similar sense, many frameworks in Table. 3.3 have been proposed to evaluate the
unsoundness of a call graph. However, there are still two missing points listed as follows.

• All of the frameworks conform that unsoundness is unavoidable in a call graph built
by current call graph tools and algorithms either statically or dynamically. This may
be the reason why no study applies dependency analysis tools to an industrial appli-
cation.

• Although OPAL supports more dynamic features than other call graph construction
frameworks, there are no dependency analysis tools that adapt OPAL to analyze de-
pendencies.

In this thesis, we propose a decision framework that adapts OPAL to support dynamic
features when building a call graph. The call graph will be used to examine the history
change in relationships between dependencies. This information may help distinguish
which dependencies may be removed with high confidence. Unlike dependency analysis
tools discussed previously, the proposed approach in this thesis tries to reduce the workload
of developers by telling them which dependencies can be removed with ease and which de-
pendencies may need more effort. Also, a visualization tool is proposed to assist developers
in exploring the usage of dependencies. The work in this thesis focuses on the following
aspects:

(1) Adapt OPAL, a call graph construction tool, to DepClean, a dependency analysis tool
so that the augmented call graph supports dynamic features.

(2) Examine the history change of relationships between dependencies which may stren-
gthen or undermine the findings of the dependency analysis.

(3) Propose a visualization approach to examine the unused dependencies along with
their position in the dependency tree and call graph.

(4) Apply the decision framework to analyze a real-world industrial application with
large amount of dependencies.

(5) Reduce false positives of unused dependencies and identify which dependencies are
difficult for dependency analysis tools to capture.
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Framework

The decision framework for reducing false positives of unused dependencies is explained
in this chapter. The ideas behind the decision framework are increasing the soundness
via different call graph tools and observing the history change of method calls between
dependencies. The decision framework comprises three steps to find unused dependencies:

A. augmented CG. Combine different call graph tools for the analysis of dependency
usage to enhance soundness.

B. graph analysis. Classify flagged dependencies by their relationships with other de-
pendencies in the call graph.

C. release history analysis. Analyze the history of code changes related to a flagged
unused dependency.

These steps are pinpointed as shown in Fig. 4.1. Rounded rectangles represent procedures
for every software release. First, we build an augmented call graph by which the depen-
dency analysis flags dependencies as used and unused. Next, we classify these flagged
dependencies according to their relationships in the call graph. Last, we apply the decision
process to provide recommendations for the developers.

4.1 Dependency analysis based on a call graph built by
different tools

Software projects may contain different language features and APIs which affects the per-
formance of the dependency analysis tools. Hence, the framework starts by analyzing the
project with DepClean to collect a preliminary result. To enhance the support of dynamic
features for the static dependency analysis, the framework augments the call graph of Dep-
Clean with critical edges collected with OPAL+RTA.

Although OPALRTA supports many dynamic features, the way of applying OPAL API
to build a call graph has a great impact on the precision of the call graph. It is because
OPAL has high coverage and is designed to find all the possible implementations of an
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Figure 4.1: Decision framework workflow

interface or abstract class. If a global call graph is built by joining all dependencies with
the main application code, there might be some spurious edges created between unrelated
dependencies. To avoid the spurious edges, two factors are considered to maintain the
precision of the call graph: dependency tree, and critical edges.

The framework uses the dependency tree to enhance the precision of generating the
global call graph. It is because a global call graph might lead to theoretical edges that are
inconsistent with the hierarchy defined by the dependency tree. Fig. 4.2a illustrates this pro-
cess with a dependency tree of a Maven application. These dependencies are downloaded
and grouped into multiple folders based on their layers in the Maven dependency tree. Next,
the artifact of a parent dependency in each folder is classified as a project file whereas arti-
facts of all the child dependencies are classified as library files as shown in Fig. 4.3. After
the classification, OPAL API is applied to build a call graph per folder. In this way, the
framework avoids inconsistent theoretical edges such as a method call from component1 to
library-impl-2.

Critical edges are a set of edges that must be called at runtime if they are reachable from
the application code. Conversely, some edges occur frequently but may not necessarily
be called at runtime. For example, some methods such as toString, hasNext, or toArray
defined in JDK are implemented by so many dependencies, which makes it difficult to
anticipate which implementation will be executed during runtime. Hence, OPAL will create
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Figure 4.2: A dependency tree example.

(there may be more than 3 layers in real scenarios)
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Figure 4.3: The process of separating dependencies for the OPAL call graph construction

edges leading to certain dependencies simply because they implement these methods. To
prevent the call graph from exploding the framework applies the following approximation:
the framework removes any edges found by OPAL that point to multiple implementations of
the same method. Hence, the framework only keeps the critical edges. Since these critical
edges are a unique path between a component and a target method, the framework is certain
that the respective component will always call the target method during runtime. After
collecting these critical edges from all OPAL call graphs, the framework adds them to the
call graph of DepClean. With this approximation, the framework avoids an overly complex
call graph that takes too much time to generate and analyze.

Figure 4.4 illustrates the principle of how to find critical edges. In Fig. 4.4(a), if a
target method of a node (TA) is only called by a source method of a node (SA), this edge is
considered a critical edge. It is because only TA implements this target method and it must
be called at runtime if SA is reachable from the application code. In the case of Fig. 4.4(b),
if all the nodes (SA to SN) merely call an identical target method once, these edges are
considered critical edges. It is because only this target class implements the method. On
the contrary, all edges in Fig 4.4(c) are pruned from the OPAL’s call graph. It is because
a target method is implemented by multiple different target classes. Since there is no clue
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Figure 4.4: Illustration of how to find critical edges.

which implementation will be called at runtime, the framework opts to prune these edges.
Hence, if previous rules are applied to Fig 4.4(d), two edges from SA are pruned while one
edge from SB is considered a critical edge.

To flag which dependency is used or not, the framework follows DepClean’s approach.
A set of entry classes in a call graph must be defined. For the enterprise user management
application at ING, all of the classes that handle requests are possible entries. For the
open-source projects, all of the classes in the source folder are used as entries. Next, entry
classes are used to traverse a call graph and find all the reachable classes. If any class of a
dependency is found to be accessible from entry classes, this dependency is flagged as used.
Also, as long as a class contains a method accessible from entry classes, all the methods in
the class are flagged as used too. An example of flagging a dependency as used or unused
is presented in Fig. 4.5.
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4.2 Classification of flagged dependencies

A call graph may expand with increased dependencies and become difficult to trace, but
method calls between dependencies can be simplified according to their source and target
methods as exemplified in Fig. 4.5. If a method can not find a route back to any entry class
or used method, the method is defined to be an unused method. An unused method could
exist both in flagged used and unused dependencies.

Based on the type of incoming and outgoing method calls, a flagged dependency can be
classified into five types. If the dependency can be classified as more than one artifact type,
we choose the one with the largest number.

– Artifact type 1 represents an isolated dependency and it has no external method call.

– Artifact type 2 indicates that a flagged unused dependency has incoming or outgoing
method calls to or from other flagged unused dependencies.

– Artifact type 3 depicts that a flagged unused dependency has outgoing method calls
to any flagged used dependency.

– Artifact type 4 portrays that a flagged unused dependency has incoming unused method
calls from any flagged used dependency. The incoming unused method calls are not
accessible from any entry classes.

– Artifact type 5 describes a flagged used dependency.

Neo4j Bloom [4] is adapted to visualize classified artifact types and their relationship
to other artifacts. In Neo4j, a graph data structure is organized as nodes, relationships,
and properties. The discrete nodes are connected by relationships and both of them can be
described further by properties [28]. The definition of Fig. 4.5 is followed to set proper-
ties of nodes and relationships. For example, the artifact type is one of the properties of
nodes while the method call type is one of the properties of relationships. The visualization
gives an overview of which dependency is flagged unused while artifact types indicate their
relationships to other dependencies. This approach may help developers comprehend the
detailed information of flagged unused dependencies.

Figure. 4.6 demonstrates how to use the artifact classification and Neo4j Bloom to ob-
serve the usage of one flagged dependency in the Jenkins project. In earlier versions 2.287
and 2.291, this flagged dependency is classified as artifact type 5. However, in the later
version since 2.296, the flagged dependency is classified as artifact type 1. It shows that
incoming and outgoing method calls of this flagged dependency decrease, which may be ev-
idence of true unused dependency. This way, the complexity of the call graph is simplified
while preserving high-level relationships between flagged used and unused dependencies.
Hence, developers are provided with essential information but not overwhelmed.
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Figure 4.5: Classification of flagged used and unused dependencies.
The rule of classification follows the symbol of method call types and artifact types shown
on the upper-right hand side. Method call types represent all the possible relationships be-
tween methods in two artifacts. Based on the incoming and outgoing method call types of
an artifact, the artifact can be categorized into five types. Type 1 and Type 2 only have rela-
tionships with other flagged unused dependencies. Type 3 and Type 4 are more complicated
and have relationships with flagged used dependency. Contrary to Types 1–4, we consider
Type 5 as flagged used dependency and reachable from the entry code of the application.

release: 2.287 
artifacttype: 5 

release: 2.291 
artifacttype: 5 

release: 2.296 
artifacttype: 1 

release: 2.301 
artifacttype: 1 

release: 2.305 
artifacttype: 1 

Figure 4.6: Neo4j Bloom for the visualization of the call graph in the artifact level after the
classification of artifact types and the relationship between artifacts.
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Figure 4.7: Decision process for the recommendation of individual flagged unused depen-
dencies.

4.3 Analysis of the history of code changes

The high-level classification of a flagged dependency also helps us describe the code changes
related to a dependency across versions. Analyzing and comparing to earlier versions might
find crucial evidence that increase the confidence of flagged unused dependencies. For ex-
ample, if part or all incoming method calls of a flagged dependency disappear after a certain
version, this flagged dependency may no longer be needed. To convey the confidence of re-
moving a flagged unused dependency based on the change of its usage, Fig. 4.7 provides a
decision tree that depicts the decision process and its recommendations. Hence, developers
may rely on these recommendations to prioritize which flagged unused dependency could
be removed. Three questions are pinpointed as follows:

Q1 What is the artifact type of the flagged unused dependency? Every unused JAR ar-
tifact is categorized by the complexity of its relation with other artifacts. The flagged
dependency that has more method calls across artifacts like type 3 and type 4 is han-
dled differently in comparison to the flagged dependency with few methods calls
across artifacts.

Q2 How does the method call vary since previous versions? If there is any method
call removed since previous versions, this may be an indication of an unnecessary
dependency. On the contrary, if the number of method calls increase compared to
previous versions, the dependency should be retained. However, if the connection
is unchanged throughout previous versions, it requires extra effort to distinguish the
usage of the dependency. It is because the call graph tool is not sound, and possible
to miss some features. To be safe, developers have to decide if it is required to be
investigated further.
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Q3 What is the artifact type of the flagged unused dependency in previous versions?
This question compares both types 1,2 and types 3,4 to their artifact types in the
earlier version. For example, if their artifact type in previous versions is type 5, it is
obvious that some of the method calls have been removed since earlier versions. In
this case, the flagged dependency is recommended as unused. On the other hand, if
the artifact type is the same as in previous versions, the recommendation is needing
additional steps with developers.

Generally speaking, the decision process is designed to be strict with giving recommen-
dations to remove a flagged dependency. When there is evidence that method calls have
reduced since an earlier version such as from type 5 to type 1–4, the flagged dependency
is recommended as unused. On the other hand, when some method calls are observed to
be increased or varied, the flagged dependency is considered as used (i.e. a false positive).
For a flagged dependency that has no method calls changed in earlier versions, the flagged
dependency needs additional steps with developers before taking further actions.

4.4 Design of the visualization for the dependency analysis

In section 4.2, Neo4j Bloom is introduced to visualize classified artifact types and their
relationship to other artifacts. This section provides more details about the visualization
for the dependency analysis by Neo4j Bloom. Since the dependency analysis has limita-
tions and often requires developers to re-examine the correctness of the result, this work
proposes a good visualization tool that may assist developers in decision-making and allow
developers to efficiently understand how a dependency is used. By the design of this work,
Neo4j Bloom is applied to visualize the relationships between flagged dependencies, so de-
velopers can compare the call graph at the artifact level in various releases. The workflow
of analyzing dependencies with Neo4j Bloom is presented in a repository. The repository
of the decision framework is public and can be found in https://bitbucket.org/scam
2022chingchichuang/static_dependency_analysis/. The repository is composed of
five main folders.

– The RQ2 folder contains all the scripts to run the dependency analysis of all the spec-
ified releases.

– The docker folder provides a Dockerfile to replicate the software and its execution
environment.

– The neo4j-dump includes the analysis result of three open-source projects that can
be imported to Neo4j Desktop.

– The depcleanfork is a submodule that links to opalAugmentedDepClean branch of
DepClean. In this branch, OPAL API is used to generate call graphs that augment the
call graph generated by DepClean before the dependency analysis.

– The fasten is a submodule of an intelligent software package management system.
This project provides an OPAL plugin for generating call graphs.
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4.4. Design of the visualization for the dependency analysis

Figure 4.8: Neo4j definition

Table 4.1: The example of the dependency analysis by DepClean

Graph Database
Model

Labels Properties

Node
FlaggedUnusedartifact artifactId, artifactReachability, artifactType,

groupId, nodeId, owned, release, versionFlaggedUsedartifact

Relationship METHOD CALLS weight, methodCallType

HAS DEPENDENCY -

Once following the instructions of the repository, the result of an analyzed project is
uploaded to the Neo4j graph database. The result can be visualized via Cypher Query
Language [5] in Neo4j Bloom. In this work, three kinds of queries are respectively designed
to assist developers to explore the dependency tree, the method calls to a dependency, and
the call graph of a dependency in different releases.

4.4.1 Dependency tree

The design of a graph model for the dependency analysis is shown in Fig. 4.8, and the
definition of properties is described in Table. 4.1. Each node has two kinds of relationships
with other nodes. The first kind of relationship is called HAS DEPENDENCY. This relationship
is built according to the dependency tree declared in the POM file. A query example for a
dependency tree is shown in List 4.1 which needs to be manually copied to Neo4j Bloom as
in Fig 4.9. The result of the query is shown in Fig 4.10.

MATCH paths = (node1)-[:HAS_DEPENDENCY *0..1]->(node2)
WHERE node1.release=’2.291’ AND node2.release=’2.291’
RETURN DISTINCT paths
// () rounded bracket represents a node.
// [] squared bracket represents a relationship.
// -> indicates the direction of a relationship.
// *0..X specifies the range of the length. Zero length is

introduced to instruct Cypher to bind the last node.
// The word after a colon is a label.

Listing 4.1: Example of querying a dependency tree
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Figure 4.9: Cypher query in Neo4j Bloom

Figure 4.10: Dependency tree visualization of the Jenkins project in Neo4j Bloom which
helps capture how a flagged dependency is declared in the POM file.

Figure 4.11: A pop-up window of Neo4j Bloom for relationships between flagged depen-
dencies.
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Figure 4.12: With the information of artifact types and the release, developers can follow
the decision tree process to find recommendations of a flagged unused dependency.

4.4.2 Method calls of a flagged dependency

The second kind of relationship is called METHOD CALLS. This relationship has two proper-
ties: weight and methodCallType. The weight indicates the number of its incoming and
outgoing method calls while the methodCallType follows the definition in Fig 4.5. After
displaying the dependency tree, the usage of a dependency can be found by double clicking
the dependency icon such as asm5 in Fig 4.11. After clicking, a pop-up window in Neo4j
Bloom shows the weight of its incoming and outgoing method calls. Hence, developers
may effectively see the usage of any dependency along with a dependency tree.

4.4.3 Decision process based on the call graph information

In addition to the dependency tree, call graphs of a dependency in different releases can
be queried altogether in Neo4j Bloom. An example is provided in List 4.2. The result of
this query has been shown earlier in Fig. 4.6. With the information of the artifact type and
release obtained in Fig. 4.6, this work follows the decision tree and recommends that asm5
is unused dependency as shown in Fig 4.12.

MATCH paths1 = (n)-[:ARTIFACT_CALLS *0..1]->()
MATCH paths2 = () -[:ARTIFACT_CALLS *0..1]->(n)
WHERE n.artifactid = ’zipkin -lens ’
RETURN paths1 , paths2

Listing 4.2: Example of querying a dependency tree
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Chapter 5

Evaluation of the decision framework
by ING project

After introducing how the decision framework is designed in the previous chapter, this
chapter aims to evaluate the decision framework via the ING project. The chapter starts by
stating the research question that the decision framework will experiment with. Next, the
methodology used for the evaluation is explained. Lastly, the results of the evaluation are
analyzed and used to discuss the research question of this chapter.

5.1 Research Question

RQ1: Can we systematically combine automated and manual analyses to improve the
detection of unused dependencies of software projects at ING?

Why: As shown in the motivating example of section 2.4, some of the detected unused
dependencies in the enterprise user management application may be false positives. Reduc-
ing false positives by the automated decision framework can save the effort of developers
in decision making, which encourages them to invest time in removing dependencies with
high confidence and deals with less probable ones later. However, the recommendations of
the decision framework have to be manually evaluated by developers, which may not be
available for open-source projects. Hence, this work relies on developers at ING to judge
and verify the correctness actively.

How: One enterprise user management application in the production is chosen because
of its peculiar software structure which poses challenges for the state-of-the-art tool. After
being presented with the suggestions of the decision framework, developers select some
dependencies for testing based on their understanding of the usage of the dependencies.
The result of the tests is compared to the recommendation of the decision framework.
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5.2 Methodology

This work selected an enterprise user management application in the production for the
evaluation because it is legacy software that certainly contains unused dependencies. The
application is packaged as an EAR file which includes 144 Jar dependencies, and 43 of them
are maintained by different groups at ING. The class and line of code of dependencies are
3050 and 211657 respectively. The project migrated from an inhouse-developed platform to
Maven in 2019. Hence, there are 41 releases available to evaluate the decision framework.

To evaluate the recommendation, developers were guided through the results of the
automated decision framework and were asked to provide their input: whether they agree
with the recommendation and what is the main reason. Three developers who develop or
maintain the project are invited. Two developers have worked on these projects for more
than 4 years. One developer has maintained this project for almost 2 years. All of them
have more than 5 years of working experience on Java projects.

Next, we remove the dependencies approved by developers from the project’s POM
file and execute the existing system and functionality tests. If the tests pass, we deploy
our changes to the test environment of the software. This triggers a set of additional ING-
specific checks that maintainers have to perform to validate the changes. Meanwhile, we
also collect the system log to spot any unusual behavior – e.g., an error message. In the
absence of any issue or concern from developers, we assume that the dependency can be
successfully removed and our code changes can be merged to production.

This process is time-consuming and is taken very seriously by developers at ING. To
use their time efficiently, we opt for removing multiple dependencies in the same merge
request.

5.3 Result

Table 5.1: Dependency analysis result of the project at ING

Dependency Analysis Tool
Number of Flagged Dependencies

Used Potentially Unused

DepClean 73 71a

DepClean + OPAL 85 59b

DepClean + OPAL + Decision process 98 46c

a From which 26 are direct, 45 transitive, and 0 inherited.
b From which 16 are direct, 43 transitive, and 0 inherited.
c From which 16 are direct, 30 transitive, and 0 inherited; we conclude that there are
10 unused and 36 need additional steps with developers.

The usage of dependencies is analyzed and presented in Table 5.1 which compares the
results collected from different dependency analysis tools. The baseline is provided by De-
pClean which flags 73 used and 71 unused dependencies. After augmenting the DepClean
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Table 5.2: Summary of the recommendations of the decision process and developers’ feedback.

Recommendation Developers’ Decisions Developers’ Reasons Number

Used dependencies (13)⋆
Agree with the recommendation The functionalities of these dependencies are known and needed. 8

Not sure about the recommendation These are transitive dependencies and functionalities are unknown. 5

Need additional
steps with devel-
opers (36)

Do not remove dependencies

The functionalities of these dependencies are known and needed. 8

These are transitive dependencies and may become used in the future. 18

The dependencies only contain javascript code. 4

Can be removed These dependencies have not changed for years. 6

Unused dependencies (10)
Do not remove dependencies

These are transitive dependencies and may become used in the future. 6

These dependencies may be used in edge cases. 1

The functionalities of these dependencies are known and needed. 2

Can be removed This is a duplicated dependency. 1
⋆In total, there were 98 flagged used artefacts. We selected the 13 artifacts that had been flagged as unused in the early stages of the analysis but were
then discarded by our decision process.
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call graph with critical OPAL edges, another 12 dependencies become accessible from the
entry classes. Hence, the number of flagged used dependencies increases to 85 while the
number of flagged unused dependencies decreases to 59.

Next, all the 59 flagged unused dependencies are classified as the corresponding artifact
types and are compared to their classification in the earlier versions. By doing so, we find
that the number of method calls in another 13 flagged unused dependencies has increased
since earlier versions. Hence, these 13 flagged unused dependencies are recommended as
used by the decision process. As a consequence, the number of potentially unused depen-
dencies lowers again to 46. Within these 46 flagged unused dependencies, there are 10
flagged unused dependencies whose method calls reduce since an earlier version, so these
10 flagged unused dependencies are recommended accordingly as unused by the decision
process. For the rest 36 flagged unused dependencies, their method calls are relatively sta-
ble, which calls for additional steps with developers.

Table 5.2 summarizes the recommendations of the decision process and developers’
feedback on 59 potentially unused dependencies flagged by DepClean+OPAL. For the
recommendation as used dependencies, developers agree with eight of them because they
know the functionalities of these eight dependencies and are certain about their use cases.
On the other hand, they are clueless about the other five recommendations since all these
five dependencies are transitive and are barely noticed.

For the recommendation that need additional steps with developers, the majority of
them are declined by developers to remove due to several reasons. Firstly, some of their
functionalities are known and needed by developers. Secondly, developers avoid excluding
currently unused transitive dependencies in case they may become used after the depen-
dency upgrade in the future. Thirdly, the dependency may aim to package other file formats
such as javascript instead of adding java class files. In addition to the majority, developers
decide that 6 dependencies can be removed since they have not used them for years. For the
recommendation as unused dependencies, 9 of them are declined by developers to remove
because of the future upgrade of transitive dependencies, possible usages by edge cases, and
the necessity of functionalities. Only 1 dependency in these recommendations is accepted
by developers due to the existence of a duplicated dependency.

The result of the system and functionality test for dependency removal is presented in
Table 5.3. Only 10 out of 59 unused dependencies flagged by DepClean+OPAL are for-
warded to dependency removal tests. It is because many dependencies are declined by
developers to remove due to safety concerns. For the recommendation of used dependen-
cies, three dependencies are selected for the tests, and all of them cause some failures of
functionalities as expected. For the dependencies that need additional steps with develop-
ers, six dependencies are chosen while half of them fail the tests. For the recommendation
of unused dependencies, one dependency is picked and passes the test.

5.4 Discussion

The combination of automated and manual analyses reduces false positives and helps
developers prioritize the tests of unused dependencies. Results presented in Table 5.1
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Table 5.3: System and functionality test for selected dependencies based on the recommen-
dation and developers’ feedback.

Recommendation Developers’ Reasons for Tests Dependency Removing Tests

Used dependencies (3/13)⋆ Verify that dependencies are
indeed used.

Test=3; Pass=0; Fail=3

Need additional steps with
developers (6/36)⋆ Can be removed Test=6; Pass=3; Fail=3

Unused dependencies (1/10)⋆ Can be removed Test=1; Pass=1; Fail=0

⋆Only partial dependencies were selected for dependency-removing tests.

show that 12 dependencies that were initially flagged as unused by DepClean become used
after we augment the call graph with critical OPAL edges. We conjecture three reasons
that may explain this. First, the provided project heavily relies on dynamic proxies to in-
voke various implementations of services – this is the case for 10 out of 12 dependencies
that implement such services. The dynamic proxy is one of the dynamic features in the
Java language that is supported by OPAL. Hence, once we augment the call graph using
OPAL, we effectively reduce false. Second, there are 2 out 12 dependencies that become
used not because they implement dynamic features but because they are direct dependencies
used by some of the previous 10 dependencies. Thirdly, it is noticed earlier that many of
the frequent-occurred OPAL edges are overestimated by method implementations such as
toString, hasNext, and toArray. However, none of these 12 dependencies become used due
to overestimated method implementations since only critical edges are accepted. Hence, de-
pending on the application, the degree to which our augmented analysis brings benefits will
change. In particular, we anticipate that our augmentation brings more value to applications
that rely heavily on dynamic features of Java, which is the case of the software project we
study at ING.

The results also show the usefulness of the decision process. For the recommendation of
used dependencies, developers agreed that 8 out of 13 dependencies are used. For another
5 out of 13 dependencies that developers are uncertain about, they consider these depen-
dencies as used because they are all transitive dependencies and the functionalities are un-
known. When the functionalities of unused dependencies are unknown, removing them may
cause potential errors in the application. For the dependencies that need additional steps
with developers, the majority of these dependencies are declined by developers to remove.
This fact indicates that it is necessary for the dependency analysis tool to offer this kind
of recommendation rather than merely providing a binary recommendation (used/unused).
For the recommendation of unused dependencies, developers are more concerned about
considering them unused. Developers only accept this recommendation for the dependency
that is duplicated.

To evaluate the recommendation and developers’ feedback, ten dependencies are se-
lected for system and functionality tests in Table 5.3. After developers remove 3 depen-
dencies recommended as used, each of them causes different failures which include error
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messages in the system log and functionality breaks at the server. In other words, these de-
pendencies are verified as actually used in the application. Hence, it shows that the decision
process can indeed help us reduce false positives. For dependencies that need additional
steps with developers, the result shows that developers may not always be correct on the
usage of the dependencies. Three out of 6 dependencies that developers claim to be unnec-
essary cause functional errors after they are removed. Hence, when the decision process
recommends needing additional steps with developers, developers indeed need to take more
efforts to investigate. For the only unused dependencies accepted by developers, it passes
the test as expected. Therefore, with the help of the decision process, developers may pri-
oritize how they plan to test and remove the unused dependencies.

However, the current design of the decision framework has a limitation and would
falsely recommend a dependency as unused in some circumstances. For example, two
dependencies are recommended as unused but are considered as needed by developers in
Table 5.2. It is because we only select critical edges in the OPAL call graph. When we
examine the OPAL call graph, we find that all target methods of these 2 dependencies occur
more than once. Since we only select critical edges to augment the call graph, the edges
created by these 2 dependencies are ignored. Another corner case that is not covered by our
approach is when transitive dependencies are directly called by the application. However,
we do not observe this corner case in our data.

5.5 Threats to validity

5.5.1 Construct

The approach to augmenting the call graph is designed according to the context of the
provided ING project. Since the provided web application is developed a decade ago, they
use the feature of the dynamic proxy to conveniently invoke various services before the
technique of the dependency injection becomes popular. For the project developed in recent
years, the context of the software development must have changed and our approach should
be adjusted to fit the different context. Specifically, the call graph construction tool, the
mechanism of selecting critical edges, and the questions of the decision process may need
to be adapted for the targeted project.

5.5.2 Internal

The system and functionality test rely on the experience of developers and the identification
of error messages in the system log. However, even the senior developers may not know
all the details in the dependencies maintained internally at ING. Also, the time allocated
for the tests is limited, so some dependencies have to be tested within a batch. Although
the result is expected to be the same as being tested individually, this premise has not been
verified yet. Moreover, it is assumed that the error caused by the removed dependency can
be triggered in a short time, which may not always be the case. Some faults may exist in
the system for a long time without causing error messages.
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Chapter 6

Evaluation of the decision framework
by open-source projects

6.1 Research Question

RQ2: Is our decision framework to detect unused dependencies confirmed by the commit
history of other open source projects?

Why: Since the selected enterprise user management application at ING is maintained
by the production team, the available testing windows and the capacity of developers are
limited. Hence, this work further resorts to open-source projects as alternatives to evaluate
the decision framework. In the open-source projects, dependencies that were previously
deleted are valuable and can be considered as ground truth to evaluate recommendations by
the decision framework.

How: This work inspects the history of three open-source projects: Jenkins, Zipkin, and
Onedev. Projects are selected based on the number of declared dependencies, releases, and
commits on removing dependencies. For each project, this work collects all the commits
that add or remove dependencies and compare the reasons behind these changes with the
proposals from our decision framework.

6.2 Methodology

Among three open-source projects, Jenkins is used in previous work [37] to evaluate De-
pClean while Zipkin and Onedev are selected from a set of 50 projects collected with the
search tool SEART1. With SEART, this work retrieves 50 top Java projects available on
Github that have more than 5k stars, more than 50 releases, and was active in the first
quarter of 2022. The result of the top 50 projects by the project size can be found in this
link. These projects are then filtered according to the following criteria: 1) the project uses
Maven to manage dependencies (e.g., Gradle projects are discarded), 2) the project has a

1https://seart-ghs.si.usi.ch/
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6. EVALUATION OF THE DECISION FRAMEWORK BY OPEN-SOURCE PROJECTS

Figure 6.1: An example of removing a dependency in Jenkins core’s POM file.

Figure 6.2: An example of removing source code related to the removed dependency.

single main module that can be used for analysis (multi-module analysis is not supported
yet), and 3) the project has at least 5 commits that remove dependencies.

Next step is to collect all the commits that remove or add dependencies in every re-
lease of the selected projects. For the removed dependencies, this work examines the code
changes and commit messages to assess why they are removed. For the added dependencies,
this work checks whether that dependency is brought back in later releases. Any commit
that does not reveal the reason for removing a dependency is discarded. With this manner, it
ensures that the collected commits are valid ground truth. The spreadsheet of ground truth
can be found in this link.

This work then determines the reasons behind removing dependencies by reading the
commit messages and inspecting code differences. This work then divides commits into
three groups (R1) replace dependency, (R2) remove code and dependency, and (R3) only
remove dependency. Reasons R1 and R2 imply that the dependency is still needed by the
project and some other reason lies in its removal from the dependency specification (e.g.,
security issues, API migration, etc.). Reason R3 clearly indicates that the dependency is
unused – hence, this work compares these cases with the recommendations provided by the
framework (cf. Fig. 4.7).

For example, Fig 6.1 and Fig 6.2 is one of collected commits in Jenkins project. This
commit can be found in this link. A dependency called jmdns is removed from Jenkins
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6.3. Result

core’s POM file in this commit. Moreover, some pieces of code related to jmdns are also
removed together in this commit. This reveals that the dependency is still used before
being removed. Hence, this commit is categorized in the group of R2 (remove code and
dependency).

6.3 Result

The results of the consistency between the reason for removing a dependency in the open-
source projects and the recommendation of the decision process are presented in Table 6.1.
This work divides each dependency removal by the different reasons behind that change:
R1, R2, R3 (as explained in Section 6.2).

For each reason for removing dependencies, the dependency usage immediately before
being removed can be inferred as ground truth to compare the recommendations of our
proposed decision process and DepClean. For any recommendation that is inconsistent with
the reasons for being removed, the result is labeled with an asterisk symbol in Table 6.1.

In sum, the results show that only 2 recommendations from our decision process are
inconsistent with the actual reasons for being removed. This result is far better than Dep-
Clean’s recommendation, where 21 recommendations are not reflected in the commit his-
tory. In addition, there are 23 dependencies that our decision process can not determine
their usage. In those cases, we need additional steps with developers.

6.4 Discussion

The recommendations of the decision process are consistent with the history and are
cautious not to remove false positives. The results show different fingerprints of three
open-source projects that can help us check if the recommendations of the decision process
are consistent with the history.

For the recommendation of used dependencies by the decision process, 28 of 30 rec-
ommendations are correct since R1, R2 indicate that those dependencies are still used or
maintained. Specifically, if a dependency is replaced by another dependency or removed
along with some source code, it means that the removed dependency is still used before
they are removed. Hence, the recommendation of not removing them is correct. On the
other hand, 2 of 30 recommendations contradict the developers’ reasons for removing de-
pendencies. However, when the detail of the commit history is investigated, it is found
that these dependencies are removed either because they are duplicated[2] or because they
become provided[6], meaning that they are still used before they are removed. Thus, the
suggestion of the decision process matches all of the commit histories in this category. For
the recommendation of unused dependencies by the decision process, all of them match
the history of 2 commits in the Jenkins project that only remove unused dependencies.

For the recommendation that needs additional steps with developers by the decision
process, 11 out of 16 dependencies are used according to the ground truth of commit his-
tory. However, these 11 dependencies are unreachable from the entry classes, which means
there are some missing method calls to these 11 dependencies in the call graph. In this
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Table 6.1: Evaluation of the decision process by checking the reasons of removing dependencies in the open-source projects.

Project
Name

Reasons for Removing Dependencies

Dependency Usage Immediately
Before Being Removed (GT)

Recommendations by the Decision Process Recommendations by DepClean

Used
(46)

Unused
(9)

Used
(37)

Unused
(2)

Need additional steps
with developers (16) Used

(29)
Unused
(26)

T1||T2 T3||T4

Jenkins
core
(24)

Replace dependency(R1) 4 0 3 0 0 1 3 1∗

Remove code and dependency(R2) 12 0 12 0 0 0 12 0
Only remove dependency(R3) 0 8 2∗ 2 2 2 2∗ 6

Zipkin
server
(23)

Replace dependency(R1) 2 0 2 0 0 0 1 1∗

Remove code and dependency(R2) 20 0 14 0 2 4 7 13∗

Only remove dependency(R3) 0 1 0 0 0 1 0 1

Onedev
server
(8)

Replace dependency(R1) 1 0 1 0 0 0 1 0
Remove code and dependency(R2) 7 0 3 0 2 2 3 4∗

Only remove dependency(R3) 0 0 0 0 0 0 0 0
∗The recommendations contradict to the commit history (GT).
GT : ground truth, T1||T2: Artifact type1 or type2, T3||T4: Artifact type3 or type4



6.5. Threats to validity

circumstance, DepClean flags these 11 dependencies as unused. In contrast, our decision
process does not falsely classify them as unused because artifact types in previous releases
are also considered. Since the decision framework does not find evidence to support whether
the dependency is used or unused, the decision process is cautious and recommends taking
additional steps with developers.

Likewise, when DepClean is used to decide the usage of these dependencies, the analy-
sis result shows that 26 dependencies in all three projects are considered unused; however,
nineteen of these recommendations contradict the ground truth inferred from the commit
history. In contrast, since our decision process considers the history changes of method
calls and artifact types, some of these 19 dependencies are recommended as used by the
decision process while others need additional steps with developers. In this manner, even
though the call graph can not capture some dynamic features in the Java language, the de-
cision process does not wrongly suggest developers remove false positives. This feature is
crucial for the production environment.

6.5 Threats to validity

6.5.1 External

Although the history of open source projects is applied to confirm the recommendation of
the decision framework, the system and functionality test can not be executed in the open-
source projects as being done in the project at ING. In addition, only a few open-source
projects regularly remove the unnecessary dependencies like Jenkins. For most of the stud-
ied open-source projects, developers remove dependencies usually when the dependency is
replaced or the software updates. This fact presents a difficulty for us to gain more data to
support our decision process.
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Chapter 7

Conclusions and future work

In this work, a decision framework to reduce false positives of unused dependency detection
is proposed. The decision framework extends the state-of-the-art dependency analysis tool
DepClean and analyzes one industrial Maven project at ING along with three open-source
projects.

For the project at ING, it is found that the augmented call graph helps reduce 12 false
positives out of 71 unused dependencies detected. Also, the decision process based on
the classification of the relationship between dependencies helps reduce 13 false positives.
Hence, a decision framework of these two approaches filters out one-third of false positives
of unused dependencies. The decision process further categorizes the remaining two-third
unused dependencies according to their release history, which allows developers to decide
which dependency could be removed with ease or not.

Furthermore, the recommendations of the decision process are verified to be consistent
with the reasons for removing dependencies in three selected open-source projects. Even
though the dynamic feature of Java hampers the accuracy of the dependency analysis tool
and creates false positives, the decision process relies on the changes in the relationship
between dependencies and successfully points out 11 dependencies that could have become
false positives.

In future work, our decision framework can be extended in different ways: improve the
precision of OPAL when building a call graph for large software projects; analyze hierar-
chical multi-module Maven projects and see how the decision process needs to be adjusted;
expand our methodology with other call graph tools to enhance the soundness to a great
extent. Furthermore, it would be interesting to expand the study to understand how the
visualization tool helps developers understand why dependencies are classified as unused.
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Appendix A

Glossary

In this appendix an overview of frequently used terms and abbreviations are given.

artifact type: The classification of artifacts according to their relationships (method calls)
with other artifacts.

augmented call graph (CG): The combination of Depclean’s call graph and OPAL’s crit-
ical edges.

call graph: The call graph represents the calling relationships between methods, classes or
artifacts.

critical edge: After building a call graph using OPAL at the method level, edges with target
methods that have unique implementations are called critical edges.

decision framework: The decision framework is composed of three parts as shown in
Fig 4.1.

decision process: The decision process is the last stage of the decision framework.

DepClean: DepClean is a state-of-the-art dependency analysis tool.

dependency analysis: The dependency analysis is a process of finding the usage of de-
clared dependencies.

dependency tree: The dependency tree describes how dependencies are declared.

dynamic dependency analysis: The dynamic dependency analysis collects runtime infor-
mation and infers the usage of declared dependencies.

dynamic feature: The features that allow the program to change at runtime.

dynamic proxy: The dynamic proxy is one of dynamic features. It allows developers to
extend or modify existing functionalities and choose to invoke any of them at runtime.

enterprise user management application: Enterprise user management application is an
enterprise web application.
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A. GLOSSARY

entry class: The entry class is a starting point of a call graph when collecting all the possi-
ble routes.

flagged dependency: The flagged dependency is the output of the first stage in Fig 4.1.

Maven: Maven is a software package management tool. This work only chooses projects
that are managed by Maven.

method call type: Method call type is the classification of method calls between artifacts.

Neo4j Bloom: Neo4j Bloom is a free visualization tool for Neo4j graph database.

OPAL: OPAL is a static analysis platform for Java bytecode analysis such as call graph.

POM file: A Project Object Model or POM file is where developers declare the usage of
dependencies with MAven.

precision: Precision is to evaluate what is the percentage of method calls in a call graph
that are actually invoked at run time.

soundness: Soundness is defined to evaluate what is the percentage of method calls in-
voked at run time can be found in the call graph.

static dependency analysis: The static dependency analysis analyzes bytecode offline and
explore the usage of declared dependencies.
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