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Summary

This thesis describes the development of a computer support tool that supports the
initial, conceptual design process. In this first design phase one or more concepts are
defined which are assumed to be able to comply with the design specifications.
These concepts can be elaborated in more detail with the aid of the conventional
CAD tools that have been developed in the last decades and are currently widely
available. Due to the non-deterministic character of conceptual design, however,
such conventional computer techniques are inadequate to support this phase.
Therefore the use of Artificial Intelligence techniques has been investigated in this
project. 

The initial application was chosen in the area of aircraft design, because of its
complexity. The tool and methodology are, however, also applicable to support the
design of ships, buildings and industrial appliances.

The developed design tool and methodology is based on the well-known "design
cycle", which in our version consists of four steps: 
1. Suggesting a concept: this task is supported with Case-Based Reasoning (CBR)

techniques. From a case-base that is filled with data of existing artefacts, one
artefact is selected whose performances best match the design specifications. This
case is used as a starting point and delivers the configuration or topology of the
design, and the initial parameter settings. Possibly two or more cases can be
combined, resulting in an adapted case.

2. Simulating the artefact’s performances: this task is supported with Rule-Based
Reasoning (RBR) and Geometric Modelling (GM) techniques. With the rules
representing the domain knowledge in an explicit, algebraic format, a network of
rules and relations is built that relates the sizing parameters with performance
parameters. GM is used to build a geometric model and to handle the geometric
constraints.

3. Evaluating these performances: using the RBR network of relations and the GM
constraints, the related solvers allow quickly and easy changing of parameter
values to modify the design.

4. Proposing modifications: the design tool does not support this task explicitly.
However, as is mentioned in step 1, a first modification of the case’s topology
(adaptation) is supported with CBR. Then the cycle is repeated until the design
concept is satisfactory and can be used as input for further elaboration and
evaluation with existing CAD/CAE tools.

Each of these three techniques, CBR, RBR and GM, has been implemented in a
separate module. Existing programs have been used and adapted for this study. 

To test the set-up and viability of the design tool, a case-study has been
performed, concerning the conceptual design of an 80 passenger commercial



vi

aircraft. The study has proven that the design approach is useful for "configuration
design" type of design tasks, but is less suitable for innovative and creative design.

Although each technique has shown to be suitable for its task, there are also some
difficulties. For example, each technique requires substantial effort in the pre-
processing phase, when filling the data or knowledge bases. And experience is
needed to operate the CBR and RBR modules properly. Many apparently minor
practical issues can have a serious effect on the efficiency of the techniques. 

Issues which need much attention in following development studies are case
adaptation and integration of the three applied techniques. 
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Samenvatting

Dit proefschrift beschrijft de ontwikkeling van een computer gereedschap dat het
initiële, conceptuele ontwerp proces ondersteunt. Het doel van de eerste ontwerpfase
is om één of meerdere concepten te definiëren waarvan verondersteld wordt dat ze
voldoen aan de ontwerp specificaties. Deze concepten kunnen uitgewerkt worden
m.b.v. conventionele CAD ("Computer Aided Design") gereedschappen die in de
laatste decenia zijn ontwikkeld en algemeen beschikbaar zijn. Vanwege het niet-
deterministische karakter van conceptueel ontwerpen zijn dergelijke conventionele
computer technieken echter niet geschikt om hierin ondersteuning te bieden. Daarom
is in dit project het gebruik van Kunstmatige Intelligente technieken onderzocht.

Als eerste toepassings gebied is gekozen voor het vliegtuig ontwerp, vanwege de
complexiteit. Het gereedschap en de methodiek zijn echter ook toepasbaar om het
ontwerp te ondersteunen van schepen, gebouwen en industriële installaties.

Het ontwikkelde ontwerp gereedschap en methodiek is gebaseerd op de bekende
"ontwerp cyclus", die in onze versie bestaat uit vier stappen:
1. Het voorstellen van een concept: deze taak wordt ondersteund met zgn. "Case-

Based Reasoning" (CBR) (voorbeeld gebaseerde redenatie) technieken. Uit een
"case base" (data bank), die is gevuld met data van bestaande voorwerpen, wordt
één voorwerp geselecteerd waarvan de prestaties het meest overeenkomen met de
ontwerp specificaties. Dit voorbeeld wordt gebruikt als startpunt en levert de
configuratie of topologie van het ontwerp, samen met de initiële parameter
instellingen. Het is mogelijk om twee of meerdere voorbeelden te combineren,
wat leidt tot een geadapteerd voorbeeld.

2. Het simuleren van de prestaties van het voorwerp: deze taak wordt ondersteund
met "Rule-Based Reasoning" (RBR) (regel gebaseerde redenatie) en Geometrische
Modellering (GM) technieken. De regels in RBR representeren de domein kennis
in een expliciet, algebraïsch formaat. Er wordt een netwerk van deze regels
gebouwd dat de schaal parameters in relatie brengt met de prestatie parameters.
GM wordt gebruikt om een geometrisch model te maken en om met de
geometrische relaties om te kunnen gaan.

3. Het evalueren van deze prestaties: de "solvers" (oplos algoritmen) van de RBR en
de GM technieken maken het mogelijk om snel en makkelijk de parameter
waarden te veranderen via het RBR netwerk van relaties en de GM relaties.

4. Het voorstellen van modificaties: het ontwerp gereedschap ondersteunt deze taak
niet expliciet. Maar, zoals gezegd bij stap 1, een eerste modificatie van de
topologie van het voorbeeld (de adaptatie) wordt wel ondersteund met CBR.
Daarna wordt de cyclus herhaald totdat het concept ontwerp naar bevrediging is
ontwikkeld en gebruikt kan worden als invoer voor verdere uitwerking en
evaluatie met bestaande CAD/CAE gereedschappen.
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Ieder van deze drie technieken, CBR, RBR en GM, is geïmplementeerd in een aparte
module. Bestaande programma’s zijn gebruikt en aangepast voor deze studie.

Om de opzet en doelmatigheid van het ontwerp gereedschap te testen, is een
voorbeeld studie uitgevoerd op het conceptuele ontwerp van een commercieel
passagiers vliegtuig voor 80 personen. De studie heeft uitgewezen dat de ontwerp
benadering bruikbaar is voor het ontwerpen met geparametriseerde componenten,
het zgn. "configuratie-ontwerp" type ontwerpen, maar minder bruikbaar voor het
"innovatieve" en "creatieve" type ontwerpen.

Hoewel is gebleken dat iedere techniek geschikt is voor haar taak, zijn er ook
beperkingen. Zo vereist iedere techniek een behoorlijke inspanning in de
voorbereidende fase, bij het vullen van de data of kennis banken. En er is ervaring
nodig om de CBR en RBR modules goed te kunnen bedienen.

Vervolg studies dienen zich vooral te richten op de adaptatie van het voorbeeld en
de integratie van de drie toegepaste technieken. 



Preface

This thesis is the result of the AIDA (Artificial Intelligence supported conceptual
Design of Aircraft) project. The aim of this project was to develop and implement a
design tool for the conceptual design phase. Existing CAD/CAE (Computer-Aided
Design and Computer-Aided Engineering) tools, such as ADAS (Aircraft Design and
Analysis System), are more tailored to optimizing existing design configurations and
do not provide support for the initial design phase when new or modified design
concepts have to be proposed. The objective of the AIDA project was to investigate
whether AI techniques could play a role in this phase, and to demonstrate this by
actually performing a design case with the aid of AI techniques.

This research started off at the end of 1994 at Delft University of Technology (DUT)
as a so-called "Beek" project, sponsored by the university to stimulate innovative
multi-disciplinary research. The project resulted in a close cooperation of three
sections: the Aircraft Design section of the Faculty of Aerospace Engineering, the
Knowledge Based Systems section of the Faculty of Computer Science and the
Computer Graphics & CAD/CAM section of the same faculty. The project ended in
2000 at which time I found a job in the industry. Due to these circumstances it took
another 4 years to finish the thesis.
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1 Introduction

This thesis describes the set-up of a computer support tool for the conceptual design
of aircraft using Artificial Intelligence (AI) techniques. This subject implies the
involvement of several topics: the conceptual design process, the design process of
aircraft and the supporting role of AI techniques. Based on these topics this chapter
gives an introduction to the project called AIDA: Artificial Intelligence supported
Design of Aircraft. At the end of the chapter the objectives of AIDA are outlined and
an overview of the thesis is given.

1.1 Aircraft design

Aircraft design is a complex problem, comparable with the design of other complex
objects and systems like buildings, industrial appliances, and ships. The
requirements list for an aircraft design may contain a large number of issues, from
functional requirements such as the aircraft's size, capacity, payload-range
combinations, to technical requirements such as flight control, aerodynamics,
stability of its structures, production, costs, environmental impact, etc.. After
analysing these requirements, the designer may come up with an initial conceptual
solution. In case of aircraft, this first concept will describe the configuration of the
aircraft in global terms, i.e. its general arrangement and its size in terms of weight,
thrust or power, wing span and area, etc. At this point it is difficult to assess the
proposed solution. Existing numerical and analytical tools for aircraft design, such as
ACSYNT [Mason, 1993], AAA [Roskam, 1989], RDS [Raymer, 1996] and ADAS [Bil,
1988] [Bil, 1989], require much more detail than is available in the conceptual
design phase. However, it is very expensive and time-consuming to elaborate the
initial design into a fully elaborated product, only to learn that the proposed solution
in the end does not satisfy the functional requirements.

Another drawback of existing CAD tools is that they do not support the suggestion
of initial configurations. Therefore the designer has to rely on his experience, and on
examples of existing aircraft. Further some simplified physics, statistical data and
empirical rules may be available. The designer may have deduced some 'rules-of-
thumb' from these physics and experiences, which results in lists of advantages and
disadvantages coupled to each configuration choice. These lists are dominated by
qualitative arguments which makes it difficult to draw conclusions. 

Against these issues, which make the conceptual design of aircraft complicated,
stands the convenient feature that most complex objects are composed of a set of
basic components. In case of aircraft: the fuselage, the wing, the tailsurfaces, the
1



1. Introduction
undercarriage and the powerplant. Because conceptual design only deals with
approximate sizes, such a decomposition of the aircraft greatly enhances the
overview of the design possibilities. For conventional aircraft the solution space is
then reduced to a limited number of configuration alternatives: high-, mid- or low-
wing; T-tail, cross-tail or conventional tail; turbofan, turboprop or piston engines;
wing- or fuselage-mounted engines; etc. However, the number of possible
configuration combinations is still too large to be fully elaborated.

In this thesis a new design methodology for conceptual design is examined, using
several AI techniques. Together these techniques support the total design cycle of
proposing and evaluating solutions. 

Before introducing these AI techniques some more words are spent on the
characteristics of designing.

1.2 Design

Design is an activity that generates a 'materialised' solution for a 'functional'
problem, i.e. it proposes a system or 'structure' that shows some 'behaviour' that
satisfies the 'functional' demands. However, there is no direct reasoning possible
from functions to behaviour and structure, i.e. a logical, straightforward deduction of
the structure from the function is not possible. It is even feasible that more than one
structure is capable of realising the demanded functions, or none at all. Hence,
designing is a non-deterministic process.

Designing has more challenging features. Typically, it is often an 'ill-defined'
process, meaning that the functional requirements may change during the process,
for example when they appear to be too conflicting. Also time and resources may be
limited, and we may have to decide in a situation of uncertainty. Another challenge is
to define the optimality criteria based on the diversity of design specifications, in
order to generate an optimal design or select the best feasible design. 

Because straightforward reasoning is not feasible, a 'generate-and-test' strategy is
often applied. This strategy leads to a number of iterations through the design cycle
which is visualized in Figure 1.1. 
2



1.2. Design
Five tasks are distinguished. The design procedure begins with the suggestion of
an artefact, i.e. the materialised solution, supposing that the specifications have been
defined. The designer usually has to rely on his or others experience and insight for
this task, since proper methods are lacking. 

Then the performances or function of the suggested artefact are predicted. The
designer already has an idea about the performances and other properties when
suggesting the artefact, but only when the artefact has been defined, its
characteristics can be properly predicted. In general good prediction methods are
only available for more detailed artefacts. The term predicted is used instead of
analysed to emphasize the limitations about the validity and accuracy of the methods
due to simplifications.1

Next the predicted performances are evaluated. With the accuracy of the
predictions in mind, the predicted performances and other properties are compared
with the required ones. The designer judges the shortcomings and marks the
properties which need further attention. 

Based on the criticism modifications are proposed. The purpose of the
modifications is to improve the artefact so that it will better meet the requested
performances and other properties. Another possibility is that the initial requirements
are modified when they are regarded to be too restrictive.

When the artefact is evaluated to be good enough, the designer suggest
refinements. This means that the artefact will be described more completely by
adding details, for example by focusing on a component of the artefact. This also
involves the refinement of the requirements about the performances and other
properties, which are based on the design decisions which have been made
previously.

1. In case of aircraft design the analysis phase starts not until the hardware is available (flight tests,
structural tests, etc.). 

Figure 1.1. The basic tasks in the design cycle.

predict
performance

evaluate
performance

propose
modifications

suggest
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artefactcriticism

perform.

suggest
refinement
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1. Introduction
An often applied strategy to avoid exhaustive generate-and-test search is the 'divide-
and-conquer' method. The problem is decomposed into several sub-problems that are
easier to solve and the different sub-solutions are then combined into one integrated
solution. An example of such a decomposition strategy is the 'function-means'
method. Requirements are recursively decomposed until a solution can be provided
and the part-solutions are then successively combined. This decomposition strategy
does not solve the design problem itself but transposes it to the 'integration' activity;
the initial decomposition and analysis may provide some useful clues for the
integration phase, however. The decomposition-integration cycle can be repeated for
different levels of detail, or different functional decompositions.

The integration step can be avoided when an existing solution is taken as a
starting point. The chosen solution, which partly satisfies the new functional
requirements, is then refined via a 'reuse-and-adapt' or 'diagnosis-and-repair' cycle.
The solution is analysed and modifications are proposed that relieve some of its
weaknesses. 

This approach is better suited for so-called 'routine design' problems than for
'creative' designs where new principles are applied in a new context. Most designs
fall in between routine design and creative design: a new design is often a new
composition of existing components. According to [Mittal, 1989] this type of design
can be classified as 'configuration design'. Typically large-scale design problems
such as design of aircraft, buildings, ships and industrial appliances can be
characterized as configuration design: certain aspects of a new design may be
'innovative' but in most cases there will be quite some similarity with earlier designs. 

Although the reuse of existing components greatly benefits the design process, the
number of possible combinations is still far too large to be fully elaborated. Hence a
good initial choice is very important.

In the next section we will review to what extent AI techniques can be used to
cope with these issues.

1.3 AI and design

Within the area of designing, Artificial Intelligence (AI) is concerned with the
application of knowledge. Within AI, three main directions of reasoning can be
distinguished: reasoning by logic, reasoning by learning, and reasoning by analogy.
Expert systems apply rule-based reasoning (RBR) technique, a form of reasoning by
logic. An expert system is useful when the domain knowledge can be formalised into
simple rules, such as mathematical problems, and when common sense does not play
an important role. Unfortunately, design can not be formalized this way. Reasoning
by learning can be implemented with Artificial Neural Networks (ANN). An ANN
consists of a network of nodes (processing elements) connected via adjustable
weights (connections). By training the network with a large set of input-output pairs,
the system learns the functional relation between the input and the output space. This
4



1.3. AI and design
type of generalized learning can not be applied to the design problem when the
solution space is sparse and discontinuous. The third form of reasoning, reasoning by
analogy, is best exemplified by Case-Based Reasoning (CBR). Cases are stored in a
case-base to create a reservoir of problem-solution combinations. When a new
problem is presented, CBR searches for cases with similar problem descriptions.
Although the retrieved case usually does not completely fit the new problem, the
retrieved solution may be a good starting point for further adaptation and
optimization. The difference with the other AI methodologies is that CBR does not
use generalized domain knowledge but knowledge which is locally valid: the
implicit knowledge within a case which relates a problem with a solution only holds
for that particular case. See Figure 1.2. 

Considering the characteristics of conceptual design, reasoning by analogy seems
to be a helpful method to assist the suggestion of a concept. Because CBR applies
implicit knowledge, this paradigm offers interesting possibilities to overcome the
lack of (quantitative) knowledge at this design phase. CBR in design, however,
differs from other CBR applications where the number of cases is generally quite
large but each individual case is relatively simple. In design the examples are few but
often complex and may cover a large diversity of the functions. Hence, to be able to
use CBR properly, the information about the design cases will have to be encoded in
a flexible way.

A useful representation scheme for design cases is with the triad Function-
Behaviour-Structure [Gero, 1992]. Structure represents the materialized version of
the design: the geometry, the components and the assembly. Function represents the
performances of the functional aspects of the model. Behaviour describes more
explicitly how the structure is able to accomplish the functions; i.e. the mechanism
by which the (functional) problem is solved. The behaviour component is very much
dependent on the structure. Given two different design configurations, there may be
a completely different set of behaviour data to evaluate each of them.

problem
space

solution
space

input
problem

Figure 1.2. Principles of problem-solving with Case-Based Reasoning (from 
[Leake, 1996]).
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1. Introduction
In addition to functional requirements, the list of specifications may also contain
requirements of the behaviour and structure of the design. Some functionality may
therefore be an indirect result of behaviour and structural choices in the list of
requirements, and not directly described by the list of requirements.

For a proper evaluation of the structure via the behaviour and the function
components, explicit knowledge can be applied. Since its logical character, the RBR
technique seems suitable for the implementation of this knowledge. Compared with
the conventional techniques implemented in existing computer support tools, this
technique may improve flexible use of domain knowledge. By logical reasoning, the
input and output of the calculation methods can easily be matched in order to
determine a proper evaluation sequence. 

Also the transparency of the applied knowledge will be improved. Instead of
performing complicated calculations within a module, RBR can be used to split up
these calculations into basic functions and connect them on-line by logical
reasoning. 

Strongly associated with the evaluation functions are constraints and relations
imposed on the (standard) components of the structure. These constraints keep the
structure functionally consistent, encode some form of parametrization of the
structure, and/or be part of the interface specification between components. These
constraints are not directly used to evaluate the design but to model the design and
put some intelligence into the configuration and adaptation process. 

1.4 The AIDA concept

Within the AIDA project several AI techniques are examined to support the
conceptual design of such complex objects as aircraft. It is supposed that these
techniques can cope with the non-deterministic character of the design task, where
conventional computer techniques are not suitable. 

A system set-up is presented consisting of three main modules: 
• a Case-Based Reasoning (CBR) module:

to propose an aircraft concept;
• a Functional module:

which implements Rule-Based Reasoning (RBR) techniques for the functional
evaluation of the aircraft concept; with the RBR techniques relations can be
created between the structure, behaviour and functional components in a flexible
and transparent manner;

• a Geometrical module:
to implement geometrical constraints within and between the aircraft components.
6



1.5. Overview of the thesis
For each module existing tools have been used, operating on different platforms.
This will obstruct the communication between the modules, but that is taken for
granted because the emphasis of this study is on the exploration of these distinct
techniques. The advantages and draw-backs are described, the practical implications,
etc. Hardly any attention is given to the integrated implementation of the separate
techniques.

1.5 Overview of the thesis

For a better understanding of the problem a typical aircraft conceptual design
process is described first. Chapter 2 gives a description of the process and what is
understood by an aircraft concept. Further some typical design issues are mentioned.
Also current computer support tools are examined which have been developed for
aircraft design. This leads to some deliverables and directions for the AIDA project.

Chapter 3 deliberates on the means of suitable design support techniques. The
Case-Based Reasoning method is examined and its typical issues are reviewed when
applied in design problems. An important issue is a flexible case representation. Also
the use of basic aircraft components and their configuration and geometric
constraints is described. The Rule-Based Reasoning technique is studied to support
the evaluation task in the design process, i.e. the use of functional constraints.

The next chapter describes how these techniques are applied for this particular
goal: to support the aircraft conceptual design process. A system set-up is presented
consisting of three main modules: a CBR-module to propose an aircraft concept, a
Functional module which implements RBR-techniques for the functional evaluation
of the aircraft concept, and a Geometrical module for the geometrical evaluation. For
each module existing tools have been used.

In Chapter 5 a case study is carried out to reveal the typical aspects of the various
techniques. Based on a set of specifications a case is selected from the case-base,
which is adapted by combining parts of another case. Sensitivity studies of some
primary design parameters are performed by the Functional module. The resulting
aircraft concept is modelled in the Geometrical module.

The advantages and disadvantages of the different techniques which have been
explored in this case study are collected and discussed in the last chapter. 
7
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2 The conceptual design of aircraft

2.1 Introduction

The aircraft design process is a long and complicated process. Due to the complexity
of the systems and the high demands on the aircraft, a large number of highly
qualified people is involved. Usually it will take 5 to 10 years to develop an aircraft
from scratch to the first production. 

Within the aircraft design process several phases can be distinguished [Torenbeek,
1982]. The phases are shown in Figure 2.1. 

The design of an aircraft is initiated by the marketing and/or the research and
development departments. The marketing department continuously studies the
airliner business. They try to reveal the market trends in order to predict the airliner
needs for the next 20 years. The research and development people are trying to
increase the qualities of the design methods, materials, production and maintenance
techniques, software tools, etc., which can be used to design better aircraft at lower
costs and in less time. 

The marketing department draws up the design specifications which are used for
the conceptual design, i.e. the first phase of the design process. In this phase one or
more feasible aircraft concepts are created by the department in charge, which
includes the overall architecture i.e. the configuration and the main dimensions. The
configuration describes the topology of the aircraft, for example the type of tail, the
type and number of engines and where they are located, etc.. The main dimensions
roughly describe the shapes and sizes of wing, tail and fuselage, and include some
other parameters such as the weight and the thrust or power. 

The level of detail in this design phase is low. The design problem of the complete
aircraft can usually be decomposed into design problems of the standard parts of an

Preliminary design2.

Concept. design1.

Research, development, marketing

Testing

Manufacturing

Detailed design

time

3.

4.

5.

Figure 2.1. The several phases in aircraft design (from [Torenbeek, 1982]).
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2. The conceptual design of aircraft
aircraft: the fuselage, wing, tail surfaces, engines and undercarriage. In the
conceptual design phase the interaction between the sub-problems is high, so the
sub-design problems are solved simultaneously.

In the preliminary design phase the decomposition of the design problem
continues. For example wing components such as the flaps and ailerons are
considered. The level of detail increases, but the interaction between the sub-
problems decreases; although modern techniques and methods such as system
engineering and concurrent engineering are employed to keep the interaction as
closely as possible. Subsequently more departments may be involved. This tendency
continues in the detailed design phase, when specialized departments work out the
preliminary design. 

The design process is finished when the aircraft is manufactured and the tests
have been successfully concluded.

2.2 The aircraft concept

The goal of the conceptual design phase is to generate one or more aircraft concepts
which will meet the design specifications. The specifications come from the
customers requirements and the airworthiness requirements. They are formulated
into quantitative constraints to allow precise and unambiguous evaluations.

Typical customers requirements are the number of passengers in combination with
the range, the cruising speed, the take-off and landing distances, etc.. The
airworthiness regulations define for example minimum aircraft performances with
one-engine inoperative, such as the minimum climbing gradient and stall
characteristics. Beside of these performances also requirements are specified about
the costs, maintenance, etc..

An aircraft concept includes the aircraft configuration and its primary dimensions.
The configuration describes how the aircraft components are located with respect to
each other, and how the components themselves are defined, i.e. the type of
components. For example a wing-mounted engine configuration differs from a
configuration with engines mounted on the fuselage; and the definition of a turbofan
powered aircraft is different from the definition of a turboprop powered aircraft,
involving other design parameters.

The primary dimensions specify for example the shape and size of the wing, the
tail and the fuselage. Other sizing and behaviour parameters are included, such as the
maximum take-off weight, the maximum take-off thrust or power and aerodynamic
coefficients. 

The procedure to derive an aircraft concept from the design specifications is not
formalised. Initially the design space is very large and explicit relations between the
input and output are sparse, especially between the performances and the
10



2.2. The aircraft concept
configuration. Therefore many arguments applied in this design phase have a
qualitative character. It takes an experienced designer to evaluate them properly, and
comparable aircraft are often studied. 

The explicit knowledge available is based on heuristics, simplified physics and
statistics, and has a limited accuracy. Examples of these numerical methods have
been collected in educational books such as [Raymer, 1992], [Roskam, 1987-1990]
and [Torenbeek, 1982], in the ESDU series [ESDU], and have been implemented in
design tools such as CAPDA [Haberland, 1984], ACSYNT [Mason, 1993], AAA
[Roskam, 1989] and RDS [Raymer, 1996]. 

In the design process some issues can be distinguished which usually show up
during most conceptual design phases:
• the size and shape of the fuselage;
• the design weights, such as the maximum take-off weight (MTOW);
• the lift curves and drag polars;
• the size and shape of the wing and its location with respect to the fuselage;
• the wing loading vs. thrust loading diagram;
• the size and shape of the tailplanes;
• the powerplant and its location;
• the load and balance diagram.

The size and shape of the fuselage

The lay-out of the cabin is based on the specified number of passengers, seat pitches,
aisle widths and passenger seating configuration. Also other items such as the cargo
compartments and aircraft systems have to fit inside the fuselage. Because current
commercial airplanes fly at high altitudes, a pressure cabin is required. From the
structural viewpoint the optimum shape of the fuselages cross section is therefore
circular. Hence circular cross sections are commonly applied, but also double-
bubbles or oval shapes. Suitable diameter length ratios of the nose and the tail of the
fuselage are based on the examination of comparable aircraft.

The lay-out of the cabin and the location of the aircraft systems determine the
location of the fuselage’s centre of gravity, and therefore affect the location of the
other aircraft components. This is expressed in the load-and-balance diagram; see
Figure 2.3.

The design weights

The Maximum Take-Off Weight (MTOW) is a leading parameter in the overall
design process. Therefore an initial estimation is performed as soon as possible in
the design process. This also holds for the Operational Empty Weight (OEW), which
is the aircraft weight without fuel and without payload, the Maximum Zero Fuel
Weight (MZFW), which is the maximum weight without fuel, and the fuel weight
with its volume which are important for the determination of the range. Several
11



2. The conceptual design of aircraft
methods are available: the more details are known, the more accurate the method.
Often comparable aircraft are examined to estimate realistic values. Other methods
involve weight estimations of the aircraft components, often expressed by non-
dimensional weight ratios.

The lift curves and drag polars

The lift-curve shows how the lift coefficient cL depends on the angle-of-attack α and
which maximum cL-value the (clean) wing can reach. This is an indication of how
the aerodynamic behaviour changes with the angle-of-attack of the aircraft and what
kind of high-lift devices are required to be able to reach a requested cL-value during
take-off and landing. The lift curve is considerably influenced by the shape of the
airfoil(s) and the high-lift devices such as the flaps and slats.

The drag-polar represents the relation between the lift and the drag (coefficients)
of the aircraft. It defines the aerodynamic fineness ratio L/D (lift over drag), which is
important for example for the required thrust or power with respect to the aircraft
weight. The polar is usually expressed by the basic equation:

(Eq. 2.1)

There are simple methods to estimate the involved parameters. For example the
determination of the Oswald factor e, which expresses the aerodynamic efficiency of
the wing, can be based on statistics. The aspect ratio A is often subject of sensitivity
studies, but initial values can be based on the examination of comparable aircraft.
Several methods are available to estimate the zero-lift drag coefficient cD0. Again
statistics can be used, or the problem can be translated into the estimation of the
contributions of the aircraft components, which depend on the external shape of the
aircraft. However more thorough methods are preferred for their better accuracy and
sensitivity to variations in the geometry. 

The size and shape of the wing and its location

The main function of the wing is to carry the aircraft; i.e. to generate enough lift to
get and keep the aircraft off the ground. The shape of the wing influences the drag-
polar, i.e. the lift-drag ratio, whereas the size determines their absolute values. Also
the structural weight and the volume of the fuel tanks, usually buried in the wing, are
important factors.

Some wing parameters are explicitly involved in numerical methods, such as the
wing area S and the aspect ratio A (see Equation 2.1). Therefore they can be
subjected to sensitivity studies to estimate proper values. The influence of other
parameters are harder to be quantified at this stage, such as the wing sweep Λ and the
wing thickness ratios t/c. At this design phase the estimation of their values is
usually based on some statistics and on the knowledge of the designer about their

cD cD0
cDi

+ cD0

cL
2

πAe
----------+= =
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2.2. The aircraft concept
affects; for transonic aircraft the sweep and thickness ratios of the wing for example
influences the normal and maximum cruise Mach number.

The (longitudinal) location of the wing with respect to the fuselage is governed by
stability and control requirements on the aircraft. The stability demands that for
conventional aircraft the aircraft’s centre of gravity (c.g.) is located in front of the
neutral point (n.p.) or aircraft aerodynamic centre (a.c.); the a.c. is the point where
the pitching moment is essentially constant at different angles of attack, i.e. a
suitable point to consider the resulting aerodynamic force variations to be acting
from. When the distance is too big, however, the forces necessary to control the
aircraft become too large. For this complicated issue the load-and-balance diagram is
used; see Figure 2.3.

The vertical location of the wing is greatly influenced by the powerplant location:
for wing-mounted engines the ground clearing may become critical, and fuselage-
mounted engines should not be located in the wake of the wing. Also the effects on
the structure of the fuselage and some aerodynamic characteristics are considered.
However, it is difficult to quantify these effects at the conceptual design phase.

The powerplant and its location

The engines must balance or out-balance the aircraft drag during the different flight-
phases such as the take-off, climb, cruise, descend and landing, with all engines
running and in one-engine-inoperative situations. The maximum thrust or power has
a large influence on the aircraft performances and costs. The required thrust or power
can be estimated with numerical methods concerning these performances. The most
simple methods require data about the shape and sizes of the aircraft and the
aerodynamic coefficients, i.e the primary dimensions. The results of these methods
can be presented together in thrust-loading-wing-loading diagrams; see Figure 2.2.

The number of engines affects the possible configuration of the aircraft and the
performances in one-engine inoperative conditions. These considerations and the
required thrust or power in combination with the availability of the engines generally
governs the number of engines to be applied.

The type of engine, for example turboprop or turbofan, determines which
parameters to study: the power or the thrust, respectively. Each type of engine has a
different thrust or power lapse characteristic and fuel consumption. It depends on the
type of flight missions, in particular the maximum flight speed, which type of engine
is preferred.

Because the weight contribution of the engines is large, their configuration
influences the location of the other components for a suitable location of the centre
of gravity; see Figure 2.3. Other arguments which direct the choice of the engine
configuration are primarily qualitative, such as accessibility of the engines
concerning the maintenance, influence on the wing configuration, general aircraft
handling characteristics, etc..
13



2. The conceptual design of aircraft
The wing loading vs. thrust loading diagram

The loading diagram displays the relations between the thrust loading T/W and the
wing loading W/S; an example is shown in Figure 2.2. 

The diagram is used to choose proper T/W-W/S combinations with respect to
performance requirements for which numerical relations between T/W and W/S are
available. The diagram allows different design specifications to be considered
simultaneously. For given MTOW the T/W- and W/S-values are applied to
determine proper values of the maximum take-off thrust (or power) and the wing
area S.

Each line in the diagram represents the T/W-W/S-relation for a specific
performance requirement. Together these lines form the boundary of the design
space with respect to suitable T/W-W/S-combinations. Other lines may be created
which indicate optimum combinations regarding other design parameters.

The numerical relations are based on empirical relations, statistical data and
(simplified) flight mechanics. They involve many parameters about the aircraft
configuration, fuselage, weight, drag-polar, wing and powerplant and other primary
dimensions. In some relations premature estimations are required about the weight
and the thrust or power. This creates a loop in the calculations: the weight is
determined by the wing- and thrust-loading, which again depend on the weight.
Initial weight estimations are needed to be able to start these calculations.
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Figure 2.2. A wing loading vs. thrust loading diagram.
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2.2. The aircraft concept
The size and shape of the tailplanes

The primary function of the tailplanes is to control the stability and the
manoeuvrability of the aircraft. The horizontal tail delivers the aerodynamic forces
required for the longitudinal stability and control of the aircraft. The function of the
vertical tail is to provide the lateral control and stability about the vertical axis. Since
the tailplane loads are directly related to their surface areas, their sizes are directed
by the distances of the tailplanes to the aircraft’s c.g.. 

The type of tail, i.e. the location of the horizontal tailplane with respect to the
vertical plane, gets more attention. Its location is strongly influenced by the wing
wake, the propeller slipstream or the jet efflux. To stay effective the tailplane should
remain outside these areas. These arguments are based on geometrical
considerations.

The load and balance diagram

The load and balance diagram presents the location of the aircraft’s centre of gravity
(c.g.) for different loading conditions. This location is usually expressed relative to
the Mean Aerodynamic Chord (MAC). The MAC is a characteristic chordlength
used to represent the overall wing pitching moment. 

The loading conditions change due to shifting distributions of the payload and the
fuel. The c.g. should remain between boundaries for a stable and controllable
aircraft. Figure 2.3 shows a typical load and balance diagram.
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Figure 2.3. A load and balance diagram.
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2. The conceptual design of aircraft
The c.g.-lines show the c.g.-shift due to different numbers of passengers, filling
the cargo compartments (forward and rear) and different fuel volumes in several fuel
tanks. The horizontal lines show the design weights: Maximum Take-Off Weight
(MTOW), Maximum Zero-Fuel Weight (MZFW) and Operational Empty Weight
(OEW). The forward and rear limits are determined by the stability and control
considerations, such as longitudinal static and dynamic stability, trim and elevator
control forces.

To be able to generate such a diagram, a thorough examination of the different
components should be performed. Especially the arrangement of the fuselage is
important, with the cabin lay-out and the distribution of many aircraft systems.

2.3 Analysis of the conceptual design phase

2.3.1 The design process

As has been mentioned before, a fixed design path for the design of aircraft does not
exist. Some issues have been distinguished, though, which play a role in almost
every conceptual design process of aircraft. These issues are analysed for a better
understanding of the design activities involved in the process. For that purpose the
design cycle as explained in Section 1.1 is used. Emphasize is laid upon the tasks
mentioned in Figure 1.1: suggesting, predicting, evaluating, suggesting
modifications and adding details.

The load-and-balance and the wing-loading-thrust-loading diagrams, Figure 2.3 and
Figure 2.2, are both evaluation tools in the conceptual design phase. The wing
loading vs. thrust loading diagram presents the results of several (numerical)
prediction methods. With these methods some of the specified (quantitative)
performance parameters are related with some design parameters, i.e. the primary
dimensions. Each line in the diagram expresses the interaction between several
primary dimensions for a particular specification. Based on the diagram a suitable
combination of W/S and T/W is suggested, together with proper values for cLmax, A
and some other primary parameters. 

The suggested values for other primary parameters, such as the wing sweep Λ and
thickness ratio t/c, have hardly any influence on the diagram. Hence the diagram can
not be applied to evaluate these parameters. Proper evaluations are only later
possible, using prediction methods which require more details. This also holds for
most of the configuration suggestions, which hardly affect the diagram. 

For the parameters for which quantitative prediction methods are missing or not
usable, the designer tries to come to qualitative predictions. He uses his and others
experience, statistics and rules of thumb, and studies comparable aircraft in trying to
16



2.3. Analysis of the conceptual design phase
predict the consequences of suggested values. The evaluation of these suggestions is
difficult due to the inaccuracies of the predictions and their limited validity.

The load and balance diagram shows the effects of the weight prediction of the
components and their suggested locations. The prediction of the weights is based on
heuristic relations and statistics, combined with the experience of the designer. For
proper predictions a certain level of detail of the involved components is needed.
Especially the wing has to be defined, since its MAC is needed for the diagram. With
regard to the locations the fuselage lay-out is of particular importance, including all
its aircraft systems. To be able to suggest the locations a geometrical model of the
components is very convenient. For example the size of the horizontal tail
determines the c.g. limits to a large extent.

The suggestion of the outer shape and size of the fuselage seems to be a merely
isolated problem at this design phase. However, the lay-out of the cabin and the
aircraft systems inside the fuselage has a large impact on the load-and-balance
diagram, and therefore on the locations of for example the wing and the engines. The
evaluation of the suggested lay-out inside the fuselage is thus possible by generating
that diagram.

The drag polar relation, Equation 2.1, is applied in a number of numerical prediction
methods necessary for the wing-loading-thrust-loading diagram. In this perspective
it is part of the prediction methods. 

A proper value for cD0 can directly be suggested by the designer, based on his
experience or statistical tables which have been collected in for example [Torenbeek,
1982]. The designer can also apply relations which estimate the contributions to cD0
of the aircraft components. These relations are part of the prediction methods too. 

The W/S- and T/W-values in combination with the suggested initial values of the
maximum weight or thrust, define the values for the wing area, the maximum weight
and thrust. Usually the maximum thrust will be adjusted to the available thrust of
existing engines, and the weight and wing area are revised accordingly. This is the
suggest modifications task in Figure 1.1. During the process when more details are
added, the prediction methods will become more accurate and reliable, so the weight
will continuously be modified. The modifications should be kept as small as
possible, though, to keep the suggestions about other parameters which are based on
the weight valid.

All suggested values serve as guidelines for the next design steps. That is, they are
added to the design specifications. They increase the level of detail of the designed
artefact. 
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2. The conceptual design of aircraft
For example a proper value of the maximum liftcoefficient at take-off is based on
the evaluation of the loading diagram. In next design steps the wing will be designed
for that value. 

2.3.2 The domain knowledge

The previous section described how the design tasks could be analysed; it dealt with
the roles of the domain knowledge, how the domain knowledge is applied. This
section concentrates on the domain knowledge itself. The focus is on typical aspects
of the conceptual design of commercial aircraft.

An important aspect is the distinction of standard aircraft components. Most
aircraft are composed of the same components to fulfil the same (primary) functions:
• the fuselage

to carry the payload and fuel, to accommodate the pilot and control systems, and
to form a platform for the other components;

• the wing
to create lift, carry fuel, and often to form a platform for the powerplant and the
undercarriage

• the powerplant
to generate thrust;

• the tailplane and control surfaces 
to provide the means for stability and control in all directions; 

• the undercarriage
to carry the aircraft during ground operations;

• the aircraft systems
to perform supporting tasks for fuel supply, control of the aircraft, comfort of the
passengers, etc..

Each standard component is described by a different set of parameters, due to the
different functions and different topologies. Per component different types can be
distinguished, which also requires different definitions. For example the definition of
a turboprop powerplant contains the propeller diameter, number of propeller blades
and the power, whereas the turbofan engine is described by the by-pass ratio and the
thrust. 

The number of component types are limited, considering regular, commercial
airplanes. Especially in the first design phase this aspect reduces the design space
considerably. 

Another aspect which reduces the design space is the limited number of lay-outs
of regular, commercial airplanes; i.e the standard components are arranged in a
limited number of configurations. For example the engines are either mounted on the
(aft) fuselage or on the wing; the wing is located on upperside of the fuselage, the
18



2.3. Analysis of the conceptual design phase
underside or in between; the horizontal control surfaces are mounted on the aft
fuselage, on top of the vertical tail or halfway on the vertical tail, etc..

Though this observation of a reduced design space should decrease the complexity
of the conceptual design process, the lack of appropriate design knowledge opposes
that. The knowledge required to choose proper configurations and component types
is very qualitative and often not explicitly available. In terms of Figure 1.1, suitable
predictions methods are missing to perform proper evaluations about suggested
configuration choices. 

The designer uses his experience and basic physical principles to predict possible
effects of his configuration choices. For example the effects of wing-mounted
engines on the wing design: in ground operations the engine weight increases the
downward load of the wing, but in flight the extra weight reduces the upward load
caused by the lift. Only by experience the designer can value both arguments and
conclude what effect the engine configuration might have on the construction weight
of the wing.

The designer also examines comparable aircraft to support the decision process.
An existing aircraft shows which performances are possible with a specific
configuration. By consulting comparable aircraft the designer uses the design
experience which is implicitly accessible in these designs. 

These qualitative evaluations are not only applied to choose a configuration,
which involve discrete parameters, but also for the initial estimation of continuous
parameters, such as the weight and thrust. Especially the comparable aircraft form a
good source for initial estimations.

The numerical methods used to create the loading diagram allow some quantitative
evaluations. The methods consist of several mathematical relations which are based
on simplified physics, empiricism and statistics. Due to the simplifications most
relations have a limited validity and accuracy. So for different design specifications
different relations are used. The designer should know the restraints well to be able
to apply the relations properly. 

Due to the interdependencies of the relations, they can not randomly be used. For
example the zero-lift drag coefficient has to be estimated before the required thrust
can be valued; see the objectives mentioned in Section 2.2. Hence the designer
should have an overview of the available relations, in order to apply them in the
appropriate order.

So, although the quantitative knowledge helps the designer in evaluating the
suggested concept, a lot of skill is still required to use that knowledge properly.
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2.4 Computer support tools in aircraft design

Because of the strong processing power of computers, many computer tools have
been developed which exploit this power in order to support the designer. Some tools
focus on the graphical modelling of the aircraft, replacing the traditional drawing
boards. Advantages are that drawings are easily modified, simply and accurately
reproduced, and that the drawing data can be stored and transported without
difficulty. It requires a well-organised computer infrastructure, however. These tools
help to define the design object, i.e. to model the aircraft geometry. The visualisation
of the aircraft is effective for understanding the design, that is for evaluating the
artefact in terms of Figure 1.1.

Other tools exploit the computer power to perform numerical calculations.
Generally the calculations are part of the prediction task of the design process. The
first tools were automatic calculators to perform analytical calculations. Then
numerical algorithms were developed to solve more complex problems. Because of
the limited power of the older computers much effort was put in the development of
time- and memory-efficient methods. These methods were intended to solve
numerical problems by approximation. Modern techniques have been developed
with analytical capabilities using symbolic methods. 

Current computer-aided design tools integrate both the modelling and the
numerical capabilities. For example Computational Fluid Dynamics (CFD) tools
perform numerical calculations on (parts of) the aircraft geometry. Also progress has
been made to integrate the prediction and evaluation tasks and to suggest
modifications as part of the optimisation cycle.

Further developments within computer-aided design tools aim to improve their
accuracy and reliability, and to relieve the designer from his/ her managing tasks.
The first aspect is based on the immense rise of computer power and on the
developments of more efficient numerical algorithms, which makes it possible to
decrease the number of mathematical and physical simplifications. The latter aspect
is focused on the flexibility of the tools, and merely deals with the control of the
numerical algorithms.

In this section computer tools are evaluated which are used in the first phases in
aircraft design. Only those tools are described which deal with the complete aircraft
and cover several disciplines, such as aerodynamics and structures. The many
sophisticated but highly specialised computer tools, focused on specific areas, are
ignored.
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2.4. Computer support tools in aircraft design
CDS: Configuration Development System [Raymer, 1982]

CDS is a conceptual design and analysis program developed by the Rockwell
company. The design part consists of so-called "designer’s media", containing a (for
that time) advanced geometric modeller to define the shape and size of the aircraft
components and their lay-out. Much attention is paid to the capability to create
smooth, complex shapes. By storing a set of modelling commands the user can
create standard parts with pre-defined design parameters such as wing area and
aspect ratio. Also non-geometrical parameters are connected to the components.

In the analysis mode CDS can calculate surface derivatives from the 3-
dimensional model. The analysis part acts as an intermediary for commercial, off-
line packages, but also contains some on-line analysis tools, such as a wave drag
module. Centres of gravity can be derived from the model, assuming uniform weight
distribution, or by component related routines. The on-line modules are only used for
simple calculations.

[Raymer, 1982] emphasizes the geometry related capabilities of CDS. The paper
shows the complex shapes which can be modelled. The re-use of (standard) parts
seems to be a convenient way to save modelling time, but this probably requires a
good knowledge of the definition parameters because of the complexity of the
geometry. Simple sizing routines help the designer with the sizing of the
components. For the non-geometrical analyses CDS primary relies on external codes,
facilitating the appropriate interfaces. The internal analysis routines seem to depend
strongly on the applied geometry definition. 

The current status of the system is not clear; from time to time software updates
become available.

Paper Airplane [Elias, 1983] [Elias, 1985]

In 1982 the experimental Paper Plane project was started at the Flight Transportation
Laboratory of the Massachusetts Institute of Technology (MIT). The aim of the
project was to reduce the inflexible, procedural character of existing computer tools.
This is caused by the specified set of input and output data of each calculation
module, which requires a specific order in which they can be applied. Elias [Elias,
1985] calls it a fixed computational path. 

The project concentrated on the use of simple heuristic relations, with the same
level of detail as those mentioned in [Torenbeek, 1982] and [Roskam, 1987-1990].
By selecting a set of relations and specifying some parameters, the system
determines the computational path. An important feature is the inverted use of the
relations. Paper Plane does not discriminate between input and output parameters:
when one of these parameters is unknown, Paper Plane can deduce it with the
relation using numerical techniques. Because of this feature the designer can
implement simple design functions without having to consider its possible use with
21



2. The conceptual design of aircraft
respect to input and output parameters. The papers do not mention any graphical
output or input of the Paper Airplane.

No progress has been reported since about 10 years.

CAPDA: Computer-Aided Preliminary Design of Aircraft [Haberland, 1984] [Xie, 
1999] & FLYING OBJECTS [SCHNEEGANS, 1998]

In [Haberland, 1984] the development of a design support tool for commercial
aircraft is described, carried out on the Technische Universität Berlin (Germany).
The emphasis of CAPDA is laid on the configurational development procedure,
especially focusing on parametric studies and optimisation. The iterative synthesis
uses input data from an extensive statistical data bank, and results in a computer
representation of geometry and performance. An optimisation module based on a
direct search strategy can be applied for the development of an optimised baseline
configuration. In the first design phase emphasis is laid upon parametric variation of
a large number of design variables rather than detailed analysis. Therefore the
mathematical model is relatively simple, although all important design elements are
included. 

The initial baseline is obtained either from a statistical processor or as a
’guesstimate’ by the designer. Then the configuration development is performed by
the design synthesis procedure, carrying out an iterative synthesis of several
disciplines until all design variables have converged and all constraints are met.
Later more detailed analysis procedures are carried out. The design synthesis is a
pre-defined procedure in analogy to the classical design approach (standard design
criteria). Some inequality constraints have been converted into adequate equations
using appropriate secondary conditions, to reduce the numerical computational
efforts to solve the problem. Simple iterative methods are applied. The design
procedure is performed manually.

The geometrical model in CAPDA is described by parametric, analytical functions
which describe the surface. This also reduces the data necessary to describe the
model in the statistical database. The statistical database is used to choose proper
initial values. It performs statistical evaluations such as variance, regression and
correlation analysis and multiple linear approximation methods to calculate
coefficients (’interactive statistics processor’).

Though the use of specified definition parameters simplifies the modelling of the
aircraft, it also limits CAPDA to the design of conventional aircraft configurations.
Some other issues which need attention according to [Haberland, 1984] are the
possibility to change the sequence of the design process, the graphical presentation
of diagrams and the integration of the statistics processor. 

Within its successor VisualCAPDA, developed in cooperation with PACE
Aerospace and Information Technology Company GmbH (Berlin), some of those
shortcomings have been eliminated. VisualCapda features a graphical user interface
instead of a Fortran code module, a new library concept which is fully based on
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2.4. Computer support tools in aircraft design
dynamically linked and loaded modules, a larger operative flexibility through
improved interactions, and an on-line information system which helps the designer
to manipulate the design parameters and the selection of the analysis method from
the methods library.

Other developments are in progress at PACE, focusing on a more general approach
based on an object-oriented class library for aircraft components and characteristics.
These developments started under the project name Flying Objects [Schneegans,
1998] and have resulted in a commercial package called Pacelab [PACE, 2000]. This
object-oriented library forms the core of a product line which includes Pacelab
Mission and Pacelab Cabin. With Pacelab Mission flight missions are calculated for
the assessment of airframe/ engine performances. Pacelab Cabin applies knowledge-
based techniques for the design of the cabin interior and emphasizes the flexible
geometric modelling with pre-defined cabin items. The latest development is the
Pacelab Design tool for aircraft conceptual design and analysis. Pacelab products are
claimed to be used in the Airbus A320 and A330/340 programs.

CDCS: Configuration Design Computing System [Britton, 1987]

CDCS is a CAD system developed specifically for aircraft design at Boeing. Initially
CDCS supports the design of wings and horizontal and vertical stabilisers, but
extension to the design of bodies and engine nacelles were planned according to
[Britton, 1987]. Three levels of design are supported: the initial sizing and shaping
planforms, the placement of detail components on planforms, and the definition of
the surface surrounding planforms. CDCS is parameter driven, so the user can enter
higher level parameters such as the aspect ratio. Within the system geometrical
relations have been defined, which result in an automatic updating of the model
when one parameter is changed. The geometric definition of the lifting surfaces
appears to be rather detailed in [Britton, 1987]. Most of the analysis calculations
should be performed by external programs, which could communicate with CDCS
through specialised interfaces. CDCS was used in the development of the Boeing 7J7
project.

The emphasis of the system was in 1987 on the geometrical modelling of the
aircraft, starting with the individual components. The extensive use of parameters
facilitates the model definition when designing conventional components. No recent
publications are known.

PASS: Program for Aircraft Synthesis Studies [Kroo, 1988] [Kroo, 1992] [Kroo, 
1996]

PASS is an "executive system and a collection of routines for analysis of subsonic
transport aircraft" [Kroo, 1992]. It is developed at Stanford University and supported
by NASA. The basic system consists of an executive routine which manages the
communication between the database, the user and the analysis modules. The
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2. The conceptual design of aircraft
analysis modules contain short procedural routines and have fixed sets of input and
output parameters. The user selects a parameter to be computed, and generates a path
through the set of analysis modules which are necessary to evaluate a parameter. The
routine searches for modules with the requested output parameter; when an input
parameter of the module needs to be computed, the executive routine searches again
for the appropriate module, etc.. This quasi-procedural architecture of the system is
the key to its usefulness for complex design tasks. The difficulty is the complex
interconnections among these modules that are difficult to manage. Iterations are
recognised and automatically performed using initial values. The convergence of the
numerical process can not be guaranteed, however. One- or two-dimensional
parameter studies are possible, as is the integration with several numerical
optimisation methods.

Another useful feature is the expert system which warns the designer when
problems arise, for example when constraints are violated ("Take-off field length too
large") or just simple design rules are triggered ("Fuselage-mounted engines usually
require a T-tail") [Kroo, 1988]. The expert system also provides suggestions to the
designer as to how the identified problems may be resolved or how the design might
be improved. It uses a forward and backward chaining inference engine to examine
the current database, the rule base and the warning strings posted by the warning
system. The suggestions also consists of strings. 

In [Kroo, 1992] more emphasis is laid upon the multiple-window graphical
interface and the optimisation techniques. The user interacts with the system by
viewing or modifying the database, conducting trade studies or optimisation, or
generating graphical elements that describe the design.

Though not explicitly mentioned in [Kroo, 1988] and [Kroo, 1992], the
geometrical modelling seems to have the same character as the simple analysis
routines: a pre-defined, small set of input or definition parameters of standard
aircraft components. 

ADAS: Aircraft Design and Analysis System [Bil, 1988] [Bil, 1989]
& Chaince [Blijenbergh, 1997]

ADAS has been developed at the end of the eighties at Delft University of
Technology (The Netherlands). It is a generic preliminary design system: the
analysis methods are considered as input to the system, similar to data. So the
modules embody the domain knowledge and reside outside the system where they
can be easily modified and reorganised by the designer and be tailored to a specific
design problem. Initially the commercial Medusa1 drafting and solid modelling
system is used for the geometrical definition. Later this system has been replaced by

1. Medusa was a software product developed by Cambridge Interactive Systems (CIS) in the United
Kingdom.
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2.4. Computer support tools in aircraft design
AutoCAD. These systems are also used to perform other graphical tasks such as
plotting of diagrams. 

In ADAS the designer begins with the definition of the geometry and some non-
geometrical parameters. The designer can select a configuration from the database or
define his own, preserving the strict organisation of the model which is necessary for
the interface with ADAS. The set of input and output data is accurately specified for
each module. In a batch-file the use of different modules can be assigned. The shell
of ADAS offers a parametric survey mode and an optimisation mode. A large number
of plots are possible to present the results. 

The ADAS system is very capable of applying specialised modules. The central
database requires an accurate declaration of the input and output parameters,
however, which hinder to make maximum use of the flexibility. Due to this set-up of
the modules, ADAS is a strongly procedural system. 

Currently the ADAS system is not operative any more. The development of its
successor Chaince [Blijenbergh, 1997], with a graphical user interface and object-
oriented data structure increases the flexible use of the modules, is in a very initial
stage of development.

A design program developed at TsAGI (former USSR) [Denisov, 1990]

Since the mid-seventies a dialogue system has been developed for preliminary
design of passenger aircraft at the Central Aerohydrodynamic Institute TsAGI in the
former USSR. The system is constructed according to the modular principle: each
module contains domain knowledge about a specific area, and requires a fixed set of
input data. Some modules require a component’s geometry. The system contains a
database with pre-defined components from which the designer can choose, for
example between a one-deck or a two-deck body, with a circular or a double-bubble
cross-section, etc.. The user must define a pre-defined set of input parameters, and
select variable parameters which are subject to optimisation studies. The system can
optimise the selected configuration using pre-defined objective functions. 

[Denisov, 1990] emphasizes the optimisation results of the system. The structure
of the system insinuates a more or less fixed computing path due to the specific input
and output of each module.

Aircraft Configuration Design System at Cranfield Institute of Technology 
[Pasaribu, 1991]

In [Pasaribu, 1991] the development is described of a design system for civil
transport aircraft, which includes the design of the aircraft configuration. The system
is built of several modules or ’sub-systems’, each taking care of a specific design
item such as aircraft configuration analysis, engine sizing, weight estimation,
aerodynamic analysis, etc.. A separate ’system control’ module determines in which
order the sub-systems will be called upon, depending on the input data and the data
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2. The conceptual design of aircraft
produced by the sub-systems. It uses logic reasoning to make these decisions. This
data is stored and maintained in a central database. The database also contains a
compilation of data of existing aircraft. Another special module is the graphical
module that presents simple 2-dimensional drawings, such as cross-sections, to give
visual feedback.

Most of the sub-systems use conventional computer techniques, except for one:
the ’aircraft configuration analysis’ module. Similar to the system control module,
the configuration analysis module applies logic reasoning. To select an appropriate
aircraft lay-out, general rule-of-thumb knowledge is implemented in if-then-rules.
When more than one configuration option is left, the user has to make the final
choice. Attention is paid to the explanation of the reasoning, by presenting the chain
of applied rules, and explanation is provided by text files with general characteristics
that are attached to each configuration option. The case study in [Pasaribu, 1991]
shows that the database with data of existing aircraft is used to provide initial
parameter values. It seems that the user has to search for the relevant values himself;
no attention is paid to automate the support for this activity. The system is
implemented in the C++-language. 

ACDS: Aircraft and spacecraft Configuration Design System [Yuan, 1992]

ACDS is a parametric preliminary design system for aircraft configuration that has
been developed at the Northwestern Polytechnical University in Xi’an (China). By
using only a limited number of model definition parameters, the geometric model is
easily changed when a parameter is modified. The geometry definition begins with
the separate components. Emphasis is laid upon the mathematical model of the
component’s surfaces since this is important for the application of the so-called area
rule, which is necessary for supersonic calculations. The system accurately
calculates the intersections between the components. 

In [Yuan, 1992] the geometry definition and modification techniques are
highlighted. The designer has to estimate the initial values of the component
definition parameters. Little attention is paid to the analytical methods; only the area
rule is mentioned. ACDS is capable of visualizing the model in three-view drawings
and wire-frame models, and visualizing the development of the design parameters.

Design Sheet [Buckley, 1992] [Gonda, 1992]

Design Sheet is developed at Rockwell International. It conveys the idea of a typical
spreadsheet: parameter studies are easily performed by sets of algebraic relations.
Unlike usual spreadsheets, however, the designer does not have to define which are
input and which are output parameters when specifying the constraint network in
Design Sheet. The computer automatically determines the computational plan for
how to compute the model parameters from any valid set of input parameters
[Buckley, 1992], which suggests a forward chaining inference engine (see the
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2.4. Computer support tools in aircraft design
explanation in next chapter). This allows the designer to consider a wider range of
alternatives during a design, because he is free to choose which input parameters to
consider. Design Sheet provides extensive plotting support for trade studies, model
browsing, both equality and inequality constraints, a limited amount of constrained
optimisation, and first order error analysis. The algorithms are based on graph-
theoretic ideas which are used to determine the order of algebraic and numerical
operations and to decompose the constraints set into tractable subsets. When possible
symbolic methods are used to solve the subsets, otherwise numerical methods are
applied. The individual solutions of these subsets are then combined into a complete
solution. Iteration cycles are called ’strongly connected components’ and are solved
numerically. During creation of network the user is forced by necessity to make
estimates of various parameters based on incomplete information. Design Sheet uses
the Common LISP computer language. 

Although [Gonda, 1992] shows some geometrical models of the design, this
aspect is not worked out.

ACSYNT: AirCraft SYNThesis [Mason, 1993]

ACSYNT is an aircraft configuration sizing and optimization code, but can also be
used for mission analysis. It was initiated by NASA some twenty-five years ago, but
the continuous development efforts have been formalised in the formation of the
ACSYNT Institute. In the late eighties a graphics interface was developed,
implemented in PHIGS. With ACSYNT an aircraft geometry can be created using
design parameters such as wing area and taper ratio instead of specifying 3-D points
and curves. The data needed by the analysis modules is entered in a "spreadsheet"
format. Each module deals with a specific discipline, such as costs. The spreadsheet
has on-line help for all the analysis variables, formula capabilities, and can be
custom tailored for individual customer’s needs. The analysis is implemented in
FORTRAN and C computer languages.

ACSYNT provide ’starter’ or template files of geometry and input data for various
aircraft types. These starter values are normally employed in initial analysis. In
addition to internal estimates, ACSYNT also provides (geometry) interfaces to
communicate with external calculations. The development efforts have been
concentrated on the accuracy and liability of the implemented knowledge. Scaling
factors are widely used. In [Mason, 1993] it appears that the design path is
determined by the designer, based on the input and output parameters of the
geometry templates and the analysis routines. 

AAA: Advanced Aircraft Analysis [Roskam, 1989]
& G.A.-CAD: General Aviation Computer Aided Design [Anemaat, 1997]

AAA is an aircraft design and analysis code [Roskam, 1989]. The AAA program
started out as a computerized version of Roskam’s Airplane Design books [Roskam,
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1987-1990], featuring a user-friendly interface. The code has now been developed
beyond that capability by the DARcorporation. Because of Roskam’s background, it
has considerable capability in the stability and control area.

The code consists of several modules which cover specific disciplines such as the
weight, aerodynamics, performance, geometry, propulsion, stability and control,
flight dynamics, loads, structures and the costs. Each module can be used separately,
requiring a particular set of input data and producing a pre-defined data set. When
using all modules an aircraft is designed with more details than what in this thesis is
considered an aircraft concept. The designer determines which module to use and
when. The order of the modules is strongly directed by the sets of input and output
data. Hence the designer has to have a good overview on the modules.

Every module has its own graphical user interface, represented by one or more
windows. The designed geometry is also presented graphically, but only per
component: the result of one module. There is not a central interface which shows
the overall geometry of the aircraft. AAA can also plot the results of sensitivity
studies. 

Based on AAA is the G.A.-CAD system [Anemaat, 1997]. This system is also
developed by DARcorporation. It differs from AAA that in G.A.-CAD the common
database is split into two parts: a flight condition independent database and a flight
dependent database. This procedure allows analysis of several flight conditions
within the same project. Also new is an interface to a CAD program, which contains a
surface modeller and has all standard PC-CAD capabilities. It is able to perform
aerodynamic specific design tasks, such as wing planform, airfoil cross-section,
wetted areas, centre of gravity, etc.. New developments are focused on the evaluation
of innovative configuration design approaches; see also [Olsen, 1997].

RDS [Raymer, 1996]

RDS is an aircraft design, sizing and performance code. The program is the
implementation of Raymer’s book [Raymer, 1992] and is nowadays marketed by
Conceptual Design Corporation. It incorporates a CAD module to develop the
geometry, as well as analysis modules including cost analysis and airline economics.
Adjustment factors are available to change the code predictions to account for
circumstances where the internal weight, drag and thrust estimates are not accurate.
It has a relatively complete mission capability. Up to now there are four versions
available for different purposes: the Professional version is much more
comprehensive than the Student version; the Homebuilt version is tailored to the
needs of homebuilt propeller-driven designs; and the ’EZ’ version is a stripped
version to be used by anyone to estimate the performances from very few inputs. 

In [Raymer, 1996] emphasis is laid upon the optimisation techniques. An
optimisation module was developed using a simple yet robust scheme based on
computer power rather than on more sophisticated strategies. Simultaneous
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optimisation of the key parameters is possible. It uses existing RDS-Professional
analysis modules, coupled with a parametric optimiser.

2.5 Conclusions for the proposed computer support system AIDA

The computer tools in Section 2.4 support the first phases in aircraft design in
different ways. Some are focused on the geometry generation of the aircraft and
geometry related analysis, such as CDS, CDCS and ACDS. Generally they make use of
the standard components as mentioned in Section 2.3.2. Defining the components
with a small set of high-level parameters, such as the aspect ratio of a lifting surface,
facilitates their design. On the other hand, this restricts their use to conventional
geometries. 

In most design support tools the domain knowledge is organised into separate
modules or routines which communicate via shell structures. Much effort has been
put in the reliability and robustness of the modules. Although this split up enhances
the designer’s overview of the domain knowledge, the many interactions between
the routines reduces the transparency and makes a proper and flexible use difficult. 

Other development teams have recognised these draw-backs and focused on the
management of the routines. The systems Paper Plane, PASS and Design Sheet, for
example, support the designer in determining the sequence of the routines. They
automatically arrange the computing path on-line. Paper Plane and Design Sheet
offer even more flexibility since they are able to invert the design functions, so that
the functions can be used to calculate output as well as input parameters. These
design functions embody only simple analysis routines. 

Another area of support is the optimisation of the initial configuration, which is
covered by most of the described tools. Different techniques have been implemented
with different capabilities. Their usability depends on the robustness and the speed.

Only CAPDA supports the generation of the initial configuration, i.e. the
suggesting task within the design process. In [Haberland, 1984] statistical methods
are mentioned which have been implemented to find proper initial parameter values.
The expert system within PASS is also used for suggestions, but only to suggest
modifications.

The examination of these current computer design tools lead to wishes about the new
support tool AIDA, the subject of this study. The aim is to integrate some of the good
characteristics which are shown by the different computer tools, improve them
where possible, and avoid the negative aspects.

One task the AIDA system should be able to do is to support the suggesting task.
This means helping the designer to propose a proper initial aircraft configuration to
form a good starting point for the next design steps. The current support tools show
that this is one of the first activities within the design process, and only one tool
(CAPDA) provides some assistance in this area. 
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Another item is the flexible use of the calculation routines or modules. Most of the
current design tools have a modular set-up with each module containing calculation
methods for specific disciplines. Although the contents are well developed, their
interaction is restricted due to their specific sets of input and output parameters. This
considerably ties the designer’s hands on the use of the modules. Within the AIDA
system emphasis is laid upon the flexible use of the modules, which should facilitate
the first prediction and evaluation of the aircraft concept for a variety of
configurations. The Paper Plane, PASS and Design Sheet programs show such a
flexibility. 

The geometrical components of the support tools have also proven their
usefulness. Their visual feedback is very practical for understanding the designed
concept; i.e. the evaluation task. Therefore the AIDA system should also contain such
a component. To relieve the designer the aircraft model should be generated (semi-)
automatically. 

With the emphasis on the suggesting task and a flexible (first) prediction and
evaluation, the AIDA project concentrates on the first design step: the generation of a
feasible aircraft concept. For further elaboration of the concept the designer is
expected to use the well-proven existing tools. Therefore relatively simple design
relations are considered, such as those described in [Roskam, 1987-1990] and
[Torenbeek, 1982]. The generated aircraft model should be suitable as input for those
tools. 
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3 AI and design

3.1 Introduction

The main theme within this thesis is the application of AI techniques in design, i.e.
how AI can play a supporting role in the design process. In this context it is
interesting to know how knowledge can be applied to reason about design, i.e. how
knowledge can support the generation and evaluation of design solutions. Therefore
the characteristics of design knowledge and how it can be applied are surveyed.

A convenient view is to consider knowledge (not only design knowledge) as
being composed of basic knowledge components. It is useful to illustrate these
components by if-then-rules: if a condition is found to be true, then a conclusion can
be drawn [Coyne, 1990]. Three elements are recognized when using such form of
knowledge representation: the if-then-rule itself, representing the knowledge
component, a situation A which satisfies the antecedent and a situation B which
describes the consequent; see Figure 3.1. The knowledge component can represent
mathematical knowledge as well as quantitative domain knowledge, but also meta
knowledge, i.e. strategic knowledge about how to use the domain knowledge. 

The arrows in Figure 3.1 indicate the direction for which the knowledge component
is valid: using this rule situation B can be deduced from situation A. This is called
deduction. However, when situation B is given, the rule can also be used to conclude
that situation A has probably caused situation B. This plausible reasoning is called
abduction. 

The overall design process, proposing a new design given the design
specifications, can also be seen as an 'abductive' process [Roozenburg, 1993]. The
solution (the artefact description) can not be derived directly from the design
specifications using domain knowledge only. However, when the description of the
artefact is known, domain knowledge can be used to deduce the performances. Such
knowledge is usually based on physics and accurate enough for verifying that the
artefact description meets the desired functional specifications. This is illustrated in
Figure 3.2.

if <antecedent> then <consequent>situation A situation B

Figure 3.1. The three elements involved in the application of a knowledge compo-
nent.

knowledge component
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We can now describe the role of several AI techniques.
The Rule-Based Reasoning technique (RBR) shows much resemblance with the

scheme of Figure 3.1. Applied to design, it could be used to verify that a proposed
solution satisfies the design requirements (Figure 3.2). The if-then-rules represent
the basic domain knowledge components and a separate inference engine determines
the strategy for using the rules. However, to transform domain knowledge into these
if-then-rules can be difficult. It is a serious problem to collect a concise but
comprehensive selection of domain knowledge from experts and put this into causal
relations. Common sense for example is typically hard to formulate in rules, while
mathematical reasoning is more easily formally expressed.

Therefore the RBR technique seems useful for design tasks where mathematical
relations are involved, such as the prediction and evaluation tasks of Figure 1.1. In
Figure 3.3 the use of such rules in design is schematised. Because rules usually
represent simple knowledge components, many rules are required. One issue of RBR
is to choose the appropriate rules which will lead to the desired relation between the
artefact description and design specifications. This issue is less difficult when the
domain is well-defined and well-structured.

The RBR technique is described in more detail in Section 3.3.

Other AI techniques, such as Artificial Neural Networks (ANNs), capture the
knowledge in a different way. ANNs focus on the automatic capturing of the
knowledge component, which is called induction [Roozenburg, 1993]. ANNs are
used when explicit domain knowledge is not available, e.g. when relations between
data are too complex or not explicitly known. An ANN acts as a black box
representing the knowledge component of Figure 3.1.

domain knowledgeartefact design

Figure 3.2. The use of domain knowledge in the design process.

(verification)description specifications

Figure 3.3. Implementation of RBR techniques in design: deducing specifications
from artefact description with mathematical relations.

domain knowledge

rule

artefact
description

design
specifications
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An ANN consists of a network of nodes connected via adjustable weight factors.
By tuning these factors the ANN is trained to exhibit a desired behaviour, e.g.
produce a pre-defined output from a specified input. The ANN is trained with a large
set of examples which provide the proper input-output combinations. The training is
concluded when the desired output can be generated for all examples with a certain
accuracy. A well-trained ANN can be used as a knowledge element. As a
consequence of the methodology this element represents generalized knowledge or
tendencies between problem and solution without making the captured knowledge
explicit. The ANN can be used to deduce a new structure for a new function
description when it has been trained for that purpose. This is symbolized in
Figure 3.4.

This generalized knowledge has a global character, meaning that individual
differences and extremities are smoothed out. An ANN is not able to solve ’new’
problems which differ much from the problem-solution combinations in the training
set. Hence a certain degree of homogeneousness of the problem and solution space is
assumed, without discontinuities. These premises make ANN less suitable for design,
where these spaces are seldom continuous. Another disadvantage is that, given the
complexity of the design problem, the training sets will need to be extremely large.
Hence, ANNs are not studied further in this chapter.

Another AI technique is Case-Based Reasoning (CBR). While an ANN generalizes
and classifies the domain knowledge, the CBR technique (re-)uses local domain
knowledge: CBR links the problem and the solution at the level of single cases. CBR
implements reasoning by analogy, meaning that new solutions are proposed based on
similar problem descriptions of existing cases. This method assumes only local
continuity of the solution and problem spaces in the neighbourhood of the cases;
globally these spaces may contain discontinuities. The complex knowledge
component within a case, which relates the solution to the problem e.g. the structure
to its function, is reused without making it explicit. Figure 3.5 illustrates this. 

Figure 3.4. The representation of an Artificial Neural Network (ANN) as a genera-
lized knowledge component between design problem and solution.

problem
space

solution
space

Artificial Neural Network (ANN)

generalized knowledge

artefact description design spec.

new problemnew solution
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3. AI and design
CBR techniques provide a link between problem and solution, or function and
structure, so it can be used to deduce an artefact description given the design
specifications. Unlike ANNs, though, the CBR techniques use local domain
knowledge and don’t need so much cases as ANN requires for proper training;
considering the complexity of the design cases. These are valuable assets which
suggest that CBR might be a useful technique for design to propose a configuration
from design specifications. Especially since explicit knowledge is sparse or too
qualitative at this phase and generalized (domain) knowledge is not specific enough.
The technique is further described in Section 3.2. 

Finally, another technique can be mentioned which is often associated with AI:
Genetic Algorithms (GAs). Unlike the previous mentioned AI techniques, GA is an
optimisation technique. It forms new combinations out of existing artefact
descriptions of cases with good specifications and anticipates that some of the many
newly created artefacts may perform better than the existing ones. Though the
determination of the overall quality of a case function requires a good understanding
of the domain knowledge, the combining process may work more or less randomly.
Therefore many combining sessions are necessary to make progress. As an
optimisation technique, the basics of a GA are hard to illustrate with the elements of
Figure 3.1. 

One of the major issues of GAs is the formulation of the merit function to
determine the quality of a solution. This requires a certain level of quantitative
knowledge about the domain, which is hardly available at the conceptual design
phase. Therefore this technique has not been considered within the AIDA project. 

Another issue that is described in this chapter is the geometrical representation in
Section 3.4. This is not an AI issue but a significant design issue. The applied
geometrical representation technique is critical for the flexibility of the aircraft
concept model, for example parameterised modelling. 

Figure 3.5. The representation of the Case-Based Reasoning (CBR) techniques with
local domain knowledge components.
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3.2. Case-Based Reasoning
3.2 Case-Based Reasoning

3.2.1 Introduction

The Case-Based Reasoning (CBR) methodology has its origins in the late 1970s,
begin 1980s. A new view on human reasoning was proposed which is based on
analogical reasoning [Schank, 1977]. Schank introduced the dynamic memory
theory which assumes that remembering, understanding, experiencing and learning
are not separate issues but highly interconnected. Schank suggested that this
dynamic memory is organised into Memory Organisation Packages (MOP) which
contain certain episodes or experiences. MOPs are interconnected with each other by
explanations of the situations and expectations about the normal progress of events.
When a new problem has to be solved, a relevant MOP is retrieved to come up with
a solution based on previous experiences, instead of deducing a solution completely
from scratch with a set of general relations. When a new solution has been found, the
problem solving event can be stored as a MOP and added to the memory.

This way of reasoning eludes some of the difficulties with RBR, such as the
elicitation of domain knowledge. With reasoning by analogy the domain knowledge
is implicitly embedded in the cases and does not need to be fully understood.
Because CBR deals with partial similarities between a new problem and previous
problems, it is also possible to handle incomplete cases or problem descriptions.
Another advantage of this type of reasoning is that it allows qualitative reasoning
about similarity of the problem, while still a quantitative solution can be produced.
This seems to be a more natural way of reasoning and may considerably speed-up
the process of problem solving; in addition previous failures may be avoided. 

Basically, the working of CBR can be illustrated with Figure 3.6. Before the CBR
methodology can be applied, a case-base has to be created. The case-base contains
previous solved problems in the form of cases. In each case a description of the
problem and a description of the solution is encoded. For a proper working of CBR
enough cases should be collected to cover the problem and solution spaces well.

The first step in the CBR methodology is to translate a new problem into the
vocabulary of the problem description. Next a case is searched for with the most
similar problem description. The solution contained by that case is assumed to be an
appropriate starting point for the new solution. The suggested solution is then
modified in order to better satisfy the original problem description. After evaluation
and verification the new "problem-solution" combination can be considered as a new
case again.
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3. AI and design
The productive reuse of previously solved problems is based on three assumptions
[Kolodner, 1996] [Jarmulak, 1999]:
• regularity of the world: when identical actions are executed under identical

conditions, the outcomes will also be similar;
• local consistency: locally, a small change in the problem description will require

only small changes in the solution; globally discontinuities may exist;
• ease of adaptation: small differences between problems will be easy to

compensate for.

The CBR methodology is used in many areas, such as help-desks, classification,
diagnosis, teaching, planning and design. In this thesis the CBR methodology is
applied to design problems, in particular aircraft design. Typical for this application
area is the relatively small number of previous cases and their complexity, i.e. they
may contain many parameters which are related with each other in unclear ways.
Therefore special attention has to be paid to the description of the cases; see
Section 3.2.7. Related with the complexity is the search for relevant cases. Together
with other important issues such as case indexing and case adaptation, these subjects
are described in more detail in Section 3.2.3 to Section 3.2.6. First the CBR basic
cycle is discussed in next section.

3.2.2 The CBR cycle

There are several central tasks that all CBR methods have to deal with. [Aamodt,
1994] suggests four RE’s:
• REtrieve the most similar case or cases;
• REuse the information and knowledge in that case to solve the problem;
• REvise the proposed solution;
• REtain the parts of this experience likely to be useful for future problem solving.

problem
space

solution
space

input
problem

Figure 3.6. Principles of problem-solving with Case-Based Reasoning (from
[Leake, 1996]).
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find
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problem
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target
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3.2. Case-Based Reasoning
Together these tasks form the CBR cycle as sketched in Figure 3.7. The cycle starts
with the definition of the new problem, i.e. the target. This requires a clear definition
of the vocabulary in which the cases are expressed. A separate section deals with the
issues of what kind of information the cases should contain and how it can be
organised (Section 3.2.7). Only when the case representation has been fully
elaborated, the case-base can be filled with cases. 

Retrieve

With an appropriate problem description, one or more relevant cases are retrieved.
The selection of these cases is based on the similarity with the defined target. The
similarity is measured locally and globally. Local similarities are based on the
matching of the individual features. Together these local similarities determine the
matching score of the complete case: the global similarity. The type of measurement
of the global similarity determines how two partial matching cases can be compared.
Several schemes can be used to measure these similarities.

From the similarity ranking list one or more interesting cases are selected.
Although the case with the highest ranking is likely to be selected first, the user may
also prefer other cases, for instance because they are more amendable to
optimisation. Hence the matching criteria do not have to be identical to the selection
criteria. 

To speed up the calculation of the similarity measurements and still guarantee a
thorough search of the case-base, the memory structure of the case-base has to be
organised well. The organisation is implemented in a so-called indexing network.
This network should be discriminating enough to allow proper selection of cases
with high potential, but not too differentiating to exclude some potentially suitable
cases. 

case-base

new
problem

new
problem

retrieved
case(s)

suggested
solution

confirmed
solution

learned
case

Figure 3.7. The CBR cycle (adapted from [Aamodt, 1994]).
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3. AI and design
To be effective, the case-base should contain cases which cover the complete
design space. It is obvious that if the case-base only covers parts of the design space,
solutions will never be suggested which are not available in the case-base.

See further Section 3.2.3 to Section 3.2.5.

Reuse

While the selection of the cases is based on the similarity score with their problem
part, their solution parts are reused to create a feasible solution. There are several
reuse strategies: to copy the complete solution part of one of the best-matching cases,
to combine the solution parts of several cases, to extract an average solution from the
selected cases, etc.. The process of changing the solution part for the purpose of
reusing is called adaptation. The goal of adaptation is to suggest a better solution
before detailed and expensive evaluations are performed. By adapting a case, the
complex relationship between its problem and solution part, which is illustrated by
the knowledge component in Figure 3.5, is violated. Therefore it requires a good
understanding of the domain knowledge to perform proper adaptations. This is one
of the major issues in CBR and is described in Section 3.2.6.

Revise

Only when the suggested solution is fully elaborated and placed into the real world,
it can be properly judged. Generally revisions are needed to modify the suggested
solution for the real world situation. This results in a solution which can be
confirmed by practical use or by accurate evaluation tools. 

Retain

The combination "problem - confirmed solution" represents a new case. By adding
this new case to the case-base, it can be reused for future problems. This is
considered to be a way of learning. One should be aware of the possible risks of this
incremental learning method, though. The case-base could get biased by cases with
too much resemblances.

By adding the revised, new case to the case-base, the CBR cycle is closed. The case is
available for retrieval and reuse to solve new problems, facing the same issues again.
The most important issues are described in next sections.
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3.2. Case-Based Reasoning
3.2.3 Case indexing

The case indexing structure provides the means to select the most suitable cases for
further matching. The efficiency of the indexing influences the speed of the
matching process, while the accuracy aims at its completeness, i.e. that each
similarity is found. Case indexing comprises the organisation of the memory
structure and the labelling of the cases and their features. It also embraces the case
representation, but that aspect is dealt with in Section 3.2.7.

Several memory structures are feasible [Jarmulak, 1999]. The most simple one is
the flat structure, where the indexing is synonymous with the parameters describing
the cases. It requires the complete case-base to be searched for matching features,
which leads to long retrieval times when the case-base is large. Its simplicity makes
it easy to add and delete cases, though.

To reduce the search time clustered memory structures have been proposed.
Groups of similar cases are stored in clusters and represented by some prototypical
cases. Such a prototypical case can be an abstract case or a real representative case.
The matching process concentrates on the similarity with those prototypical cases,
and therefore is much faster. A disadvantage is that future similarity interests have to
be predicted to organise the appropriate clusters. It is also more difficult to add cases.

Another memory structure is the hierarchical organisation. This structure can be
based upon the grouping of cases which share the same features, called shared
networks, or upon discriminating features which guide for example decision trees:
discriminating networks. These networks can be combined with weight factors to
bias the search process. The hierarchical organisation can become very complex
which increases the costs for adding cases.

In general the retrieval process can be speed up by parallel search methods.

3.2.4 Case matching

The purpose of the matching procedure is to rank cases according to their relevance
to the problem. The ranking is based on the similarity measurements between the
cases and the problem description or target. An important issue is to decide on which
parameters the similarity will be measured. Another is how to measure the
similarities. The measurements are built on two components:
• the dimensional match: the degree of matching along each dimension;
• the aggregate match: the weighted sum of each dimensional match of a case.

There are many possibilities to define the matching criteria. For the definition of the
dimensional match, for example, several distance measures between feature vectors
are available. Things can get complicated when Booleans, discrete scalars, texts or
images are involved. By aggregating the dimensional matches the cases can be
compared with respect to the target. This can be a difficult aspect, even without
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3. AI and design
trying to formalise the aggregation method. The determination of weight factors is
rather arbitrary and may result in unexpected matching rankings. Also the problem
of incomplete cases should be answered, i.e. how to deal with missing features? 

Often it is easier to judge the solutions than to compare their problem
descriptions. Therefore it may be useful to put more effort in the case selection
instead of refining the matching criteria for the problem description. In that situation
several best matching cases are retrieved and the user has to select the most
appropriate solution(s). 

3.2.5 Case selection

As has been mentioned before, it is not always the best strategy to select the case
with the highest similarity score to provide an initial solution. The goal of the
selection is that from the selected case(s) a solution can be formed which can easily
be adapted to completely satisfy the problem. This does not have to be the best-
matching case. It depends on the reuse strategy which case(s) to select. Two
approaches are possible:
• reuse one complete case solution
• reuse multiple case solutions

With the first approach the case can be selected automatically with the aid of the
matching score, or manually from a pre-selection of best-matching cases. The other
approach also requires a pre-selection of cases, which is usually determined by the
similarity ranking. To combine these cases one can focus on the similarity between
the cases, and reusing for example highly similar components, or one can focus on
the differences between the cases, and integrate different components. So ranking the
cases can be based on the similarity of complete cases or on local similarity scores,
such as the matching of case components or individual dimensions. 

How the conversion of the cases is performed in order to propose a feasible
solution is described in the next section. 

3.2.6 Case adaptation

Case adaptation concerns the combining of selected cases or performing other case
adjustments. The purpose of adaptation is to create a better solution for the new
problem than can be found in the available cases. Adaptation differs from more
straightforward modifications (parameter tuning) because it is based on the use of
(parts of) alternative cases with their specific problem-solution combinations; i.e. a
form of reasoning by analogy is applied. The intention is to make rough
improvements to the suggested solution. A good understanding of the problem
domain is needed to evaluate the matching results and to suggest appropriate
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3.2. Case-Based Reasoning
adaptations. Due to its complexity case adaptation is one of the major research issues
within CBR.

Three categories of adaptation strategies can be distinguished [Netten, 1997]
[Jarmulak, 1999]:
• substituting

Complete sub-solutions can be substituted by sub-solutions of other cases, for
example case components can be combined. This adaptation method is suitable
for design problems where each function can be linked with one or two
components. When one function of the best-matching case does not match the
target, the component is substituted that is thought to be responsible for that
function. 

• transformation
When the interaction between parameters or components is more significant,
adaptation by substitution only is not sufficient. In addition adaptation rules can
be applied. With these rules the solution parameters are found which cause the
mismatching with the case problem. Then modifications of these solution
parameters are suggested. Different techniques can be applied to perform these
tasks, such as RBR and Constraint-Based Reasoning. The adaptation can also be
performed manually by the user instead of automatically, since adaptation
knowledge is still difficult to formalise.

• derivational replay
Another possibility is to replay the reasoning that led to the solution, instead of
reusing the case solutions directly. This requires that cases contain the steps that
were made to solve the problem. A new solution is derived by following the steps
of the retrieved case for the current problem. The idea is that similar problems
require a similar set of decisions to be taken. 

To perform the adaptation process some basic issues have to be addressed. It depends
on the adaptation category which issues will need more attention. The fundamental
questions are:
• Which parts of the retrieved case(s) do not meet the problem definition?

In design problems this usually concerns the determination of the mismatching
functions of the selected case.

• Which parts of the suggested case solution cause the differences?
This question deals with relating the mismatching functions to their responsible
structure components.

• How can these solution components be adapted?
When the responsible solution parts have been determined, the next question is
how they can be adapted so that the similarity of the mismatching function will
increase, i.e. a better solution is created.
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3. AI and design
• What are the effects of these local adaptations on the overall solution?
While the goal of the adaptations is to improve the original case, they may have
side effects. For example the adaptations of some parts of the structure can
influence the functions which already did match the target. What are these
influences, good or bad?

The last question points out an important consequence of adaptation: that the
integrity of the adapted case may be violated. Each case in the case-base relates a
problem to its solution. When parts of the solution are adapted, these relations are
broken. The relations could be restored by applying transformation rules (the second
adaptation category; see above), but to be practical these rules are usually kept too
simple for a thorough evaluation. Because in design the relations between problem
and solution are in general very complex (the reason for using CBR in the first place),
the case will not be consistent anymore after its adaptation. Hence the importance of
the revise task.

This consistency issue is especially important when the topology of the design is
changed by adaptation, since its impact may be large. The influence of parameter
adaptation is typically less significant.

3.2.7 Case contents

The usefulness of a CBR system strongly depends on the contents of the cases. This
implies what is recorded in the cases as well as how it is recorded. The more relevant
information the cases hold, i.e. what is recorded, the more beneficial the CBR can be.
However, this information can only be well exploited when the information is
properly encoded and organised (how it is recorded). There is a strong interaction
between those two aspects: the case contents and its structure.

The contents of cases can be described in different ways, depending on the point
of view. Each view angle will emphasize another aspect of the case data. In this
section several points of view are described which seem interesting for applying CBR
techniques within the design process.

With regard to case retrieval

With regard to the retrieving task within CBR, [Kolodner, 1993] divides the case
contents into three components:
• a problem description;
• a solution;
• an outcome.

The matching of the case is determined by the similarity of the problem description.
This component contains the goals and functions to be satisfied by the associated
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problem. It may also include a description of the context of the problem which was
relevant for achieving the goals. 

For design purposes the problem description is represented by the requirements,
c.q. the performances or functions of the artefact. 

With the solution component the solution for the new problem is derived. Two
categories of CBR applications can be distinguished which are based on two different
types of solutions:
• transformal CBR: reuse the solution of a previous case;
• derivational CBR: reuse the method of a previous case that resulted in the solution.

The latter kind of CBR system is useful for planning problems. Also design problems
may be solved with derivational CBR when the purpose is to reuse the design steps,
including the tasks, operations and strategic decisions. The other CBR category,
transformal CBR, has been applied more often. In those applications the solution
component contains information about the solution itself, and sometimes also
background information such as acceptable solutions that were not chosen or
unacceptable solutions that were ruled out. 

In this thesis transformal CBR is applied since the design steps that lead to the
development of existing aircraft, which is the application domain, are not (publicly)
known. For this domain the solution component contains only the information
necessary to produce the artefact: its dimensions, sizes, materials, production
requirements, etc.. 

The third component, the outcome, describes the impact of the solution to the real
world problem, e.g. how successful the solution was. It represents feedback for the
solution. It may also contain explanations of failures, information about repair
strategies, and possibly a pointer to another case which contains a next attempt to
solve the problem. 

The outcome can be extended with evaluation procedures that allow testing of
case solutions in new situations. When cases do not include the outcome part,
explicit feedback is missing. However, some feedback can be added implicitly by
omitting unsuccessful cases in the case-base.

With regard to the data classification

In Chapter 1 the data classification of Function-Behaviour-Structure has already
been mentioned [Gero, 1992] [Maher, 1995]. This classification structure has proven
to be very helpful in analysing the design process, with the function data
representing the (functional) design specifications and the structure data representing
the (structural) description of the object. Hence this classification will assumable
serve the analysis of the case contents. Therefore some more words about the
Function-Behaviour-Structure (FBS) triad are in place.
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3. AI and design
[Rosenman, 1994] illustrated this data classification by naming the function as
what (it) does, the behaviour as how (it) does it and the structure as what (it) is. The
function represents the intended or specified functional features of an artefact, the
structure represents the properties of the artefact that describe its physical existence,
while the behaviour links these two by representing the set of characteristics that
allow the structure to achieve its functions. For example the structure of a coffee cup
describes the material, its shape and the dimensions. The behaviour of the cup is that
it is waterproof, stable, smooth and that it insulates. Its function is that it can hold a
certain volume of hot liquid. [Gero, 1992] points out the importance of behaviour: to
disconnect direct links between function and structure in order to make the selection
of a structure less intuitive and more reasoned. A difficulty of using the behaviour
class is that the distinction between function-behaviour and behaviour-structure is
not always clear. 

[Rosenman, 1994] presents an additional class, called ’purpose’, which describes
the goal of the artefact: what (it) is for. The purpose introduces the human aspect to
the system, representing the impact of the function and behaviour. For example the
coffee cup is for drinking hot liquids, but it can also be used to measure liquid and
solid volumes. Hence, purpose is a multiple-view function. Excluding the purpose
from the case contents prevents it to hold subjective information.

In addition to the function-behaviour-structure triad a function-means tree can be
applied. This structure supports the decomposition-integration approach of design.
In this approach the specified functions are first decomposed into simpler functions,
until basic functions are derived. These basic functions can directly be linked with
basic structure components, which are integrated to generate the complete solution to
the problem. 

This function-means tree introduces the notion of detail levels of the data, which
can also be applied to the Function-Behaviour-Structure classification method. For
example the range and the wing area are a function and a structure parameter of the
aircraft, respectively. A detail of the aircraft, such as a bolt, also has a function and a
structure: e.g. its connectivity function and its dimensions, respectively. 

So, in addition to the problem-solution classification, which can be formalised by
the FBS triad, data can also be classified by their level of detail.

3.2.8 Case representation

The way cases are organised in the case-base is essential for a proper indexing of the
case-base, in order to find relevant cases quickly and accurately. This data
representation topic is mainly an implementation issue. However, ordering the case
information helps to analyse it, i.e. increases the understanding of the domain. So
defining a case representation can be seen as a knowledge acquisition instrument.
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Hence, the information and its structure can be meaningful for the user as well as for
the implementation of the CBR system.

A wide range of representation formalisms are available to implement the case
information, such as frames, semantic networks, predicate notations, rules and
simple attribute-value combinations. Which formalism to apply depends on the type
of information the cases should contain and on its intended use. When much
interaction with the user is expected, the information must be understandable for
humans. A graphical representation of the solution, for example, can be very
clarifying. Another issue is the use of decomposition within a case, when cases are
complicated. The decomposition may be helpful when adaptation strategies are
implemented which are based on substituting parts of the solution.

For the geometrical information a similar kind of procedure can be followed. A case
may contain the geometrical model of the design itself, the modelling plan which
contains all modelling procedures, or the key parameters from which the model can
be derived according to a standard procedure. The latter approach allows higher level
reasoning and requires less memory space in the case-base, therefore may be easier
for retrieval. It requires well-defined model templates outside the case-base,
however. These aspects are described in Section 3.4.

In the AIDA system the information formalism is chosen with the focus on the
effectiveness of the CBR module, not on the transparency to the user. The aircraft
information is defined by a relatively small set of parameters, to keep the complexity
of the case data low. However, these parameters contain all information which is
required for the case retrieval task within CBR and for the definition of the complete
aircraft concept. The Geometrical module takes care of the deduction of the three-
dimensional model from the parameter set. 

Only numerical and coded information is stored in the cases. The coded
parameters represent the discrete information of the aircraft concept, such as the type
of engine and its configuration. Via an object-oriented structure more information
about a specific component type can be stored.

3.2.9 Reflections upon CBR and design

Analogy between the CBR cycle and the design cycle

The CBR cycle resembles the design cycle of Figure 1.1. This is not accidentally,
since reasoning by analogy is a natural way of reusing knowledge; it is common to
use experience gained with the solving of previous design problems for the
generation of new designs. 
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3. AI and design
The CBR methodology is more than just one single AI technique. In fact, "the CBR
paradigm covers a range of different methods for organizing, retrieving, utilizing and
indexing the knowledge retained in past cases" [Aamodt, 1994]. When CBR is
referred to as one single AI technique, the tasks of retrieving and reusing are implied
as well as the retaining task. Many other techniques such as Rule-Based Reasoning
(RBR) and Genetic Algorithms (GAs) can be applied to aid these tasks; for example
reasoning about the requirements, performing flexible similarity measurements,
applying rule-base adaptation and evaluation, etc.. [Maher, 1995] refers to such
systems as hybrid CBR systems.

CBR and creative design

In literature there is much discussion about the ability of CBR to support creative
design. In general, three types of design can be distinguished [Dym, 1994]:
• routine design

With this type of design all necessary knowledge is known in advance. It is known
how to decompose the problem definition and what design plan to follow to solve
the sub-problems. The difficulty is to choose the best components from a usually
large solution space, and how to cope with the interactions amongst them. [Coyne,
1990] refers to this type of design as prototype refinement, as it deals with the
instantiating of variables of a prototype. [Brown, 1989] calls this a class 3 design.

• innovative design (a form of non-routine design)
This is a type of design between routine and creative design. The design is based
on previous designs, but the modifications are so significant that new problems
are introduced which require original solutions. The domain knowledge is known
but the problem-solving strategy not. Known components or sub-solutions are
integrated into an existing variable structure [Clibbon, 1994]. Other labels for this
design type: prototype adaptation [Coyne, 1990] and class 2 design [Brown,
1989]. 

• creative design (another form of non-routine design)
With creative design new components and new variables are introduced. The
common domain knowledge does not cover the new (sub-)problems and
appropriate problem-solving strategic knowledge is missing. [Coyne, 1990] calls
it prototype generation. In [Brown, 1989] it is labelled a class 1 design, and is
scarce since it requires major inventions and will lead to completely new
products.

It is clear that CBR is a way to support at least routine design. When the adaptation
task is properly implemented, it should also be possible to support innovative design.
Components of previous designs can be combined to generate new solutions,
possibly creating innovative designs. 

The ability of CBR to support creative design is disputed. When a creative design
is generated by using ’first principles’, i.e. deep knowledge about the domain, then
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there is no role for CBR. When other approaches have been followed, such as
combinatorial design, analogical design, design through mutation [Rosenman,
1993], some support should be possible considering the similarity with CBR. Others
argue [Logan, 1993], however, that the three design approaches mentioned by
Rosenman can not lead to creative designs, hence CBR is not usable for creative
design. 

Concluding, routine and innovative design have the potential to be supported by
CBR, whereas for creative design this seems to be impossible; discussions about this
can be brought back to discussions about definitions. Another design category which
is introduced by [Coyne, 1990] is ’configuration design’, which lies between routine
and innovative design. Because the conceptual design of (conventional) aircraft
could be classified as configuration design (see Section 1.2), CBR seems to be a
useful supporting technique for the AIDA system. 

3.3 Rule-Based Reasoning

3.3.1 Introduction

In the Introduction, Section 3.1, the principles of Rule-Based Reasoning have
already been discussed. By applying knowledge elements in the form of if-
antecedent-then-consequent, new facts can be deduced from existing facts; see
Figure 3.1. Each if-then-rule represents a small piece of knowledge in an explicit
way. This distinctively differs from Case-Based Reasoning, where cases are used to
represent large chunks of knowledge in an implicit way.

The knowledge expressed by the rules is largely domain dependent. Rules contain
knowledge about a particular domain which is elicited from experts; hence the name
Expert System which is strongly associated with such systems. Strictly spoken, a
Rule-based system is a specific type of Expert System. But because other types of
Expert Systems can be considered as variants of the Rule-based system, both terms
are used promiscuously in this thesis. Those variations mainly involve the format of
the knowledge elements, i.e variants of the rule as the knowledge carrier; see
Section 3.3.3.

One of the ideas behind the development of Expert Systems was to create a tool
that would contain knowledge from several experts, therefore being less dependent
on individual experts, preventing bias and performing more consistently. However, it
turned out to be extremely difficult to elicit knowledge from experts. For instance to
extract all aspects of the antecedent of a rule, such as its context, appears to be very
hard. As a consequence, an Expert System is usually valid for very restricted
applications only. Knowledge acquisition is therefore an important issue within RBR.
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Another issue is how the rules (or alternative knowledge carriers) should be selected
and combined. Complex relationships can be created by building a network of rules,
i.e. combining the elementary knowledge elements such as sketched in Figure 3.3. A
major difference with conventional programming techniques is that with RBR the
sequence of applying the rules is flexible. This makes the testing of an Expert
System rather complicated, since unexpected combinations of rules can give
surprising, undesired results. Verifying the validity of the individual rules only is not
enough. 

Basically, linking the rules is based on matching the antecedent-part and the
consequent-part of different rules. Subject to the similarity between the facts and the
antecedent-part, a rule is selected. The consequent-part of the rule generates new
facts; see Figure 3.8a. When the new facts coincide with the antecedent of another
rule, this rule can also be selected and coupled with the other selected rule. The
execution of the new rule may lead to other new facts, which can trigger other rules,
etc.. This way of using rules is called forward reasoning or deduction, and is data-
driven or ’bottom-up’. 

The other way of using rules is called backward reasoning. Starting with a goal, a
rule is searched for whose consequent-part matches the goal. When such a rule is
found, its antecedent-part is suggested to be true. So, possible facts or hypotheses are
abduced from existing facts with backward reasoning; see Figure 3.8b. These
possible facts can lead to new hypotheses when more rules are linked in the same
way. This is a goal-driven or ’top-down’ process, contrary to the data-driven process
of forward reasoning. 

The uncertainty of the newly proposed facts is typical for backward reasoning,
unless the rules are valid in both directions such as arithmetic expressions.
Hypotheses can be tested by applying forward reasoning with other rules.

antecedent ⇒  consequent new fact(s)

fact(s)

fact(s)

fact(s)

fact(s)

antecedent ⇒  consequent fact(s)hypothesis

fact(s)

fact(s)

fact(s)

often a one-way relation

Figure 3.8. Forward and backward reasoning with if-antecedent-then-consequent
rules.

a) Forward reasoning: data driven

b) Backward reasoning: goal driven

possible ’new fact(s)’
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In the process of linking the rules, three basic operations can be distinguished, which
form the recognize-select-act cycle [Boullart et al., 1992]; see Figure 3.9. By
matching the facts with the rule’s antecedent, suitable rules are recognized and stored
in an agenda. From the agenda the most appropriate rule is selected. The cycle is
closed by the generation of new facts as a result of the execution of the selected rule:
the acting task. These new facts may lead to new rules to be put in the agenda or old
rules to be erased. Together the selected rules make the network. The generation of
the network is finished when all rules of the agenda have been fired, i.e. activated. 

3.3.2 The RBR components

In backward as well as forward reasoning the control of chaining the rules is clearly
separated from the domain knowledge itself. Usually, a RBR system consists of three
distinct components [Gevarter, 1987]. Their relation is sketched in Figure 3.10:
• knowledge base, which contains domain knowledge of experts;
• inference engine, which controls the domain knowledge;
• user interface, which provides the communication with the user. 

facts

agenda
with

most
appropriate

rulesrule

select

ac
t

recognize

Figure 3.9. The typical recognize-select-act cycle of deduction with a Rule-based
reasoning system.

user interface knowledge base

inference engine

Rule-based reasoning system

user expert

Figure 3.10. General set-up of a Rule-based reasoning system
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The knowledge in the knowledge base is elicited from experts. It contains all the
knowledge that is required for a specific application area. As has been mentioned
before it often proves to be difficult to make that expert knowledge explicit and to
formalise it. The basic format to represent the knowledge elements is the if-then-
rule, but other forms are also possible; see Section 3.3.3. The knowledge can simply
be documented by adding comments to each element. 

The inference engine controls the use of the knowledge elements in the knowledge
base. It is independent of the domain. The inference engine takes care of the
recognition task of Figure 3.9. A major issue is to perform the recognition task
effectively instead of checking every rule when new facts have been produced.
Therefore several search strategies have been developed, each with its specific
character with regard to robustness and completeness; see Section 3.3.4. That section
also deliberates about the possibility to deal with uncertainties.

To perform well, the inference engine also maintains the actual memory status. It
recollects which facts have been defined and which have been derived, which rules
are on the agenda and which have been fired or skipped, etc.. This is important to re-
run the reasoning process when the user has come to a dead end, for example
because a less appropriate rule has been fired.

The action task in the RBR cycle of Figure 3.9 concerns the solving of the
relations which are represented by the (set of) rules. Sometimes the set of relations is
solved after the network of rules has been completed. However, the solving process
may also be performed simultaneously with the generation of the network of rules,
for example when the recognition task depends on the parameter values of new facts.
Therefore a solver is often integrated with the inference engine.

Via the user interface, the user is able to control the inference engine, and to select
the most appropriate rule of the agenda when this is not automated (Figure 3.9). The
user interface also displays the activities within the RBR system, which is necessary
for the user to understand the reasoning process and give the appropriate input. The
user interface should eliminate the "black box" image of the system, which is
important to be accepted by new users. 

When the selection task is automated, the RBR system assumes a "closed world"
situation. That is, the knowledge base is supposed to cover all the knowledge
required to solve a problem. This puts much emphasis on the knowledge acquisition
phase when developing the knowledge base. As a result a RBR system is useful when
the knowledge is well restricted and stable. When common sense is critical, a RBR
system is not practical since such knowledge is hard to formalize. 
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3.3. Rule-Based Reasoning
3.3.3 Knowledge representation

As has been mentioned before, the rule is the most common format for Expert
Systems to represent the domain knowledge. Within such rule three basic elements
can be distinguished [Gevarter, 1987]: 
• the ’object description’: the declarative knowledge such as facts which are

described in the antecedent- and consequent-part of a rule;
• the ’actions’: the procedural knowledge which describes how to change a

situation or to modify the data-base;
• the ’certainties’: some systems allow reasoning with validity or reliability, for

which these labels are preserved.

Other common variants on the rule format include semantic nets and frames
[Giarratano et al., 1989]. Semantic nets contain propositional information, i.e.
statements which can either be true or false. As such the information represented by
semantic nets can not be as rich as represented by rules. The structure of a semantic
net is shown graphically in terms of nodes and arcs which connect the nodes. The
nodes represent the ’object description’, as mentioned in the previous paragraph, and
the arcs represent the relations between them. When a semantic net of a family is
considered, for example, the arcs represent relationships such as ’is_mother_of’,
’is_brother_of’, etc., while the nodes represent the individual family members. A
semantic net provides a convenient way to visualize relationships and can easily be
used for inference. However, its expressive power is limited, especially when it gets
too large.

While the semantic net is basically a two-dimensional representation of
knowledge, a frame adds a third dimension by allowing the nodes to have structures.
These structures can be simple values, rules or other frames. Frames can be used to
represent typical objects, i.e. stereotypes, by assigning default values to some slots as
well as by making use of inheritance. This is a basic characteristic of frames: that it
represents related knowledge about a narrow subject which has much default
knowledge [Giarratano & Riley, 1989]. Mechanical objects such as cars are well
suited for this kind of representation, with its standard components such as the
engine, brakes, wheels, etc.. Frames have a higher expressive power and can also be
considered more general than simple rule-based knowledge representations.
However, when there are too many exceptions of the stereotypes, frames are less
effective.

3.3.4 Inference engine

The purpose of the inference engine is to recognize rules which seem applicable for
the set of facts, and when the selection task is automated the inference engine also
decides which rule to execute or fire. The execution of a rule, i.e. the action task, is
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3. AI and design
usually also controlled by the inference engine, involving constraint solving
techniques. 

To recognize rules effectively several search strategies have been developed [Steels,
1992]. The ’depth-first’ and the ’breadth-first’ strategies are blind search strategies.
Figure 3.11 visualizes these strategies for a goal-driven or backward reasoning
process. The depth-first strategy tries to arrive at an end-hypothesis as quickly as
possible, moving directly onwards to the next rule when a hypothesis is accepted.
With the breadth-first strategy first every possible hypothesis is considered before
moving to the next rules. 

These blind search strategies only use the syntax of the rules and the data to suggest
hypotheses. With so-called heuristic search strategies also domain knowledge is
applied. The ’hill-climbing’ method is an alternative of the depth-first strategy. It
uses an evaluation function to determine which end-hypothesis is most promising.
The ’beam search’ method is an alternative of the breadth-first strategy. Only the
best of all possible hypotheses are considered before moving to the next rules.
Defining criteria for the determination of the best hypothesis can be rather
complicated, though.

As has been mentioned before, RBR is suitable for problem domains which are well
defined, well formalised and stable. However, research is carried out to use RBR in
combination with fuzzy logic to cope with uncertainties and probabilities [Steels,
1992] [Gevarter, 1987].

Another task the inference engine usually controls, is the action task which leads
to new facts. This involves the solving of the relations which are represented by the
rules. The relations may be solved one-by-one, at the moment they are fired, or
solved as one set when the network of rules has been completed. When the network
of rules has been generated, the solver is called upon every time the input parameter
values of the network are changed. A changed value can make a rule invalid. In that
case the inference engine rejects the rule and has to search for other, valid rules to
restore the network.

depth-first strategy breadth-first strategy

Figure 3.11. Depth-first and breadth-first search strategies.

data

rule

(fact/ derived fact)
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3.3. Rule-Based Reasoning
3.3.5 The action task: solving the relations and constraints

When the rules in RBR are expressed as constraints, the action task in the RBR cycle
has to find a solution that satisfies the complete set of constraints. If no appropriate
solution can be found, the constraint problem is called over-constrained When
multiple parameter value ranges are possible the problem is under-constrained, in
which case an optimization function may be applied to find the preferred solution.

The problems involved in solving the set of constraints depend on the type of
constraints. Next several characteristics are mentioned.

One characteristic is the direction of the constraints. A constraint can be
unidirectional, bidirectional or multidirectional. In a unidirectional constraint one
variable is determined by the other variable(s), i.e. there is a master-slave relation
between the variables.

Another issue which may complicate the constraint solving is that the set of
constraints does not have to represent a hierarchical tree. This can be caused by two
unidirectional constraints which direct the same variable, i.e. when two master-slave
relations share their slave-variable. A change of one master-variable may result in a
modification of the slave-variable which is conflicting with the constraint with the
other master-variable. The complexity of constraint solving methods is also
increased when constraints are bidirectional (or multidirectional when more then two
variables are involved), implying that there is no master-slave relation between the
involved variables. This may lead to ambiguities or several appropriate variable
domains that satisfy the constraint set, especially when multidirectional constraints
are involved.

Another complication arises when three or more (unidirectional) constraints
generate a loop between the variables, i.e. variable a depends on variable b which
depends on variable c which depends on variable a. 

Figure 3.12. Examples of constraint combinations resulting in a non-hierarchical
structure.

Many constraint solving techniques have been developed. In [Dohmen, 1995] a
comprehensive summary is presented of the most common, general constraint
solving techniques. The two main types of solving techniques are mentioned:
simultaneously solving techniques and local propagation techniques.

In simultaneously solving the constraints are usually expressed by algebraic
relations, which are solved simultaneously with numerical methods. In these
techniques it is iteratively tried to find approximations of the variable values, using

two unidirectional constraints, 
sharing one slave parameter

two bidirectional constraints three unidirectional
constraints forming a loop

parameter

constraint
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3. AI and design
initial starting values and a convergence criterion. Well-known examples are the
relaxation methods, the Newton-Raphson iterations and the Simplex technique.
These solving techniques are able to deal with loops of constraints.

In local propagation techniques the constraints are explored one by one, from one
variable to another. Searching techniques can be employed to determine a suitable
path in the constraint network, i.e. the ordering of the constraints, and to find the
appropriate variable domains or values. Loops can usually not be handled by local
propagation techniques.

Before one of these two main solving techniques are applied, one can try to
simplify the constraint solving problem. By symbolic algebra techniques the set of
constraints may be formalized into another set which is expected to be easier to
solve. Or the constraint set can be divided into more or less independent sets, to be
solved by either of the techniques.

3.3.6 The role of RBR in design

As has been mentioned in the introduction of this chapter, the if-then-scheme of
Rule-Based Reasoning seems to be applicable for every step in the design cycle of
Figure 1.1: to suggest a new artefact or refinements, to predict its performances, to
evaluate these predictions and to propose modifications. 

However, this chapter has also revealed the limitations of RBR. For practical
applications, the problem domain should be restricted and well defined, and the
domain knowledge should be well formalised and stable. 

These critical notes reduce the applicability of RBR in design considerably. In
Section 3.2.9 the three main categories of design have been mentioned: routine
design, innovative design and creative design. 

In the area of creative design RBR does not seem to be usable due to the open
character of the problem domain. An open domain is essential for creativity, but is
impossible to be covered by a knowledge base. Only the evaluation task of the
design process, i.e. comparing the required with the predicted performances, may be
supported with RBR techniques.

In innovative design the problem domain is known, but the problem-solving
strategy is not.This makes it still hard to use RBR techniques for generating data,
such as suggesting a new artefact or refinements and proposing modifications. But it
seems possible to support the data evaluation step and to predict the performances.
The issues of knowledge acquisition and knowledge formalisation are critical,
though. To be of practical use the problem domains should still be as small as
possible.

On the other end of the spectrum is routine design. All required knowledge is
known in advance, hence even the first phase in the design process, suggesting a new
artefact seems possible to be supported with Rbr techniques. In general these steps
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3.4. Geometric representation
are based on simple heuristics and rules-of-thumb. The issue of knowledge
acquisition should not be underestimated, though.

3.4 Geometric representation

3.4.1 Introduction

A geometrical model describes the 3D geometry of an object. When a geometric
description has been generated, it can be visualized, hence providing some form of
feedback to the designer of the object. From a geometrical model also physical
properties can be deduced, such as the volume, weight, centre of gravity, etc..
Furthermore a geometry can give some insight in the manufacturing of the object. So
it is clear that geometry modelling is essential in the design process. 

Therefore much effort has been spent on the area of geometric modelling. Several
techniques have been developed, such as surface and solid modelling. As the name
suggests, surface modelling focuses on the shape of surfaces. A 3D object can be
presented by a set of surfaces. The validity of the resulting 3D object is the designers
responsibility. This includes preventing gaps between surfaces, keeping track on
which side of the surface the object extents, etc.. In solid modelling the modeller
takes care of these issues and offers solid modelling operations that affect the 3D
shape directly, such as union, difference and intersection. Therefore a solid modeller
is much more complex than a surface modeller. In Section 3.4.2 both techniques are
reviewed. 

To be able to change a geometric model relatively easily, the technique of
parameterised modelling can be applied. In this technique, parameters are used to
specify and manipulate the topology and geometry of a model. These parameter
values can easily be varied, resulting in an altered topology (for instance altering the
number of holes in an object) or a changed geometry (i.e. changed dimensions such
as the length and width of an object). Some changes may involve a new
interpretation or construction of the shape definition. Section 3.4.3 examines this
technique further. 

To offer more flexibility, constraint modelling techniques have been developed.
With constraints the geometry can directly be defined by specifying relations
between geometric elements, such as parallelism and distances between faces. Also
higher level parameters can be used, such as the volume of an object. Constraints are
specified in a declarative way, which requires a separate solver to keep all constraints
satisfied, i.e. maintain the validity of the model. Issues involved in the constraint
satisfaction are discussed in Section 3.4.4. 

The last decade shows the development of feature-based modelling techniques, to
give the designer even more support. Features can represent geometric entities such
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3. AI and design
as holes, slots, roundings, etc.. On top of that features also contain the functional
meaning, engineering significance or context of such an entity. With features the
syntax of a geometric entity is extended with semantics. For example the geometric
entity "hole" only has a meaning if it is completely surrounded by material. When a
hole is defined in an object, the feature-based modeller checks for this condition. But
features can contain much more than geometric information only; their purpose is to
capture the designers intent [Shah & Mäntylä, 1995]. 

Because of this feature-based modellers are not considered in this thesis. Instead,
some words are spent on the discussion of the geometric modelling techniques and
the (general) constraint-based modelling techniques. Together with a brief summary
this is described in the last section about geometric representation, Section 3.4.5.

3.4.2 Methods to specify geometry

As has already been mentioned in the previous section, two methods can be
distinguished to specify a 3D object: surface modelling and solid modelling. In this
section some technical details about both types of modellers are summarized. In
addition alternative representation techniques are mentioned which have been
developed to support the user input. Internally these alternative representations are
transformed into one of the two model types. 

Surface modelling

In surface modelling the surfaces are defined by mathematical descriptions. Several
surface shapes are possible, resulting from different descriptions: 
• linear surfaces, such as polygons; 
• quadratic surfaces, such as cylinders and spheres (usually implicit equations); 
• free-form surfaces, such as Bézier, B-spline and NURBS (Non-uniform rational B-

spline) surfaces (parametric representation). 

Bézier, B-spline and NURBS surfaces can be defined with the aid of supporting
points. By using these points the user is able to define complex curved surfaces
without having to deal with the underlying mathematics. These mathematics show a
parametric representation instead of implicit equations, which offer more flexibility
with regard to translations and deformations [Farin, 1990]. 

A surface can also be split up into smaller surfaces, called patches. Large, curved
surfaces can exactly be modelled with free-form patches, or well approximated with
simpler linear patches. 
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3.4. Geometric representation
Solid modelling

A solid modeller cares for the validity of the constructed 3D objects, and offers
typical "solid modelling" operations such as union, difference and intersection, but
also blending operations such as rounding of edges. Two types of solid
representation techniques can be distinguished [Bronsvoort & Post, 1993]: 
• Boundary representation (B-rep) 

B-rep defines a solid by its boundaries, i.e. its boundary surfaces. The surfaces
can be defined as described at "Surface modelling" in the previous paragraph. In a
B-rep such surfaces are called faces, which are bounded by edges on each side,
which on their turn are bounded by vertices on both ends. A topological data
structure is maintained, representing the relations between these elements. Figure
3.4 makes this clear.

Figure 3.13. Boundary representation of (a) a quad-surface (4 faces); and (b) its
topology. 

• Constructive Solid Geometry (CSG) 
With CSG, an object is constructed from primitives such as blocks, cylinders and
spheres. The general way to define these primitives is by so-called half-spaces. A
half-space splits the space into two by a surface and with material on one side.
The half-space is defined by the mathematical description of the surface, usually
linear or quadratic, and an indication which half of the space is implied. A
primitive is defined by the intersection of several half-spaces. Figure 3.5 shows
the definition of a cylinder by three half-spaces.
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3. AI and design
Figure 3.14. Representation of a CSG primitive (a cylinder) by half-spaces. 

Additional input representations

To support the user, alternative input representations have been developed.
Internally, however, the modeller will use its surface or solid representation. 
• input by a cloud of many 3D points 

Such input is for example generated by measuring existing free-form shapes. By
interpolation of the measured points and smoothening techniques it is tried to
deduce the original, existing surface. 

• input by 2D drawings 
A 2D-3D conversion is for example required to generate a 3D model from 2D
technical drawings. Because explicit information about faces, edges and vertices
is usually not available, this may result in multiple interpretations of the 2D
drawings. Therefore interaction with the user is usually required. 

• input by procedures 
A shape can be defined indirectly by a procedure instead of directly, which
requires only a small amount of geometric data. Typically the methods of cross-
sectional design belongs to this category. Sweeping is a good example of such a
method. With sweeping a shape is generated by moving a 2D closed curve (cross
section) along a trajectory which is a 3D open or closed curve. Validity problems
arise when the shape intersects with itself. 

• modification by shape operations 
An initial model can be modified or extended to add details. Examples are the
smoothening of discontinuous transitions between surfaces and rounding edges,
which are called blending operations. Other types of shape operations can be used
to compose complex shapes from elementary shapes, without changing its
topology. Bending and twisting a geometry are such operations. 
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3.4. Geometric representation
3.4.3 Parameterised geometry

To facilitate the modifying of a model, its dimensions can be associated with
parameters. The length and width for example can easily be varied by changing the
parameter values, instead of changing the values inside the model definition. In
addition it is possible to define relations between parameters. 

Also the construction of models is made easier by using parameters. Geometric
primitives are assembled to compose standard entities which represent objects or
parts of objects, such as bolts and screws or specially shaped holes (this is in close
resemblance with feature-based modelling). These parameterised entities are
collected into a library. When constructing a new model, the user can select a
parameterised entity and provide it with particular parameter values. This particular
entity in an object is called an instance; the parameterised entity in the library is
called the generic entity. If the generic entity is modified afterwards, the instances
will change accordingly. 

Generally, three types of parameters can be distinguished: 
• position and orientation parameters 

An entity has six degrees of freedom (dofs): three dofs referring to the position in
the 3D space and three dofs referring to its orientation. Hence with six parameters
the position and orientation of an instance are defined. 

• geometrical parameters 
The geometrical parameters define the dimensions of the entity, such as lengths,
widths and diameters. 

• topological parameters 
With topological parameters a pattern can be defined, such as the repetition of
instances in an object. A pattern is parameterised by one or more integer variables
that control the number of instances in the pattern, and one or more real variables
that specify the distances between them. 

One of the major benefits of parameterised modelling is that the parameters of one
instance can be related to those of another instance. This is very useful when
composing parts from several entities. This offers a flexibility which is explained in
Figure 3.15. 

Figure 3.15. Effects of relations between parameters of several entities. 

(a) object composed of two 
entities: "rounded block" and 
"hole".

(b) changed "rounded block" 
dimensions, independent "hole".

(c) changed "rounded block" 
dimensions, dependent "hole".
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3. AI and design
Figure 3.15 shows that different kinds of parameter types can be related to each
other, in this example geometrical as well as position parameters. The relations
introduce a master-slave dependency between parameters: in Figure 3.15.(c) the
position parameter of the hole is dependent of the width parameter of the rounded
block. In its simplest form all these relations together can form an hierarchical tree
(e.g. a scene graph) where modifications of the root parameter will affect the
parameters at the leaves, but not the other way around. The modifications are
propagated in a unidirectional way. Hence the designer should already have an idea
of possible modifications when defining the relations between parameters. 

Although the user does not necessarily make a distinction between the different
types of parameters, the modeller does. When topological parameters are modified,
the modeller has to redefine the geometry, i.e. generate a new topological data
structure. Modifications of dimensional parameters do not require a new set-up of
the topological data structure, although the structure may have to be changed due to
for example new or lost intersections of surfaces. 

3.4.4 Constraint-based geometry

A constraint defines a relation between parameters that should be satisfied. For
geometric applications, constraint-based modelling can be regarded as an extension
to parameterised modelling.  The main difference is that the maintenance of the
constraints is performed separately, by a constraint solver. Constraints are expressed
in a (more) declarative way, which makes it also possible to deal with for example
non-hierarchical constraint structures, as opposed to the simple hierarchical trees as
mentioned in the previous section

Several types of constraints exist, representing different types of relations. There are
constraints with an algebraic character, which are for example used to express
physical relation between the stiffness of an object and its dimensions. 

Geometrical constraints form a special kind of constraints. Typically they involve
the position and orientation of entities with respect to each other, such as parallel
surfaces and touching of entities. In addition geometric modellers have often
implemented efficient algorithms for the determination of geometrical parameters,
such as the volume and the centre of gravity of objects. Such parameters can be used
in the (geometrical) constraints.

The issues involved in satisfying and maintaining the constraint sets are referred to
as constraint satisfaction problem (CSP) issues [Dohmen, 1995]. In Section 3.3.5
some of the main characteristics of CSP have already been mentioned, in the context
of Rule-Based Reasoning. Identical issues play a role in Geometric Modelling. In
addition specific geometric constraint solving techniques have been developed. The
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3.4. Geometric representation
implementation of these dedicated techniques differ much from the more numerical
oriented constraint solving techniques.

Another term which is often used in the framework of constraint solving and
parameterised modelling is variational modelling. In general, variational modelling
seems to be more related to CSP than with parameterised modelling. Because of the
many different interpretations of the term, and the minor significance of these
differences to this thesis, the term variational modelling will not be used here.

3.4.5 Discussion 

The previous sections have shown that many methods are available to model a
geometry. They range from explicit specifications which do not offer much
flexibility, to the higher-level specifications with declarative constraints. The higher
flexibility is usually gained at the cost of increased overhead work. The declarative
constraints, for example, require a separate solver to maintain the validity of the
geometric model. Because of this flexibility, constraint-based modelling techniques
can be very useful for supporting the design process. 

As has been mentioned in Section 3.4.4, algebraic relations can be implemented by
constraints, such as engineering (functional) relations, but also geometric relations
such as parallel surfaces. In the ideal design environment both constraint types
should be satisfied by one solver. However, the implementation differences between
physical constraint solvers and geometric constraint solvers are (still) too large. A
combined solver is currently not available.

A practical alternative is to integrate the two different solvers as much as possible.
Therefore the communication between both solvers should be facilitated; see
[Dohmen, 1995].

When reflecting Section 3.3, it is obvious that there is much resemblance between
(general) constraint-based modelling and the Rule-Based Reasoning (RBR)
techniques: the if-then-rules also represent (engineering) relations in a declarative
way. The RBR techniques focus more on the generation of the network of relations,
though, whereas constraint solving techniques focus on the solving of the constraint
set, i.e. the network. 
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4 Concept of the AIDA system

4.1 Introduction

The goal of the AIDA-tool is to support the designer in the conceptual design of
aircraft: one or more feasible aircraft concepts are generated which are supposed to
satisfy the design specifications. A concept describes the aircraft configuration and
its primary dimensions and characteristics.

The background information which lead to the set-up has been described in the
previous chapters. 

In Chapter 1, design theory has been discussed. It is argued that the design process
is a non-deterministic process: a one-to-one relation between the design problem
(performance specifications) and the design solution (artefact) does not exist. That
is, the artefact can not inevitably be deduced from the specified performances.
Instead the design process is an iteration process, continuously running through the
design circle of Figure 1.1: suggesting artefacts and/or refinements, predicting its
performances, evaluating the performances, proposing modifications, etc.. 

In Chapter 2, the characteristics of the conceptual design of aircraft are described.
It described the kind of design decisions which are taken, such as discrete decisions
about the aircraft configuration and continuous decisions about the magnitude of
dimensions. Also the kind of arguments on which they are based have been
examined. Because there is no direct link between the aircraft configuration only and
the functional performances, many decisions are based on experience. The
experience is available by means of empirical relations, statistical tables and existing
designs.

Once an aircraft configuration is suggested together with some primary
parameters such as the weight and wing shape, some explicit, simple relations
become accessible to perform a first prediction of the aircraft performances. Good
knowledge about the reliability and accuracy of those relations is required to
evaluate these predictions. Then the designer is capable to close the first design cycle
by proposing proper modifications.

In Chapter 3, some Artificial Intelligence techniques have been examined which
are able to support these specific design tasks. 

Based on the first three chapters, the next aspects within the design process are
regarded to be suitable for support by the AIDA system:
• generating initial aircraft concepts which form a reasonable starting point for

modifications;
• performancing parameter studies in order to propose modifications of the initial

concept; 
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4. Concept of the AIDA system
• modelling the concept to visualize it for a better understanding of the designed
concept.

In the AIDA system the supporting activities are implemented in separate modules.
Hence the three above mentioned aspects are supported by three modules:
• a Case-based reasoning (CBR) module, to generate an initial concept

This module is implemented in an existing tool, developed by Netten as part of the
EADOCS project [Netten, 1997]. It is described in Section 4.3.

• a Functional module, to predict the performances of the concept
This module is also implemented in an existing tool: QUAESTOR, which has been
developed by Van Hees [Van Hees, 1997] using Rule-based reasoning (RBR)
techniques. Section 4.4 describes this module.

• a Geometrical module, to generate a 3-D model from the concept data
This module is implemented with the commercial software package Pro/Engineer
[PTC, 1999], a feature-based modeller. The implementation is described in
Section 4.5.

To clarify the roles of these three modules, they can be placed in the design cycle of
Figure 1.1 according to Figure 4.1. With the CBR module a case (or a combination of
cases) is suggested which contains basic data about an artefact. This basic data is
enough for a first set of predictions supported by the Functional module. The
Geometrical module transforms the basic case data into a 3-dimensional model,
which is used for a visual evaluation. Together these three modules help to complete
the data of an artefact, comprising structure, behaviour and function data. 

The next section elaborates more about the general set-up of the AIDA-project.

Figure 4.1. A rough indication of the supporting roles of the different AIDA
modules within the design cycle.
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4.2. General set-up
4.2 General set-up

In Chapter 2 the conceptual design of aircraft has been analysed and several design
tasks have been distinguished. These tasks are suitable to be implemented by
different AI techniques, which have been described in Chapter 3. In the AIDA-tool
each technique has been implemented in a separate module. Four modules have been
developed:
• Case-based reasoning (CBR) module

In this module CBR-techniques are applied to generate an acceptable initial
aircraft concept, which can be modified to get a feasible aircraft concept.

• Functional module
This module uses RBR-techniques to perform sensitivity studies on the primary
parameters of the aircraft concept. With these studies the initial concept is
modified into a feasible aircraft concept.

• Geometrical module
This module automatically generates a solid model of the concept, using feature-
based techniques. 

• Central user interface (CUI)
This module handles the data communication between the modules.

A scheme of how these modules are connected to each other is sketched in
Figure 4.2.

Figure 4.2. Modular set-up of the AIDA-tool
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4. Concept of the AIDA system
First, the user defines the design specifications. The specifications vary from design
problem to design problem. They usually consist of performance specifications, such
as the minimum range with a certain payload or the minimum cruising speed, and/or
topology specifications, such as a specific type of engine, and/or geometrical
specifications, such as the maximum span (because of airfield category).

With the Case-based reasoning module the experience of previous aircraft designs is
used to make some initial design decisions. The module searches for existing aircraft
in the case-base which resemble the design specifications. It rearranges the order of
the cases according to their similarity, and the users selects one of them.

In addition to the selection of a case, the Case-based reasoning module is also
used to adapt the selected case. That is, to mix data of more cases in order to improve
the similarity with the design specifications. At this design phase the focus is on the
discrete data, i.e. the topology, such as the number of engines, the type of engines
and the type of tail.

The implementation details of the Case-based reasoning module is described in
Section 4.3.

The selected (and adapted) case serves as the starting point for rest of the design
process. Important topological choices have been made, and some continuous
parameters have been given an initial value. The provided level of detail of the data
enables the use of some basic empirical relations. With these relations the solution
space can be explored, so that appropriate modifications on the selected case can be
applied.

The Functional module supports the designer with these modifications. Using
rule-based reasoning techniques, the module provides a flexible way to apply the
appropriate empirical relations for a wide variety of design problems. A network of
these relations is built interactively with the designer. 

This module is implemented with QUAESTOR [vanHees,1997], a numerically
oriented expert system which has been developed for conceptual ship design. More
details are described in Section 4.4.

An important aspect of the AIDA-tool is the visualization of the aircraft concept.
This is handled by the Geometrical module. The module automatically generates a
geometric model of the aircraft, using pre-defined standard elements. The set of pre-
defined aircraft parts determine which topologies can be visualised. The variation of
continuous dimensions is limited by geometrical constraints. 

The module is implemented in the feature-based solid modeller Pro/ENGINEER
[PTC,1999]. The module is described in Section 4.5.

A practical issue is the communication between the modules and between the
modules and the user. Because the described modules are implementations of
independently developed tools, they use different data-formats. The Central User
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4.3. Case-based reasoning module
Interface module takes care of this problem by leading all communication via this
module. 

Also, some user-interface requirements are not supported by the individual
modules. For example the presentation of specific parameter studies can not be
handled by the Functional module. These extra presentation tasks are incorporated
by the Central User-Interface module.

The details of this module are described in Section 4.6. This module was
developed in VisualC [Schipperijn, 1998]. 

4.3 Case-based reasoning module

4.3.1 Tasks

The CBR module supports the generation of an initial aircraft concept. This initial
concept is used as an acceptable starting point for the modifications by the
Functional module, and contains the information required to build the solid model in
the Geometrical module. 

This initial concept is considered acceptable when it is thought to be (more or
less) easily modified to fulfil all design specifications. Therefore this process is
guided by the set of specifications.

The generation of the initial concept involves choosing an appropriate aircraft
configuration, as well as making appropriate estimations of some primary
dimensions. Hence this concerns the quantification of discrete as well as continuous
parameters. 

4.3.2 Implementation of case-based reasoning technique

Case-based reasoning techniques are used to generate the initial aircraft concept.
This technique has been chosen because its characteristics as are mentioned in
Chapter 3.

An important characteristic is that each case in the case-base embodies a direct
link between Function, Behaviour and Structure data. Using these links enables it to
apply the relations between the data, without knowing them explicitly. With this
black-box approach it is possible to propose an initial aircraft concept based on the
design specifications only, avoiding the complex evaluation of all arguments. It is a
technique to reuse the design experience which is implicitly contained in existing
aircraft.

Another aspect of CBR is that new experiences can be added in the form of new
cases. This can be considered as a way of learning.
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4. Concept of the AIDA system
The strategy used for the CBR module is to first retrieve a ’best-matching’ case
completely, and, when needed, to reuse parts of other cases for adaptations.
Adaptations are particularly intended to change the configuration, i.e. to modify the
discrete parameters. The adaptation enables the combination of all kinds of aircraft
configurations which are collected in the case-base.

Combining parts of cases introduces inconsistencies within the adapted case,
however. That is, the relations between the data of the adapted case become invalid.
Hence the adapted case has to be evaluated first before next adaptations can be
usefully applied.

The CBR module used for AIDA has been developed by Netten as part of the EADOCS
project [Netten, 1997]. This tool supports the conceptual design of fibre reinforced
composite sandwich panels, using constraint-, case- and rule-based reasoning. Only
the component which implements the case-based reasoning technique has been used
for the AIDA project.

The CBR module maintains a database with cases, the case-base. Each case is a
description of the Function, Behaviour and Structure of an aircraft. The aim of the
CBR module is to support the choice of a case from the case-base that best matches a
set of specifications put forward by the designer. These design specifications in
general relate to the Function parameters, but may also describe Behaviour and
Structure parameters. This set of design specifications is collected in the so-called
target-file. The parameters used in the target-file (partly or completely) correspond
with the parameters in the case-files. The similarity between a case and the target is
determined by the number of matching parameters and their values of both files.

A kind of qualitative matching is applied by using parameter domains instead of
their exact values. For each parameter a number of domains is defined, which
discretisizes the global range of its values. For example a parameter p2 which can
only be positive, can be linked with the domains [0,0.1), [0.1,0.5), [0.5,1.0) and [1.0,
∞). These domains may be associated with a ’small’, ’moderate’, ’large’ and
’extreme large’ p2. A case has a similarity for a certain case parameter when the
parameter value is within the same domain as the user-specified parameter value in
the target-file. Figure 4.3 shows the matching between target parameter p2=0.8 and
the case parameter p2=0.7. For this case there is no matching for parameter p1 due to
different domains, and no matching for parameter p3 because the case does not
contain that parameter. 

The number of parameter domains of target and case that match, is a measurement
for the similarity between the case and the target. The cases are ranked according to
their similarity scores. For example case 3 in Figure 4.4 has a better similarity score
than case 2 and case 1, having two matching parameter domains compared with one
and zero respectively. 
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4. Concept of the AIDA system
The designer generally chooses the case with the highest score, since this case is
assumed to be most promising in satisfying the design specifications. However, it
may also be advantageous to choose a case with a lower score but which seems to
provide more flexibility towards modifications in order to satisfy the design
requirements.

Note that the case-files may contain different sets of parameters. This is because the
description of different configurations can involve different parameters, or because
some parameter values of the cases may be unknown to the developer of the case-
base. 

Another aspect which is shown by Figure 4.4 is that the parameter set of the
target-file does not have to correspond with the parameter sets of the case-files. It is
even reasonable that the target-file consists of fewer parameters than the cases,
because the purpose of the CBR-module is to retrieve a complete case from the case-
base, including Function, Behaviour and Structure parameters, while the target-file
contains the design specifications which in general consists of Function parameters
only.

The process of choosing a case that best matches the target specifications contains
the following steps:
• collecting the case-data

First the data of cases have to be collected and put into case-files. It is important to
define the case-parameters unambiguously to be able to compare the data.

• defining the parameter domains
Per parameter the global range of values is discretisized into a number of
domains.

• indexing the case-files with respect to the parameter domains via the case-data
Based on its parameter values, each case-file is linked with a number of parameter
domains. First the relevant parameters are identified, then the fitting domains are
labelled. The process of identifying the relevant parameters is assisted by a
hierarchical classification structure of the parameters.

• indexing the target data with respect to the parameter domains
Like the previous step, the target-file is associated with a number of parameter
domains. The target data is organized in the same classification structure as the
case-data, for the same reasons. In addition each target object has been given a
priority number to be able to express different importances of the matchings.

• measuring the similarities between the target set and the cases 
The similarity score of a case depends on the number of (parameter domain)
matchings between the case and the target set. These matchings are identified by
the links between the target file and the parameter domains, and between the case-
files and the domains. 
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4.3. Case-based reasoning module
The similarity score is expressed by a number between 0% and 100%. When a
case has a similarity of 100%, each parameter value of the target set matches with
a parameter value of the case; i.e. share the same parameter domain.

The similarity score also depends on the classification structure of the
parameters. First the score is determined per target object, that is per group of
parameters which belong to one class according to the classification structure.
This score determines the so-called local similarity. The global similarity score of
a case is the weighted average of all local similarity scores of that case. The
weight of a target object is set by the priority number, to express the importance of
the group of parameters.

• ranking the cases according to their similarities
The matching results are shown to the designer by a list of cases with their global
and local similarity scores, i.e. with their similarity with the total target set and
with the target objects, respectively. The weighted average of the local scores
directs the global score of a case.

• select a case, usually the best-matching case
The designer selects a case. Usually this is the case with the highest global score,
but the designer may choose another case which offers more flexibility for
adaptations and modifications in next design steps. 

Usually the designer adjusts the target-file several times in order to better understand
the influence of the different target parameters and the priority numbers. 

To speed up the matching process, some pre-processing work is done before the
CBR-module is applied. This work consists of the creation of an indexing network
between the case files and the parameter domains. The network is used to efficiently
count the number of matchings between each parameter domain and the case-objects
and the cases. The indexing mechanism is based on the classification structure and
the spreading of the case-data among all the parameter domains, such as depicted in
Figure 4.4. Figure 4.5 shows the position of the indexing network. The objects are
the instantiations of classes from the classification structure.

When the indexing network has been created, the designer defines the target file.
The CBR-module searches for matching parameters and domains, and determines the
similarity scores per case and per case-object.
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4. Concept of the AIDA system
4.3.3 Case representation

Each case contains data which allows to compare aircraft and to define a solid model
of the aircraft. The data is structured according to the Function, Behaviour and
Structure typology, as is described in Chapter 3. 

The aircraft model is described by Structure data; which parameters are used is
discussed in Section 4.5. It is tried to avoid dimensional parameters, such as length
and width, but to use non-dimensional parameters instead, such as length-width ratio
and surface area. The idea is that these parameters have more meaning to the
designer because they describe the shape and size of an artefact separately. 

However, cases do contain dimensional parameters such as length and width,
because they can be subject of comparisons. For example the (maximum) wingspan
can be specified. As a result, cases contain a lot of redundant information. The case-
base developer should be cautious for inconsistencies between the data. 

Behaviour parameters typically describe the qualities of the aircraft and its
components, such as the wing-loading (maximum aircraft weight / wing area) and
the maximum liftcoefficient. These parameters are very useful to compare aircraft,
and are often subject to parameter studies in next design steps. Because many of
these parameters are combinations of other parameters in the case, such as the wing-
loading depending on the maximum weight of the aircraft and the wing area, the
case-base developer should again be cautious to exclude inconsistencies.

Figure 4.5. Linking the target set with cases via the indexing network.
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4.3. Case-based reasoning module
Dependent on the design problem, the designer can be interested in any
combination of parameters. To be used for similarity measurements, however, these
combinations have to be defined in the cases already. So, the developer should know
which Behaviour parameters may be important when building the case-base. 

The Function data describe the performances of the aircraft, such as range and speed.
These parameters are usually specified in the set of design specifications, and will
therefore form the main portion of the target set. 

It is important to have equal conditions for each Function parameter in order to be
able to compare data properly. Other conditions may result in other performances.
This can be a problem, because the data sources such as the Jane’s collection [Jane’s]
do not always describe the conditions accurately. 

Each of these three main data-classes, i.e. Structure, Behaviour and Function, have
been decomposed into an object-oriented structure. 

The basis of the organization of the Structure data is the decomposition of the
aircraft into standard components. The class Structure is directly usable by the
Geometrical module, which is described in Section 4.5. Components with a lot in
common are classified as specializations of more general classes; for example wings
and tail surfaces are specializations of lifting surfaces. 

The object-oriented structure of the Behaviour and Function classes is based upon
related groups of parameters. That is, all weight parameters are put in a class called
Airplane_Weight, all speed parameters are put in a class called Speed, etc.. In
general, the purpose of this organization is purely to order all data. 

For some parameters there are also other reasons. Those parameters have such a
strong influence on each other, that they have to be considered together in the
similarity measurements. Examples are the range and payload parameters; without
knowing the payload it is not reasonable to compare the maximum range of aircraft.
The usual procedure is to define the range parameter in some standard situation, such
as at maximum payload or at maximum fuelload. However, when the sources do not
refer to these standards, it is useless to consider the range parameter only. The two
parameters range and payload have to be considered together, in pairs. This is
possible by labelling both parameters to the same class. Only when both payload and
range parameters of a case match the target set, the relevant case-object will score
100%.

4.3.4 Adaptation with the CBR-module

Based on the similarity with the target-file, the designer selects a case of the case-
base. Usually, this case does not meet all the specifications which are put in the
target-file. Parts of another case can be copied onto the initial case to improve the
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4. Concept of the AIDA system
concept. This is called adaptation. Figure 4.6 shows the strategy which is followed in
the adaptation procedure.

Four steps can be distinguished:
1. A ’best-matching’ case is selected based on the similarity of the specifications 

(mainly of Function data type) as defined in the initial target set.
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4.3. Case-based reasoning module
2. The specifications which are still unsatisfied by the ’best-matching’ case are 
copied to the adaptation target. Also data are copied from the ’best-matching’ case 
which are strongly related to the matching specifications. The result of this 
procedure is that from the adaptation cases which match the still unsatisfied 
specifications, the cases with Structure and Behaviour data similar to the best-
matching case are preferred. So the adaptation case does not only contain a similar 
problem description (Function), but also a similar solution description (Structure 
and Behaviour). The idea of this strategy is to keep the differences between the 
best-matching case and the adaptation case as small as possible. 

3. An adaptation case is selected which shows the best similarity with the adaptation 
target.

4. The adapted case is constructed from data of the best-matching case and the 
adaptation case. Most of the data comes from the best-matching case. Only the 
Structure and Behaviour data which is strongly related to the matching 
specifications of the adaptation case, is copied to the adapted case.

A major issue is which Structure and Behaviour data to copy from the best-matching
case to the adaptation target set; as mentioned in step 2. These data are strongly
related to the matching Function parameters of the initial target set. 

The idea behind this procedure is that the Function parameters represent the
problem description, and that the Structure and Behaviour parameters describe the
solution to the problem. A strong relation between parameters of these classes
indicate a relation between a sub-problem and a sub-solution. So when a case partly
matches the specifications in the target set, the Structure and Behaviour parameter
that are strongly related to the matching Function parameters will probably form a
sub-solution to the (design) problem. It is sensible to use this sub-solution as part of
the adapted case, i.e. the output of the CBR-module. Therefore it is also sensible to
search for adaptation cases which have as much in common with the sub-solutions as
possible. This will reduce the inconsistencies between the initial best-matching case
and the adaptation case as much as possible.

It is not evident to reveal these strong relations between the Structure, Behaviour
and Function parameters, however. They represent rules of thumb and are very
general, so have to be viewed with caution. Practically all parameters are related to
each other, and the designer should try to pick the strongest relationships.

Another issue is the inconsistency of the data of the adapted case, especially of the
data which do not seem to be important at this moment. For instance some Structure
data are required to model the aircraft concept in the Geometrical module, but are not
interesting to be reasoned about in this design phase. For example the longitudinal
location of the wing. Most of these data are copied from the ’best-matching’ case
without giving attention.

Some of these Structure parameters may have to be changed due to the proposed
adaptation, however, to remain being realistic. For example, the longitudinal location
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4. Concept of the AIDA system
of the wing will be more forward when engines are mounted on the wing, than when
the engines are mounted on the rear fuselage; this is caused by the change of location
of the centre of gravity. So, when configuration parameters are copied from the
adaptation case, other related Structure parameters have to be copied also. 

4.4 Functional module

4.4.1 Tasks

The CBR module has generated an initial aircraft concept. This concept may contain
inconsistent data, when it has been adapted, and will probably satisfy only part of the
specifications. The Functional module provides the means to analyse, evaluate and
modify the initial concept, in order to design a feasible aircraft concept. 

With aid of the Functional module the user generates a numerical link between
parameters, for example between the take-off distance (functional parameter) and the
wing area (primary structural parameter). With the link parameter studies can be
performed in order to choose feasible values for the primary parameters. 

In contrast to existing numerical tools, such as ADAS [Bil, 1988], the numerical
link does not act as a black box. The designer constructs the link himself, with
support of the Functional module. This module uses rule-based reasoning to suggest
the appropriate algebraic rules and to combine them into a numerical network. The
algebraic rules have been put in a knowledge-base in advance. They express the
heuristics and simplified physics such as collected in [Roskam, 1990] and
[Torenbeek, 1982]; an example is the well-known Bréquet range equation. 

Figure 4.7 shows a very simple example of such a numerical network.

Dependent on the completeness of the knowledge-base, the module can be used for a
wide variety of design problems. The designer selects which parameters are to be
calculated, and in close cooperation the module creates the numerical network. This
makes the module very flexible.

4.4.2 QUAESTOR: the implementation

The module is implemented in QUAESTOR [Van Hees, 1997], an expert governed
system for the assembly, execution and maintenance of parametric design models of
ships. This tool has been developed to support ship designers in the early phases of
design by improving access to and control over design related knowledge. 
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Figure 4.7 shows an example of a very simple numerical link. Figure 4.7 is called a
template in QUAESTOR-terminology. The template is constructed from three
types of elements:
• relations

A relation is a numerical expression in algebraic notation. That notation has to
be specified in the form: parameter=function(parameters); the left clause
should contain only one parameter, the right clause should contain a function
with zero or more parameters.

The relations implement the knowledge which has been made explicit, in
the form of definition formulae and empirical functions. Because empirical
functions are based on statistics, they have a limited validity. This is incorporated
by constraints.

• constraints
A constraint is coupled to one or more relations. Only when the
constraint is found to be True, the coupled relation will be considered as
an appropriate knowledge element.

A constraint is an expression which can be True or False. The syntax of
that expression is less strict than that of a relation; it may include inequalities
and logic operators.

• parameters
Every relation and constraint contains parameters. The relations are
selected because of the associated parameters; relations link parameters
to each other.

A parameters-value can be a number or a string. Parameters in the
template are either dependent or independent, i.e. they are calculated by
relations or they are input, respectively. Dependent parameters can be
divided into top-goal parameters and sub-goal parameters. The top-goal
parameters form the target of the link: they are the reason why the link is
constructed. The sub-goal parameters have been introduced during the
construction of the link and are necessary to calculate the top-goal parameters. 
77



4. Concept of the AIDA system
Figure 4.7. A QUAESTOR template, linking independent with dependent
parameters.

QUAESTOR uses rule-based reasoning techniques to construct the template. The
design engineer starts a QUAESTOR session by indicating which knowledge base to
use and which parameters have to be calculated, i.e. the top-goal parameters. With
backward-reasoning QUAESTOR suggests the relations which can be used to calculate
the goal parameter. That is, QUAESTOR searches the knowledge base for relations
which contain the goal parameter. A valuable characteristic of QUAESTOR is that also
those relations are suggested with the goal parameter in the right clause of the
algebraic notation. The design engineer chooses one of the suggested relations.

QUAESTOR also offers the possibility to use external applications. The external
application is considered as an external procedure, from which the input and output
parameters are fixed. Such an applications is considered to be a type of relation.
This makes it possible to use existing, reliable applications as part of the template.

The selection of a relation often introduces new parameters. When these
parameters are assigned to be dependent, they become sub-goals for which
QUAESTOR attempts to find appropriate relations. The design engineer can also
make them independent by directly giving them values, and QUAESTOR will focus on
the remaining new parameters. The construction of the template has been
finished when every parameter can be calculated or has been given a value, that is
when the number of selected relations equals the number of dependent (top-goal
and sub-goal) parameters. 
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4.4. Functional module
Already during the construction of the template QUAESTOR attempts to calculate
the parameters’ values. Only when the construction has been completed,
QUAESTOR is able to solve the entire template. The set of relations is solved by
using the Newton Raphson and the simplex methods. With these methods it is also
possible to deal with loops in the template. 

The designer can easily vary the values of the parameters by changing the input.
This makes QUAESTOR very suitable to perform parameter studies. The results of
such a study can be displayed in a diagram. QUAESTOR is able to display a diagram
for one template only. When the designer wants to put the results of several
templates in one diagram, he has to use other tools, for example the Central User
Interface. Therefore the QUAESTOR results can be written to external ascii-files.
These external files can also be used for other purposes, such as input data for the
Geometrical module.

It is possible to change dependent parameters into independent parameters,
by directly giving them a value. The other way around is also possible by removing
the input value. In these cases QUAESTOR will interactively modify the template to
face the new situation.

4.4.3 Working with QUAESTOR

An important issue within QUAESTOR is the suggestion of the appropriate
relations; this is called the design strategy (or template construction strategy or
control knowledge). In general, QUAESTOR searches in the knowledge-base for
relations which contain the current goal parameter. This general strategy is
influenced by local strategic knowledge. This local knowledge is coupled to the
knowledge elements in different ways:
• Each relation within QUAESTOR can be coupled to a constraint. Only when

the constraint is satisfied, the coupled relation can be suggested.
• Each relation within QUAESTOR has so-called control-attributes. With these

attributes the knowledge engineer can express how the relation should be used.
For example, that the relation should be used one-way only (to calculate the
parameter in the left clause), or that the relation is a physical relation instead
of an empirical relation (lower priority).

• Also each parameter has control-attributes to give information about its use.
These attributes for example express the range of values the parameter may
have, whether or not it should always be calculated or given by the design
engineer, etc..
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4. Concept of the AIDA system
So, within QUAESTOR three modes of operation can be distinguished:
• construction of the knowledge base

The knowledge base is built by knowledge engineers before a design session is
started. The knowledge engineer should be an expert in his domain, because the
control attributes of the knowledge elements affect the inference engine of
QUAESTOR. Several experts can build one knowledge base.

• construction of the template
A design engineer starts the construction of a template by selecting a
knowledge base and indicating one or more top-goal parameters. The design
engineer selects relations which are suggested by QUAESTOR, and QUAESTOR
builds the template. The design engineer should not change the contents of the
knowledge base, only use it. He does not need to be as experienced as the
knowledge engineer, but familiarity with the knowledge base is highly
recommended to construct the template efficiently.

• solving the template
While constructing the template, QUAESTOR attempts to solve the template.
This will succeed when the number of dependent parameters equals the number
of relations in the template. 

When a parameter is calculated, QUAESTOR evaluates if other parameters
in the template can also be calculated. When this is the case, QUAESTOR
continues this forward-reasoning process with the newly calculated parameter.

4.4.4 Implementation aspects of QUAESTOR

As has been made clear in the previous sections, QUAESTOR is only able to deal with
domain knowledge which is available in the form of explicit numerical relations.
Much of this knowledge has been formulated, collected and evaluated in [Torenbeek,
1984] and the Airplane design books of Roskam. When implementing this explicit
domain knowledge in QUAESTOR, some practical issues arise.

Overview of the template

The current version of QUAESTOR has a limited graphical interface. Schemes of the
template, such as Figure 4.7, are not created. These schemes would also become
very complicated when the template is built of hundreds of relations. This
makes it hard for the designer to keep track of the template construction process,
despite some textual-based support-facilities to present the (incomplete) template. 

Therefore, the design engineer should be familiar with the knowledge base when
constructing the template. 
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4.5. Geometrical module
Selecting the top-goal parameters

When the knowledge-base has been loaded, the design engineer has to select the top-
goal parameters. QUAESTOR does not support that task; the designer should know
which parameters are important to be subjected to parameter-studies. 

This is not a problem when a template is needed to transform any set of
geometrical parameters to the definition parameters of the Geometrical module.
In that case the definition parameters are the top-goal parameters.

Performing parameter studies

When the template is completed, parameter studies can be performed. The
designer can easily give multiple input-values for several parameters. For each
combination the template is calculated, and the results are presented in tables. 

When problems arise due to the changing values of parameters, for example
when a constraint is not satisfied, QUAESTOR notifies the designer but continues
without changing the template.

Showing the results

The results of the parameter studies are numbers, rearranged in tables. They can be
saved in external files in a specified format called Telitab [Van Hees, 1997].
QUAESTOR also offers the possibility to present the results in a graph. However, only
the results of one QUAESTOR session can be presented, i.e. the results accomplished
with one template. When the results of different templates need to be
compared, they have to be saved in external files and graphically presented by the
Central User Interface.

4.5 Geometrical module

4.5.1 Tasks

The main task of the Geometrical module is to generate a solid model of the concept,
in order to check for geometrical inconsistencies and to visualise the concept. The
visualisation improves the understanding of the (geometrical) numbers coming from
the case and/or the Functional module. 

The module can output the model in a number of formats: traditional two-
dimensional side-views, a rendered three-dimensional picture, and several graphical
formats. These graphical formats can be used by other, more detailed computer
programs for more complex calculations.
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4. Concept of the AIDA system
When the concept is modelled, some typical geometrical parameters can be
deduced, such as surface areas and centres of gravity. These parameters can be used
by the Functional module or in next design phases.

The model is generated with a minimum of user intervention, so that the designer
does not have to be an expert in the applied software. To automate the modelling
process, use is made of pre-defined standard components, such as the fuselage, wing,
engines, etc.. Also the way these components are located with respect to each other,
is pre-defined. 

It is possible to pre-define these geometrical constraints, because all possible
configurations are known in advance. This is because the configurations are
generated by the cases, which have already been stored in the case-base. 

4.5.2 Implementation in Pro/ENGINEER

The Geometrical module is implemented in Pro/ENGINEER, a feature-based solid
modeller [PTC, 1999]. With this commercial package solids are constructed from
engineering features, such as holes, protrusions, rounds, etc.. The way these features
are defined appeal to the designer’s intentions: for example a hole can be defined to
go through a solid, with its axis halfway one side of the solid. 

The features are combined into parts, which can be combined into assemblies.
The features are defined and located by parameters and by constraints between
parameters and features. With these relations Pro/ENGINEER is able to preserve the
consistency of the model when parameter values are changed.

Parameter values can be given directly by the user, or can be read from an external
file. When parameter values have been changed, the module will update the model
automatically. Error warnings will appear when inconsistencies have been detected.

The automatic generation of the aircraft model is feasible by the use of the Pro/
ENGINEER features, its assembly-part-feature hierarchy, the internal relations, and by
employing proper definition parameters.

In the Geometrical module the aircraft concept is modelled as a super-assembly
which consists of sub-assemblies. They represent the standard components such as
the fuselage and wing; see Figure 4.8. A sub-assembly consist of one or more parts.
In each part a standard component is defined differently, i.e. each part represents a
different component configuration. For example, a turbofan engine is defined
differently from a turboprop. A part is defined by features and relations between the
features. 

It is not possible to use the same part definition more than once with different sets
of parameter values. In that case the part definition has to be copied; see for example
the Straight tapered Wing, Hor_tail and Vert_tail in Figure 4.8. These parts are
defined by the same features.
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4.5. Geometrical module
Each feature requires a specific set of parameters. In an internal programming
language of Pro/ENGINEER explicit algebraic relations can be defined between
parameters. These continuous parameters can be altered as long as the relations are
not violated. The relations are defined at every level: super-assembly, sub-assembly
and part.

Changing the configuration of a component is a discrete operation on the sub-
assembly level. In the Geometrical module this is implemented by choosing a part
within a sub-assembly. Additional symbolic parameters are defined in the internal
programming language which represent a configuration choice, i.e. they indicate
which pre-defined parts to use. Logical expressions are used to suppress the
undesired parts. For example, when the type of engine parameter is set to Turboprop,
the part Turbofan is suppressed in the model.

Other discrete operations are the changing of the component locations with
respect to each other. These are operations on the super-assembly level. When the
engines are mounted on the wing, for example, the designer is interested in other
location parameters than when they are mounted on the fuselage. For efficiency the
previous ’suppress’-method is not applied to model different location definitions.
That is, within the aircraft model one set of parameters is used to define the
component locations. However, the designer can apply different sets of definition
parameters which are internally be transformed into the proper definition set, using
the internal programming language.

Aircraft

Fuselage Wing Engine

Rectangular
cross-sect.

Elliptical
cross-sect.

Straight
tapered Cranked Turbofan Turboprop

Hor_tail Vert_tail

Straight
tapered

Straight
tapered

Assembly Part : feature : constraint

Figure 4.8. The hierarchical structure of the aircraft concept model.
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4. Concept of the AIDA system
The set of parameters which define the aircraft model have been selected carefully.
Many non-dimensional parameters have been used, because they are less dependent
on the aircraft size and appeal more to its shape. When dimensional parameters have
to be used, those are selected which have some meaning to the designer, such as the
wing area. The definition parameters are also used in the cases in the Case-based
reasoning module.

4.6 Central User Interface module

4.6.1 Tasks

Within the AIDA set-up the Central User Interface module should ensure all
interactions between the modules and the user. However, the development of AIDA
has not been finished yet. The development has reached the stage in which its basic
principles can be evaluated; which is the purpose of this thesis project. 

The main function of the CUI is to make the AIDA tool more user-friendly.
Because this is not the main concern in this development phase of AIDA, little effort
has been put in the development of the CUI. Only some simple tasks have been
considered which necessity have directly been unveiled by the other three modules. 

One problem is the format of the data-files generated by the CBR module and
required by the Geometrical module. Both modules are developed on Unix-
platforms, so direct communication should be possible. The CUI transforms the file
with the adapted case-data to a file which is readable by the Geometrical module. 

Another problem is the limited capability of the Functional module to show the
results of parameter studies in diagrams. The CUI can read a number of output-files
of the Functional module and combine them into one diagram. 

4.6.2 Implementation in C-language

The data-transformation task and the diagram task are implemented in the C-
language. With buttons the user is guided to the appropriate menus. Figure 4.9 shows
an example of a diagram with the results of four parameter studies. The
implementation was carried out by Schipperijn as part of his Master’s project
[Schipperijn, 1998].
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4.6. Central User Interface module
Figure 4.9. Example of a diagram showing the results saved in four data-files.
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5 Design of an aircraft concept with AIDA

5.1 Introduction

To clarify the working of the AIDA system, a design session is described and the
supporting role of the AIDA-modules in that process. Each design step is discussed
separately, involving one AIDA-module per step. 

The case study is based on a design study which has been carried out before in a
Garteur-project [Fransen, 1996]. The aircraft specifications are described in
Section 5.2. 

Based on the specifications an existing aircraft is selected, which will be the
starting point for the next design steps. The CBR-module supports the designer with
the selection. This is discussed in Section 5.3. 

In Section 5.4 the initial case is adapted by integrating parts of other cases. Also in
this design step the CBR-module is utilized. The section describes the complex
process of selection and integration of the cases.

Next the Functional module is applied to evaluate the adapted case and add some
parameters. Section 5.5 describes how the numerical network is generated which is
used for this. 

The application of the Geometrical module is described in Section 5.6. This
module generates a solid model of the designed aircraft concept.

Finally, in Section 5.7 the overall procedure is evaluated, including the way the
modules are used and their general characteristics.

5.2 Design specifications

To test the functionality of the AIDA-system the design specifications and data of an
earlier study on multi-disciplinary wing optimization [Fransen, 1996] have been
used. That study concerned a regional transport airliner intended to carry 70
passengers over a distance of 2500 km, with a cruise Mach-number of 0.70 at an
altitude of 30,000 ft. A description of the design specifications for this aircraft is
given in Table 5.1. The new design has to meet this list of requirements. 

Some specifications of [Fransen, 1996] will be left out in order to clarify the tasks
of the relevant AIDA modules. For example the propulsion will not be specified as
well as the number of aisles and passengers abreast of the fuselage lay-out. The CBR-
module will be applied to select these parameters. 
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5. Design of an aircraft concept with AIDA
This set of specifications has been chosen because comparable aircraft show a wide
variety of configurations (different types of engines, different wing and tail
configurations), which seems to make the decisions about the configuration not
straightforward. Another reason is that some data which are hard to find have already
been collected. Also the development of a 70 passenger airliner seems to be the
focus of several manufacturers today.

5.3 Initial estimations with the CBR-module

5.3.1 Introduction

As mentioned in Section 4.3, no explicit knowledge is available to deduce an aircraft
concept straight from the design specifications. Therefore the CBR-module of the

Table 5.1. The (numerical) design specifications of [Fransen, 1996], used for this
case-study.

Range & capacity- 70 pass. plus luggage and 1400 kg freight: N_pax= 70
→ max. payload = 8400 kg: W_pay= 8400 kg

- range with max. payload = 2500 km: R_maxPay= 2500 km

Propulsion - twin-engine: N_eng= 2
- take-off thrust = ca. 60 kN: Tmax= 60 kN

- high by-pass turbofans
Fuselage lay-out - pressure cabin altitude of 8000 ft (2440 m)

- max. cruise altitude = 35.000 ft (10670 m): alt_max= 10,670 m

- seat pitch = 32 inch (all-economy): pitch = 32"

- aisle(s) width at least 20 inch: aisle_width= 20"

- 5 passengers abreast: pass_abreast= 5

- one aisle: nr_of_aisles= 1

Performance - max. cruise Mach-number = 0.70 at 30,000 ft: Mcruise= 0.70 
alt_cruise= 9150 m

- max. take-off fieldlength = 1400 m (SL, ISA) at 
max. take-off weight: to_length= 1400 m

- max. landing fieldlength = 1200 m (SL, ISA) at 
max. landing weight: l_length= 1200 m

- max. landing weight = 95% of max. take-off 
weight: MLW_ratio=0.95

- min. ceiling at max. take-off weight after engine 
failure = 15,000 ft: alt_OEI= 4570 m
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5.3. Initial estimations with the Cbr-module
AIDA system is used to select a good candidate from existing aircraft that can serve
as a starting point for the rest of the design process. 

The CBR-module ranks the cases according to their similarity with the
specifications, and the designer selects one of them. This is usually the best-
matching case, or a case which offers the best flexibility to be modified and adapted
in later design phases.

To be able to apply the CBR-module, some work has to be done in advance. This pre-
processing work concerns the creation of the classification network and the case-
base with data of existing aircraft, as has been described in Section 4.3. The next
section in this chapter, Section 5.3.2, discusses this pre-processing work. 

When this pre-processing has been finished, the designer puts the design
specifications into the target-file. The CBR-module compares each case in the case-
base with the data in the target- file, and expresses their similarity by a number.
Section 5.3.3 describes how the target-file is deduced from the design specifications
of Section 5.2.

The output of the CBR-module is described in Section 5.3.4. It shows the results of
the similarity measurements. In the next section, Section 5.3.5, it is discussed how to
deal with the output; i.e. which existing aircraft concept to select. 

5.3.2 The pre-processing work

In the pre-processing work an index network is created which links each case and its
data with the parameter domains; this process has already been described in Section
4.3. This work is done in advance in order to save time when the CBR-module is
actually used to determine the similarity between the target-file and the cases.

Three aspects are involved in this process:
• defining the hierarchical classification structure of the data
• creating case-files with the appropriate case-data
• defining the parameter domains

Classification structure

The classification structure is based on the Function-Behaviour-Structure view of
Rosenman and Gero [Rosenman, 1994]. This has been described in Section 3.2.7. 

The Function is associated with the performances of the aircraft, such as: range,
payload, speed, take-off length, ceiling, etc.. These parameters have been grouped
together into logical combinations, like the payload and the range. In Figure 5.1 the
hierarchical classification structure of the Function class has been sketched.

The Structure is associated with the physical description of the aircraft concept.
The aircraft is built of major components, such as the fuselage, wing, powerplant,
etc.. The attributes of the classes define the geometry of these components and their
89



5. Design of an aircraft concept with AIDA
location with respect to other major components. When extra attributes are necessary
to define a specialization of a component, a sub-class is created. For example, the
class engine contains the sub-classes turbofan and turboprop. In a separate class the
lay-out of the overall aircraft are defined, such as the wing configuration, number of
engines, etc.. Figure 5.2 shows a part of the classification structure of the Structure
class.

Function

General

certification_year
transport_type
passenger_max
passenger_2class

LoadRange

range_maxPayload
range_maxFuelload
passengers
payload
range

TOLand
to_length
land_length

Ceiling
alt_cruise
alt_OEI

Speed

M_MO
M_D
M_cruise
V_approach

Figure 5.1. The Function classification structure.

Class
parameter_1
parameter_2

Structure

Wing_noKink_S

A
taper
S
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Figure 5.2. Part of the Structure classification structure.

Class
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Wing_S
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90



5.3. Initial estimations with the Cbr-module
The Behaviour class is the class between the Function and the Structure.
Behaviour parameters are associated with the parameters which describe certain
qualities of the aircraft and its components, such as the aerodynamics and weight.
Attributes which clearly belong to a component, are grouped together into separate
classes. This is sketched in Figure 5.3, which shows the Behaviour classification
structure. 

The classification structure is defined in a separate class-file. 

Case-files

The data in the cases are organized according to the described classification
structure. The data is copied from sources such as [Jane’s, yearly]. It is noted that
only data is collected of existing aircraft, not of ongoing projects. This is to ensure
that the case-base contains data which have proven to be realistic.

To be able to compare the data, attention has to be paid to the parameter definitions.
These definitions may differ from case to case, because different sources have been
used. Therefore the Structure data is checked with the available 3-view drawings of
the aircraft. Especially the surface areas are checked, and are determined according
to their definitions in [Torenbeek, 1982]. The Structure data which is not explicitly

Behaviour

Turbofan_A
thrustreverse
Tmax

Figure 5.3. The Behaviour classification structure.
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OEW
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payload
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fuelload
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powerloading
CD0
e
CLmax_clean
CLmax_to
CLmax_land
91



5. Design of an aircraft concept with AIDA
mentioned in the sources, has been derived from drawings; such as the location of
the wing and tail surfaces.

Some parameter values strongly depend on the aircraft operating conditions. The
maximum liftcoefficient, for example, will be different for clean wings and for wings
with flaps in take-off position. When the conditions can unambiguously be pre-
defined, separate parameters are used, such as CLmax_clean and CLmax_to; see the
subclass Behaviour.Aerodynamics.Airplane_A in Figure 5.3. 

For some parameters, however, the conditions are hard to pre-define. In those
situations the conditions are described by other parameters. For example the range is
often given in combination with a payload which is not the maximum, i.e. not a pre-
defined condition. In that situation both the range and the load have to be considered
when similarities between the aircraft and the specifications are examined. The CBR-
module is capable of doing that when both parameters are organized into one class;
see the subclass Function.LoadRange in Figure 5.1. 

However, it is tried to work with pre-defined conditions as much as possible,
because this will simplify the similarity measurements.

Figure 5.4 shows a part of a case-file of the Boeing 777-200. The data shows that
two range-payload combinations have been found: range= 6685 km with 375
passengers, and range= 10723 km with 305 passengers. These combinations are
organized in separate objects of the same class. 

The numbers 1, 2 and 5 in the second column indicate the type of parameters.
Also the source of information is captured by the source-parameter.

Function
OBJECT B777_200RangeCombi1
CLASS LoadRange
PARENT B777__200

source 2 zesA
pass 5 375
range 1 6685

Function
OBJECT B777_200RangeCombi2
CLASS LoadRange
PARENT B777__200

source 2 zesB
pass 5 305
range 1 10723

Function
OBJECT B777_200ceiling
CLASS Ceiling
PARENT B777_200

source 2 zes
alt_cruise 1 10000.000
alt_OEI 1 6000.000

Figure 5.4. Part of the case-file of the Boeing 777-200.
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The parameters alt_cruise and alt_OEI in Figure 5.4 suggest high accuracies; this is
not true, however. The three zeroes have been added to mark the parameters that
their values have been estimated by the case-base developer, and do not come from
the regular sources. 

The estimated values have been added to complete the case-file. This is important
because of the impact of missing data on the matching process of the CBR-module. A
case-file can not show a matching of a parameter when that parameter is not included
in the file, which therefore may result in a lower similarity with the target-file, i.e.
the design specifications. 

The estimations of the missing values is based on the knowledge of experts, and
with the parameter domains at hand to get an idea of the required accuracy of the
estimation. The latter is important to know in case the developer wants to change the
parameter domains.

Parameter domains

The matching of the parameter values is not based on their exact values, but on the
value domains to which they fit in. This method allows a kind of qualitative
matching of the data, which has been described in the previous chapter, Section 4.3.
Because the similarity measurements depends on the parameter domains, it is
important to define them with care. 

The domains are defined in a separate file; a part of it is shown in Figure 5.5. 

{Cabin_S.nr_of_aisles} = {1 2}
{Cabin_S.nr_of_pass_abreast} = {[1,3] [4,*}

{Wing_S.A} = {[0,6> [6,10> [10,*}
{Wing_S.sweep} = {*,-5> [-5,10> [10,30> [30,*}

{Airplane_S.engine_type} = {turbofan turboprop piston}
{Airplane_S.nr_of_engines} = {1 2 3 4} 

{Airplane_W.MTOW} = {[0,6> [6,30> [30,100> [100,350> [350,*}
{Airplane_W.maxPayload} = {[0,10> [10,20> [20,40> [40,*} 

{General.pass_max} = {[0,20> [20,90> [90,130> [130,180> [180,300> [300,*} 

{LoadRange.pass} = {[0,80> [80,110> [110,150> [150,250> [250,*}
{LoadRange.payload} = {[0,10> [10,20> [20,40> [40,*}
{LoadRange.range} = {[0,1000> [1000,2500> [2500,4500> [4500,7000> [7000,*} 

{TOLand.to_length} = {[0,1000> [1000,1500> [1500,2100> [2100,3000> [3000,*}
{TOLand.l_length} = {[0,800> [800,1300> [1300,1800> [1800,2300> [2300,*} 

{Ceiling.alt_cruise} = {[0,2400> [2400,11000> [11000,*}
{Ceiling.alt_OEI} = {[0,4000> [4000,*} 

{Speed.M_cruise} = {[0,0.6> [0.6,0.8> [0.8,1.0> [1.0,*} 

Figure 5.5. Part of the domain-file.
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The definition of the domains is not always evident, especially for continuous
parameters. Arguments based on physics or airworthiness regulations are often not
available. In those situations the domains are defined based on their discriminating
role: when do you consider two parameter values to be of the same qualification
(large, small, etc.), and when not. Too many domains will probably result in very
little matchings, and a few large domains will probably not discriminate enough.

The next examples reveal some of the typical problems (see Figure 5.5):
• domains of parameter nr_of_aisles of the subclass Structure.Cabin_S: 1 and 2

This parameter typically defines whether an aircraft is a wide-body (2 aisles) or
not (1 aisle).

• domains of parameter nr_of_pass_abreast of the subclass Structure.Cabin_S: [1,3]
[4,∞)
Cabins with 1 to 3 passengers abreast are very small and should be considered
different from cabins with 4 or more passengers abreast. One could argue about
the boundary: 4 passenger abreast is also small. So the domains are not so evident.

• domains of parameter A of the subclass Structure.Wing_S: [0,6), [6,10) and
[10,∞)
The aspect ratio A of a wing is considered small when smaller than 6, large when
larger than 10, and medium in between these values. 

The aspect ratio directly affects the structural loads on the wing root and
induced drag, and therefore has influence on other design parameters such as the
wing loading, the root thickness ratio, the range, the Take-off Field Length
(to_length), etc. (Chapter 7 of [Torenbeek, 1982]). This wide range of effects does
not result in clear parameter domains. The domain boundaries are rather arbitrary
and are based on the experience of the developer and the examination of existing
aircraft.

• domains of parameter sweep of the subclass Structure.Wing_S: (−∞,-5), [-5,10),
[10,30) and [30,∞)
The sweep angle of the wing has a large influence on the maximum speed of high-
subsonic aircraft, and therefore affects the maximum allowable wing thickness.
With this in mind the domains define a forward swept wing (−∞,-5), a more or
less straight wing [-5,10), a slightly swept wing [10,30), and a highly swept wing
[30,∞) for high-subsonic velocities. These boundary values are debatable.

• domains of parameter engine_type of the subclass Structure.Airplane_S: turbofan,
turboprop and piston
This parameter defines the type of engine. It is a discrete parameter with each
value clearly representing another type, so each value represent another parameter
domain.
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5.3. Initial estimations with the Cbr-module
• domains of parameter MTOW of the subclass Behaviour.Weight.Airplane_W:
[0,5.670), [6,30), [30,100), [100,350) and [350,∞)
The first domain represents aircraft from the light airplane category according to
airworthiness regulations (FAR 23, JAR 23). Therefore these aircraft have to face
other design requirements than the heavier aircraft. So this domain is clearly
defined. The other domains are again disputable.

• domains of parameter pass_max of the subclass Function.General: [0,20), [20,90),
[90,130), [130,180), [180,300) and [300,∞)
According to airworthiness regulations only 1 cabin person is required when
carrying up to and including 19 passengers. This results in a clearly defined, first
domain. The other domains represent small to very large (commercial) aircraft,
with arguable domain boundaries.

5.3.3 The target-file

The target-file contains a set of parameters and their values. The CBR-module
determines the similarity between each case and this set by counting the matching
parameter domains. 

The target-data is organized in the same classification structure as the case-data
structure. This structure makes it possible to determine the similarity for each target-
object. The weighted average of the similarity scores of all objects directs the total
(global) similarity score of a case. 

Next figure shows the target-file as used in this study. It represents the design
specifications as has been discussed in Section 5.2. 

OBJECT PassRangeCombi PRIO 100
LoadRange.pass 5 70
LoadRange.payload 1 8.4
LoadRange.range 1 2500

OBJECT M_cruise PRIO 50
Speed.M_cruise 1 0.70

OBJECT TOLanding PRIO 50
TOLand.to_length 1 1400
TOLand.l_length 1 1200

OBJECT Alt PRIO 50
Ceiling.alt_cruise 1 9150
Ceiling.alt_OEI 1 4570

Figure 5.6. The target-file.
95



5. Design of an aircraft concept with AIDA
When comparing the target-file with the specifications as put forward in Table 5.1,
some remarks can be made:
• The specifications on the propulsion are kept out of the target file, as well as the

specifications on the fuselage lay-out. 
These design specifications have been the result of some preliminary studies of

the other specifications. The experience of the designer and the examination of
existing aircraft has led to the (preliminary) conclusions about the propulsion and
the fuselage lay-out. However, we want to apply the CBR-technique to come to
such conclusions without bias of the designer. Therefore these specifications have
not been copied into the target-file.

• The performance specifications have been organized in separate target-objects,
each containing related parameters.

The matching scores will be determined per target-object. Therefore the design
specifications which the designer wants to be considered in combination with
each other, have been put into one object. These objects are instantiations of the
classes which have been discussed in the beginning of this section.

• The load-range specifications are given more importance than the other
specifications, as is defined by the different priority values (PRIO).

The priority number defines the weight of the target-object. These numbers
affect the global similarity score of the cases, since they are defined as the
weighted average of the similarity scores per target-object. The priority numbers
can easily be changed during the usage of the CBR-module, when the designer is
not content with the (first) results of the module. 
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5.3. Initial estimations with the Cbr-module
5.3.4 Output of the CBR-module

The results of the CBR-module are shown in Figure 5.7. Only those cases are
presented which have a global similarity score of 30% or higher. 

There are some general aspects which have to be considered when examining the
results of Figure 5.7:
• The similarity score on the target object ’PassRangeCombi’ does nowhere exceed

the value 67%. This means that maximum two of the three target parameters
(’pass’, ’payload’ and ’range’) of that object are matching. This is a direct result
of the way the case-data has been organized: the case-objects either contain the
parameter combination ’pass’-’range’, or the combination ’payload’-’range’, but
not all three parameters. The purpose is to eliminate the effects of the redundancy
of the parameters ’pass’ and ’payload’ on the similarity scores. 

This redundancy is included in the case-data because the payload is often
expressed by the number of passengers, and sometimes by the weight in tons. To
be able to search for comparable aircraft, it must be possible to use both
parameters. However, a case should not have a higher similarity score because it
contains both parameters expressing a comparable property. So, when both

Case Global PassRangeCombi M_cruise TOLanding Alt

Target prio. → 100 50 50 50

Saab 2000 87 67 100 100 100

Fokker 70 77 67 100 50 100

Embraer 145 64 34 100 50 100

BAe RJ85 60 0 100 100 100

BAe RJ70 60 0 100 100 100

B 737-400 54 34 100 0 100

B 737-500 54 34 100 0 100

B 737-300 54 34 100 0 100

Fokker 100 54 34 100 0 100

Canadair RJ200 54 34 100 0 100

BAe RJ100 50 0 100 50 100

MD C17 50 0 100 50 100

Dornier 328-110 44 34 0 100 50

MD 87 40 0 100 0 100

MD 90-30 40 0 100 0 100

ATR 72-200 34 34 0 100 0

A 321 34 34 0 0 100

Figure 5.7. The results of the similarity measurements between the target-file and
the cases.
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5. Design of an aircraft concept with AIDA
’payload’ and ’pass’ are known in combination with (the same) ’range’, this data
is put into two separate case-objects: one containing ’pass’ and ’range’, the other
containing ’payload’ and ’range’. An example is included in next Figure.

As a result, the priority factor of the object PassRangeCombi will effectively be
reduced from 100% to 67%. 

• The target parameter ’range’ with value 2500 is linked with the domain
[2500,4500); the value is on the edge of the domain. So the British Aerospace
RJ70 with a range of 2278 km does not match with the target, but the Fokker 70
with a range of 3407 km does.

This is a major drawback of this particular CBR-module [Netten, 1997]:
applying binary matching criteria and the use of strict domains. 

• According to the sources the BAe RJ70 has a range of 2278 km with the
maximum payload, which is 10.070 tons or 94 passengers. With the current
parameter domains both the range and the payload or number of passengers do not
match the target, i.e. the specified parameters (2500 km with 8.4 tonnes payload
or 70 passengers). Therefore the BAe RJ70 scores 0% on the object
PassRangCombi; see Figure 5.7.

However, it is reasonable to believe that this aircraft can meet the requested
range specification when the payload is reduced. And that it can meet the
requested payload with a smaller range. So, the BAe RJ70 is likely to be able to
score 34% on the payload-range specification, but the results do not show that. 

It is the designer’s experience which can give that insight; the CBR-technique is
not able to do so.

• It is also possible to combine the target parameter ’M_cruise’ with the parameters
’alt_cruise’ and ’alt_OEI’ in a new target-object. This will decrease the
importance of ’M_cruise’ with respect to ’alt_cruise’ and ’alt_OEI’. In that

Function
OBJECT RJ70RangeCombi1
CLASS LoadRange
PARENT RJ70

source 2 three
pass 5 94
range 1 2278

Function
OBJECT RJ70RangeCombi2
CLASS LoadRange
PARENT RJ70

source 2 three
payload 1 10.07
range 1 2278

Figure 5.8. Part of the case-file of the British Aerospace Regional Jet 70 (BAe
RJ70).
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5.3. Initial estimations with the Cbr-module
situation the ranking of the slower and faster aircraft will rise, such as the Dornier
328-110 (M_cruise=0.57000 [estimated]) and the Airbus A321 (M_cruise=0.80),
respectively.

So, other object-structures in the target-file will result in different scores of the
total similarity. This reveals the influence of the target-file structure.

• The priority numbers reflect the designer’s opinion that the specifications about
the payload-range combination are more important than the other specifications.
However, the priority numbers 100 and 50 have been chosen arbitrarily.

Other priority numbers, for example 100, 50, 70 and 20, respectively, increase
the influence of the take-off and landing specifications, and decrease the
importance of the altitude specifications. This result in a slightly other ranking of
the cases: the Dornier 328-110 will rise due to its matching take-off and landing
distances, and the Embraer 145 and the Boeing 737 series will drop for the same
reasons.

5.3.5 Selecting the best case

A case will be selected which satisfies all design specifications, or which seems to be
easily modified in order to meet the design specifications. So the question is: which
case offers the best prospect to fulfil the design specifications, after some adaptations
of the concept?

The general idea is that the more a case satisfies the requirements, the less
modifications will be needed. Therefore only those cases are considered which have
a high similarity score.

However, selecting a case is not just a matter of choosing the best-matching case
from Figure 5.7. The difference in similarity scores may be very small, and/or the
best-matching case may be difficult to adapt to meet all design specifications. 

The selection process can be organized into three steps:
• examine the configurations with respect to the global similarity scores

It should be kept in mind that the focus of this design phase is to select a proper
configuration. So first priority is to see whether there are big differences between
the configurations of the best-matching cases at all.

• examine the configurations with respect to the local (object) similarity scores
When it is not clear which configuration to choose, i.e. when the variety of the
configurations is big, it is examined how the similarity ranking has been built. The
similarity scores are examined at a lower level, per target-object, in order to find
relations between configuration aspects and specifications.

• select the best case
Considering the examinations of the global and the individual local similarity
scores, the designer selects a case, in his opinion the ’best case’.
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5. Design of an aircraft concept with AIDA
Examination of the configurations with respect to the global similarity scores

For a clear view on the different configurations, simple sketches have been drawn of
the best-matching cases. These sketches show some of the configuration aspects:
• turboprop or turbofan engines
• number of engines
• location of the engines (although the sketches are only 2 dimensional, the

spanwise location of the engines clearly suggests the traditional wing-mounted
and fuselage-mounted configurations)

• vertical location of the wings
• type of tail
• wide-body or single-aisle fuselage (large or small diameter)

The sketches are shown in Figure 5.9.

Figure 5.9. The configurations of the best matching cases.

Saab 2000

Dornier 328-110

Embraer 145

Boeing 737-400/-500/-300

McDonnell Douglas C17

Fokker 70

Canadair RJ200

BAe RJ70/ RJ85

ATR 72-200

MD 87/ 90-30 Airbus A321

global score: 87% 64%

54%

77%

54% 50%

44%

34%

60%

40% score: 34%

descending global similarity score

Fokker 100

54%

BAe RJ100

50%
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5.3. Initial estimations with the Cbr-module
The following can be said about the configurations:
• Five different configurations seem appropriate:

- 2 fuselage-mounted turbofan engines, T-tail and low wings (6 aircraft: the
Fokker 70 and 100, the Embraer 145, the Canadair RJ200, and the MD 90 and
87);

- 2 wing-mounted turbofan engines, conventional tail and low wings (4 aircraft:
the Boeing 737-300, -400, and -500, and the Airbus A321);

- 4 wing-mounted turbofan engines, T-tail and high wings (4 aircraft: the BAe
RJ70, RJ85 and RJ100, and the MD C17);

- 2 wing-mounted turboprop engines, T-tail and high wings (2 aircraft: the
Dornier 328-110 and the ATR 72-200);

- 2 wing-mounted turboprop engines, conventional tail and low wings (1 aircraft:
the Saab 2000);

• The MD C17 is a military cargo aircraft. All other aircraft are commercial
passenger airplanes.

• Only the Saab 2000, the Dornier 328 and the ATR 72 have turboprop engines. The
other aircraft have turbofans.

• All aircraft have two engines, except for the BAe RJ series and the MD C17; they
have four engines.

• Most of the aircraft have their engines mounted on the wing: all turboprop
aircraft, all four-engined turbofan aircraft, and the two-engined turbofans of
Boeings and Airbus.

• All four-engined aircraft have a high-wing configuration, and so do most of the
turboprop aircraft (except for the Saab 2000 turboprop). The other 10 aircraft have
low wings.

• All high-wing configuration aircraft have T-tails, and so do the fuselage-mounted
engine configuration aircraft. All wing-mounted engine aircraft with low wings
have conventional tails. 

• Only the MD C17 cargo aircraft has a large-diameter fuselage, comparable with
wide-body aircraft. The other aircraft have single-aisle fuselages.

The diversity is big between the configurations of the best-matching cases. Therefore
the results of Figure 5.7 will be examined more closely in relation with the
configurations. 
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Examination of the configurations with respect to the local similarity scores

In this sub-section the similarity scores of Figure 5.7 are examined per target-object,
with the intention to formulate a preference for a specific case. The configurations
are shown with the matching results of the individual target-parameters.

Conclusions with respect to the payload-range specifications:
• The four-engine configuration comes into sight at higher payloads only. 
• The same appears for the low-wing-mounted turbofan aircraft: payloads are too

high. 
• The turboprop aircraft have smaller or similar ranges. 
• It is difficult to make general remarks about configuration aspects other than the

type of engines. 
• There are no aircraft in lower payload domains, because the specified pass/

payload domain is bounded by zero. 

Table 5.2. Similarity scores for the payload/range specifications.

target-object object score configurations
PassRangeCombi 67% (max.)

34% pass/payload: okay
range: too short 

pass/payload: too high
range: okay 

0% pass/payload: too high
range: too short 

pass/payload: too high
range: too long 

Saab 2000 Fokker 70

Embr. 145

Can. RJ200

Do. 328

ATR 72

B 737

Fokker 100

A 321

BAe RJ MD C17

MD 87/90
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5.3. Initial estimations with the Cbr-module
Only one conclusion is drawn with respect to the cruise speed specifications:
• The turboprop engined aircraft are slower or just meet the specified cruise speed

domain. 

Table 5.3. Similarity scores for the cruising speed specifications.

target-object object score configurations
M_cruise 100%

0% M_cruise: too low M_cruise: too high 

Table 5.4. Similarity scores for the take-off and landing distance specifications.

target-object object score configurations
TOLanding 100%

50% to_length: too long
l_length: okay

0% to_length: too long
l_length: too long 

Saab 2000

Embr. 145

B 737

Can. RJ200

MD 87/90

Fokker 70

BAe RJ

Fokker 100

MD C17

Do. 328

ATR 72

A 321

Saab 2000

Do. 328

BAe RJ70/85

ATR 72

Fokker 70

BAe RJ100

Embr. 145

MD C17

B 737

Can. RJ200

Fokker 100

MD 87/90

A 321
103



5. Design of an aircraft concept with AIDA
Conclusions with respect to the take-off and landing distance specifications:
• There are no aircraft in Figure 5.7 with smaller take-off and landing distances

(domains). 
• The turboprop-powered aircraft all meet the desired take-off and landing

performances. 
• Most of the high-wing configuration aircraft meet these performances. Only the

larger high-wing aircraft need longer take-off distances, such as the BAe RJ100
and the MD C17.

• The configuration with fuselage-mounted engines and the configuration with
turbofans mounted on low wings have bigger take-off distances. 

Conclusions with respect to the altitude specifications:
• The specified altitude is reached by all aircraft except for two turboprop powered

aircraft. The third turboprop aircraft does reach the required altitude.

Selection of the best case

With the conclusions from the previous sub-section, the Fokker 70 is selected as the
’best-case’. This selection is based on the following arguments:
• turbofan engines seem to be more suitable than turboprop engines

Although the best-matching aircraft, the Saab 2000, has turboprop engines, the
next 10 aircraft with high similarity scores have turbofan engines. When
considering the other turboprop aircraft, problems can be expected with the range,
the cruising speed and the altitude. 

• two engines seem preferable above four engines
Most high-scoring aircraft have two engines. The four-engine configurations with
the highest similarity scores are the BAe RJ70 and RJ85, sharing the 4th ranking
with 60% (compared with the other rankings of 87%, 77% and 64%). 

The four-engined configuration is applied to the bigger aircraft; their pass/
payload domains are too high.

• from the two-engined turbofan configurations, the Fokker 70 configuration is
favourite

Table 5.5. Similarity scores for the altitude specifications.

target-object object score configurations
Alt 100% all configurations, except:

50% alt_cruise: too low 

0% alt_cruise: too low
alt_OEI: too low

Do. 328

ATR 72
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5.3. Initial estimations with the Cbr-module
The other two-engined turbofan configuration is that of the Boeing and Airbus:
the engines mounted on low-wings. These aircraft have lower similarity scores
than the Fokker 70 and the Embraer 145. They score especially low on the pass/
payload target and the take-off and landing distance targets.

The fuselage-mounted configurations generally show good similarities with the
cruising speed and altitude targets, but score low on the take-off and landing
distance targets.

For the sake of completeness, some interesting data of the selected Fokker 70 are
copied:
• configuration:

two turbofan engines mounted on rear-fuselage, low wings, T-tail, single aisle;
• performances:

- passenger/range combination (matching domains): 79/3407 km;
- cruise Mach number (matching domain): 0.77 (estimated);
- take-off and landing distances (take-off distance too long): 1573m and 1274m;
- cruise and OEI (One Engine Inoperative) altitudes (matching domains): 10,670

m and 6,000 m (estimated);
• weights:

- MTOW (Maximum Take-Off Weight): 39.92 tons;
- OEW (Operational Empty Weight): 22.78 tons (ratio with MTOW: 0.57);
- max. payload: 10.78 tons (ratio with MTOW: 0.27);

• dimensions:
- fuselage length: 27.88 m;
- fuselage diameter: 3.30 m;
- number of passengers abreast: 5;
- wing span: 28.08 m;
- wing area: 97.9 m2;
- wing taper: 0.21;
- wing aspect ratio: 8.4;
- wing sweep: 18 degrees (outer part);
- wing thickness ratios on root and on tip: 0.123 and 0.096;
- horizontal tail area: 21.72 m2;
- horizontal tail volume coefficient: 0.74;
- vertical tail area: 15.2 m2;
- vertical tail volume coefficient: 0.065.

5.3.6 Remarks

There are some reflections that may have played a role in the selection, but which do
not refer to the presented results only. They originate from the designer’s general
knowledge about the aircraft and from talkings with professor Torenbeek.
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5. Design of an aircraft concept with AIDA
About the Saab 2000

Although the Saab 2000 has the highest similarity score, it is not selected for further
elaboration in this case study. Instead the Fokker 70 has been selected as the single
case to proceed with. In a real design process several alternatives are studied
simultaneously, however. In that situation the Saab 2000 would probably be one of
those alternatives. 

One pragmatic argument for the selection of the Fokker 70 in this case study is
that it reveals some typical characteristics of the applied design procedure, such as an
original lay-out as a result of the adaptation phase (Section 5.4). Another argument
was the availability of turbofan performance data; see next item.

A critical remark about the Saab 2000 similarity score is the passenger load. With a
passenger load of 50 in a 2-class seating configuration and 58 as a maximum, the
Saab 2000 matches the parameter domain [0,80) which is related with the specified
passenger number of 70. One may argue whether this matching is appropriate: is a 50
passenger aircraft comparable with a 70 passenger aircraft? If not, the domain
boundaries need to be revised. This kind of question is always present when the
boundaries have been arbitrary chosen. 

About the turbofan engines

Originally, the specifications included a preference for turbofan engines; see
Section 5.3.3. When considering the quantitative specifications only, however, the
CBR-module reveals that turboprop engines may be a good alternative, as part of the
Saab 2000 configuration. 

Nevertheless, in the presented case study the turbofan engine is selected. One of
the reasons is that performance data of a modern turbofan engine was available.
When this type of engine appears to be inappropriate, however, it is always possible
to select the turboprop engine as well.

About the MD C17

The MD C17 is a military cargo aircraft, which generally has to meet other
specifications than commercial aircraft. Some of these design specifications are hard
to quantify, but have a large impact on the configuration. For example the high-wing
configuration is applied to minimize the distance between the cargo floor and the
ground, for easy access of the cargo. However, the inclusion of this military aircraft
in the list of best-matching cases may give the designer another view on the design
problem.

The high-wing configuration also allows for good take-off and landing
performances, which was another important design specification of the MD C17.
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5.3. Initial estimations with the Cbr-module
That is why its landing distance matches the landing distance target, despite of its
much higher weight than the other aircraft.

About the BAe RJ70

As the type-code suggests, the BAe RJ70 is intended to carry 70 passengers in a 2-
class seating configuration. Though this is equal to the specifications, the results in
Figure 5.7 show no matching of the target-parameter ’pass’. 

This is because the range is given for the maximum number of passengers, which
is 94 passengers; this is in a single class seating configuration. The number of 94
passengers is outside the required parameter domain of [0,80) (which has arbitrary
been defined). 

Another item is the range. The BAe RJ70 is able to reach 2278 km with 94
passengers. This range is close to the specified range of 2500 km, but is outside the
related parameter domain of [2500, 4500). These domain boundaries have been
chosen arbitrary, though, in the pre-processing phase. Other realistic domain borders
could have resulted in a matching of the range of the BAe RJ70.

The selection arguments

The arguments which have been used to select the ’best-case’, as described at the end
of the previous section, are only focused on the data itself; it is tried to use as little
domain knowledge as possible. 

Consider for example the argument that the fuselage-mounted engine
configuration of the Fokker 70 is in favour of the wing-mounted engine
configuration of the Boeing and Airbus aircraft. The preference is purely based on
better global similarity scores of the Fokker 70 and the Embraer 145 (see Figure 5.9).
The similarity scores per case-object (see Table 5.2 to Table 5.5) are considered to
better understand the differences of the global scores. This does not imply that
physical explanations are tried to be found, however. 

Intentionally the domain knowledge is consulted as less as possible, because the
large number of physical arguments which may be involved makes process of
making design decisions very complicated. This was one of the reasons to apply
CBR-techniques: to make this process simpler. 
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5.4 Adaptations with the CBR-module

5.4.1 Introduction

The selected case, the Fokker 70, does not match all target data. The purpose of this
adaptation phase is to improve the configuration of the Fokker 70, if possible, so that
it becomes a better starting point for the next design steps.

The focus of the adaptation step is on the configuration of the aircraft. Some other
data is involved with have close relationships with the configuration. 

The CBR-module has been set up in such way that the pre-processing work does not
have to be rehearsed. This means that the same indexing network can be used, with
the same case-files, domain file and classification file. Only the target-file has to be
defined once more. This is a complex topic, though, and is extensively described in
Section 5.4.2. 

The other sections describe which adaptations will be performed and for what
reasons. This includes the examination of the similarity score for the adaptation
target, Section 5.4.3, and the choice of the adaptations, Section 5.4.4.

The other section, Section 5.4.5, describes how the adaptations are actually
worked out, and which practical issues are involved.

5.4.2 The adaptation target-file

As has been described in Section 4.3.4 of the previous chapter (step 2), the
adaptation target-file consists of two types of data:
• data representing those design requirements which have not been met by the ’best

case’
This is the main part of the target-file. The purpose is to find cases which do

meet those specifications, and use parts of these cases to adapt the original ’best
case’. The resulting (adapted) case should be more able to meet those
specifications than the original ’best case’. 

• data of the Behaviour and Structure class which are strongly related to those
design requirements (of the Function class) which are indeed met by the ’best
case’

By adding these data to the target-file it is tried to find cases which not only
meet the unsatisfied specifications, but also resemble the ’best case’. When
considering the Behaviour and Structure data as the solution to the design
problem which is expressed by the Function data, matching these data leads to
adaptation cases which already contain much of the solution which has been
suggested by the ’best case’. The focus is on those parts of the solution which can
be related to the ’solved’ design problems.
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So, from the cases which meet the unsatisfied specifications (the first type of
data), those cases are preferred with the most resemblance with the ’best case’.
The idea is that this will lead to a more realistic ’adapted case’, which is a
combination of the ’best case’ and the ’adaptation case’.

To find the unsatisfied specification data is straightforward: examine the results of
the first phase. From Figure 5.7 it is read that the take-off and landing distances
specifications are not met by the Fokker 70. So the target-object TOLanding is
copied into the adaptation target-file.

To be able to choose the other type of data, which ensures a resemblance of the cases
with the ’best case’, expert knowledge is required. Next table shows some general
relations between the common specification categories (of the class Function) and
the related data of the classes Behaviour and Structure.

Table 5.6 gives just general relationships. The designer may use different
relationships; this is possible because these relationships have not been automated.

This results in the adaptation target-file which is shown in Figure 5.10.

Table 5.6. Relations between typical specification data and other main aircraft data.

Function class Behaviour class Structure class
passenger/ payload - 

range
max. take-off weight (MTOW) engine type

ratio payload/ MTOW fuselage lay-out
ratio fuelload/ MTOW ratio fuselage width/ length

max. speed thrust or power loading engine type
wing sweep

wing thickness
take-off and landing 

distances
wing-loading number of engines

thrust- or power-loading
ceiling wing-loading engine type

thrust- or power-loading fuselage cross section
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The next remarks can be made:
• The target-object which is related to the unsatisfied specifications has the highest

priority-number of 100. The other three target-objects have lower priority-
numbers to express their lesser importance. Together they are as important as the
first target-object: the sum of their priority-numbers equals 100.

• The Behaviour and Structure data are organized according to the classification
structure. This structure makes is possible to show the similarities per data class,
which makes it easy to examine the relevant data per aircraft component or aspect
(i.e. Structure resp. Behaviour). 

• The value of parameter Airplane_W.fuelload_ratio has five digits. This is to
indicate that this value has been estimated when the case was created, not because
the accuracy is so high. (For the Fokker 70, the estimation was based upon the
fuel volume.)

OBJECT TOLanding PRIO 100
TOLand.to_length 1 1400
TOLand.l_length 1 1200

OBJECT Configuration PRIO 33
Airplane_S.engine_type 2 turbofan
Airplane_S.nr_of_engines 5 2
Airplane_S.fus_cross_type 2 circle

OBJECT Weight PRIO 33
Airplane_W.MTOW 1 39.92
Airplane_W.fuelload_ratio 1 0.28000

OBJECT Wing PRIO 33
Wing_S.sweep 1 18
Wing_S.thickness_root 1 0.123

Figure 5.10. The adaptation target-file.
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5.4.3 Output of the CBr-module: the similarity scores

The results of the matching process with the adaptation target-file of Figure 5.10 is
shown in Figure 5.11. Only the best 16 cases have been listed. 

Some general remarks can be made:
• The best matching results are given by almost the same set of aircraft as the

results of the original target-file. Only the Airbus 320-200 has not been shown in
Figure 5.7; and the Boeing 737-500 and the Canadair RJ200 did appear in
Figure 5.7, but not in Figure 5.11. 

• Only two aircraft show better global similarities than the selected ’best case’, i.e.
the Fokker 70. These are the British Aerospace RJ70 and RJ85 aircraft.

• Five aircraft show better similarity scores on the take-off and landing distances:
the BAe RJ70 and RJ85, the Dornier 328, the ATR 72 and the Saab 2000. Three
aircraft show identical similarity scores on that target-object: the BAe RJ100, the
Embraer 145 and the MD C17. Because the other aircraft have even worse take-
off and landing distance performances (too short or too long), they do not seem
capable to improve the selected ’best case’. Therefore they will not be considered
again. 

Case Global
TOLandin

g
Configuratio

n Weight Wing

Target prio. → 100 33 33 33*

BAe RJ70 95 100 67 100 100

BAe RJ85 95 100 67 100 100

Fokker 70 75 50 100 100 100

Dornier 328-110 70 100 67 50 0*

BAe RJ100 70 50 67 100 100

ATR 72-200 65 100 34 50 0*

Saab 2000 62 100 67 0 0*

Embraer 145 59 50 100 50 50*

Fokker 100 50 0 100 100 100

MD C17 45 50 67 0 50*

B 737-400 42 0 100 100 50*

B 737-300 42 0 100 100 50*

MD 87 36 0 67 100 50*

MD 90-30 36 0 67 100 50*

A 320-200 36 0 67 100 50*

A 321 36 0 67 100 50*

Figure 5.11. The results of the similarity measurements between the target-file and
the cases. (*: thickness ratio-data missing) (grey rows: better local
score, 100%, than the ’best case’, the Fokker 70: 50%)
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• When the similarity scores are examined per target-parameter, it is seen that the
50% scores on the target-object TOLanding is the result of similar landing
distance domains, and different take-off distances. This score distribution is
identical to the Fokker 70 results. 

Therefore it is not expected that these cases will improve the ’best case’, and
consequently they will not be used for the adaptation process. 

• The ATR 72-200 scores locally only 34% on the Configuration target-object. This
is because the aircraft has turboprop engines, and because its fuselage cross-
section is a double-bubble (flattened underside, such as the Fokker 50) instead of
a circle. This difference may not be that important, but with this target-file
(Figure 5.10) it appears to be as important as the type of engine.

So, only five cases are left for the adaptation process: the BAe RJ70 and RJ85, the
Dornier 328, the ATR 72 and the Saab 2000; these have been given a grey colour in
the figure. In next section it is discussed which of these ’most promising adaptation’
cases is selected. 

5.4.4 Selecting the adaptations

In next figure the configurations of the five ’most promising adaptation’ aircraft are
shown, together with the configuration of the ’best case’, the Fokker 70. These
aircraft do better match the take-off and landing distance specifications than the
Fokker 70. 

Proposals for adaptations are based on the examination of these configurations:
• there are no aircraft with exactly the same configuration as the ’best case’;
• the configuration with engines mounted on high wings and with T-tails seems

favourable;

Figure 5.12. The configurations of the ’most promising adaptation’ cases.

Dornier 328-110

Fokker 70 BAe RJ70

ATR 72-200

global score: 75%

70% 65%

95%

Saab 2000

62%

BAe RJ85

95%
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5.4. Adaptations with the CBR-module
• from the presented configurations it is difficult to distinguish a preference for the
engine type;

• also a configuration with four engines seems to be a viable option.

With these remarks, the BAe RJ70 is preferred as a source from which to copy the
adaptation data. The next configuration components are selected for copying:
• the high wing configuration;

because this configuration often appears in Figure 5.12;
• the engines mounted on the wings;

because this comes with the high wing configuration.

The type of engine is not changed, neither do the number of engines and the type of
tail. This results in a novel configuration, since an aircraft with two turbofans
mounted on high wings is not found in the case-base. 

The T-tail and the turbofan are left unchanged because the BAe RJ70 does have
an identical type of tail and the same type of engines. The number of engines has not
been changed because it is believed that the other adaptations could be enough, in
first instance.

5.4.5 Generating the adapted case

So it is decided to adapt the ’best case’, the Fokker 70, with the high wing
configuration and the engine location of the BAe RJ70. The result is sketched in
Figure 5.13:

This change in the configuration, however, also has effect on other aircraft data. For
example some Structure data has to be copied from the BAe RJ70 to be able to make
a rough but realistic three-dimensional model of the adapted aircraft, which is
performed by the Geometrical Module (Section 5.6). And some Behaviour data will
also be affected, which is used in the Functional module (Section 5.5). Next data is
affected by the adaptation of the wing and engine configurations:
• the longitudinal location of the wings

Because the engines move forward from the aft-fuselage to the wings, the centre
of gravity of the aircraft will move forward. For stability reasons the wings have
to be relocated too, more forward.

Figure 5.13. The new, adapted configuration.
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5. Design of an aircraft concept with AIDA
The non-dimensional parameter used for this purpose is Wing_S.MAC_loc,
which is defined as the location of the 1/4-chord location of the MAC (Mean
Aerodynamic Chord) with respect to the centre of the fuselage, relative to the
MAC. 

• the attitude of the wings
For stability reasons, the dihedral (angle between horizontal plane and the wing)
is different for a high wing and a low wing: typically a high has a negative
dihedral and a low wing a positive. The incidence (angle between vertical and
longitudinal plane and the wings) is not changed.

• the shape and size of the wings
Since wing-mounted engines have effect on the structure and the aerodynamics of
the wings, their shape will have to be reconsidered. Therefore all data that
describe the wing of the BAE RJ70 is copied, including the shape parameters such
as the aspect ratio A, the taper, the sweep and the thickness ratio. 

Because the wing parameters that have a clear effect on the specified
performances obviously do not differ very much (since the local matching score
of the adaptation object-target Wing of the BAe RJ70 is 100% in Figure 5.11), it is
expected that these adaptations will not affect those performances that much.

By copying all wingdata of the BAe RJ70, the overall wingsize is also changed,
such as the wing gross-area S. Because the weight parameters of both original
cases differ distinctively, the wing-loading W/S of the new adapted case will have
to be reconsidered. However, a realistic value can not be copied from the two
original cases, since their wing-loading values are based on different
combinations of weights and wing areas. 

Therefore, the resulted combination of the ’best case’ and the ’best adaptation
case’ will contain inconsistent data. This is inherent to this technique, however, as
has been explained before in Section 4.3.4. One of the purposes of the next
module, the Functional Module, is to overcome these inconsistencies.

• the spanwise location of the engines
Because the engines will be mounted on the wings instead of the rear fuselage, the
original spanwise location of the engines of the Fokker 70 are not realistic.
However, the BAe RJ70 has four engines. The question than rises: which
spanwise location to copy? It is decided to choose the inboard locations, which
seems to ’look better’ than the outboard locations; also the asymmetry will be less
when one engine is inoperative.

The resulting combined case is saved in a separate file, in the same format as the
other case-files. So it is readable by the Geometrical Module.
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5.4. Adaptations with the CBR-module
5.4.6 Discussion on the use of the CBR-module

The matching process with combined parameters

The parameters ’Range’ and ’Payload’ (or ’Number of passengers’) have to be
considered in combination with each other. Because their influence on each other is
so big, they can not be evaluated separately. However, their domains are defined
independently. The problems of this approach is explained with next figure. 

Figure 5.14 represents the payload-range performance of one aircraft. Suppose
points B and C represent two payload-range combinations that are known and stored
in the case-base, and point A represents a specified payload-range combination.
Because point A lies well on the performance line of the aircraft (line of max.
Payload-Range), the aircraft should perfectly match this payload-range specification.
However, because points B and C neither share a parameter domain with point A, the
result of the similarity measurement will be 0% on these parameters. Hence the
aircraft will show a lower similarity score than it should do. 

To overcome this problem the CBR-tool should measure the similarity with the
margin area indicated in Figure 5.14, instead of the individual domains of the two
parameters. This could be possible by defining a separate parameter which is a
function of the ’Range’ and the ’Payload’ parameters.

A practical problem to this theoretical solution is to determine the payload-range
diagram of the aircraft, or at least the gradient of the sloping line. You need at least
two payload-range combinations per aircraft, which are often not available in the
literature.
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Figure 5.14. The payload-range diagram of one aircraft.
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5. Design of an aircraft concept with AIDA
The binary matching criteria

The matching process of the Cbr-tool has only two possible results: the parameter
matches or it does not match. It is obvious that this binary matching criterion is not
flexible. 

Another approach could be to express the similarity of two parameter values by
their difference, absolute (δx) or relatively (δx/x). The currently used CBR-tool is not
able to do this, however, because of its internal network representation of the
similarities. 

Relative similarities would only be useful for continuous parameters. A major
disadvantage of using these relative similarities is that this would require an extra
calculation step between the retrieval of the data values and the matching process. 

Another disadvantage would be that some physically based domain boundaries
would be lost.

Implicit relations between specifications and the configuration

One of the conclusions about the local similarities between the target-object
TOLdistance and the configuration, see Table 5.4, is that aircraft with turbofan
engines mounted on the wing generally need too long take-off and landing distances.

This can be understood by applying domain knowledge of aircraft design.
Generally, larger or heavier aircraft need longer take-off and landing distances.
Although heavier aircraft need larger engines, the relative size of their engines is
small compared with the engine size of smaller aircraft. Therefore the larger aircraft
have less space problems for mounting the engines under their low wings, than the
smaller aircraft. So there is a correlation between the size of the aircraft, determined
by the number of passengers, and the engine configuration: small aircraft do seldom
apply the wing-mounted turbofan engine configuration, unless the aircraft has a
high-wing configuration.

So the conclusion on itself is not correct, but it is true for small take-off and
landing distances which are often related with small aircraft.

There are also other arguments for the choice of the engine configuration, which are
not performance driven. For example the accessibility for the maintenance, and the
availability of engines at the design date. 

The success of the existing aircraft is also not considered. The sale numbers could
be an indication for that, but other arguments may be at least as important, such as
political and marketing issues.
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Why the Saab 2000 with the highest possible similarity score has not been chosen

Although the Saab 2000 has the highest possible similarity score, the aircraft has not
been chosen as the ’best case’. Instead the Fokker 70 has been chosen; see
Section 5.3.5. There are some reasons for that decision which have not been
mentioned in Section 5.3.5, and which have nothing to do with proper designing.
• Detailed engine information was available for the BMW-RR BR710 turbofan in

[Fransen, 1996]. Because this data is needed by the calculations with the
Functional module, that type of engine was favourable.

• Because the Saab 2000 has the highest possible similarity score, no adaptation
should be needed when it is chosen as the ’best case’. However, the purpose of
this chapter is to examine the proposed strategy and AI techniques, including the
adaptation phase.

5.5 First modifications with the Functional module

5.5.1 Introduction

With the Case-Based Reasoning module a proper starting point for the design
process has been produced: an aircraft concept was chosen, as well as initial values
of some important parameters. These values are copied from existing cases,
however, and need to be reconsidered for the current design problem. 

This reconsideration task is supported by the Functional module. The module
applies the tool QUAESTOR [van Hees, 1997] to evaluate the chosen solution and to
see whether the specified Function parameters are met. QUAESTOR builds a network
of relations and equations that connect the Structure parameters with the Function
parameters; see Section 4.4. The designer uses the link to perform sensitivity studies
in order to choose appropriate parameter values.

The building of the network of relations is an interactive process: QUAESTOR
suggests appropriate relations, and the user selects them. QUAESTOR manages all the
background activities for the construction of the network. 

In Section 4.4 it was described how such a numerical network can be constructed
with QUAESTOR. This section shows how the network is built and used in this
particular case. 

Section 5.5.2 deals with the development of the knowledge base in QUAESTOR,
which has to be completed before the tool can be applied. Note that the QUAESTOR
terminology is used which differ from typical optimisation terminology. Therefore a
different font is applied for those QUAESTOR terms, such as relations,
constraints and parameters.
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5. Design of an aircraft concept with AIDA
The next section, Section 5.5.3, describes the actual building of the network;
called a template in QUAESTOR terminology. 

When the template has been created, the user defines a set of values to perform
the sensitivity studies. This is described in Section 5.5.4. In the next section,
Section 5.5.5, it is explained which values are chosen, based on the sensitivity
studies.

In the last section this procedure is evaluated and conclusions are drawn:
Section 5.5.6.

5.5.2 The pre-processing work: building the knowledge base

Before the tool QUAESTOR can be used to build a numerical network, the elements of
which the network consists have to be defined. These elements are the relations,
constraints and the parameters, and are collected in the knowledge base of
QUAESTOR. Mind that the meaning of these terms differ from typical optimisation
terminology: 
• the relations express the numerical knowledge in equation-format;
• the constraints are linked with relations to limit their validity; they are

evaluated to be ’satisfied’ or ’unsatisfied’, and can be expressed by equalities as
well as inequalities;

• with the parameters every variable, constant, parameter or another quantity is
represented.

The elements are stored in frames. They represent the knowledge as can be found
in aircraft preliminary design literature.

relations

Numerical relations are put into the knowledge base in the format 
parX=f(parY1, parY2, .., parYn);

One parameter is in the left-hand clause of the equality, and a function with zero,
one or more parameters is in the right-hand clause. For example the expression of
the cruising speed:

(Eq. 5.1)

This equation can be put straightforward into the knowledge base; next figure shows
the representation of the relation in development mode of QUAESTOR.

ToverW
Wratio
Tratio
--------------- q

CD0
WoverS
--------------------⋅ WoverS

q π Awing e⋅ ⋅ ⋅
------------------------------------+⋅=
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5.5. First modifications with the Functional module
Figure 5.15. A relation frame in QUAESTOR.

Each relation has five slots:
• a Relation slot

This slot contains the numerical expression of the relation. A wide variety of
functions are available, such as geometric functions, interpolation functions,
logical functions, etc.. There are also functions which call for external data or
programs. 

• a Control slot
This slot contains attributes which define how the relation can be used. These
attributes directly affect the selection process for suitable relations, and some
of them are useful during the development process. Some important attributes are:
- OW or TW (i.e. ’One Way’ or ’Two Way’)

’One Way’ means that the relation will only be used to calculate the
parameter in the left clause of the relation; the relation is considered
as a function. This is particularly meaningful for empirical relations, which
should not be used to determine a parameter in the right clause.

’Two Way’ means that the relation can be considered as an equation, which can be
served to calculate unknown parameters in the right as well as in the left clause.

- AND or OR
This attribute defines whether all (AND) or just one (OR) of the connected
constraints have to be satisfied in order to authorise the use of the
relation.

The ">"-sign at the right side of the rule indicated that more information may be
available.

• a Reference slot
In this slot background information is given, which may be as large as several
pages. This is very helpful when the knowledge base grows larger.

• a Data slot 
This slot may contain data which is needed by functions that are applied in the
relation. 

• a Constraint slot
This slot contains the number of constraints which are linked with the
relation.

constraints

When the applicability of a relation is limited, this can be expressed by linking
one or more constraints to it. Only when one or all linked constraints are

Relation < ToverW=W_ratio/T_ratio*(q*CD0/WoverS+WoverS/(q*pi*A_wing*e)) |
Control < HARD, TW, AND, ON, EMPIRICAL, CLASS: Undefined! >
Reference < Min. thrust-loading for ’cruising speed’ condition |
Data < |
Constraint < 1 |
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5. Design of an aircraft concept with AIDA
satisfied (depending on the control attributes of the relation), the relation is
nominated for the construction of the relational network, i.e. the template. A
constraint may be linked with more relations.

The format of a constraint is less strict then the relation. The left clause
can also be a function with more parameters, and the operand may be any kind of
logical operator: 

f(parX1, parX2, .., parXn) | =,<,OR etc. | g(parY1, parY2, .., parYn).

An example is the constraint which is linked with the relation for the cruising
speed condition, Figure 5.15, indicating that the relation is only valid for
"cruising speed" conditions. The frame for that constraint is shown in next
figure:  

Figure 5.16. A constraint frame in QUAESTOR.

The constraint frame looks like the relation frame, and contains four slots:
• a Constraint slot

This slot contains the expression of the constraint. As with the relation
slot, many functions are available. Notice that also string-operations are possible.

• a Control slot
The control attributes in this slot influence the use of the constraint and help
the development of the knowledge base. These control attributes differ from those
of the relation frame. Some of the most important are:
- HARD or SOFT

When this attribute is set to SOFT and the constraints is evaluated to be
FALSE, the user is asked whether the linked relation can be used or not.
When the attribute is set to HARD, QUAESTOR will automatically reject the
linked relation from the template.

- TR or FA (i.e. TRUE or FALSE)
The attribute value FALSE stands for a logical NOT, meaning that when the
expression in the constraint slot is FALSE, the constraint is regarded as
TRUE. This is convenient when the formulation of the constraint is very
complex whereas the negation can be written as a much simpler expression. 

• a Reference slot
In this slot background information is stored.

• a Data slot
Also in this slot data can be stored which is needed by functions in the Constraint
slot.

Constraint < Flight_phase="cr" |
Control < EPS 0.5, HARD, TR, ON, NO MESSAGE |
Reference < cruising |
Data < |
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parameters

Each time a new relation or constraint is defined in the knowledge base,
QUAESTOR links it with all involved parameters. When a parameter has not
been defined before, QUAESTOR prompts the knowledge base developer to do so. 

Next figure shows the frame of the parameter Flight_phase:  

Figure 5.17. A parameter frame in QUAESTOR.

The parameter frame consists of seven slots:
• a Parameter slot

This slot contains the symbol of the parameter. The ">"-sign at the right site of
the rule indicates that more information may be available.

• a Control slot
The attributes in this slot affect the use of the parameters. Again, these
attributes differ from the Control attributes of the relation and constraint
frames. Some important attributes are:
- INI <value> (only available for numerical parameters)

This attribute defines its initial value, which is necessary for the Newton-
Raphson and Simplex methods to solve iteration loops in the template.

- USR/USL or SYS/SYL or VR
This attribute suggests how the parameter will be used: its value is possibly
input by the user (USR/USL), never input by the user but determined by other
relations (SYS/SYL), or its value is always input by the user (VR). The
USR and SYS values suggest this for the right clause, while USL and SYL
suggest this is valid for the left clause.

- NN or N or NP or P or NZ or U (only available for numerical parameters)
This attribute controls which value the parameter can get: Non Negative
(NN), Negative (N), Non Positive (NP), Positive (P), Non Zero (NZ) or
Unrestricted (U). When the calculated value is outside the defined range,
QUAESTOR produces a warning.

- VALUE or STRING or OBJECT
This attribute defines the type of parameter: numerical (VALUE), a string
(STRING) or a QUAESTOR-object (OBJECT). A QUAESTOR-object consists of
a multi-dimensional table filled with values. Such an object is for example
applied to implement the engine thrust curves of an engine (maximum thrust

Parameter < Flight_phase |
Control < COL 9, VR, OUT, STRING |
Reference < flight condition; pick list: >
Data < |
Value QWB < >
Dimension < >
Class < Undefined! |
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values for several temperatures and altitudes). Specialised functions are
available for the relations to read these tables and interpolate between the
table values.

• a Reference slot
In this slot the parameter is described in words. 

It is also possible to put a so-called picklist to this slot, such as in Figure 5.18.
A picklist contains values from which the user can select one. This is very helpful
when it is important to use specific string-values, as is the case with the
parameter Flight_phase. Another useful way of a picklist is when empirical
parameters are applied which can adopt only pre-defined values.

The picklist is activated by moving to the right column, indicated by the ">"-
sign.

• a Data slot
This slot can also contain a table with values. The difference with the Reference
slot is that when a function in an expression needs table-values, only the Data slot
will be consulted. 

• a Value slot (QWB stand for the QUAESTOR Work-Base)
This slot shows the value of the parameter, as it is registered in the QUAESTOR
Work-Base. When the value has not been determined yet, the slot is left blanc. 

• a Dimension slot
In this slot the dimension of the parameter can be described.

• a Class slot
Each parameter can be categorised into a class, which is indicated in this slot.
The classification structure helps the developer or user to find a specific
parameter.

There are several possibilities to examine and browse the knowledge base. One way
is to scroll through the frames, as described here. Other options are the Parameter
List, which shows the parameters per Parameter Class, and the Expression List,
showing all the expressions (relations and constraints).

All frames can be saved in QUAESTOR knowledge-base files. 

flight condition; pick list:

"cOEI" <EQ> climbing with One Engine Inoperative
"toAE" <EQ> take-off with All Engines operative
"sscOEI" <EQ> second segment climb with One Engine Inoperative
"cr" <EQ> cruising
"land" <EQ> landing

Figure 5.18. The picklist of the parameter "Flight_phase" (see Figure 5.36).
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5.5.3 Building the templates

When the developer has filled the knowledge base, QUAESTOR builds the template in
close interaction with the user. 

The user starts by selecting a parameter which value has to be calculated. This
is called a goal parameter. QUAESTOR builds the template by searching for
relations that can derive the goal parameter from other parameters. It works
its way backwards until only independent parameters are left; the so-called
problem-driven strategy.

In order to construct the template, QUAESTOR applies a simple inference algorithm
which is displayed in Figure 5.19 and discussed next:

The interaction with QUAESTOR starts by selecting a knowledge-base file. The user
chooses the top-goal parameter from the knowledge-base, i.e. the (goal) parameter
for which the template is constructed. When the user has chosen the top-goal
parameter, QUAESTOR searches for relations which contain that parameter;
whether the parameter is in the left-hand clause or in the right-hand clause of an
equation. The user selects one of the suggested relations, and QUAESTOR inquires
each involved parameter. When the parameter has not been derived yet, the user
is asked for a value or to define it as a new goal parameter. In the latter case,
QUAESTOR applies the inference algorithm again. When all parameters have been
labelled either ’dependent’ (derived by the template) or ’independent’ (input by the
user), the inference will stop and the template is complete.

define GOAL parameter
determine GOAL value

find appropriate RELATION
if CONSTRAINT is linked

provide CONSTRAINT parameter values
if value is "not known" (not derived, no input)

(sub)GOAL = CONSTRAINT parameter
determine (sub)GOAL value

if no CONSTRAINT is linked or linked CONSTRAINT is "Fulfilled"

suggest the RELATION
if RELATION is "accepted"

provide RELATION parameter values
if value is "not known" (not derived, no input)

(sub)GOAL = RELATION parameter
determine (sub)GOAL value

Figure 5.19. The inference algorithm of QUAESTOR for the construction of a
template.

construction of template is completed

calculate GOAL parameter value
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Before an appropriate relation is suggested to the user, linked constraints
are examined. When the involved parameters are not known to the workbase of
QUAESTOR or to the user, QUAESTOR applies the inference algorithm to derive its
value. Only when all linked constraints have been validated to be "fulfilled", the
relation will be suggested to the user.

QUAESTOR is able to detect cycles or systems of more then one equation. With
(pre-defined) initial values and the Newton-Raphson and Simplex algorithms the
parameters are approximated (with a pre-defined accuracy). 

The Newton-Raphson and Simplex algorithms are also used to determine the
value of the top-goal parameter. The template is internally translated into a set of
equations, with the number of independent parameters equal to the number of
relations. Because of this strategy it does not matter whether the goal
parameters are in the left-hand clause or the right-hand clause of the equations. 

From his experience the designer knows that the wing-loading-thrust-loading
diagrams are important to express the influence of important design variables on the
aircraft performances. In our study case such a diagram is constructed to evaluate
some of the design variables copied from the (adapted) case, with respect to the
design specifications. Five relational networks are constructed with the aid of
QUAESTOR, representing five design specifications:
• cruising speed specification;
• take-off distance specification;
• landing distance specification;
• en-route climbing with one-engine inoperative (OEI) specification (specified by

the FAR regulations);
• second segment climb with one engine inoperative (OEI) specification (a FAR

regulation).

At this stage the range specification is not taken into account. This requires too many
details about the aircraft weight distribution. Instead, the maximum take-off weight
is considered as fixed and is copied from the data-file of the Fokker 70, the ’best-
matching’ case of Section 5.3. 

The next example shows the working of and the interaction with QUAESTOR. In the
example a template is constructed for the calculation of the required thrust-loading to
satisfy the cruising speed specification:
• The user/designer retrieves the appropriate knowledge-base file.

The concerned file contains the relations, constraints and parameters
which may be used for all specifications.

• The user selects the goal parameter: ToverW.
• QUAESTOR searches for relations which contain the parameter ToverW.
124



5.5. First modifications with the Functional module
There are several relations with the parameter ToverW. The first relation
found by QUAESTOR is one of the wing-loading-thrust-loading relations
representing one of the six design specifications. All these relations are linked
with a constraint about the considered flight-phase. Before the relation can
be suggested by QUAESTOR, the constraint is evaluated.

• QUAESTOR detects a constraint linked to the relation and evaluates it.
The expression for this constraint is for example:
Flight_phase="TO_AE".

• QUAESTOR asks for the value of the parameter Flight_phase.
To be able to evaluate the constraint, the value of the parameter
Flight_phase has to be known.

• The user selects the value "CR" from the picklist of the parameter
Flight_phase.
The parameter Flight_phase is a string parameter. To be able to effectively
use the parameter in a constraint, the user is prompted to choose a string-
value from a pre-defined set. He can choose between: "TO_AE" (Take-Off
condition with All Engines running), "SSC_OEI" (Second Segment Climb
condition with One Engine Inoperative), "C_OEI" (Climbing condition with One
Engine Inoperative), "CR" (CRuising condition).

• QUAESTOR certifies that the constraint Flight_phase="CR" is fulfilled, and
the others are not fulfilled.
Because the constraint Flight_phase="TO_AE" is found to be unfulfilled,
the linked relation is not suggested. The next possibly suitable relation is
for example the wing-loading-thrust-loading relation which is linked with the
constraint Flight_phase="SSC_OEI". That constraint is evaluated and
ascertained to be unfulfilled, so QUAESTOR will look for another suitable
relation. This process continuous until the wing-loading-thrust-loading
relation is found which is linked with the constraint Flight-

Phase="CR".
• QUAESTOR suggests the wing-loading-thrust-loading relation which expresses

the cruising speed specification.
The suggested relation is the expression of Equation 5.1.

• QUAESTOR asks for the user to provide values for the new parameters.
QUAESTOR evaluates each parameter in the relation: whether it has already
been determined by other relations, if it has a pre-defined value (i.e. is a
constant), or if it should be calculated by other relations (as indicated by the
control attributes of the parameter). When all these checks are negative, the
user is asked to provide their values.

• QUAESTOR assigns new goal parameters.
When the user does not provide a value when requested, that parameter is
supposed to be determined by other relations. QUAESTOR assigns those
parameters to be new goal parameters.

• QUAESTOR introduces the relation into the template.
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When all parameters in the relation have been labelled as ’derived’
(calculated by template), ’input’ (provided by user or by external file) or
’requested/pending/unknown’ (goal), the relation is accepted and introduced
into the template. 

• QUAESTOR evaluates the still incomplete template.
QUAESTOR reviews the incomplete template. It examines the overall situation
by counting the number of accepted relations and the number of unknown
parameters, and it checks for local loops. When a loop is detected, QUAESTOR
uses Newton-Raphson and Simplex algorithms to determine the values of the
involved parameters.

At this stadium QUAESTOR counts 1 accepted relation, i.e. the expression of
Equation 5.1, and 4 unknown parameters: T_ratio, q, CD0 and the top-goal
parameter ToverW. Because there are still more unknown parameters than
accepted relations, the top-goal parameter can not be calculated and
QUAESTOR continues.

Note that the linked constraints are not considered in this respect, since
they do not produce new parameter values.

• QUAESTOR assigns a new goal parameter: CD0.
All three new unknown parameters will be goal parameters. QUAESTOR
randomly focuses on one of them: CD0. The other parameters will be dealt with
later on.

• QUAESTOR suggests a relation to calculate CD0.
• Etc.

The complete inference process is displayed in Figure 5.20. The previous text covers
only the first couple of inference steps. 

With respect to this specific inference process, some typical difficulties are revealed:
• The user has to make assumptions about parameters.

For instance the parameter Wto is chosen to be constant, instead of the
parameter S_wing. Because the expression WoverS=Wto/S_wing is used in
the template, the value of S_wing will change when WoverS is varied.

As a consequence it is possible to make the parameter Tto variable and
calculate it by the expression ToverW=Tto/Wto. 

This issue of deciding which parameter to keep constant and which to vary,
is not a specific QUAESTOR-problem; it is typical for the creation of such a
template.

• The user has to have a good overview on the relations available.

It is too complex to draw a scheme of the complete template. Figure 5.21 shows
the 19 relations and the 19 dependent parameters, i.e. the parameters that
are calculated within the template. 
126



5.5. First modifications with the Functional module
START OF INFERENCE:
ToverW is TOPGOAL and chains to:
ToverW=f(W_ratio,T_ratio,q,CD0,WoverS,pi,A_wing,e)
CD0 is SUBGOAL of ToverW and chains to:
CD0=f(r_Re,r_uc,CD0S_t,CD0S_w,CD0S_f,CD0S_n,S_wing)
S_wing is SUBGOAL of CD0, ToverW and chains to:
WoverS=f(Wto,S_wing)

S_wing inferred
CD0S_n is SUBGOAL of CD0, ToverW and chains to:
CD0S_n=f(r_n,r_thr,bypass_ratio,Tto,T_to_spec,p_0)
Tto is SUBGOAL of CD0S_n, CD0, ToverW and chains to:
ToverW=f(Tto,Wto)

Tto inferred
CD0S_n inferred
CD0S_f is SUBGOAL of CD0, ToverW and chains to:
CD0S_f=f(r_f,l_f,b_f,h_f)

CD0S_f inferred
CD0S_w is SUBGOAL of CD0, ToverW and chains to:
CD0S_w=f(r_w,toverc_mean,sweep,pi,S_wing)

CD0S_w inferred
CD0S_t is SUBGOAL of CD0, ToverW and chains to:
CD0S_t=f(r_t,CD0S_f,CD0S_w)

CD0S_t inferred
r_Re is SUBGOAL of CD0, ToverW and chains to:
r_Re=f(Re_f)
Re_f is SUBGOAL of r_Re, CD0, ToverW and chains to:
Re_f=f(V,l_f,kin_visc)
kin_visc is SUBGOAL of Re_f, r_Re, CD0, ToverW and chains to:
kin_visc=f(temp,rho_atm)
rho_atm is SUBGOAL of kin_visc, Re_f, r_Re, CD0, ToverW and chains to:
rho_atm=f(rho_0,temp_ratio)
temp_ratio is SUBGOAL of rho_atm, kin_visc, Re_f, r_Re, CD0, ToverW 

and chains to:
temp_ratio=f(h,temp_0)

temp_ratio inferred
rho_atm inferred
temp is SUBGOAL of kin_visc, Re_f, r_Re, CD0, ToverW and chains to:
temp=f(temp_ratio,temp_0)

temp inferred
kin_visc inferred
V is SUBGOAL of Re_f, r_Re, CD0, ToverW and chains to:
M=f(V,a)
a is SUBGOAL of V, Re_f, r_Re, CD0, ToverW and chains to:
a=f(gamma,R,temp_0,temp_ratio)

a inferred
V inferred

Re_f inferred
r_Re inferred

CD0 inferred
q is SUBGOAL of ToverW and chains to:
q=f(rho_atm,V)

q inferred
T_ratio is SUBGOAL of ToverW and chains to:
T_ratio=f(alt,M)
alt is SUBGOAL of T_ratio, ToverW and chains to:
alt=f(h)

alt inferred
T_ratio inferred

ToverW inferred
END OF INFERENCE

Figure 5.20. The inference process of QUAESTOR for the creation of the cruising
specification template.
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5. Design of an aircraft concept with AIDA
The next figure, Figure 5.22, presents the independent parameters, which values
are not derived within the template. Some of the parameters are physical
constants, and their values have been given by the knowledge base developer and
saved within the knowledge base. These parameters are of the Constant Class. 

Other values are input by the user. They come from the adapted case of the
previous design step, or their values are suggested by the picklists. 

Another source of information is the thrust-ratio versus speed diagram of the
engine. In the similar AGARD study, see [Fransen, 1996], such a diagram is presented

 Contents of current template: 19 parameter(s) and 19 expression(s)

      CD0S_f   zero-lift drag area due to fuselage ..........[m^2]
      ToverW   thrust-loading .................................[-]:        ?
      T_ratio  actual thrust ratio (T/Tto) ....................[-]
      q        dynamic pressure ...........................[N/m^2]
      CD0      zero-lift drag coefficient; picklist; ..........[-]
      r_Re     zero-lift drag corr. factor for Reynolds numb ..[-]
      CD0S_t   zero-lift drag area due to tail ..............[m^2]
      CD0S_w   zero-lift drag area due to wing ..............[m^2]
      CD0S_n   zero-lift drag area due to engine and nacelles[m^2]
      S_wing   wing surface .................................[m^2]
      Tto      static take-off thrust .........................[N]
      Re_f     Reynolds number of fuselage; picklist: .........[-]
      V        velocity .....................................[m/s]
      kin_visc kinematic viscosity ........................[m^2/s]
      temp      ...............................................[K]
      rho_atm  Atmospheric density .......................[kg/m^3]
      temp_ratio
         Relative atmospheric temperature ...............[-]
      a        Speed of sound ...............................[m/s]
      alt      Altitude in [ft] ..............................[ft]

      CD0S_f=0.0031*r_f*l_f*(b_f+h_f)
      ToverW={W_ratio}/{T_ratio}*({q}*{CD0}/WoverS+WoverS/

({q}*{pi}*{A_wing}*{e}))
      T_ratio=LININT(4,3, "alt","Mach","T_ratio", alt,M)
      q=.5*rho_atm*V^2
      CD0=r_Re*r_uc*(CD0S_t+CD0S_w+CD0S_f+CD0S_n)/S_wing
      r_Re=47.0/Re_f^(0.2)
      CD0S_t=(r_t-1.0)*(CD0S_f+CD0S_w)
      CD0S_w=0.0054*r_w*(1+3*toverc_mean*(COS(sweep*pi/180.))^2)*S_wing
      CD0S_n=1.72*r_n*r_thr*(5+bypass_ratio)/(1+bypass_ratio)*Tto/(T_to_spec*p_0)
      WoverS=Wto/S_wing
      ToverW=Tto/Wto
      Re_f=V*l_f/kin_visc
      M=V/a
      kin_visc=1.458E-06*temp^1.5/((temp+110.4)*rho_atm)
      temp=temp_ratio*temp_0
      rho_atm=rho_0*temp_ratio^4.2558761
      temp_ratio=1.0-0.0065*h/temp_0
      a=SQRT(gamma*R*temp_0*temp_ratio)
      alt=h/0.3045

Figure 5.21. The 19 relations and 19 dependent parameters that makes the
template solvable.
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5.5. First modifications with the Functional module
for a specific engine, the Rolls-Royce BMW RB512 turbofan. The non-dimensional
data of this engine is put into a QUAESTOR relation via interpolation functions and
data tables in the data slot. By using this data the engine is scaled, also known as the
rubberizing process. When such diagrams are available for other engines, the user
can choose between different engines. The selection of a suitable diagram can be
supported by linking constraints with respect to for example the thrust. 

 Discrete Input from Operator
      ----------------------------
      
      Class: Undefined!
      A_wing   aspect ratio of wing ...........................[-]:     9.10
      bypass_ratio
               bypass ratio of engine .........................[-]:        5
      b_f      max. width of major cross section of fuselage ..[m]:     3.30
      e        Oswald factor; picklist: .......................[-]:      0.8
      engine_config
               picklist: .................................[string]:  ON_WING
      engine_type
               picklist: .................................[string]: TURBOJET
      Flight_phase
               flight situations; pick list: ..................[-]:       CR
      h_f      max. height of major cross-section of fuselag ..[m]:     3.30
      l_f      length of fuselage .............................[m]:    27.88
      M        Mach number (V/a) ..............................[-]:      0.7
      Ne       number of engines ..............................[-]:        2 
      sweep    sweep angle at quarter-chord line ........[degrees]:    15.00
      toverc_root
               thickness ratio at wing-root ...................[m]:    0.153
      toverc_tip
               thickness ratio at wing-tip ....................[m]:    0.122
      T_to_spec
               specific thrust at take-off (jet thrust/airflow [-]:    30.06
      Wto      max. take-off weight (MTOW) ....................[N]:   399200
      W_ratio  relative actual weight (W/Wto); picklist: ......[-]:        1
      
      Class: Constant
      gamma    ratio of specific heats of air [Ruijgrok 1994 ..[-]:      1.4
      pi       geometrical constant ...........................[-]:  3.14159
      p_0      atmospheric temperature at sea-level ISA [Ru ..[Pa]:   101325
      R        gas constant of air [Ruijgrok 1994, tabel  ..[Nm/K]:   287.05
      rho_0    atmospheric density at sea-level ISA [Ru ..[kg/m^3]:    1.225
      temp_0   atmospheric temperature at sea-level ISA [Rui ..[K]:   288.15
      
      Class: Correction factor
      r_f      zero-lift drag corr. factor for shape of fuse ..[-]:        1
      r_n      zero-lift drag corr. factor for engine instal ..[-]:      1.5
      r_t      zero-lift drag factor due to tail; picklist: ...[-]:     1.24
      r_thr    zero-lift drag corr. factor for thrust revers ..[-]:        1
      r_uc     zero-lift drag corr. factor for under-carriag ..[-]:        1
      r_w      zero-lift drag corr. factor for braced wings; ..[-]:        1

Figure 5.22. User input of the template.
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5. Design of an aircraft concept with AIDA
The other specifications are dealt with in separate QUAESTOR sessions. Although
QUAESTOR is able to construct a template which calculates more top-goal
parameters, it is not possible to use one relation several times in one
template. Since some basic relations will be used for several specifications in
different situations, this limitation forces the user to construct several templates.
Therefore for each specification a separate template is constructed

Recent developments of QUAESTOR allow for multiple use of relations,
though, by applying an object-like syntax.

5.5.4 Performing calculations with the template

QUAESTOR is already calculating the parameter values while constructing the
template. So, when the template has been completed, one value of the goal
parameter is determined. 

To perform sensitivity studies, the independent parameter values can be given
other values. It is also possible to input ranges of values, which result in a range of
values of the goal parameter. Together with the values of the other dependent
parameters they can be saved in ascii-files and presented in graphs. 

Figure 5.23 shows parts of the results of the example about the cruising condition.
The goal parameter ToverW (the thrust-loading) is calculated as function of the
independent parameter WoverS (the wing-loading) for one cruising Mach-number
and two different cruising altitudes. 

The graphical presentation of these parameters is shown in Figure 5.24. The
results of only one template is presented; an external program is needed to show the
results of all templates together.  

When QUAESTOR detects a constraint to become unsatisfied, the user is
prompted to reconstruct the template. The valid part of the template can still be
used.

A loop in the template is handled by applying the Newton-Raphson and
Simplex methods. The required initial values have already been defined in the
control slots of each parameter. The accuracy of the approximated value has also
been specified by the developer in a parameter control slot. Errors may occur
when the approximation process diverges, for example because wrong initial values
have been given.
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      Derived Discrete Values
      -----------------------

      Class: Undefined!
      CD0S_f   zero-lift drag area due to fuselage ......[m^2]:   0.5704 
      CD0S_n   zero-lift drag area due to engine and nac [m^2]:   0.1491 
      toverc_mean
               mean thickness-chord ratio .................[-]:     0.14 
      
      
      Derived Multi-case Values
      -------------------------
      
      No.        a      alt      CD0   CD0S_t   CD0S_w        h kin_visc 
             [m/s]     [ft]      [-]    [m^2]    [m^2]      [m]  [m^2/s] 
      -------------------------------------------------------------------
         1  303.15 30049.26   0.0151   0.4354   1.2439     9150 3.25E-05 
         2  303.15 30049.26   0.0160   0.3928   1.0662     9150 3.25E-05 

         7  303.15 30049.26   0.0205   0.2862   0.6219     9150 3.25E-05 
         8  296.61 34975.37   0.0156   0.4354   1.2439    10650 3.77E-05 
         9  296.61 34975.37   0.0166   0.3928   1.0662    10650 3.77E-05 

        14  296.61 34975.37   0.0212   0.2862   0.6219    10650 3.77E-05 

      
      No.        q     Re_f  rho_atm     r_Re   S_wing     temp temp_rat 
           [N/m^2]      [-] [kg/m^3]      [-]    [m^2]      [K]      [-] 
      -------------------------------------------------------------------
         1   10311 1.82E+08   0.4580     1.05   166.33   228.68     0.79 
         2   10311 1.82E+08   0.4580     1.05   142.57   228.68     0.79 

         7   10311 1.82E+08   0.4580     1.05    83.17   228.68     0.79 
         8    8201 1.54E+08   0.3805     1.08   166.33   218.93     0.76 
         9    8201 1.54E+08   0.3805     1.08   142.57   218.93     0.76 

        14    8201 1.54E+08   0.3805     1.08    83.17   218.93     0.76 

      
      No.   ToverW  T_ratio        V 
               [-]      [-]    [m/s] 
      -------------------------------
         1   0.269     0.28   212.20 
         2   0.253     0.28   212.20 

         7   0.230     0.28   212.20 
         8   0.287     0.23   207.63 
         9   0.275     0.23   207.63 

        14   0.268     0.23   207.63

Figure 5.23. QUAESTOR output from the template on the cruising condition.
NB.The zero-lift drag area value due to the tail, CD0S_t, changes with

the varying WoverS, because CD0S_t is related with the similar
parameter for the contribution of the wing, CD0S_w; see
Figure 5.21.
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5. Design of an aircraft concept with AIDA
5.5.5 Combining the results of several templates

For each specification a template is created. With these templates the influence of
some important design parameters are studied, such as the maximum
liftcoefficient in take-off and in landing configurations. When requested, the user
copies the input values from the adapted case; that is: the wing data is originated
from the British Aerospace RJ70, the other aircraft data from the Fokker 70. Some
detailed engine data is copied from the Rolls-Royce BMW RB512 turbofan engine;
this data was available due to a GARTEUR-project [Fransen, 1996]. An overview of
the requested data is given in Table 5.7; the CLmax parameter for the landing and
take-off situations as well as the wing- and thrust-loading are not included since they
are subject to the sensitivity studies (and not copied from the case data):

Figure 5.24. The graphical presentation of the calculation results for the cruising
condition: the thrustloading ToverW versus the wingloading WoverS
for the specified cruising speed and two different altitudes (upper line:
h=10650m; lower line: h=9150m). 
Note: the diagonal line in the diagram should be ignored; this is
caused by the way QUAESTOR reads the data: per column.
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The calculation results are put into one diagram, the loading diagram; see
Figure 5.25. Together the different lines in this diagram frame the solution space, and
an appropriate combination of wing-loading W/S and thrust-loading T/W can be
chosen. 

In general the designer wants low values of the thrust-loading T/W, because this is
translated into lower thrust engines which are less sophisticated and expensive, and/
or increases the maximum weight limit. So a low thrust-loading gives the designer
more design possibilities.

Table 5.7. Requested (aircraft) case data and their sources for the specification
calculations.

specification Fokker 70 BAe RJ70
(wing)

RB 512
(engine)

take-off (AE) - A λc

second segment climb (OEI) - A -
ceiling (OEI) da

fus, lfus, Wto

a. = fuselage diameter; b. = sweep; c. = by-pass ratio; d. = specific thrust at take-off
I. : Tto has only a minor effect on the determination of the drag-contribution of the propulsion.

A, Λb, t/c λc, Tto
I, Td

to,spec
landing distance - - -

cruising speed and alt. da
fus, lfus, Wto A, Λb, t/c λc, Tto

I, Td
to,spec

Figure 5.25. The loading diagram: results of 5 template calculations representing 5
design specifications.
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A high value of the wing-loading means a smaller wing is needed, which is
cheaper and results in lower drag values. Higher wing-loadings also make the
aircraft less sensitive to gust-loads, and therefore increases the comfort of the
passengers. But because the wing usually contains (most of) the fuel, the wing
should not be too small, i.e. the wing-loading value should not be too high. 

With these considerations, the following values have been chosen:
• T/W = 0.29
• W/S = 3500 N/m2

• CLmax_TO = 2.4
A range of maximum liftcoefficients have been studied with respect to the take-
off and landing distances. Knowing that a large value requires a complex high-lift
system, a low value is favoured. Lower values result in longer distances, however.
With the chosen value the take-off distance of the design will just be smaller than
the specified maximum distance.

• CLmax_land = 2.8 (or 2.7 seems possible)
The maximum liftcoefficient during landing will generally be higher than during
take-off, because the high value of the induced drag is not a problem in the
landing condition. The maximum liftcoefficient in the landing situation can
usually be about several tenths higher, using the same high-lift system.

With the initial value of the maximum take-off weight of 400 kN (copied from the
Fokker 70), this leads to:
• Tto = 58 kN per engine;
• S = 114 m2.

When in the next design steps more details will be known about the weight
distribution, the range can be calculated. In general, the initial weight value has to be
modified to meet the range specification, and the loading diagram has to be
generated again. Because the templates are saved within QUAESTOR, this iteration
can easily be executed.

The loading diagram in Figure 5.25 can also be used to evaluate the specifications. A
change in the cruising altitude, for example, seems to have a large effect on the
design space: a small increase of the cruising altitude boosts the required thrust-
loading.

The FAR-regulation about the minimum ceiling altitude with One Engine
Inoperative does not seem to have a large impact on the design. The take-off
specifications, however, are very restrictive.
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5.5.6 Evaluation of the Functional module

The Functional Module is helpful, but it is clear that the user still needs domain
knowledge to perform sensitivity studies. A skilled designer is needed to define the
goal parameters which are helpful to evaluate some design parameters, to
create the template in QUAESTOR, to choose the design parameters and to evaluate
the results of the calculations.

With respect to the computer tool QUAESTOR, some particular difficulties are
encountered which the user has to deal with. These are discussed in this section.

Choosing the right relation

It is not always clear which relation to choose from the presented list. One
problem is that a relation can only once be used in a template; that is, a
relation can be selected only once. The user should therefore have some thoughts
about the relations he may need to build the template. And he should be aware of
the implications of the alternative relations: which new parameters will they
introduce?

QUAESTOR offers the possibility to reconsider a selected relation, though. Also
when the template has been finished the user can un-select a relation and
QUESTOR continues to support the reconstruction of the template. 

In general, a proper overview of the (unfinished) template is very helpful when
building it. Due to its limited graphical capabilities, the applied version of QUESTOR
is not able to create some kind of graphical representation of the template. Such
representations can become very complex when the template’s size increases,
though, so that the overview problem would still exist.

Conditional validity of empirical relations

Empirical relations are based on simplified physics in combination with statistics.
This makes them only valid under certain circumstances. In QUAESTOR this can be
implemented in different ways:
• coupling constraints to a relation; 
• not to automate it, i.e. let the designer decide whether or not the relation will

be used.

When the circumstances are well-defined and have always to be met, the first option
is implemented. When this is not the case, it is preferable to let the designer decide
(latter option).
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Derivative relations

Because a relation can be used only once in a template, the knowledge base
should contain the general and principal relations as well as some important
derivatives. Only the main derivatives are included, since a large knowledge base is
difficult to survey which makes it hard to select a proper relation. With
QUAESTOR it is possible to perform the derivations ’on-line’, but that requires
unnecessary attention of the user. 

A derivative relation is usually only valid for specific conditions. Therefore
such a relation involves specific parameters and extra relations. For
example, the derived equation for the lift-coefficient for minimum drag conditions:

(Eq. 5.2)

This relation is put directly into the knowledge base. It introduces a new
parameter, CL(Dmin), and requires an extra relation, Equation 5.3:

(Eq. 5.3)

Combined parameters are not decomposed

Often particular combinations of parameters are considered, such as the wing-
loading W/S and the thrust-ratio T/TTO. In fact, they are like any other parameter but
lack an officially defined symbol. When these combined parameters are important,
they are introduced separately; for example  and

. 
To reduce redundancy, either the combined parameter or the separate

parameters are used in a relation; that is, either a relation with the
combined parameter is created or the same relation is created with the separate
parameters. This may lead to the use of extra relations and extra parameters
in the template, however.

It is not always clear which option to choose. When a combined parameter is
important and can be calculated in different ways, it seems better to use this
parameter. The dynamic pressure q is such a case, because it can be calculated in
different ways:  and . Therefore the definition of the lift-
coefficient will be formulated as: .

Automatic acceptance of a relation

The developer of the knowledge base should be very careful with the control
attributes of the relations and the parameters. Some particular combinations of
these control settings may lead to automatic acceptance of a relation in a specific
situation. It is obvious that this is not desired when another relation is preferred,
since multiple use of relations is not possible. 

CL Dmin( ) πAeCD0=

CL CL Dmin( )=

WoverS W S⁄=
Tratio T TTO⁄=

q 1
2
---ρv2= q 1

2
---γpM2=

L qScL=
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Multiple use of relations

New developments of QUAESTOR offer multiple use of relations. An index
system has been developed for that purpose. However, these improvements have not
been considered in this study.

’Reading’ tables

In empirical relations often factors are introduced of which the values are pre-
defined, depending on the circumstances. The values can be prescribed by the
airworthiness regulations, or result from the designers experiences and statistics. In
the references many tables with these factors, their values and their circumstances
have been given. 

In QUAESTOR a set of pre-defined values can be coupled to a parameter. To
every pre-defined value a comment-line is added, so that there are no limitations to
the description of the circumstances. When required, the designer can select one of
the pre-defined values, or overrule it with a self-defined value.

The determination of the appropriate value can also be completely automated by
implementing the table by a relation, using logical operators. In that case,
however, the circumstances have to be explicitly described in algebraic notations.

’Reading’ diagrams

Some numerical knowledge is put into diagrams, such as engine-data. In QUAESTOR
this type of knowledge can be implemented using external data-files and
interpolation functions in relations. The external file contains the data of the
diagrams in a special format, called Telitab (see [Van Hees, 1997], written in ascii-
code. In the relation a function-call can be assigned which contains the names of
the external data-file and the interpolation parameters. The function-call will
return an interpolated value, which is used in the relation. Several interpolation
methods can be applied.

A diagram can of course also be implemented by a self-defined polynomial
function. 

Existing calculation modules

Also existing, independent calculation modules can be incorporated in a QUAESTOR
template. They are considered as black boxes, from which the input and output
parameters are defined. With a function-call in a relation the external module
can be integrated in the template. The function-call must include the name of the
module, and the input and output parameters. 
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5.6 Visualization of the aircraft concept with the Geometrical 
module

5.6.1 Introduction

The Geometrical Module creates a simplified, three-dimensional model of the
external surface of the design. The model is visualized in order to help the designer
understanding his creation, and it can be exported for the use of for more detailed
calculations in the succeeding design steps. Because of these purposes the model has
only a low level of detail.

The commercial software package Pro/ENGINEER© [Parametric, 1999] is used in
this module. This package applies so-called features to define parts and
combinations of parts (assemblies). Features are engineering entities such as
protrusions, cuts and holes, which refer to the designer’s intentions. In addition
constraints can be applied for more powerful parametric and flexible modelling. The
feature and constraint definitions involve parameters which can be used in numerical
expressions. Together these characteristics make Pro/ENGINEER a flexible tool for
parametric modelling of the aircraft concept.

The Student Edition of Pro/ENGINEER, which has been applied for this project, does
not allow automatic construction of the models. However, automatic suppression of
elements of the model is possible. This technique is used for the definition of the
aircraft concept.

For this reason standard aircraft components are used with pre-defined
topologies1. The module asks for the values of some Structure parameters, and
generates the model automatically.

The use of pre-defined parts corresponds well with the characteristics of the CBR
module, i.e. generating new design concepts by combining existing configurations.
A consequence is that when a new topology is loaded into the case-base, the
developer should also update the pre-defined parts in the Geometrical Module.

1. The terms ’part’, ’component’, ’type’, ’configuration’ and ’topology’ may be confusing. In this thesis
the following definitions have been used:
- part: a physical entity of an aircraft; in Pro/ENGINEER a part is defined by a specific set of
parameters;
- component: in Pro/ENGINEER a component is a member of an assembly; this could be a part or a
sub-assembly;
- type: comparable with a part; for example: another type of wing is defined by another set of
parameters;
- configuration: the way parts have been located with respect to each other; a different
configuration uses a different set of parameters;
- topology: describes the set of definition parameters; different part-types are defined by different
topologies, and different configurations are also defined by different topologies.
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5.6. Visualization of the aircraft concept with the Geometrical module
Because the parameter changes are unlimited, endless variations of shaping a
topology are possible. These variations are only restricted when interferences of two
parts occur, which can be checked by Pro/ENGINEER or by the user. 

The organisation of the aircraft model is strongly hierarchical. The overall concept is
modelled as an assembly of the main components: wing, fuselage, tail surfaces and
engines. Topological constraints between these components define their relative
positions.

The main components are also modelled as assemblies. These sub-assemblies
consist of one or more parts, each defining another topology. For example the sub-
assembly Engine consists of two parts, representing the turbofan engine and the
turboprop engine. The appropriate part-type is selected by suppressing the other
topologie(s). 

Every part is built of one or more features. The features and the relation between
them define the topology of the part. The parameters which are used by the features
and the relations can be changed to shape the part.

5.6.2 The pre-defined components

Every type of component is defined as a separate part. The topologies are kept very
simple to reduce the number of definition parameters. 

Often there are more ways to define a component, applying different parameters.
In general, those definitions are preferred which require the most abstract (Structure)
parameters, such as non-dimensional and ratio parameters. The idea is that these
parameters have more meaning to the designer than the low level parameters. When
necessary, additional equations are defined to relate the higher level parameters with
those of the lower level.

The part Straight Tapered Lifting Surface, for example, is defined by the Pro/
ENGINEER feature ’protrusion’, which requires the definitions of a set of cross-
sections, their relative positions and the distances between the sections. For a
’straight tapered’ surface only two cross-sections are defined; a ’cranked’ surface
requires three sections. Next figure shows the part
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.

Because the parameters required by the feature ’protrusion’1 are very low-level,
extra equations are attached to the part. Through these relations the shape of the
lifting surface can be defined by the aspect ratio A, the surface area S, the taper ratio
λ, and the sweep of the 1/4-chord line Λ1/4. The surface area S can be determined by
other, more abstract parameters, such as the volume coefficient of the tail surfaces;
these relations are defined at the assembly level, a higher level; see next section.

Some parameters have been given pre-defined values. These parameters are
required to define the geometry, but are of no importance to the designer at this
design phase. For example the definition of the cross-sections: symmetric NACA
airfoils have been used. In Pro/ENGINEER this is implemented by an internal program
file which is attached to the model. 

To be able to define its location and attitude, every part contains at least three virtual
planes which are used as references. When possible these planes are defined to have
a physical meaning to the designer. For example the longitudinal plane through the
Mean Aerodynamic Chord (MAC) of the lifting surface, and the perpendicular plane
through the 1/4-chord point of the MAC. The use of these planes is discussed in next
section about the topological constraints.

1. The feature ’protrusion’ can model more than just the physical protrusion. Cross-sections may
change and the protrusion-traject does not have to be a straight line. The ’ruled surface’ of
AutoCAD is a comparable feature.

Figure 5.26. A view of the part ’Straight Tapered Lifting Surface’ in Pro/ENGINEER.
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5.6.3 Topological constraints

Topological constraints determine the type of component to be modelled, and the
way a component is positioned with respect to another component; i.e. the
constraints define the type and the configuration of the aircraft components,
respectively.

As is mentioned in the Introduction, the Geometric Module contains all pre-defined
types of components. To present the appropriate components in Pro/ENGINEER the
non-selected types or parts are suppressed. This is straightforwardly implemented in
the internal program file of the assemblies by <if>..<then>.. rules and a ’suppress’
command.

The configuration constraints are defined with the aid of reference planes. Every
aircraft component has at least three independent reference planes, as has been
described in the previous section. With the determination of the distances between
these planes, their location and attitude with respect to each other is fixed. More
reference planes have been introduced to be used by other components and to allow
alternative reference definitions which are needed for other topologies.

Some of the reference planes correspond to planes with a physical meaning. For
example the vertical spanwise plane through the 1/4-chord point of the Mean
Aerodynamic Chord (MAC) of the wing. This reference plane is used to define the
longitudinal position of the wing with respect to the centre of the fuselage. 

Another vertical reference plane of the wing coincides with the root. This plane
coexists with the vertical similarity plane of the fuselage, to define the spanwise
location of the wing. 

The vertical location of the wing is defined by the discrete parameter
’wing_config’. With this parameter it is indicated whether the aircraft has a low-,
mid- or high-wing configuration. Depending on this parameter the wing is modelled
below the fuselage, through the fuselage or on top of the fuselage, respectively. 
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Figure 5.27 shows the topological constraints between the wing and the fuselage.

The implementation of the topology constraints are defined at the top-assembly
(complete aircraft) and the sub-assembly (components) levels. Many involved
relations are implemented in the internal program files, which are attached to the
models.

Within Pro/Engineer the parameter values can only be forwarded from higher to
lower levels, i.e. from super-assemblies to sub-assemblies to parts. However, some
relations require parameters from the lower part level. Because of this problem many
relations are defined at the top-level of the aircraft model, which makes the overview
of the internal program rather complex and prevent an decentralized organisation of
the model.

When the aircraft model has been defined, it is possible to smooth and polish it
within Pro/ENGINEER. This may be interesting for calculations further in the design
process. These case-specific modelling techniques have not been implemented in the
AIDA project, however, because this complicates the automatic generation process
extremely, and it is beyond the purpose of the project.

Figure 5.27. The topological constraints between a wing and a fuselage.
- offset=0: between datum planes ADTM3 of the wing and ADTM3 of
the fuselage;
- offset=d1: between datum planes ADTM2 of the wing and ADTM4 of
the fuselage;
- offset=d2: between datum planes ADTM4 of the wing and ADTM1 of
the fuselage.
Parameters d1 and d2 are driven by input parameters describing the
wing-configuration (high-wing) and the longitudinal wing location,
respectively. Datum plane ADTM4 of the wing is located at the 1/4-
chord point of the Mean Aerodynamic Chord (MAC).

d2

d1
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5.6.4 The input

The Geometrical Module is started by loading the general model of the aircraft into
Pro/ENGINEER. The internal program which is attached to the model will be run and
asks for the values of the input parameters. These parameters are Structural
parameters, and most of their values are copied from the case-data which have been
selected by the CBR-module, i.e. from the ’best-matching’ and the ’adaptation’ cases.
Other parameters have been examined in the Functional Module, so their values
originate from the sensitivity studies. The values can be collected in a simple input-
file to ease the input process. For a smooth operation of the tool the input-file will be
generated automatically to increase the integration of the modules; that is a
recommendation for future work.

With this set-up the Geometrical Module does not receive redundant and possible
conflicting data. The problem of redundancy is forwarded to the compilation of the
data-file. 

Most of the parameters come directly from the ’best-matching’ and the ’adaptation’
cases. Generally it is clear from which case to copy the value, depending on the
components that have been mixed. For some conditions this may be difficult,
however, and the knowledge of an expert is required.

Some parameters are omitted when they have no meaning for the current
configuration. For example the location of the wing crank is useless for straight
tapered wings.
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5.6.5 The output

The Figure 5.28 shows a 3-dimensional isometric view of the aircraft design;
Figure 5.29 shows the three views on the model.  

Pro/ENGINEER is able to export the model in different formats, such as IGES and
STEP. This may be required by the succeeding design tools. Due to the other formats,
though, the parametric set-up of the model will be lost.

Figure 5.28. A shaded, 3-dimensional view of the design.

Figure 5.29. The 3 views of the design.
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5.6.6 Evaluation

The visualization of the model helps to assess the design concept. The set of
definition parameters offers sufficient flexibility to model a wide range of
configurations. The model retains some imperfections, though, such as the
overlappings between the wing and tail surfaces and the fuselage, and the lack of
engine pylons and undercarriages. It is possible to repair these imperfections, but
that will increase the complexity. 

The parameterisation of the model offers good flexibility to change data values. This
is useful when doubts arise about some aspects of the concept. 

For example the sizes of the tail surfaces in this case study: they seem to be too
small in Figure 5.28. Their sizes are directed by the volume coefficients:

(Eq. 5.4)

In this case study, the volume coefficient values are copied from the ’best-
matching’ case, the Fokker 70, whereas the wing geometry is copied from the
’adaptation’ case, the BAe RJ70. The values of the Fokker 70 are about 40% smaller
then the values of the BAe RJ70, resulting in smaller tail surfaces for the Fokker 70. 

The question arises whether this has been the right choice. An expert could argue
that the volume coefficients are dependent on the engine configuration: with one
engine inoperative the yawing moment will be smaller for the Fokker 70 with
fuselage-mounted engines, than for the BAe RJ70 with its wing-mounted engines.
With this expert knowledge the user may want to reconsider is initial choice, and use
the volume coefficients of the BAe RJ70. 

This dilemma is independent of the applied modelling techniques, though; it is
about the composition of the data-file of an adapted case, i.e. a case that is made up
of two cases (see Section 5.4). Due to the flexibility of the parameterised modelling
technique and the choice of the definition parameters, the user can easily revise his
choice and evaluate the results of another choice: copy the coefficient values of the
BAe RJ70. The resulting design is shown in Figure 5.30 and Figure 5.31; according
to the authors impression this design is more natural.

volume coefficient distance wing to tail tail surface area⋅
reference wing length wing area⋅

-------------------------------------------------------------------------------------------=
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These specific modifications have no effect on the previous calculations in the
Functional Module. When a reconsideration of the calculations is required, though,
the user can easily return to that module.

There are several aspects of the model which may need some upgrading, such as the
overlapping of components. The current implemented model clearly demonstrates
the possibilities and impossibilities of the applied techniques, however.

Figure 5.30. Shaded view of the design with larger tail surfaces.

Figure 5.31. The 3 views of the design with larger tail surfaces.
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An aspect of Pro/ENGINEER that has not been exploited yet is the use of physics
related functions, such as the calculation of volumes and wetted surface areas. These
quantities are useful in more detailed calculations in the next design steps. A feed-
back loop with the Functional Module could be possible. 

Pro/ENGINEER is also able to determine masses and centres of gravity of the
components, but to get realistic and useful values the detail level should be increased
extremely.

5.7 Evaluation of the case study

It is difficult to evaluate the result of the case study, i.e. the design concept. With the
Functional Module, the influence of some sizing parameters can be studied, but there
is less relation between the topological parameters of the aircraft and the aircraft
performances. At this level of detail the effect of another location of the engines on
the performances, for example, is hardly perceptible. Only when the design is
elaborated into more detail, these effects become clear. This could be performed with
tools that are suitable for the next design phase, such as ADAS [Bil, 1989] or other
tools mentioned in Chapter 2. Since this is beyond the scope of this study, such
evaluation has not been worked out. 

A kind of evaluation can be carried out by comparing the overall result of the case
study with the results of the Garteur-project mentioned in the Introduction, which
started from identical design specifications; see also [Fransen, 1996]. This project
led to the same configuration, which at least gives confidence in the validity of the
support that the AIDA system provides.

With respect to the design process, the AIDA modules were able to provide enough
support. The adaptation with the aid of the CBR module, however, is very subjective.
The presented concepts by the CBR module are helpful, but still quite some domain
knowledge is required to be able to use them well. Domain knowledge is also
required in the other design phases, but this seems to be less distinct. Only the use of
the Geometrical module hardly needs attention of the designer, although the
character of the geometrical model may be too primitive.
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6 Conclusions

In this final chapter the achievements of the AIDA project are reconsidered. The first
section, Section 6.1, describes how far the implementation has reached the goals
which have been set in the first chapter. The discussion concentrates on the
usefulness of the separate modules. In Section 6.2 the appropriateness of the applied
techniques is discussed more generally, based on the lessons learned from the AIDA
project.

6.1 Evaluation of the AIDA system and its modules

6.1.1 The AIDA set-up

The AIDA set-up bears a strong resemblance with the general design cycle, and
contains the following steps:
1. selecting an appropriate starting point from a case-base, 
2. adapting it by combining several cases, 
3. modelling (functional and geometric) and visualizing the concept;
4. modifying some sizing parameters via sensitivity studies.

The individual steps have been implemented in separate modules. Each module
applies a different AI-technique, such as CBR (Case-Based Reasoning) and RBR
(Rule-Based Reasoning), or a Geometric Modelling technique. Little attention has as
yet been paid to the integration of these techniques and the communication between
the modules. Indeed, the main concern of this study was to examine the usefulness of
different AI-techniques in the conceptual design process. During the course of the
project the study focused on relatively conventional aircraft configurations. 

The case study has proven that the applied AI- and Geometric Modelling techniques
are useful to support the conceptual design process. Despite the low level of
communication between the modules, this set-up allows to relatively easily perform
several iteration and adaptation steps without much overhead work. However, much
effort is required in the preliminary phase, when the domain knowledge has to be
stored into the case-base and rule-base using the appropriate data structure. It is also
concluded that expert knowledge is still required when using the AIDA system. It is
evident that it is impossible to put all this knowledge into the different modules.

It appears that apparently minor practical issues, specific for the tools, can have a
significant impact on the overall performance of the system. For example the effect
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6. Conclusions
of missing case-data can decrease the similarity score considerably with the applied
CBR tool. 

On the other hand, such minor topics force the designer to think about almost
every aspect of the reasoning involved in the case selection process. Developing
such modules is therefore very helpful in understanding the process.

6.1.2 The CBR-module

The goal of the CBR-module is to support the generation of an initial aircraft concept,
from which one or more feasible concepts are deduced. Chapter 5 (Section 5.3 and
Section 5.4) shows what the supporting role includes: presenting existing aircraft in
decreasing order of similarity with the design specifications. The designer defines
the specifications, runs the CBR selection process, and selects one (or more) aircraft
from the presented list. The case study in Chapter 5 reveals to what extend the
module is able to support the designer: the module indeed finds appropriate cases,
but the designer still needs domain knowledge to define the specifications and judge
the similarity results properly. Especially when the CBR-module is used the second
time for the adaptation of the initial aircraft concept, a thorough knowledge about the
domain is necessary.

In addition the designer should have knowledge about the working of the CBR-
module. Some aspects of this particular module (based on EADOCS of [Netten, 1997]
need special attention and/or need to be improved:
• the determination of the global similarity number (needs special attention)

The global similarity number is the result of a weighted summation of the local
similarity numbers, i.e the similarities of the individual parameters. The designer
can influence the similarity results by modifying the weighting functions and by
changing the local similarity measurements. The weighting function is controlled
by the priority factors and the object-oriented data structure. The local similarity
is largely influenced by the parameter domains. Hence, to interpret the global
similarity number, the designer should be well aware of these aspects.

• the organization of the data within each case (needs special attention)
The used CBR-tool applies an object-oriented structure to the case-data. This
structure plays an important role in the determination of the similarity of the cases
with the specifications. Therefore a good understanding of the data structure is
required to translate the design specifications properly into the target-file and to
interpret the presented order of similar cases.

• the definition of the parameter domains (needs improvement)
The matching of a single parameter is determined with the aid of parameter
domains. When the values of both the target parameter and the case parameter fit
within the same parameter domain, they score 100% similarity; otherwise the
local similarity is 0%. For continuous parameters it does not matter if their values
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are located at the centre of the domain or near the boundaries. Due to this method
of similarity measurement, the parameter domains have to be defined with great
care.

• the measurement of the similarity of individual parameters (needs improvement)
As is discussed in the previous item, the current practice of similarity
measurement is based on fitting values on pre-defined parameter domains, and
result in a 100% or a 0% similarity score. This is a feasible method for integer and
string parameters, and when parameter values can be categorized into distinct
classes. For most of the continuous parameters, however, this is not a desirable
method. It would be more realistic to express the similarity numbers between 0%
and 100%, in some way proportional to the distance between target and the case
value. However, this would require serious modifications in the organisation of
the indexing network, which is based on the discrete parameter domains. This
should be an important criterion when considering other implementation tools.

• identical conditions of the aircraft performance parameters (needs special
attention)
The similarity of existing aircraft is deduced by comparing their performance
parameter values with the specified values. For a proper comparison the
conditions of the performance parameters should be equal. For example flight-
ranges of aircraft can only be compared when their flight conditions are known:
cruising at maximum speed or for maximum range, etc.. These conditions should
be well-defined for each parameter, or should be expressed by additional
parameters and added to the similarity measurements, i.e. added to the same target
object within the target file. This critical issue is inherent to the comparing
operation.

• the matching of combined parameters (needs improvement)
In Section 5.4.6 it is discussed that sometimes similarities are best determined by
considering combinations of parameters, such as Payload and Range. The
matching of a combination of Payload and Range results in more realistic
similarities than the matching of each parameter individually, as is explained with
Figure 5.14. The implementation of this type of matching is not possible with the
applied CBR-tool, however. 

• the completeness of the case-data (needs special attention)
The applied CBR-tool returns a 0% similarity score of a single parameter when the
case does not contain information about that parameter. Hence the developer of
the case-base should put effort in generating the case-data as complete as possible.
When the values have to be estimated one should be well aware of the defined
parameter domains.
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6.1.3 The Functional module

Within the AIDA project the intention of the Functional module is to offer a flexible
tool for performing sensitivity studies. These studies are used to modify some
primary (continuous) parameters of the aircraft concept, such as the wing area and
aspect ratio. The initial values of these parameters have been generated with the aid
of the CBR module and can be improved to meet the design specifications more
closely. Flexibility is needed to deal with the large variety of parameters and to be
able to use various (fundamental or empirical) relations, subject to the designer's
preferences.

From the case study in Chapter 5 it can be concluded that the RBR tool QUAESTOR
([van Hees, 1997]) offers this numerical flexibility. Particularly the feature that a
QUAESTOR relation can be used to calculate a parameter in the left-hand side of an
equation as well as in the right-hand side is very useful.

A critical issue is the overview of the relational network and the relations in the
knowledge base. Especially when the network grows larger it becomes difficult to
keep a good overview, which is necessary to select the appropriate relations. This is a
general problem of RBR systems, however.

The applied version of QUAESTOR has only minor graphical features, for example
to show the results of various calculations in one graph. Therefore additional
programs have been used. Newer versions of QUAESTOR have much improved
graphical capabilities.

As is the case with the CBR-module, the designer has to have knowledge of the
working of QUAESTOR and of the relations within the knowledge base for proper
usage of the module. 

6.1.4 The Geometrical module

The Geometrical module is able to model and visualize the aircraft concept
automatically with a small set of lay-out and primary parameters. With the 3-
dimensional shaded view and the 2-dimensional side-view capabilities of the Pro/
Engineer software the designer gets a good impression of the concept. 

To automate the modelling process, strict definitions of the aircraft components and
their lay-out have been applied. A disadvantage is that this reduces the flexibility of
the module with respect to new component and lay-out definitions. On the other
hand, this flexibility is not necessary since all components and lay-outs come from
the case-base of the CBR module; hence they are known in advance. 

Only new combinations of existing lay-outs may lead to problems with regard to
the definitions. However, with intelligent definitions such as suitable assembly
conditions (i.e. reference planes) those problems could be minimized.
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While the developer of the Geometrical module has to know the package Pro/
Engineer well, the designer hardly pays attention to the module. The single concern
of the designer is to assign appropriate values for the pre-defined set of parameters.
Further interaction is limited to changing views and creating an export file for other
(geometry oriented) programs.

6.2 AI in the design process

6.2.1 The CBR techniques

The term Case-based reasoning is very comprehensive. In Chapter 3 it is discussed
that the complete CBR methodology resembles the design cycle and may cover more
than just one AI technique. However, when referring to CBR as one single AI
technique, the tasks of retrieving, reusing and retaining cases are implied. Other
techniques such as RBR can be used to aid these tasks. How different AI techniques
can cooperate together is discussed at the end of this chapter in Section 6.3.

The retrieving task is one of the most critical issues of the CBR technique. The
system developer does not only meet implementation problems which are specific
for the applied tool, such as mentioned in Section 6.1.2. He also has to cope with
fundamental issues such as the determination of the similarity of cases, on which the
selection of the best case is based. This issue deals with the problem of capturing the
designer's judgment strategy or reasoning. Or in other words: how does the designer
compare apples with pears? Is it possible to list all (design) criteria, quantify them,
give them the appropriate weights and accumulate them for a proper judgment? Is an
objective judgment achievable at all? And if that is possible, will those weights
change when different combinations of quantified criteria are considered? 

The point is that to select a 'best case' from a case-base is already a major problem
for designers, leading to different 'best cases' for different designers; hence this is
probably extremely difficult to formalize for use in some reasoning technique. In this
respect the development of a CBR-based support tool can be considered as a tool to
help analyse and systemize the design process and reveal (some) domain knowledge. 

An identical discussion can be held for the selection of a case for the adaptation
phase. In addition another fundamental issue arises: adapting a case disconnects the
(complex) implicit relations within the case between the (function and structure)
parameters. Without a good understanding of the domain knowledge, the
combination of different cases may result in unrealistic designs which form
inadequate starting points for the design process; Figure 6.1 shows an example for
the case study. Consequently, adaptation may make a case worthless as a starting
point.
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Although very complicated, the adaptation phase is crucial for the capability of
CBR to support innovative design in addition to routine design; see the discussion in
Section 3.2.9. By combining the lay-out of different cases an original lay-out can be
created. This has been shown in the case study in Chapter 5. Design which comprises
new components and new parameters, classified as creative design, does not seem to
be suitable for support by CBR.

Another major issue in CBR is the representation of the cases. This matter has large
impact on the applications and on the implementation of the CBR tool. A
representation by a minimum set of parameters, for example, simplifies the
reasoning on the case data. Such a concise case representation would minimize the
case-base and reduce the indexing problem. As a consequence this data should have
a high abstraction level. This minimum case representation is favourable from the
adaptation point of view, as it facilitates the mixing of data from different cases.

With the tools applied in this thesis, such a minimum representation results in a
limited flexibility, because only a limited number of parameters could be used for the
matching criteria. Therefore redundant parameters have been included in the case
representation, which were derived from the abstract parameters. This increase in
flexibility has been achieved at the costs of a more complicated indexing structure.
To have the best of both sides, a CBR tool should be used which is able of
transforming the (abstract) case parameters into the desired matching parameters
before case matching is performed. In general this means that such capabilities make
it possible to measure the similarity between cases from any point of view.

On the other end of the spectrum one could choose for a very comprehensive case
representation, containing as much information about the case as possible. For
example the relation networks generated by the Functional Module could be
included. This means moving into the category of derivational CBR which comprises
the reuse of solution methods instead of solution data. Although this extra case
information could be very useful, it could also complicate the issues of case indexing
and matching. The mixing of data of two cases becomes complex too, hence this
type of representation is not recommended for the adaptation process. 

Figure 6.1. Example of an unrealistic design due to bad adaptation: the
combination of high wings and fuselage-mounted turbofan engines.
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6.2.2 The RBR techniques

RBR techniques have been implemented in many different forms. The applied RBR
tool QUAESTOR [van Hees, 1999] is numerical oriented: it is very powerful in the
handling of algebraic relations. This is appropriate for supporting sensitivity studies,
which is the goal of the Functional module within the AIDA project. Because the
algebraic expressions are well documented in the aircraft design handbooks such as
[Roskam, 1987-90] and [Torenbeek, 1982], the knowledge acquisition is not
difficult. 

The main issue is when to use which relation. Basically, QUAESTOR suggests a list
of relations based on syntax only, and the designer selects one of them. This
selection is guided by many arguments: what is the global purpose of the relational
network, i.e. what are the subjects of the sensitivity studies, and what are the
consequences of the selection, i.e. which new parameters will be introduced and how
difficult are they to be calculated. 

So, the supporting role of RBR could be improved by aiding the selection process.
It is difficult to formalise these selection criteria, however. One way of improvement
would be to offer the designer a better overview of the (unfinished) relational
network and the relations in the knowledge base, in order to make it easier to foresee
the consequences. When the network becomes too big this overview becomes a
major problem. It is still a challenge to define a suitable graphical format of
representation for this. 

Also for non-algebraic issues RBR techniques can be helpful. For instance some of
the expert knowledge which is applied when using the CBR module and the
Geometrical module seems suitable to be formalised into if-then-rules. In the case
study in Chapter 5 some illustrations have already been given. See for example
Table 5.7, which suggests to modify specific design parameters when certain
performances are not met. Such explicit suggestions could easily be formalised. One
could argue however the validity of those simple relations: here the knowledge
acquisitions becomes a major issue.

Another direction for improvement is the link between the Functional and the
Geometrical modules. When both modules can easily communicate with each other,
it is possible to better organize the tasks of the modules; to shift algebraic relations
which express geometrical relations from the Geometrical module to the Functional
module. On one hand this would increase the flexibility and decrease the number of
complicated relations which are implemented in the Geometrical module. On the
other hand this would enlarge the knowledge base of the Functional module and its
relational network, and therefore reduce the required overview. Whether the
advantages would predominate the disadvantages largely depends on
implementation details.
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When the communication between both modules is improved, the Geometrical
module could provide the values of typical geometric parameters, such as volumes
and surface areas, which could be used by the Functional module. Such parameters
can easily be calculated with standard functions.

6.2.3 The Geometrical modelling techniques

In the set-up of the AIDA system the design is not modelled on-line, but is built from
pre-defined components. This strategy does not limit the practicability of the AIDA
system more than the CBR module has already done; see Section 6.1.2. 

Considering these limitations the applied parameter modelling techniques offer
enough flexibility. In Pro/Engineer all three types of geometry parameters can be
used as variables: the position and orientation parameters, the geometrical
parameters and the topological parameters; see Section 3.3.3. However, the relations
between these parameters have to be organized in a strict hierarchical structure.
Although this leads to a simple CSP (Constraint Solving Problem), it also limits the
flexibility of the geometric model: only unidirectional (geometric) relations are
possible, for example. Hence the geometrical model should be pre-defined with great
care.

Several recommendations can be given. With the tools that are currently
implemented in the AIDA system, progress can be found in a closer cooperation with
the Functional Module. Both the Geometrical Module and the Functional Module
apply different types of CSP techniques, each with its deficits and benefits. When the
benefits of both techniques could be optimal combined, the flexibility of the AIDA
system should be increased. Using the advanced modules of the Pro/Engineer
software package may also increase the possibilities for interfacing.

For further research it is recommended to select or develop tools that integrate the
functionality of both the Functional as well as the Geometrical Module. This requires
an integration of several CSP techniques. It is expected that Feature-Based
modelling, as a further development from parameterised modelling, can be very
powerful.

6.3 General recommendations

As mentioned before, improvements are achievable by integrating the different
modules and reasoning techniques. For the RBR and the Geometric modelling
techniques such integration makes sense when both techniques are considered as
types of CSP (Constraint Solving Problem) techniques. Combining these modules
should benefit from the flexibility of the RBR Module and the dedicated geometric
reasoning of the Geometric Module. 
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6.3. General recommendations
Other integration aspects include the usage of RBR techniques in the CBR module,
for situations when the expert knowledge seems to be very explicit and suitable for
formalisation, and an integrated architecture of the complete system.

Another issue of great impact is the issue of case representation. Case representation
may vary between a minimum set of abstract parameters to a comprehensive set that
also includes methods. To reduce the complexity of the case matching and adaptation
process as much as possible, minimum case representation would be preferred. For a
maximum flexibility with respect to the usage of the cases, however, the cases
should contain much more data. To combine both characteristics, a CBR module
should be developed which is suitable of expanding the case data before case
matching is performed. Such an approach requires a complete different indexing
structure than applied in the current CBR module.

The recommendations mentioned above mainly concern the implementation of the
techniques. More fundamental is the issue of case adaptation. Although adaptation
has increased the applicability of CBR from routine design to configuration and
perhaps to innovative design, this study has revealed many critical issues of
adaptation. In this thesis one adaptation method has been elaborated upon. It turned
out to be rather complicated and requires a thorough knowledge of the domain as
well as of the implementation of the CBR module. A thorough study is recommended
to improve this adaptation method or to examine alternative methods.
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Stellingen behorend bij het proefschrift
"AIDA: Artificial Intelligence supported conceptual Design of Aircraft"
Date Rentema, 15 november, 2004.

1. De kracht van Artificiële Intelligentie (AI) technieken bij het voorontwerp van
bijvoorbeeld vliegtuigen ligt in het hergebruik van ontwerpkennis en ervaring
(dit proefschrift).

2. De ontwerpcyclus kan worden ondersteund door een combinatie van Case-
Based Reasoning, Rule-Based Reasoning en Geometric Reasoning (dit
proefschrift).

3. Bij Case-Based Reasoning (CBR) hoeft in de case-data in principe geen
onderscheid gemaakt te worden tussen het type data, zoals de categorieën
Function, Behaviour of Structure.

4. De uitspraak "de uitzondering bevestigt de regel" geeft goed aan hoe moeilijk
het is om een algemeen geldende regel op te stellen.

5. Uit het dagelijkse gebruik om zaken uit te leggen met behulp van gelijksoortige
voorbeelden, blijkt hoe krachtig het redeneren naar analogie is.

6. Statistische data wordt vaak misbruikt om aan een eigen gedachtengang de
schijn van objectiviteit te geven.

7. Niet het hebben van vooroordelen is erg, maar het beschouwen van voor-
oordelen als de absolute waarheid.

8. Het gebruik van regels, stellingen of citaten dient gewantrouwd te worden, als er
niets over de oorspronkelijke context of aanleiding vermeld wordt.

9. Het opdelen van data in de types Function, Behaviour en Structure is ook voor
het ontwerp proces van trucks uitermate verhelderend.

10. Hoe intelligenter de apparaten, hoe meer intelligentie de gebruiker nodig lijkt te
hebben.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de
promotoren. 



Propositions accompanying the thesis 
"AIDA: Artificial Intelligence supported conceptual Design of Aircraft" 
Date Rentema, November 15th, 2004.

1. The power of Artificial Intelligence (AI) techniques for the conceptual design of
for example aircraft, is in the reuse of design knowledge and experience (this
thesis).

2. The design cycle can be supported by the use of a combination of Case-Based
Reasoning, Rule-Based Reasoning and Geometric Reasoning (this thesis).

3. Within Case-Based Reasoning (CBR) there is, in principle, no need for
discrimination in the case data between data types, such as the categories
Function, Behaviour and Structure.

4. The general saying "every rule has an exception" illustrates the difficulty in
specifying general rules.

5. The prevalence of using examples in explanations indicates the power of
reasoning by analogy.

6. Statistics are often abused to give an opinion the appearance of objectivity.

7. Prejudice is not bad, but holding it for the absolute truth is.

8. Care should be taken with the use of rules, propositions and citations when the
original context is not mentioned.

9. The classification of data into the categories Function, Behaviour and Structure
is also clarifying in the design process of trucks.

10. The more intelligent the appliance, the more intelligence the user seems to need.

These propositions are regarded as defendable, and have been approved as such by the
promotors. 
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