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H I G H L I G H T S  

• An optimum-pursuing method is developed for constrained optimization and reliability-based design optimization problems. 
• An optimum-pursuing function is proposed from the viewpoint of the optimization theory. 
• The well-known U function is rigorously derived based on the proposed optimum-pursuing function. 
• Optimum-pursuing method outperforms alternative methods in terms of both accuracy and efficiency.  
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A B S T R A C T   

This paper proposes a new active learning method named as optimum-pursuing method (OPM) 
from the viewpoint of optimization theory, which aims to provide an effective tool for solving 
constrained optimization and reliability-based design optimization (RBDO) problems with low 
computation cost. It uses the cheap Kriging metamodel to replace the expensive physical 
response. The novelty of the proposed OPM primarily lies in two aspects. First, the OPM utilizes 
the advantage of the optimization theory rather than sampling technology. By using the 
augmented Lagrangian approach, it comprehensively considers the objective, constraints, and 
their relations, thereby automatic identification of important region in the vicinity of the opti-
mum. Second, the accordingly optimum-pursuing function consists of three parts: Kriging mean, 
Kriging standard deviation, and merit function. Also, the target reliability surface is further 
considered to enhance the local accuracy of the reliability analysis. The performance of OPM is 
tested for both deterministic optimization and problems, in which two mathematical and three 
real-world engineering examples are selected to showcase the feasibility and validity. The results 
demonstrate that OPM is promising for solving both deterministic optimization and RBDO 
problems by comparing with the well-known active learning methods.   
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1. Introduction 

High computation efficiency, robustness, generalization, and accuracy are persistent pursuit for structural optimization design [1]. 
With the rapid development of powerful computer aided engineering technology, the optimization algorithm integrated with the finite 
element method becomes a popular way for real-world engineering system [2]. However, the complex engineering problems, such as 
large-scale problem, nonlinear problem, and dynamic problem, are time-consuming and always hard to be optimized practically [3–5]. 

Under this circumstance, the metamodel technology has emerged and demonstrated the strong vitality for optimization design [6, 
7]. Nowadays, the widely used method includes the response surface method [8,9], Kriging model [10], support vector machine [11, 
12], and neural network [13,14]. Recently, the data-driven method was also introduced in the optimization field [15–17]. Among 
them, the Kriging model has been widely employed, which contains two specific features [18,19]. First, Kriging model has interpo-
lation property, which can accurately predict the response value at the design of experiment (DOE) [20]. Second, the Kriging meta-
model can provide stochastic property and predict error at the unknown point [21]. Benefiting from the above advantages, the active 
learning technology was developed for Kriging model, which aims to add new points at the interested region, thereby promoting the 
computational efficiency and accuracy [22,23]. The active learning technology is regarded as a great progress, and the key is con-
structing the effectively active learning function [24,25]. Picheny et al. [19] presented a detailed investigation for active learning 
strategies. Their results indicated that the active learning strategies not only are insensitive to the initial sample size and Kriging 
parameters, but also significantly promote the efficiency. Until now, the active learning technology achieves huge success and is widely 
applied in the reliability analysis and optimization design fields [26,27]. 

The development of active learning technology can be traced back to the original work of Jones et al. [28], and the expected 
improvement (EI) function was developed by using the expect value of the improvement function to update the DOE. Subsequently, 
Osborne et al. [29] put forward the according active learning function under the Bayesian framework. Huang et al. [30] suggested an 
augmented EI function to accurately predict the stochastic responses. Picheny et al. [31] developed the expected quantile improvement 
method to reduce the computational time. Scott et al. [32] utilized the response gradient to sequentially determine the optimal 
sampling locations. Similarly, Chen et al. [33] combined the gradient and EI function to enhance the computational efficiency. 
Moreover, other active learning methods were constantly proposed, such as parallel computing method [34], minimal quantile criteria 
[35], informational approach [36], enhanced Kriging leave-one-out cross-validation [37], Kriging-assisted two-archive evolutionary 
algorithm [38], and Kriging-assisted teaching-learning-based optimization [39]. In general, the above-mentioned active learning 
methods are promising for settling the unconstrained optimization problem. However, it should be emphasized that the capacity of 
these methods is limited for settling the constrained optimization problem. Comparing with unconstrained optimization problem, the 
optimum always located around the constraint boundary (i.e. limit state function, LSF), and the Kriging model should simultaneously 
and accurately predict the objective, constraints, and their relations. Thus, it is a great challenging work. Juliani and Gomes [40] 
disclosed that the utilization of active learning method for generalized structural optimization problems were rarely found, and a 
three-stage strategy framework was suggested. Parr et al. [41] suggested the probability of feasibility (PoF) method, and the proba-
bility of improvement was employed. Zhou et al. [42] sequentially added the samples with the maximum predicted error to enhance 
the accuracy of Kriging model. Cheng et al. [43] adopted the lower confidence bounding (LCB) strategy to add the samples on the LSF. 
However, since the constrained optimization problem contains multiple responses, there are still huge difficulties for improving the 
predicted accuracy and efficiency by using the Kriging model [40]. 

In addition, it should be noted that there always exist many unavoidable random parameters in real-world engineering structures 
[44], so the reliability-based design optimization (RBDO) methodology emerges. The classic RBDO method employs the first-order 
reliability method for assessing the uncertain constraint and most probable target point (MPTP) efficiently and accurately, in 
which the reliability index approach [45], the performance measure approach (PMA) [46], and the sequential optimization and 
reliability assessment method [47] are representatives. Considering the high efficiency of Kriging, it is also extended into the RBDO 
field. However, unlike the deterministic optimization (DO) problem, the LSF of RBDO is the key. Therefore, many active learning 
methods are developed to approximate the LSF accurately and efficiently. Lee and Jung [48] made a promising attempt, and the 
constraint boundary sampling method was proposed accordingly. Subsequently, the expected feasibility method was further con-
structed by Bichon et al. [49,50], and its purpose is to effectively predict the LSF by using the Kriging mean, variance, and threshold 
value. 

Subsequently, the improved active learning methods were constantly put forward. Echard et al. [25] constructed the typical U 
function, which used the ratio between the predicted value and standard deviation to add new samples around the LSF. Yang et al. [51] 
suggested the expected risk function (ERF) by minimizing the risk of LSF. Then, Xiao et al. [52] extended the ERF for solving the system 
RBDO problems successfully, in which the series and parallel constraints were considered. Similarly, the system active learning 
methods were reported by using the dependent Kriging prediction [53,54]. For example, Yang et al. [55] introduced the index function 
to distinguish the active and inactive constraints. Wang et al. [56] divided the entire region into the potential safety and failure 
domains, and the new samples only generated in the failure domain to improve the efficiency. Kroetz [57] et al. employed two adaptive 
coupled Kriging models to approximate the objective function and LSFs, respectively. Khorramian and Oudah [58] developed 
weighted Kriging occurrence, which simultaneously considers the probability of improvement and the density of DOE. Teixeira [59] 
applied density scanning to improve the efficiency of the adaptive Kriging. Meng et al. [60] predicted the LSF accurately by proposing 
the most probable learning function, and the single-loop technique was employed to accelerate the computation rate. Furthermore, 
Meng et al. [61] used the water cycle algorithm for improving the global convergence, in which the interval and random variables were 
simultaneously considered. 

From the above review, it can be concluded that the Kriging model plays an important role for DO and RBDO, and the existing 
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methods are competitive. However, there are still some deficiencies. On the one hand, the existing works focus on separate dealing 
with objective function and constraint functions. However, the complex relationship among different functions and the contribution of 
these functions for optimum are vague. On the other hand, the RBDO simultaneously carries out the reliability analysis and optimi-
zation. Thus, the existing active learning methods tend to requiring a large number of samples for predicting LSF, which cannot 
identify the contribution of sample for the optimum, thereby incurring the highly computational cost. 

To overcome the above drawbacks, this work proposes the optimum-pursuing method (OPM), in which both DO and RBDO 
problems are solved effectively. The optimum-pursuing function (OPF) is rigorously constructed from the viewpoint of the optimi-
zation theory. The organization of the paper is as below. Section 2 brief reviews the concept of DO, RBDO, and Kriging model. Section 3 
describes the proposed OPM for DO, while Section 4 describes the OPM for RBDO. The relation between OPF and U function is dis-
cussed in Section 5. The test examples are shown in Section 6. 

2. Overview for DO, RBDO, and Kriging 

2.1. DO 

The purpose of DO is to minimize the objective with the constraints [62]. Its formulation is mathematically stated as below: 

find x = [x1, x2, ..., xn]

minf (x)
s.t.gi(x) ≤ 0, i = 1, ..., ng
hj(x) = 0, j = 1, ..., nh
xL ≤ x ≤ xU

(1)  

where x denotes the design variable vector. xU and xL denote the upper bounds and lower bounds, respectively. n denotes the 
dimension of x. f(x) denotes the objective function. ng denotes the inequality constraint number. nh denotes the equality constraint 
number. 

2.2. RBDO 

The main difference between DO and RBDO is that the RBDO is constructed based on the uncertain hypothesis [63,64]. The RBDO 
approach uses the probabilistic constraint to ensure the safety level. Its formulation is as follows: 

find μx =
[
μx1

, μx2
, ..., μxn

]

minf (μx)

s.t.Prob(gi(x) ≤ 0) ≤ Φ
(
− βt

i

)
, i = 1, ..., ng

μL
x ≤ μx ≤ μU

x

(2)  

where x denotes the random variable vector. μx is the accordingly mean vector. Prob denotes the reliability operator. βt
i denotes the 

target reliability index. Φ denotes the standard normal cumulative density function. 

2.3. Kriging 

Kriging is a popular metamodel, which is commonly employed to accelerate the optimization and reliability computation speed 
[65,66]. It is composed by a polynomial term and a stochastic term, which is stated as 

ĝ(x) = hT(x)γ + v(x) (3)  

where ĝ(x) denotes the predicted response with variables x. h(x) refers to the basis vector. γ refers to the regression coefficient vector. 
The stochastic term v(x) obeys a stationary Gaussian process. Its mean is zero, while the covariance between arbitrary points is 
depicted by 

Cov
(
v(xi), v

(
xj
))

= σ2
vRv
(
xi, xj

)
i, j = 1, 2, ..., k (4)  

where Cov denotes the covariance. σ2
v refers to the variance of v(x). Rv(xi, xj) is the correlation function, where the Gaussian function is 

widely employed. It is stated as follows: 

Rv
(
xi, xj

)
=
∏n

l=1
exp
(

− θl

(
xl

i − xl
j

)2
)

(5)  

where θl represents the correlation parameter that is determined by the maximum likelihood method. 
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L(θ) =
(
2πσ2

v

)− k
2|R|

− 1
2exp

(

−
k
2

)

(6)  

where R denotes correlation matrix, and its component is Rv(xi, xj). The regression coefficients and the approximate variance are 
computed by 

γ̂ =
(
HT R− 1H

)− 1HT R− 1g (7)  

σ̂2
v =

1
k
(g − Hγ̂)T R− 1(g − Hγ̂) (8) 

For an arbitrary prediction point x0, the correlation r0=[R(x0,x1),…, R(x0,xk)] is constructed. Then, the unbiased predictor μ̂ ĝ(x0)

and Kriging variance σ̂2
ĝ(x0)

are evaluated by 

μ̂ĝ(x0) = hT(x0)γ̂ + rT
0 R− 1(g − Hγ̂)

σ̂2
ĝ(x0)

= σ̂2
v

(
1 + uT (HT R− 1H

)− 1u − rT
0 R− 1r0

) (9)  

where u = HTR− 1r0 − h(x0). To establish the Kriging model and predict the response simply, the Kriging toolbox DACE is employed in 
this study [67]. 

3. The OPM for DO 

Unlike other surrogate models, Kriging exhibits the unique superiority owing to the active learning behavior, which can 
sequentially add the samples in the interested region. Note that the complex optimization problem always contains multiple structural 
responses, and how to cooperatively deal with the objective and constraint functions is confronted with enormous challenge. On the 
one hand, the optimum has the small objective function value, while the optimum is located in the safe region. On the other hand, the 
Kriging models of objective and constraint functions have predicted errors. In order to simultaneously consider the objective and 
constraint functions, the numerical optimization methods can be employed. It was reported that the external penalization approach is 
an effectively numerical optimization method, which is regarded as a standard tool in optimization [68,69]. Its basic idea is to 
transform a constrained problem into an unconstrained problem. However, the convergence of external penalization approach is only 
guaranteed when the penalization parameters are infinity. To address this numerical issue, the augmented Lagrangian approach [70, 
71] is further proposed. Based on augmented Lagrangian approach, we can construct the following augmented Lagrangian function for 
DO model of Eq. (1). 

M = f (x) +
∑ng

i=1

[

λ(m)

i ψ i(x)+
r(m)

2
ψi(x)

2
]

+
∑nh

j=1

[

λ(m)

j+ng
hj(x)+

r(m)

2
hj(x)2

]

(10)  

where 

ψi(x) = max

[

gi(x), −
λ(m)

i

r(m)

]

(11)  

where λ(m)

i is the ith Lagrange multiplier estimator, and r(m) is a quadratic penalty factor. λ(m)

i and r(m) should be updated during the 
optimization process, and their initial values are 0 and 10 in this paper. According to the works of [70,71], the penalty factor r(m) and 
Lagrange multiplier estimator λ(m)

i are typically updated as 

r(m+1) = min
[
αr(m), rmax

]
(12)  

λ(m+1)
i = λ(m)

j + r(m)ψi(x) (13)  

where α is an update parameter, and rmax is an upper limit that is used to prevent numerical instabilities. α = 1.1 and rmax = 1000 are 
employed in this work. 

Based on the augmented Lagrangian approach, the minimization of Eq. (1) can be converted into the minimization of Eq. (10). 
Then, we can combine the different response functions together. Once the establishment of Kriging model completes, the optimization 
model is stated as follows: 

M̂ = f̂ (x) +
∑ng

i=1

[

λ(m)

i
ψ̂ i(x)+

r(m)

2
ψ̂ i(x)2

]

+
∑nh

j=1

[

λ(m)

j+ng
ĥj(x)+

r(m)

2
ĥj(x)2

]

(14)  

where 
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ψ̂ i(x) = max

[

ĝi(x), −
λ(m)

i

r(m)

]

(15) 

For solving Eq. (14), there are two different situations. When the Kriging model provides sufficient accuracy, the optimum 
computed by the Kriging model is close to the real optimum. On the contrary, when the Kriging model is inaccurate, the optimum may 
locate in the region with large Kriging variance. Therefore, we propose the OPM, which uses the reciprocals of coefficient of variation 
as the active learning function. If the mean of Kriging merit function of Eq. (14) is minimized, it achieves the optimum of current 
Kriging optimization problem. If the standard deviation (SD) of Kriging merit function of Eq. (14) is small, it means the predicted error 
of Kriging optimization model is minimized. Therefore, we should minimize the mean and maximize the SD to add the samples with 
small value of Kriging merit function and large predicted error. In this way, the concerned region can be quickly identified, and the new 
sample is added in the vicinity of the optima. Then, the precision of the Kriging model can be constantly enhanced through sequential 
adding new samples. Therefore, the proposed OPM focuses on finding a good local approximation in the region around the optimum, 
thereby avoiding generating too many points in the global region. In general, the mean and variance of Eq. (14) are 

μ(M̂) = μ
(

f̂ (x) +
∑ng

i=1

[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

]

+
∑nh

j=1

[

λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

])

= μf̂ (x) +
∑ng

i=1

[

λ(m)

i
μψ̂i(x) +

r(m)

2

(
μ2

ψ̂ i(x) + σ2
ψ̂ i(x)

)]

+
∑nh

j=1

[

λ(m)

j+ng
μĥj(x) +

r(m)

2

(
μ2

ĥj(x)
+ σ2

ĥj(x)

)]
(16)  

Var(M̂) = Var

(

f̂ (x) +
∑ng

i=1

[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

]

+
∑nh

j=1

[

λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

])

= Var( f̂ (x)) +
∑ng

i=1
Var
[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

]

+
∑nh

j=1
Var
[

λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

]

+ 2
∑ng

i=1
Cov

[

f̂ (x), λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

]

+ 2
∑nh

j=1
Cov

[

f̂ (x), λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

]

+
∑ng

i=1

∑ng

j
=

Cov
[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

, λ(m)

j ψ̂ j(x) +
r(m)

2
ψ̂ j(x)2

]

+
∑nh

i=1

∑nh

j
=

Cov
[

λ(m)

i+ng
ĥi(x) +

r(m)

2
ĥi(x)2

, λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

]

+ 2
∑ng

i=1

∑nh

j=1
Cov

[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

, λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

]

(17) 

The covariance between the separately established Kriging models is 0, and the derivation process can be seen in the Appendix. 
However, when the functions are constructed by the same Kriging model, the covariance should be considered. Therefore, Var(M̂) can 
be simplified as follows: 

Var(M̂) = Var

(

f̂ (x) +
∑ng

i=1

[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

]

+
∑nh

j=1

[

λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

])

= Var( f̂ (x)) +
∑ng

i=1
Var
[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

]

+
∑nh

j=1
Var
[

λ(m)

j+ng
ĥj(x) +

r(m)

2
ĥj(x)2

]
(18)  

where 

Var
[

λ(m)

i
ψ̂ i(x) +

r(m)

2
ψ̂ i(x)2

]

= Var
[
λ(m)

i
ψ̂ i(x)

]
+ Var

[
r(m)

2
ψ̂ i(x)2

]

+ 2Cov
[

λ(m)

i
ψ̂ i(x),

r(m)

2
ψ̂ i(x)2

]

=
(

λ(m)

i

)2
σ2

ψ̂ i(x) +

(
r(m)

2

)2(
2σ4

ψ̂ i(x) + 4σ2
ψ̂ i(x)μ

2
ψ̂ i(x)

)
+ λ(m)

i
r(m)
(

2σ2
ψ̂ i(x)μψ̂i(x) + σ3

ψ̂ i(x)

)

(19)  

Z. Meng et al.                                                                                                                                                                                                           



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116704

6

Var
[

λ(m)

j ĥj(x) +
r(m)

2
ĥj(x)2

]

= Var
[
λ(m)

j ĥj(x)
]
+ Var

[
r(m)

2
ĥj(x)2

]

+ 2Cov
[

λ(m)

j ĥj(x),
r(m)

2
ĥj(x)2

]

=
(

λ(m)

j

)2
σ2

ĥj(x)
+

(
r(m)

2

)2(
2σ4

ĥj(x)
+ 4σ2

ĥj(x)
μ2

ĥj(x)

)
+ λ(m)

j
r(m)
(

2σ2
ĥj(x)

μĥj(x) + σ3
ĥj(x)

)

(20)  

where μψ̂ i(x) and σ2
ψ̂ i(x) are computed by 

μψ̂i(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
λ(m)

i

r(m)
if ĝi(x) < −

λ(m)

i

r(m)

μĝi(x)if ĝi(x) ≥ −
λ(m)

i

r(m)

(21)  

σ2
ψ̂i(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0if ĝi(x) < −
λ(m)

i

r(m)

σ2
ĝi(x)if ĝi(x) ≥ −

λ(m)

i

r(m)

(22) 

Then, the optimum-pursuing function (OPF) of OPM is constructed as below: 

OPF1 =
μ(M̂)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂)

√ (23) 

Although the OPF is capable of providing accurate results, the fractional form encounters numerical issues, thereby preventing 

rapid convergence. Inspired by the active weight learning function [72], the OPF is formulated as the sum of μ(M̂) and 1 /
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂)

√

to 

address the numerical issues. Moreover, when the Kriging model is accurate, the value of Var(M̂) is very small, thereby leading to an 

exceptionally large value of 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂)

√

. In this context, the term μ(M̂) in the OPF does not work, which results in the numerical issues. 

Thus, min(1 /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂)

√

,10 ⋅ μ(M̂)) is introduced to impose an upper limit on the term 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂)

√

to overcome the numerical issue. 

Furthermore, the sum of μ(M̂) and min(1 /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂)

√

,10 ⋅ μ(M̂)) is used to improve the stability, and the OPF is stated as below: 

OPF2 = μ(M̂) + min
(

1
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂)

√

, 10 ⋅ μ(M̂)
)

(24) 

Like other active learning methods, there are two different ways to update the DOE by using the OPF. The first way is using the 
sampling strategy, e.g. Latin hypercube sampling (LHS), in which the minimization value of OPF is selected as the new DOE sample. 
The second way is using optimization strategy, and the new samples are sequentially added in DOE. In general, the new sample is 

Table 1 
Pseudo code of the OPM.  

Step Description 

1 Define the design variables x, allowable error εt, initial iterative step k=0, and maximum iterative number t. 
2 Generate the initial DOE based on LHS. Construct the Kriging model using the initial DOE. 
3 While k<t and ε<εt 

4 k=k+1 
5 The objective function is computed based on the Eq. (24). 
6 Define the initial Lagrange multiplier estimator λ(0), initial quadratic penalty factor r(0), initial iterative step m=0, and maximum iterative number tm. 
7 While m<tm 

8 m=m+1 
9 Perform the PSO algorithm to update x(m)

k . 
10 Update r(m) and λ(m) every 5 iterative steps. 
11 End 
12 Add the best solution x′

k into the DOE. 
13 Update the Kriging model based on the existing DOE. 
14 Compute the maximum relative error at the best solution x′

k. 
15 Perform the DO to obtain the current optimum x*. 
16 End 
17 Output the optimum x*.  
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determined by solving the following optimization formulation: 

find x’
k

minOPF2(xk)
(25)  

where x′
k is the best solution of Eq. (25). When the x′

k is obtained by using the optimization algorithm, it can be added into the DOE to 
improve the computational accuracy. In this paper, the particle swarm optimization (PSO) method is utilized, in which the maximum 
number of generations is set as 250. The pseudo code of OPM is listed in Table 1. 

In addition, it should be emphasized that the covariance is not equal to the 0 when the objective and constraint functions are co- 
established. In this way, the neglect of the covariance leads to computational errors. However, the errors induced by this perturbation 
are small due to the stability of the active learning methods. Therefore, it can also be regarded as a reasonable approximation. 

4. The OPM for RBDO 

4.1. OPM for computing MPTP 

It is reported that PMA is one promising RBDO method, which is widely employed in different fields, e.g. aerospace, mechanics, and 
vehicle engineering industries [73,74]. The PMA converts the probabilistic constraint to an optimization model, and the accordingly 
RBDO model contains double optimization loops. Its key is to search the MPTP in the inner loop, which is stated as 

find u
min gi
s.t. ‖ u ‖= βt

(26)  

where u are the standard normal variables that are obtained from random variables x by using the Rosenblatt transformation [75,76]. 
gi is the ith performance function. Its augmented Lagrangian function based on Kriging model is stated as below: 

M̂MPTP = ĝi + λ(m)(‖ u ‖ − βt) +
r(m)

2
(‖ u ‖ − βt)

2 (27) 

Considering σ(‖ u ‖) = 0 and σ(βt) = 0, its mean and variance are stated as below: 

μ(M̂MPTP) = μĝi
+ λ(m)(‖ u ‖ − βt) +

r(m)

2
(‖ u ‖ − βt)

2 (28)  

Var(M̂MPTP) = Var
(

ĝi + λ(m)(‖ u ‖ − βt)+
r(m)

2
(‖ u ‖ − βt)

2
)

= σ2
ĝi

(29) 

Then, the OPF for computing the MPTP is as follows: 

OPFMPTP = μ(M̂MPTP) + min
(

1
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂MPTP)

√

, 10 ⋅ μ(M̂MPTP)
)

(30) 

Through optimizing the OPFMPTP, the new sample can be obtained. The optimization formulation is stated as follows: 

find u’
k2

minOPFMPTP(uk2 )
(31)  

where u′
k2 is the best solution of Eq. (31), and it is added into the DOE to improve the accuracy of MPTP computation. 

4.2. OPM for PMA 

For RBDO model with multiple constraints, the MPTP of active constraint is located at the LSF, i.e. gi(uMPTP) = 0. Besides, the 
objective value of optimum is lower than that of other points in the safe region. In general, the outer loop of PMA is 

find x = [x1, x2, ..., xn]

minf (x)
s.t.Gi(x) ≤ 0, i = 1, ..., ng
xL ≤ x ≤ xU

(32)  

where the performance functions Gi(x) and gi(u) satisfy the relation Gi(x) = − gi(u). The augmented Lagrangian function is expressed 
as below: 

M̂PMA = f̂ +
∑ng

i=1

[

λ(m)

i
ψ̂ i(x)+

r(m)

2
ψ̂ i(x)2

]

(33) 

By neglecting the equality constraint for DO in Eqs. (14)–(24), we can obtain the OPF in the same way. 
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OPFPMA = μ(M̂PMA) + min
(

1
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(M̂PMA)

√

, 10 ⋅ μ(M̂PMA)
)

(34)  

where 

μ(M̂PMA) = μf̂ (x) +
∑ng

i=1

[

λ(m)

i
μψ̂i(x) +

r(m)

2

(
μ2

ψ̂i(x) + σ2
ψ̂ i(x)

)]

(35)  

Var(M̂PMA) = σ2
f̂ (x) +

∑ng

i=1
Var
[

λ(m)

i
ψ̂ i(x)+

r(m)

2
ψ̂ i(x)2

]

(36)  

where Var
[
λ(m)

i
ψ̂ i(x)+r(m)

2 ψ̂ i(x)2
]

can be computed by Eq. (19). Through minimizing the OPFPMA, the new sample can be obtained. The 

optimization formulation is stated as follows: 

find x’
k1

minOPFPMA(xk1 )
(37)  

where x′
k1 is the best solution of Eq. (37), and it is added into the DOE to update the Kriging model. 

4.3. Augmented optimum-pursuing method 

It should be noted that PMA consists of double optimization loops. The OPF of Eq. (34) can accurately predict the LSF around the 
optimum. However, it is constructed based on the outer loop of PMA, which neglects the impact of inner loop/MPTP search. Thus, 
when highly nonlinear and high-dimensional problems involve, it may generate unaccepted error. To enhance the local accuracy, the 
augmented optimum-pursuing method (AOPM) is further proposed, which combines the merits of OPM using MPTP and PMA. 

The proposed AOPM consists of two stages: the global search stage and the local search stage, and the schematic diagram is 
illustrated in Fig. 1. The global search stage uses the OPM of PMA, which aims to find the important region around the optimum. Then, 
the PMA is carried out to approximate the optimum, and the computational error of the optimum should be checked. If the accuracy is 
high, it means the optimum is satisfactory and the local search stage is used to computing the MPTP. If the accuracy is low, the OPM of 
PMA should be used to improve the accuracy. In the local search stage, the OPM of MPTP is carried out to generate new samples, and 
the DOE is updated accordingly. Then, the PMA based on Kriging is performed, and the new optimum is found. In this way, the new 
samples are added sequentially, and the optimum is updated until achieving the accuracy requirement. In AOPM, the accuracy 
checking criterion is crucial. Since there are multiple objective and constraint functions in RBDO model, their accuracies should be 
simultaneously considered. Thus, the maximum relative errors of objective and constraint functions are checked at the updated point, 
and the accuracy checking criterion is stated as below: 

εmax ≤ εt (38)  

where εt is the allowable relative error that is 10− 3 in this work. εmax is as follows: 

εmax = max

{
|f − f̂ |
|f | + δ

,
|g1 − ĝ1|

|g1| + δ
,
|g2 − ĝ2|

|g2| + δ
, ...,

⃒
⃒gng − ĝng

⃒
⃒

⃒
⃒gng
⃒
⃒+ δ

}

(39) 

Fig. 1. Schematic diagram of AOPM.  
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where δ is a small positive value that is selected as 10− 3. It is utilized to prevent the singularity when f or gi is equal to zero. Once the 
accuracy checking criterion is constructed, we can test the error at optimum. 

4.4. Flowchart of AOPM 

Table 2 summarizes the pseudo code of the AOPM for RBDO. The computation process is composed by a two-stage optimization 
loop. 

5. Relation between OPF and U function 

The U function is a popular active learning function [25], which is widely applied in the reliability computation owing to the 
simplicity and validity [24,77]. However, there is a lack of theoretical derivation process. Here we rigorously derive the U function 
based on the OPM and failure probability. In general, the failure probabilities based on the real performance function g(x) and Kriging 
performance function ĝ(x) are stated as below: 

Pf =

∫

⋯
∫

g(x)<0
f (x)dx1…dxn (40)  

P̂f =

∫

⋯
∫

ĝ(x)<0
f (x)dx1…dxn (41)  

where Pf and P̂f denote the failure probabilities with respect to g(x) and ĝ(x), respectively. f(x) represents the probability density 
function. From Eqs. (40) and (41), it can be found that the Pf = P̂f when g(x) = ĝ(x). Therefore, we can construct the following 
optimization formulation to minimize the computation error between Pf and P̂f . 

Table 2 
Pseudo code of the AOPM for RBDO.  

Step Description 

1 Perform the global search stage. Define the random variables x, allowable error εt, initial iterative step k1=0, and maximum iterative number t1. 
2 Generate the initial DOE based on LHS. Establish the Kriging model by using the initial DOE. Perform the global search stage. 
3 While k1<t1 and ε<εt 

4 k1=k1+1 
5 The objective function is computed according to the Eq. (34). 
6 Define the initial Lagrange multiplier estimator λ(0), initial quadratic penalty factor r(0), initial iterative step m1=0, and maximum iterative number tm1. 
7 While m1<tm1 

8 m1=m1+1 
9 Perform the PSO algorithm to update x(m1)

k1
. 

10 Update r(m1) and λ(m1 ) every 5 iterative steps. 
11 End 
12 Add the best solution x′

k1 into the DOE. 
13 Update the Kriging model based on the existing DOE. 
14 Compute the maximum relative error based on the Eq. (39). Check the accuracy based on the Eq. (38). 
15 Perform the RBDO to obtain the current optimum x*. 
16 end 
17 Perform the local search stage. Define the initial iterative step k2=0 and maximum iterative number t2. 
18 While k2<t2 and ε2<εt 

19 k2=k2+1 
20 The objective function is evaluated based on the Eq. (30). 
21 Transform xk2 into uk2 by Rosenblatt transformation. 
22 Define the initial Lagrange multiplier estimator λ(0), initial quadratic penalty factor r(0), initial iterative step m2=0, and maximum iterative number tm2. 
23 While m2<tm2 

24 m2=m2+1 
25 Perform the PSO algorithm to update u(m1)

k2
. 

26 Update r(m2) and λ(m2 ) every 5 iterative steps. 
27 End 
28 Transform the best solution u′

k2 into x′
k2 by using the Rosenblatt transformation. 

29 Add the sample x′
k2 into the existing DOE. 

30 Update the Kriging model based on the existing DOE. 
31 Compute the maximum relative error based on the Eq. (39). Check the accuracy based on the Eq. (38). 
32 Perform the RBDO to obtain the current optimum x*. 
33 End 
34 Output the optimum x*.  
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find x = [x1, x2,⋯, xn]

minε = |g(x) − ĝ(x)| (42)  

where ε denotes the absolute error. When ε is zero, it means the Kriging performance function can provide satisfactory accuracy. It 
should be emphasized that this optimization problem is only a special case of Eq. (1), in which the mean and variance of ε are 

μ(ε) = μ(|g(x) − ĝ(x)|) =
⃒
⃒μg − μĝ

⃒
⃒ (43)  

Var(ε) = Var(|g(x) − ĝ(x)|)

= Var(sgn(g(x) − ĝ(x))(g(x) − ĝ(x)))

= (sgn(g(x) − (x)))2Var(g(x)) + ( − sgn(g(x) − ĝ(x)))2Var(ĝ(x))

= σ2
ĝ

(44) 

By substituting Eqs. (42)–(44) into Eq. (23) and ignoring the constraints, the OPF degrades into U function, which is depicted by 

U =

⃒
⃒
⃒μg(x) − μĝ(x)

⃒
⃒
⃒

σĝ(x)
(45) 

From the above analysis, it can be found that U function is acquired by constructing the accordingly optimization model, which 
verifies the feasibility and potential of OPM for solving different problems. 

6. Examples 

This section verifies the performance of the proposed OPM for both DO and RBDO problems, in which four DO and five RBDO 
prevalent active learning methods are compared, including method of moving asymptotes (MMA) [78], PoF [41], maximum MSE 
(MAX-MSE) [42], LCB [79], PMA [75,80], single loop approach (SLA) [81,82], LHS [83], U function [24,25], and expected risk 
function (ERF) [84]. All codes are implemented on a personal computer with configuration: Intel Core i9-13900K @3.0 GHz and 128 
GB RAM. 

6.1. A nonlinear example 

The first example contains a nonlinear sin function [55,85], which has two random variables. The initial point is [3,3]T. The SDs of 
both random variables are 0.1. Both DO and RBDO are considered, and their formulas are stated as Eqs. (46) and (47), respectively. 

find x = [x1, x2]
T

min(x1 − 3.7)2
+ (x2 − 4)2

s.t.gj(x) < 0j = 1, 2
0 ≤ x1 ≤ 3.7, 0 ≤ x2 ≤ 4
where g1(x) = − x1sin(4x1) − 1.1x2sin(2x2)

g2(x) = x1 + x2 − 3

(46)  

Table 3 
Results of example 1.  

Methods Objective Design variables F-evaluations Error 

DO 
MMA 0.8871 (2.9710,3.4036) 138 — 
PoF 0.8870 (2.9741,3.4000) 41 5.6031 × 10–5 

MAX-MSE 0.8876 (2.9709,3.4034) 68 2.7216 × 10–4 

LCB 0.8885 (2.9913,3.3784) 45 3.2437 × 10–4 

OPM 0.8871 (2.9711,3.4036) 26 2.9284 × 10–6 

RBDO 
PMA 1.3038 (2.8162,3.2770) 231 — 
SLA 1.3038 (2.8162,3.2770) 132 — 
LHS 1.3041 (2.8161,3.2770) 100 0.6844 
U 1.3042 (2.8233,3.2613) 57 6.7814 × 10–3 

ERF 1.3032 (2.8156,3.2782) 76 3.3306 × 10–4 

OPM 1.3038 (2.8163,3.2769) 29 6.1698 × 10–6  
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find d =
[
μx1

, μx2

]T

min
(
μx1

− 3.7
)2

+
(
μx2

− 4
)2

s.t.Prob
[
gj(x) < 0

]
≤ Φ( − βt)j = 1, 2

0 ≤ μx1
≤ 3.7, 0 ≤ μx2

≤ 4

where g1(x) = − x1sin(4x1) − 1.1x2sin(2x2)

g2(x) = x1 + x2 − 3

βt
1 = βt

2 = 2.0

(47) 

The computational solutions are tabulated in Table 3. “F-evaluations” represents the number of function evaluations, while “Error” 
denotes the maximum relative error between Kriging models and real response functions (objective and performance functions) at the 
optimum. Since the MMA, PMA, and SLA are carried out based on the real objective and performance functions, the error is 0. Other 
methods, including PoF, MAX-MSE, LCB, LHS, U, ERF, and OPM, are performed based on Kriging model. 3-level full factorial design of 
the grid sampling is applied for these methods, in which nine initial points are generated, as shown in Fig. 2. 

The diagrams of DO and RBDO are illustrated in Figs. 2 and 3, respectively. From Table 3, Fig. 2 and Fig. 3, it can be seen that MAX- 
MSE only uses the information of the predicted variance, and thus the samples are uniformly generated in the design space. For PoF, 
some samples are distributed around the LSF. Compared to the PoF and MAX-MSE, the samples of LCB are uniformly distributed in the 
vicinity of LSF. Therefore, the LSF predicted by the PoF and LCB is very close to the real LSF. However, the OPM can capture the 
importance domain in the design space, so the efficiency is significantly improved. The required samples of OPM are only about half of 
those of PoF and LCB. Also, the computational accuracy of OPM is promoted. For RBDO, PMA and SLA find the same optimum. Similar 
as MAX-MSE, samples generated by the LHS uniformly cover the design space. However, the error of LHS is up to 0.6844, which cannot 
be accepted. This is because that RBDO should ensure the global and local accuracies, which is more complex than DO problem. LHS, 
U, and ERF methods generate the samples on the LSF, and thus the accuracy of computing LSF is greatly promoted. Comparing with 
other methods, the OPM constructs the active leaning function from the viewpoint of the optimization theory, in which the objective 

Fig. 2. Different DO methods of example 1 (a) PoF (b) MAX-MSE (c) LCB (d) OPM.  
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and performance functions are simultaneously considered. Therefore, the samples generated by OPM in the first stage locate in the 
local importance region, thereby reducing the sample number to a great extent. Then, the RBDO is performed to obtain the approx-
imate optimum. In the second stage, the samples are generated on the target reliability surface, and the local accuracy is further 
improved. In general, OPM can adaptively identify the local importance region for solving both DO and RBDO problems, thereby 
narrowing the design space to a great extent. Thus, it exhibits the superiority in terms of efficiency and accuracy. 

6.2. A multiple constraint example 

The second example is a benchmark example that is widely used for comparison [86,87]. The initial point is [5,5]T, and the SDs of 
both random variables are 0.3. Both DO and RBDO cases are tested, and their formulas are stated as Eqs. (48) and (49), respectively. 

find x = [x1, x2]
T

minx1 + x2

s.t.gj(x) ≤ 0, j = 1, 2, 3

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

where g1(x) = 1 −
x2

1x2

20

g2(x) = 1 −
(x1 + x2 − 5)2

30
−
(x1 − x2 − 12)2

120

g3(x) = 1 −
80

(x2
1 + 8x2 + 5

)

(48)  

Fig. 3. Different RBDO methods of example 1 (a) LHS (b) MAX-MSE (c) LCB (d) OPM.  
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Table 4 
Results for example 2.  

Methods Objective Design variables F-evaluations Error 

DO 
MMA 5.1765 (3.1139,2.0626) 150 — 
PoF 5.1836 (3.1176,2.0659) 32 3.0943 × 10− 3 

MAX-MSE 5.1788 (3.1151,2.0637) 44 1.1036 × 10− 4 

LCB 5.1735 (3.1123,2.0612) 37 1.3941 × 10− 4 

OPM 5.1766 (3.1139,2.0627) 20 4.9301 × 10− 5 

RBDO 
PMA 6.7257 (3.4391,3.2866) 969 — 
SORA 6.7257 (3.4391,3.2866) 258 — 
LHS 6.7236 (3.4376,3.2860) 50 2.0398 × 10− 2 

U 6.7256 (3.4391,3.2866) 49 9.8341 × 10− 6 

ERF 6.7256 (3.4390,3.2866) 60 7.2734 × 10− 4 

OPM 6.7257 (3.4391,3.2866) 24 1.6254 × 10− 5  

Fig. 4. Different DO methods of example 2 (a) Pof (b) MAX-MSE (c) LCB (d) OPM.  
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find d =
[
μx1

, μx2

]T

minμx1
+ μx2

s.t.Prob
[
gj(x) < 0

]
≤ Φ( − βt), j = 1, 2, 3

0 ≤ μx1
≤ 10, 0 ≤ μx2

≤ 10

where g1(x) = 1 −
x2

1x2

20

g2(x) = 1 −
(x1 + x2 − 5)2

30
−
(x1 − x2 − 12)2

120

g3(x) = 1 −
80

(x2
1 + 8x2 + 5

)

βt
1 = βt

2 = βt
3 = 3.0

(49) 

The comparison results are summarized in Tables 4. 3-level full factorial design of the grid sampling is used, in which nine initial 
points are generated for all DO and RBDO methods. The diagrams of DO and RBDO are illustrated in Figs. 4 and 5, respectively. MMA, 
PMA, and SORA use the actual objective and performance functions, and thus they are used as the reference solutions. It can be seen 
that PMA and SORA find the same optimum. 

For this benchmark example, since the nonlinearity of LSF is low, the computational error of all Kriging methods, i.e. PoF, MAX- 
MSE, LCB, LHS, U, and ERF, are acceptable. For DO, PoF and LCB are more efficient than MAX-MAE by using the information of 
predicted values and variance, while the computational cost of OPM is nearly 2-3 times less than those of the above-mentioned 
methods. For RBDO method, the accuracy of LHS is the worst. Compared to the LHS, the samples generated by U and ERF are 
located around the LSFs, so the accuracy is significantly promoted. In general, traditional methods can achieve a good global 
approximation, which leads to generating a large number of samples. However, OPM focuses on finding a good local approximation in 
the vicinity of optimum. Therefore, OPM is the most efficient and accurate method. Although the nonlinearity of this example is very 

Fig. 5. Different RBDO methods of example 2 (a) LHS (b) MAX-MSE (c) LCB (d) OPM.  
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low, the efficiency is still significantly improved. For both DO and RBDO problems, the computational cost of OPM is at least 2 times 
less than other methods. 

6.3. A speed reducer 

The lightweight design of the speed reducer is performed in Fig. 6, which involves 7 random variables and 11 constraints [76]. The 
midpoint of design variables is used as the initial point. The SDs of all random variables are 0.005. Also, both DO and RBDO cases are 
tested, and their formulas are stated as Eqs. (50) and (51), respectively. 

find x = [x1, x2, x3, x4, x5, x6, x7]
T

minf (x) = 0.7854x1x2
1

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x2

6 + x2
7

)
+ 7.477

(
x3

6 + x3
7

)
+ 0.7854

(
x4x2

6 + x5x2
7

)

s.t.gj(x) ≤ 0, j = 1, ..., 11

g1(x) = −
27

x1x2
2x3

+ 1, g2(x) = −
397.5
x1x2

2x2
3
+ 1,

g3(x) = −
1.93x3

4

x2x3x4
6
+ 1, g4(x) = −

1.93x3
5

x2x3x4
7
+ 1,

g5(x) = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(745x4/(x2x3))
2
+ 16.9 × 106

√

0.1x3
6

+ 1100,

g6(x) = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(745x5/(x2x3))
2
+ 157.5 × 106

√

0.1x3
7

+ 850,

g7(x) = − x2x3 + 40, g8(x) = − 5 +
x1

x2
,

g9(x) = −
x1

x2
+ 12, g10(x) = −

1.5x6 + 1.9
x4

+ 1,

g11(x) = −
1.1x7 + 1.9

x5
+ 1

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

(50)  

Fig. 6. A speed reducer.  
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Table 5 
Results for example 3.  

Methods Objective Design variables F-evaluations Error 

DO 
MMA 2994.34 (3.5000,0.7,17.0,7.3,7.7153,3.3502,5.2867) 1112 — 
PoF 2989.98 (3.5004,0.7,17.0,7.3,7.7157,3.3502,5.2866) 256 0.0168 
MAX-MSE 2997.22 (3.5001,0.7,17.0,7.3,7.7156,3.3522,5.2868) 196 0.0151 
LCB 2995.59 (3.5009,0.7,17.0,7.3,7.7151,3.3502,5.2866) 116 0.0074 
OPM 2994.62 (3.5001,0.7,17.0,7.3,7.7156,3.3496,5.2869) 68 0.0020 
RBDO 
PMA 3038.61 (3.5765,0.7,17.0,7.3,7.7541,3.3652,5.3017) 1240 — 
SORA 3038.61 (3.5765,0.7,17.0,7.3,7.7541,3.3652,5.3017) 648 — 
LHS 3035.44 (3.5671,0.7,17.0,7.3,7.7540,3.3675,5.3015) 300 0.0138 
U 3010.47 (3.5771,0.7,17.0,7.3,7.7541,3.3658,5.3016) 175 0.0079 
ERF 3038.08 (3.5762,0.7,17.0,7.3,7.7543,3.3650,5.3014) 207 0.0061 
OPM 3038.53 (3.5764,0.7,17.0,7.3,7.7541,3.3652,5.3016) 77 1.8213 × 10− 5  

Fig. 7. Iterative histories of different methods for the speed reducer (a) constraint with the minimum value for DO methods (b) objective for DO 
methods (c) constraint with the minimum value for RBDO methods (d) objective for RBDO methods. 
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find x =
[
μx1

, μx2
, μx3

, μx4
, μx5

, μx6
, μx7

]T

minf (x) = 0.7854μ2
x1

(
3.3333μ2

x3
+ 14.9334μx3

− 43.0934
)

− 1.508μx1

(
μ2

x6
+ μ2

x7

)
+ 7.477

(
μ3

x6
+ μ3

x7

)
+ 0.7854

(
μx4

μ2
x6
+ μx5

μ2
x7

)

s.t.Prob
[
gj(x) < 0

]
≤ Φ( − βt), j = 1, ..., 11

g1(x) = −
27

x1x2
2x3

+ 1, g2(x) = −
397.5
x1x2

2x2
3
+ 1,

g3(x) = −
1.93x3

4

x2x3x4
6
+ 1, g4(x) = −

1.93x3
5

x2x3x4
7
+ 1,

g5(x) = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(745x4/(x2x3))
2
+ 16.9 × 106

√

0.1x3
6

+ 1100,

g6(x) = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(745x5/(x2x3))
2
+ 157.5 × 106

√

0.1x3
7

+ 850,

g7(x) = − x2x3 + 40, g8(x) = − 5 +
x1

x2
,

g9(x) = −
x1

x2
+ 12, g10(x) = −

1.5x6 + 1.9
x4

+ 1,

g11(x) = −
1.1x7 + 1.9

x5
+ 1

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

(51) 

Table 5 summarizes the results. The LHS method is used to generate the initial points, in which 36 points are used for all DO and 
RBDO methods. MMA, PMA, and SORA use the actual objective and performance functions, and thus they are used as the reference 
solutions. It can be seen that PMA and SORA find the same optimum. 

Since this example contains multiple variables and constraints, the design space is large and the response is complex. Therefore, 
more samples are required to promote the accuracy. From Table 5, it can be seen that PoF and MAX-MSE exhibit some errors, and the 
computational efficiency is low. The samples of LCB are only about half of those of PoF and MAX-MSE. For RBDO, it is more complicate 
than DO, thus it requires more samples. LHS also shows some errors, while the efficiency and accuracy of U and ERF methods are 
significantly promoted. For DO, the OPM is 1.7059, 2.8824, and 3.7647 times faster than LCB, MAX-MSE, and PoF, respectively. For 
RBDO, the OPM is 2.6883 and 2.2727 times faster than U and ERF, respectively. The iterative histories of both DO and RBDO methods 
are illustrated in the Fig. 7. It can be observed that OPM quickly finds the important region, and the generated samples are clustered in 
this local region around the LSF. In general, the efficiency of OPM is significantly promoted. 

Fig. 8. Stiffened plate with cutouts.  
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6.4. A stiffened plate with cutouts 

The stiffened plate is widely used in aerospace engineering [88]. Owing to performance requirement, it always exists cutouts. In 
this case, a curvilinear stiffened plate is tested, in which skin thickness ts, stiffer height h, and stiffer width t are design and random 
variables, as shown in Fig. 8. Besides, the elasticity modulus E and Poisson ratio ν are regarded as random variables. Their means and 
SDs of [ts, t, h,E, ν] are [2.6 mm,13.4 mm,1.6 mm,70 GPa, 0.33] and [0.13, 0.67, 0.08, 3.5, 0.0165], and the means of geometric 
dimension are considered as initial point. Its weight is minimized, and the buckling load capacity Pcr of the stiffened plate should be 
larger than the allowable value. The DO and RBDO are tested, and their formulas are stated as Eqs. (52) and (53), respectively. 

Table 6 
Results for example 4.  

Methods Objective Design variables F-evaluations Error 

DO 
MMA 2.9828 (2.3394,17.6478,1.6024) 96 — 
PoF 2.4859 (1.8219,18.0000,2.4000) 54 0.1974 
MAX-MSE 2.9453 (2.3285,18.0000,1.3839) 227 0.0077 
LCB 2.9673 (2.3422,18.0000,1.4347) 172 0.0021 
OPM 2.9644 (2.3099,18.0000,1.6899) 53 0.0081 
RBDO 
PMA 3.4775 (2.7434,17.7222,1.7211) 6162 — 
LHS 3.4693 (2.6798,18.0000,2.1787) 300 0.0104 
U 3.4681 (2.7305,18.0000,1.7369) 60 0.0476 
ERF 3.4834 (2.7230,17.8172,1.9303) 117 0.0516 
OPM 3.4301 (2.6605,18.0000,2.0607) 46 5.1241 × 10− 4  

Fig. 9. Iterative histories of different methods for the stiffened plate (a) constraint with the minimum value for DO methods (b) objective for DO 
methods (c) constraint with the minimum value for RBDO methods (d) objective for RBDO methods. 
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find [ts, t, h]T

min Weight
s.t.g(ts, t, h,E, ν) ≤ 0
g = 39455N − Pcr
1.5 ≤ ts ≤ 3.5, 0.8 ≤ t ≤ 2.4, 8.0 ≤ h ≤ 18.0

(52)  

find [ts, t, h]T

minWeight
s.t.Prob[g(ts, t, h,E, ν) < 0] ≤ Φ( − βt)

g = 39455N − Pcr
1.5 ≤ ts ≤ 3.5, 0.8 ≤ t ≤ 2.4, 8.0 ≤ h ≤ 18.0

(53) 

Table 6 summarizes the results. The initial points are generated by the LHS method, in which 24 points are used for all DO and 
RBDO methods. MMA and PMA use the actual objective and performance functions, and they are used as the reference solutions. 

For this complex engineering example, it has multiple optima [88], thus MMA and OPM find the different optimum, as well as PMA 
and OPM. For buckling response, the nonlinearity of LSF is high, and thus it is hard to predict the LSF in the whole design space. 
Therefore, PoF, MAX-MSE, and LCB require many samples to ensure the accuracy. The computational cost of U and ERF is reduced 
through adding the samples on the LSFs. However, the predicted accuracy is low. OPM exhibits the superiority over other methods. The 
iterative histories of both DO and RBDO methods are illustrated in the Fig. 9. The OPM can identify the importance region adaptively, 
and the samples generated by OPM are clustered in this region. For RBDO, the performance function amplitude is large, thus the 
generated samples in the second stage have some distances from the LSF, as plotted in Figs. 9 (c) and (d). In general, the utilization ratio 
of samples is promoted, and the efficiency and accuracy are significantly promoted by using the OPM. 

6.5. A high-dimensional carriage structure 

In this section, the DO and RBDO problems of the carriage structure is studied to validate the applicability of the proposed OPM in 

Fig. 10. A carriage structure (a) corrugated plate (b) frame beam.  

Table 7 
Design variables of the carriage structure.  

Variables x1 (mm) x2 (mm) x3~x6 (mm) x7~x18 (mm) x19~x23 (mm) x24 (mm) 

Initial 6 4 8 4 5 4 
Lower 4 2.5 5 2.5 3.3 2.5 
Upper 8 5.5 11 5.5 6.6 5.5  
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engineering application, and it is composed by the corrugated plate and frame beam. The geometric size is 47 m × 6.5 m × 4.63 m. The 
carriage profile is plotted in Fig. 10. The carriage is subject to inertial forces generated by its own gravity and acceleration, where the 
gravitational acceleration and the forward acceleration of the carriage are 9.8 m2/s. Its weight is minimized. The maximum 
displacement U1 should be less than the allowable value of 14.2 mm. It contains 24 design variables, which are illustrated in Fig. 10 (b). 
Table 7 lists the initial design, upper bound, and lower bound. For RBDO, they also are deemed as the random variables with coefficient 
of variation 0.05. The door of this carriage structure is composed by the aluminum. The density is 2.7 × 10− 6 kg/mm3, and the 
elasticity modulus is 70 GPa. The rest of the carriage is made by steel. The elasticity modulus and Poisson ratio are 210 GPa and 0.3, 
respectively. The DO and RBDO models are expressed by Eqs. (54) and (55), respectively. 

find [x1, x2, ..., x24]
T

minWeight
s.t.U1 − 14.2 mm ≤ 0

(54)  

find [x1, x2, ..., x24]
T

minWeight
s.t.Prob[U1 − 14.2 mm ≤ 0] ≤ Φ( − βt)

βt = 3

(55) 

Table 8 summarizes the results. The LHS is adopted to generate the initial samples, in which 50 initial points are used. Since this 
engineering example contains high-dimensional design and random variables, it confronts the great challenge. The maximum sample 
number generated by the learning method is 1000. 

MMA and PMA appear oscillation and are difficult to find the optimum. Other results are Table 8. The results obtained by OPM at 
the optimum are illustrated in Fig. 11. For DO, the accuracy of Pof is low. MAX-MSE and LCB improve the computational accuracy, but 
their sample sizes are large. OPM outperforms other active learning methods in terms of accuracy and efficiency. For RBDO, since it 
needs ensuring the computational accuracy of the reliability analysis, it is more complex than DO problem. In this situation, the U and 
ERF functions meet the inaccurate problem, and their errors are up to 81.14 and 43.61 %. The accuracy cannot be accepted. OPM is far 
more efficient and accurate than other methods, and the error is only 4.82 %. It can be concluded that OPM exhibits the highest 
accuracy and efficiency for this high-dimensional engineering example. 

7. Conclusions 

In this paper, a new OPM based on the active learning technique of Kriging metamodel is proposed from the viewpoint of 

Table 8 
Results for the carriage structure.  

Methods Objective Design variables F-evaluations Error 

DO 
PoF 86.7864 (4.0000,3.6733,5.0023,5.0002,5.0001,7.0161, 

4.5008,5.5000,2.5001,2.5003,2.5006,3.5143, 
2.5002,2.5000,2.5000,2.7172,2.9991,2.5000, 
3.3000,3.3000,3.3000,3.0009,3.3005,2.6053) 

718 0.3459 

MAX-MSE 88.8197 (4.0000,5.0766,7.7910,5.0085,5.0334,10.9988, 
3.1252,4.4343,2.5025,5.5000,3.1981,3.4519, 
3.7731,2.5004,2.5000,2.5015,2.5000,2.5130, 
3.3000,3.3000,3.0008,3.3004,6.6000,2.5001) 

1050 0.0325 

LCB 88.3243 (4.0001,4.9121,6.1159,5.0000,5.0034,7.3885, 
5.5000,2.5010,4.1290,5.4997,2.5005,4.5245, 
2.5037,2.5015,5.4996,2.5199,4.4040,2.5002, 
3.3186,3.3012,3.3000,3.3000,4.6485,2.5000) 

1050 0.0410 

OPM 88.6204 (4.0028,4.7840,7.3066,7.3212,5.0730,8.7099, 
5.1104,4.4303,2.5000,5.4936,2.5009,2.5003, 
2.5000,2.6294,2.5351,5.5000,2.5001,2.5000, 
3.3000,3.3000,3.3003,3.3222,6.6000,2.5135) 

479 0.0221 

RBDO 
U 86.5534 (4.0000,3.5695,5.0000,5.0564,5.0000,5.0001, 

2.5231,2.5132,2.5001,3.4714,4.0654,2.5037, 
4.4497,5.1839,2.5087,2.5015,4.3094,2.5002, 
3.3000,3.3000,3.3086,3.3000,3.3002,2.5099) 

693 0.8114 

ERF 87.5955 (4.0000,4.3457,5.0001,5.0003,6.0388,5.0913, 
3.2177,2.5000,2.5000,5.5000,5.4058,2.5000, 
3.4291,2.9698,5.5000,2.5277,3.3630,2.5000, 
3.3011,3.3000,3.3000,4.3799,4.5733,2.5000) 

486 0.4361 

OPM 89.7026 (4.0000,4.1648,10.5611,9.3668,8.5170,5.0000, 
5.1547,2.5011,4.3437,5.4998,2.5000,5.5000, 
3.4266,3.2088,5.4986,3.5445,3.7976,4.4507, 
3.3002,4.0631,3.3147,3.3135,6.5994,2.5000) 

417 0.0482  
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optimization theory, in which the OPF and AOPF are constructed for DO and RBDO, respectively. Counter to the well-known active 
learning methods, OPM has a straightforward and easy implementation, according to its rigorous mathematical foundation, to 
circumstance this problem. Also, it proves the validity via deriving the typical U function. It not only provides the theoretical support 
for U function, but also validates the effectiveness and reasonability of OPM. In general, OPM can comprehensively consider the 
objective function, constraints, and their relationship. Moreover, the AOPM expedites convergence of the MPTP and the optimum of 
RBDO with enough accuracy. 

Comprehensive tests are implemented to test the performance of the proposed OPM, in which two benchmark and three real-world 
engineering examples are employed. Different metrics, including the number of samples, objective, optimum, error, and the sample 
distribution, are applied to reflect the performance of the Kriging method, which aims to confirm the remarkable promotion of the 
proposed OPM for solving both mathematical and engineering examples. In general, we have proposed the OPM with a simple work, 
which only derives the active learning function by constructing the optimization formulation. From the results, it can be found that the 
traditional methods require a global approximation of the objective and constraint functions, which leads to significantly computa-
tional burden. In contrast, the proposed OPM enhances the efficiency by employing a local approximation around the optimum. In the 
future, we will continue to explore other optimization problems, e.g. multi-objective optimization, robust design optimization, non- 
probabilistic RBDO, fuzzy optimization, hybrid RBDO optimization problem, etc. In addition, other improved versions of OPM can 
be developed by combining different algorithms, such as state-of-the-art optimization algorithms and sampling technologies. 
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Fig. 11. Displacement of the carriage structure of OPM at the optimum (a) DO (b) RBDO.  
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Appendix 

Assume that two Kriging models f̂ (x) and ĝ(x) are separately established for f(x) and g(x). They are respectively stated as 

f̂ (x) = hT
f (x)γf + vf (x) (I)  

ĝ(x) = hT
g (x)γg + vg(x) (II)  

where the coefficients are consistent with those in Section 2.3. The unbiased predictors μf̂(x0)
and μĝ(x0)

of ̂f (x) and ̂g(x) on an arbitrary 
point x0 are respectively evaluated by 

μ̂f̂ (x0)
= hT

f (x0)γ̂ f + rT
0f R

− 1
f

(
f − Hf γ̂ f

)
(III)  

μ̂ĝ(x0) = hT
g (x0)γ̂ g + rT

0gR− 1
g

(
g − Hg γ̂g

)
(IV)  

where the coefficients are computed by Eqs. (4)–(8). The covariance between f̂ (x) and ĝ(x) are evaluated as follows: 

Cov( f̂ (x0), ĝ(x0)) = μ( f̂ (x0) ⋅ ĝ(x0)) − μ̂f̂ (x0)
⋅ μ̂ĝ(x0)

= μ
((

hT
f (x0)γf + vf (x0)

)(
hT

g (x0)γg + vg(x0)
))

−
(

hT
f (x0)γ̂ f + rT

0f R
− 1
f

(
f − Hf γ̂ f

))(
hT

g (x0)γ̂g + rT
0gR− 1

g

(
g − Hg γ̂g

))

= hT
f (x0)γf

(
μ
(
vg(x0)

)
− rT

0gR− 1
g

(
g − Hg γ̂g

))

+hT
g (x0)γg

(
μ
(
vf (x0)

)
− rT

0f R
− 1
f

(
f − Hf γ̂ f

))

+μ
(
vf (x0) ⋅ vg(x0)

)
− rT

0f R
− 1
f

(
f − Hf γ̂ f

)
rT

0gR− 1
g

(
g − Hg γ̂g

)

(V) 

Based on Eqs. (4)–(9), μ(vg(x0)) and μ(vf (x0)) are evaluated by 

μ
(
vg(x0)

)
= rT

0gR− 1
g

(
g − Hg γ̂g

)
(VI)  

μ
(
vf (x0)

)
= rT

0f R
− 1
f

(
f − Hf γ̂ f

)
(VII) 

Then, Eq. (V) can be simplified as 

Cov( f̂ (x0), ĝ(x0)) = μ
(
vf (x0) ⋅ vg(x0)

)
− rT

0f R
− 1
f

(
f − Hf γ̂ f

)
rT

0gR− 1
g

(
g − Hg γ̂g

)
(VIII) 

Since the two Kriging models f̂ (x) and ĝ(x) are separately established, vf (x0) and vg(x0) are independent Gaussian processes. 
Therefore, we have 

μ
(
vf (x0) ⋅ vg(x0)

)
= μ
(
vf (x0)

)
⋅ μ
(
vg(x0)

)

= rT
0f R

− 1
f

(
f − Hf γ̂ f

)
rT

0gR− 1
g

(
g − Hg γ̂g

) (IX) 

By combining Eqs. (VIII) and (IX), the covariance is obtained as follows: 

Cov( f̂ (x0), ĝ(x0)) = 0 (X) 
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Consequently, f̂ (x) and ĝ(x) are mutually independent. Similarly, the covariances between other separately established Kriging 
models are also 0. 
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