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 a b s t r a c t

This paper introduces a novel adaptive refinement strategy for Isogeometric Analysis (IGA) 
using Truncated Hierarchical B-splines (THB-splines). The strategy is motivated by the fact that 
certain applications may benefit from adaptive refinement schemes, which lead to a higher 
degree of structure in the locally-refined mesh than usual, and building this structure a priori 
can simplify the implementation in those contexts. Specifically, we look at two applications: 
formulation of an 𝐿2-stable local projector for THB-splines a la Bézier projection [Dijkstra and 
Toshniwal (2023)], and adaptive structure-preserving discretizations using THB-splines [Evans 
et al. (2020), Shepherd and Toshniwal (2024)]. Previously proposed approaches for these 
applications require mesh modifications to preserve critical properties of the spline spaces, such 
as local linear independence or the exactness of the discrete de Rham complexes. Instead, we 
propose a macro-element-based refinement approach based on refining 𝐪 = 𝑞1 ×⋯ × 𝑞𝑛 blocks of 
elements, termed 𝐪-boxes, where the block size 𝐪 is chosen based on the spline degree 𝐩 and the 
specific application.
∙ For the Bézier projection for THB-splines, we refine 𝐩-boxes (i.e., 𝐪 = 𝐩). We show that 
THB-splines are locally linearly independent on 𝐩-boxes, which allows for a simple extension 
of the Bézier projection algorithm to THB-splines. This new formulation significantly improves 
upon the approach previously proposed by Dijkstra and Toshniwal (2023).
∙ For structure-preserving discretizations, we refine (𝐩 + 𝟏)-boxes (i.e., 𝐪 = 𝐩 + 𝟏). We prove that 
this choice of 𝐪 ensures that the mesh satisfies the sufficient conditions presented in Shepherd 
and Toshniwal (2024) for guaranteeing the exactness of the THB-spline de Rham complex a priori 
and in an arbitrary number of dimensions. This is crucial for structure-preserving discretizations, 
as it eliminates the need for additional mesh modifications to maintain the exactness of the 
complex during adaptive simulations.

 The effectiveness of the proposed framework is demonstrated through theoretical proofs and 
numerical experiments, including optimal convergence for adaptive approximation and the sim-
ulation of the incompressible Navier-Stokes equations.
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\begin {equation}\Tbasis {\DomainHierarchy _{k-1}}{} = \trunc {k-1}{\mathcal {A}} \cup \Bbasis {k-1}{\act ,k-1} , \label {Xeqn29}\end {equation}


$\mathcal {A}$


$\trunc {k-1}{\mathcal {A}}$


$\Bbasis {k-1}{\nact ,k-1}\subset \Bbasis {k-1}{\nact ,k}$


$k$


$\Bbasis {k-1}{\act ,k-1}$


\begin {equation}\trunc {k-1}{\mathcal {A}} \cup \Bbasis {k-1}{\act ,k-1}\backslash \Bbasis {k-1}{\act ,k}\quad \subset \quad \Bspace {k-1}{\nact ,k} \label {Xeqn30}\end {equation}


$\pset {\mathbf {r},\ell }{}$


$\Tbasis {\DomainHierarchy _{k}}{}$


$\pset {\mathbf {r},\ell }{}$


$\mathbf {\pp }$


$f \in L^2(\Omega )$


$\mathbb {V}$


$L^2$


$\Pi f\in \Tspace {\DomainHierarchy }{}$


$\Pi $


$D\subset \Omega $


$\Tbasis {\DomainHierarchy }{}$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathcal {W}$


$\pset {}{}\in \mathcal {W}$


$\pbox {}{}$


$\mathbf {\pp }$


$\Omega $


\begin {equation}\label {eq:discont-THB-spline-basis} \mathbb {V}_{\pset {}{}} := \lspan {}\left \{ \Tspline {j}{}\vert _{\Omega ^{\pset {}{}}} : \forall \Tspline {j}{}\in \Tbasis {\DomainHierarchy }{} \right \} .\end {equation}


$f\in L^2(\Omega )$


$\mathbf {\pp }$


${\pset {}{}}\in \mathcal {W}$


\begin {equation}\label {eq:THB-spline-macroelementwise-projection} \begin {split} \sum _{{j\in \piset {\pset {}{}}{}{{\Tbasis {\DomainHierarchy }{}}}}} \Coeff {j}{\pset {}{}} \Tspline {j}{}\vert _{\Omega ^{\pset {}{}}} := \argmin _{\Spline {h}{\pset {}{}}\in {\mathbb {V}_{\pset {}{}}}} \left \Vert \Spline {h}{\pset {}{}} - f \right \Vert _{L^2(\Omega ^{\pset {}{}})} , \piset {\pset {}{}}{}{{\Tbasis {\DomainHierarchy }{}}} := \left \{ j : \Tspline {j}{}\in \Tbasis {\DomainHierarchy }{} , \Omega ^{\pset {}{}}\cap \supp {\Tspline {j}{}}\neq \emptyset \right \} . \end {split}\end {equation}


$\Pi f := \sum _{j=1}^N \Coeff {j}{} \Tspline {j}{}$


\begin {equation}\Coeff {j}{} :=\sum _{{\pset {}{}\in \peset {}{j}{\mathcal {W}}}} \omega _j^{\pset {}{}} \Coeff {j}{\pset {}{}} , {\quad }{\quad }{\quad } \peset {}{j}{\mathcal {W}}:=\left \{ \pset {}{}\in \mathcal {W} : \Omega ^{\pset {}{}}\cap \supp {\Tspline {j}{}}\neq \emptyset \right \} , \label {Xeqn33}\end {equation}


\begin {equation}\omega ^{\pset {}{}}_j := \frac {\int _{\Omega ^{\pset {}{}}}\Tspline {j}{}dx}{\int _{\Omega }\Tspline {j}{}dx} . \label {Xeqn34}\end {equation}


$\Spline {}{}=\sum _j\Coeff {j}{}\Tspline {j}{}\in \Tspace {\DomainHierarchy }{}$


$\Coeff {j}{E}$


$\Coeff {j}{}$


$\Pi $


$\Pi f$


$\Omega ^e$


${\mathbf {e}_{\ell }} \in \mesh {\DomainHierarchy }{}$


$\mathbf {\pp }$


$\pset {}{}\in \mathcal {W}$


$\Omega ^{\mathbf {e}_{\ell }}\subset \pbox {}{}$


$h^{\mathbf {e}_{\ell }}$


$\Omega ^{\mathbf {e}_{\ell }}$


$\Omega ^{\mathbf {e}_{\ell }}$


$\Pi f$


${\mathbf {e}_{\ell }}\in \mesh {\DomainHierarchy }{}$


$0\leq k \leq m \leq \min (\mathbf {\pp })+1$


$f\in H^m(\widetilde {\Omega }^{{\mathbf {e}_{\ell }}})$


$C$


$h^{\mathbf {e}_{\ell }}$


$\text {cube}(\widetilde {\Omega }^{{\mathbf {e}_{\ell }}})$


$\widetilde {\Omega }^{{\mathbf {e}_{\ell }}}$


$L^2$


$C\prod _{i=1}^n(p^i+1)$


$C$


$\mathbf {p}$


$\prod _{i=1}^n(p^i+1)$


$\mathbf {q} = \mathbf {1}$


$\mathbf {p}$


$\mathbf {q}$


$\mathbf {q} = \mathbf {1}$


$\mathbf {q} = \mathbf {p}$


$\mathbf {p}$


$\mathbf {\qq }$


$\mathbf {\qq }$


$\mathbf {\pp }$


\begin {equation}\label {eq:cont-derham} H^1(\Omega )\xrightarrow []{\mathrm {rot}}H(\mathrm {div};\Omega )\xrightarrow []{\mathrm {div}} L^2(\Omega ) ,\end {equation}


\begin {equation}\label {eq:cont-derham-3d} H^1(\Omega )\xrightarrow []{\mathrm {grad}}H(\mathrm {curl};\Omega )\xrightarrow []{\mathrm {curl}} H(\mathrm {div};\Omega ) \xrightarrow {\mathrm {div}} L^2(\Omega ) .\end {equation}


$\text {image}(\mathrm {rot}) = \text {kernel}(\mathrm {div})$


\begin {align}\label {eq:discrete-spaces-derham-2d} \mathbb {V}_h^0 :=\Tspace {\DomainHierarchy ,(\pp ^0,\pp ^1)}{} , \mathbb {V}_h^1 :=\Tspace {\DomainHierarchy ,(\pp ^0,\pp ^1-1)}{}\times \Tspace {\DomainHierarchy ,(\pp ^0-1,\pp ^1)}{} , \mathbb {V}_h^2 :=\Tspace {\DomainHierarchy ,(\pp ^0-1,\pp ^1-1)}{} ,\end {align}


\begin {align}\label {eq:discrete-spaces-derham-3d} \mathbb {V}_h^0 :=\Tspace {\DomainHierarchy ,(\pp ^0,\pp ^1,\pp ^2)}{} , \mathbb {V}_h^1 :=\Tspace {\DomainHierarchy ,(\pp ^0-1,\pp ^1,\pp ^2)}{}\times \Tspace {\DomainHierarchy ,(\pp ^0,\pp ^1-1,\pp ^2)}{}\times \Tspace {\DomainHierarchy ,(\pp ^0,\pp ^1,\pp ^2-1)}{} ,\\ \mathbb {V}_h^2 :=\Tspace {\DomainHierarchy ,(\pp ^0,\pp ^1-1,\pp ^2-1)}{}\times \Tspace {\DomainHierarchy ,(\pp ^0-1,\pp ^1,\pp ^2-1)}{}\times \Tspace {\DomainHierarchy ,(\pp ^0-1,\pp ^1-1,\pp ^2)}{} , \mathbb {V}_h^3 :=\Tspace {\DomainHierarchy ,(\pp ^0-1,\pp ^1-1,\pp ^2-1)}{} .\end {align}


$n$


$\Omega \subset \RR ^n$


$\mathbf {\pp }+\mathbf {1}$


$\mathbf {\pp }+\mathbf {1}$


$\mathbf {s}_1,\mathbf {s}_2\in \mathbb {N}^n$


$\{\mathbf {r}_i\in \mathbb {N}^n : i = 0, \dots , k\}$


$\mathbf {r}_0 = \mathbf {s}_1, \mathbf {r}_k = \mathbf {s}_2$


$\delta \mathbf {r}_i := \mathbf {r}_i - \mathbf {r}_{i-1}$


$k = \sum _{i=1}^{k} |\delta \mathbf {r}_i|_1$


$k = \sum _{j=1}^n |s_1^j - s_2^j|$


$\mathbf {s}_1$


$\mathbf {s}_2$


$\mathbf {L},\mathbf {U}\in \mathbb {N}^n$


$L^j \leq U^j$


$j$


$\mathcal {G}$


\begin {equation}\mathcal {G} := \left \{~\mathbf {t}\in \mathbb {N}^n~:~L^j\leq t^j\leq U^j , j = 1, \dots , n~\right \} . \label {Xeqn39}\end {equation}


$\mathcal {G}_1,\mathcal {G}_2$


$\exists \mathbf {t} \in \mathcal {G}_1 \cap \mathcal {G}_2$


$\{\mathbf {r}_0, \cdots , \mathbf {r}_k\}$


$\mathbf {s}_1,\mathbf {s}_2\in \mathcal {G}_1\cup \mathcal {G}_2$


$\mathbf {r}_i\in \mathcal {G}_1\cup \mathcal {G}_2$


$\mathbf {s}_1\in \mathcal {G}_1$


$\mathbf {s}_2\in \mathcal {G}_2$


$\alpha $


$\mathbf {r}_i \in \mathcal {G}_1$


$i\leq \alpha $


$\mathbf {r}_i\in \mathcal {G}_2$


$\alpha \leq i$


$\mathcal {G}_i$


$\mathbf {L}_i,\mathbf {U}_i$


$\mathcal {G}_1 \neq \mathcal {G}_2$


$L_1^j < L_2^j$


$j$


$\mathbf {s}_1,\mathbf {s}_2\in \mathcal {G}_i$


$i$


$\mathbf {s}_1\in \mathcal {G}_1$


$\mathbf {s}_2\in \mathcal {G}_2$


$\epsilon ^j := \sgn {s_2^j - s_1^j}$


$J := \sum _{j=1}^n J^j$


\begin {equation*}J^j := \begin {cases} \min {\left (U_1^j-s_1^j,s_2^j-s_1^j\right )} , &if \epsilon ^j = 1 ,\\ s_1^j - s_2^j , & else . \end {cases}\end {equation*}


$\{\mathbf {r}_0, \dots , \mathbf {r}_J\}$


\begin {equation}\mathbf {r}_i = \begin {cases} (s_1^1 + \epsilon ^1 i, s_1^2, \dots , s_1^n) , &\text {for }0 \leq i \leq J^1 ,\\ (s_1^1 + \epsilon ^1 J^1, s_1^2+\epsilon ^2(i - J^1), \dots , s_1^n) , &\text {for }J^1 < i \leq J^1 + J^2 ,\\ ~~\vdots \\ (s_1^1 + \epsilon ^1 J^1, s_1^2 + \epsilon ^2 J^2, \dots , s_1^n + \epsilon ^n(i - J + J^n)) , &\text {for }J - J^n < i \leq J . \end {cases} \label {Xeqn40}\end {equation}


$\mathbf {r}_J = \mathbf {s}_2$


$\mathbf {r}_J\in \mathcal {G}_2$


$L_2^j \leq \min \left ( U_1^j, s_2^j \right ) = \mathbf {r}_J^j$


$\{\mathbf {r}_0, \dots , \mathbf {r}_J\}$


$\mathbf {s}_1$


$\mathbf {s}_2$


$\mathbf {r}_J$


$\alpha = J$


$\ell $


$\Bspline {\mathbf {s}_1,\ell }{},\Bspline {\mathbf {s}_2,\ell }{}\in \Bbasis {\ell }{\act ,\ell +1}$


$\mathbf {r}',k_0$


\begin {align}\clos {\supp {\Bspline {\mathbf {s}_1,\ell }{}}} \cap \clos {\supp {\Bspline {\mathbf {s}_2,\ell }{}}} \supseteq \times _{k=1}^n I^k ,\\ I^k:= \begin {cases} \left (\widehat {\xi }^k_{r'^k,\ell +1},\widehat {\xi }^k_{r'^k+1,\ell +1}\right ) , &k\neq k_0 ,\\ \left \{ \widehat {\xi }^k_{r'^k,\ell +1}\right \} , & k = k_0 . \end {cases}\end {align}


$\{\mathbf {r}_0,\mathbf {r}_1,\dots \}$


$\mathbf {s}_1,\mathbf {s}_2$


$\Bspline {\mathbf {r}_i,\ell }{}\in \Bbasis {\ell }{\act ,\ell +1}$


$i$


$\mathbf {\pp }+\mathbf {1}$


$k_0 = n$


\begin {align*}\mathcal {G}_i^{\pset {}{}} &:= \left \{~\mathbf {t}~:~\pset {\mathbf {t},\ell }{}\in \meshPbox {\ell }{\mathbf {\pp }+\mathbf {1}}~:~\supp {\Bspline {\mathbf {s}_i,\ell }{}}\cap \pbox {\mathbf {t},\ell }{}\neq \emptyset ~ \right \} ,\\ \mathcal {G}_i^{\Bspline {}{}} &:= \left \{~\mathbf {t}~:~\Bspline {\mathbf {t},\ell }{}\in \Bbasis {\ell }{} ,~\supp {\Bspline {\mathbf {t},\ell }{}}\subseteq \bigcup _{\mathbf {r}\in \mathcal {G}_i^{\pset {}{}}}\clos {\pbox {\mathbf {r},\ell }{}}~\right \} ,\end {align*}


$(\mathbf {\pp }+\mathbf {1}$


$\mathcal {G}_1^{\Bspline {}{}}$


$\mathcal {G}_2^{\Bspline {}{}}$


$\cap _{i=1}^2\mathcal {G}_i^{\Bspline {}{}} = \emptyset $


$\cap _{i=1}^2\mathcal {G}_i^{\pset {}{}} = \emptyset $


$s_2^n = s_1^n + \pp ^n + 1$


$\exists \mathbf {t_1}\in \mathcal {G}_1^{\pset {}{}}$


$(t_1^1,\dots ,t_1^n+1)\in \mathcal {G}_2^{\pset {}{}}$


$\widetilde {\mathcal {G}}_i^{\Bspline {}{}} := \{ \widetilde {\mathbf {t}} \in \NN ^{n-1} : \exists t^n \in \NN \text {~s.t.~}(\widetilde {\mathbf {t}}, t^n) \in \mathcal {G}_i^{\Bspline {}{}} \}$


$\{\widetilde {\mathbf {r}}_0,\cdots ,\widetilde {\mathbf {r}}_{\tilde {k}}\}$


$\widetilde {\mathbf {s}}_1 = (s_1^1,\dots s_1^{n-1}) \in \widetilde {\mathcal {G}}_1^{\Bspline {}{}}$


$\widetilde {\mathbf {s}}_2=(s_2^1,\dots s_2^{n-1})\in \widetilde {\mathcal {G}}_2^{\Bspline {}{}}$


$\alpha $


$\widetilde {\mathbf {r}}_i \in \widetilde {\mathcal {G}}_1^{\Bspline {}{}}$


$i\leq \alpha $


$\widetilde {\mathbf {r}}_i\in \widetilde {\mathcal {G}}_2^{\Bspline {}{}}$


$i\geq \alpha $


$\{\mathbf {r}_i~:~i = 0,\dots ,\tilde {k}+\pp ^n+1\}$


$\mathbf {s}_0$


$\mathbf {s}_1$


\begin {equation}\mathbf {r}_i = \begin {cases} (\widetilde {\mathbf {r}}_i,s_1^n) , & 0 \leq i\leq \alpha ,\\ (\widetilde {\mathbf {r}}_\alpha ,s_1^n+i - \alpha ) , & \alpha < i \leq \alpha + \pp ^n + 1 ,\\ (\widetilde {\mathbf {r}}_{i-\pp ^n -1 },s_2^n) , & \alpha + \pp ^n + 1 < i \leq \tilde {k}+\pp ^n+1 . \end {cases} \label {Xeqn41}\end {equation}


$\mathcal {A} \subset \Bbasis {\ell }{\act ,\ell +1}$


$\ell $


$(\ell +1)$


$\phi $


$\tilde {\mathbf {\pp }}$


$\tilde {\pp }^j \in \{\pp ^j, \pp ^j-1\}$


$\supp {\phi }\subseteq \Omega _{\ell +1}$


$\supp {\phi }\subset \cup _{\Bspline {}{}\in \mathcal {A}} \clos {\supp {\Bspline {}{}}}$


$\Bspline {\mathbf {r},\ell }{}\in \Bbasis {\ell }{\act ,\ell +1}$


$\supp {\phi }\subset \supp {\Bspline {\mathbf {r},\ell }{}}$


$\supp {\Bspline {\mathbf {r},\ell }{}}$


$\cup _{\Bspline {}{}\in \mathcal {A}} \supp {\Bspline {}{}}$


$P = \times _{j=1}^n (\widehat {\xi }_{L^j,\ell }^j,\widehat {\xi }_{U^j,\ell }^j)$


$\cup _{\Bspline {}{}\in \mathcal {A}} \supp {\Bspline {}{}}$


$\supp {\phi }\cap \supp {\Bspline {}{}}\neq \emptyset $


$\Bspline {}{}\in \mathcal {A}$


\begin {equation*}R(\phi ) := \left \{~\mathbf {t} : \Bspline {\mathbf {t},\ell }{}\in \Bbasis {\ell }{\act ,\ell +1}\text {~and~}\supp {\phi } \subset \supp {\Bspline {\mathbf {t},\ell }{}} ~\right \} .\end {equation*}


$\mathbf {r}\in R(\phi )$


$\supp {\Bspline {\mathbf {r},\ell }{}}= \times _{j=1}^n (\widehat {\xi }_{e^j,\ell }^j,\widehat {\xi }_{f^j,\ell }^j)$


\begin {equation*}\supp {\Bspline {\mathbf {r},\ell }{}} \subset P \Leftrightarrow L^j \leq e^j, f^j\leq U^j .\end {equation*}


$I\subseteq \{1,\dots ,n\}$


\begin {align*}j \notin I \Rightarrow L^j \leq e^j,f^j\leq U^j ,\quad \text {and~} j \in I \Rightarrow e^j < L^j .\end {align*}


$\tilde {\mathbf {r}}$


$\supp {\Bspline {\widetilde {\mathbf {r}},\ell }{}}= \times _{j=1}^n (\widehat {\xi }_{\tilde {e}^j,\ell }^j,\widehat {\xi }_{\tilde {f}^j,\ell }^j)$


\begin {equation*}j \notin I \Rightarrow \tilde {e}^j := e^j ,\quad \text {and~} j \in I \Rightarrow \tilde {e}^j := L^j .\end {equation*}


$\supp {\Bspline {\tilde {\mathbf {r}},\ell }{}} \subset P$


$\supp {\phi }\subset \supp {\Bspline {\tilde {\mathbf {r}},\ell }{}}$


\begin {equation*}\supp {\phi } \subset \supp {\Bspline {\mathbf {r},\ell }{}}\cap P\subset \supp {\Bspline {\tilde {\mathbf {r}},\ell }{}}\cap P .\end {equation*}


$\tilde {\mathbf {r}} \in R(\phi )$


$\pset {\widetilde {\mathbf {s}},\ell }{}\in \meshPbox {\ell }{\mathbf {p+1}}$


$\pbox {\widetilde {\mathbf {s}},\ell }{}\cap \supp {\Bspline {\widetilde {\mathbf {r}},\ell }{}}\neq \emptyset $


$\pset {\widetilde {\mathbf {s}},\ell }{}\subset \Omega _{\ell +1}$


$\pset {\widetilde {\mathbf {s}},\ell }{}\in \meshPbox {\ell }{\mathbf {p+1}}$


$\supp {\phi } \cap \pbox {\widetilde {\mathbf {s}},\ell }{} \neq \emptyset $


$\pset {\widetilde {\mathbf {s}},\ell }{}\subset \Omega _{\ell +1}$


$\supp {\phi } \cap \pbox {\widetilde {\mathbf {s}},\ell }{} = \emptyset $


$\supp {\Bspline {\widetilde {\mathbf {r}},\ell }{}}$


$\supp {\Bspline {\mathbf {r},\ell }{}}$


$j\in I$


$\pp ^j$


$\pset {\mathbf {s},\ell }{}\in \meshPbox {\ell }{\mathbf {p+1}}$


\begin {equation*}\begin {split} &\pbox {\mathbf {s},\ell }{} \subset \Omega _{\ell +1} ,\quad \pbox {\mathbf {s},\ell }{}\cap \supp {\Bspline {\mathbf {r},\ell }{}}\neq \emptyset ,\\ &j \in I \Rightarrow s^j \in \{\tilde {s}^j - 1,\tilde {s}^j\} ,\quad j\notin I \Rightarrow s^j = \tilde {s}^j ,\\ &\exists B \in \mathcal {A} \text {~such that~} \supp {B}\cap \pbox {\mathbf {s},\ell }{}\neq \emptyset . \end {split}\end {equation*}


\begin {equation*}\supp {B} = \times _{j=1}^n (\widehat {\xi }_{\alpha ^j,\ell }^j,\widehat {\xi }_{\beta ^j,\ell }^j) ,\quad \pbox {\widetilde {\mathbf {s}},\ell }{} = \times _{j=1}^n (\widehat {\xi }_{C^j,\ell }^j,\widehat {\xi }_{D^j,\ell }^j) .\end {equation*}


$j \in I$


\begin {equation*}\begin {split} \alpha ^j < C^j & \qquad (\text {because~}\supp {B}\cap \supp {\phi } \neq \emptyset ~\wedge ~ \supp {\phi }\cap \pbox {\widetilde {\mathbf {s}},\ell }{} = \emptyset ) ,\\ \tilde {e}^j \leq \alpha ^j < \tilde {f}^j \leq \beta ^j & \qquad (\text {because~}\supp {B}\cap \supp {\phi } \neq \emptyset ~\wedge ~\supp {B}, \supp {\Bspline {\tilde {\mathbf {r}},\ell }{}} \subset P) . \end {split}\end {equation*}


$j \in I$


\begin {equation*}(\widehat {\xi }_{\alpha ^j,\ell }^j,\widehat {\xi }_{\beta ^j,\ell }^j)\cap (\widehat {\xi }_{C^j,\ell }^j,\widehat {\xi }_{D^j,\ell }^j)\neq \emptyset .\end {equation*}


$j \notin I$


$\supp {B}\cap \pbox {\mathbf {s},\ell }{}\neq \emptyset $


$\mathbf {s}$


$\widetilde {\mathbf {s}}$


$I$


$\supp {B}\cap \pbox {\widetilde {\mathbf {s}},\ell }{}\neq \emptyset $


$\check {\Omega } \subset \RR ^n$


$\mathbf {F} : \Omega \rightarrow \check {\Omega }$


$\Omega $


$\check {\Omega }$


$\check {\mathbb {V}}_h^k := \{ \phi : \iota ^k(\phi ) \in \mathbb {V}_h^k \}$


$k = 0, 1, \dots , n$


$k$


$\check {\Omega }$


$\iota ^k$


$\iota ^0(\phi ) := \phi \circ \mathbf {F}$


$\iota ^n(\phi ) := \det (D\mathbf {F})(\phi \circ \mathbf {F})$


$n = 2$


\begin {equation*}\begin {aligned} \iota ^{1}(\phi ) := \det (D\mathbf {F})(D\mathbf {F})^{-1}(\phi \circ \mathbf {F}) ; \end {aligned}\end {equation*}


$n = 3$


\begin {equation*}\begin {aligned} \iota ^1(\phi ) := (D\mathbf {F})^{\mathrm {T}}(\phi \circ \mathbf {F}) , \iota ^2(\phi ) := \det (D\mathbf {F})(D\mathbf {F})^{-1}(\phi \circ \mathbf {F}) . \end {aligned}\end {equation*}


\begin {equation*}\check {\mathbb {V}}_h^0 \xrightarrow []{\check {d}^0} \check {\mathbb {V}}_h^1 \xrightarrow []{\check {d}^1} ~ \dots ~ \xrightarrow []{\check {d}^{n-1}} \check {\mathbb {V}}_h^n ,\end {equation*}


$\check {d}^k$


$k$


$\mathbf {\qq }$


$\mathbf {\pp }$


$\mathbf {\qq }$


$\mathbf {\pp }$


$\mathbf {\pp }+\mathbf {1}$


$\Omega _1 = (0,1)^3$


$\Omega _2 = (0,1/2)^3$


$h^i$


$h^i$


$\pp h^i$


$1/2$


$\Omega _2$


$\mathbf {\pp }$


$L^2$


$\pp $


$\mathbf {\pp }$


$L^\infty $


$tol = 10^{-4}$


$n = 2, 3$


$\mathbf {\pp }$


$c=2,3,4$


$c=2$


$\mathbf {\pp }=(2,2)$


$\mathbf {\pp }=(3,3)$


$n=2$


$c=2$


$\mathbf {\pp }=(2,2)$


$\mathbf {\pp }=(3,3)$


$n=3$


$\mathbf {\pp }=(2,2,2)$


$\mathbf {\pp }=(3,3,3)$


$n=3$


$c=3$


$c=4$


$n = 2$


$\pp =2,3$


$16\times 16$


$\theta = 0.5$


$\pp =2$


$\mathbf {\pp }$


$\pp =3$


$5$


$\mathbf {\pp }$


$15$


$\mathbf {\pp }$


$\mathbf {\pp }$


$L^\infty $


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$n = 3$


$L^2$


$\Omega = (-1,1)^2 \backslash [0,1]\times [-1,0]$


\begin {align}\Delta u &= f ,&\text { on }\Omega ,\\ u&= g ,&\text { on }\partial \Omega .\end {align}


$u_h$


$C^0$


$\mathbf {\pp }$


\begin {equation}\label {eq:benchmark-2-solution} u(r,\theta ) := r^{{2}/{3}} \sin \left ({{2}\theta /{3}}\right )\end {equation}


$g$


$\partial \Omega $


$h_{\mathbf {e}_{\ell }}$


$\Omega ^{\mathbf {e}_{\ell }}$


$F$


$\Omega ^{\mathbf {e}_{\ell }}$


$\Gamma _{ij} := \partial \Omega _i \cap \partial \Omega _j$


$\mathbf {\pp }$


$\pbox {}{}$


\begin {equation}\epsilon _{\pbox {}{}}^2(u_h) := \sum _{{\Omega ^{\mathbf {e}_{\ell }}\in \mesh {}{}~:~\Omega ^{\mathbf {e}_{\ell }}\subset \pbox {}{}}}~\epsilon _{\Omega ^{\mathbf {e}_{\ell }}}^2(u_h) . \label {Xeqn46}\end {equation}


$\theta = 0.9$


$\mathbf {\pp }=(2,2), (3,3), (4,4)$


$c=2,3,4,\infty $


$\mathbf {\pp }$


$c=2,3,4,\infty $


$\mathbf {\pp }$


$c=2$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$c=2$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\Omega = (-1,1)^2$


$u(r,\theta ) = r^{\frac {2}{3}}$


$c=2,3,4,\infty $


$\mathbf {\pp }$


$\pp =2$


$\mathbf {\pp }$


$\pp =3$


$\pp =4$


$\mathbf {\pp }$


$\pp =2$


$\mathbf {\pp }$


$\pp =2$


$(\mathbf {\pp }+\mathbf {1})$


$\mathbf {\pp } = (4,4)$


$(\mathbf {\pp }+\mathbf {1})$


$4\times 4$


$(\mathbf {\pp }+\mathbf {1})$


$\ell >1$


$(\ell -1)$


$(\ell -1)$


$(\mathbf {\pp }+\mathbf {1})$


$c$


$L$


$c=5$


$\ell >1$


$(\ell -1)$


$(\mathbf {\pp }+\mathbf {1})$


$\Omega =(0,\pi )^2$


\begin {equation}H_0^1(\Omega ) \xrightarrow []{\mathrm {grad}} H_0(\mathrm {curl};\Omega ) \xrightarrow []{\mathrm {curl}} L_0^2(\Omega ) , \label {Xeqn47}\end {equation}


$H_0(\mathrm {curl};\Omega ) := \{ \mathbf {v} \in H(\mathrm {curl};\Omega ) : \mathbf {v}\times \mathbf {n} = 0\text { on }\partial \Omega \}$


\begin {equation}\begin {split} \mathbb {V}_{h,0}^0 &:= \mathbb {T}_{\DomainHierarchy ,(p^0,p^1)} \cap H_0^1(\Omega ) ,\\ \mathbb {V}_{h,0}^{1,*} &:= \mathbb {T}_{\DomainHierarchy ,(p^0-1,p^1)} \times \mathbb {T}_{\DomainHierarchy ,(p^0,p^1-1)} \cap H_0(\mathrm {curl};\Omega ) ,\\ \mathbb {V}_{h,0}^{2} &:= \mathbb {T}_{\DomainHierarchy ,(p^0-1,p^1-1)} \cap L_0^2(\Omega ) . \end {split} \label {Xeqn48}\end {equation}


$\mathbf {u}_h \in \mathbb {V}_{h,0}^{1,*}$


$\lambda _h \in \RR $


\begin {equation}\left ( \mathrm {curl} \mathbf {u}_h,\mathrm {curl} \mathbf {v}_h \right ) = \lambda _h \left ( \mathbf {u}_h,\mathbf {v}_h\right ) ,\quad \forall \mathbf {v}_h\in \mathbb {V}_{h,0}^{1,*} . \label {Xeqn49}\end {equation}


$\lambda = m_0^2 + m_1^2$


$m_0,m_1\in \mathbb {N}$


$\mathrm {dim}(\mathbb {V}_{h,0}^0)$


$\ell $


$\Omega =(0,2)^2$


$\mathbb {V}_{h}^1 := \mathbb {T}_{\DomainHierarchy ,(\pp ^0,\pp ^1-1)}\times \mathbb {T}_{\DomainHierarchy ,(p^0-1,p^1)}$


$\mathbb {V}_h^2 := \Tspace {\DomainHierarchy ,(p^0-1,p^1-1)}{}$


$\beta _h$


\begin {equation}\inf _{q_h\in \mathbb {V}_{h}^2} \sup _{\mathbf {v}_{h} \in \mathbb {V}_{h}^{1}}\frac {\int _{\Omega } q_h \mathrm {div}\mathbf {v}_h \mathrm {d}V}{\Vert q_h\Vert _{L^2(\Omega )}\Vert \mathbf {v}_h \Vert _{H(\mathrm {div};\Omega )}} =: \beta _h , \label {Xeqn50}\end {equation}


$\beta _h$


$\mathbf {\pp }=(4,4)$


$\beta _h$


$\ell =1$


$(\mathbf {\pp }+\mathbf {1})$


$\Omega \times [0,T]$


$\Omega = [0,1]^2$


$\mathbf {n}$


$L^2(\Omega )$


\begin {align}H^1(\Omega ) &:= \left \{~\sigma \in L^2(\Omega )~:~\mathrm {rot}(\sigma )\in \left [L^2(\Omega )\right ]^2~\right \} ,\\ H(\mathrm {div};\Omega ) &:= \left \{~\mathbf {v}\in L^2(\Omega )~:~\mathrm {div}(\mathbf {v})\in L^2(\Omega ) ~\right \} ,\end {align}


$\mathrm {rot}(\sigma ) := (\partial _y \sigma , -\partial _x \sigma )$


$\mathrm {div}(\mathbf {v}) := \partial _x v_x + \partial _y v_y$


\begin {equation*}H_0(\mathrm {div};\Omega ) := \left \{~\mathbf {v}\in H(\mathrm {div};\Omega )~:~\mathbf {n}\cdot \mathbf {v} = 0 \text { on }\partial \Omega ~\right \} .\end {equation*}


$\mathbf {u}\in H_{0}(\mathrm {div};\Omega ),\omega \in H^1(\Omega ),p\in L^2(\Omega )$


$\mathbf {v}\in H_{0}(\mathrm {div};\Omega ),\sigma \in H^1(\Omega ),q\in L^2(\Omega )$


\begin {align}(\partial _t \mathbf {u},\mathbf {v})_{\Omega } + (\omega \times \mathbf {u},\mathbf {v})_{\Omega } + \mathrm {Re}^{-1}(\mathrm {rot}\left (\omega \right ),\mathbf {v})_{\Omega } -(p,\mathrm {div}(\mathbf {v}))_{\Omega } &= 0 ,\\ (\mathrm {div}\left (u\right ),q)_{\Omega } &= 0 ,\\ (\omega ,\sigma )_{\Omega } - (\mathbf {u},\mathrm {rot}\left (\sigma \right ))_{\Omega } + (\mathbf {u}^{\parallel }\times \mathbf {n},\sigma )_{\partial \Omega } &=0 .\end {align}


$\mathbf {u}_0 = \mathbf {0}$


\begin {align}\mathbf {u}^{\parallel }(\mathbf {x}) &:= (1,0) ,&\quad & \mathbf {x}\in \Gamma _{\mathrm {top}}\subset \partial \Omega ,\\ \mathbf {u}^{\parallel }(\mathbf {x}) &:= \mathbf {0} ,&\quad & \mathbf {x}\in \partial \Omega \backslash \Gamma _{\mathrm {top}} .\end {align}


$\Gamma _{\mathrm {top}}\subset \partial \Omega $


$\Omega $


\begin {equation}\mathbb {V}_{h,\mathbf {0}}^1 := \{~\mathbf {v}\in \mathbb {V}_h^1~:~ \mathbf {v}\cdot \mathbf {n} = {0}~ \} . \label {Xeqn51}\end {equation}


$\Delta T$


$k$


$t^k := \Delta T\cdot k$


$[\cdot ]_h^k$


\begin {align}\left [\cdot \right ]_h^{k+\frac {1}{2}} := \frac {1}{2}\left (\left [\cdot \right ]_h^{k+1} + \left [\cdot \right ]_h^{k} \right ) .\end {align}


$\omega _h^0 = 0,\mathbf {u}_h^0 = \mathbf {0},p_h^0 = 0$


$k\geq 0$


$\omega _h^k\in \mathbb {V}_h^0,\mathbf {u}_h^k\in \mathbb {V}_{h,\mathbf {0}}^1,p_h^k\in \mathbb {V}_h^2$


$\omega _h^{k+1}\in \mathbb {V}_h^0,\mathbf {u}_h^{k+1}\in \mathbb {V}_{h,\mathbf {0}}^1,p_h^{k+1}\in \mathbb {V}_h^2$


\begin {align}\left (\frac {\mathbf {u}_h^{k+1}-\mathbf {u}_h^k}{\Delta T},\mathbf {v}_h\right )_{\Omega } + (\omega _h^{k+\frac {1}{2}}\times \mathbf {u}_h^{k+\frac {1}{2}},\mathbf {v}_h)_{\Omega } + \mathrm {Re}^{-1}(\mathrm {rot}(\omega _h^{k+\frac {1}{2}}),\mathbf {v}_h)_{\Omega } - (p_h^{k+\frac {1}{2}},\mathrm {div}(\mathbf {v}_h))_{\Omega } &= 0 ,& &\forall \mathbf {v}_h\in \mathbb {V}_{h,\mathbf {0}}^1 ,\\ (q_h,\mathrm {div}(\mathbf {u}_h^{k+\frac {1}{2}})_{\Omega } &=0 , & &\forall q_h\in \mathbb {V}_h^2 ,\\ (\omega _h^{k+\frac {1}{2}},\sigma _h)_{\Omega } - (\mathbf {u}_h^{k+\frac {1}{2}},\mathrm {rot}(\sigma _h))_{\Omega } + (\mathbf {u}^{\parallel }\times \mathbf {n},\sigma _h)_{\partial \Omega } &= 0 , & &\forall \sigma _h \in \mathbb {V}_h^0 .\end {align}


$k$


$\mathbf {\pp }+\mathbf {1}$


$\pbox {}{}$


\begin {equation}\label {eq:discrete-time-dependent-ns-estimator} \eta ^2_k(\pset {}{}) := \sum _{e\in \pset {}{}} \left \Vert \frac {\mathbf {u}_h^{k+1}-\mathbf {u}_h^k}{\Delta T} + \omega _h^{k+\frac {1}{2}}\times \mathbf {u}_h^{k+\frac {1}{2}} + \mathrm {Re}^{-1}\mathrm {curl}(\omega _h^{k+\frac {1}{2}}) + \mathrm {grad}(p_h^{k+\frac {1}{2}}) \right \Vert _{L^2(\Omega ^e)}^2 .\end {equation}


$\mathrm {Re}=10^3$


$\mathbf {p}=(2,2)$


$\theta _r = 0.75,\theta _c = 0.02$


$3\times 3$


$\mathbf {\pp }+\mathbf {1}$


$9\times 9$


$\epsilon =10^{-3}$


$10$


$2$


$t=0.0$


$t=3.0$


$t=80.0$


$t=80.0$


$t=0.0, t=3.0$


$t=80.0$


$n$


$q_1\times \ldots \times q_n$


$\mathbf {q}$


$\mathbf {q}$


$\mathbf {q}$


$\mathbf {p}$


$\mathbf {q}=\mathbf {p}$


$\mathbf {p}+1$


$\mathbf {q}=\mathbf {p}+\mathbf {1}$


$\mathbf {p}$


$\mathbf {p}+1$


$\mathbf {\qq }$


$1\times \dots \times 1$


$q_1 \times \dots \times q_n$


$1\times \dots \times 1$


$\mathbf {\qq }$


$\mathbf {\qq }$


$k\leq \ell $


$k < \ell $


$\Tspline {j}{}$


$\Bbasis {\ell }{\nact ,\ell }$


$k$


$\Bspline {}{}\in \Bbasis {\ell }{\nact ,\ell }$


$\pp ^i+1$


$\Omega _\ell $


$\ell $


$\mathbf {\qq }$


$k<\ell $


$\ell $


$\mathbf {\qq }$


$\mathbf {\qq }$


$\mathbf {\qq }$


$\mathbf {\qq }$


$\qq ^i\geq \pp ^i$


$\mathbf {\qq }$


$c=2$


$\ell $


$\mathbf {\qq }$


$\pbox {\mathbf {r},\ell }{}$


$\ell -2$


$(\ell -2)$


$(\ell -2)$


$(\ell -2)$


$\ell -1$


$\Bbasis {\ell -1}{\nact ,\ell -1}$


$\Bbasis {\ell -1}{\nact ,\ell -1}$


$\pp ^i+1$


$i$


$\Omega _{\ell -1}$


$\Omega _{\ell -1}$


$\pp ^i$


$\Omega _{\ell -1}$


$(\ell -1)$


$\mathbf {\qq }$


$(\ell -1)$


$\mathbf {\qq }$


$(\ell -2)$


$\ell $


$\mathbf {\qq }$


$\mathbf {\qq }$


$2$


$\qq ^i\geq \pp ^i$


$\mathbf {\qq }$


$\mathbf {\qq }$


$\pbox {\mathbf {r},\ell }{}$


$\ell >1$


$m<\ell $


$\Omega ^e$


$\Bspline {\mathbf {j},m}{}\in \Bbasis {m}{}$


$\pbox {\mathbf {r},\ell }{}$


$\Omega ^e$


$\mathbf {\qq }$


$\pbox {\mathbf {s},k}{}$


$k$


$\Omega _k$


$\prod _{i=1}^d 2 \pp $


$k$


$\prod _{i=1}^d \pp $


$\pbox {\mathbf {s},k}{}$


$k$


$\Bspline {\mathbf {i},k}{}\in \Bbasis {k}{}$


$\pbox {\mathbf {s},k}{}$


$\supp {\Bspline {\mathbf {i},k}{}}\subset \Omega _k$


$\mathbf {\qq }$


$k$


$k$


$\pbox {\mathbf {r},\ell }{}$


$\ell -1$


$\ell $


$\pbox {\mathbf {r},\ell }{}$


$\mathbf {\qq }$


$k>\ell $


$\mathbf {\qq }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\Tbasis {\DomainHierarchy }{}$


$\mathbf {\pp }$


$\mathbf {\pp }$


$\pbox {\mathbf {r},\ell }{}$


\begin {equation*}\mathcal {D}:= \{~\Tspline {}{}\in \Tbasis {\DomainHierarchy }{}~:~\pbox {\mathbf {r},\ell }{}\cap \supp {\Tspline {}{}}\neq \emptyset ~\}\end {equation*}


$\pbox {}{}$


$(\mathbf {e}_1,\mathbf {e}_2,\mathbf {e}_3,\dots )$


$\mathbf {e}_i\in \pset {}{}$


\begin {equation*}\mathcal {D}_i:= \{~\Tspline {}{}\in \mathcal {D}~:~\Omega ^{\mathbf {e}_i}\in \supp {\Tspline {}{}},~\Omega ^{\mathbf {e}_j}\notin \supp {\Tspline {}{}},~\forall j=1,\dots ,i-1~\} .\end {equation*}


$\mathcal {D} = \cup _{\mathbf {e}_i\in \pset {}{}} \mathcal {D}_i$


$\mathcal {D}_i$


$\Omega ^{\mathbf {e}_i}$


$\mathcal {D}$


$\pbox {}{}$


$\mathbf {\pp }$


$\pbox {\mathbf {r},\ell }{}$


$\Omega _\ell $


$\mathbf {\pp }$


$\ell $


$\Omega _\ell $


$\mathbf {e}_1$


$\mathbf {\pp }$


$\ell >1$


$\ell $


$\Omega ^{\kappa } \subset \Omega _\ell $


$\kappa = \mathbf {e}_\ell \in \mesh {\DomainHierarchy }{}$


$\mathbf {\pp }$


$\kappa = \pset {\mathbf {r},\ell }{}\in \meshPbox {\DomainHierarchy }{\mathbf {\pp }}$


$\Omega ^{\kappa } = \times _{i=1}^n \left (\widehat {\xi }_{k^i,\ell }^i,\widehat {\xi }_{k^i+t^i,\ell }^i \right )$


$k^i,t^i$


$(\ell -1)$


$\Omega ^{\star \kappa }$


$= \times _{i=1}^n\left (\widehat {\xi }_{K^{i},\ell -1}^i,\widehat {\xi }_{K^{i}+T^i,\ell -1}^i \right )$


$K^{i},T^{i}$


$i$


$\xi _{k^i,\ell }^i = \xi _{K^{i},\ell -1}^i$


$\xi _{k^{i}+t^i,\ell }^i = \xi _{K^{i}+T^i,\ell -1}^i$


$\kappa $


$\star \kappa $


$(\ell -1)$


$\mathbf {v}$


$\Omega ^{\kappa }$


$\Omega ^{\kappa } \subset \Omega ^{\star \kappa } \subseteq \Omega _\ell $


$\partial \Omega ^\kappa \cap \partial \Omega _\ell \backslash \partial \Omega $


$\mathbf {v}$


$\mathbf {\pp }$


$\pbox {\mathbf {r},\ell }{}$


$\partial \pbox {\mathbf {r},\ell }{} \cap \left ( \partial \Omega _\ell \backslash \partial \Omega \right )$


$\partial \pbox {\mathbf {r},\ell }{} \cap \left ( \partial \Omega _\ell \backslash \partial \Omega \right )$


$\times $


$\mathbf {e}_\ell $


$\widehat {E}(\mathbf {e}_\ell )$


$\mathbf {e}_\ell $


$\Omega ^{\kappa }$


$\mathbf {v}$


$\Omega ^\kappa $


$\Omega ^{\star \kappa }$


$\mathfrak {n} := \{\mathbf {n}_1, \mathbf {n}_2, \dots \}$


$H(\kappa , \mathfrak {n})$


\begin {equation}H(\kappa , \mathfrak {n}) := \left \{ P_{\mathbf {v}, \mathbf {n}} \cap \left ( \partial \Omega ^\kappa \backslash \partial \Omega \right ) : \mathbf {n}\in \mathfrak {n} \right \} , \label {Xeqn55}\end {equation}


$P_{\mathbf {v}, \mathbf {n}}$


$\mathbf {v}$


\begin {equation}\label {eq:hyperplane-definition} \begin {split} P_i &:= \mathbb {R}^{i-1}\times \left \{ v_{i} \right \}\times \mathbb {R}^{n-i} ,\\ P_{\mathbf {v},\mathbf {n}} &:= \bigcap \limits _{i:n_i\neq 0} P_i . \end {split}\end {equation}


$\ell $


$\kappa $


$H(\kappa ,\mathfrak {n})=\partial \Omega ^{\kappa } \cap \left ( \partial \Omega _\ell \backslash \partial \Omega \right )$


$\mathfrak {n}$


$\mathfrak {n}^{\mathrm {b}}$


$\mathfrak {n}^{\mathrm {b}}_\kappa $


$\kappa $


$\mathbf {\pp }$


\begin {equation}\text {a)} \mathfrak {n}^{\mathrm {b}}_{\pset {\mathbf {r}_1,\ell }{}}=\left \{ \begin {bmatrix} 1\\ 0 \end {bmatrix} \right \} ,\quad \text {b)} \mathfrak {n}^{\mathrm {b}}_{\pset {\mathbf {r}_2,\ell }{}}=\left \{ \begin {bmatrix} 1\\ 1 \end {bmatrix} \right \} ,\quad \text {c)} \mathfrak {n}^{\mathrm {b}}_{\pset {\mathbf {r}_3,\ell }{}}=\left \{ \begin {bmatrix} 1\\ 0 \end {bmatrix}, \begin {bmatrix} 0\\ 1 \end {bmatrix} \right \} . \label {Xeqn57}\end {equation}


${\mathbf {e}_\ell } \in \mesh {\ell }{}$


$(\ell -1)$


$\ell $


$\Omega ^e$


$H(\mathbf {e}_\ell ,\mathfrak {n}^{\mathrm {b}})$


$\Bbasis {\ell }{\act ,k}$


$\Bspline {\mathbf {j},\ell }{}\in \Bbasis {\ell }{\act ,k}$


$\supp {\Bspline {\mathbf {j},\ell }{}}\subseteq \Omega _k$


$\mathbf {x}\in \partial \Omega _k$


$\mathbf {n} = \hat {\mathbf {i}}$


$i$


\begin {equation}\label {eq:boundary-condition} \Bspline {\mathbf {j},\ell }{}(\mathbf {x}) = 0 , \nabla _{\mathbf {n}} \Bspline {\mathbf {j},\ell }{}(\mathbf {x}) = 0 , \dots , \nabla _{\mathbf {n}}^{\pp ^i - \kk ^i} \Bspline {\mathbf {j},\ell }{}(\mathbf {x}) = 0 ,\end {equation}


$\nabla _{\mathbf {n}}$


$\mathbf {n}$


$\mathbf {e}_\ell $


$\mathbf {n}=\hat {\mathbf {i}}$


$\mathbf {n}=\hat {\mathbf {i}}$


$\mathbf {x}$


$k$


$k<n-1$


$H(\mathbf {e}_\ell ,\mathfrak {n})$


$\Omega ^{\mathbf {e}_\ell }$


$\mathbf {v}$


$\Bspline {}{}$


$\Bspline {}{}$


$H(\mathbf {e}_\ell ,\mathfrak {n})$


$\mathbf {n}\in \mathfrak {n}$


$i$


$n^i\neq 0$


\begin {align}\label {eq:vanishing-condition} \nabla _{\hat {\mathbf {i}}}^0 \Bspline {}{}(\mathbf {x}) = 0 ,\dots , \nabla _{\hat {\mathbf {i}}}^{\pp ^i-\kk ^i} \Bspline {}{}(\mathbf {x}) = 0 ,\quad \forall \mathbf {x}\in P_{\mathbf {v},\mathbf {n}} .\end {align}


$\Bspline {}{}$


$\Omega ^e = (0,1)\times (0,1)$


$\pp = (3,2)$


$\kk = (1,2)$


$\mathbf {e}_\ell \in \mesh {\ell }{}$


$\mathbf {\pp }$


$\mathbf {\kk }$


$H(\mathbf {e}_\ell , \mathfrak {n})$


$(\ell -1)$


$H\left (\mathbf {e}_\ell ,\mathfrak {n}\right )$


$\ell $


$H\left (\mathbf {e}_\ell ,\mathfrak {n}\right )$


$\Omega ^e := (\xi _{k,\ell },\xi _{k+\kk ,\ell }) = (\xi _{K,\ell -1},\frac {1}{2}\xi _{K+\kk ,\ell -1})$


$k, K$


$H(e,[+1])=\xi _{k,\ell }$


$\kk $


\begin {align}\left \{\Bspline {k,\ell }{},\dots ,\Bspline {k+\kk -1,\ell }{}\right \} &\subset \Bbasis {\ell }{} ,\\ \left \{\Bspline {K,\ell -1}{},\dots ,\Bspline {K+\kk -1,\ell -1}{}\right \} &\subset \Bbasis {\ell -1}{} ,\\ \left \{ \left (x-\xi _{k,\ell }\right )^{\pp -\kk +1},\dots ,\left (x-\xi _{k,\ell }\right )^\pp \right \}&\subset \mathcal {P}_{\pp }(\Omega ^e) .\end {align}


$\Bbasis {\ell }{\act ,\ell }$


$\ell $


$\mathbf {\pp }$


$\pset {\mathbf {r},\ell }{}$


$\Bbasis {\ell }{\act ,\ell }$


$\pset {\mathbf {r},\ell }{}$


$\ell $


$\pset {\mathbf {r},\ell }{}$


$H(\pset {\mathbf {r},\ell }{},\mathfrak {n}^{\mathrm {b}})$


$\Bbasis {\ell }{\act ,\ell }$


$H(\pset {\mathbf {r},\ell }{},\mathfrak {n}^{\mathrm {b}})$


$\ell $


$\Bspline {}{}$


$\pbox {\mathbf {r},\ell }{}$


$H(\pset {\mathbf {r},\ell }{},\mathfrak {n}^{\mathrm {b}})$


$\mathbf {n}\in \mathfrak {n}^{\mathrm {b}}$


$\ell $


$\pp ^i+1$


$\ell $


$\pset {\mathbf {r},\ell }{}$


$\pset {\mathbf {k},\ell -1}{} = \star \pset {\mathbf {r},\ell }{}$


$\Bspline {}{}$


$\pset {\tilde {\mathbf {k}},\ell -1}{}$


$\tilde {k}^i = k^i, k^i -1$


$i$


$\pset {\tilde {\mathbf {k}},\ell -1}{}$


$\pset {\tilde {\mathbf {k}},\ell -1}{}$


$\pbox {\tilde {\mathbf {k}},\ell -1}{}\subset \Omega _\ell $


$\pset {\tilde {\mathbf {k}},\ell -1}{}$


$\pbox {\tilde {\mathbf {k}},\ell -1}{}\cap \Omega ^\ell =\emptyset $


$\emptyset \neq \partial \pbox {\tilde {\mathbf {k}},\ell -1}{} \cap \partial \pbox {\mathbf {r},\ell }{} \subset H(\pset {\mathbf {r},\ell }{},\mathfrak {n}^{\mathrm {b}})$


$\Bspline {}{}$


$\partial \pbox {\tilde {\mathbf {k}},\ell -1}{} \cap \partial \pbox {\mathbf {r},\ell }{}$


$\Bspline {}{}$


$\pset {\tilde {\mathbf {k}},\ell -1}{}$


$\supp {\Bspline {}{}}\subset \Omega _\ell $


$\mathbf {\pp }$


$\pset {\mathbf {r},\ell }{}$


${\mathbf {e}_{\ell }}\in \pset {\mathbf {r},\ell }{}$


\begin {equation}\partial \Omega ^{\mathbf {e}_{\ell }} \cap P_{\mathbf {v},\mathbf {n}} \neq \emptyset ,\quad \forall P_{\mathbf {v},\mathbf {n}} \in H\left (\pset {\mathbf {r},\ell }{},\mathfrak {n}^{\mathrm {b}}\right ) . \label {Xeqn59}\end {equation}


$\tilde {\mathbf {e}}_\ell \in \pset {\mathbf {r},\ell }{}$


$\widehat {E}({\mathbf {e}_\ell })\subset \mesh {\DomainHierarchy }{}$


${\mathbf {e}_\ell }\in \pset {\mathbf {r},\ell }{}$


$l^1$


$\tilde {\mathbf {e}}_\ell $


$\widehat {E}({\mathbf {e}_\ell })$


$\mathbf {e}_\ell $


$\mathbf {\pp }$


$\pset {\mathbf {r},\ell }{}$


${\mathbf {e}_\ell }, {\mathbf {e}_\ell +\mathbf {t}} \in \pset {\mathbf {r},\ell }{}$


\begin {equation*}\partial \Omega ^{{\mathbf {e}_{\ell }}} \cap P_{\mathbf {v},\mathbf {n}} \neq \emptyset \neq \partial \Omega ^{{\mathbf {e}_{\ell }}+\mathbf {t}} \cap P_{\mathbf {v},\mathbf {n}} ,\quad \forall P_{\mathbf {v},\mathbf {n}} \in H\left ({\pset {\mathbf {r},\ell }{}}{},{\mathfrak {n}^{\mathrm {b}}}\right ) ,\end {equation*}


$\mathbf {t} \perp \mathbf {n}$


$\mathbf {n} \in \mathfrak {n}^{\mathrm {b}}$


$\pset {\mathbf {r},\ell }{}$


$\mathbf {\pp }$


${\mathbf {e}_{\ell }}\in \pset {\mathbf {r},\ell }{}$


$\mathbf {t}_1 = (t_1^1,\dots ,t_1^n)$


${{\mathbf {e}_{\ell }}+\mathbf {t}_1} \in \widehat {E}({\mathbf {e}_{\ell }})$


$\Omega ^{{\mathbf {e}_{\ell }}+\mathbf {t}_1}$


\begin {equation}\label {eq:prop-lin-ind-propagation-THB-splines} \begin {split} \bigg \{ \Tspline {j}{} : &\supp {\Tspline {j}{}} \cap \Omega ^{{\mathbf {e}_{\ell }}+\mathbf {t}_1} \neq \emptyset , \text { and, } \supp {\Tspline {j}{}} \cap \Omega ^{{\mathbf {e}_{\ell }}+\mathbf {t}} = \emptyset , \text { where } {{\mathbf {e}_{\ell }}+\mathbf {t}} \in \widehat {E}_{\mathbf {e}_{\ell }}, \mathbf {t}_1 \neq \mathbf {t} \land |t_1^i| \geq |t^i| \forall i \bigg \} . \end {split}\end {equation}


$\mathbf {e}_{\ell }$


$\widehat {E}(\mathbf {e}_\ell )$


${\mathbf {e}_\ell + \mathbf {t}_1}\in \widehat {E}({\mathbf {e}_\ell })$


$\Omega ^{\mathbf {e}_\ell +\mathbf {t}}\subset \Omega ^{\star (\mathbf {e}_\ell +\mathbf {t}_1)}$


$\mathbf {t}_1\neq \mathbf {t}$


$|t^i|\leq |t_1^i|$


$i$


$\Bspline {}{}\in \Bbasis {\ell -1}{\nact ,\ell }$


$\Omega ^{\mathbf {e}_\ell +\mathbf {t}_1}\subset \supp {\trunc {\ell }{\Bspline {}{}}}$


$\Omega ^{\mathbf {e}_\ell +\mathbf {t}}\subset \supp {\trunc {\ell }{\Bspline {}{}}}$


$\mathbf {e}_{\ell }$


$\widehat {E}({\mathbf {e}_\ell })$


${\mathbf {e}_\ell + \mathbf {t}_1}\in \widehat {E}({\mathbf {e}_\ell })$


$t^i_1$


$\ell $


$\Omega ^{\mathbf {e}_\ell + \mathbf {t}}$


$\mathbf {t}_1\neq \mathbf {t}$


$|t^i|\leq |t_1^i|$


$i$


$2$


$\ell $


$(\ell -1)$


$\mathbf {t}$


$\mathbf {t}_1$


$\Omega ^{\mathbf {e}_\ell +\mathbf {t}}\subset \Omega ^{\star ( \mathbf {e}_\ell + \mathbf {t}_1)}$


$(\ell -1)$


$\Omega ^{\mathbf {e}_\ell + \mathbf {t}}$


${\mathbf {e}_{\ell }}+\mathbf {t}_1$


$\star ({\mathbf {e}_{\ell }}+\mathbf {t}_1)$


$H\left (\mathbf {e}_\ell + \mathbf {t}_1,\mathfrak {n}^{\mathrm {t}}_{\mathbf {t}}\right )$


$\hat {\mathbf {i}}$


$i$


$\mathbf {e}_\ell + \mathbf {t}_1$


$\mathbf {e}_\ell + \mathbf {t}\in \widehat {E}({\mathbf {e}_\ell })$


$\mathbf {t}\neq \mathbf {t}_1$


$|t^i| \leq |t^i_1|$


$i$


$H\left (\mathbf {e}_\ell + \mathbf {t}_1,\mathfrak {n}^{\mathrm {t}}_{\mathbf {t}_1}\right )$


$t_1^i$


$\mathbf {t}_1$


$t_1^i$


$\mathbf {t}$


${{\mathbf {e}_{\ell }}+\mathbf {t}} \in \widehat {E}({\mathbf {e}_{\ell }})$


$\mathbf {t}_1 \neq \mathbf {t}$


$|t^i|\leq |t_1^i|$


$i$


$k$


$k$


$\mathbf {e}_\ell + \mathbf {t}$


\begin {equation}\label {eq:proof-lin-ind-start-bsplines} \begin {aligned} \Bbasis {k}{\#} &:= \big \{\Bspline {k}{}\in \Bbasis {k}{}:\Omega ^{\mathbf {e}_\ell +\mathbf {t}_1} \subset \supp {{\Bspline {k}{}}}, \Omega ^{\mathbf {e}_\ell +\mathbf {t}} {\not \subset } \supp {\Bspline {k}{}}, \forall \mathbf {e}_\ell + \mathbf {t}\in \widehat {E}({\mathbf {e}_\ell }), \mathbf {t}\neq \mathbf {t}_1 , |t^i|\leq |t_1^i| \forall i \big \} , \end {aligned}\end {equation}


\begin {equation}\Bbasis {k}{\mathrm {t}} := \left \{\Bspline {k}{\#}\in \Bbasis {k}{}:\Omega ^{\mathbf {e}_\ell +\mathbf {t}_1} \subset \supp {\trunc {\ell }{\Bspline {k}{}}} \right \} .\end {equation}


$\trunc {\ell }{\Bspline {}{}}$


$\Bbasis {\ell }{\nact ,\ell }$


$\Bbasis {\ell -1}{\mathrm {t}}$


$H(\mathbf {e}_{\ell }+\mathbf {t}_1,\mathfrak {n}^{\mathrm {b}})$


$(\ell -1)$


$H(\mathbf {e}_{\ell }+\mathbf {t}_1,\mathfrak {n}^{\mathrm {b}}\cup \mathfrak {n}^{\mathrm {t}}_{\mathbf {t}_1})$


$(\ell -1)$


$\ell $


$H(\mathbf {e}_\ell +\mathbf {t}_1,\mathfrak {n}^{\mathrm {b}}\cup \mathfrak {n}^{\mathrm {t}}_{\mathbf {t}})$


$\mathbf {e}_\ell +\mathbf {t}_1$


$\ell $


$H(\mathbf {e}_\ell +\mathbf {t}_1,\mathfrak {n}^{\mathrm {b}}\cup \mathfrak {n}^{\mathrm {t}}_{\mathbf {t}_1})$


$H(\pset {\mathbf {r},\ell }{},\mathfrak {n}^{\mathrm {b}})$


$\Bbasis {\ell }{\act ,\ell }$


$\mathbf {e}_\ell +\mathbf {t}_1$


\begin {equation}\label {eq:proof-hb-spline-definition} \Bbasis {\ell -1}{\mathrm {t}} ~\cup ~\left ( \Bbasis {\ell }{\#}\cap \Bbasis {\ell }{\act ,\ell }\right )\end {equation}


$c=2$


\begin {equation}\trunc {\ell }{\Bspline {\mathbf {i},\ell -1}{}} = \trunc {k}{\sum _{\mathbf {j}}\Coeff {\mathbf {i},\mathbf {j}}{}\Bspline {\mathbf {j},\ell }{}} = \Bspline {\mathbf {i},\ell -1}{} - \sum _{{\mathbf {j}:\Bspline {\mathbf {j},\ell }{}\in \Bbasis {\ell }{\#}\cap \Bspline {\ell }{\act ,\ell } }} \Coeff {\mathbf {i},\mathbf {j}}{} \Bspline {\mathbf {j},\ell }{} ,\forall \Bspline {\mathbf {i},\ell -1}{}\in \Bbasis {\ell -1}{\mathrm {t}} . \label {Xeqn63}\end {equation}


$(\ell -1)$


$\Bbasis {\ell -1}{\#}$


$\Bbasis {\ell }{\#}$


$\mathbf {e}_\ell +\mathbf {t}_1$


$\trunc {\ell }{\cdot }$


${\mathbf {e}_{\ell }}+\mathbf {t}_1$


$\mathbf {\pp }$


$\Tbasis {\DomainHierarchy }{}$


$\mathbf {\pp }$


$\pset {\mathbf {r},\ell }{}$
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1.  Introduction

Isogeometric Analysis (IGA) was introduced to bridge the gap between Computer-Aided Design (CAD) and Finite Element Analysis 
(FEA) [1]. By using the same smooth splines for both geometric description and solution approximation, IGA offers superior approxi-
mation power per degree of freedom [2,3]. However, standard tensor-product B-splines are computationally expensive in two or more 
dimensions. This limitation can be overcome with locally refinable splines, such as T-splines [4,5], LR-splines [6–9], S-splines [10], 
and Hierarchical B-splines (HB-splines) [11–13]. Focusing on hierarchical B-splines and their truncated counterpart (THB-splines) 
[14], this paper proposes a new approach to adaptive refinement and demonstrates its use in adaptive approximation.

Adaptive methods using splines in IGA have been an active topic of research. They have been investigated experimentally in 
[2,13,15–18] and in the case of (T)HB-splines, were mathematically investigated in [19–21]. Here, conditions that lead to a convergent 
adaptive method using THB-splines are presented. One of these conditions is that the mesh should be admissible, which, roughly 
speaking, implies that the mesh is graded, leading to the number of basis functions being uniformly bounded on each mesh element 
and influencing the sparsity of the system.

In the case of general adaptive methods, they consist of a solve routine, an estimate, mark and refine routine [19,22] that, as their 
name suggests, solve the discrete problem, estimate the local error, mark elements for refinement, and refine the mesh. However, 
depending on the problem considered, additional routines may be required.

For example, for time-dependent problems, the old solution at the previous time step is required to solve the subsequent time step. 
This poses a challenge as this old solution might be defined over a different mesh, requiring an additional project step. A standard 
project method could consist of a global 𝐿2 or 𝐻1 projection, but in the worst case, these methods scale cubically with the number 
of mesh elements or degrees of freedom. Compare this to local projectors, which instead scale linearly [23–26] and are thus more 
efficient.

Another example where an additional routine is required is in adaptive structure-preserving discretizations – cohomology-preserving 
refinements and coarsenings. Structure-preserving discretizations aim to preserve the underlying structure of the continuous problem 
at the discrete level, such as conservation laws of physical quantities. Formulation of such methods can be done within the framework 
of finite element exterior calculus (FEEC) [27], where the focus is on discretizing the Hilbert complex associated with the PDE of 
interest. This approach has been successfully utilized within IGA to perform structure-preserving discretizations for various problems 
using tensor-product B-splines. This means discretizing the de Rham complex for the incompressible Navier–Stokes equations [28] 
and Maxwell’s equations [29]. However, the extension of these methods to locally-refinable splines is not straightforward, as the 
discrete spaces must form a valid de Rham complex, which is not guaranteed for general meshes [30,31]. The purpose of the additional 
cohomology-preserving refinements and coarsenings routine is to ensure that the adaptively-refined spaces satisfy the necessary conditions 
for structure-preserving discretizations of the de Rham complex and, thus, lead to a stable discretization of the associated PDEs. While 
such routines have been previously proposed for two-dimensional problems [32–34], doing so in arbitrary dimensions remains an 
open problem.

1.1.  Motivation and contributions of this paper

In this paper, we propose a new, simple-to-implement refinement strategy for THB-splines that can be useful in the two example 
applications mentioned above. The strategy is based on:

• interpreting the element mesh as a collection of mesh of macro-elements called 𝐪-boxes, which are blocks of 𝐪 = (𝑞1,… , 𝑞𝑛) ∈ ℕ𝑛

mesh elements;
• limiting refinement and coarsening coarsening one or more 𝐪-boxes in each adaptive step.
A specific version of this approach was proposed in [35] for studying the dimension of hierarchical B-spline spaces in two dimensions. 
Clearly, this point of view is a generalization of the standard element-wise refinement, which corresponds to the case 𝐪 = 𝟏. However, 
other application-specific choices of 𝐪 are possible, and we will illustrate the advantages of this generalization in the two example 
applications discussed above.

Application 1: Local projector for THB-splines. In [23], an extension of the Bézier projector proposed in [25] to the context of 
maximally-smooth THB-splines of admissibility class 2 was presented. The Bézier projector has the advantage of an intuitive and 
straightforward construction, and an efficient implementation that only utilizes extraction operators [36,37]. A key ingredient of 
the projector is that local projections are needed over mesh elements and requires the underlying spline basis to be locally linearly 
independent. THB-splines do not possess this property, and [23] circumvented this issue by performing the local projections by 
partitioning the mesh into a set of non-overloaded macro-elements. However, the existence of this partition is not guaranteed for 
general meshes, and mesh modifications that would ensure its existence are not obvious. The constructive approach presented in [23] 
was thus limited to the case of two dimensions, and only for maximally smooth THB-splines of admissibility class 2.

In this paper we show that the proposed 𝐪-box refinement strategy can overcome the above challenges: the choice of 𝐪 = 𝐩, where 
𝐩 is the spline degree, enables a constructive formulation of the Bézier projector for THB-splines of any admissibility class in arbitrary 
dimensions, while preserving its optimal approximation properties. We test this formulation in several numerical examples, including 
adaptive approximation.

Application 2: Structure-preserving discretizations. Structure-preserving adaptive discretizations using THB-splines have been recently 
proposed in [34] for two-dimensional problems. Their approach is based on ensuring that all adaptive refinement steps satisfy the 
sufficient conditions presented in [31] for guaranteeing the construction of a valid THB-spline de Rham complex. We will show 
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that the proposed 𝐪-box refinement strategy can be used to extend this approach to arbitrary dimensions, and without the need for 
iterative mesh modifications – we prove that any refinement or coarsening of 𝐪-boxes with 𝐪 = 𝐩 + 𝟏 leads automatic satisfaction of 
the sufficient conditions presented in [31]. We demonstrate the approach with a simple adaptive structure-preserving time-dependent 
incompressible Navier-Stokes method.

1.2.  Outline of the paper

This paper is organised as follows. In Section 2, we introduce the necessary background on THB-splines. In Section 3, we introduce 
the concept of 𝐪-boxes and the associated refinement strategy. In Section 4, we present the Bézier projector for THB-splines based on 
𝐩-box meshes, and in Section 5, we present the structure-preserving discretizations based on (𝐩 + 𝟏)-box meshes. Finally, in Section 6, 
we present numerical experiments to demonstrate the performance of the proposed approaches.

2.  THB-Splines

The following section will introduce Truncated Hierarchical B-splines via (tensor) B-splines and the Hierarchical B-splines.

2.1.  Univariate B-splines

Consider the unit domain Ω = (0, 1) and a partition of Ω into 𝑀 elements by the breakpoints

𝝃̂ ∶=
{

0 < 𝜉1 < ⋯ < 𝜉𝑀−1 < 1
}

. (1)

We call ̂𝝃 a breakpoint sequence and define the mesh elements Ω𝑒 ∶=
(

𝜉𝑒, 𝜉𝑒+1
) such that  ∶= {0, 1,… ,𝑀 − 1} is the set of all mesh 

elements. For a given set of breakpoints ̂𝝃, polynomial degree 𝑝 ∈ ℕ0 and integer 1 ≤ 𝑚 ≤ 𝑝 + 1, consider the finite increasing sequence 
of real numbers over Ω:

𝝃𝑝,𝑚 ∶= {0,… , 0
⏟⏟⏟
𝑝+1 times

< 𝜉1 = ⋯ = 𝜉1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑚 times
< 𝜉2 = ⋯ = 𝜉2
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑚 times
< ⋯ < 1,… , 1

⏟⏟⏟
𝑝+1 times

}.

This sequence is called a knot sequence, where each number is referred to as a knot. The knot sequence’s first and final knots have 
a multiplicity (the number of occurrences of a given knot) of 𝑝 + 1, and every interior knot has a multiplicity of 𝑚 ≤ 𝑝 + 1. For our 
purposes, we only consider knot sequences generated from breakpoint sequences by increasing the multiplicity of the breakpoints. 
One can also generate a breakpoint sequence from a knot sequence by reducing the multiplicity of the knots to 1. For a knot sequence 
𝝃𝑝,𝑚, we can define B-splines 𝐵𝑗,𝑝,𝝃𝑝,𝑚

, 𝑗 = 1,… , 𝑁 ∶= |𝝃𝑝,𝑚| − 𝑝 − 1, using the recursion,

𝐵𝑗,𝑝,𝝃𝑝,𝑚
(𝑥) ∶=

𝑥 − 𝜉𝑗
𝜉𝑗+𝑝 − 𝜉𝑗

𝐵𝑗,𝑝−1,𝝃𝑝,𝑚
(𝑥) +

𝜉𝑗+𝑝+1 − 𝑥
𝜉𝑗+𝑝+1 − 𝜉𝑗+1

𝐵𝑗+1,𝑝−1,𝝃𝑝,𝑚
(𝑥), 𝑗 = 1,… , 𝑁. (2)

The fractions are assumed to be zero whenever the denominator is zero. For the base case 𝑝 = 0, the B-splines are defined by the unit 
functions:

𝐵𝑗,0,𝝃𝑝,𝑚
(𝑥) ∶=

{

1 if 𝑥 ∈
[

𝜉𝑗 , 𝜉𝑗+1
) and 𝑗 ≠ 𝑁 or 𝑥 ∈

[

𝜉𝑗 , 𝜉𝑗+1
] and 𝑗 = 𝑁,

0 otherwise,
(3)

The functions 𝐵𝑗,𝑝,𝝃𝑝,𝑚
 are non-negative, form a partition of unity on clos (Ω) and are 𝐶𝑝−𝑚 smooth. Lastly, most noteworthy for 

this paper, the collection of B-splines with support on any given mesh element Ω𝑒 is linearly independent and can reproduce any 
polynomial of degree 𝑝 on Ω𝑒. The set containing all B-splines is denoted as 𝑝,𝝃𝑝,𝑚

, and its span is called the B-spline space and 
denoted as 𝔹𝑝,𝝃𝑝,𝑚

∶= span𝑝,𝝃𝑝,𝑚
.

2.2.  Tensor-product B-splines

Consider the 𝑛-dimensional hypercube Ω = (0, 1)𝑛 in ℝ𝑛 and partition Ω via ̂Ξ ∶=
{

𝝃̂
1
,… ,… , 𝝃̂

𝑛}
. Here, each ̂𝝃𝑖 partitions Ω along 

the 𝑖-th dimension. Let the vector 𝐩 ∶= (𝑝1,… , 𝑝𝑛) ∈ ℕ𝑛 denote the polynomial degrees per dimension, the vector 𝐦 ∶= (𝑚1,… , 𝑚𝑛) ∈
ℕ𝑛 denote the interior knot multiplicities per dimension and let Ξ𝐩,𝐦 = (𝝃1

𝑝1 ,𝑚1 ,… , 𝝃𝑛𝑝𝑛 ,𝑚𝑛 ) collect the knot sequences in each dimension, 

where each 𝝃𝑖𝑝𝑖 ,𝑚𝑖  is generated from the breakpoint sequence 𝝃̂𝑖. The tensor-product B-splines, 𝐵𝐣,𝐩,Ξ𝐩,𝐦
∶=

𝑛
⨂

𝑖=1
𝐵
𝑗𝑖 ,𝑝𝑖 ,𝝃𝑖

𝑝𝑖 ,𝑚𝑖
, are then 

defined as tensor-products of univariate B-splines over the knot sequences 𝝃𝑖𝑝𝑖 ,𝑚𝑖 , 𝑖 = 1,… , 𝑛. To simplify notation, the spline degree 𝑝
and interior knot multiplicity 𝑚 are assumed to be fixed and are henceforth omitted. Hence, tensor-product B-splines will be denoted 
as 𝐵𝐣,Ξ, the set of all tensor-product B-splines as Ξ, and the spline space spanned by them as 𝔹Ξ. The mesh elements are denoted as 
Ω𝐞 = ×𝑛

𝑖=1

(

𝜉𝑖
𝑒𝑖
, 𝜉𝑖

𝑒𝑖+1

)

 for the index vector 𝐞. Collect these vectors 𝐞 in Ξ to define the set of mesh elements associated with Ξ.
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2.3.  Truncated hierarchical B-splines

Consider a nested sequence of tensor-product B-spline spaces over the domain Ω = (0, 1)𝑛: 
𝔹𝚵1

⊂ 𝔹𝚵2
⊂ ⋯ ⊂ 𝔹𝚵𝐿

, (4)

for appropriately chosen tensor-product level-𝓁 knot sequences 𝚵𝓁 = (𝝃1𝓁 ,… , 𝝃𝑛𝓁) and associated breakpoint sequences ̂𝚵𝓁 , 𝓁 = 1,… , 𝐿. 
By fixing the knot sequences at each level 𝓁, we simplify the notation of the B-spline spaces to 𝔹𝓁 ∶= 𝔹𝚵𝓁

. The corresponding level-𝓁 B-
spline basis will be denoted as 𝓁 ∶= 𝚵𝓁

, the level-𝓁 B-splines by 𝐵𝐣,𝓁 ∶= 𝐵𝐣,𝚵𝓁
. The level-𝓁 mesh elements are denoted by 𝐞𝓁 ∶= (𝐞,𝓁)

and collected in 𝐞𝓁 ∈ 𝓁 for all 𝐞 ∈ Ξ𝓁
. Then, for a vector 𝐭 ∈ ℤ𝑛, define the addition 𝐞𝑙 + 𝐭 ∶= (𝐞 + 𝐭)𝓁 as the translated element of 

level 𝓁, 
Ω𝐞𝓁+𝐭 ∶= ×𝑛

𝑖=1

(

𝜉𝑖𝑒𝑖+𝑡𝑖 ,𝓁 , 𝜉
𝑖
𝑒𝑖+𝑡𝑖+1,𝓁

)

. (5)

To ensure (4), we assume that the B-spline space 𝔹𝓁 is attained by bisecting the mesh elements of the previous level. In addition, 
we assume that at each level, the mesh is quasi-uniform.
Assumption 1. The mesh element sizes at level 𝓁 satisfy the quasi-uniformity condition. That is, there exists a constant 𝜂 ≥ 1 such 
that for all breakpoints ̂𝜉𝑖

𝑒𝑖 ,𝓁
∈ 𝝃̂

𝑖
𝓁 , the mesh-size ratio is bounded as

𝜂−1 ≤
𝜉𝑖
𝑒𝑖+1,𝓁

− 𝜉𝑖
𝑒𝑖 ,𝓁

𝜉𝑖
𝑒𝑖 ,𝓁

− 𝜉𝑖
𝑒𝑖−1,𝓁

≤ 𝜂, 𝑖 = 1,… , 𝑛, 𝓁 = 1,… , 𝐿. (6)

Moreover, for 𝓁 > 1, the level-𝓁 breakpoint sequence in each direction is obtained by bisecting each Ω𝐞𝓁−1  of the corresponding 
level-(𝓁 − 1) breakpoint sequence.
Besides decreasing the element size, nested B-spline spaces can also be generated by increasing the spline degree 𝐩 or the knot 
multiplicities 𝐦. These will not be considered.
Assumption 2. The interior knot multiplicities 𝐦 and spline degree 𝐩 are the same for all 𝚵𝓁 , 1 ≤ 𝓁 ≤ 𝐿.

Remark 1.  The requirement on knot muliplicities imposed by Assumption 2 is placed to simplify the theoretical discussions in the 
different sections of the paper. For instance, the proofs in Sections 4 and 5 can be extended to the case where knot multiplicities are 
different for different levels (assuming that such a choice still leads to a nested sequence of spaces). Moreover, the logic of the proofs 
remains the same, but the notation and the book-keeping become much more cumbersome – this is why we have placed the above 
assumption on the knot multiplicities. The requirement on the degrees, however, is mandatory for the current discussion: this choice 
ensures nestedness of the 𝐪-boxes (see Section 3) between levels, a key ingredient in our proofs. 

In addition, consider a sequence of nested, closed subsets of clos (Ω): 
Ω𝐿 ⊆ ⋯ ⊆ Ω1 ∶= clos (Ω), (7)

where each Ω𝓁 is given by a set of level-(𝓁 − 1) mesh elements 
Ω𝓁 ∶=

⋃

𝐞𝓁−1∈𝐼𝓁

clos
(

Ω𝐞𝓁−1
)

, (8)

for some subset 𝐼𝓁 ⊂ 𝓁−1. The collection of those subsets is denoted by: 
Ψ ∶=

{

Ω1,… ,Ω𝐿
}

, (9)

and will be referred to as the domain hierarchy on Ω. For a given level 𝓁, refinement domain Ω𝑘 partitions the B-spline basis functions 
𝓁 as: 

in,𝑘
𝓁 ∶=

{

𝐵𝐢,𝓁 ∈ 𝓁 ∶ supp
(

𝐵𝐢,𝓁

)

⊆ Ω𝑘

}

, (10a)

ex,𝑘
𝓁 ∶=

{

𝐵𝐢,𝓁 ∈ 𝓁 ∶ supp
(

𝐵𝐢,𝓁

)

⊈ Ω𝑘

}

= 𝓁∖
in,𝑘
𝓁 . (10b)

Here, in,𝑘
𝓁  are the level-𝓁 B-splines that are contained in Ω𝑘, from which the HB-splines are defined. Note, in this work, we consider 

the support of a spline to be an open set.
Definition 1. Given a domain hierarchy Ψ, the corresponding set of HB-spline basis functions is denoted by Ψ and defined 
recursively as follows:
1. 1 ∶= 1 ,
2. for 𝓁 = 2,… , 𝐿 :

𝓁 ∶= 𝐶
𝓁 ∪𝐹

𝓁 ,

where 
𝐶

𝓁 ∶=
{

𝐵𝐣,𝑘 ∈ 𝓁−1 ∶ supp
(

𝐵𝐣,𝑘

)

⊈ Ω𝓁

}

, 𝐹
𝓁 ∶= in,𝓁

𝓁 ,
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Fig. 1. An HB-spline basis 1(a) and a THB-spline basis 1(b). The green and orange highlighted basis functions represent the (T)HB-splines at levels 
1 and 2, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Ψ ∶= 𝐿 .
See Fig. 1(a) for an example. It is well-known that HB-spline basis functions lack the partition of unity property. Moreover, the 

number of overlapping basis functions associated with different hierarchical levels increases quickly. This motivates the construction 
of a different basis, the THB-spline basis. This basis relies on the following definition.
Definition 2.  Given 𝓁 = 2,… , 𝐿. Let 𝑓 ∈ 𝔹𝓁−1 be represented in the B-spline basis 𝓁 : 

𝑓 =
∑

𝐣∶𝐵𝐣,𝓁∈𝓁

𝜏𝐣,𝓁𝐵𝐣,𝓁 . (11)

The truncation of 𝑓  at hierarchical level 𝓁 is defined as the sum of the terms appearing in (11) corresponding to the B-splines in 
ex,𝓁
𝓁 : 

trunc𝓁
(

𝑓
)

∶=
∑

𝐣∶𝐵𝐣,𝓁∈
ex,𝓁
𝓁

𝜏𝐣,𝓁𝐵𝐣,𝓁 . (12)

Since the B-spline spaces are nested, see (4), trunc𝓁 (⋅) is well defined for the B-splines of 1,… ,𝓁 . Exploiting this, the HB-splines 
are altered to form the THB-splines.
Definition 3. Given a domain hierarchy Ψ, the corresponding set of THB-splines basis is denoted by Ψ and defined recursively as 
follows:

1. 1 ∶= 1 ,
2. for 𝓁 = 2,… , 𝐿 :

𝓁 ∶=  𝐶
𝓁 ∪  𝐹

𝓁 ,

where 
 𝐶
𝓁 ∶=

{

trunc𝓁
(

𝑇
)

∶ 𝑇 ∈  ,
𝓁−1 supp

(

𝑇
)

⊈ Ω𝓁

}

,  𝐹
𝓁 ∶= in,𝓁

𝓁 ,

3. Ψ ∶= 𝐿 .
See Fig. 1(b) for an example. The 𝑁 ∶= |Ψ| THB-spline basis functions are indexed by some ordering 𝑗 = 1,… , 𝑁 so that the THB-
spline basis and space are given by 

Ψ ∶=
{

𝑇𝑗
}𝑁

𝑗=1
, 𝕋Ψ ∶= span Ψ. (13)

Lastly, the set of active level-𝓁 mesh elements are denoted by in
𝓁  and is defined as:

in
𝓁 ∶=

{

𝐞𝓁 ∈ ∶
𝓁Ω

𝐞𝓁 ⊂ Ω𝓁 ∧ Ω𝐞𝓁 ∩ Ω𝓁+1 = ∅
}

. (14)

The collection of all active mesh elements is defined as:
Ψ ∶=

{

𝐞𝓁 ∈ in
𝓁 ∶ 1 ≤ 𝓁 ≤ 𝐿

}

. (15)

Then, the admissibility class of a THB-spline space is defined as follows [38].
Definition 4. A mesh is of admissible class 𝑐 if the truncated splines of Ψ which are non-zero on an element Ω𝐞𝓁  for 𝐞𝓁 ∈ Ψ, 
belong to at most 𝑐 successive levels.
Remark 2. Each intermediate set 𝓁 in Definition 3 is again a THB-spline space. These are obtained by limiting the domain hierarchy 
Ψ to the first 𝓁 levels. We denote this domain hierarchy as Ψ𝓁 and call the associated THB-spline space (respectively, basis) its level-𝓁
intermediate THB-spline space (respectively, basis). 
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Fig. 2. An element mesh Ω𝑒𝓁  (top) and a 𝐪-box mesh Ω𝐸𝑟,𝓁  (bottom, 𝑞 = 2) of levels 𝓁 = 1, 2. Like mesh elements, 𝐪-boxes are bisected when refined.

3.  Macro-element-based adaptive refinement

We introduce a refinement strategy in which larger clusters of elements, referred to as macro-elements, are refined collectively. 
For this, let 𝐪 ∈ ℕ𝑛

+ where ℕ+ ∶= ℕ∖{0}, then, the macro-elements we will consider are defined as:

Definition 5. Given level 𝓁 and 𝐪 ∈ ℕ𝑛
+, assume that the breakpoint sequences ̂𝝃

𝑖
𝓁 contains 𝑞𝑖𝑅𝑖

𝓁 + 1 breakpoints where 𝐑𝓁 ∈ ℕ𝑛
+. 

Then, for 𝑟𝑖 ∈ {0,… , 𝑅𝑖
𝓁 − 1} define the 𝐪-box 𝐸𝐫,𝓁 ⊆ 𝓁 , 

Ω𝐸𝐫,𝓁 ∶= ×𝑛
𝑖=1

(

𝜉𝑖𝑟𝑖𝑞𝑖 ,𝓁 , 𝜉
𝑖
(𝑟𝑖+1)𝑞𝑖 ,𝓁

)

= int
⎛

⎜

⎜

⎝

⋃

𝐞𝓁∈𝐸𝐫,𝓁

clos
(

Ω𝐞𝓁
)

⎞

⎟

⎟

⎠

. (16)

Denote the set of all possible level-𝓁 𝐪-boxes by  𝐪
𝓁 ∶= { 𝐸𝐫,𝓁 ∶ Ω𝐸𝐫,𝓁 ⊂ Ω }.

By Assumption 1, each non-empty element is bisected under refinement. This extends naturally to 𝐪-boxes, as Fig. 2 shows.
This allows us to restrict refinement with the help of 𝐪-boxes.

Assumption 3. The refinement domain Ω𝓁+1 consists of level-𝓁 𝐪-boxes,

Ω𝓁+1 =
⋃

𝐸𝐫,𝓁∈𝑅𝓁

clos
(

Ω𝐸𝐫,𝓁
)

,

where 𝑅𝓁 ⊂  𝐪
𝓁 .

Given a domain hierarchy Ψ adhering to Assumption 3, we define the following 𝐪-boxes.

Definition 6.  The set of active level-𝓁 𝐪-boxes, 𝐪 ∈ ℕ𝑛
+, is defined as 

 𝐪,in
𝓁 ∶=

{

𝐸𝐫,𝓁 ∈  𝐪
𝓁 ∶ Ω𝐸𝐫,𝓁 ⊂ Ω𝓁 ∧ Ω𝐸𝐫,𝓁 ⊄ Ω𝓁+1

}

, (17)

and the collection of all active 𝐪-boxes as the 𝐪-box mesh 

 𝐪
Ψ ∶=

{

𝐸𝐫,𝓁 ∈  𝐪,in
𝓁 ∶ 1 ≤ 𝓁 ≤ 𝐿

}

. (18)

For 𝓁 > 1, call a 𝐪-box 𝐸𝐫,𝓁 ∈  𝐪
𝓁  a border 𝐪-box if

𝜕Ω𝐸𝐫,𝓁 ∩
(

𝜕Ω𝓁∖𝜕Ω
)

≠ ∅. (19)

Secondly, we call a border 𝐪-box of level 𝓁 a well-behaved 𝐪-box if it is not contained in any well-behaved 𝐪-box of levels 𝓁 =
2,… ,𝓁 − 1. Lastly, any active 𝐪-box of  𝐪

Ψ that is not contained in any well-behaved 𝐪-boxes is called a regular 𝐪-box. Then, the set 
containing all well-behaved 𝐪-boxes and regular 𝐪-boxes partitions the mesh elements Ψ. 

See Fig. 3 for examples of these 𝐪-boxes. We note that when 𝐪 = 𝟏, the resulting 𝐪-boxes are single mesh-elements. Two specific 
choices of 𝐪 will be considered: 𝐪 = 𝐩 (Section 4) and 𝐪 = 𝐩 + 𝟏 (Section 5), leading to 𝐩- and (𝐩 + 𝟏)-boxes related to the spline degree 
𝐩. We extend Definition 4 to 𝐪-boxes.

Definition 7.  A 𝐪-box mesh  𝐪
Ψ is of admissibility class 𝑐 if the truncated splines of Ψ which are non-zero on an active 𝐪-box 𝐸𝐫,𝓁 , 

belong to at most 𝑐 successive levels. 
In addition, to preserve an admissibility class upon refinement or coarsening, we extend algorithms 3, 4, and 5 from [39] to 𝐪-boxes, 
considering a marking strategy based on 𝐪-boxes rather than elements. They extend naturally to 𝐪-boxes by altering the relevant 
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Fig. 3. In (a), a 𝐪-box mesh is depicted for 𝐪 = (2, 2) and the associated element mesh with dashed lines. In (b) and (c), respectively, the active 
border and well-behaved 𝐪-boxes are highlighted. Observe that well-behaved 𝐪-boxes can either be active or non-active.

definitions of multilevel support extension 𝑆, refinement neighborhood 𝑁𝑟, coarsening neighborhood 𝑁𝑐 , see equations (3.3)– (3.5) 
in [39], as follows:

𝑆(𝐸𝐫,𝓁 , 𝑘) ∶=
{

𝐸𝐬,𝑘 ∶ ∃𝐵𝐢,𝑘 ∈ 𝑘, supp
(

𝐵𝐢,𝑙

)

∩ Ω𝐸𝐬,𝑘 ≠ ∅ ∧ supp
(

𝐵𝐢,𝑙

)

∩ Ω𝐸𝐫,𝓁 ≠ ∅
}

,

𝑁𝑟(
𝐪
Ψ, 𝐸𝐫,𝓁 , 𝑐) ∶=

{

𝐸𝐭,𝓁−𝑐+1 ∈  𝐪,in
𝓁−𝑐+1 ∶ ∃𝐸𝐬,𝓁−𝑐+2 ∈ 𝑆(𝐸𝐫,𝓁 ,𝓁 − 𝑐 + 2),Ω𝐸𝐬,𝓁−𝑐+2 ⊆ Ω𝐸𝐭,𝓁−𝑐+1

}

,

𝑁𝑐 (
𝐪
Ψ, 𝐸𝐫,𝓁 , 𝑐) ∶=

{

𝐸𝐭,𝓁+𝑐 ∈  𝐪,in
𝓁+𝑐 ∶ ∃𝐸𝐬,𝓁+1 ∈  𝐪,in

𝓁+1 ∧ Ω𝐸𝐬,𝓁+1 ⊂ Ω𝐸𝐫,𝓁 , 𝐸𝐭,𝓁+𝑐 ∈ 𝑆(𝐸𝐬,𝓁+1,𝓁 + 1)
}

.

(20)

Lastly, there are two minor results regarding the admissibility classes for 𝐪-boxes.
Proposition 1. Consider THB-splines of degree 𝐩 and 𝐪-box mesh  𝐪

Ψ with 𝑞𝑖 ≥ 𝑝𝑖 for all 𝑖. Every level-𝓁 regular 𝐪-box 𝐸𝐫,𝓁 ∈  𝐪
Ψ only 

supports THB-splines of level 𝓁.
Proposition 2. For THB-splines of degree 𝐩 and 𝐪-box mesh  𝐪

Ψ with 𝑞𝑖 ≥ 𝑝𝑖 for all 𝑖, the following are equivalent

• every well-behaved 𝐪-box is (an) active (border 𝐪-box),
•  𝐪

Ψ is of admissibility class 𝑐 = 2.

The proofs of Proposition 1 and Proposition 2 are presented in A.

4.  Locally linearly independent macro-elements and applications to Bézier projection

The first main result of this paper is that we can use the 𝐪-boxes to characterize the local linear independence of THB-splines. 
For this, we consider THB-splines of degree 𝐩 and 𝐪-boxes with 𝐪 = 𝐩, which we call 𝐩-boxes. Then, we introduce the notion of 
overloading:

Definition 8. For a given set of functions,  on Ω, we say that Ω̃ ⊂ Ω is overloaded w.r.t.  if
𝑆Ω̃ =

{

𝑓 |Ω̃ ∶ 𝑓 ∈  , 𝑓 |Ω̃ ≠ 0
}

is linearly dependent; else, Ω̃ is not overloaded.
We can now state the local linear independence result for 𝐩-boxes:
Theorem 1. Given a 𝐩-box mesh  𝐩

Ψ, neither the well-behaved 𝐩-boxes nor the regular 𝐩-boxes are overloaded w.r.t. Ψ.
The proof of Theorem 1 is split into two parts. First, we consider the special case of admissibility class 𝑐 = 2, for which the proof is 
much simpler. Then, regarding the full proof of Theorem 1, it can be decomposed into smaller problems, where each problem is of 
admissibility class 𝑐 = 2.

4.1.  The case of admissibility class 2

When we assume that the mesh is of admissibility class 2, by Proposition 2, Theorem 1 reduces to the following Lemma.
Lemma 1. For a 𝐩-box mesh  𝐩

Ψ of admissibility class 2, neither the active border 𝐩-boxes nor the regular 𝐩-boxes are overloaded w.r.t. Ψ.
For the proof of Lemma 1, we note that the 𝐩-boxes considered can each be subdivided into smaller macro-elements, and most 
importantly, into the macro-elements introduced in [23]. In [23], alternative macro-elements were introduced that are not overloaded. 
As a result, Lemma 1 is trivial under the assumptions of [23], where only maximal smoothness was considered. Since the proof of 
Lemma 1 for the more general case of arbitrary smoothness follows similar arguments, we present it in B.
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Fig. 4. On the left a well-behaved 𝐩-box Ω𝐸𝓁  of level 𝓁 is depicted. The middle depicts the active and deactivated 𝐩-boxes in Ω𝐸𝓁  per level. The 
border 𝐩-boxes are highlighted in grey. On the right, the intermediate THB-spline spaces 𝑘 are given for the levels 𝓁,𝓁 + 1 and 𝓁 + 2.

4.2.  The general admissibility class case

From Proposition 1, regular 𝐩-boxes only support THB-splines from a single level, which must be B-splines, and are thus never over-
loaded. Hence, to prove Theorem 1, we will show that well-behaved 𝐩-boxes are not overloaded. For this, observe that a well-behaved 
𝐩-box 𝐸𝐫,𝓁 of level 𝓁 might consist of active border 𝐩-boxes, active regular 𝐩-boxes, deactivated border 𝐩-boxes, and deactivated reg-
ular 𝐩-boxes of various levels. See Fig. 4. But, if we consider one of these deactivated 𝐩-boxes of level 𝑘, we note that they were active 
for the intermediate THB-spline space of level 𝑘. We will use this observation to prove Theorem 1, by considering these intermediate 
THB-spline spaces of levels 𝓁,𝓁 + 1,… , 𝐿, and showing that the well-behaved border 𝐩-box is non-overloaded for each of these levels 
via induction. However, we do not need to check all levels 𝓁,𝓁 + 1,… , 𝐿, in light of the following definition.
Definition 9. Consider a 𝐩-box mesh  𝐩

Ψ and a well-behaved 𝐩-box 𝐸𝐫,𝓁 . Define the depth of 𝐸𝐫,𝓁 as the smallest 𝑑 ≥ 0 such that 
𝐸𝐫,𝓁 contains an active border 𝐩-box of level 𝓁 + 𝑑.

We will prove Theorem 1 via induction. We start by showing that Ω𝐸𝐫,𝓁  is not overloaded w.r.t. Ψ𝓁
, the intermediate THB-spline 

basis of level 𝓁. Then, for the induction step, we show that for 𝓁 < 𝑘 ≤ 𝓁 + 𝑑, Ω𝐸𝐫,𝓁  is not overloaded w.r.t. Ψ𝑘
. Both results rely on 

Lemma 1. However, for the induction step, we require some intermediate results.
For the induction step, we note that any level-(𝑘 − 1) THB-spline 𝑇 ∈ Ψ𝑘−1

 can be written as a linear combination of level-(𝑘 − 1)
B-splines. 

𝑇 =
∑

𝐣∶𝐵𝑗,𝑘−1∈𝑘−1

𝜏𝐣𝐵𝐣,𝑘−1. (21)

As a result, we start by investigating B-splines before considering THB-splines. Note that if a level-(𝑘 − 1) THB-spline has non-zero 
truncation on 𝐸𝐫,𝓁 , at least one of the level-(𝑘 − 1) B-splines of (21) must be a member of ex,𝑘

𝑘−1. For these B-splines, we have the 
following result.
Lemma 2. Consider a level-𝓁 well-behaved 𝐩-box 𝐸𝐫,𝓁 of depth 𝑑 and a B-spline 𝐵 ∈ ex,𝑘

𝑘−1 for 𝓁 < 𝑘 ≤ 𝓁 + 𝑑 with support on Ω𝐸𝐫,𝓁 ∩ Ω𝑘. 
Then, 𝐵 has support on a level-𝑘 border 𝐩-box 𝐸𝐭,𝑘 and Ω

𝐸𝐭,𝑘 ⊂ Ω𝐸𝐫,𝓁 .

Proof.  The B-spline 𝐵 ∈ ex,𝑘
𝑘−1 has support inside and outside of Ω𝑘, so that,

supp
(

𝐵
)

∩
(

𝜕Ω𝑘∖𝜕Ω
)

≠ ∅. (22)

Note that 𝐵 has support on a level-𝑘 element Ω𝐞𝑘 ⊂ Ω𝑘 ∩ Ω𝐸𝐫,𝓁 . This element is contained in a level-(𝑘 − 1) element Ω⋆𝐞𝑘 ⊂ Ω𝑘 ∩ Ω𝐸𝐫,𝓁

which is contained in the 𝐩-box Ω𝐸𝐬,𝑘−1 ⊆ Ω𝑘 ∩ Ω𝐸𝐫,𝓁 . Note that the support of a level-(𝑘 − 1) B-spline counts at most 𝑝𝑖 + 1 level-(𝑘 − 1)
mesh elements in each dimension 𝑖 = 1,… , 𝑛. Then, since 𝐵 has support on 𝐸𝐬,𝑘−1, the only other level-(𝑘 − 1) 𝐩-boxes it can have 
support on are directly adjacent to Ω𝐸𝐬,𝑘−1 . Hence, we have that,

supp
(

𝐵
)

∩
(

𝜕Ω𝐸𝐬,𝑘−1 ∩
(

𝜕Ω𝑘∖𝜕Ω
)

)

≠ ∅. (23)

Since (23) is non-empty, there is a Ω𝐸𝐭,𝑘 ⊂ Ω𝐸𝐬,𝑘−1  such that

supp
(

𝐵
)

∩
(

𝜕Ω𝐸𝐭,𝑘 ∩
(

𝜕Ω𝑘∖𝜕Ω
)

)

≠ ∅, (24)

showing that Ω𝐸𝐭,𝑘 ⊂ Ω𝐸𝐫,𝓁  is a border 𝐩-box. ∎
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Next, we show that trunc𝑘
(

ex,𝑘
𝑘−1

)

 is linearly independent over a well-behaved 𝐩-box 𝐸𝐫,𝓁 .

Lemma 3. Consider a level-𝓁 well-behaved 𝐩-box 𝐸𝐫,𝓁 of depth 𝑑 and 𝓁 < 𝑘 ≤ 𝓁 + 𝑑. Then trunc𝑘
(

ex,𝑘
𝑘−1

)

 is linearly independent on 𝐸𝐫,𝓁 .

Proof.  Consider any linear combination 𝑓 =
∑

𝐣 𝜏𝐣𝐵𝐣 with 𝐵𝐣 ∈ ex,𝑘
𝑘−1 such that trunc𝑘

(

𝑓
)

= 0. The splines 𝐵𝐣 ∈ ex,𝑘
𝑘−1 which have 

support on Ω𝐸𝐫,𝓁∖Ω𝑘 are unaffected by trunc𝑘
(

𝐵𝐣

)

 on Ω𝐸𝐫,𝓁∖Ω𝑘. Hence, local linear independence of these 𝐵𝐣 are preserved, so that 
𝜏𝐣 = 0. By Lemma 2, each remaining B-spline 𝐵𝐣 must have support on some level-𝑘 border 𝐩-box Ω

𝐸𝐬,𝑘 ⊂ Ω𝑘. But then, the claim 
follows if trunc𝑘

(

ex,𝑘
𝑘−1

)

 is linearly independent on 𝐸𝐬,𝑘.

For this, consider the following domain hierarchy Ψ# = {Ω,Ω,… ,Ω𝑘} where |Ψ#
| = 𝑘. By construction, the associated THB-spline 

space is given by
trunc𝑘

(

ex,𝑘
𝑘−1

)

∪ in,𝑘
𝑘 , (25)

and is of admissibility class 𝑐 = 2. But then, by Lemma 1, every active 𝐩-box, and in particular 𝐸𝐬,𝑘, is not overloaded w.r.t. (25). ∎
We extend this result to linear combinations of B-splines (e.g., THB-splines).

Corollary 1. Consider a level-𝓁 well-behaved 𝐩-box 𝐸𝐫,𝓁 of depth 𝑑 and let  ⊂ spanex,𝑘
𝑘−1, 𝓁 < 𝑘 ≤ 𝓁 + 𝑑 be a linear independent set on 

𝐸𝐫,𝓁 . Then trunc𝑘 () is linearly independent on 𝐸𝐫,𝓁 .

Proof.  By the linear independence of , every 𝑓𝑖 ∈  can be written as 𝑓𝑖 =
∑

𝐣 𝑄𝑖𝐣𝐵𝐣 for 𝐵𝐣 ∈ ex,𝑘
𝑘−1 where the rows of 𝑄 are linearly 

independent. Then, consider any linear combination of splines of trunc𝑘 () that sums to zero: 
∑

𝑖
𝜏𝑖 trunc𝑘

(

𝑓𝑖
)

=
∑

𝑖

∑

𝐣
𝜏𝑖𝑄𝑖𝐣 trunc𝑘

(

𝐵𝐣

)

= 0. (26)

By the linear independence of trunc𝑘
(

ex,𝑘
𝑘−1

)

 over 𝐸𝐫,𝓁 shown in Lemma 3, this equation can only be zero if 𝜏𝑖 = 0, showing linear 
independence of trunc𝑘 () over 𝐸𝐫,𝓁 . ∎

With these intermediate results, we return to the proof of Theorem 1.
Proof of Theorem 1.  Consider any regular 𝐩-box 𝐸𝐫,𝓁 , which by Proposition 1 only supports B-splines and is thus trivially not 
overloaded w.r.t. Ψ. Hence, consider a well-behaved 𝐩-box 𝐸𝐫,𝓁 of depth 𝑑. Since the set of THB-splines of Ψ with non-empty 
support on 𝐸𝐫,𝓁 coincide with the level-(𝓁 + 𝑑) intermediate THB-splines of Ψ𝓁+𝑑

 with non-empty support on 𝐸𝐫,𝓁 , it is sufficient to 
show that the latter set is linearly independent on 𝐸𝐫,𝓁 . This is proven via induction over the level-𝑘 intermediate THB-spline bases 
for 𝓁 ≤ 𝑘 ≤ 𝓁 + 𝑑.

For intermediate basis Ψ𝓁
, 𝐸𝐫,𝓁 is an active border 𝐩-box. Hence, by Lemma 1, the level-𝓁 intermediate basis Ψ𝓁

 is linearly 
independent over 𝐸𝐫,𝓁 , proving the base case.

For the induction step, assume that the intermediate THB-spline basis Ψ𝑘−1
 is linearly independent over 𝐸𝐫,𝓁 for 𝓁 < 𝑘 ≤ 𝓁 + 𝑑. 

The level-𝑘 intermediate THB-spline space is given by
trunc𝑘

(

Ψ𝑘−1

)

∪ in,𝑘
𝑘 . (27)

By construction, Ψ𝑘−1
 can be written as

Ψ𝑘−1
= trunc𝑘−1 () ∪ in,𝑘−1

𝑘−1 , (28)

for some set  (potentially empty). Note that all splines of trunc𝑘−1 () are linear combinations of ex,𝑘−1
𝑘−1 ⊂ ex,𝑘

𝑘−1. Hence, when 
refining to level 𝑘, only splines from in,𝑘−1

𝑘−1  are omitted to form the set that will be truncated,
trunc𝑘−1 () ∪ in,𝑘−1

𝑘−1 ∖in,𝑘
𝑘−1 ⊂ 𝔹ex,𝑘

𝑘−1 (29)

By Corollary 1 the truncation of this set is linearly independent over 𝐸𝐫,𝓁 , showing that Ψ𝑘
 is linearly independent over 𝐸𝐫,𝓁 ; showing 

the induction step. ∎

4.3.  Application to Bézier projection

We conclude this section with an application of 𝐩-boxes for the local Bézier projector for THB-splines, introduced in [23]. The 
Bézier projector for THB-splines consists of two steps. The target function 𝑓 ∈ 𝐿2(Ω) is initially projected onto a space of discontinuous 
splines 𝕍  via local 𝐿2 projections. Then, the local projections are smoothened to retrieve a THB-spline Π𝑓 ∈ 𝕋Ψ. However, to ensure 
that Π is a projection, the local projections must be performed on non-overloaded domains 𝐷 ⊂ Ω w.r.t. Ψ.

For any 𝐩-box mesh, in light of Theorem 1, we collect the well-behaved 𝐩-boxes and regular 𝐩-boxes in the set  , so that for any 
𝐸 ∈  , Ω𝐸  is not overloaded. Note, the regular and well-behaved 𝐩-boxes cover the domain Ω. Then, we define the spaces

𝕍𝐸 ∶= span
{

𝑇𝑗 |Ω𝐸 ∶ ∀𝑇𝑗 ∈ Ψ
}

. (30)
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The initial projections of 𝑓 ∈ 𝐿2(Ω) over a regular/well-behaved 𝐩-box 𝐸 ∈  is defined by
∑

𝑗∈̂𝐸 (Ψ)

𝜏𝐸𝑗 𝑇𝑗 |Ω𝐸 ∶= argmin
𝑓
𝐸
ℎ ∈𝕍𝐸

‖

‖

‖

𝑓𝐸
ℎ − 𝑓‖‖

‖𝐿2(Ω𝐸 )
, ̂𝐸 (Ψ) ∶=

{

𝑗 ∶ 𝑇𝑗 ∈ Ψ,Ω
𝐸 ∩ supp

(

𝑇𝑗
)

≠ ∅
}

. (31)

These local projections are smoothed to form the final projection Π𝑓 ∶=
∑𝑁

𝑗=1 𝜏𝑗𝑇𝑗 , where

𝜏𝑗 ∶=
∑

𝐸∈̂𝑗 ()

𝜔𝐸
𝑗 𝜏

𝐸
𝑗 , ̂𝑗 () ∶=

{

𝐸 ∈  ∶ Ω𝐸 ∩ supp
(

𝑇𝑗
)

≠ ∅
}

, (32)

with averaging constants

𝜔𝐸
𝑗 ∶=

∫Ω𝐸 𝑇𝑗𝑑𝑥

∫Ω 𝑇𝑗𝑑𝑥
. (33)

For any 𝑓 =
∑

𝑗 𝜏𝑗𝑇𝑗 ∈ 𝕋Ψ, the resulting 𝜏𝐸𝑗  from (31) will coincide with 𝜏𝑗 . These coefficients are also preserved by averaging, from 
which we conclude that Π is a projector. In [23], it was shown that this projector attains optimal local convergence rates. This result 
depends on the support extension, which represents the domain of dependence of the projection Π𝑓 over an element Ω𝑒.

Definition 10. For a element 𝐞𝓁 ∈ Ψ that is contained in a 𝐩-box 𝐸 ∈  , Ω𝐞𝓁 ⊂ Ω𝐸 , its support extension is given as: 

Ω̃𝐞𝓁 ∶=
⋃

𝐸′∈̂𝑗 ()

𝑗∈̂
𝐸𝐞𝓁 (Ψ)

clos
(

Ω𝐸′ )

. (34)

Let ℎ𝐞𝓁  be the mesh size of element Ω𝐞𝓁 . Then, on the element Ω𝐞𝓁 , the following Theorem gives a local error estimate for Π𝑓 .
Theorem 2. For 𝐞𝓁 ∈ Ψ, 0 ≤ 𝑘 ≤ 𝑚 ≤ min(𝐩) + 1 and 𝑓 ∈ 𝐻𝑚(Ω̃𝐞𝓁 ): 

|𝑓 − Π𝑓 |𝐻𝑘(Ω𝐞𝓁 ) ≤ 𝐶(ℎ𝐞𝓁 )𝑚−𝑘|𝑓 |𝐻𝑚(cube(Ω̃𝐞𝓁 )), (35)

where 𝐶 is a constant independent of the mesh size ℎ𝐞𝓁  and cube(Ω̃𝐞𝓁 ) is the smallest hyper-cube that contains Ω̃𝐞𝓁 . 
Remark 3.  We claim that the above Bézier projection on macro-elements is local in the following sense. The size of the 𝐿2-projection 
problems in (31) is bounded from above by 𝐶∏𝑛

𝑖=1(𝑝
𝑖 + 1), where 𝐶 is a constant dependent on the admissibility class. While this 

bound grows with growing degree, it is still independent of the total number of mesh elements/degrees of freedom. Furthermore, the 
following are some special refinement/mesh configurations.

• In the case of a coarse, single-level mesh with only one 𝐩-box, i.e., only ∏𝑛
𝑖=1(𝑝

𝑖 + 1) elements, the local projection proposed here 
becomes global. However, in this case, one is simply working with B-splines, so the original Bézier projector can be used to recover 
locality – this coincides with the choice 𝐪 = 𝟏.

• In the case of a single-level mesh with multiple 𝐩-boxes, one is again working with B-splines so any choice 𝐪 will lead to a valid 
Bézier projector, including 𝐪 = 𝟏. In particular, our choice of 𝐪 = 𝐩 still leads to multiple local problems over each 𝐩-box.

• In all other cases of THB-splines with multiple active levels, locality is recovered in the sense described above.

5.  Adaptive structure-preserving methods via macro-element refinement

The second kind of 𝐪-box, where 𝐪 is chosen to be one larger than 𝐩, has practical applications in structure-preserving methods. 
Structure-preservation provides a framework for creating robust discretizations of mixed formulations of PDEs such as the Navier-
Stokes equations, Maxwell equations, and various other equations. To ensure that the discretization is stable and convergent, the 
finite-element spaces must mimic the geometric and topological structure that is present in the continuous setting and encoded in 
the PDE. This is particularly important for capturing the essential features of the solution, such as conservation laws and symmetries. 
For the PDEs mentioned above, the relevant structure is encoded in the so-called de Rham Hilbert complex. For example, in two 
dimensions, the complex can be written down as:

𝐻1(Ω)
rot
←←←←←←←←←←←←→ 𝐻(div; Ω)

div
←←←←←←←←←←←←→ 𝐿2(Ω), (36)

and in three dimensions as:

𝐻1(Ω)
grad
←←←←←←←←←←←←←←←←←→ 𝐻(curl; Ω)

curl
←←←←←←←←←←←←←←←→ 𝐻(div; Ω)

div
←←←←←←←←←←←←→ 𝐿2(Ω). (37)

For contractible domains, such as the unit squares/cubes studied in this work, this complex is exact. For example, in two dimensions, 
this means that image(rot) = kernel(div) for the complex (36); in higher dimensions, the same relations between the images and 
kernels of successive differential operators would hold. For a non-exact de Rham complex, the kernel space would be larger, as it 
contains additional functions known as harmonics.
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In order to discretize the PDEs associated to the de Rham complex (e.g., fluid flows, electromagnetics), we need to construct 
discrete spaces that form a discrete de Rham complex that mimics the structure of the continuous complex. In particular, we want 
to preserve the relationships between the images and kernels of the differential operators. For instance, for discretizing the two-
dimensional complex in (36) using THB-splines, we choose the following THB-spline spaces: 

𝕍 0
ℎ ∶= 𝕋

Ψ,(𝑝0 ,𝑝1)
,𝕍 1

ℎ ∶= 𝕋
Ψ,(𝑝0 ,𝑝1−1)

× 𝕋
Ψ,(𝑝0−1,𝑝1)

,𝕍 2
ℎ ∶= 𝕋

Ψ,(𝑝0−1,𝑝1−1)
, (38)

and for the three dimensional complex in (37), we choose the THB-spline spaces:

𝕍 0
ℎ ∶= 𝕋

Ψ,(𝑝0 ,𝑝1 ,𝑝2)
,𝕍 1

ℎ ∶= 𝕋
Ψ,(𝑝0−1,𝑝1 ,𝑝2)

× 𝕋
Ψ,(𝑝0 ,𝑝1−1,𝑝2)

× 𝕋
Ψ,(𝑝0 ,𝑝1 ,𝑝2−1)

, (39)

𝕍 2
ℎ ∶= 𝕋

Ψ,(𝑝0 ,𝑝1−1,𝑝2−1)
× 𝕋

Ψ,(𝑝0−1,𝑝1 ,𝑝2−1)
× 𝕋

Ψ,(𝑝0−1,𝑝1−1,𝑝2)
,𝕍 3

ℎ ∶= 𝕋
Ψ,(𝑝0−1,𝑝1−1,𝑝2−1)

. (40)

See [30,31] for the arbitrary dimensional case. However, as shown in [30,31], the resulting discrete complex is not necessarily exact 
for arbitrary domain hierarchies. In this section, we prove our main result which is stated in Theorem 3.

Theorem 3. Consider a domain hierarchy generated on an 𝑛-dimensional cube Ω ⊂ ℝ𝑛 by refinements of (𝐩 + 𝟏)-boxes. Then, the corre-
sponding THB-spline de Rham complex is exact.

The proof of this theorem follows from the following results where we verify that the assumptions of [31] are satisfied by domain 
hierarchies generated by (𝐩 + 𝟏)-box refinements. The assumptions in [31] are sufficient conditions for the exactness of the THB-spline 
de Rham complex. [31, Assumptions 1–2] are easily verified by the construction of the THB-splines considered in this work, and the 
following discussion thus focuses only on [31, Assumption 3]. This result depends on the concept of shortest-chains and grids. We 
first define these concepts, and then show that [31, Assumption 3] is satisfied in Lemmas 5 and 6 below.

Definition 11.  Between two vectors 𝐬1, 𝐬2 ∈ ℕ𝑛, we call {𝐫𝑖 ∈ ℕ𝑛 ∶ 𝑖 = 0,… , 𝑘} a chain when 𝐫0 = 𝐬1, 𝐫𝑘 = 𝐬2, only a single component 
of 𝛿𝐫𝑖 ∶= 𝐫𝑖 − 𝐫𝑖−1 is non-zero and has unit magnitude, and 𝑘 =

∑𝑘
𝑖=1 |𝛿𝐫𝑖|1. When 𝑘 =

∑𝑛
𝑗=1 |𝑠

𝑗
1 − 𝑠𝑗2|, we call it the shortest chain 

between 𝐬1 and 𝐬2. 

Definition 12.  Given bounding vectors 𝐋,𝐔 ∈ ℕ𝑛 where 𝐿𝑗 ≤ 𝑈 𝑗 for all 𝑗, define a grid  as:

 ∶=
{

𝐭 ∈ ℕ𝑛 ∶ 𝐿𝑗 ≤ 𝑡𝑗 ≤ 𝑈 𝑗 , 𝑗 = 1,… , 𝑛
}

. (41)

Lemma 4. For any two grids 1,2 that overlap (i.e., ∃𝐭 ∈ 1 ∩ 2), there exists a shortest chain {𝐫0,⋯ , 𝐫𝑘} between any two 𝐬1, 𝐬2 ∈ 1 ∪ 2
where 𝐫𝑖 ∈ 1 ∪ 2. Moreover, if 𝐬1 ∈ 1 and 𝐬2 ∈ 2, there exists an index 𝛼 such that 𝐫𝑖 ∈ 1 if 𝑖 ≤ 𝛼 and 𝐫𝑖 ∈ 2 if 𝛼 ≤ 𝑖.

Proof.  Let the grids 𝑖 be constructed from the bounding vector 𝐋𝑖,𝐔𝑖, where we assume w.l.o.g. that 1 ≠ 2 and 𝐿𝑗
1 < 𝐿𝑗

2 for all 
𝑗. Clearly, if 𝐬1, 𝐬2 ∈ 𝑖 for some 𝑖, a trivial shortest chain exists. Hence, we consider 𝐬1 ∈ 1, 𝐬2 ∈ 2. Define 𝜖𝑗 ∶= sgn

(

𝑠𝑗2 − 𝑠𝑗1
)

 and 
𝐽 ∶=

∑𝑛
𝑗=1 𝐽

𝑗 where:

𝐽 𝑗 ∶=

⎧

⎪

⎨

⎪

⎩

min
(

𝑈 𝑗
1 − 𝑠𝑗1, 𝑠

𝑗
2 − 𝑠𝑗1

)

, 𝑖𝑓𝜖𝑗 = 1,

𝑠𝑗1 − 𝑠𝑗2, 𝑒𝑙𝑠𝑒.

Then, consider the index vector chain {𝐫0,… , 𝐫𝐽 } defined as:

𝐫𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑠11 + 𝜖1𝑖, 𝑠21,… , 𝑠𝑛1), for 0 ≤ 𝑖 ≤ 𝐽 1,
(𝑠11 + 𝜖1𝐽 1, 𝑠21 + 𝜖2(𝑖 − 𝐽 1),… , 𝑠𝑛1), for 𝐽 1 < 𝑖 ≤ 𝐽 1 + 𝐽 2,
⋮

(𝑠11 + 𝜖1𝐽 1, 𝑠21 + 𝜖2𝐽 2,… , 𝑠𝑛1 + 𝜖𝑛(𝑖 − 𝐽 + 𝐽 𝑛)), for 𝐽 − 𝐽 𝑛 < 𝑖 ≤ 𝐽 .

(42)

If 𝐫𝐽 = 𝐬2, then this is the desired shortest chain. Else, we note that 𝐫𝐽 ∈ 2 since 𝐿𝑗
2 ≤ min

(

𝑈 𝑗
1 , 𝑠

𝑗
2

)

= 𝐫𝑗𝐽 . Thus, we can trivially extend 
the chain {𝐫0,… , 𝐫𝐽 } to form a shortest chain between 𝐬1 and 𝐬2 that passes through 𝐫𝐽 . Moreover, 𝛼 = 𝐽 satisfies the claim. ∎

Lemma 5  (Assumption 3a from [31]). Consider any two level-𝓁 B-splines 𝐵𝐬1 ,𝓁
, 𝐵𝐬2 ,𝓁

∈ in,𝓁+1
𝓁 , so that there exists 𝐫′, 𝑘0, 

clos
(

supp
(

𝐵𝐬1 ,𝓁

))

∩ clos
(

supp
(

𝐵𝐬2 ,𝓁

))

⊇ ×𝑛
𝑘=1𝐼

𝑘, (43a)

𝐼𝑘 ∶=

⎧

⎪

⎨

⎪

⎩

(

𝜉𝑘
𝑟′𝑘 ,𝓁+1

, 𝜉𝑘
𝑟′𝑘+1,𝓁+1

)

, 𝑘 ≠ 𝑘0,
{

𝜉𝑘
𝑟′𝑘 ,𝓁+1

}

, 𝑘 = 𝑘0.
(43b)

Then, these exist a shortest chain {𝐫0, 𝐫1,…} between 𝐬1, 𝐬2, such that 𝐵𝐫𝑖 ,𝓁
∈ in,𝓁+1

𝓁  for all 𝑖. 
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As a small remark, (43) is a slightly stronger condition than what is required in [31]. Nonetheless, this stronger assumption is easier 
to prove for (𝐩 + 𝟏)-boxes.

Proof.  Without loss of generality, we assume that 𝑘0 = 𝑛. Then we define

𝐸𝑖 ∶=
{

𝐭 ∶ 𝐸𝐭,𝓁 ∈  𝐩+𝟏
𝓁 ∶ supp

(

𝐵𝐬𝑖 ,𝓁

)

∩ Ω𝐸𝐭,𝓁 ≠ ∅
}

,

𝐵𝑖 ∶=

⎧

⎪

⎨

⎪

⎩

𝐭 ∶ 𝐵𝐭,𝓁 ∈ 𝓁 , supp
(

𝐵𝐭,𝓁

)

⊆
⋃

𝐫∈𝐸𝑖

clos
(

Ω𝐸𝐫,𝓁
)

⎫

⎪

⎬

⎪

⎭

,

which by the construction of (𝐩 + 𝟏)-boxes are grids. By lemma 4, the existence of the shortest chain is trivial if 𝐵1  overlaps 𝐵2 . 
Hence, assume that ∩2

𝑖=1
𝐵
𝑖 = ∅, and thus ∩2

𝑖=1
𝐸
𝑖 = ∅. However, given (43), we must have that 𝑠𝑛2 = 𝑠𝑛1 + 𝑝𝑛 + 1 and ∃𝐭𝟏 ∈ 𝐸1 , so that 

(𝑡11,… , 𝑡𝑛1 + 1) ∈ 𝐸2 .
We exploit this by defining two new grids, ̃𝐵𝑖 ∶= {̃𝐭 ∈ ℕ𝑛−1 ∶ ∃𝑡𝑛 ∈ ℕ s.t. (̃𝐭, 𝑡𝑛) ∈ 𝐵𝑖 }. These grids overlap and, by Lemma 4, there 

exists a shortest chain {𝐫̃0,⋯ , 𝐫̃𝑘̃} between the pair ̃𝐬1 = (𝑠11,… 𝑠𝑛−11 ) ∈ ̃𝐵1  and ̃𝐬2 = (𝑠12,… 𝑠𝑛−12 ) ∈ ̃𝐵2 . Let the index 𝛼 be so that ̃𝐫𝑖 ∈ ̃𝐵1
if 𝑖 ≤ 𝛼 and ̃𝐫𝑖 ∈ ̃𝐵2  if 𝑖 ≥ 𝛼. The shortest chain {𝐫𝑖 ∶ 𝑖 = 0,… , 𝑘̃ + 𝑝𝑛 + 1} between 𝐬0 and 𝐬1 is then easily constructed as

𝐫𝑖 =
⎧

⎪

⎨

⎪

⎩

(𝐫̃𝑖, 𝑠𝑛1), 0 ≤ 𝑖 ≤ 𝛼,
(𝐫̃𝛼 , 𝑠𝑛1 + 𝑖 − 𝛼), 𝛼 < 𝑖 ≤ 𝛼 + 𝑝𝑛 + 1,
(𝐫̃𝑖−𝑝𝑛−1, 𝑠𝑛2), 𝛼 + 𝑝𝑛 + 1 < 𝑖 ≤ 𝑘̃ + 𝑝𝑛 + 1.

(44)

 ∎
Lemma 6  (Assumption 3b from [31]). Consider a subset  ⊂ in,𝓁+1

𝓁 , and a level-𝓁 or level-(𝓁 + 1) B-spline 𝜙 of spline degree ̃𝐩 where 𝑝̃𝑗 ∈
{𝑝𝑗 , 𝑝𝑗 − 1} so that supp (𝜙) ⊆ Ω𝓁+1 and supp (𝜙) ⊂ ∪𝐵∈ clos

(

supp
(

𝐵
))

. Then, there exists a 𝐵𝐫,𝓁 ∈ in,𝓁+1
𝓁  so that supp (𝜙) ⊂ supp

(

𝐵𝐫,𝓁

)

. 
Moreover, supp

(

𝐵𝐫,𝓁

)

 is contained in the smallest axis-aligned bounding box containing ∪𝐵∈ supp
(

𝐵
)

. 

Proof.  Let 𝑃 = ×𝑛
𝑗=1(𝜉

𝑗
𝐿𝑗 ,𝓁

, 𝜉𝑗
𝑈 𝑗 ,𝓁

) be the smallest axis-aligned bounding box containing ∪𝐵∈ supp
(

𝐵
)

. Assume w.l.o.g. that supp (𝜙) ∩
supp

(

𝐵
)

≠ ∅ for each 𝐵 ∈ . Define:

𝑅(𝜙) ∶=
{

𝐭 ∶ 𝐵𝐭,𝓁 ∈ in,𝓁+1
𝓁  and supp (𝜙) ⊂ supp

(

𝐵𝐭,𝓁

) }

.

For 𝐫 ∈ 𝑅(𝜙) and supp
(

𝐵𝐫,𝓁

)

= ×𝑛
𝑗=1(𝜉

𝑗
𝑒𝑗 ,𝓁

, 𝜉𝑗
𝑓 𝑗 ,𝓁

):

supp
(

𝐵𝐫,𝓁

)

⊂ 𝑃 ⇔ 𝐿𝑗 ≤ 𝑒𝑗 , 𝑓 𝑗 ≤ 𝑈 𝑗 .

Assume w.l.o.g. that this condition is violated for 𝐼 ⊆ {1,… , 𝑛} as: 
𝑗 ∉ 𝐼 ⇒ 𝐿𝑗 ≤ 𝑒𝑗 , 𝑓 𝑗 ≤ 𝑈 𝑗 , and 𝑗 ∈ 𝐼 ⇒ 𝑒𝑗 < 𝐿𝑗 .

We define 𝐫̃ such that supp
(

𝐵𝐫̃,𝓁

)

= ×𝑛
𝑗=1(𝜉

𝑗
𝑒𝑗 ,𝓁

, 𝜉𝑗
𝑓 𝑗 ,𝓁

) where:

𝑗 ∉ 𝐼 ⇒ 𝑒𝑗 ∶= 𝑒𝑗 , and 𝑗 ∈ 𝐼 ⇒ 𝑒𝑗 ∶= 𝐿𝑗 .

Clearly supp
(

𝐵𝐫̃,𝓁

)

⊂ 𝑃  and, moreover, supp (𝜙) ⊂ supp
(

𝐵𝐫̃,𝓁

)

 since:

supp (𝜙) ⊂ supp
(

𝐵𝐫,𝓁

)

∩ 𝑃 ⊂ supp
(

𝐵𝐫̃,𝓁

)

∩ 𝑃 .

So we only need to verify that 𝐫̃ ∈ 𝑅(𝜙). We will do so by showing that for any 𝐸𝐬̃,𝓁 ∈  𝐩+𝟏
𝓁  such that Ω𝐸𝐬̃,𝓁 ∩ supp

(

𝐵𝐫̃,𝓁

)

≠ ∅, we 
have that 𝐸𝐬̃,𝓁 ⊂ Ω𝓁+1.

Consider one such 𝐸𝐬̃,𝓁 ∈  𝐩+𝟏
𝓁 . If supp (𝜙) ∩ Ω𝐸𝐬̃,𝓁 ≠ ∅, then we must have 𝐸𝐬̃,𝓁 ⊂ Ω𝓁+1. Therefore, let supp (𝜙) ∩ Ω𝐸𝐬̃,𝓁 = ∅. Since 

supp
(

𝐵𝐫̃,𝓁

)

 is obtained by translating supp
(

𝐵𝐫,𝓁

)

 along dimensions 𝑗 ∈ 𝐼 by at most 𝑝𝑗 elements, there exists 𝐸𝐬,𝓁 ∈  𝐩+𝟏
𝓁  such that:

Ω𝐸𝐬,𝓁 ⊂ Ω𝓁+1, Ω𝐸𝐬,𝓁 ∩ supp
(

𝐵𝐫,𝓁

)

≠ ∅,

𝑗 ∈ 𝐼 ⇒ 𝑠𝑗 ∈ {𝑠̃𝑗 − 1, 𝑠̃𝑗}, 𝑗 ∉ 𝐼 ⇒ 𝑠𝑗 = 𝑠̃𝑗 ,

∃𝐵 ∈  such that supp (𝐵) ∩ Ω𝐸𝐬,𝓁 ≠ ∅.

Let:

supp (𝐵) = ×𝑛
𝑗=1(𝜉

𝑗
𝛼𝑗 ,𝓁

, 𝜉𝑗
𝛽𝑗 ,𝓁

), Ω𝐸𝐬̃,𝓁 = ×𝑛
𝑗=1(𝜉

𝑗
𝐶𝑗 ,𝓁

, 𝜉𝑗
𝐷𝑗 ,𝓁

).
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Then, for 𝑗 ∈ 𝐼 , the following inequalities hold:
𝛼𝑗 < 𝐶𝑗 (because supp (𝐵) ∩ supp (𝜙) ≠ ∅ ∧ supp (𝜙) ∩ Ω𝐸𝐬̃,𝓁 = ∅),

𝑒𝑗 ≤ 𝛼𝑗 < 𝑓 𝑗 ≤ 𝛽𝑗 (because supp (𝐵) ∩ supp (𝜙) ≠ ∅ ∧ supp (𝐵), supp
(

𝐵𝐫̃,𝓁

)

⊂ 𝑃 ).

Consequently, we have the following for 𝑗 ∈ 𝐼 :

(𝜉𝑗
𝛼𝑗 ,𝓁

, 𝜉𝑗
𝛽𝑗 ,𝓁

) ∩ (𝜉𝑗
𝐶𝑗 ,𝓁

, 𝜉𝑗
𝐷𝑗 ,𝓁

) ≠ ∅.

On the other hand, the above also holds true for 𝑗 ∉ 𝐼 since supp (𝐵) ∩ Ω𝐸𝐬,𝓁 ≠ ∅ and 𝐬 and ̃𝐬 only differ along dimensions in 𝐼 . Thus, 
we have that supp (𝐵) ∩ Ω𝐸𝐬̃,𝓁 ≠ ∅ as desired. ∎
Remark 4.  Given a domain Ω̌ ⊂ ℝ𝑛 and a sufficiently smooth map, 𝐅 ∶ Ω → Ω̌, the THB-spline complex defined on Ω can be used 
to define a structure-preserving discretization of the de Rham complex on Ω̌; the argument follows from [29], and we only recall it 
here for the specific two- and three-dimensional cases in (36) and (37).

Define 𝕍̌ 𝑘
ℎ ∶= {𝜙 ∶ 𝜄𝑘(𝜙) ∈ 𝕍 𝑘

ℎ }, 𝑘 = 0, 1,… , 𝑛, as the 𝑘-th space in the desired discrete de Rham complex on Ω̌, where 𝜄𝑘 are appro-
priate pullback operators. In particular, 𝜄0(𝜙) ∶= 𝜙◦𝐅, 𝜄𝑛(𝜙) ∶= det(𝐷𝐅)(𝜙◦𝐅), and:

• 𝑛 = 2, complex (36):
𝜄1(𝜙) ∶= det(𝐷𝐅)(𝐷𝐅)−1(𝜙◦𝐅);

• 𝑛 = 3, complex (37):
𝜄1(𝜙) ∶= (𝐷𝐅)T(𝜙◦𝐅), 𝜄2(𝜙) ∶= det(𝐷𝐅)(𝐷𝐅)−1(𝜙◦𝐅).

Then, as in [32], the following is an exact discrete de Rham complex:

𝕍̌ 0
ℎ

𝑑0
←←←←←←←←←←←→ 𝕍̌ 1

ℎ
𝑑1
←←←←←←←←←←←→ …

𝑑𝑛−1
←←←←←←←←←←←←←←←←←←←→ 𝕍̌ 𝑛

ℎ ,

where 𝑑𝑘 is the 𝑘-th differential operator in the sequences (36) and (37). 

6.  Numerical results

We have implemented admissible refinement and coarsening with 𝐪-boxes via an open-source package [40] that builds on top 
of Nutils [41], adapting the algorithms from [39], taking into account (20). This GitLab repository also contains the code used to 
generate the numerical results. We validate the optimal convergence rates of Theorem 2 for the Bézier projector; we will refer to 
it as the 𝐩-box Bézier projector. Secondly, we introduce an adaptive refinement approach for 𝐪-boxes. With this, we compare the 
𝐩-box Bézier projector to other local THB-spline projectors [23,24]. Even more, we apply the approach to adaptive approximation 
of a Poisson problem [42] where the solution contains a singularity. Lastly, we use the (𝐩 + 𝟏)-boxes to solve the time-dependent 
incompressible Navier-Stokes equations with a structure-preserving formulation. Note that all meshes presented are element meshes.

6.1.  Optimal convergence rates

The optimal convergence rate is checked over the unit cube in three dimensions, with Ω1 = (0, 1)3 and Ω2 = (0, 1∕2)3. Over this 
mesh, the target function 

𝑔(𝐱) =
3
∏

𝑖=1
sin(𝜋𝑥𝑖), (45)

is projected for various mesh element sizes ℎ𝑖. We only consider those ℎ𝑖 so that 𝑝ℎ𝑖 perfectly divides 1∕2, so that Ω2 can be represented 
by 𝐩-boxes of level 1 (see Assumption 3). The maximum 𝐿2 element error can be seen in Fig. 5, which perfectly agrees with Theorem 2.

6.2.  Adaptive refinement: Projection

For comparing the 𝐩-box Bézier projector to the local projectors of [23,24], we adaptively project the following function 

𝑓 (𝐱) = 1 − tanh

(

‖𝐱‖ − 0.3

0.05
√

2

)

, 𝐱 ∈ Ω1 ∶= (−1, 1)𝑛, (46)

till the 𝐿∞ projection error is below the tolerance 𝑡𝑜𝑙 = 10−4, where 𝑛 = 2, 3. The results are presented in Fig. 6.
For 𝑛 = 2, this is compared to the results from [23,24]. In [23,24], this benchmark problem is solved for 𝑝 = 2, 3, and initial meshes 

with 16 × 16 elements, and with a Dörfler constant 𝜃 = 0.5. For degree 𝑝 = 2, 𝐩-boxes can perfectly reproduce this initial mesh, but 
for degree 𝑝 = 3, we take an initial mesh consisting of 5 𝐩-boxes (15 mesh elements). The resulting 𝐩-box meshes for admissibility 
class 2 are also shown in Figs. 6(a) and 6(b). In Figs. 6(a) and 6(b), little difference between 𝐩-boxes and the methods of [23,24] can 
be observed by measuring in the 𝐿∞ norm (for comparison reasons). This is noteworthy because 𝐩-boxes refine multiple elements 
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Fig. 5. Convergence rate for various spline degrees 𝑝 and the theoretical convergence rates according to Theorem 2. The same refinement domain 
is used for all cases for a fair comparison.

Fig. 6. Error reduction during adaptive approximation of (46). The 𝐩-box Bézier projector (solid lines) for admissibility classes 𝑐 = 2, 3, 4 is compared 
to the projectors of [23] (dashed lines) and [24] (dashed-dotted lines) for admissibility class 𝑐 = 2. Results are shown for 𝐩 = (2, 2) (top left) or 
𝐩 = (3, 3) (top center) and dimension 𝑛 = 2. The final meshes of admissibility class 𝑐 = 2 for spline degrees 𝐩 = (2, 2) (bottom left) and 𝐩 = (3, 3)
(bottom center) are also presented. The results obtained for 𝑛 = 3 and 𝐩 = (2, 2, 2) (top right) and 𝐩 = (3, 3, 3) (bottom right) are also shown; we omit 
the 3D meshes since they are hard to visualize. Note that in the 𝑛 = 3 plots, the plots for 𝑐 = 3 and 𝑐 = 4 are overlapping.

simultaneously, which could potentially make them less effective at capturing finer details. However, there is no evidence to suggest 
that this is the case. Instead, 𝐩-boxes provide a straightforward refinement strategy.

The 𝐩-box approach can be easily extended to any dimension, with the results for 𝑛 = 3 presented in Fig. 6(c), where the errors are 
measured using the 𝐿2 norm. This is a significant advantage over the algorithm described in [23], which is limited to 2D. Although 
the other method [24] also works in higher dimensions, we do not have reference data to compare it with.

6.3.  Adaptive refinement: Poisson

The following example is inspired by [42], in which a Poisson problem is solved where the solution has a singularity. For this 
problem, lower admissibility classes were observed to use more degrees of freedom for a given level of accuracy. We refer the reader 
to [42] for an in-depth discussion of this method and how it is affected by admissibility classes. We have implemented the adaptive 
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refinement method for the following problem, where Ω = (−1, 1)2∖[0, 1] × [−1, 0] is built using three patches, 
Δ𝑢 = 𝑓,  on Ω, (47a)

𝑢 = 𝑔,  on 𝜕Ω. (47b)

We discretise the solution 𝑢ℎ with THB-splines that are 𝐶0 continuous across the patches, and on each patch, the mesh is given by a 
𝐩-box mesh. To investigate the convergence rate, we use the following manufactured solution

𝑢(𝑟, 𝜃) ∶= 𝑟2∕3 sin (2𝜃∕3) (48)

and 𝑔 is chosen as its restriction to 𝜕Ω. We use the following elementwise error estimator, 

𝜖2Ω𝐞𝓁 (𝑢ℎ) = ℎ2𝐞𝓁 ∫𝐹 (Ω𝐞𝓁 )
|𝑓 − Δ𝑢ℎ|2𝑑𝑉 + ℎ𝐞𝓁

∑

𝑖≠𝑗
∫Γ𝑖𝑗∩𝜕𝐹 (Ω𝐞𝓁 )

|∇𝑢ℎ ⋅ 𝐧|2𝑑𝑆, (49)

where ℎ𝐞𝓁  is the diameter of element Ω𝐞𝓁 , 𝐹  maps Ω𝐞𝓁  to the unit square, and Γ𝑖𝑗 ∶= 𝜕Ω𝑖 ∩ 𝜕Ω𝑗 is the boundary between the two 
patches. For a 𝐩-box Ω𝐸 , the estimator is given by,

𝜖2
Ω𝐸 (𝑢ℎ) ∶=

∑

Ω𝐞𝓁∈ ∶ Ω𝐞𝓁⊂Ω𝐸

𝜖2Ω𝐞𝓁 (𝑢ℎ). (50)

Lastly, we use Dörfler marking with constant 𝜃 = 0.9. The convergence rates can be seen in Fig. 7. We note two observations. Firstly, 
as observed in [42], imposing an admissibility class worsens the method’s pre-asymptotic behaviour. However, in the case of 𝐩-boxes, 
the various admissibility classes generate identical meshes of admissibility class 𝑐 = 2. This can be explained by Proposition 2 and the 
observation that the singularity is located at a patch corner. The closest 𝐩-box to the corner will always be an active regular 𝐩-box; 
as a result, all well-behaved 𝐩-boxes are border 𝐩-boxes so that the mesh is of admissibility class 𝑐 = 2. While this seems to present 
a downside of 𝐩-box refinement, we believe it more effectively highlights the advantage of THB-splines at the borders and corners, 
which 𝐩-box refinement is unable to exploit. See Remark 5.
Remark 5. In numerical experiments involving a singularity placed in the middle of the domain and performing adaptive projection, 
the discrepancy observed in Fig. 7 almost vanishes. This is because in this case, both 𝐩-box refinement and mesh-element refinement 
require the refinement of B-spline supports, i.e., multiple elements are refined simultaneously. The performance of 𝐩-box refinement 
in this setup is only slightly worse, and interestingly, mesh-element refinements for different admissibility classes yield similar results 
(i.e., no advantage of using very high admissibility classes). This suggests that the behaviour observed in Fig. 7 is because the 
corner singularity ends up being a best-case scenario for mesh-element refinement, as it allows the refinement of a single element, 
which coincides with the support of corner B-splines. For completeness, the results of this experiment are shown in Fig. 8. Notably, 
in Fig. 8(a), for 𝑝 = 2, the 𝐩-box mesh outperforms mesh-element refinement. However, the resulting meshes appear over-refined, 
suggesting a too large Dörfler marking parameter for mesh-element refinement (for 𝑝 = 2). To keep the discussion focused, we choose 
to forego tests that require finding optimal Dörfler parameters for the two different adaptivity approaches.

6.4.  Stability of the THB-spline de Rham complex

Stable discretizations of PDEs such as Maxwell’s equations and the Stokes equations on contractible domains require discrete 
de Rham complexes that are not only exact but also stable. By Theorem 3, any THB-spline complex resulting from a (𝐩 + 𝟏)-box 
refinement is exact. While a proof of the stability of such complexes is an open problem in isogeometric analysis and beyond the 
scope of this work, for completeness, we investigate the stability of the THB-spline complexes for different refinement configurations 
through numerical experiments. Similar experiments have also been performed in [30].

6.4.1.  Refinement configurations tested
As in [30], we will test the stability of the complex for 𝐩 = (4, 4) and the (𝐩 + 𝟏)-box meshes given in Fig. 9. For both patterns, 

the initial mesh consists of 4 × 4 (𝐩 + 𝟏)-boxes, so that the initial mesh is a tensor-product mesh and generates a stable complex by 
[29]. From this initial mesh, multiple meshes are generated through subsequent refinements. The first refinement pattern, shown in 
Fig. 9(a), is corner-to-corner refinement, which is graded towards three points: two opposite corners and the center of the domain. For 
𝓁 > 1, each subsequent mesh is constructed by considering the previous level-(𝓁 − 1) mesh and refining the four level-(𝓁 − 1) (𝐩 + 𝟏)-
boxes to the bottom-left and/or the top-right with respect to the three points. The result is an artificial mesh in which the admissibility 
class 𝑐 equals the total number of refinement levels 𝐿; e.g., 𝑐 = 5 for the mesh of Fig. 9(a). The second refinement pattern, shown 
in Fig. 9(b), is refinement along the diagonal. Here, for 𝓁 > 1, each subsequent refinement is performed by refining the level-(𝓁 − 1)
(𝐩 + 𝟏)-boxes that make up the diagonal and the first lower and upper diagonals. However, as diagonal refinement generates meshes 
with more elements, simulations were only possible for three levels of refinement. The generalized eigenvalue problems on these 
meshes are solved using the MultiParEig add-on in MATLAB.

6.4.2.  Maxwell eigenvalue problem:
We start by analysing the Maxwell eigenvalue problem on Ω = (0, 𝜋)2. For this problem, the appropriate de Rham complex is given 

as:

𝐻1
0 (Ω)

grad
←←←←←←←←←←←←←←←←←→ 𝐻0(curl; Ω)

curl
←←←←←←←←←←←←←←←→ 𝐿2

0(Ω), (51)
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Fig. 7. Convergence rates of benchmark 2 for degrees 𝐩 = (2, 2), (3, 3), (4, 4). The problem is solved for admissibility class 𝑐 = 2, 3, 4,∞. The 𝐩-box 
mesh results for admissibility classes 𝑐 = 2, 3, 4,∞ are also shown, but the plots overlap, so only one is visible..

where 𝐻0(curl; Ω) ∶= {𝐯 ∈ 𝐻(curl; Ω) ∶ 𝐯 × 𝐧 = 0 on 𝜕Ω}. The corresponding discrete spaces are given by
𝕍 0
ℎ,0 ∶= 𝕋Ψ,(𝑝0 ,𝑝1) ∩𝐻1

0 (Ω),

𝕍 1,∗
ℎ,0 ∶= 𝕋Ψ,(𝑝0−1,𝑝1) × 𝕋Ψ,(𝑝0 ,𝑝1−1) ∩𝐻0(curl; Ω),

𝕍 2
ℎ,0 ∶= 𝕋Ψ,(𝑝0−1,𝑝1−1) ∩ 𝐿2

0(Ω).

(52)

Then, the discrete problem formulations reads: find 𝐮ℎ ∈ 𝕍 1,∗
ℎ,0  and 𝜆ℎ ∈ ℝ, such that

(

curl𝐮ℎ, curl𝐯ℎ
)

= 𝜆ℎ
(

𝐮ℎ, 𝐯ℎ
)

, ∀𝐯ℎ ∈ 𝕍 1,∗
ℎ,0 . (53)

The analytical non-zero eigenvalues for the continuous formulation of the same problem are given by 𝜆 = 𝑚2
0 + 𝑚2

1 for 𝑚0, 𝑚1 ∈ ℕ. In 
addition, the number of discrete zero eigenvalues should equal dim(𝕍 0

ℎ,0).
In all cases tested, we observed no spurious zero eigenvalues. The first 50 non-zero eigenvalues for the different cases are shown 

in Fig. 10. We observed no spurious modes in any of the cases.

6.4.3.  Inf-sup condition
We also investigate the discrete inf-sup condition [43], which plays an essential role in Stokes flow and the Navier-Stokes equations. 

For this, we consider the domain Ω = (0, 2)2 and the spaces 𝕍 1
ℎ ∶= 𝕋Ψ,(𝑝0 ,𝑝1−1) × 𝕋Ψ,(𝑝0−1,𝑝1) and 𝕍 2

ℎ ∶= 𝕋
Ψ,(𝑝0−1,𝑝1−1)

. We compute the inf-
sup constant 𝛽ℎ defined as

inf
𝑞ℎ∈𝕍 2

ℎ

sup
𝐯ℎ∈𝕍 1

ℎ

∫Ω 𝑞ℎdiv𝐯ℎd𝑉
‖𝑞ℎ‖𝐿2(Ω)‖𝐯ℎ‖𝐻(div;Ω)

=∶ 𝛽ℎ, (54)

and investigate whether 𝛽ℎ goes to zero as the mesh is refined. For the same meshes considered in Fig. 9, Table 1 shows the computed 
𝛽ℎ. Here, we note that for 𝓁 = 1, the spaces are B-spline spaces and the complex is known to be stable (see [29]). For all refinement 
patterns, we observe that the calculated constant is very close to the B-spline constant on the initial tensor-product mesh and does 
not deteriorate with increasing refinement level. 

6.5.  Adaptive refinement: Structure-preserving discretisations of fluid flow problems

We validate the use of (𝐩 + 𝟏)-boxes for structure-preserving methods by solving the 2D vorticity-velocity-pressure formulation of 
the time-dependent incompressible Navier-Stokes equations on Ω × [0, 𝑇 ], where the mesh is allowed to refine and coarsen. We choose 
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Fig. 8. The Poisson problem of Section 6.3 solved on a square domain Ω = (−1, 1)2, with the manufactured solution 𝑢(𝑟, 𝜃) = 𝑟
2
3 . For the element 

mesh, B-spline supports are refined instead of single mesh elements of Section 6.3. As a result, the error is calculated over spline supports; see [13]. 
This problem is solved with admissibility classes 𝑐 = 2, 3, 4,∞. For both the 𝐩-box meshes and element meshes, the convergence lines coincide or 
are incredibly close. Notably, for 𝑝 = 2, the 𝐩-box mesh outperforms the element mesh, and for degrees 𝑝 = 3 and 𝑝 = 4, the gap between 𝐩-box and 
element meshes of Fig. 7 is reasonable.

Fig. 9. The two types of refinement patterns considered in Section 6.4. Fig. 9(a) shows corner-to-corner refinement, where we investigate both 
refinement into the corner of the domain and adjacent box refinement, which affects the admissibility class. It is important to note that this refinement 
pattern is highly artificial and serves as a worst-case scenario. In Fig. 9(b), we consider diagonal refinement, which is a more representative refinement 
pattern.

the domain Ω = [0, 1]2 where the outward facing normal is denoted by 𝐧. Denote 𝐿2(Ω) as the space of square-integrable functions, 
from which we define the Hilbert spaces of the de Rham complex (36):

𝐻1(Ω) ∶=
{

𝜎 ∈ 𝐿2(Ω) ∶ rot(𝜎) ∈
[

𝐿2(Ω)
]2 }

, (55)

𝐻(div; Ω) ∶=
{

𝐯 ∈ 𝐿2(Ω) ∶ div(𝐯) ∈ 𝐿2(Ω)
}

, (56)
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Fig. 10. The first 50 non-zero computed eigenvalues for the meshes of Fig. 9, where 𝓁 denotes the number of refinement levels considered. The 
analytical eigenvalues are also shown, and the spectra all look correct.

Table 1 
The calculated inf-sup constant for various meshes of Fig. 9 using 
THB-splines of degree 𝐩 = (4, 4).

 Refinement level  inf-sup constant
 corner-to-corner  diagonal

𝓁 = 1  0.911867527519551  0.911867527519557
𝓁 = 2  0.911867527519544  0.911867527519528
𝓁 = 3  0.911867527519541  0.911867527519521
𝓁 = 4  0.911867527519544  -
𝓁 = 5  0.911867527519547  -

where rot(𝜎) ∶= (𝜕𝑦𝜎,−𝜕𝑥𝜎) and div(𝐯) ∶= 𝜕𝑥𝑣𝑥 + 𝜕𝑦𝑣𝑦. In addition, define
𝐻0(div; Ω) ∶= { 𝐯 ∈ 𝐻(div; Ω) ∶ 𝐧 ⋅ 𝐯 = 0 on 𝜕Ω }.

The weak form of time-dependent vorticity-velocity-pressure formulation of the two-dimensional lid-driven cavity problem is given 
by finding 𝐮 ∈ 𝐻0(div; Ω), 𝜔 ∈ 𝐻1(Ω), 𝑝 ∈ 𝐿2(Ω), such that for all 𝐯 ∈ 𝐻0(div; Ω), 𝜎 ∈ 𝐻1(Ω), 𝑞 ∈ 𝐿2(Ω): 

(𝜕𝑡𝐮, 𝐯)Ω + (𝜔 × 𝐮, 𝐯)Ω + Re−1(rot(𝜔), 𝐯)Ω − (𝑝, div(𝐯))Ω = 0, (57a)

(div(𝑢), 𝑞)Ω = 0, (57b)

(𝜔, 𝜎)Ω − (𝐮, rot(𝜎))Ω + (𝐮∥ × 𝐧, 𝜎)𝜕Ω = 0. (57c)

With initial conditions 𝐮0 = 𝟎 and the boundary conditions
𝐮∥(𝐱) ∶= (1, 0), 𝐱 ∈ Γtop ⊂ 𝜕Ω, (58)

𝐮∥(𝐱) ∶= 𝟎, 𝐱 ∈ 𝜕Ω∖Γtop. (59)

Where Γtop ⊂ 𝜕Ω is the lid of Ω. We use the discrete spaces (38), which we supplement with the boundary conditions:
𝕍 1
ℎ,𝟎 ∶= { 𝐯 ∈ 𝕍 1

ℎ ∶ 𝐯 ⋅ 𝐧 = 0 }. (60)
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Fig. 11. The numerical results of Method (62) for degree 2. The mesh has been overlayed on the plots. The colors show the magnitude of the 
velocity field, and the contourlines show the value of the streamfunction, where the contour height has been taken from [44, Table 7]). The results 
are shown at time 𝑡 = 0.0 (top left), at time 𝑡 = 3.0 (top right), and at time 𝑡 = 80.0 (bottom left). The bottom right figure compares the vertical 
velocity (dashed line) at 𝑡 = 80.0 on the horizontal center-line with benchmark results from [44, Table 10].

Lastly, we temporally discretize the equations using the Crank-Nicolson method, with a time step of Δ𝑇 . Then, for time-step 𝑘, at 
time 𝑡𝑘 ∶= Δ𝑇 ⋅ 𝑘, we discretize the quantities at each full time-step as [⋅]𝑘ℎ and define the half time-step quantities: 

[⋅]
𝑘+ 1

2
ℎ ∶= 1

2
(

[⋅]𝑘+1ℎ + [⋅]𝑘ℎ
)

. (61)

Define the initial spaces as 𝜔0
ℎ = 0,𝐮0ℎ = 𝟎, 𝑝0ℎ = 0. We can now introduce our discrete structure-preserving formulation for time step 

𝑘 ≥ 0 where the quantities 𝜔𝑘
ℎ ∈ 𝕍 0

ℎ ,𝐮
𝑘
ℎ ∈ 𝕍 1

ℎ,𝟎, 𝑝
𝑘
ℎ ∈ 𝕍 2

ℎ  are known. Find 𝜔𝑘+1
ℎ ∈ 𝕍 0

ℎ ,𝐮
𝑘+1
ℎ ∈ 𝕍 1

ℎ,𝟎, 𝑝
𝑘+1
ℎ ∈ 𝕍 2

ℎ , such that: 
(

𝐮𝑘+1ℎ − 𝐮𝑘ℎ
Δ𝑇

, 𝐯ℎ

)

Ω

+ (𝜔
𝑘+ 1

2
ℎ × 𝐮

𝑘+ 1
2

ℎ , 𝐯ℎ)Ω + Re−1(rot(𝜔
𝑘+ 1

2
ℎ ), 𝐯ℎ)Ω − (𝑝

𝑘+ 1
2

ℎ , div(𝐯ℎ))Ω = 0, ∀𝐯ℎ ∈ 𝕍 1
ℎ,𝟎, (62a)

(𝑞ℎ, div(𝐮
𝑘+ 1

2
ℎ )Ω = 0, ∀𝑞ℎ ∈ 𝕍 2

ℎ , (62b)

(𝜔
𝑘+ 1

2
ℎ , 𝜎ℎ)Ω − (𝐮

𝑘+ 1
2

ℎ , rot(𝜎ℎ))Ω + (𝐮∥ × 𝐧, 𝜎ℎ)𝜕Ω = 0, ∀𝜎ℎ ∈ 𝕍 0
ℎ . (62c)
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For refinement/coarsening, we introduce the following residual-based error indicator at time-step 𝑘 for a (𝐩 + 𝟏)-box Ω𝐸 :

𝜂2𝑘(𝐸 ) ∶=
∑

𝑒∈𝐸

‖

‖

‖

‖

‖

‖

𝐮𝑘+1ℎ − 𝐮𝑘ℎ
Δ𝑇

+ 𝜔
𝑘+ 1

2
ℎ × 𝐮

𝑘+ 1
2

ℎ + Re−1curl(𝜔
𝑘+ 1

2
ℎ ) + grad(𝑝

𝑘+ 1
2

ℎ )
‖

‖

‖

‖

‖

‖

2

𝐿2(Ω𝑒)

. (63)

Then, based on Dörfler marking, after each time step, we refine/coarsen the mesh, leading to algorithm 1.  We solve the incompressible 

Algorithm 1 The adaptive refinement/coarsening algorithm for the incompressible Navier-Stokes equations.
1: given Ψ and initial conditions 𝜔0

ℎ,𝐮
0
ℎ, 𝑝

0
ℎ

2: for 𝑘 = 0 to 𝐾 ∶= 𝑇 ∕Δ𝑇 − 1 do
3:  loop
4:  𝜔𝑘+1

ℎ ,𝐮𝑘+1ℎ , 𝑝𝑘+1ℎ ← solving (62)
5:  r ← estimate error via (63)
6:  if max r < 𝜖 then
7:  break out of loop
8:  else
9:  refine Ψ based on r and Dörfler marking with constant Θr
10:  end if
11:  end loop
12:  c ← estimate error via (62)
13:  coarsen Ψ based on c and dörfler marking with constant Θc
14: end for

Navier-Stokes equations for Re = 103, with degree 𝐩 = (2, 2), and refinement and coarsening parameters 𝜃𝑟 = 0.75, 𝜃𝑐 = 0.02 and start 
with a grid of 3 × 3 (𝐩 + 𝟏)-boxes (or an equivalent 9 × 9 element mesh), and limit refinement up to 4 levels and the target tolerance 
is chosen to be 𝜖 = 10−3. In practice, it was observed that coarsening every time step was excessive, and usually, the subsequent 
adaptive-refinement loop would reconstruct a similar mesh. Hence, it was chosen to perform coarsening every 10 time-steps. In 
Fig. 11, the results are shown for time-steps 𝑡 = 0.0, 𝑡 = 3.0 and 𝑡 = 80.0. In addition, we compare our results to the benchmark results 
from [44], which agree well. Note that the small discrepancy at the domain borders is a consequence of weak imposition of tangential 
boundary conditions in the weak form.

7.  Conclusions

In this work, we introduced a new adaptive refinement strategy for THB-splines designed to simplify the development of advanced 
IGA methods where certain critical application-specific mesh properties need to be satisfied. All theoretical results in the paper are 
valid for THB-splines of arbitrary smoothness, any admissibility class, and in an arbitrary number of dimensions, 𝑛. The core idea is 
the reinterpretation of the (hierarchical) mesh as a macro-element mesh, where each macro-element is 𝑞1 ×… × 𝑞𝑛-elements in size 
and is referred to as a 𝐪-box. This reinterpretation leads to a straightforward extension of standard adaptive refinement and coarsening 
algorithms for THB-splines to our setting: instead of refining individual elements, we refine 𝐪-boxes. By tailoring the block size 𝐪 to 
the specific application, this approach can circumvent the need for complex application-specific a posteriori checks and corrections. 
We focus on two such applications and our main contributions are threefold:

• The development of a Bézier-type local projector using 𝐩-box refinement (𝐪 = 𝐩). This strategy guarantees local linear indepen-
dence of the basis on each refined block, thereby resolving four key deficiencies of a previous formulation: it is fully constructive, 
simple to implement, general with respect to mesh admissibility, and applicable to THB-splines of arbitrary smoothness.

• The creation of an adaptive framework for structure-preserving methods using (𝐩 + 1)-box refinement (𝐪 = 𝐩 + 𝟏). This is the 
first adaptive IGA method that guarantees, a priori, the exactness of the THB-spline de Rham complex on the adaptively refined 
mesh. This result significantly simplifies the application of adaptive IGA to problems in electromagnetism and incompressible 
fluid dynamics.

• Numerical verification of the framework’s performance. We demonstrated optimal convergence rates for adaptive approximation 
with the 𝐩-box projector and successfully applied the (𝐩 + 1)-box strategy to an adaptive, structure-preserving simulation of the 
incompressible Navier-Stokes equations, confirming the practical viability of our approach.

Future research will focus on investigating the disparity between 𝐪-boxes and mesh-element refinement for border/corner singular-
ities. We want to introduce refinement of a single element at the corner, by considering corner macro-elements of 1 ×⋯ × 1-elements in 
size. For this, the remaining border macro-elements have to be redefined as macro-elements of intermediate sizes between 𝑞1 ×⋯ × 𝑞𝑛
and 1 ×⋯ × 1, so that the “shell” of macro-elements at the border of the domain is one element thick. This could be achieved by 
using knot sequences for the definition of 𝐪-boxes, rather than breakpoint sequences; however, in this setup, ensuring nested 𝐪-box 
refinement is less straightforward.
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Appendix A.  Generic q-box results

The proof of Propositions 1 is straightforward.
Proof: Proposition 1.  By the definition of the THB-splines, only level 𝑘 ≤ 𝓁 THB-splines have to be considered. Clearly, a level 𝑘 < 𝓁
THB-spline 𝑇𝑗 can be written as a linear combination of ex,𝓁

𝓁  B-splines, due to it being truncated to level 𝑘, 

𝑇𝑗 ∈ spanex,𝓁
𝓁 . (A.1)

As the supports of 𝐵 ∈ ex,𝓁
𝓁  are 𝑝𝑖 + 1 elements wide, of which at least one element cannot be contained in Ω𝓁 , these supports can 

only cover level-𝓁 border 𝐪-boxes. But then, no spline of level 𝑘 < 𝓁 can have support on level-𝓁 regular 𝐪-boxes. ∎
The proof of Proposition 2 is the direct result of the following two Lemmas.

Lemma 7. Given any 𝐪-box mesh consisting of active border 𝐪-boxes and active regular 𝐪-boxes where 𝑞𝑖 ≥ 𝑝𝑖. Then all the active 𝐪-boxes 
are of admissibility class 𝑐 = 2.

Proof.  Consider an active level-𝓁 𝐪-box Ω𝐸𝐫,𝓁  for which we want to show that no splines of level 𝓁 − 2 or lower have support. 
It is sufficient to only consider level-(𝓁 − 2) B-splines, as due to the truncation operator, any lower level spline becomes a linear 
combination of level-(𝓁 − 2) B-splines. Truncating a level-(𝓁 − 2) B-spline to level 𝓁 − 1, a linear combination of ex,𝓁−1

𝓁−1  is retrieved. 
trunc𝓁−1

(

𝓁−2
)

⊂ spanex,𝓁−1
𝓁−1 . (A.2)

Crucially, the splines of ex,𝓁−1
𝓁−1  have supports of at most 𝑝𝑖 + 1 elements in direction 𝑖. Secondly, these splines must have support 

outside of Ω𝓁−1, and as such, can only penetrate Ω𝓁−1 at most 𝑝𝑖 elements in each direction. Hence, within Ω𝓁−1, these splines can 
only be supported by level-(𝓁 − 1) border 𝐪-boxes. But as these level-(𝓁 − 1) border 𝐪-boxes are active, these truncated level-(𝓁 − 2)
B-splines have no support on any active level-𝓁 𝐪-box, as desired. ∎
Lemma 8. Any well-behaved 𝐪-box of admissibility class 2 with 𝑞𝑖 ≥ 𝑝𝑖 is an active border 𝐪-box.
Proof.  Without loss of generality, assume that this well-behaved 𝐪-box Ω𝐸𝐫,𝓁  is of level 𝓁 > 1. Then, by definition, it neighbours some 
level-𝑚 < 𝓁 (potentially not active) element Ω𝑒. Hence, a B-spline 𝐵𝐣,𝑚 ∈ 𝑚 exsists that has support on both Ω

𝐸𝐫,𝓁  and Ω𝑒.

In addition, for any active 𝐪-box Ω𝐸𝐬,𝑘  of level 𝑘, by Assumption 3, Ω𝑘 contains at least 
∏𝑑

𝑖=1 2𝑝 level-𝑘 mesh elements, of which 
∏𝑑

𝑖=1 𝑝 elements are contained in Ω
𝐸𝐬,𝑘 . As a result, a level-𝑘 B-spline 𝐵𝐢,𝑘 ∈ 𝑘 exists with support on Ω

𝐸𝐬,𝑘 , and supp
(

𝐵𝐢,𝑘

)

⊂ Ω𝑘. 
Hence, any active 𝐪-box of level 𝑘 supports THB-splines of level 𝑘.

But then, since Ω𝐸𝐫,𝓁  only supports splines of two levels, these levels must be 𝓁 − 1 and 𝓁, showing that Ω𝐸𝐫,𝓁  is an active border 
𝐪-box, as it cannot contain any higher level-𝑘 > 𝓁 active border 𝐪-boxes. ∎
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Proof: Proposition 2.  This is a direct consequence of Proposition 1, Lemma 7 and Lemma 8. ∎

Appendix B.  Proof of Lemma 1

For Lemma 1, we only need to consider active border 𝐩-boxes and regular 𝐩-boxes. By Proposition 1, regular 𝐩-boxes are never 
overloaded w.r.t. Ψ, leaving the subject of active border 𝐩-boxes for this section.

Before proceeding with the details of the proof, we would like to highlight the intuition behind the steps. For the active border 
𝐩-box Ω𝐸𝐫,𝓁 , we want to show that the set

 ∶= { 𝑇 ∈ Ψ ∶ Ω𝐸𝐫,𝓁 ∩ supp
(

𝑇
)

≠ ∅ }

is linearly independent on Ω𝐸 . For this, we consider an ordering of the mesh-elements (𝐞1, 𝐞2, 𝐞3,…) for 𝐞𝑖 ∈ 𝐸 , and define the sets
𝑖 ∶= { 𝑇 ∈  ∶ Ω𝐞𝑖 ∈ supp

(

𝑇
)

, Ω𝐞𝑗 ∉ supp
(

𝑇
)

, ∀𝑗 = 1,… , 𝑖 − 1 }.

Then,  = ∪𝐞𝑖∈𝐸𝑖 and if each 𝑖 is linearly independent on Ω𝐞𝑖 , so must  be on Ω𝐸 . The primary benefit of this approach is that on 
each element, all splines are polynomials, which simplifies the proof of linear independence. However, finding the correct ordering 
is not trivial, and depends on the active border 𝐩-box Ω𝐸𝐫,𝓁  and its relation to the boundary of the refinement domain Ω𝓁 .

In Section B.1, this relation between border 𝐩-boxes of level 𝓁 and refinement domain Ω𝓁 is studied. Section B.2 uses this relation 
to show that B-splines of different levels span the same polynomial spaces over mesh-elements. Section B.3 builds on top of this 
relation by identifying the starting element 𝐞1, which we call a well-behaved border element, and constructing an ordering from it. 
Which is used in the proof of Theorem 1.

Fig. B.12. In two dimensions, there are three distinct border 𝐩-boxes Ω𝐸𝐫,𝓁  based on 𝜕Ω𝐸𝐫,𝓁 ∩
(

𝜕Ω𝓁∖𝜕Ω
)

, shown with a black line or a filled circle. 
Please note that each boundary includes a unique corner vertex, which is indicated by an empty circle. Here 𝜕Ω𝐸𝐫,𝓁 ∩

(

𝜕Ω𝓁∖𝜕Ω
) is an edge (a), a 

concave corner (b) or a convex corner (c), and the well-behaved border elements are marked with a ×. For each well-behaved border element 𝐞𝓁 , 
the mesh-elements of 𝐸(𝐞𝓁) are given by translation vectors starting from 𝐞𝓁 , showing an ordering of the mesh-elements.

B.1.  Refinement border characterization

For any given mesh element or 𝐩-box, its boundary can be decomposed into vertices, edges, faces, etc. Note that intersections 
of multiple hyperplanes reproduce each of these. As a result, each possible boundary consisting of combinations of vertices, edges, 
faces, etc, can be reduced to appropriate unions of hyperplane intersections. In this section, we exploit the refinement pattern of 
pboxes/THB-splines to introduce an element/pbox boundary description in terms of hyperplanes.

Consider level 𝓁 > 1, and an active level-𝓁 (macro-)element Ω𝜅 ⊂ Ω𝓁 . E.g., a mesh element for 𝜅 = 𝐞𝓁 ∈ Ψ or a 𝐩-box for 𝜅 =

𝐸𝐫,𝓁 ∈  𝐩
Ψ. By construction, Ω𝜅 = ×𝑛

𝑖=1

(

𝜉𝑖
𝑘𝑖 ,𝓁

, 𝜉𝑖
𝑘𝑖+𝑡𝑖 ,𝓁

)

 for indices 𝑘𝑖, 𝑡𝑖. This (macro-)element is obtained by bisecting a level-(𝓁 − 1)

(macro-)element, we will denote it with Ω⋆𝜅 = ×𝑛
𝑖=1

(

𝜉𝑖
𝐾 𝑖 ,𝓁−1

, 𝜉𝑖
𝐾 𝑖+𝑇 𝑖 ,𝓁−1

)

 for indices 𝐾 𝑖, 𝑇 𝑖. Moreover, for each 𝑖, either 𝜉𝑖
𝑘𝑖 ,𝓁

= 𝜉𝑖
𝐾 𝑖 ,𝓁−1

or 𝜉𝑖
𝑘𝑖+𝑡𝑖 ,𝓁

= 𝜉𝑖
𝐾 𝑖+𝑇 𝑖 ,𝓁−1

. Hence, 𝜅 and ⋆𝜅 share a corner vertex/extreme point, that is, a level-(𝓁 − 1) breakpoint, which we denote as 
𝐯.  Since Ω𝜅 is active, we must have Ω𝜅 ⊂ Ω⋆𝜅 ⊆ Ω𝓁 so that we can decompose 𝜕Ω𝜅 ∩ 𝜕Ω𝓁∖𝜕Ω into subsets defined as the intersection 
of one or multiple hyperplanes containing the corner vertex 𝐯; see Fig. B.12.
Definition 13. Given Ω𝜅 , let 𝐯 be the corner vertex and breakpoint Ω𝜅 shares with Ω⋆𝜅 . For a set of vectors 𝔫 ∶= {𝐧1,𝐧2,…}, 𝐻(𝜅,𝔫)
is called a shared-boundary set and it is defined as

𝐻(𝜅,𝔫) ∶=
{

𝑃𝐯,𝐧 ∩ (𝜕Ω𝜅∖𝜕Ω) ∶ 𝐧 ∈ 𝔫
}

, (B.1)

where 𝑃𝐯,𝐧 are intersections of hyperplanes passing through 𝐯,
𝑃𝑖 ∶= ℝ𝑖−1 ×

{

𝑣𝑖
}

×ℝ𝑛−𝑖,

𝑃𝐯,𝐧 ∶=
⋂

𝑖∶𝑛𝑖≠0
𝑃𝑖.

(B.2)
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When for a level-𝓁 (macro-)element 𝜅, 𝐻(𝜅,𝔫) = 𝜕Ω𝜅 ∩
(

𝜕Ω𝓁∖𝜕Ω
) and 𝔫 has the smallest cardinality, we will denote it as 𝔫b or 𝔫b

𝜅
when 𝜅 is not clear from context. For the 𝐩-boxes of Fig. B.12,

a)𝔫b
𝐸𝐫1 ,𝓁

=
{[

1
0

]}

, b)𝔫b
𝐸𝐫2 ,𝓁

=
{[

1
1

]}

, c)𝔫b
𝐸𝐫3 ,𝓁

=
{[

1
0

]

,
[

0
1

]}

. (B.3)

B.2.  Equivalence of B-spline subspaces of different levels

On a given mesh element 𝐞𝓁 ∈ 𝓁 , the supported B-splines of level-(𝓁 − 1) and level-𝓁 are both linearly independent, count the 
same number of basis functions, and span the same space. This same relation between splines of different levels also holds when 
imposing boundary conditions on element Ω𝑒, such that there are fewer supported splines. For example, on boundaries described by 
shared-boundary sets such as 𝐻(𝐞𝓁 ,𝔫b).

The boundary conditions we wish to impose are inspired by the definition of in,𝑘
𝓁 . Let 𝐵𝐣,𝓁 ∈ in,𝑘

𝓁 , so that supp
(

𝐵𝐣,𝓁

)

⊆ Ω𝑘. Then, 
for point 𝐱 ∈ 𝜕Ω𝑘 with axis aligned normal 𝐧 = 𝐢̂ along axis 𝑖,

𝐵𝐣,𝓁(𝐱) = 0,∇𝐧𝐵𝐣,𝓁(𝐱) = 0,… ,∇𝑝𝑖−𝑚𝑖

𝐧 𝐵𝐣,𝓁(𝐱) = 0, (B.4)

where ∇𝐧 is the partial derivative along the vector 𝐧. Observe that the B-splines that satisfy (B.4) vanish at a facet of 𝐞𝓁 with normal 
𝐧 = 𝐢̂, or even a hyperplane with normal 𝐧 = 𝐢̂ going through 𝐱. We can naturally extend (B.4) to 𝑘-dimensional sets (e.g. vertices and 
edges) for 𝑘 < 𝑛 − 1 by considering them as intersections of hyperplanes.

Intersecting hyperplanes to construct lower-dimensional boundary sets was the motivation behind the definition of shared-
boundary sets. Given a shared-boundary set 𝐻(𝐞𝓁 ,𝔫) of element Ω𝐞𝓁  with corner vertex 𝐯 and a supported B-spline 𝐵 . Call 𝐵 vanishing 
𝐻(𝐞𝓁 ,𝔫), if for each 𝐧 ∈ 𝔫, there is at least one 𝑖 such that 𝑛𝑖 ≠ 0 and: 

∇0
𝐢̂
𝐵 (𝐱) = 0,… ,∇𝑝𝑖−𝑚𝑖

𝐢̂
𝐵 (𝐱) = 0, ∀𝐱 ∈ 𝑃𝐯,𝐧. (B.5)

Since B-splines are piecewise-polynomial tensor-product functions, this definition places restrictions on the polynomial components 
of the spline 𝐵 . In Fig. B.13, an example of polynomials is given for shared-boundary sets of hyperplanes. For more general shared-
boundary sets, the resulting polynomials are combinations of those described in Fig. B.13.

Fig. B.13. A polynomial example of vanishing over a boundary set. Over the element Ω𝑒 = (0, 1) × (0, 1), two different shared-boundary sets are 
drawn, indicated by a thick red line. For the polynomial degrees 𝑝 = (3, 2) and continuity 𝑚 = (1, 2), the tensor product decomposition of the vanishing 
polynomials is given. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For vanishing B-splines, we have the following result.
Lemma 9. Given an element 𝐞𝓁 ∈ 𝓁 of a B-spline space of degree 𝐩 and internal knot multiplicity 𝐦 and a shared-boundary set 𝐻(𝐞𝓁 ,𝔫). 
The subset of supported level-(𝓁 − 1) B-spline basis functions that vanish over 𝐻(

𝐞𝓁 ,𝔫
) is a change of basis to the subset of supported level-𝓁

B-spline basis functions that vanish over 𝐻(

𝐞𝓁 ,𝔫
)

.

Proof.  It is sufficient to show that B-splines of different levels are changes of basis when a single hyperplane defines the shared-
boundary set. For general shared-boundary sets, the vanishing splines are combinations of splines that vanish over different hyper-
planes, and do not depend on the spline level.

For a single hyperplane, the normal is axis-aligned, and the tensor product B-splines are restricted in one dimension. Without loss 
of generality, we consider the one-dimensional case. Then, Ω𝑒 ∶= (𝜉𝑘,𝓁 , 𝜉𝑘+𝑚,𝓁) = (𝜉𝐾,𝓁−1,

1
2 𝜉𝐾+𝑚,𝓁−1) for the lowest indices 𝑘,𝐾 and 

we pick 𝐻(𝑒, [+1]) = 𝜉𝑘,𝓁 . Note, the element is written in terms of knot-indices instead of break-points, so that the right mesh element 
boundary is 𝑚 knots over. Then, the subsets of vanishing B-splines and polynomials are:

{

𝐵𝑘,𝓁 ,… , 𝐵𝑘+𝑚−1,𝓁

}

⊂ 𝓁 , (B.6)
{

𝐵𝐾,𝓁−1,… , 𝐵𝐾+𝑚−1,𝓁−1

}

⊂ 𝓁−1, (B.7)
{

(

𝑥 − 𝜉𝑘,𝓁
)𝑝−𝑚+1,… ,

(

𝑥 − 𝜉𝑘,𝓁
)𝑝
}

⊂ 𝑝(Ω𝑒). (B.8)

Each of these function sets spans the same space with the same number of basis functions. Ending our proof. ∎
We end this section with the following relation to vanishing splines and in,𝓁

𝓁 .

Lemma 10. For an active level-𝓁 𝐩-box 𝐸𝐫,𝓁 , the set of B-splines of 
in,𝓁
𝓁  with support on 𝐸𝐫,𝓁 and the set of level-𝓁 B-splines with support 

on 𝐸𝐫,𝓁 that vanish over 𝐻(𝐸𝐫,𝓁 ,𝔫
b) are a basis for the same space. 
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Proof.  By construction, every B-spline of in,𝓁
𝓁  vanishes over 𝐻(𝐸𝐫,𝓁 ,𝔫

b). For the converse, fix the level-𝓁 B-spline 𝐵 with support on 
Ω𝐸𝐫,𝓁  and which vanishes over 𝐻(𝐸𝐫,𝓁 ,𝔫

b). Without loss of generality, for each 𝐧 ∈ 𝔫b we assume that all entries are non-negative. 
We note that the support of a level-𝓁 B-spline is at most 𝑝𝑖 + 1 level-𝓁 elements wide, so that it can only be supported by 𝐸𝐫,𝓁 and its 
direct neighbours. Then, let 𝐸𝐤,𝓁−1 = ⋆𝐸𝐫,𝓁 so that 𝐵 can only have support on 𝐸

𝐤̃,𝓁−1
 for ̃𝑘𝑖 = 𝑘𝑖, 𝑘𝑖 − 1 for all 𝑖, provided 𝐸

𝐤̃,𝓁−1
 exists. 

If for all 𝐸
𝐤̃,𝓁−1

, Ω𝐸
𝐤̃,𝓁−1 ⊂ Ω𝓁 we are done. Else, consider a 𝐸𝐤̃,𝓁−1

 so that Ω𝐸
𝐤̃,𝓁−1 ∩ Ω𝓁 = ∅. Then, ∅ ≠ 𝜕Ω

𝐸
𝐤̃,𝓁−1 ∩ 𝜕Ω𝐸𝐫,𝓁 ⊂ 𝐻(𝐸𝐫,𝓁 ,𝔫

b)

and 𝐵 will vanish over 𝜕Ω𝐸
𝐤̃,𝓁−1 ∩ 𝜕Ω𝐸𝐫,𝓁 , showing that 𝐵 is not supported on 𝐸

𝐤̃,𝓁−1
. Showing that supp (𝐵)

⊂ Ω𝓁 . ∎

B.3.  Well-behaved border (macro-)elements

The following definition introduces well-behaved border elements and the associated well-behaved border macro-elements.
Definition 14. Given an active border 𝐩-box 𝐸𝐫,𝓁 , call an element 𝐞𝓁 ∈ 𝐸𝐫,𝓁 a well-behaved border element if,

𝜕Ω𝐞𝓁 ∩ 𝑃𝐯,𝐧 ≠ ∅, ∀𝑃𝐯,𝐧 ∈ 𝐻
(

𝐸𝐫,𝓁 ,𝔫
b
)

. (B.9)

For every element 𝐞̃𝓁 ∈ 𝐸𝐫,𝓁 that is not a well-behaved border element, assign it to the set 𝐸(𝐞𝓁) ⊂ Ψ if 𝐞𝓁 ∈ 𝐸𝐫,𝓁 is the closest (in 
the 𝑙1 metric) well-behaved border element to 𝐞̃𝓁 . By convention, 𝐸(𝐞𝓁) also contains the well-behaved border element 𝐞𝓁 .
Note that the closest well-behaved border element in the above definition is unique. Indeed, for border 𝐩-box 𝐸𝐫,𝓁 , let 𝐞𝓁 , 𝐞𝓁 + 𝐭 ∈ 𝐸𝐫,𝓁
be well-behaved border elements, then we must have

𝜕Ω𝐞𝓁 ∩ 𝑃𝐯,𝐧 ≠ ∅ ≠ 𝜕Ω𝐞𝓁+𝐭 ∩ 𝑃𝐯,𝐧, ∀𝑃𝐯,𝐧 ∈ 𝐻
(

𝐸𝐫,𝓁 ,𝔫
b
)

,

which can only occur if 𝐭 ⟂ 𝐧 for all 𝐧 ∈ 𝔫b. This observation allows for a unique, closest, well-behaved border element. For these 
macro-elements, we have the following elementwise linear independence result.
Proposition 3. Let 𝐸𝐫,𝓁 be an active border 𝐩-box and consider a well-behaved border element 𝐞𝓁 ∈ 𝐸𝐫,𝓁 . Then, for any 𝐭1 = (𝑡11,… , 𝑡𝑛1) such 
that 𝐞𝓁 + 𝐭1 ∈ 𝐸(𝐞𝓁), the following set of THB-splines on Ω𝐞𝓁+𝐭1  is linearly independent,

{

𝑇𝑗 ∶ supp
(

𝑇𝑗
)

∩ Ω𝐞𝓁+𝐭1 ≠ ∅,  and, supp
(

𝑇𝑗
)

∩ Ω𝐞𝓁+𝐭 = ∅,  where 𝐞𝓁 + 𝐭 ∈ 𝐸𝐞𝓁 , 𝐭1 ≠ 𝐭 ∧ |𝑡𝑖1| ≥ |𝑡𝑖|∀𝑖
}

. (B.10)

The proof of Proposition 3 for well-behaved elements is a direct result of Lemma 9 and 10. However, for general mesh elements, we 
require some intermediate results. First, we have that for most elements, Proposition 3 is trivial, due to the following Lemma from 
[23].

Lemma 11  ([23, Lemma 1.3.1]). Let 𝐞𝓁 be a well-behaved border element with macro-element 𝐸(𝐞𝓁). In addition, let 𝐞𝓁 + 𝐭1 ∈ 𝐸(𝐞𝓁)
and Ω𝐞𝓁+𝐭 ⊂ Ω⋆(𝐞𝓁+𝐭1) with 𝐭1 ≠ 𝐭, |𝑡𝑖| ≤ |𝑡𝑖1| for all 𝑖. Then, for any B-spline 𝐵 ∈ ex,𝓁

𝓁−1, we have that if Ω𝐞𝓁+𝐭1 ⊂ supp
(

trunc𝓁
(

𝐵
))

, then 
Ω𝐞𝓁+𝐭 ⊂ supp

(

trunc𝓁
(

𝐵
))

. 
And as a consequence.
Corollary 2. Consider a well-behaved border element 𝐞𝓁 with macro-element 𝐸(𝐞𝓁). Then, for the element 𝐞𝓁 + 𝐭1 ∈ 𝐸(𝐞𝓁) with any 𝑡𝑖1 odd, 
then the set of splines given in (B.10) of Proposition 3 consists solely out of level-𝓁 B-splines.
Proof.  For Proposition 3, we only consider the splines that have no support on Ω𝐞𝓁+𝐭 for 𝐭1 ≠ 𝐭, |𝑡𝑖| ≤ |𝑡𝑖1| for all 𝑖. In addition, since the 
mesh is assumed to be of admissibility class 2, the only possible splines are either level-𝓁 B-splines or truncated level-(𝓁 − 1) B-splines. 
Pick 𝐭 as the vector with only even entries, by subtracting one from the odd entries of 𝐭1; see Fig. B.14. Then, Ω𝐞𝓁+𝐭 ⊂ Ω⋆(𝐞𝓁+𝐭1) and 
by Lemma 11 each truncated level-(𝓁 − 1) B-spline is supported on Ω𝐞𝓁+𝐭 . ∎

For the remaining elements, the difficulty is in incorporating the fact that the THB-splines cannot have support on prior elements 
(with prior as in Proposition 3). Within the tools we have introduced, this can be achieved by introducing a new shared-boundary set. 
The relevant splines vanish over the hyperplanes separating these elements, as shown in Fig. B.14. These hyperplanes pass through 
the common vertex of 𝐞𝓁 + 𝐭1 and ⋆(𝐞𝓁 + 𝐭1), so that they are described by 𝐻

(

𝐞𝓁 + 𝐭1,𝔫t
𝐭
)

: 

𝔫t
𝐭 ∶=

{

𝑡𝑖 𝐢̂ ∶ 𝑡𝑖 ≠ 0
}

, (B.11)

where ̂𝐢 is the dimension-𝑖 axis-aligned unit vector. Then, the relevant B-splines with support on 𝐞𝓁 + 𝐭1 and without support on any 
𝐞𝓁 + 𝐭 ∈ 𝐸(𝐞𝓁), 𝐭 ≠ 𝐭1, |𝑡𝑖| ≤ |𝑡𝑖1| for all 𝑖, vanish over 𝐻

(

𝐞𝓁 + 𝐭1,𝔫t
𝐭1

)

.
We can now state the proof of Proposition 3.

Proof of Proposition 3.  By Corollary 2, the claim is immediate if at least one 𝑡𝑖1 is odd. Then, let 𝐭1 be the translation vector where 
each 𝑡𝑖1 is even. In the following, we use 𝐭 to denote a translate vector such that 𝐞𝓁 + 𝐭 ∈ 𝐸(𝐞𝓁), 𝐭1 ≠ 𝐭, |𝑡𝑖| ≤ |𝑡𝑖1| for all 𝑖. For level 𝑘, 
define the set of level-𝑘 B-splines, without support on any such 𝐞𝓁 + 𝐭,

#
𝑘 ∶=

{

𝐵𝑘 ∈ 𝑘 ∶ Ω𝐞𝓁+𝐭1 ⊂ supp
(

𝐵𝑘
)

,Ω𝐞𝓁+𝐭⊄ supp
(

𝐵𝑘
)

,∀𝐞𝓁 + 𝐭 ∈ 𝐸(𝐞𝓁), 𝐭 ≠ 𝐭1, |𝑡𝑖| ≤ |𝑡𝑖1|∀𝑖
}

, (B.12)
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Fig. B.14. A well-behaved border element (highlighted in purple) and the outline of the accompanying projection element shaded/drawn in orange. 
The four elements in the projection element (indicated with green sideways lines) are the exception to Lemma 11. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

t
𝑘 ∶=

{

𝐵#
𝑘 ∈ 𝑘 ∶ Ω𝐞𝓁+𝐭1 ⊂ supp

(

trunc𝓁
(

𝐵𝑘
))}

. (B.13)

Note that trunc𝓁
(

𝐵
) is a linear combination of ex,𝓁

𝓁 , so that the splines of t
𝓁−1 do not vanish over 𝐻(𝐞𝓁 + 𝐭1,𝔫b), and are thus 

linearly independent to the level-(𝓁 − 1) B-splines that do vanish over 𝐻(𝐞𝓁 + 𝐭1,𝔫b ∪ 𝔫t
𝐭1
). By Lemma 9, both the level-(𝓁 − 1) and 

level-𝓁 B-splines that vanish over 𝐻(𝐞𝓁 + 𝐭1,𝔫b ∪ 𝔫t
𝐭 ) are a basis of the same polynomial space over 𝐞𝓁 + 𝐭1. In addition, the level-𝓁

B-splines that vanish over 𝐻(𝐞𝓁 + 𝐭1,𝔫b ∪ 𝔫t
𝐭1
), vanish over 𝐻(𝐸𝐫,𝓁 ,𝔫

b) and by Lemma 10 belong to in,𝓁
𝓁 . Hence, over the element 

𝐞𝓁 + 𝐭1, the set
t
𝓁−1 ∪

(

#
𝓁 ∩ in,𝓁

𝓁

)

(B.14)

is linearly independent. To construct the THB-splines, the splines of (B.14) should be truncated. By the assumption of admissibility 
class 𝑐 = 2, the truncation operation (12) is equivalent to

trunc𝓁
(

𝐵𝐢,𝓁−1

)

= trunc𝑘

(

∑

𝐣
𝜏𝐢,𝐣𝐵𝐣,𝓁

)

= 𝐵𝐢,𝓁−1 −
∑

𝐣∶𝐵𝐣,𝓁∈
#
𝓁
∩𝐵in,𝓁

𝓁

𝜏𝐢,𝐣𝐵𝐣,𝓁 ,∀𝐵𝐢,𝓁−1 ∈ t
𝓁−1. (B.15)

Here we use Lemma 9 to note that the level-(𝓁 − 1) B-splines of #
𝓁−1 are linear combinations of #

𝓁 on 𝐞𝓁 + 𝐭1. Hence, trunc𝓁 (⋅) is a 
change of basis for the splines of (B.14), and 

trunc𝓁
(

t
𝓁−1

)

∪
(

#
𝓁 ∩ in,𝓁

𝓁

)

. (B.16)

is linearly independent on 𝐞𝓁 + 𝐭1, and are precisely the THB-splines of (B.10). ∎
We can now prove that active border 𝐩-boxes are not overloaded w.r.t. Ψ, which is the non-trivial step of proving Lemma 1.

Proof of Lemma 1.  Consider any regular 𝐩-box 𝐸𝐫,𝓁 , which by Proposition 1 only supports B-splines and is thus trivially not over-
loaded w.r.t. Ψ. If 𝐸𝐫,𝓁 is an active border 𝐩-box, it can be partitioned into smaller macro-elements 𝐸(𝐞𝓁) for the well-behaved 
border elements 𝐞𝓁 ∈ 𝐸𝐫,𝓁 . For such a macro-element 𝐸(𝐞𝓁), consider any linear combination of THB-splines that sums to zero on this 
macro-element,

0 =
∑

𝑗
𝜏𝑗𝑇𝑗 . (B.17)

Starting from the linear independence on the well-behaved border element Ω𝐞𝓁 , which is obtained by considering 𝐭 = (0,… , 0) in 
proposition 3, we can conclude that some of the 𝜏𝑗 in (B.17) are zero. Consequently, repeated application of Proposition 3 reveals 
that all the remaining 𝜏𝑗 ought to be zero since every element in 𝐸(𝐞𝓁) can be obtained by translations of 𝐞𝓁 . A similar argument 
shows that the THB-splines supported on Ω𝐸𝐫,𝓁  are linearly independent on Ω𝐸𝐫,𝓁 . ∎

References

[1] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. 
Mech. Eng. 194 (39–41) (2005) 4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

Computer Methods in Applied Mechanics and Engineering 452 (2026) 118707 

25 

https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2004.10.008


K. Dijkstra et al.

[2] L. Beirão da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for h-p-k-refinement in isogeometric analysis, Numer. Math. 118 (2) (2011) 271–305. 
https://doi.org/10.1007/s00211-010-0338-z

[3] E. Sande, C. Manni, H. Speleers, Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis, Numer. Math. 144 (4) (2020) 
889–929. https://doi.org/10.1007/s00211-019-01097-9

[4] A. Buffa, D. Cho, G. Sangalli, et al., Linear independence of the t-spline blending functions associated with some particular t-meshes, Comput. Methods Appl. 
Mech. Eng. 199 (23–24) (2010) 1437–1445. https://doi.org/10.1016/j.cma.2009.12.004

[5] T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-Splines and t-NURCCs, ACM Trans. Graph. 22 (3) (2003) 477–484. https://doi.org/10.1145/882262.882295
[6] A. Bressan, et al., Some properties of LR-splines, CAGD 30 (8) (2013) 778–794. https://doi.org/10.1016/j.cagd.2013.06.004
[7] T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally refined box-partitions, CAGD 30 (3) (2013) 331–356. https://doi.org/10.1016/j.cagd.2012.

12.005
[8] K.A. Johannessen, T. Kvamsdal, T. Dokken, et al., Isogeometric analysis using LR b-splines, Comput. Methods Appl. Mech. Eng. 269 (2014) 471–514. https:

//doi.org/10.1016/j.cma.2013.09.014
[9] F. Patrizi, T. Dokken, Linear dependence of bivariate minimal support and locally refined b-splines over LR-meshes, CAGD 77 (2020) 101803. https://doi.org/

10.1016/j.cagd.2019.101803
[10] X. Li, T.W. Sederberg, S-Splines: a simple surface solution for IGA and CAD, Comput. Methods Appl. Mech. Eng. 350 (2019) 664–678. https://doi.org/10.1016/

j.cma.2019.03.035
[11] D.R. Forsey, R.H. Barrels, Hierarchical b-spline refinement, SIGGRAPH Comput. Graph. 22 (4) (1988) 205–212. https://doi.org/10.1145/378456.378512
[12] R. Kraft, Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen, Ph.D. thesis, Univ. Stuttgard, Stuttgard, 1998. Publication Title: PhD 

Thesis.
[13] A.V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. 

Eng. 200 (49–52) (2011) 3554–3567. https://doi.org/10.1016/j.cma.2011.09.004
[14] C. Giannelli, B. Jüttler, H. Speleers, THB-Splines: the truncated basis for hierarchical splines, CAGD 29 (7) (2012) 485–498. https://doi.org/10.1016/j.cagd.

2012.03.025
[15] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, T.W. Sederberg, Isogeometric analysis using t-splines, Comput. Methods 

Appl. Mech. Eng. 199 (5–8) (2010) 229–263. https://doi.org/10.1016/j.cma.2009.02.036
[16] M.R. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-refinement with t-splines, Comput. Methods Appl. Mech. Eng. 199 (5–8) (2010) 

264–275. https://doi.org/10.1016/j.cma.2008.07.012
[17] G. Kuru, C.V. Verhoosel, K.G. Van Der Zee, E.H. Van Brummelen, Goal-adaptive isogeometric analysis with hierarchical splines, Comput. Methods Appl. Mech. 

Eng. 270 (2014) 270–292. https://doi.org/10.1016/j.cma.2013.11.026
[18] E.J. Evans, M.A. Scott, X. Li, D.C. Thomas, Hierarchical t-splines: analysis-suitability, bézier extraction, and application as an adaptive basis for isogeometric 

analysis, Comput. Methods Appl. Mech. Eng. 284 (2015) 1–20. https://doi.org/10.1016/j.cma.2014.05.019
[19] A. Buffa, C. Giannelli, Adaptive isogeometric methods with hierarchical splines: error estimator and convergence, Math. Models Methods Appl. Sci. 26 (01) 

(2016) 1–25. https://doi.org/10.1142/S0218202516500019
[20] A. Buffa, C. Giannelli, Adaptive isogeometric methods with hierarchical splines: optimality and convergence rates, Math. Models Methods Appl. Sci. 27 (14) 

(2017) 2781–2802. https://doi.org/10.1142/S0218202517500580
[21] G. Gantner, D. Haberlik, D. Praetorius, Adaptive IGAFEM with optimal convergence rates: hierarchical b-splines, Math. Models Methods Appl. Sci. 27 (14) (2017) 

2631–2674. https://doi.org/10.1142/S0218202517500543
[22] R.H. Nochetto, K.G. Siebert, A. Veeser, Theory of adaptive finite element methods: an introduction, in: R. DeVore, A. Kunoth (Eds.), Multiscale, Nonlinear and 

Adaptive Approximation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 409–542.
[23] K.W. Dijkstra, D. Toshniwal, A characterization of linear independence of THB-splines in ℝ𝑛 and application to bézier projection, in: M. Lanini, C. Manni, 

H. Schenck (Eds.), Approximation Theory and Numerical Analysis Meet Algebra, Geometry, Topology, 60, Springer Nature Singapore, Singapore, 2024, pp. 
115–148.

[24] A. Giust, B. Jüttler, A. Mantzaflaris, Local (t)HB-spline projectors via restricted hierarchical spline fitting, CAGD 80 (2020) 101865. https://doi.org/10.1016/j.
cagd.2020.101865

[25] D.C. Thomas, M.A. Scott, J.A. Evans, K. Tew, E.J. Evans, Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening 
of NURBS and t-splines with particular application to isogeometric design and analysis, Comput. Methods Appl. Mech. Eng. 284 (2015) 55–105. https://doi.org/
10.1016/j.cma.2014.07.014

[26] H. Speleers, C. Manni, Effortless quasi-interpolation in hierarchical spaces, Numer. Math. 132 (1) (2016) 155–184. https://doi.org/10.1007/s00211-015-0711-z
[27] D.N. Arnold, Finite Element Exterior Calculus, Society for Industrial and Applied Mathematics, Philadelphia SE - xi, 120 pages : illustrations ; 26 cm., 2018. 

Publication Title: CBMS-NSF regional conference series in applied mathematics ; 93 TA - TT -. https://doi.org/10.1137/1.9781611975543
[28] J.A. Evans, T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the unsteady navier–Stokes equations, J. Comput. Phys. 241 (2013) 141–167.
[29] A. Buffa, J. Rivas, G. Sangalli, R. Vázquez, Isogeometric discrete differential forms in three dimensions, SIAM J. Numer. Anal. 49 (2) (2011) 818–844.
[30] J.A. Evans, M.A. Scott, K.M. Shepherd, D.C. Thomas, R. Vázquez Hernández, Hierarchical B-spline complexes of discrete differential forms, IMA J. Numer. Anal. 

40 (1) (2020) 422–473.
[31] K. Shepherd, D. Toshniwal, Locally-verifiable sufficient conditions for exactness of the hierarchical b-spline discrete de rham complex in ℝ𝑛, FoCM (2024). 

https://doi.org/10.1007/s10208-024-09659-6
[32] A. Buffa, G. Sangalli, R. Vázquez, Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations, J. Comput. Phys. 257 (2014) 

1291–1320.
[33] K.A. Johannessen, M. Kumar, T. Kvamsdal, Divergence-conforming discretization for stokes problem on locally refined meshes using LR B-splines, Comput. 

Methods Appl. Mech. Eng. 293 (2015) 38–70.
[34] D.C. Cabanas, K.M. Shepherd, D. Toshniwal, R. Vázquez, Construction of exact refinements for the two-dimensional HB/THB-spline de Rham complex, 2025, 

Version Number: 2. https://doi.org/10.48550/ARXIV.2502.19542
[35] C. Giannelli, B. Jüttler, Bases and dimensions of bivariate hierarchical tensor-product splines, J. Comput. Appl. Math. 239 (2013) 162–178. https://doi.org/10.

1016/j.cam.2012.09.031
[36] M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures based on bézier extraction of NURBS, Int. J. Numer. Methods 

Eng. 87 (1–5) (2011) 15–47.
[37] D. D’Angella, S. Kollmannsberger, E. Rank, A. Reali, Multi-level bézier extraction for hierarchical local refinement of isogeometric analysis, Comput. Methods 

Appl. Mech. Eng. 328 (2018) 147–174.
[38] A. Buffa, C. Giannelli, P. Morgenstern, D. Peterseim, Complexity of hierarchical refinement for a class of admissible mesh configurations, CAGD 47 (2016) 83–92. 

https://doi.org/10.1016/j.cagd.2016.04.003
[39] M. Carraturo, C. Giannelli, A. Reali, R. Vázquez, Suitably graded THB-spline refinement and coarsening: towards an adaptive isogeometric analysis of additive 

manufacturing processes, Comput. Methods Appl. Mech. Eng. 348 (2019) 660–679. https://doi.org/10.1016/j.cma.2019.01.044
[40] K.W. Dijkstra, nutils-pbox, 2024, https://gitlab.tudelft.nl/kwdijkstra/nutils-pbox.
[41] J.S.B. van Zwieten, G.J. van Zwieten, W. Hoitinga, Nutils, 2022, https://doi.org/{10.5281/zenodo.6006701}.
[42] C. Bracco, C. Giannelli, R. Vázquez, Refinement algorithms for adaptive isogeometric methods with hierarchical splines, Axioms 7 (3) (2018) 43. https://doi.

org/10.3390/axioms7030043
[43] D. Chapelle, K.J. Bathe, The inf-Sup test, Comput. Struct. 47 (4–5) (1993) 537–545. https://doi.org/10.1016/0045-7949(93)90340-J
[44] O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids 27 (4) (1998) 421–433. https://doi.org/10.1016/S0045-7930(98)

00002-4

Computer Methods in Applied Mechanics and Engineering 452 (2026) 118707 

26 

https://doi.org/10.1007/s00211-010-0338-z
https://doi.org/10.1007/s00211-010-0338-z
https://doi.org/10.1007/s00211-019-01097-9
https://doi.org/10.1007/s00211-019-01097-9
https://doi.org/10.1016/j.cma.2009.12.004
https://doi.org/10.1016/j.cma.2009.12.004
https://doi.org/10.1145/882262.882295
https://doi.org/10.1145/882262.882295
https://doi.org/10.1016/j.cagd.2013.06.004
https://doi.org/10.1016/j.cagd.2013.06.004
https://doi.org/10.1016/j.cagd.2012.12.005
https://doi.org/10.1016/j.cagd.2012.12.005
https://doi.org/10.1016/j.cagd.2012.12.005
https://doi.org/10.1016/j.cagd.2012.12.005
https://doi.org/10.1016/j.cma.2013.09.014
https://doi.org/10.1016/j.cma.2013.09.014
https://doi.org/10.1016/j.cma.2013.09.014
https://doi.org/10.1016/j.cma.2013.09.014
https://doi.org/10.1016/j.cagd.2019.101803
https://doi.org/10.1016/j.cagd.2019.101803
https://doi.org/10.1016/j.cagd.2019.101803
https://doi.org/10.1016/j.cagd.2019.101803
https://doi.org/10.1016/j.cma.2019.03.035
https://doi.org/10.1016/j.cma.2019.03.035
https://doi.org/10.1016/j.cma.2019.03.035
https://doi.org/10.1016/j.cma.2019.03.035
https://doi.org/10.1145/378456.378512
https://doi.org/10.1145/378456.378512
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0012
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0012
https://doi.org/10.1016/j.cma.2011.09.004
https://doi.org/10.1016/j.cma.2011.09.004
https://doi.org/10.1016/j.cagd.2012.03.025
https://doi.org/10.1016/j.cagd.2012.03.025
https://doi.org/10.1016/j.cagd.2012.03.025
https://doi.org/10.1016/j.cagd.2012.03.025
https://doi.org/10.1016/j.cma.2009.02.036
https://doi.org/10.1016/j.cma.2009.02.036
https://doi.org/10.1016/j.cma.2008.07.012
https://doi.org/10.1016/j.cma.2008.07.012
https://doi.org/10.1016/j.cma.2013.11.026
https://doi.org/10.1016/j.cma.2013.11.026
https://doi.org/10.1016/j.cma.2014.05.019
https://doi.org/10.1016/j.cma.2014.05.019
https://doi.org/10.1142/S0218202516500019
https://doi.org/10.1142/S0218202516500019
https://doi.org/10.1142/S0218202517500580
https://doi.org/10.1142/S0218202517500580
https://doi.org/10.1142/S0218202517500543
https://doi.org/10.1142/S0218202517500543
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0022
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0022
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0023
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0023
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0023
https://doi.org/10.1016/j.cagd.2020.101865
https://doi.org/10.1016/j.cagd.2020.101865
https://doi.org/10.1016/j.cagd.2020.101865
https://doi.org/10.1016/j.cagd.2020.101865
https://doi.org/10.1016/j.cma.2014.07.014
https://doi.org/10.1016/j.cma.2014.07.014
https://doi.org/10.1016/j.cma.2014.07.014
https://doi.org/10.1016/j.cma.2014.07.014
https://doi.org/10.1007/s00211-015-0711-z
https://doi.org/10.1007/s00211-015-0711-z
https://doi.org/10.1137/1.9781611975543
https://doi.org/10.1137/1.9781611975543
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0028
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0029
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0030
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0030
https://doi.org/10.1007/s10208-024-09659-6
https://doi.org/10.1007/s10208-024-09659-6
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0032
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0032
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0033
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0033
https://doi.org/10.48550/ARXIV.2502.19542
https://doi.org/10.48550/ARXIV.2502.19542
https://doi.org/10.1016/j.cam.2012.09.031
https://doi.org/10.1016/j.cam.2012.09.031
https://doi.org/10.1016/j.cam.2012.09.031
https://doi.org/10.1016/j.cam.2012.09.031
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0035
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0035
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0036
http://refhub.elsevier.com/S0045-7825(25)00979-X/sbref0036
https://doi.org/10.1016/j.cagd.2016.04.003
https://doi.org/10.1016/j.cagd.2016.04.003
https://doi.org/10.1016/j.cma.2019.01.044
https://doi.org/10.1016/j.cma.2019.01.044
https://doi.org/10.5281/zenodo.6006701
https://doi.org/10.5281/zenodo.6006701
https://doi.org/10.3390/axioms7030043
https://doi.org/10.3390/axioms7030043
https://doi.org/10.3390/axioms7030043
https://doi.org/10.3390/axioms7030043
https://doi.org/10.1016/0045-7949(93)90340-J
https://doi.org/10.1016/0045-7949(93)90340-J
https://doi.org/10.1016/S0045-7930(98)00002-4
https://doi.org/10.1016/S0045-7930(98)00002-4
https://doi.org/10.1016/S0045-7930(98)00002-4
https://doi.org/10.1016/S0045-7930(98)00002-4

	Macro-element refinement schemes for THB-splines: Applications to Bézier projection and structure-preserving discretizations
	1 Introduction
	1.1 Motivation and contributions of this paper
	1.2 Outline of the paper

	2 THB-Splines
	2.1 Univariate B-splines
	2.2 Tensor-product B-splines
	2.3 Truncated hierarchical B-splines

	3 Macro-element-based adaptive refinement
	4 Locally linearly independent macro-elements and applications to Bézier projection
	4.1 The case of admissibility class 2
	4.2 The general admissibility class case
	4.3 Application to Bézier projection

	5 Adaptive structure-preserving methods via macro-element refinement
	6 Numerical results
	6.1 Optimal convergence rates
	6.2 Adaptive refinement: Projection
	6.3 Adaptive refinement: Poisson
	6.4 Stability of the THB-spline de Rham complex
	6.4.1 Refinement configurations tested
	6.4.2 Maxwell eigenvalue problem:
	6.4.3 Inf-sup condition

	6.5 Adaptive refinement: Structure-preserving discretisations of fluid flow problems

	7 Conclusions
	A Generic q-box results
	B Proof of Lemma 1
	B.1 Refinement border characterization
	B.2 Equivalence of B-spline subspaces of different levels 
	B.3 Well-behaved border (macro-)elements



