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A B S T R A C T

We propose a new approach for unsupervised learning of hyperelastic constitutive laws with
physics-consistent deep neural networks. In contrast to supervised learning, which assumes
the availability of stress–strain pairs, the approach only uses realistically measurable full-
field displacement and global reaction force data, thus it lies within the scope of our recent
framework for Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID) and
we denote it as NN-EUCLID. The absence of stress labels is compensated for by leveraging a
physics-motivated loss function based on the conservation of linear momentum to guide the
learning process. The constitutive model is based on input-convex neural networks, which are
capable of learning a function that is convex with respect to its inputs. By employing a specially
designed neural network architecture, multiple physical and thermodynamic constraints for
hyperelastic constitutive laws, such as material frame indifference, material stability, and stress-
free reference configuration are automatically satisfied. We demonstrate the ability of the
approach to accurately learn several hidden isotropic and anisotropic hyperelastic constitutive
laws – including e.g., Mooney–Rivlin, Arruda–Boyce, Ogden, and Holzapfel models – without
using stress data. For anisotropic hyperelasticity, the unknown anisotropic fiber directions
are automatically discovered jointly with the constitutive model. The neural network-based
constitutive models show good generalization capability beyond the strain states observed
during training and are readily deployable in a general finite element framework for simulating
complex mechanical boundary value problems with good accuracy.

. Introduction

The merger of data-driven methods (often enabled or empowered by machine learning tools) and constitutive material
odeling in solid mechanics is rapidly redefining the way we characterize and model complex material behavior. Traditionally,
henomenological models – parameterized by a few material-specific constants – are calibrated by iterative tuning to match the
bservations of simple mechanical tests, e.g., uni-/biaxial tension, torsion, and bending tests. Advances in experimental mechanics
uch as the advent of digital image correlation (DIC) and digital volume correlation (DVC) enabled more sophisticated approaches,
uch as finite element model updating (FEMU) (Marwala, 2010) or the virtual fields method (VFM) (Pierron and Grédiac, 2012),
hich rely upon the availability of full-field displacement data and exploit them for calibration of unknown parameters in a priori

elected classical material models.
Modern data-driven methods aim to take a further step to overcome the limited expressive power of classical material models.

n the (material) model-free paradigm proposed by Kirchdoerfer and Ortiz (2016) and first formulated for elasticity, a material’s
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state of deformation is directly mapped to a stress state closest to the stress–strain pair available in the dataset (subject to physical
compatibility constraints) (Kirchdoerfer and Ortiz, 2016; Ibañez et al., 2017; Kirchdoerfer and Ortiz, 2017; Conti et al., 2018; Nguyen
and Keip, 2018; Eggersmann et al., 2019; Carrara et al., 2020; Karapiperis et al., 2021). Alternative approaches keep the concept of a
material model and surrogate it by learning an approximate mapping between the strains and stresses (referring again to the easiest
case of elasticity) using, e.g., sparse regression with feature engineering (Flaschel et al., 2021, 2022; Joshi et al., 2022; Wang et al.,
2021), manifold learning methods and polynomial approximations (Ibañez et al., 2018, 2017; González et al., 2019b), Gaussian
process regression (Rocha et al., 2021; Fuhg et al., 2022a), and artificial neural networks (NNs) (Ghaboussi et al., 1991; Fernández
et al., 2021; Klein et al., 2022; Vlassis and Sun, 2021; Kumar et al., 2020; Bastek et al., 2022; Zheng et al., 2021; Mozaffar et al.,
2019; Bonatti and Mohr, 2021; Vlassis et al., 2020; Kumar and Kochmann, 2021; As’ad et al., 2022; Liang et al., 2022), with the
list being roughly in order of decreasing physical interpretability and increasing approximation power. Further hybrid approaches
use data to construct automatic corrections to existing models (Ibáñez et al., 2019; González et al., 2019a). Physics-informed neural
networks (PINNs) (Raissi et al., 2019) have been used for inverse estimation of constitutive models or differential equations, but
they are limited to either constitutive models of known form with unknown parameters or unknown constitutive models but for
one-dimensional cases (Huang et al., 2020; Tartakovsky et al., 2018; Haghighat et al., 2020; Chen and Gu, 2021). Consequently, they
suffer from limited model expressive power — similar to parametric model calibration with classical FEMU and VFM techniques.

A common bottleneck in most state-of-the-art data-driven methods, be them based on NNs or not, is the requirement of a large
umber of stress labels, i.e., in machine learning jargon, the methods are supervised. In principle, stress labels can be computationally

generated via multiscale homogenization techniques; however, this data generation approach relies upon modeling at the lower
scale(s) (where model choice and calibration is even more challenging), is associated with a prohibitive computational cost, and
its application is restricted to surrogate modeling and acceleration of multiscale simulations. Obtaining stress labels experimentally
is a challenge too. Mechanical experiments from which stresses can be inferred, such as uni-/bi-axial tensile tests or bending tests,
are too simple to sufficiently probe the high-dimensional stress–strain space and more complex experiments only provide boundary
projections of stress tensors in form of force measurements. The recent recognition of this issue motivated the development of the
data-driven identification method (Leygue et al., 2018; Dalémat et al., 2019; Cameron and Tasan, 2021), which formulates the
inverse problem associated to the approach in Kirchdoerfer and Ortiz (2016). In this light, breaking away from the supervised
setting, i.e., reliance on stress labels, is the key to developing truly data-efficient and practically applicable data-driven constitutive
models.

To address the aforementioned limitations of classical approaches and supervised data-driven methods, the authors recently
proposed a novel framework denoted as Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID) (Flaschel
t al., 2021, 2022; Joshi et al., 2022). The method is unsupervised, i.e., it requires no stress data but only global reaction
orces and full-field displacement data realistically obtainable through, e.g., DIC or DVC; it uses sparse regression over a large
atalog of candidate functions to deliver interpretable constitutive laws given by parsimonious mathematical expressions. EUCLID
eparts from data-driven learning to achieve physics-driven learning, i.e., the need for stress labels is circumvented by enforcing
hat the full-field displacement data satisfy the conservation of linear momentum – possibly along with additional physics-based
equirements. We recently demonstrated the performance of EUCLID in isotropic hyperelasticity (Flaschel et al., 2021), rate-
ndependent plasticity (Flaschel et al., 2022), anisotropic hyperelasticity and elastodynamics (Joshi et al., 2022). In the latter
ontribution, we developed Bayesian-EUCLID, a probabilistic framework based on Bayesian learning which automatically discovers
aterial models along with the related uncertainties.

Despite the advantages in terms of interpretability, models discovered by sparse regression are limited to the space spanned by
he linear (or non-linear) combination of hand-crafted candidate functions in the feature library. On the other hand NNs, being
niversal approximators (Hornik et al., 1989), greatly surpass sparse regression in terms of size of the model space. At the expense
f interpretability, they can, in principle, represent any generic constitutive behavior — with no limits on expressive power and no
eed to rely upon domain knowledge. However, the approximation power comes along with a high risk for overfitting; this issue
nd the high degree of ill-posedness due to the lack of stress labels hindered the development of unsupervised NN-based constitutive
odels thus far.

In this work, within the scope of the EUCLID framework, we demonstrate the first case of unsupervised NNs-based learning
f constitutive models with no stress data. In this first step, we focus on isotropic and anisotropic hyperelasticity. To represent
he constitutive model, we use input convex neural networks (ICNN) – recently developed by Amos et al. (2017) and applied to
onstitutive modeling (As’ad et al., 2022; Klein et al., 2022; Fuhg et al., 2022b; Huang et al., 2022). Their special architecture
utomatically guarantees material stability for the underlying strain energy density, material objectivity, and stress-free reference
onfiguration. In the absence of stress labels, the NN is trained to a physics-constrained loss based on full-field displacement data
atisfying conservation of linear momentum. The approach delivers unsupervised NN-based constitutive models that are physically
dmissible, can generalize well beyond the strain states observed in the full-field displacement data, and can automatically discover
he unknown principal directions of anisotropy whenever applicable. We denote the approach as NN-EUCLID.

. Unsupervised deep learning of hyperelastic constitutive laws

.1. Problem setting

Consider a specimen of an unknown hyperelastic material subjected to quasi-static mechanical deformation with two-dimensional
2

2

eference domain 𝛺 ∈ R . A complex specimen geometry (e.g., plate with a hole) is specifically chosen to generate heterogeneous



Journal of the Mechanics and Physics of Solids 169 (2022) 105076P. Thakolkaran et al.
Fig. 1. Schematic of the approach for unsupervised deep learning of hyperelastic constitutive models. (a,b) Point-wise displacements and reaction forces are
recorded for a hyperelastic specimen under quasi-static deformation. Using the point-wise displacements and a finite element mesh of the domain (c), continuous
displacement and strain fields are obtained (d,e). An ensemble of physics-consistent ICNN-based constitutive models (f) map the strain fields to stress fields
(evaluated at the quadrature point of each element) (g). The stress fields are used to compute the internal and external nodal forces (h,i). Based on the weak
form of the conservation of linear momentum, the residual forces are minimized (j) — point-wise for the free degrees of freedom (h) and aggregated for the
fixed degrees of freedom (under each set of Dirichlet constraint with a measured reaction force) (i). The optimization is carried out iteratively to train the
parameters of the ICNN-based constitutive models (f).

and diverse strain states. The material is assumed to be homogeneous and possibly, anisotropic with unknown fiber orientations
{𝛼𝑖 ∈ [0, 𝜋) ∶ 𝑖 = 1, 2,…}. Note that the fiber orientations have two-fold symmetry and, therefore, are constrained to [0, 𝜋) instead of
[0, 2𝜋). We apply Dirichlet and Neumann conditions on the boundaries 𝜕𝛺𝑢 ⊆ 𝜕𝛺 and 𝜕𝛺𝑡 = 𝜕𝛺⧵𝜕𝛺𝑢, respectively. Without losing
generality, we only consider displacement-controlled conditions (i.e., Dirichlet boundary conditions) in the subsequent discussions,
while noting that applied forces in load-controlled conditions are equivalent to reaction forces in displacement-controlled conditions.
The observed data consists of 𝑛𝑡 snapshots of displacement measurements  = {𝒖𝑎,𝑡 ∈ R2 ∶ 𝑎 = 1,… , 𝑛𝑛; 𝑡 = 1,… , 𝑛𝑡} at 𝑛𝑛
points with coordinates  = {𝑿𝑎 ∈ 𝛺 ∶ 𝑎 = 1,… , 𝑛𝑛} in the reference domain. Additionally, for each snapshot, 𝑛𝛽 reaction forces
{𝑅𝛽,𝑡 ∶ 𝛽 = 1,… , 𝑛𝛽 ; 𝑡 = 1,… , 𝑛𝑡} are assumed to be measured (using, e.g., load cells) at some but not necessarily all the sets
of Dirichlet boundary conditions. In the subsequent discussion, we drop the superscript (⋅)𝑡 for the sake of brevity; however the
numerical procedure applies to all snapshots independently.

With this limited data, the objective is to learn the underlying constitutive model governing the stress–strain response. While
most modern DIC setups can easily track the displacement of thousands to millions of points, it is impractical to have more than a few
load cells attached to a specimen, i.e., 𝑛𝛽 ≪ 𝑛𝑛. In addition, since reaction forces are only boundary-aggregated projections of stress
tensors, the lack of supervision, i.e., stress labels for constitutive model learning becomes apparent. Note that while the data contains
two-dimensional displacements, the constitutive model that will be learnt is three-dimensional. The following sections describe the
unsupervised learning approach using the aforementioned data. Fig. 1 illustrates a step-by-step schematic of the approach.

2.2. Approximation of the displacement field from point-wise data

We mesh the points  in the reference domain using linear triangular elements (with single quadrature point at the barycenter)
to obtain the displacement field as

𝒖(𝑿) =
𝑛𝑛
∑

𝑁𝑎(𝑿) 𝒖𝑎. (1)
3

𝑎=1
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Here 𝑁𝑎 ∶ 𝛺 → R is the shape function (corresponding to linear triangular elements) associated with the node at 𝑿𝑎. The
eformation gradient field is then approximated as

𝑭 (𝑿) = 𝑰 +
𝑛𝑛
∑

𝑎=1
𝒖𝑎 ⊗ ∇𝑁𝑎(𝑿), (2)

here 𝑰 is the identity matrix and ∇ is the gradient operator with respect to the reference coordinates.

.3. NN-based constitutive model

A hyperelastic constitutive model is given by a strain energy density 𝑊 (𝑭 ) from which the first Piola–Kirchhoff stress 𝑷 (𝑭 ) and
he (incremental) tangent modulus C(𝑭 ) are derived as

𝑷 (𝑭 ) =
𝜕𝑊 (𝑭 )
𝜕𝑭

and C(𝑭 ) =
𝜕𝑷 (𝑭 )
𝜕𝑭

, ∀ 𝑭 ∈ GL+(3), (3)

espectively, where GL+(3) denotes the set of all invertible second-order tensors with positive determinant. Therefore, the objective
educes to learning 𝑊 (𝑭 ). However, any learned model for 𝑊 (𝑭 ) must also satisfy the following physical and thermodynamic
onstraints:

• The stress must vanish in the case of no deformation (reference configuration), i.e.,

𝑷 (𝑭 = 𝑰) = 𝟎. (4)

• The strain energy density must be objective, i.e.,

𝑊 (𝑹𝑭 ) = 𝑊 (𝑭 ), ∀ 𝑭 ∈ GL+(3), 𝑹 ∈ SO(3), (5)

where SO(3) denotes the 3D rotation group.
• For material stability, 𝑊 (𝑭 ) must satisfy quasiconvexity (Morrey, 1952; Schröder, 2010), i.e.,

∫
𝑊 (𝑭̄ + ∇𝒘)d𝑉 ≥ 𝑊 (𝑭̄ )∫

d𝑉 ∀  ⊂ R3, 𝑭̄ ∈ GL+(3), 𝒘 ∈ 𝐶∞
0 () (i.e., 𝒘 = 0 on 𝜕). (6)

However, enforcing quasiconvexity is often analytically/numerically intractable (Kumar et al., 2019). Since polyconvexity
implies quasiconvexity, the quasiconvexity constraint is commonly relaxed to that of polyconvexity (Ball, 1976; Schröder,
2010). 𝑊 (𝑭 ) is polyconvex if and only if there exists a convex function  such that

𝑊 (𝑭 ) = (𝑭 ,Cof 𝑭 , det 𝑭 ). (7)

To satisfy objectivity in (5), a straightforward (and common) way of proceeding is to express the strain energy density as a
unction of the right Cauchy–Green deformation tensor 𝑪 = 𝑭 𝑇𝑭 , or, equivalently, of the Green–Lagrange strain tensor 𝑬 =
𝑭 𝑇𝑭 − 𝑰)∕2, i.e., as 𝑊 (𝑬(𝑭 )), which represents a sufficient condition for objectivity. However, 𝑬 is not necessarily convex in
, hence this choice makes it difficult to enforce polyconvexity in 𝑭 using (7). Following Yang Gao et al. (2017) and As’ad et al.

2022), we notice that the convexity of 𝑊 in 𝑬 implies its local convexity in 𝑭 , which in turn ensures local material stability. Note
hat local convexity in 𝑭 is preferable to global convexity in 𝑭 , as the latter would preclude the non-uniqueness of the solution in
ituations where such non-uniqueness is physical (such as in buckling) and would prevent the satisfaction of the so-called growth
ondition, i.e. the condition of the strain energy density becoming infinite for det 𝑭 → 0+.

In light of the aforementioned constraints, we consider an ansatz for the strain energy density of the form:

𝑊 (𝑭 ) = 𝑊 NN
, (𝑬(𝑭 ))

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
ICNN model

+ 𝑊 0
⏟⏟⏟

Energy
correction

+ 𝑯 ∶ 𝑬
⏟⏟⏟

Stress
correction

, (8)

hich is adapted with modifications from As’ad et al. (2022) and Klein et al. (2022). Here, 𝑊 NN
, represents an ICNN model (Amos

t al., 2017) with parameter sets  and  (details described below), 𝑊 0 is a constant scalar, and 𝑯 is a symmetric 3 × 3 constant
atrix. 𝑊 0 offsets the energy density such that it vanishes at zero deformation (𝑭 = 𝑰), i.e.,

𝑊 (𝑰) = 0 ⟹ 𝑊 0 = − 𝑊 NN
,

|

|

|𝑭=𝑰
. (9)

rom (3), the first Piola–Kirchhoff stress is obtained as

𝑷 (𝑭 ) =
𝜕𝑊 NN

,(𝑬(𝑭 ))

𝜕𝑭
+ 𝑭𝑯 . (10)

Similar to 𝑊 0, 𝑯 is set such that the stress vanishes at 𝑭 = 𝑰 (see (4)), i.e.,

𝑷 (𝑰) = 𝟎 ⟹ 𝑯 = −
𝜕𝑊 NN

,

𝜕𝑭

|

|

|

|

. (11)
4

|

|𝑭=𝑰
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Fig. 2. Schematic of the ICNN-based constitutive model for hyperelasticity.

The tangent modulus is derived from (10) as

C𝑖𝑗𝑘𝑙 =
𝜕𝑃𝑖𝑗 (𝑭 )
𝜕𝐹𝑘𝑙

=
𝜕2𝑊 NN

,(𝑬(𝑭 ))

𝜕𝐹𝑖𝑗𝜕𝐹𝑘𝑙
+ 𝛿𝑖𝑘𝐻𝑙𝑗 , (12)

where we use the Einstein summation convention over the subscripts and 𝛿 denotes the Kronecker delta. Note that 𝑊 0 and 𝑯 in the
energy and stress corrections, respectively, are updated in situ during each iterative step of the neural network training (discussed
later in Section 2.4), i.e., the corrections are not applied a posteriori. Further description regarding the training of 𝑊 NN

, is provided
in Algorithm 1.

𝑊 NN
, – enabled by the special ICNN architecture (Amos et al., 2017) – outputs a strain energy density that exhibits local convexity

with respect to the input deformation gradient. Here, we present the architecture of 𝑊 NN
, followed by the description of each layer

(see Fig. 2 for schematic).

Input layer ∶ 𝑭 (13a)

Invariants layer ∶ 𝒛(0) =
[

𝐼1 − 3, 𝐼2 − 3, (𝐽 − 1)2, (𝐼𝑎1 − 1)2, (𝐼𝑎2 − 1)2, …
]𝑇 (13b)

with trainable parameters: 𝛼1 ∈ [0, 𝜋), 𝛼2 ∈ [0, 𝜋), … ,

First hidden layer of size 𝑑1 ∶ 𝒛(1) = 
(


(

𝑨(1)) 𝒛(0) + 𝑩(1)𝒛(0) + 𝒄(1)
)

(13c)

with trainable parameters: 𝑨(1) ∈ R𝑑1×
|

|

|

𝒛(0)||
|, 𝑩(1) ∈ R𝑑1×

|

|

|

𝒛(0)||
|, 𝒄(1) ∈ R𝑑1 ,

⋮

𝑘th hidden layer of size 𝑑𝑘 ∶ 𝒛(𝑘) = 
(


(

𝑨(𝑘)) 𝒛(𝑘−1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

convex-linear

+ 𝑩(𝑘)𝒛(0)
⏟⏟⏟

skip-connect

+ 𝒄(𝑘)
⏟⏟⏟

bias

)

(13d)

with trainable parameters: 𝑨(𝑘) ∈ R𝑑𝑘×𝑑𝑘−1 , 𝑩(𝑘) ∈ R𝑑𝑘×
|

|

|

𝒛(0)||
|, 𝒄(𝑘) ∈ R𝑑𝑘 ,

⋮

Output (𝑁th) layer of size 𝑑𝑁 = 1 ∶ 𝑊 NN
, = 𝒛(𝑁) = 

(

𝑨(𝑁)) 𝒛(𝑁−1) + 
(

𝑩(𝑁)) 𝒛(0) + 𝒄(𝑁) (13e)

with trainable parameters: 𝑨(𝑁) ∈ R𝑑𝑁×𝑑𝑁−1 , 𝑩(𝑁) ∈ R𝑑𝑁×||
|

𝒛(0)||
|, 𝒄(𝑁) ∈ R𝑑𝑁 .

 = {𝑨(𝑘),𝑩(𝑘), 𝒄(𝑘) ∶ 𝑘 = 1,… , 𝑁} and  = {𝛼𝑖 ∶ 𝑖 = 1, 2,…} denote the set of all the trainable ICNN weights and unknown
fiber orientations, respectively. The invariants layer receives the deformation gradient 𝑭 from the input layer and computes strain
5
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invariants as

volumetric invariant ∶ 𝐽 = det(𝑭 ) = 𝐼1∕23

isotropic deviatoric invariants ∶ 𝐼1 = 𝐽−2∕3𝐼1, 𝐼2 = 𝐽−4∕3𝐼2,

anisotropic deviatoric invariants ∶ 𝐼𝑎1 = 𝐽−2∕3 (𝒂(1) ⋅ 𝑪𝒂(1)
)

, 𝐼𝑎2 = 𝐽−2∕3 (𝒂(2) ⋅ 𝑪𝒂(2)
)

, … ,

(14)

here

𝐼1 = tr(𝑪), 𝐼2 =
1
2
[

tr(𝑪)2 − tr(𝑪2)
]

, 𝐼3 = det(𝑪) (15)

are the principal invariants of 𝑪 (equivalently, 𝑬 = (𝑪 − 𝑰)∕2). Here, we assume a deviatoric–volumetric split for modeling
compressible hyperelasticity. For an anisotropic hyperelastic material with fiber orientations {𝛼𝑖 ∶ 𝑖 = 1, 2,…}, 𝒂(𝑖) = (cos 𝛼𝑖, sin 𝛼𝑖, 0)𝑇

denotes the 𝑖th fiber direction with third component being normal to the plane of 𝛺. The fiber orientations in  are unknown and,
therefore, treated as trainable parameters of the ICNN model. The invariants are further shifted by appropriate scalar values – in
some cases, also squared – such that both their value and the respective derivatives with respect to 𝑭 are zero in the case of no
deformation, i.e., at 𝑭 = 𝑰 .

The strain invariants – now vectorized as 𝒛(0) – are sequentially transformed through 𝑘 = 1,… , (𝑁 − 1) hidden layers. In any
𝑘th layer of size 𝑑𝑘 > 0, the output of the previous layer (𝒛(𝑘−1)) undergoes a convex linear transformation via 

(

𝑨(𝑘)), where
𝑨(𝑘) ∈ R𝑑𝑘×𝑑𝑘−1 is a trainable weight matrix and  denotes a nonlinear non-negative function applied element-wise. The layer also
includes a skip connection that adds the output of the invariants layer, i.e., 𝒛(0), after linear transformation via trainable weight matrix
𝑩(𝑘) ∈ R𝑑𝑘×

|

|

|

𝒛(0)||
| and bias vector 𝒄(𝑘) ∈ R𝑑𝑘 . Finally, the sum of the convex linear transformation and the skip connection are passed

through a nonlinear activation function  that is convex and non-decreasing and acts element-wise on the input. The output/𝑁 th

layer consists of summing the convex linear transforms of both the output of the penultimate layer (𝒛(𝑁−1)) and the invariants layer
(𝒛(0)); however, the output does not pass through the activation function  .

The aforementioned architectural choices are motivated by the following reasons. Since 𝑊 NN
, only depends on the strain

nvariants, which are objective, the objectivity constraint (5) is identically satisfied. In contrast to a classical feed-forward neural
etwork, the combination of convex linear transformations enabled via non-negative  in the hidden layers (non-negative weighted
ums of convex functions are convex) and non-decreasing convex activation function  ensures that the ICNN output is convex in

the strain invariants (see Boyd and Vandenberghe (2004) and Amos et al. (2017) for proofs) and consequently, the local material
stability ensured by the overall strain energy density in (8). Without loss of generality,  and  are chosen based on the softplus
function (As’ad et al., 2022) as

(𝑥) = 𝑐 log(1 + 𝑒𝑥)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

softplus

and  (𝑥) = 𝑐 (log(1 + 𝑒𝑥))2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
squared-softplus

, (16)

respectively, for any 𝑥 ∈ R; where 𝑐 > 0 and 𝑐 > 0 are hyperparameters. The 𝐶∞ order of continuity of the softplus function ensures
that the strain energy density and its derivatives – stress and tangent – are sufficiently smooth and continuous.1 The squaring of
the softplus function in  mitigates the problem of vanishing second derivative of the softplus function. This not only enables
computing the tangent of the strain energy density (see (12)), but also prevents vanishing gradients for backpropagation-based NN
training (Goodfellow et al., 2016).2 The skip connections are added to avoid vanishing gradients, overfitting, and accuracy saturation
(or even degradation) as the NN architecture becomes deeper (with increasing number of hidden layers) (He et al., 2016).

2.4. Unsupervised learning of constitutive models

In the absence of energy density/stress labels, we use the fact that the observed data must satisfy the conservation of linear
momentum to guide the learning process (Flaschel et al., 2021) and estimate the model parameters  and  of the ICNN. In the
case of negligible body forces and quasi-static loading (i.e., negligible inertia), the weak form of the linear momentum balance in
the reference domain 𝛺 is given by

∫𝛺
𝑷 ∶ ∇𝒗 d𝑉 − ∫𝜕𝛺𝑡

𝒕̂ ⋅ 𝒗 d𝑆 = 0 ∀ admissible 𝒗, (17)

where 𝒕̂ is the surface traction acting on 𝜕𝛺𝑡 and 𝒗 is an admissible test function that is sufficiently regular and vanishes on the
Dirichlet boundary 𝜕𝛺𝑢. Note that 𝒕̂ = 𝟎 in the context of purely displacement-controlled testing. We use the weak form of the linear
momentum balance instead of the strong form because the latter requires double spatial derivatives, which are more sensitive to
noise in the data. For the scope of this work, we consider a plane strain assumption and note that the method may be extended
to the three-dimensional case with, e.g., Digital Volume Correlation data. While a plane stress assumption is more appropriate for
samples with small out-of-plane thickness and would require a reformulation of the proposed method, for the purpose of developing

1 Activation functions such as ReLU(⋅) = max(⋅, 0) and its variants, while common in deep learning, are not recommended in this context as they are not twice
differentiable.

2 Since the loss function is based on the first derivative of the NN, training requires computing the second derivative for optimization of the NN parameters;
6

see Section 2.4 and (22).
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and testing the method and given that we consider artificial data here, the plane strain assumption is just as good as any other —
provided it is consistent with the way the benchmark data are generated.

Let  = {(𝑎, 𝑖) ∶ 𝑎 = 1,… , 𝑛𝑛; 𝑖 = 1, 2} denote the set of degrees of freedom such that the displacement of the 𝑎th node in the
𝑖th direction, i.e., 𝑢𝑎𝑖 , is included in the observed data. We further divide all the degrees of freedom into the following mutually
exclusive subsets of ,

• free: degrees of freedom not subjected to Dirichlet constraints, i.e., 𝑢𝑎𝑖 is not fixed;
• fix

𝛽 (with 𝛽 = 1,… , 𝑛𝛽): degrees of freedom under Dirichlet constraints that collectively contribute to the observed reaction
force 𝑅𝛽 .

Similar to the displacement field approximation (1), we approximate the test function as

𝒗(𝑿) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝑿)𝒗𝑎, with 𝑣𝑎𝑖 = 0 ∀ (𝑎, 𝑖) ∈

𝑛𝛽
⋃

𝛽=1
fix

𝛽 (18)

for admissibility. Subsequently, the momentum balance in (17) reduces to
𝑛𝑛
∑

𝑎=1
𝑣𝑎𝑖 𝑓

𝑎
𝑖 = 0, where 𝑓 𝑎

𝑖 = ∫𝛺
𝑃𝑖𝑗 ∇𝑗𝑁

𝑎 d𝑉
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

internal force

−∫𝜕𝛺𝑡

𝑡𝑖𝑁
𝑎 d𝑆

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
external force

. (19)

𝑓 𝑎
𝑖 can be interpreted as the difference between the internal force arising from the constitutive model and the external force due to

the applied tractions on Neumann boundaries. Note that the integrals in (19) are computed using numerical quadrature defined by
the mesh over the point set  .

Since the test functions are arbitrary, (19) must be satisfied at each free degree of freedom (where 𝜈𝑎𝑖 does not vanish)
independently, i.e.,

𝑓 𝑎
𝑖 = 0 ∀ (𝑎, 𝑖) ∈ free. (20)

However, at the fixed degrees of freedom, the internal and external forces are balanced by the reaction force from the Dirichlet
constraints. Point-wise reaction forces cannot be measured experimentally, and are hence assumed to be unavailable. Instead, only
global reaction forces along the boundary segments are known. Therefore, the aggregated force balance for each measured reaction
force yields

∑

(𝑎,𝑖)∈fix
𝛽

𝑓 𝑎
𝑖 = 𝑅𝛽 ∀ 𝛽 = 1,… , 𝑛𝛽 , (21)

where the summation is performed over the point-wise forces across all the degrees of freedom in the 𝛽th Dirichlet constraint,
i.e., fix

𝛽 . Recall that (⋅)𝑡 was dropped for the sake of brevity and the above force balance constraints must be satisfied for all the
ata snapshots at 𝑡 = 1,… , 𝑛𝑡.

The objective now reduces to learning the constitutive model 𝑊 (𝑭 ) in (8) (equivalently, 𝑷 (𝑭 ) in (10)), parameterized by the
CNN weights  and anisotropic fiber orientations , such that the full-field displacement and reaction force data satisfy the purely
hysics-based constraints (20) and (21). We pose this inverse problem as the minimization of a loss function based on the force
alance residuals given by

, ← argmin
,

𝑛𝑡
∑

𝑡=1

[

∑

(𝑎,𝑖)∈free

(

𝑓 𝑎,𝑡
𝑖
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
free degrees of freedom

+
𝑛𝛽
∑

𝛽=1

(

𝑅𝛽,𝑡 −
∑

(𝑎,𝑖)∈fix
𝛽

𝑓 𝑎,𝑡
𝑖

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fixed degrees of freedom

]

. (22)

The optimization problem in (22) is solved via gradient-based minimization (see Appendix A for implementation details). Since
ach transformation – starting from the observed displacement and reaction force data to the constitutive model and the physics-
onstrained loss – is differentiable, the gradient of the objective function with respect to the trainable parameters in  and  is

easily computed. This is enabled by automatic differentiation (Baydin et al., 2017) – wherein each mathematical operation is tracked
in a computational graph and later the gradients are computed via the chain rule for differentiation.

The inverse problem in (22) is highly ill-posed as it admits multiple solutions due to two reasons. (i) While the ICNN output is
convex with respect to the invariants of 𝑪 , the loss function in (22) is highly non-convex with respect to the trainable parameters
of the ICNN. (ii) The absence of strain energy density or stress labels and thus the training with indirect labels in the form of the
physics-constrained loss implies that several different models can likely explain the limited observed data. For these reasons, the
optimization problem in (22) admits several local minima and the final solution is sensitive to the initial state of the trainable
parameters, i.e.,  and . To address this issue, we consider an ensemble of ICNNs — each trained independently with different
initial states chosen randomly; we only accept those models which have distinctively low loss values and reject those for which
the loss function gets trapped in bad minima with high loss values (see Appendix A for implementation details). In Section 3.2, we
show that despite the multiplicity in the solution/model space, the constitutive responses of the accepted models are accurate and
7

consistent with each other and the proposed approach is robust to this ill-posedness.
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Fig. 3. (a) Training specimen: geometry and boundary conditions of a square plate with a hole in the bottom-left corner, subjected to displacement-controlled
asymmetric biaxial tension. The resulting data (full-field displacements and reaction forces) including noise are used to train the ICNN-based constitutive models.
(b) Validation specimen: geometry and boundary conditions of a square plate with two asymmetric elliptical holes, subjected to displacement-controlled uniaxial
tension. The specimen is only used for validation of the ICNN-based constitutive models; no related data are used during the training stage. All lengths and
displacements are normalized with respect to the side length of the undeformed specimen.

3. Numerical benchmarks

3.1. Data generation

Adapting the benchmarks of Flaschel et al. (2021), we emulate a DIC experiment by using the finite element method (FEM)
to simulate the behavior of a hyperelastic square plate with a hole (shown in Fig. 3a) under plane-strain conditions. The
specimen undergoes displacement-controlled asymmetric biaxial tension with symmetry boundary conditions on the bottom and
left boundaries and loading parameter 𝛿. We employ linear triangular elements and the nodal displacements and reaction forces
(horizontal force on the left and right boundaries, vertical force on the upper and lower boundaries) are recorded for 𝑛𝑡 load steps.
Compared to simple uni-/biaxial tension or torsion tests, the combination of this geometry and loading generates sufficiently diverse
and heterogeneous strain states to train a generalizable constitutive model with just a single experiment (see Section 3.2 and Fig. 11).
Henceforth, the specimen is referred to as the training specimen.

We generate the synthetic data with FEM using the following instances of well-known physical and phenomenological material
models.

1. Neo-Hookean (NH) model:

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + 1.5(𝐽 − 1)2. (23)

2. Isihara (IH) model (Isihara et al., 1951):

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + (𝐼2 − 3) + (𝐼1 − 3)2 + 1.5(𝐽 − 1)2. (24)

3. Haines-Wilson (HW) model (Haines and Wilson, 1979):

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + (𝐼2 − 3) + 0.7(𝐼1 − 3)(𝐼2 − 3) + 0.2(𝐼1 − 3)3 + 1.5(𝐽 − 1)2. (25)

4. Gent-Thomas (GT) model (Gent and Thomas, 1958):

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + log(𝐼2∕3) + 1.5(𝐽 − 1)2. (26)

5. Arruda–Boyce (AB) model (Arruda and Boyce, 1993):

𝑊 (𝑭 ) = 2.5
√

𝑁𝑐

[

𝛽𝑐𝜆𝑐 −
√

𝑁𝑐 log
(

sinh 𝛽𝑐
𝛽𝑐

)]

− 𝑐AB + 1.5(𝐽 − 1)2, (27)

where 𝜆𝑐 =
√

𝐼1∕3, 𝛽 = −1
(

𝜆𝑐∕
√

𝑁𝑐

)

, and −1 denotes the inverse Langevin function. The constants are set to 𝑁𝑐 = 28
(denoting number of polymeric chain segments) and 𝑐AB ≈ 3.7910, the latter is used to offset the energy density to zero at
𝑭 = 𝑰 (since the Arruda–Boyce feature does not itself vanish for zero deformation).
8
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6. Ogden model (OG) (Ogden and Hill, 1972):

𝑊 (𝑭 ) =
𝜇
𝜂
(𝜆𝜂1 + 𝜆𝜂2 + 𝜆𝜂3 − 3) (28)

where 𝜆1, 𝜆2, 𝜆3 are the principal stretches and 𝜇 = 𝜂 = 1.3.
7. Anisotropic model with one fiber family at 𝛼1 = 45◦ orientation (abbreviated as: AI45):

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + 0.75(𝐽 − 1)2 + 0.5(𝐼𝑎1 − 1)2. (29)

8. Anisotropic model with one fiber family at 𝛼1 = 60◦ orientation (abbreviated as: AI60):

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) + 0.75(𝐽 − 1)2 + 0.5(𝐼𝑎1 − 1)2. (30)

9. Anisotropic Holzapfel model (HZ) (Holzapfel et al., 2000)

𝑊 (𝑭 ) = 0.5(𝐼1 − 3) +
𝜅1
2𝜅2

[

exp
(

𝜅2(𝐼𝑎1 − 1)2
)

+ exp
(

𝜅2(𝐼𝑎2 − 1)2
)

− 2
]

+ (𝐽 − 1)2 (31)

with two fiber families at 𝛼1 = +30◦ and 𝛼2 = −30◦ orientations and constants 𝜅1 = 0.9 and 𝜅2 = 0.8.

For benchmarking purposes, the ICNN-based model is then trained to surrogate the aforementioned models by using the NN-EUCLID
procedure in Section 2.4. Further implementation details are presented in Appendix A.

To account for the noise in real DIC experiments, we add artificial noise to the synthetic displacement data generated using
the FEM simulations. The noise is mainly dependent on the pixel accuracy of the imaging device, which means that the noise
level remains constant for every degree of freedom at every load step irrespective of the displacement. The noise is added to the
displacement data as

𝑢𝑎,𝑡𝑖 = 𝑢fem,𝑎,𝑡
𝑖 + 𝜀𝑎,𝑡𝑖 with 𝜀𝑎,𝑡𝑖 ∼  (0, 𝜎2𝑢 ) ∀ (𝑎, 𝑖) ∈ , 𝑡 ∈ {1,… , 𝑛𝑡}, (32)

where 𝑢fem,𝑎,𝑡
𝑖 and 𝜀𝑎,𝑡𝑖 denote the true displacement from FEM and random noise, respectively, the latter sampled independently and

identically from a zero-centered normal distribution with standard deviation 𝜎𝑢. Following Flaschel et al. (2021), we consider two
noise levels (normalized relative to specimen length): 𝜎𝑢 = 10−4 (low noise) and 𝜎𝑢 = 10−3 (high noise) that are representative of
modern DIC setups. As per the common practice in DIC, each snapshot of the noisy displacement data is further spatially denoised.
For the scope of this work, we use kernel ridge regression (KRR) for denoising; see Flaschel et al. (2021) for details on the denoising
algorithm. The denoised and interpolated displacement data are then used for the ICNN training.

3.2. Results

The detailed ICNN architecture and training protocols for the benchmarks are presented in Appendix A. Due to the ill-posedness
and sensitivity to initial guess of the NN weights, we create an ensemble of 𝑛𝑒 = 30 ICNN models with the same architecture but
ach trained independently with different random weight initialization. The ICNN models with final loss value (see (22)) within
0% of the lowest loss value across the ensemble are accepted, while the remaining models are rejected. The filtering of models
ith losses higher than the acceptance criterion allows for a qualitative estimate of the confidence associated with the predicted

owest-loss ICNN model. For example, if it is observed that only the lowest-loss model lies within the acceptance criterion, then it
an be inferred that the predicted lowest-loss ICNN model has high associated uncertainty. Conversely, if all the ICNN models in
he ensemble lie within the acceptance criterion, the predicted lowest-loss ICNN model has high associated certainty. The choice of
cceptance criterion also provides a commensurate qualitative estimate of robustness to the NN initialization and does not influence
he lowest-loss (best) ICNN model in any way.

.2.1. Model accuracy, generalization, and FEM deployment
For all the benchmarks (23)–(31), we evaluate the ICNN-based constitutive models against the ground truth models along six

eformation paths: uniaxial tension (UT), uniaxial compression (UC), biaxial tension (BT), biaxial compression (BC), simple shear
SS) and pure shear (PS). The deformation gradients for these paths are given by:

𝑭UT(𝛾) =
[

1 + 𝛾 0
0 1

]

, 𝑭UC(𝛾) =

[

1
1+𝛾 0
0 1

]

, 𝑭 BT(𝛾) =
[

1 + 𝛾 0
0 1 + 𝛾

]

,

𝑭 BC(𝛾) =

[ 1
1+𝛾 0
0 1

1+𝛾

]

, 𝑭 SS(𝛾) =
[

1 𝛾
0 1

]

, 𝑭 PS(𝛾) =

[

1 + 𝛾 0
0 1

1+𝛾

]

,

(33)

where 𝛾 ∈ [0, 1] is a loading parameter. Note that these deformation paths are purely for evaluation purposes and in no way
contribute to model training. In all the benchmarks, the strain energy density predictions from the accepted ICNN models – despite
the multiplicity in solutions due to the ill-posedness – show good agreement with the ground truth; see Figs. 4, 5, 6 and Figs. 7, 8,
9 for the low and high noise cases, respectively. The ICNN models also show good agreement with the ground truth in terms of the
first Piola–Kirchhoff stress along the six deformation paths for both noise levels; see Figs. C.12–C.17.

For further validation, we deploy the ICNN-based constitutive model within a finite element simulation framework. Without loss
f generality, we use linear triangular elements and a Newton–Raphson-based nonlinear solver, which requires tangent computations.
9
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Fig. 4. Strain energy density 𝑊 (𝑭 (𝛾)) prediction along the different deformation paths in (33) using the ICNN-based constitutive models (both accepted and
rejected ones) for the case with low noise (𝜎𝑢 = 10−4) and benchmarks NH (23), IH (24), and HW (25). The constitutive response of the (hidden) true model is
also shown for reference.
10
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Fig. 5. Strain energy density 𝑊 (𝑭 (𝛾)) prediction along the different deformation paths in (33) using the ICNN-based constitutive models (both accepted and
rejected ones) for the case with low noise (𝜎𝑢 = 10−4) and benchmarks GT (26), AB (27), and OG (28). The constitutive response of the (hidden) true model is
also shown for reference.
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Fig. 6. Strain energy density 𝑊 (𝑭 (𝛾)) prediction along the different deformation paths in (33) using the ICNN-based constitutive models (both accepted and
rejected ones) for the case with low noise (𝜎𝑢 = 10−4) and benchmarks AI45 (29), AI60 (30), and HZ (31). The constitutive response of the (hidden) true model
is also shown for reference. The insets show the fiber orientations discovered by the ICNN-based models and the fiber orientations in the (hidden) true model.
12



Journal of the Mechanics and Physics of Solids 169 (2022) 105076P. Thakolkaran et al.
Fig. 7. Strain energy density 𝑊 (𝑭 (𝛾)) prediction along the different deformation paths in (33) using the ICNN-based constitutive models (both accepted and
rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks NH (23), IH (24), and HW (25). The constitutive response of the (hidden) true model is
also shown for reference.
13
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Fig. 8. Strain energy density 𝑊 (𝑭 (𝛾)) prediction along the different deformation paths in (33) using the ICNN-based constitutive models (both accepted and
rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks GT (26), AB (27), and OG (28). The constitutive response of the (hidden) true model is
also shown for reference.
14
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Fig. 9. Strain energy density 𝑊 (𝑭 (𝛾)) prediction along the different deformation paths in (33) using the ICNN-based constitutive models (both accepted and
rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks AI45 (29), AI60 (30), and HZ (31). The constitutive response of the (hidden) true model
is also shown for reference. The insets show the fiber orientations discovered by the ICNN-based models and the fiber orientations in the (hidden) true model.

The element-wise stress and tangent modulus are computed using automatic differentiation via (10) and (12), respectively. To ensure
that the ICNN models generalize to a simulation that is different from the one they are trained on, we consider a validation specimen
15
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Fig. 10. Comparison of FEM solutions for the validation specimen (Fig. 3b) between the ground-truth and ICNN-based constitutive models for (a) Arruda–Boyce
(27) and (b) Isihara (24) benchmarks. (Top) Deformed shape (shaded by displacement magnitude) of the specimen at loading parameter 𝛿 = 1 (see Fig. 3b for
details). (Middle) Predicted strain invariants (𝐼1 and 𝐽 ) at each quadrature point from the ICNN-based simulation vs. true strain invariants (from ground-truth
simulation) in the validation specimen. In the ideal case, we expect each data point to lie on a line (indicated as red dashed line) with zero intercept and unit
slope for perfect accuracy. The coefficient of determination (𝑅2) with respect to this line serves as a measure of accuracy. (Bottom) Comparison of the vertical
reaction force on the top surface as a function of loading parameter 𝛿, obtained from the ICNN-based simulation vs. the ground-truth simulation.

(Fig. 3b) with a more complex geometry than the training specimen, featuring two asymmetric elliptical holes and subjected to
quasi-static uniaxial loading. For these validation simulations we use the ICNN material models with the lowest loss across the
trained ensembles. Fig. 10 shows that the solutions to the above mechanical boundary value problem for two representative ground-
truth constitutive models (Arruda–Boyce (27) and Isihara (24)) are in excellent agreement with those based on their respective
ICNN ensemble-based constitutive models. This is quantitatively supported by good accuracy in the element-wise strain invariants
(coefficient of determination or 𝑅2 scores greater than 0.94 in the high noise case) as well as in the reaction forces between ground-
truth and ICNN-based simulations. The ICNN architecture and smooth activations also mitigate spurious, oscillatory, and non-smooth
artifacts in the overall stress–strain response and ensure smooth first and second derivatives of the strain energy density for robust
deployment in FEM setting. In Appendix D, we demonstrate that a simple feed-forward NN without the input-convex architecture
and smoothness is not suitable for constitutive modeling.

For visualizing the generalization capability of the ICNN models, we plot the two-dimensional projections of the principal strain
invariants in the training specimen (across all load steps and all elements) – as demonstrated in Fig. 11. The strain invariants
generated by the six deformation paths in (33) as well as from the validation specimens (across all load steps and all elements) are
also added to the same plot. This confirms the generalization capability of the ICNN-based constitutive models, as the validation
strain states go beyond the space of the strain states observed in the training specimen. Uniaxial tension, biaxial compression and
uniaxial compression deformation paths are mostly encompassed by the training data, yielding almost perfect results for all the
benchmarks. It also explains the significant mismatch between the ground truth and predicted strain energy densities – particularly
16
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Fig. 11. Two-dimensional projections of the principal strain invariants (𝐼1 −3), (𝐼2 −3), and (𝐽 −1)2 at all the elements in the training specimen (Fig. 3a) across
all the loadsteps for (a) Arruda–Boyce (27) and (b) Isihara (24) benchmarks. Also shown are the principal strain invariants of the validation specimen (Fig. 3b)
across all elements and loadsteps and the six evaluation deformation paths (33). Note that all the data shown here are based on ground-truth model without
noise (including strain invariants of the validation specimen.).

for 𝛾 > 0.5 in simple shear, pure shear, and biaxial tension deformations – as these deformations are too large relative to those
observed in the training specimen.

3.2.2. Learning hidden anisotropy
For the benchmarks with single fiber family ((29) and (30)) and Holzapfel model (31) with two fiber families, the fiber

orientations in  are not known a priori but rather learned by the ICNNs as part of the training (see Algorithm 1 for pseudocode).
Despite the unsupervised setting, the fiber orientations in  are accurately identified in both low and high noise cases — as
demonstrated in Figs. 6 and 9, respectively.

4. Conclusion and outlook

We developed NN-EUCLID, i.e. an unsupervised learning approach for the encoding of material models in deep NNs with no
reliance on stress data, and demonstrated its performance for isotropic and anisotropic hyperelasticity. The proposed framework only
requires realistically measurable data, i.e., full-field displacements and global forces. The constitutive model is based on ICNNs whose
special structure guarantees the physical requirements of material objectivity, (local) material stability, and stress-free reference
configuration. The lack of stress labels in the unsupervised learning setting is compensated for by minimizing a physics-motivated
loss which encapsulates the constraint that the observed displacement fields must satisfy the conservation of linear momentum.
Through several benchmarks for isotropic and anisotropic hyperelasticity, we demonstrated the capability of accurately learning the
underlying material behavior by only providing data from a single experiment under different noise levels that are representative
of contemporary DIC setups. The ICNN framework also automatically discovers unknown principal directions of anisotropy (fiber
orientations) in anisotropic hyperelastic materials. We further showed that the ICNN-based constitutive models can generalize to
17
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Table A.1
List of parameters and hyperparameters used for the data generation and benchmarks.

Parameter Notation Value

Training specimen:
Number of nodes in mesh for FEM-based data generation – 63,601
Number of nodes in data available for learning 𝑛𝑛 1441
Number of reaction force constraints 𝑛𝛽 4
Number of data snapshots for NH, GT 𝑛𝑡 3
Number of data snapshots for IH, HW, AI45, AI60, HZ 𝑛𝑡 8
Number of data snapshots for AB 𝑛𝑡 10
Number of data snapshots for OG 𝑛𝑡 6
Loading parameter for NH, GT, IH, HW 𝛿 {0.1 × 𝑡 ∶ 𝑡 = 1,… , 𝑛𝑡}
Loading parameter for AB, OG, AI45, AI60, HZ 𝛿 {0.05 × 𝑡 ∶ 𝑡 = 1,… , 𝑛𝑡}

Validation specimen:
Number of nodes in the mesh – 4908
Loading parameter 𝛿 {0.01 × 𝑡 ∶ 𝑡 = 1,… , 100}

ICNN hyperparameters:
Number of hidden layers 𝑁 − 1 3
Number of neurons in each hidden layer (𝑘 = 1,… , 𝑁 − 1) 𝑑𝑘 64
Dropout rate in hidden layers – 20%
Scaling parameter in  𝑐 1.0
Scaling parameter in  𝑐 1∕12
Number of models in the ensemble 𝑛𝑒 30
Number of epochs – 500
Learning rate schedule – cyclic
Base learning rate – 0.001
Maximum learning rate – 0.1
Learning rate cycle upward steps – 50
Learning rate cycle downward steps – 50

strain states and specimen geometries beyond those of the training specimen; and that they can be deployed within FEM simulations
involving both stress and tangent computations with good accuracy (relative to the otherwise unknown ground-truth constitutive
model).

In a broader view, the proposed framework offers a departure from the reliance on stress labels for deep learning of constitutive
odels. Future developments include experimental validation as well as the extension to unsupervised deep learning of inelastic
aterial behavior.
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ppendix A. Implementation details

All the parameters and hyperparameters used in data generation and NN training are listed in Table A.1 with the following
elated explanations.

.1. Data generation

All lengths and displacements are normalized with respect to the side length of the undeformed specimen. The training specimen
s discretized with a high-resolution mesh (same as Flaschel et al. (2021)) consisting of 63,601 nodes. The noisy displacements of
he training specimen are spatially-denoised using the same KRR denoiser and parameters as in Flaschel et al. (2021). For data
fficiency, the denoised displacements are then projected onto a coarser mesh with 𝑛𝑛 = 1441 nodes, which are used for training

the ICNN models.
18
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Fig. C.12. First Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) component prediction along the different deformation paths in (33) using the ICNN-based constitutive models
(both accepted and rejected ones) for the case with low noise (𝜎𝑢 = 10−4) and benchmarks NH (23), IH (24), and HW (25). The constitutive response of the
(hidden) true model is also shown for reference.
19
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Fig. C.13. First Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) component prediction along the different deformation paths in (33) using the ICNN-based constitutive models
(both accepted and rejected ones) for the case with low noise (𝜎𝑢 = 10−4) and benchmarks GT (26), AB (27), and OG (28). The constitutive response of the
(hidden) true model is also shown for reference.
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Fig. C.14. First Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) component prediction along the different deformation paths in (33) using the ICNN-based constitutive models
(both accepted and rejected ones) for the case with low noise (𝜎𝑢 = 10−4) and benchmarks AI45 (29), AI60 (30), and HZ (31). The constitutive response of the
(hidden) true model is also shown for reference.
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Fig. C.15. First Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) component prediction along the different deformation paths in (33) using the ICNN-based constitutive models
(both accepted and rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks NH (23), IH (24), and HW (25). The constitutive response of the
(hidden) true model is also shown for reference.
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Fig. C.16. First Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) component prediction along the different deformation paths in (33) using the ICNN-based constitutive models
(both accepted and rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks GT (26), AB (27), and OG (28). The constitutive response of the
(hidden) true model is also shown for reference.
23
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Fig. C.17. First Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) component prediction along the different deformation paths in (33) using the ICNN-based constitutive models
(both accepted and rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks AI45 (29), AI60 (30), and HZ (31). The constitutive response of the
(hidden) true model is also shown for reference.
24



Journal of the Mechanics and Physics of Solids 169 (2022) 105076P. Thakolkaran et al.
Fig. D.18. Strain energy density 𝑊 (𝑭 (𝛾)) prediction along the different deformation paths in (33) using the NN-based (non-convex and non-smooth) constitutive
models (both accepted and rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks NH (23), IH (24), and HW (25). The constitutive response
of the (hidden) true model is also shown for reference.
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Fig. D.19. First Piola–Kirchhoff stress 𝑷 (𝑭 (𝛾)) component prediction along the different deformation paths in (33) using the NN-based (non-convex and non-
smooth) constitutive models (both accepted and rejected ones) for the case with high noise (𝜎𝑢 = 10−3) and benchmarks NH (23), IH (24), and HW (25). The
constitutive response of the (hidden) true model is also shown for reference.

A.2. ICNN
26
The ICNN architecture consists of three hidden layers (𝑁 = 4) with 64 neurons each (𝑑1 = 𝑑2 = 𝑑3 = 64). We use the Adam

optimizer (Kingma and Ba, 2014) with automatic differentiation-based backpropagation to train the ICNN parameters  and . The
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Algorithm 1 Unsupervised training of the ICNN-based constitutive models

1: Input: Point-wise displacement data  = {𝒖𝑎,𝑡 ∈ R2 ∶ 𝑎 = 1,… , 𝑛𝑛; 𝑡 = 1,… , 𝑛𝑡}
2: Input: Global reaction forces {𝑅𝛽,𝑡 ∶ 𝛽 = 1,… , 𝑛𝛽 ; 𝑡 = 1,… , 𝑛𝑡}
3: Randomly initialize ICNN parameters: ,.
4: Initialize learning rate scheduler
5: Initialize Adam optimizer with parameters , and learning rate scheduler
6: for 𝑒 = 1,… , 𝑛𝑒 do ⊳ Training epochs
7: Loss: 𝓁 ← 0 ⊳ Initialize loss for current epoch
8: for 𝑡 = 1,… , 𝑛𝑡 do ⊳ Iterate over snapshots
9: for each element in mesh do

10: 𝑊 0 ← 𝑊 NN
,|𝑭=𝑰 ⊳ see (9)

11: 𝑯 ← −
𝜕𝑊 NN

,
𝜕𝑭

|

|

|

|

|𝑭=𝑰
⊳ see (11)

12: 𝑊 ← 𝑊 NN
, +𝑊 0 +𝑯 ∶ 𝑬 ⊳ see (8)

13: 𝑷 ← 𝜕𝑊
𝜕𝑭 ⊳ see (10)

14: end for
15: for 𝑎 = 1,… , 𝑛𝑎 do
16: for 𝑖 = 1, 2 do
17: Compute force 𝑓 𝑎,𝑡

𝑖 using (19)
18: end for
19: end for
20: for (𝑎, 𝑖) ∈ free do
21: 𝓁 ← 𝓁 +

(

𝑓 𝑎,𝑡
𝑖
)2 ⊳ force balance at free degrees of freedom; see (22)

22: end for
23: for 𝛽 = 1,… , 𝑛𝛽 do
24: 𝑟𝛽,𝑡 ← 0
25: for (𝑎, 𝑖) ∈ fix

𝛽 do
26: 𝑟𝛽,𝑡 ← 𝑟𝛽,𝑡 + 𝑓 𝑎,𝑡

𝑖 ⊳ see (22)
27: end for
28: 𝓁 ← 𝓁 +

(

𝑅𝛽,𝑡 − 𝑟𝛽,𝑡
)2 ⊳ force balance at fixed degrees of freedom; see (22)

29: end for
30: end for
31: Compute gradients 𝜕𝓁∕𝜕 and 𝜕𝓁∕𝜕 using automatic differentiation
32: Update  and  with Adam optimizer using gradients 𝜕𝓁∕𝜕 and 𝜕𝓁∕𝜕
33: Update learning rate with learning rate scheduler based on epoch number 𝑒
34: end for
35: Output: Trained ICNN model 𝑊 NN

,

training is carried out for 500 epochs, which was observed to be sufficient for the loss (22) to converge an acceptable value. To
mitigate the network parameters getting stuck in bad local minima, the learning rate of the optimizer is linearly cycled from 0.001
to 0.1 and back every 100 epochs. Dropout rate of 20% is used as regularization to prevent overfitting during training (Srivastava
et al., 2014). Note that dropout is turned off for evaluation during validation/testing. The scaling coefficients in (16) are set to
𝑐 = 1.0 and 𝑐 = 1∕12 to avoid vanishing and/or exploding gradients.

.3. Anisotropy

For anisotropic hyperelasticity, the NN-based constitutive model requires additional angle parameters  = {𝛼1, 𝛼2,…} to compute
he anisotropic invariants {𝐼𝑎1 , 𝐼

𝑎
2 ,…}. Since 𝛼𝑖 is constrained to [0, 𝜋), this calls for constrained optimization, which is challenging,

articularly with NNs. To avoid this, we first initialize a trainable parameter 𝜁𝑖 ∈ R. The fiber orientation is then given by

𝛼𝑖 =
𝜋

1 + 𝑒−𝜁𝑖
. (A.1)

This change of variables from 𝛼𝑖 to 𝜁𝑖 allows unconstrained optimization, which is easier than constrained optimization.

Appendix B. Pseudocode for unsupervised ICNN training

Algorithm 1 summarizes the unsupervised training of the ICNN-based constitutive models.
27
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Appendix C. Model accuracy in stress predictions

Figs. C.12–C.17 show the comparisons of the first Piola–Kirchhoff stress predictions from the ICNN models vs. the ground-truth
long the six deformation paths (33) for both noise levels.

ppendix D. Constitutive models trained without input-convex architecture and smoothness

Figs. D.18 and D.19 show the constitutive response for three representative benchmarks when the ICNN in (8) is replaced
ith a simple feed-forward neural network (keeping the same architecture) with no constraints on the weights (i.e., no convexity

onstraints) and ReLU activation functions (i.e., not smooth). Although the strain energy responses are somewhat acceptable,
he stress responses exhibit spurious, oscillatory, and non-smooth artifacts. Hence, a simple feed-forward NN (without enforcing
moothness and input-convexity) cannot be deployed in an FEM framework. See As’ad et al. (2022) for more in-depth analysis of
he ICNN architecture from a constitutive modeling perspective.

eferences

mos, B., Xu, L., Kolter, J.Z., 2017. Input convex neural networks. In: Precup, D., Teh, Y.W. (Eds.), Proceedings of the 34th International Conference on Machine
Learning. In: Proceedings of Machine Learning Research, vol. 70, PMLR, pp. 146–155, URL: https://proceedings.mlr.press/v70/amos17b.html.

rruda, E.M., Boyce, M.C., 1993. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41 (2),
389–412. http://dx.doi.org/10.1016/0022-5096(93)90013-6, URL: https://www.sciencedirect.com/science/article/pii/0022509693900136.

s’ad, F., Avery, P., Farhat, C., 2022. A mechanics-informed artificial neural network approach in data-driven constitutive modeling. Internat. J. Numer.
Methods Engrg. 123 (12), 2738–2759. http://dx.doi.org/10.1002/nme.6957, URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6957. arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957.

all, J.M., 1976. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (4), 337–403. http://dx.doi.org/10.1007/
BF00279992, URL: http://link.springer.com/10.1007/BF00279992.

astek, J.-H., Kumar, S., Telgen, B., Glaesener, R.N., Kochmann, D.M., 2022. Inverting the structure–property map of truss metamaterials by deep learning. Proc.
Natl. Acad. Sci. 119 (1), e2111505119. http://dx.doi.org/10.1073/pnas.2111505119.

aydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M., 2017. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 18 (1), 5595–5637.
onatti, C., Mohr, D., 2021. One for all: Universal material model based on minimal state-space neural networks. Sci. Adv. 7 (26), http://dx.doi.org/10.1126/

sciadv.abf3658.
oyd, S.P., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge, UK ; New York.
ameron, B.C., Tasan, C., 2021. Full-field stress computation from measured deformation fields: A hyperbolic formulation. J. Mech. Phys. Solids 147, 104186.

http://dx.doi.org/10.1016/j.jmps.2020.104186.
arrara, P., De Lorenzis, L., Stainier, L., Ortiz, M., 2020. Data-driven fracture mechanics. Comput. Methods Appl. Mech. Engrg. 372, 113390. http://dx.doi.org/

10.1016/j.cma.2020.113390, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782520305752.
hen, C.-T., Gu, G.X., 2021. Learning hidden elasticity with deep neural networks. Proc. Natl. Acad. Sci. 118 (31), e2102721118. http://dx.doi.org/10.1073/

pnas.2102721118.
onti, S., Müller, S., Ortiz, M., 2018. Data-driven problems in elasticity. Arch. Ration. Mech. Anal. 229 (1), 79–123. http://dx.doi.org/10.1007/s00205-017-1214-0,

URL: http://link.springer.com/10.1007/s00205-017-1214-0.
alémat, M., Coret, M., Leygue, A., Verron, E., 2019. Measuring stress field without constitutive equation. Mech. Mater. 136, 103087. http://dx.doi.org/10.1016/

j.mechmat.2019.103087, URL: https://linkinghub.elsevier.com/retrieve/pii/S0167663619302376.
ggersmann, R., Kirchdoerfer, T., Reese, S., Stainier, L., Ortiz, M., 2019. Model-free data-driven inelasticity. Comput. Methods Appl. Mech. Engrg. 350, 81–99.

http://dx.doi.org/10.1016/j.cma.2019.02.016, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782519300878.
ernández, M., Jamshidian, M., Böhlke, T., Kersting, K., Weeger, O., 2021. Anisotropic hyperelastic constitutive models for finite deformations combining material

theory and data-driven approaches with application to cubic lattice metamaterials. Comput. Mech. 67 (2), 653–677. http://dx.doi.org/10.1007/s00466-020-
01954-7, URL: http://link.springer.com/10.1007/s00466-020-01954-7.

laschel, M., Kumar, S., De Lorenzis, L., 2021. Unsupervised discovery of interpretable hyperelastic constitutive laws. Comput. Methods Appl. Mech. Engrg. 381,
113852. http://dx.doi.org/10.1016/j.cma.2021.113852, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782521001894.

laschel, M., Kumar, S., De Lorenzis, L., 2022. Discovering plasticity models without stress data. arXiv:2202.04916. URL: https://arxiv.org/abs/2202.04916.
uhg, J.N., Marino, M., Bouklas, N., 2022a. Local approximate Gaussian process regression for data-driven constitutive models: development and comparison

with neural networks. Comput. Methods Appl. Mech. Engrg. 388, 114217. http://dx.doi.org/10.1016/j.cma.2021.114217, URL: https://www.sciencedirect.
com/science/article/pii/S004578252100548X.

uhg, J.N., van Wees, L., Obstalecki, M., Shade, P., Bouklas, N., Kasemer, M., 2022b. Machine-learning convex and texture-dependent macroscopic yield from
crystal plasticity simulations. Materialia 23, 101446. http://dx.doi.org/10.1016/j.mtla.2022.101446, URL: https://www.sciencedirect.com/science/article/pii/
S2589152922001296.

ent, A.N., Thomas, A.G., 1958. Forms for the stored (strain) energy function for vulcanized rubber. J. Polym. Sci. 28 (118), 625–628. http://dx.doi.org/10.
1002/pol.1958.1202811814, URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1958.1202811814. _eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/pol.1958.1202811814.

haboussi, J., Garrett, J.H., Wu, X., 1991. Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 117 (1), 132–153. http://dx.
doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132), URL: http://ascelibrary.org/doi/10.1061/%28ASCE%290733-9399%281991%29117%3A1%28132%29.

onzález, D., Chinesta, F., Cueto, E., 2019a. Learning corrections for hyperelastic models from data. Front. Mater. 6, 14. http://dx.doi.org/10.3389/fmats.2019.
00014, URL: https://www.frontiersin.org/article/10.3389/fmats.2019.00014.

onzález, D., Chinesta, F., Cueto, E., 2019b. Thermodynamically consistent data-driven computational mechanics. Contin. Mech. Thermodyn. 31 (1), 239–253.
http://dx.doi.org/10.1007/s00161-018-0677-z, URL: http://link.springer.com/10.1007/s00161-018-0677-z.

oodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, http://www.deeplearningbook.org.
aghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R., 2020. A deep learning framework for solution and discovery in solid mechanics. arXiv:2003.02751

[cs, stat]. URL: http://arxiv.org/abs/2003.02751. arXiv:2003.02751.
aines, D.W., Wilson, W.D., 1979. Strain-energy density function for rubberlike materials. J. Mech. Phys. Solids 27 (4), 345–360. http://dx.doi.org/10.1016/0022-

5096(79)90034-6, URL: https://www.sciencedirect.com/science/article/pii/0022509679900346.
e, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, http://dx.doi.org/10.1109/cvpr.2016.90.
28

https://proceedings.mlr.press/v70/amos17b.html
http://dx.doi.org/10.1016/0022-5096(93)90013-6
https://www.sciencedirect.com/science/article/pii/0022509693900136
http://dx.doi.org/10.1002/nme.6957
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6957
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6957
http://dx.doi.org/10.1007/BF00279992
http://dx.doi.org/10.1007/BF00279992
http://dx.doi.org/10.1007/BF00279992
http://link.springer.com/10.1007/BF00279992
http://dx.doi.org/10.1073/pnas.2111505119
http://refhub.elsevier.com/S0022-5096(22)00253-8/sb6
http://dx.doi.org/10.1126/sciadv.abf3658
http://dx.doi.org/10.1126/sciadv.abf3658
http://dx.doi.org/10.1126/sciadv.abf3658
http://refhub.elsevier.com/S0022-5096(22)00253-8/sb8
http://dx.doi.org/10.1016/j.jmps.2020.104186
http://dx.doi.org/10.1016/j.cma.2020.113390
http://dx.doi.org/10.1016/j.cma.2020.113390
http://dx.doi.org/10.1016/j.cma.2020.113390
https://linkinghub.elsevier.com/retrieve/pii/S0045782520305752
http://dx.doi.org/10.1073/pnas.2102721118
http://dx.doi.org/10.1073/pnas.2102721118
http://dx.doi.org/10.1073/pnas.2102721118
http://dx.doi.org/10.1007/s00205-017-1214-0
http://link.springer.com/10.1007/s00205-017-1214-0
http://dx.doi.org/10.1016/j.mechmat.2019.103087
http://dx.doi.org/10.1016/j.mechmat.2019.103087
http://dx.doi.org/10.1016/j.mechmat.2019.103087
https://linkinghub.elsevier.com/retrieve/pii/S0167663619302376
http://dx.doi.org/10.1016/j.cma.2019.02.016
https://linkinghub.elsevier.com/retrieve/pii/S0045782519300878
http://dx.doi.org/10.1007/s00466-020-01954-7
http://dx.doi.org/10.1007/s00466-020-01954-7
http://dx.doi.org/10.1007/s00466-020-01954-7
http://link.springer.com/10.1007/s00466-020-01954-7
http://dx.doi.org/10.1016/j.cma.2021.113852
https://linkinghub.elsevier.com/retrieve/pii/S0045782521001894
http://arxiv.org/abs/2202.04916
https://arxiv.org/abs/2202.04916
http://dx.doi.org/10.1016/j.cma.2021.114217
https://www.sciencedirect.com/science/article/pii/S004578252100548X
https://www.sciencedirect.com/science/article/pii/S004578252100548X
https://www.sciencedirect.com/science/article/pii/S004578252100548X
http://dx.doi.org/10.1016/j.mtla.2022.101446
https://www.sciencedirect.com/science/article/pii/S2589152922001296
https://www.sciencedirect.com/science/article/pii/S2589152922001296
https://www.sciencedirect.com/science/article/pii/S2589152922001296
http://dx.doi.org/10.1002/pol.1958.1202811814
http://dx.doi.org/10.1002/pol.1958.1202811814
http://dx.doi.org/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1958.1202811814
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1958.1202811814
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
http://ascelibrary.org/doi/10.1061/%28ASCE%290733-9399%281991%29117%3A1%28132%29
http://dx.doi.org/10.3389/fmats.2019.00014
http://dx.doi.org/10.3389/fmats.2019.00014
http://dx.doi.org/10.3389/fmats.2019.00014
https://www.frontiersin.org/article/10.3389/fmats.2019.00014
http://dx.doi.org/10.1007/s00161-018-0677-z
http://link.springer.com/10.1007/s00161-018-0677-z
http://www.deeplearningbook.org
http://arxiv.org/abs/2003.02751
http://arxiv.org/abs/2003.02751
http://arxiv.org/abs/2003.02751
http://dx.doi.org/10.1016/0022-5096(79)90034-6
http://dx.doi.org/10.1016/0022-5096(79)90034-6
http://dx.doi.org/10.1016/0022-5096(79)90034-6
https://www.sciencedirect.com/science/article/pii/0022509679900346
http://dx.doi.org/10.1109/cvpr.2016.90


Journal of the Mechanics and Physics of Solids 169 (2022) 105076P. Thakolkaran et al.

H

H

H

I

I

I

I

J

K

K
K

K

K

K
K

K

L

L

M
M
M

N

O

P
R

R

S

S

T

V

V

W

Y
Z

Holzapfel, G.A., Gasser, T.C., Ogden, R.W., 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast.
Phys. Sci. Solids 61 (1), 1–48. http://dx.doi.org/10.1023/A:1010835316564.

ornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2 (5), 359–366. http://dx.doi.org/10.
1016/0893-6080(89)90020-8.

uang, S., He, Z., Chem, B., Reina, C., 2022. Variational Onsager Neural Networks (VONNs): A thermodynamics-based variational learning strategy for non-
equilibrium PDEs. J. Mech. Phys. Solids 163, 104856. http://dx.doi.org/10.1016/j.jmps.2022.104856, URL: https://www.sciencedirect.com/science/article/
pii/S0022509622000692.

uang, D.Z., Xu, K., Farhat, C., Darve, E., 2020. Learning constitutive relations from indirect observations using deep neural networks. J. Comput. Phys. 416,
109491. http://dx.doi.org/10.1016/j.jcp.2020.109491, URL: https://www.sciencedirect.com/science/article/pii/S0021999120302655.

báñez, R., Abisset-Chavanne, E., González, D., Duval, J.-L., Cueto, E., Chinesta, F., 2019. Hybrid constitutive modeling: data-driven learning of corrections to
plasticity models. Int. J. Mater. Form. 12 (4), 717–725. http://dx.doi.org/10.1007/s12289-018-1448-x.

bañez, R., Abisset-Chavanne, E., Aguado, J.V., Gonzalez, D., Cueto, E., Chinesta, F., 2018. A manifold learning approach to data-driven computational elasticity
and inelasticity. Arch. Comput. Methods Eng. 25 (1), 47–57. http://dx.doi.org/10.1007/s11831-016-9197-9.

bañez, R., Borzacchiello, D., Aguado, J.V., Abisset-Chavanne, E., Cueto, E., Ladeveze, P., Chinesta, F., 2017. Data-driven non-linear elasticity: constitutive manifold
construction and problem discretization. Comput. Mech. 60 (5), 813–826. http://dx.doi.org/10.1007/s00466-017-1440-1, URL: http://link.springer.com/10.
1007/s00466-017-1440-1.

sihara, A., Hashitsume, N., Tatibana, M., 1951. Statistical theory of rubber-like elasticity. IV. (Two-dimensional stretching). J. Chem. Phys. 19 (12), 1508–1512.
http://dx.doi.org/10.1063/1.1748111, URL: https://aip.scitation.org/doi/10.1063/1.1748111. Publisher: American Institute of Physics.

oshi, A., Thakolkaran, P., Zheng, Y., Escande, M., Flaschel, M., De Lorenzis, L., Kumar, S., 2022. Bayesian-EUCLID: discovering hyperelastic material laws with
uncertainties. http://dx.doi.org/10.48550/ARXIV.2203.07422, URL: https://arxiv.org/abs/2203.07422.

arapiperis, K., Ortiz, M., Andrade, J., 2021. Data-Driven nonlocal mechanics: Discovering the internal length scales of materials. Comput. Methods Appl. Mech.
Engrg. 386, 114039. http://dx.doi.org/10.1016/j.cma.2021.114039, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782521003704.

ingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. http://dx.doi.org/10.48550/ARXIV.1412.6980, URL: https://arxiv.org/abs/1412.6980.
irchdoerfer, T., Ortiz, M., 2016. Data-driven computational mechanics. Comput. Methods Appl. Mech. Engrg. 304, 81–101. http://dx.doi.org/10.1016/j.cma.

2016.02.001, URL: https://www.sciencedirect.com/science/article/pii/S0045782516300238.
irchdoerfer, T., Ortiz, M., 2017. Data-driven computing in dynamics. Internat. J. Numer. Methods Engrg. 113 (11), 1697–1710. http://dx.doi.org/10.1002/nme.

5716.
lein, D.K., Fernández, M., Martin, R.J., Neff, P., Weeger, O., 2022. Polyconvex anisotropic hyperelasticity with neural networks. J. Mech. Phys. Solids 159,

104703. http://dx.doi.org/10.1016/j.jmps.2021.104703, URL: http://arxiv.org/abs/2106.14623. arXiv:2106.14623.
umar, S., Kochmann, D.M., 2021. What machine learning can do for computational solid mechanics. arXiv:2109.08419. URL: https://arxiv.org/abs/2109.08419.
umar, S., Tan, S., Zheng, L., Kochmann, D.M., 2020. Inverse-designed spinodoid metamaterials. Npj Comput. Mater. 6 (1), 73. http://dx.doi.org/10.1038/s41524-

020-0341-6, URL: http://www.nature.com/articles/s41524-020-0341-6.
umar, S., Vidyasagar, A., Kochmann, D.M., 2019. An assessment of numerical techniques to find energy-minimizing microstructures associated with nonconvex

potentials. Internat. J. Numer. Methods Engrg. 121 (7), 1595–1628. http://dx.doi.org/10.1002/nme.6280.
eygue, A., Coret, M., Réthoré, J., Stainier, L., Verron, E., 2018. Data-based derivation of material response. Comput. Methods Appl. Mech. Engrg. 331, 184–196.

http://dx.doi.org/10.1016/j.cma.2017.11.013, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782517307156.
iang, M., Chang, Z., Wan, Z., Gan, Y., Schlangen, E., Šavija, B., 2022. Interpretable ensemble-machine-learning models for predicting creep behavior of concrete.

Cem. Concr. Compos. 125, 104295. http://dx.doi.org/10.1016/j.cemconcomp.2021.104295.
arwala, T., 2010. Finite-Element-Model Updating using Computional Intelligence Techniques. Springer London, http://dx.doi.org/10.1007/978-1-84996-323-7.
orrey, C.B., 1952. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1), 25–53. http://dx.doi.org/10.2140/pjm.1952.2.25.
ozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A., 2019. Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116

(52), 26414–26420. http://dx.doi.org/10.1073/pnas.1911815116.
guyen, L.T.K., Keip, M.-A., 2018. A data-driven approach to nonlinear elasticity. Comput. Struct. 194, 97–115. http://dx.doi.org/10.1016/j.compstruc.2017.07.

031, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045794917301311.
gden, R.W., Hill, R., 1972. Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R.

Soc. Lond. Ser. A Math. Phys. Eng. Sci. 326 (1567), 565–584. http://dx.doi.org/10.1098/rspa.1972.0026, URL: https://royalsocietypublishing.org/doi/10.
1098/rspa.1972.0026. Publisher: Royal Society.

ierron, F., Grédiac, M., 2012. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-Field Deformation Measurements. Springer.
aissi, M., Perdikaris, P., Karniadakis, G., 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. http://dx.doi.org/10.1016/j.jcp.2018.10.045.
ocha, I., Kerfriden, P., van der Meer, F., 2021. On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through

probabilistic machine learning. J. Comput. Phys.: X 9, 100083. http://dx.doi.org/10.1016/j.jcpx.2020.100083, URL: https://www.sciencedirect.com/science/
article/pii/S2590055220300354.

chröder, J., 2010. Anisotropie polyconvex energies. In: CISM International Centre for Mechanical Sciences. Springer Vienna, pp. 53–105. http://dx.doi.org/10.
1007/978-3-7091-0174-2_3.

rivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: A simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15 (56), 1929–1958, URL: http://jmlr.org/papers/v15/srivastava14a.html.

artakovsky, A.M., Marrero, C.O., Perdikaris, P., Tartakovsky, G.D., Barajas-Solano, D., 2018. Learning parameters and constitutive relationships with physics
informed deep neural networks. arXiv:1808.03398 [physics]. URL: http://arxiv.org/abs/1808.03398. arXiv:1808.03398.

lassis, N.N., Ma, R., Sun, W., 2020. Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity. Comput. Methods Appl. Mech.
Engrg. 371, 113299. http://dx.doi.org/10.1016/j.cma.2020.113299.

lassis, N.N., Sun, W., 2021. Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening.
Comput. Methods Appl. Mech. Engrg. 377, 113695. http://dx.doi.org/10.1016/j.cma.2021.113695.

ang, Z., Estrada, J., Arruda, E., Garikipati, K., 2021. Inference of deformation mechanisms and constitutive response of soft material surrogates of biological
tissue by full-field characterization and data-driven variational system identification. J. Mech. Phys. Solids 153, 104474. http://dx.doi.org/10.1016/j.jmps.
2021.104474.

ang Gao, D., Neff, P., Roventa, I., Thiel, C., 2017. On the convexity of nonlinear elastic energies in the right Cauchy-Green tensor. J. Elasticity 127 (2), 303–308.
heng, L., Kumar, S., Kochmann, D.M., 2021. Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput. Methods

Appl. Mech. Engrg. 383, 113894. http://dx.doi.org/10.1016/j.cma.2021.113894.
29

http://dx.doi.org/10.1023/A:1010835316564
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/j.jmps.2022.104856
https://www.sciencedirect.com/science/article/pii/S0022509622000692
https://www.sciencedirect.com/science/article/pii/S0022509622000692
https://www.sciencedirect.com/science/article/pii/S0022509622000692
http://dx.doi.org/10.1016/j.jcp.2020.109491
https://www.sciencedirect.com/science/article/pii/S0021999120302655
http://dx.doi.org/10.1007/s12289-018-1448-x
http://dx.doi.org/10.1007/s11831-016-9197-9
http://dx.doi.org/10.1007/s00466-017-1440-1
http://link.springer.com/10.1007/s00466-017-1440-1
http://link.springer.com/10.1007/s00466-017-1440-1
http://link.springer.com/10.1007/s00466-017-1440-1
http://dx.doi.org/10.1063/1.1748111
https://aip.scitation.org/doi/10.1063/1.1748111
http://dx.doi.org/10.48550/ARXIV.2203.07422
https://arxiv.org/abs/2203.07422
http://dx.doi.org/10.1016/j.cma.2021.114039
https://linkinghub.elsevier.com/retrieve/pii/S0045782521003704
http://dx.doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1016/j.cma.2016.02.001
http://dx.doi.org/10.1016/j.cma.2016.02.001
http://dx.doi.org/10.1016/j.cma.2016.02.001
https://www.sciencedirect.com/science/article/pii/S0045782516300238
http://dx.doi.org/10.1002/nme.5716
http://dx.doi.org/10.1002/nme.5716
http://dx.doi.org/10.1002/nme.5716
http://dx.doi.org/10.1016/j.jmps.2021.104703
http://arxiv.org/abs/2106.14623
http://arxiv.org/abs/2106.14623
http://arxiv.org/abs/2109.08419
https://arxiv.org/abs/2109.08419
http://dx.doi.org/10.1038/s41524-020-0341-6
http://dx.doi.org/10.1038/s41524-020-0341-6
http://dx.doi.org/10.1038/s41524-020-0341-6
http://www.nature.com/articles/s41524-020-0341-6
http://dx.doi.org/10.1002/nme.6280
http://dx.doi.org/10.1016/j.cma.2017.11.013
https://linkinghub.elsevier.com/retrieve/pii/S0045782517307156
http://dx.doi.org/10.1016/j.cemconcomp.2021.104295
http://dx.doi.org/10.1007/978-1-84996-323-7
http://dx.doi.org/10.2140/pjm.1952.2.25
http://dx.doi.org/10.1073/pnas.1911815116
http://dx.doi.org/10.1016/j.compstruc.2017.07.031
http://dx.doi.org/10.1016/j.compstruc.2017.07.031
http://dx.doi.org/10.1016/j.compstruc.2017.07.031
https://linkinghub.elsevier.com/retrieve/pii/S0045794917301311
http://dx.doi.org/10.1098/rspa.1972.0026
https://royalsocietypublishing.org/doi/10.1098/rspa.1972.0026
https://royalsocietypublishing.org/doi/10.1098/rspa.1972.0026
https://royalsocietypublishing.org/doi/10.1098/rspa.1972.0026
http://refhub.elsevier.com/S0022-5096(22)00253-8/sb52
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcpx.2020.100083
https://www.sciencedirect.com/science/article/pii/S2590055220300354
https://www.sciencedirect.com/science/article/pii/S2590055220300354
https://www.sciencedirect.com/science/article/pii/S2590055220300354
http://dx.doi.org/10.1007/978-3-7091-0174-2_3
http://dx.doi.org/10.1007/978-3-7091-0174-2_3
http://dx.doi.org/10.1007/978-3-7091-0174-2_3
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1808.03398
http://arxiv.org/abs/1808.03398
http://arxiv.org/abs/1808.03398
http://dx.doi.org/10.1016/j.cma.2020.113299
http://dx.doi.org/10.1016/j.cma.2021.113695
http://dx.doi.org/10.1016/j.jmps.2021.104474
http://dx.doi.org/10.1016/j.jmps.2021.104474
http://dx.doi.org/10.1016/j.jmps.2021.104474
http://refhub.elsevier.com/S0022-5096(22)00253-8/sb61
http://dx.doi.org/10.1016/j.cma.2021.113894

	NN-EUCLID: Deep-learning hyperelasticity without stress data
	Introduction
	Unsupervised deep learning of hyperelastic constitutive laws
	Problem setting
	Approximation of the displacement field from point-wise data
	NN-based constitutive model
	Unsupervised learning of constitutive models

	Numerical benchmarks
	Data generation
	Results
	Model accuracy, generalization, and FEM deployment
	Learning hidden anisotropy


	Conclusion and outlook
	Declaration of competing interest
	Data and code availability
	Acknowledgments
	Appendix A. Implementation details
	Data generation
	ICNN
	Anisotropy

	Appendix B. Pseudocode for unsupervised ICNN training
	Appendix C. Model accuracy in stress predictions
	Appendix D. Constitutive models trained without input-convex architecture and smoothness
	References


