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Abstract

As e-commerce continues to grow, warehouses face the challenge of keeping up with product flows. Van-
derlande provides a pick-and-place robot (SIR) that helps in improving capacity. However, SIR’s capacity is
limited by its vacuum gripper and its inability to solve failures. The aim of this thesis is to improve SIR by
adding a second gripper and reasoning capabilities. To this end, a grasp synthesis approach is developed that
complements the vacuum gripper, based on existing approaches in literature and the devices available to SIR.
Furthermore, an ontology is developed according to Methontology that allows the robot to reason about item
properties and failures, while providing operators with insight into its thought process. The improved system
is referred to as RSIR.

The grasp synthesis approach, applicable to parallel-jaw grippers, synthesizes grasps by detecting parallel
edges in depth data. Tests on real depth data showed that the approach synthesized reasonable grasps in
reasonable time for a variety of items, some of which are not graspable by SIR’s vacuum gripper. It did not
need a segmentation of the items to do so. Furthermore, RSIR was tested on a virtual robotic set-up. The
results showed that RSIR reasoned how best to complete a task when provided with information about a
robot’s components and possible item properties. RSIR also drew conclusions based on the execution of the
task, and reasoned what actions should be performed to prevent failures from re-occurring.

The above results show RSIR’s potential for autonomously estimating item properties and selecting the
best approach for grasping an item. In practice, this decreases downtime and thus improves capacity. Be-
cause RSIR is designed to be expandable to related tasks, its benefits could be useful in more of Vanderlande’s
applications than just the SIR system.
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Introduction

As e-commerce continues to grow, warehouses must keep pace with the large number of items ordered and
the customers’ growing demand for service, including fast delivery [46][142]. Because of this, the warehousing
sector has a need for fast and high capacity order fulfilment with near 24/7 operation. With e-commerce
growing at a staggering rate - approximately an 18% increase in 2019 - this need is larger than ever [142].

Vanderlande provides for this need with the Functional Module: Goods to Picker (FM-GtP). Its goal is to
provide an efficient and high capacity picking solution. It does this by picking items from an input carrier
and placing them in an output carrier. The input carrier is part of the storage system, whereas the output
carrier is destined to leave the system, for example to a customer. FM-GtP is intended to be combined with
other Vanderlande modules, such that the whole warehouse process can be automated. Multiple FM-GtPs
can then be used depending on the required picking capacity. Furthermore, an FM-GtP can be manual or
automated. The goal of the automated variant is to reduce the labour cost and the dependency on labour. An
FM-GtP should have as high a capacity as possible to reduce number of Fm-GtPs required in the application.
Additionally, the fill rate of the output carrier should be as high as possible (that is, fitting as many items into
it as possible), as this reduces transportation costs in some applications [24].

To achieve as high a capacity as possible on an automated FM-GtB, it is important for the system to handle
as many different items as possible. This is because every time FM-GtP encounters an item it cannot handle,
an operator has to walk over to the robot and finish the picking manually. This costs a relatively large amount
of time and therefore greatly reduces the system’s capacity [24]. The subsystem of Fm-GtP that provides the
automated picking is called Smart Item Robotics (SIR). It uses a robotic arm as shown in Figure 1.1. However,
as of yet there exists no robotic solution that can handle every type of item for every task [135]. Additionally,
the set of items encountered by FM-GtP is large and continually changing, such that keeping a database of
item properties is impractical. Therefore in practice nothing about the item is known and any information
aboutit can only be derived through sensors and algorithms. This diversity of items with unknown properties,
combined with the need for high capacity, is the main challenge in engineering SIR.

Related Research

There are several aspects of SIR which can be improved to achieve a higher capacity. So far, research at Van-
derlande has focussed on researching grippers and selecting the best one for SIR, as well as testing the system
[36][76]. This has resulted in SIR being equipped with a vacuum gripper, as well as a good idea of the system’s
limitations. More recent research has looked into a subsystem that allows SIR to switch between grippers.
This could greatly improve the number of items the system can handle, as one gripper’s strengths could com-
plement another gripper’s limitations. However, this raises new questions: Which gripper should be added,
and how should a grasp pose be determined? When presented with an item, which gripper should the robot
select? When grasping with one gripper fails, should it try again with the same gripper or try another gripper?

Several areas of scientific research have attempted to enable robots to answer questions similar to those
above. There is plenty of finished research available that covers gripper selection, gripper limitations, de-
termining the grasp pose (grasp synthesis), and giving a confidence score for how likely a grasp is to succeed
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Figure 1.1: A typical automated FM-GtP workstation [125] [128].

[135]. However, less research has been done for the latter type of question. Some robotics applications answer
this question by defining rules at design-time and hard-coding them into the software. However, defining
such rules quickly becomes impractical as the system becomes more complex [19], the resulting rule-based
system cannot easily model uncertainty in the world [16], the rules are not easily re-usable [114], and the
systems are often brittle from a control perspective [114]. Given the uncertainty in item properties in FM-
GtP and Vanderlande’s wish to have the result of this thesis also be applicable to related systems, it is not
favourable to implement a rule-based system in SIR.

An alternative to rule-based systems is making the system adaptable using knowledge. Adaptability is
defined by the Cambridge English dictionary as: "an ability or willingness to change in order to suit differ-
ent conditions" [105]. In robotics, the definition of an adaptable robot ranges from robots able to handle
different scenarios using pre-defined actions (such as grasping an item from different directions, depending
on the item shape) [40], to robots developing new types of behaviour not specified at design time (such as
re-learning to walk when a limb gets damaged) [66][136]. One of the most prevalent examples of knowledge-
based systems in robotics is KnowRob [130]. KnowRob is an action-centred knowledge processing system
that combines combines encyclopedic and common-sense knowledge with the information sensors provide
about the robot’s surroundings [130]. This allows the robot to do complex reasoning. For example, when
presented with a partially set table, the robot can reason about what type of meal is likely to be had, which
items are still missing, and where it can find those items [102].

KnowRob’s implementation of knowledge uses ontologies [130]. An ontology can be defined as a set of
concepts and categories in a subject area or domain that shows their properties and the relations between
them [77]. Other research in robotics in which ontologies have proven useful is: helping the process of (au-
tomatically) designing the structure of a modular robot [107]; determining grasping areas through semantic
knowledge (i.e. for grasping the handle of a mug) [137], learning grasp poses based on the item properties and
task [16], achieving robustness against failures occurring in the system [55], inferring human intentions dur-
ing surgical operations [87], providing the robot with common sense information about indoor environments
[48], and reasoning about failures [37]. Because of this success, Vanderlande is interested in implementing
reasoning in SIR.



Problem Statement

The goal of this thesis is to improve SIR by adding a second gripper and reasoning capabilities to improve
SIR’s capacity. The improved capacity comes from the larger variety of items SIR could handle due to the ad-
ditional gripper and its increased robustness against failures due to the reasoning. The improved version of
SIR is henceforth referred to as Reasoning Smart Item Robotics (RSIR, pronounced "arser"). Hence the main
research question of this thesis is: How can a pick-and-place task of a robotic arm with access to multiple grip-
pers be modelled using knowledge representation and reasoning such that the system is robust against failures,
such that it can handle a larger variety of unknown items, and such that it can be expanded to other related
tasks? To answer this, the question is split up into subquestions:

RQ1. What knowledge and reasoning capabilities should RSIR contain?
RQ2. What method best provides this knowledge and these reasoning capabilities?
RQ3. What software architecture best integrates this knowledge and reasoning with the robot?

RQ4. What is RSIR’s performance on selecting the correct actions to be executed after the model and
software architecture have been implemented?

To answer these questions, chapter 2 first provides background information on SIR. The requirements for
RSIR are then defined in chapter 3. Based on the requirements, chapter 4 presents RSIR’s approach to devel-
oping an ontology and achieving robustness, as well as the method for evaluating its performance. Chapter
5 then develops the grasping approach that is added to RSIR, after which chapter 6 presents the ontology
and reasoning framework. The implementation of said framework is presented in chapter 7. The grasping
approach and framework are then evaluated in chapters 8 and 9, respectively. Finally, chapter 10 concludes
this thesis and chapter 11 presents topics for future work.






Specifications of the Pick-and-Place Robot

This chapter provides details on the design of the pick-and-place robot that is currently in use by Vanderlande
(SIR) in order to provide background knowledge for designing RSIR. The chapter considers SIR’s components
in section 2.1 and its operational pipeline in section 2.2.

2.1. Components

The goal of SIR is to provide an efficient and high capacity picking solution. To achieve this, Vanderlande
designed the automated FM-GtP workstation as shown in Figure 2.1. SIR’s task is to move items between
two carriers, whereas the higher-level system takes care of providing the correct carriers [125][128]. SIR is
equipped with the components indicated in Figure 2.1. The components are:

Input RGB camera Output depth camera

Input depth camera
UR10 robot arm
Vacuum gripper
Pressure sensor

. Output carrier
Input carrier

Verification camera

Figure 2.1: A typical SIR workstation [125] [128].

1. Input carrier. The input carrier provides items that SIR must pick. This carrier can have one of the
following dimensions (length x width): 600x400mm, 650x450mm or 800x600mm, and one of the fol-
lowing heights: 270mm, 320mm, 370mm or 420mm. The maximum weight of the carrier is 50kg, with
an average of 15kg. A carrier can have 1, 2, 4 or 8 compartments, as visualized in Figure 2.2a. The type
of divider between the compartments can differ. Additionally, carriers can differ in colour, shape, and
material. Figure 2.2b shows some examples of carriers. In practice, for a specific customer, the carri-
ers can be assumed to not vary in shape, colour, material, and divider type [126]. Finally, there can be
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one or multiple items of the same type per compartment, and the items can be in any random pattern.
Figure 2.2c shows examples of item patterns in carriers.

(a) The types of compartments an input carrier can have [24].

b) Examples of carrier designs [126].

(c) Examples of how items are arranged in input carriers [126].

Figure 2.2: Types and examples of input carriers that can be encountered by RSIR.

2. Output carrier. The output carrier is where SIR places the items it picks. It has the same dimensions as
the input carrier, but has a maximum weight of 23kg. Additionally, there may be a carton located in the
carrier in which the item must be placed. There may be multiple (types of) items that must be placed
in one output carrier.

3. Input RGB camera. SIR has an RGB camera with a resolution of 1600x1200 pixels, looking down into
the input carrier. A light is located next to this camera to improve the image quality. Figure 2.3 shows
an example of an image taken by the camera. Note that the carrier is not in the centre of the image.

4. Input depth camera. This depth camera looks down into the input carrier. It is calibrated to match the
RGB image of the input carrier, as shown in Figure 2.3.

(a) The RGB image of the input carrier. (b) The grey-scale image of the corresponding point cloud.

Figure 2.3: An example of an RGB image and the corresponding point cloud of the input carrier in SIR.
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10.

. Output depth camera. This camera is of the same type as the input depth camera, but looks down into

the output carrier. Again, the carrier is not guaranteed to be in the centre of the image.

. Verification camera. This RGB camera is located between the two carriers and looks up. The roof of

the workstation blocks surrounding light that otherwise reduces the quality of the image.

. UR10 robot arm. This robot arm is compatible with SIR’s vacuum grippers and several other common

grippers. The arm can be augmented with a mechanism that allows the system to automatically switch
between grippers. So far, this switching system has only been implemented for pneumatic grippers.

. Vacuum gripper. The robot can be equipped with several vacuum grippers, differing in diameter,

shape, and material. Each gripper comes with its (dis)advantages. Multiple grippers can be used if the
switching system is implemented. SIR includes the vacuum system that powers the vacuum grippers.

. Pressure sensor. This sensor is located inside the vacuum gripper. After an attempted grasp, the pres-

sure inside the gripper is measured to determine whether the grasp was successful. If the measured
pressure is sufficiently low, the algorithm concludes that an item is in front of the suction cup, and thus
that the grasp was successful.

Computer. SIR’s centre of control is a computer running on Ubuntu. The control algorithm uses ROS
to communicate between the components of the system.

This concludes the background on SIR’s components. The next section explains how these components
are used to complete a pick-and-place task.

2.2. Operational Pipeline

This section discusses the operational pipeline of RSIR. Since RSIR is an improved version of SIR, RSIR must
have all the capabilities that SIR has. Hence looking into SIR’s pipeline gives a better idea of the requirements
for RSIR. SIR’s pipeline is visualized in Figure 2.4 and consists of the following steps [125][128]:

Detect item in

input carrier

Recetwe L I:.}etect |tem in . Synthesize . G.rasp item
carriers input carrier grasp pose using vacuum

Transfer item

Synthesize

and verify =
dimensions

= Place item
place pose

Figure 2.4: The pipeline SIR uses to complete the pick-and-place task.

. Receive carriers. FM-GtP determines which order must be fulfilled and provides SIR with an input

carrier, an output carrier, and the number of items to be displaced from the input to the output carrier.

. Detect item in input carrier. The input RGB camera takes an image (Figure 2.5a), which is segmented

by feeding it to a neural network. The network returns the segmented image with confidence values
per segmented object (Figure 2.5b). The design and training of the neural network is outsourced.

Synthesize grasp pose. The input depth camera takes an image, which is used for synthesizing the
grasp for the vacuum gripper. This synthesis is based on finding flat areas in the resulting point cloud
(Figure 2.5¢). Five factors determine which grasp pose is the best: the confidence score of the segmen-
tation; the height of the object; the size of the flat surface; the levelness of the surface with respect to the
carrier; and how close the object is to the centre of the carrier. The best pose is selected to be executed.
The specifics of selecting the best pose are unknown, since this step is outsourced.

Grasp item using vacuum. The motion planning algorithm moves the vacuum gripper to the selected
grasp pose. The robot presses the suction cup onto the item and creates a vacuum. If the grasp fails, the
robot moves up a little and retries the picking for the second-best grasp pose. A failed grasp is detected
with the pressure sensor inside the gripper.
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5. Transfer item and verify dimensions. After grasping, the motion planner directs the robot to hold the
item above the verification camera. This camera takes an RGB image to verify that an item has been
picked and to determine its footprint (Figure 2.5d). If more items must be picked from the input carrier,
a new picture of the input carrier is taken at this step to speed up the process as a whole.

6. Synthesize place pose. A place pose in the output carrier is found using the footprint of the item and
a depth image of the output carrier (Figures 2.5e and 2.5f). The algorithm for determining the place
pose is outsourced, but the initial design minimized a cost function based on a preferred location (the
centre of the carrier, for example) and the height of items already in the carrier at that location. While
the place pose algorithm is running, the robot moves to a fixed point near the carrier.

7. Place item. Once the place pose is found, the motion plan is updated to reach said pose. This parallel
process prevents the robot from wasting time by waiting for the place pose to be determined. Once
at the place pose, the robot disables the vacuum and thus the item is placed in the output carrier. If
more items must be grasped from the input carrier, the robot continues with the segmentation in step
2. Otherwise, the robot returns to its initial position and the pipeline starts again from step 1.

(d) The image taken by the verification camera.

(e) The RGB image of the output carrier. (f) The computed placement position, indicated in green.

Figure 2.5: Visualization of steps in the pipeline of SIR [125].

Now that SIR is known in more detail, the next chapter defines the requirements for RSIR.



Requirements for the Reasoner and
Grasping Approach

This chapter presents the requirements for RSIR, which are the starting point for determining what knowledge
RSIR should contain and how this knowledge should be implemented. Section 3.1 provides the functional
requirements and section 3.2 provides the non-functional requirements. Furthermore, section 3.3 presents
requirements specific to the grasping approach. The MoSCoW method is used to provide a clear prioritisation
amongst the requirements.

3.1. Functional Requirements

Recall that the goal of SIR is to provide an efficient and high capacity picking solution. In designing SIR,
Vanderlande specified a list of requirements to make this goal more concrete. Since RSIR is an improved ver-
sion of SIR, it must meet all the requirements for SIR, so most of the requirements defined by Vanderlande
are relevant for RSIR [24][99]. Also recall that RSIR handles only the pick-and-place task, and therefore not
higher-level system tasks such as providing the correct carriers and keeping a database of which items have
proven to (not) be handleable by RSIR. The requirements for RSIR are:

Musts:
R1. RSIR must be able to implement an approach that moves items from the input to the output carrier.

R2. RSIR must provide information about the decisions it takes and failures that occur, as well as its
reasoning steps. For example, it must provide information about why it thinks it is unable to handle an
item.

R3. RSIR must be expandable to other related tasks, such as scanning the barcodes on items, or using a
different type of gripper.

R4. RSIR must provide an improved level of robustness with respect to SIR, without requiring human
intervention.

Shoulds:
R5. RSIR should handle a large collection of items, as specified in Table 3.1.

R6. RSIR should select a subset of components that leads to the highest predicted performance out
of a larger set of redundant components. For example, RSIR should select the gripper out of multiple
available grippers that leads to the highest predicted performance.

Coulds:
R7. RSIR could move to a specified position when a failure occurs that it cannot solve.

R8. RSIR could automatically start up all required components when it is restarted.

9
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R9. RSIR could stop the execution of task upon request of the operator or FM-GtP.
Won'ts:
R10. RSIR won't have a GUI.
R11. RSIR won't be integrated with FM-GtP.
R12. RSIR won't have implementations for every related task.
R13. RSIR won't be tested for every related task.
Table 3.1: Requirements on an item to be handleable by the SIR system [24][99][125].
Characteristic Requirement
Market segments Food, General merchandise
Maximum applied force on item | 10N

Maximum item dimensions

LxWxH: 300x300x200mm

Minimum item dimensions

LxWxH: 40x40x2mm

Maximum item mass 2000g
Maximum item mass (2020 goal) | 6000g
Minimum item mass 20g

Preferred item orientation

Best pickable surface upwards

Items that cannot be handled

Fluid, inflammable, chemical, interlocking, clamped, and fragile items

3.2. Non-functional Requirements

Besides the functional requirements, that are non-functional requirements that RSIR must meet. The per-
formance constraints are based on runtime, because the main goal of RSIR is to achieve a high capacity and
runtime hinders this. Additionally, there are constraints regarding the resources available to develop RSIR.

Performance Constraints

R14. RSIR must complete its reasoning within a timeframe that is small with respect to the time it takes
for SIR to complete a pick-and-place cycle. This is relevant because Vanderlande’s goal is for SIR move
items from the input to the output carrier at a rate of at least 600 items/hour [99].

R15. RSIR must do its reasoning on an ordinary computer.

Development Constraints

R16. RSIR must be developed within 9 months.

R17. RSIR must be developed on an ordinary computer.

R18. RSIR should have a reasonable cost with respect to SIR.

R19. RSIR should be designed to work on the UR10 robot in Vanderlande’s lab in Eindhoven.

R20. RSIR should be developed using mainly components that are available at Vanderlande.

R21. RSIR could be designed to work on the UR10 robot in Vanderlande’s lab in Veghel.

R22. RSIR won't be designed to work on any robotic set-up.

3.3. Requirements for the Grasping Approach
The grasping approach is one specific aspect of RSIR and has additional requirements. Besides the general
requirements for RSIR, the following requirements apply to the grasping approach:

Musts:
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R23. The approach must grasp as many items as possible that SIR cannot grasp due to limitations of
SIR’s vacuum gripper and/or SIR’s grasp synthesis approach.

R24. The approach must select a grasp pose with a large chance of the pose resulting in a successful
grasp.

R25. The approach must grasp an item from an input carrier with only one compartment if there are
no other items in the carrier and the segmentation of the item is given.

Shoulds:

R26. The approach should make use only of components available to SIR (the input depth camera,
for example). This includes not assuming any knowledge about the item, since no such knowledge is
available to SIR.

R27. The approach should handle the items gently, that is, without damaging the items or leaving
marks.

R28. The approach should grasp an item in clutter from an input carrier with only one compartment if
the segmentation of the input carrier is given, and only one type of item is in the carrier.

Coulds:
R29. The approach could grasp an item from an input carrier with more than one compartment.

R30. The approach could grasp an item an input carrier for which more than one type of item is within
a compartment.

R31. The approach could grasp an item from an input carrier if the segmentation of the item(s) is not
given.

R32. The approach could be tested on the physical set-up of the UR10 robot in Eindhoven.
Won'ts:

¢ R33. The approach won't be generalizable across different gripper technologies. That is, the synthesis
approach won't be generalizable across fingered grippers, vacuum grippers, magnetic grippers, etc.

¢ R34. The approach won't be tested on a full set of items using a non-changing set of parameters. There-
fore the result of this thesis won't include a complete overview of the capabilities of the approach.

In summary, the functional requirements focus on answering research questions Q1 and Q2, whereas the
non-functional requirements focus on performance and thus answer research questions Q3 and Q4. The
next chapter discusses several high-level decisions about RSIR’s design based on these requirements. In the
remainder of this thesis, the requirements are referred to by their number.






System Design and Verification

This chapter discusses the high-level decisions about RSIR’s design and presents the method for evaluating
RSIR’s performance. Section 4.1 introduces the concept of ontologies and the method for developing RSIR’s
ontology. Afterwards, section 4.2 decides which approach RSIR applies for achieving robustness. Finally,
section 4.3 defines the methods used to evaluate RSIR. Based on these decisions, the following chapters can
design RSIR’s new grasping approach and ontology.

4.1. Knowledge Requirements

This section addresses the problem of determining the knowledge RSIR should contain and the type of rep-
resentation that RSIR uses to capture this knowledge. Thus this section answers the research question "What
knowledge and reasoning capabilities should RSIR contain?" Additionally, by selecting the representation, this
section takes a first step in answering the research question "What method best provides this knowledge and
these reasoning capabilities?"

Section 4.1.1 provides background information about capturing knowledge in ontologies and justifies
the use of ontologies in RSIR. As will become clear in chapter 6, there does not yet exist an ontology that
captures all knowledge required by RSIR. Hence this thesis develops its own ontology, for which the method
is explained in section 4.1.2. Finally, section 4.1.3 creates the requirements for the knowledge RSIR must
contain. Based on these requirements, the remainder of this thesis develops the ontology.

4.1.1. Justification for Ontologies

This subsection justifies the use of ontologies in RSIR. An ontology can be defined as a set of concepts and
categories in a subject area or domain that shows their properties and the relations between them [77]. The
strength of ontologies comes from the fact that they are formally encoded and highly expressive, yet suited
for real-time processing by a robot [87]. Ontologies’ high expressiveness allows the definition of complex
concepts, which help in defining concepts such as tasks and how to complete them (R3) [107]. Furthermore,
the formal encoding provides researchers and robots with a common language: if two robots define their
knowledge in the same ontology, communication between these robots is simple. This is in contrast with
two robots that define their knowledge in their own database, as the latter raises problems due to different
definitions of the same knowledge [42]. The formal encoding allows for robots to re-use knowledge devel-
oped for other robots, thus simplifying the implementation of new behaviour (R3) [131]. Furthermore, the
real-time processing aspects of ontologies keeps runtime reasonable (R14). In previous research, ontologies
have proven useful in grasping (R1) [16] and in achieving robustness against failures (R4) [37][55]. Finally, an
important advantage is that ontologies provide insight into the robot’s thought process (R2) [130].

However, the use of ontologies also has disadvantages, some of which depend on design decisions. One
design decision is the ontology language. Examples of languages are OWL, SWRL and SHACL [49][65][87]. A
common trade-off in ontology languages is between expressiveness and decidability [87]. More expressive
languages allow to define more complex concepts, but may end up being unable to derive the correct answer
to a question (that is, the language is undecidable). A second design decision is which reasoner to use. The
ontology language provides facts, but the reasoner is the algorithm that derives conclusions from these facts.
Other decisions are which method and tool to use to develop the ontology, what knowledge to contain in the
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ontology, and which existing ontologies to base the new ontology on. The next section describes the method
by which decisions about these aspects are made for RSIR.

Besides being limited by the trade-off in expressiveness and decidability, ontologies are limited by knowl-
edge representation in general. The main problem with knowledge representation is the sheer complexity
of reality. Capturing this complexity takes skill and time, and is an ongoing process [96][98][106]. Another
limitation specific to ontologies is the grounding problem. This problem refers to the difficulty in connect-
ing abstract structures to concrete objects [87]. For example, it may be complex to convert the point cloud
that a robot observes to the abstract idea of objects that the robot has (for example, when a robot defines
objects by their function). However, despite these disadvantages, ontologies have proven useful for robots
[16]1[371(48]1[55][871[98]1[1071[137]. Because of the advantages of ontologies and their success in previous re-
search, ontologies are selected as the basis for RSIR.

4.1.2. Ontology Development Method
This subsection outlines the methodology used for developing RSIR’s ontology. One methodology for this is
METHONTOLOGY, henceforth referred to as Methontology. It provides a list of activities to perform in order
to develop an ontology [42]. Out of the existing methodologies, Methondology was chosen because of its
structured steps and its role in the development of several respected ontologies [13][59][106]. This structured
approach helps in designing an ontology that meets all of RSIR’s requirements from chapter 3.
Methondology considers seven phases. Note that these phases do not need to be sequential. In fact,
the authors behind Methondology argue that ontologies grow by evolving (as opposed to incrementing), and
designing the ontology is thus an iterative process. The phases in Methontology are [42]:

1. Specification. In this phase the ontology’s purpose, level of formality, and scope are determined. One
way to do this is through competency questions: questions that the ontology must be able to answer.

2. Knowledge acquisition. This phase is mostly done simultaneously with the specification phase. The
knowledge acquisition phase provides the domain knowledge required to specify the ontology.

3. Conceptualization. The aim of this phase is to structure the domain knowledge based on the results of
the specification phase. The knowledge is split into concepts and verbs.

4. Integration. Integrating the ontology with existing ontologies comes in two steps. The first is to select
one or multiple meta-ontologies that fit the conceptualization of the new ontology. Meta-ontologies
are concerned with the nature of the ontology [26], which is often the highest level of the ontology.
These types of ontologies describe general aspects such as space, time, and events [59]. The second
step is relating the new ontology to existing ontologies, for example by using the same terms as existing
ontologies.

5. Implementation. In this phase, the ontology language, reasoner, and tools are selected, and the ontol-
ogy is implemented.

6. Evaluation. The aim of this phase is to confirm that the ontology is correct, and to confirm that the
ontology meets the requirements from the specification phase.

7. Documentation. Although there exists no formal way to document ontologies, Methontology aims to
provide formal documents as the output of each of the other phases.

This thesis goes through all seven steps to develop the ontology for RSIR. The Specification step is consid-
ered in the next subsection.

4.1.3. Ontology Requirements: Competency Questions

This subsection addresses the problem of defining the knowledge RSIR must contain (RQ1). Following Methon-
tology, this knowledge is defined through competency questions. The questions are constructed based on the
requirements from chapter 3 and are split up into three categories: tasks, failures, and items.

Task Questions
These questions are constructed to meet requirements R1, R3, R5, R6, and R14. To implement SIR’s pick-and-
place approach (R1) and to be expandable to related tasks (R3), RSIR must know what capabilities it has access
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to and which of these it should use to complete a task. Furthermore, RSIR must know what performance each
approach has (R5, R14) and it must select the approach with the best performance (R6). The task questions
are:

Q1. What capabilities does the system have access to?

Q2. How are the capabilities constrained?

Q3. What is the predicted performance of each capability?
Q4. What actions must the system do to complete a task?

Q5. How confident is the system that it can complete a task?
Q6. What is the predicted performance for completing a task?

Q7. If there are multiple approaches to completing a task, which approach is optimal?

Failure Questions
The failure questions are constructed to meet requirements R2, R4, R5, and R23. The main goal in answering
these questions is to achieve robustness (R4) while providing insight into the robot’s thought process (R2).
Furthermore, knowledge about the item’s properties helps in selecting the best grasping approach (R5, R23).
The questions are:

Q8. What kinds of failures can occur?
Q9. Which of these failures are likely to occur?
Q10. When a failure has occurred...

(a). ...what type of failure is it?
(b). ...what is the cause behind the failure?
(c). ...what can be concluded about...

(i). the properties of the item?
(ii). the capabilities of the robot?
(iii). the actions the system should take to prevent this failure from re-occurring?

Item Questions

The item questions are constructed to meet requirements R3, R5, and R23. First and foremost, knowledge
about the item’s properties helps in reasoning how to complete a task (R3), an example of which is selecting
the best grasping approach (R5, R23). Second, RSIR must be able to estimate item properties, which is one of
the related tasks from requirement R3. The questions are:

Q11. Which item properties are relevant for the task at hand?
Q12. Which item properties are independent of the scenario?
Q13. Which item properties are dependent on the scenario?
Q14. Which item properties are known, and with what accuracy?

Q15. Which item properties can be estimated?

Finally, there is one competency question that RSIR must be able to answer, but for which the algorithm
is not designed in this thesis. This question is: "What tasks should the system do to complete a goal?" For
example, if the goal is to grasp an item, the system must decide whether to immediately try to grasp it, or
to first try to gain more knowledge about the item’s properties. When answering this question, at least the
following must be taken into account: which item properties are relevant for the goal, the uncertainty in the
system’s knowledge of the properties, which capabilities are constrained by the property, with what accuracy
the property can be estimated, what the advantage is of knowing the property, and what the cost is of esti-
mating the property. Clearly, an algorithm that properly answers this question is quite complex. Therefore,
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the design of such an algorithm is outside the scope of this thesis. However, RSIR must be designed to allow
for such an algorithm to be implemented in future work.

This concludes the specification of the knowledge RSIR must contain. This list of competency questions
is used in chapter 6 when the ontology is developed. But before this is done, several other decisions about
RSIR must be made. The next section considers RSIR’s approach to achieving robustness.

4.2. Achieving Robustness

This section addresses the problem of which approaches to use for achieving robustness against failures (R4).
There are two main aspects to this: the type of human interaction and the type of adaptive behaviour.

4.2.1. Human Interaction

The type of human interaction is relevant in achieving robustness because for the current state of SIR, the
human operator consistently outperforms SIR in completing the pick-and-place task. Hence a version of RSIR
that cooperates with a human operator could rely more heavily on the operator to detect and handle failures,
rather than on its own robustness. There are two main categories in human-robot interaction: traded control
and shared control. SIR is an example of traded control, which is when the robot completes some parts of
the task and the human completes other parts of the task [71]. For SIR, the tasks that the human completes
are handling failures and tasks that the robot cannot do (yet), such as confirming that the correct items are in
the output carrier. The most prominent disadvantage of this type of control is that the robot loses situational
awareness when the human takes control, and vice versa [71]. This is an especially pressing problem for
applications such as autonomous vehicles, where the human can be too late to take over from the robot,
resulting in an accident.

The type of control commonly considered the counterpart of traded control is shared control. This type
of control stresses the fact that human and machine share control over a system together [43]. This allows the
robot and human to keep situational awareness [10]. Research into driving shows that the control is faster
and more accurate, costs less effort, and demands less visual attention than if the human were to control
the system without help from the robot [10]. However, the main disadvantage for shared control is that a
human operator is still required. Because of this, shared control does not provide the type of robustness that
is defined by requirement R4.

From this inspection, it becomes clear that traded control is the better option for RSIR, because shared
control does not meet requirement R4. The lack of situational awareness is less of a problem for SIR, as the
task is quite simple from a human perspective and not as time-critical as, for example, autonomous driving.
On top of that, subsystems are in place to let the human operator update the system’s state (such as the
number of items to be displaced) [24]. Hence the remainder of this thesis only considers traded control.

4.2.2, Adaptive Behaviour

The second aspect in achieving robustness is the type of adaptive behaviour. This behaviour ranges from
the robot selecting from a pre-defined list of actions [40] to the robot developing qualitatively new behaviour
[66][136]. It was concluded previously that selecting from pre-defined actions based on rules defined at de-
sign time is not sufficient for RSIR because of its time-consuming design process and its limited re-usability
(which goes again requirement R3). That leaves two types of adaptive behaviour RSIR could implement: com-
bining existing capabilities into new actions and developing qualitatively new behaviour.

A robot developing qualitatively new behaviour can be considered resilient. Resilience goes beyond ro-
bustness because it introduces adaptation and emergence of new solutions [136]. As an example, consider a
four-legged robot pre-programmed with four types of walking (gaits). For several types of terrain, this might
be sufficient. However, it is likely that all four gaits are unusable if the robot loses one leg. A resilient robot in
such a scenario would develop a new type of gait that works for three legs, commonly through some form of
reinforcement learning [66]. However, the introduction of reinforcement learning in RSIR raises several con-
cerns. First, machine learning approaches generally give little insight into the robot’s though process [135],
thus violating requirement R2. Secondly, the reality gap poses limitations in applying machine learning to
RSIR [66]. For one, some of the most challenging items to grasp are porous or deformable items [135]. These
are especially time-consuming to simulate [135] and thus significantly increase the reasoning time the robot
requires, violating requirement R14. Additionally, the reality gap forces the robot to attempt at least some
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solutions on the physical robot (as opposed to simulation). This can lead to the robot exhibiting unexpected
behaviour, especially if the reality gap is large. Such behaviour is undesirable and potentially unsafe in an
environment where human operators are expected to work near the robot.

The alternative to developing quantitatively new behaviour is applying known capabilities in new ways
[55]166][143]. For example, the robot might decide that the vacuum gripper is broken, and thus will only rely
on other grippers from that point onwards. This type of adaptive behaviour is what KnowRob is primarily
occupied with: using basic actions (moving, grasping) to complete a high-level task (setting the table) [19].
This is no surprise, as ontologies are better at capturing capabilities (and their limitations) than at capturing
machine-learned behaviour [16][102]. However, this type of adaptive behaviour is clearly less robust than the
behaviour that develops qualitatively new behaviour. Returning to the example of the four-legged robot: if
no gaits are specified at design time that work with three legs, the robot will never recover if it loses a leg.

Given the limitations of developing qualitatively new behaviour, it can be concluded that the best ap-
proach for RSIR is to reason about applying known capabilities in new ways. The limited resilience that re-
sults from not developing qualitatively new behaviour is unfortunate. However, it should be noted that so far,
resilience has mostly been applied in systems that are outside of human reach (such as in outer space) and
systems for which it is hard to diagnose the failure (such as controller tuning) [66]. Neither of these aspects
is particularly relevant for RSIR: at least one human operator is supervising a group of RSIRs, and several
failures that are difficult for RSIR to handle can be easily diagnosed by a human. Examples of the latter are
obscured cameras and broken grippers. Although resilience in such scenarios might be desirable, for a first
version of SIR it is sufficient if detecting and solving such failures is left to operators and engineers.

It should be noted that a key factor in making this approach work is for RSIR to have a redundancy in
components that fulfil a capability. For example, two grippers that fulfil the capability of grasping an item, or
one synthesis approach that can be run with two different sets of parameters. If there exists no redundancy
in the system, a lot of the advantages of reasoning are lost, as there are no alternative pipelines the robot
can choose. Because RSIR is to be equipped with multiple grippers, cameras, and synthesis approaches, this
requirement is fulfilled. Even so, the more redundancy RSIR has, the more value its reasoning can provide.

To conclude, the remainder of this thesis focusses on providing RSIR with the reasoning capabilities to
apply pre-defined capabilities in new ways, and not on learning quantitatively new behaviour. Additionally,
RSIR communicates with human operators via traded control.

4.3. Evaluation Method

This section considers the evaluation methods used to test RSIR. It considers the available materials and two
key evaluations: evaluating the grasping approach and evaluating the ontology and reasoning framework.
Additionally, RSIR is implemented for a picking task on a physical robot.

4.3.1. Materials
Because RSIR is to be tested on the robot in Eindhoven (R32), several components that are normally part of
SIR are not available during testing. The components that are available are:

e UR10robot

¢ Input and output carriers

¢ Avacuum gripper

¢ An assortment of other grippers

¢ The input RGB and input depth camera

¢ A computer running ROS Melodic on Ubuntu 18.04 (R15, R17)

The most notable missing components are the segmentation algorithm, the vacuum grasp synthesis al-
gorithm, the verification camera, and several components required for placing. As a result, it is impossible to
test all of RSIR on a physical set-up. Instead, only the grasping approach is evaluated using images collected
from the set-up in Eindhoven, and the reasoning of RSIR is tested virtually. Additionally, RSIR is implemented
for a grasping task on the set-up in Eindhoven to prove that its reasoning transfers to a physical robot.
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4.3.2. Grasping Approach

The grasping approach developed in this thesis consists of two aspects: the gripper technology and the syn-
thesis approach. Both could be evaluated in detail, to provide RSIR with accurate knowledge about their
limitations. However, limitations of gripper technologies is a well-researched topic. To reduce its scope, this
thesis does not evaluate the gripper technology but instead derives any knowledge about it from literature.
On the other hand, the grasp synthesis approach is evaluated, as its limitations are less general and depen-
dent on the implementation. Even so, the synthesis approach evaluation is not meant to be a thorough testing
scheme, but rather a brief test to get a general idea about its limitations (R34).

The synthesis approach is evaluated in chapter 8 based on the variety of items it can synthesize reason-
able grasps for (R23), the quality of the grasp the algorithm concludes to be the best grasp (R24), and the
time it takes to synthesize a grasp (R14). This performance is evaluated for different types of clutter (R25,
R28), different segmentations (R25, R31), and carriers containing one or more types of items (R25, R28, R30).
Additionally, an evaluation is done to investigate the influence of the tuning parameters on the algorithm’s
performance.

For all evaluations of the grasping approach, RGB and depth data is used that is obtained from the set-up
in Eindhoven (R19, R32). The quality of a grasp is determined by a human. A more appropriate evaluation
would be to attempt the grasps and compute what percentage of them were successful. However, this was
not possible because of time constraints (R16) and the limited components available in Eindhoven (R19).
Although a human evaluation is more subjective, it should be valid because humans are masters of grasping
[95]. The evaluation method is explained in more detailed in chapter 8.

4.3.3. Ontology and Reasoning

The ontology and reasoning are evaluated in two ways. The first way is by investigating whether the compe-
tency questions (section 4.1.3) are answered. This is relatively straightforward, as the competency questions
are simple enough to easily be answered by a human. They are answered in section 9.1.

The second way RSIR is evaluated is by testing its performance on a robotic set-up. Due to the limited
components available in Eindhoven, this test is done virtually. The robot is presented with an item of un-
known properties and its task is to grasp it. RSIR is evaluated based on how quickly it finds the optimal way
to grasp the item (R6) and how long its reasoning takes (R14). Additionally, RSIR is evaluated based on how
well it estimates the properties of the items it is trying to grasp, because this is helpful in selecting the best
grasping approach (R6) and provides insight into its through process (R2). This performance is evaluated for
four scenarios: the baseline scenario, a scenario where RSIR has access to prior knowledge, a scenario where
RSIR occasionally explores, and a scenario where RSIR has imperfect knowledge about its capabilities. The
full details on these evaluations are provided in chapter 9.2.

This concludes the high-level decisions about RSIR’s design and evaluation. The next step in designing
RSIR is Methontology’s knowledge acquisition phase. Because one of the dominant choices in RSIR is the
grasping approach, the next chapter investigates available approaches and selects the best one for RSIR.



Grasping Approach

This chapter addresses the problem of analysing suitable gripper technologies and grasp synthesis approaches,
and selecting the best gripper and approach for RSIR. Furthermore, this chapter investigates the limitations
of said synthesis approach, and investigates how to negate these limitations in RSIR. This research is required
for the knowledge base, because the available grasping approaches (and their limitations) is knowledge RSIR
must have. Additionally, requirement R5 demands that RSIR can handle a large variety of items, but currently
RSIR’s performance is heavily limited because it only has access to one type of gripper. Figure 5.1 illustrates
this: the vast majority of failures is due to failed grasps or failed synthesis attempts (as opposed to inaccurate
motion planning, for example). Hence the addition of a second gripper is critical in improving RSIR (R23).

The problem is addressed as follows: section 5.1 provides details about the limitations of RSIR’s vacuum
gripper, after which section 5.2 defines the requirements for the new gripper. Section 5.3 then investigates
available gripper types and selects the best one for RSIR. Finally, section 5.4 addresses the problem of select-
ing the best synthesis approach and suggests improvements.
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Figure 5.1: Failures observed for SIR [36]. Listed percentages are percentages of the total number of pick-and-place attempts performed.

5.1. Vacuum Performance

This section investigates the limitations of SIR’s vacuum gripper. Recall that section 3.1 put limits on the
items that SIR must be able to handle, such as the minimum and maximum item mass. However, there are
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still items within these limits that cannot be grasped by SIR. In general, these are items that are too porous,
have too little surface contact with the suction cup, deconstruct easily (such as items with paper wraps), or
items that are too densely packed [125]. Items that are relatively heavy can also pose problems, often due to
their eccentric centre of mass [125]. This causes the item to swing when the gripper picks it up, which breaks
the air seal between item and gripper, resulting in the item being dropped. Some typically ungraspable items
are shown in Figure 5.2. The findings of Vanderlande are consistent with those from literature, which also
mention vacuum grippers’ disadvantages for porous items and items with eccentric centres of mass [52].

Figure 5.2: Examples of items that are typically not graspable with a vacuum gripper [125].
From left to right: a hair brush, irregularly shaped items in packaging, a belt, a pack of sodas, and a bag of dog food.

Vanderlande makes use of the GS1 item categories for testing SIR’s performance. The GS1 standard pro-
vides a common language for item packaging [97], using packaging types such as "box", "net", and "not
packed". Figure 5.3 summarizes SIR’s performance for the categories relevant for Vanderlande. The results
clearly show in which categories (and their mass and size ranges) there is room for improvement. However,
not all failures shown in the figure are due to grasping failures. Other failures also lower the system’s capacity,
such as failures due to collisions and dropping the item. The gripper hardware has a relatively small influence
on these failures compared to other components such as motion control. Hence the percentages in Figure 5.3
do not directly represent how much the system can be improved by adding a gripper.

0-500g 500-1000¢g 1000-1500¢g 1500-2000¢g
small medium |large small medium |large small medium |large small medium |large
cT tray 93% 83% 95% 90% 50% 83%
cu cup,bowl 99% 95% 100% 100% 95% 95%
cYy container 90% 99% 93% 100% 90%
BPG blister 70% 92% 100% 100%
BX box 89% 94% 75% 100% 98% 95% 90% 88%
BO bottle 90% 100% 40% 8% 70% 85%
[ case 100%
sY sleeve 92% 85% 83% 70%
CM card 60% 60% 65%
sSwW shrink wrapping 93% 90% 98% 90% 55% 100% 100% 50% 0%
BK basket
MPG multipack 90% 94% 98% 85% 100% 85% 70%
NT net 45% 40% 40%
BRI pack 83% 95% 100%
GTG pack with point 100% 98% 88% 88% 100%
JR jar 99% 100% 100% 95% 98% 30%
TU tube 88%
BG bag 93% 95% 98% 88% 98% 93% 88% 75% 83%
BBO boxblister open 93% 88%
BXP1 boxplasticl 100% 100% 100% 95% 95%
BXP2 boxplastic2 60% 78% 87%
NE not packed 40% 50%
NEF not packed fresh

Figure 5.3: Success rates of tests for SIR, adapted from [36]. The success rate is defined as the number of successful grasp attempts
divided by the total number of grasp attempts. A grasp attempt is considered successful if the first or second grasp succeeds. Note that
the results for the "not packed" category are based on only a few tests, as it was found that the category gives little information on the
system’s performance because of the large variety in item properties.

Instead, the potential for improvement depends on both the success rate (as depicted in Figure 5.3) and
the fraction of failures that are due to grasping (both in grasp synthesis and grasp execution). The product
of the fraction and the success rate gives a measure for the improvement that can be realized by adding a
gripper. Table 5.1 lists this measure per item category. It shows that the not packed, net, card, boxplastic2,
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and blister categories are the five most promising categories to improve on. The GS1 definitions and examples
for these categories are included in Appendix A. The reader is referred to the GS1 documentation [97] for the
definitions of all categories.

Table 5.1: Potential improvement of the FM-GtP system when adding an extra gripper. The table lists the item category, the success rate
of the system using only a vacuum gripper, the percentage of failures that are due to grasping (with respect to all failures), and the
potential improvement. Numbers are based on data from tests performed by Vanderlande [36].

Category Explanation Success rate (%) | Grasp failures (%) | Potential (%)
All all categories 83 70 12
NE not packed 32 88 60
NT net 33 73 49
CM card 61 93 36

BXP2 boxplastic2 77 82 19
BPG blister 82 91 16
CY container 84 87 14
TU tube 88 100 12
BO bottle 81 60 11
CT tray 83 56 10
BBO boxblister open 89 76 8.4
JR jar 89 73 8.0
SY sleeve 87 61 7.9
BX box 90 56 5.6
BG bag 91 61 5.5
MPG multipack 89 40 44
BRI pack 93 61 4.3
SwW shrink wrapping 86 23 3.2
BXP1 boxplasticl 98 25 0.50
CU cup, bowl 96 8.2 0.33
CS case 100 0 0
GTG pack with point 100 0 0
BK basket no data - -

Now that the limitations of the vacuum gripper are known, the requirements can be defined for the gasp-
ing approach that is added to RSIR.

5.2. Requirements

This section defines the requirements for the grasping approach that is to be added to RSIR. These require-
ments are derived from the requirements for RSIR as described in chapter 3, and mostly the limitations of
SIR’s vacuum gripper (R23). The requirements are:

1. Item variety. The variety of items the grasping approach can (theoretically) grasp should be as large as
possible for the items that the vacuum gripper cannot handle (R5, R23). For grasping, items are often
defined by five properties: shape, size, mass, texture, and deformability [135]. Based on the analysis
in the previous section, it can be concluded that shape, texture, and deformability pose the largest
problems for SIR.

2. Computational cost. This cost should be as low as possible so that the system can reach as high a
capacity as possible (R14).

3. Repeatability. The grasping approach’s repeatability is important because it allows the robot to consis-
tently perform successful grasps (R5, R23). Additionally, a lower variability in grasp success allows for
better reasoning and learning about which grasps are successful for certain items (R6).

4. Lifetime. The grasping approach’s lifetime should be long to reduce maintenance and repairing costs
(R18).

5. Cost. The grasping approach should have a low cost with respect to SIR (R18).
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6. Modularity. The grasping approach must be (made) compatible with a switching system that allows
RSIR to switch between grippers and synthesis approaches (R6).

7. Gentleness The grasping approach should handle items without damaging them or leaving marks
(R27).

8. Dexterity. A grasping approach’s dexterity refers to the variety of tasks that it can complete, as well as
how well it performs in those tasks [85]. A high dexterity is preferred as it allows for generalizing the
system to similar tasks (R3).

9. Availability. A grasping approach that is already available (at Vanderlande) is preferred to one that is
not, because of the reduced costs, time, and effort required (R16, R18, R20, R26).

The next section presents gripper technologies and determines which gripper technology best meets the
requirements defined in this section.

5.3. Gripper Technology

This section presents the types of gripper technologies available and selects the one best suited for RSIR. To
do so, this section researches the available gripper technologies and ranks them based on the requirements
from the previous section.

5.3.1. Available Technologies

There are many gripping technologies available besides vacuum grippers. This subsection elaborates on the
ones relevant for RSIR. A previous study within Vanderlande found the technologies in Figure 5.4 to be ap-
plicable for the type of grasping required in their material handling systems [76]. However, out of these only
two are suitable for SIR: vacuum and clamping. The remainder is not applicable because of the limited item
masses, dimensions or materials that can be handled (R5, R23), or because the item gets damaged (R27). Sup-
porting is the exception, but is not applicable because the design of the carrier does not allow approaching
from the bottom [76][134]. Since vacuum is already implemented, a clamping gripper is selected for RSIR.

Gripper handling
technologies

Item, Case and Luggage robotics
) P
A1 111
S AL 8

Figure 5.4: [134]

However, within the category of clamping grippers there is still a lot of variety. The study by Vanderlande
identified mechanical grippers with two to five fingers, soft grippers, and mechanical suction grippers. The
latter is a combination of a suction cup with mechanical fingers. In addition to those, this section also con-
siders parallel-jaw grippers. The gripper types and their (dis)advantages are now discussed

Parallel-jaw Gripper

Parallel-jaw grippers are among the most commonly used grippers in robotics applications [135]. Some ex-
amples are shown in Figure 5.5. These grippers feature two parallel plates, which move towards each other
when the gripper closes. They have been shown to be capable of grasping objects of different sizes, shapes,
masses, textures, and deformabilities [135]. Other advantages are their simple and computationally cheap
synthesis approaches, the available datasets applicable for machine learning, and their superior grasping
success rate compared to grippers with three or more fingers [135]. They are also significantly less expensive
than grippers with three or more fingers [76]. Finally, it is relatively simple to physically connect them to the
robot, making them a good candidate when it comes to modularity.
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Disadvantages of parallel-jaw grippers are their limited compliance, limited dexterity, and limited stroke
[76][85]. The latter puts an upper bound on the dimensions of items the gripper can handle. Parallel-jaw
grippers with larger strokes are available, but are usually more bulky and heavy, which poses a problem given
the limited payload of the robot arm [63]. It should be noted, however, that the dexterity of a simple gripper
combined with a dexterous robot arm is sufficient for many manipulation tasks [85]. Even so, added dexterity
may be beneficial in reducing execution time and power consumption [85]. Another note is that the grasping
approaches that have proven successful on a large variety of items do not consider a limitation in grasping
force (thus potentially damaging the item) and occasionally pick up several items at once [135].

Figure 5.5: Examples of parallel-jaw gripper: a Schunk gripper (left) [31] and the gripper of a PR2 robot (right) [23].

Rotational Joint Gripper

Rotational joint grippers are similar to parallel-jaw grippers, but have a different way of closing. Some exam-
ples are presented in Figure 5.6. Instead of having plates close parallel to each other, a rotational joint gripper
has joints that make it close like a human finger would. This allows for more self-solving behaviour [76], es-
pecially if the gripper is back-drivable. Depending on the gripper and item shapes, the gripper may provide
form-closure grasps. Other than these aspects, rotational joint grippers have the same (dis)advantages as
parallel-jaw grippers.

(] L]
E ROBOTIQ

Figure 5.6: Examples of rotational joint grippers: a GearWurx gripper (left) [60] and a Robotiq gripper (right) [9].

Three-finger Gripper
Grippers equipped with three or more fingers are commonly referred to "multi-fingered grippers" [135]. Some
examples are shown in Figure 5.7. Their main advantage compared to other grippers is the increase in dex-
terity. This increase is especially useful in handling arm singularities, obstacles, and clutter [85]. The three
types of clutter commonly referred to in literature are illustrated in Figure 5.8. Additionally, the added degrees
of freedom allow the robot to change its grasp pose without moving the arm, thus improving speed, energy
consumption, and safety [85].

Despite their advantages, multi-fingered grippers are challenging to apply in practice. Because of their
increased number of degrees of freedom, the overall grip strength is lower than that of parallel-jaw and two-
finger grippers, and it is difficult to include high-quality, robust sensors for appropriate feedback [85]. Most
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recent approaches in literature using multi-fingered hands have underwhelming results, as they either use a
small set of test items, reach a low success rate, or take well over 5 seconds to find a grasp pose [135]. This
is mainly due to the many degrees of freedom, which make it so that blindly searching the solution space for
good grasps is infeasible [135]. Machine learning also faces problems due to the large solution space and the
lack of available training data. Additionally, multi-fingered grippers are more expensive [76] and their small
components result in more frequent failures [85] than is the case with previously discussed grippers. Finally,
three-fingered grippers are more bulky than two-finger or parallel-jaw grippers.

However, it should be noted that the weight of some of these disadvantages depends heavily on how a
grasp pose is determined. For example, some three-fingered grippers limit their grasps to be symmetric (that
is, the angles between the fingers are 120°). This significantly simplifies the grasping algorithm, but also
negates most of the gripper’s dexterity.

(a) Isolation: only one item is present in the (b) Sparse clutter: multiple items are present, (c) Dense clutter: multiple items are present
robot’s area of interest. but they do not touch or overlap. and they touch and/or overlap.

Figure 5.8: The three types of clutter commonly referred to in literature.

Dexterous Hand

A special case of multi-fingered grippers is those with four or five fingers, often referred to as "dexterous
hands" or "human-like hands". Figure 5.9 shows some examples. Their advantages and disadvantages are
more extreme versions of those of the three-fingered grippers [85]. However, their likeness to human hands
comes with an additional advantage: it allows the robot to learn from human demonstrations [135]. Human
grasping is a widely researched area which has resulted in (amongst others) grasping taxonomies [135]. These
taxonomies can be used as a basis for determining a dexterous hand’s grasp pose, thus removing alarge part of
the problems caused by its many degrees of freedom. Additionally, since these hands are based on the human
hand, and human operators can handle all items that appear in FM-GtP, a dexterous hand can theoretically
handle all items with the proper gentleness.

However, in practice the dexterous hands are not as successful as they are in theory. This is due to the
same reasons as for three-fingered hands. An additional challenge is that for learning from human grasps,
the system requires an algorithm to select a grasp from the taxonomy based on the presented item. In the
case of machine learning, this requires a significant amount of training data that is not readily available.
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Figure 5.9: Examples of dexterous hands: the Allegro hand (left) [111] and the Shadow dexterous hand (right) [110].

Soft Gripper

Another type of gripper is the soft gripper. These grippers achieve high adaptiveness and safe cooperation
with humans because they are made of materials that are soft, flexible and compliant [58]. Most of them are
actuated pneumatically or through cables [58], although electric actuation also exists [133]. Pneumatic actu-
ation would simplify the switching mechanism, as all grippers used by RSIR would then be pneumatic. Soft
grippers can roughly be split into fingered grippers and non-fingered grippers, shown in Figures 5.10a and
5.10b, respectively. Both types feature several advantages: they are relatively simple in design and actuation
[76], they have an adaptable manufacturing process [58], their compliance provides some self-solving abili-
ties that can make up for limited accuracy of the grasp synthesis algorithm [58][76], and the softness allows
them to handle delicate items [58]. Additionally, they can work with a large range of item dimensions and can
have a good lifetime [76].

It should be noted that there is a continuous spectrum between soft and rigid grippers [58]. A gripper
with soft paddings is more soft than a purely aluminium gripper, but more rigid than a pneumatic silicon
gripper. A gripper’s softness is a trade-off between the number of degrees of freedom and its precision, and
also between the force it can exert and its compliance [58]. Hence soft grippers typically have a lower payload
and less precision than rigid grippers. Other disadvantageous are the difficulty in modelling soft grippers,
the complex integration of sensors, and their lack of repeatability [58]. Additionally, they can be bulky in
practice. For example, Figure 5.10a shows how wide the Ubiros gripper opens. Navigating such a large gripper
is challenging, especially in clutter, and it makes the gripper less dexterous. Rigid fingered grippers do not
face this problem because nearly all of them can be put in any position (such as half open). However, since
soft grippers are often pneumatic, most of them only have two positions: open and closed [58].

Fingered soft grippers are soft grippers with elements that can be considered fingers. These grippers
combine the (dis)advantages of two-fingered grippers with those of soft grippers. On the other hand, non-
fingered grippers are unlike any of the fingered grippers. Although such technologies are interesting, a recent
survey concluded that it is still a widely unexplored research area, and that the state of the art is not sufficient
to be applied in robotics [58]. A theoretical study by Vanderlande also concluded that some soft grippers are
not applicable [76]. Hence the remainder of this report considers only fingered soft grippers.
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(b) Examples of non-fingered soft grippers: the Festo Octopus Gripper (left) [70] and the Empire Robotics Versaball gripper
(right) [141].

Combi-Gripper

A final category of grippers is that of the combi-grippers. This type of gripper combines a suction cup with
fingers, an example of which is shown in Figure 5.11. The gripper can use only the suction cup, only the
fingers, or a combination of both. A combination of both generally consists of the robot placing the suction
cup onto the item, and then closing its fingers around the item [52]. Thus the combi-gripper theoretically
combines the best of vacuum grippers and fingered grippers. An important advantage is that the use of such
a gripper can eliminate the need for a device that switches between grippers. Additionally, this a combi-
gripper was shown to be able to grasp more items than only a suction cup [52]. The fingers closing around
the item make the grasp more robust than if only the suction cup were used.

However, it is unclear what exactly the advantages of the combi-gripper are regarding the diversity of
items it can handle compared to a system that switches between a fingered gripper and a vacuum gripper.
The multi-gripper provides the most advantages when it uses both its suction cup and its fingers, as this
makes the grasp more robust. However, only 0.63% of SIR grasps fail due to a lack in robustness and the item
falling out of the gripper [36]. On the other hand, 7.54% fails because the vacuum gripper cannot handle the
item [36], in which case the multi-gripper performs no better than a fingered gripper.

Additionally, the multi-finger has the disadvantage that it is more bulky than a vacuum or fingered gripper
(with the same number of fingers). Finally, the envisioned future for RSIR might include several vacuum
grippers to handle a larger variety of items than is possible with only one gripper. In that case, the use of a
combi-gripper (with one suction cup) does not eliminate the need for a switching mechanism, and it is likely
equally effective to use separate vacuum and fingered grippers instead.
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Figure 5.11: Example of a combi-gripper, used in the research by Hasegawa et al. [52].

5.3.2. Selecting the Best Technology

This subsection selects the best gripper technology for RSIR. It does so by giving a weighed score for each
gripper technology per requirement. Weights and scores range from 1 (unimportant, low score) to 5 (most
important, high score). Table 5.2 shows the scores. The weights and scores are determined as follows:

1. Item variety is split up into the five properties often used for grasping: shape, size, mass, texture, and
deformability [135], as well as the level of clutter. Because vacuum grippers were found to perform
poorly for textured (porous), deformable, and complex-shaped items, these properties get a higher
weight. Less bulky grippers score higher for clutter.

2. Computational cost gets a high weight because speed is one of the main goals of RSIR. Although the
computational cost mainly depends on the grasp synthesis algorithm, there is a general trend for the
cost per gripper type. Grippers with synthesis approaches that generally have a lower computational
costs score higher.

3. Repeatability gets a mid-level weight because better repeatability allows for better consistency and
reasoning. Grippers that consistently achieve grasps of similar quality get a higher score.

4. Lifetime gets a mid-level weight because RSIR must stay operational. Note that simpler grippers gen-
erally have a longer lifetime and thus get a higher score.

5. Cost gets a mid-level score because a great gripper justifies a higher cost only to a certain extent.

6. Modularity gets a low weight because the switching mechanism is still under development and might
be adapted to a new type of gripper. Grippers with less physical connections score higher because less
cables must be switched. Additionally, soft grippers score high because most of them are pneumatic
and thus compatible with the current switching system.

7. Gentleness gets a low score because all fingered grippers can theoretically gently grasp any item as
long as the appropriate grasping force is used (done by Pijnacker, for example [103]). However, it is still
easier if the gripper has some passive compliance that prevents the item from being damaged. Thus
the less a gripper relies on friction (and thus normal force) to grasp, the higher it scores.

8. Dexterity gets the lowest weight because most tasks do not require a high level of dexterity, or the lack
of dexterity in the gripper can be compensated by dexterity in the arm. Although dexterity can be useful
in reducing execution time and energy consumption, this requires more advanced control and is left as
potential future work.

9. Availability scores high because of the limited time available for this thesis. Grippers that are available
at Vanderlande score high, whereas others score low. Note that availability is almost irrelevant when
viewing RSIR outside the scope of this thesis, as it may well be worth the time and money for Vander-
lande to investigate expensive grippers. Hence Table 5.2 also lists the total score per gripper without
considering availability.
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Table 5.2: Ranking the potential gripper technologies for RSIR. The total score is calculated as the sum of the products between the
weight and the score. The total score is listed twice: once including and once excluding the scores for Availability. Total scores are
highlighted to improve clarity.

Weight | Parallel-jaw | Rotational joint | Three-finger | Dexterous hand | Soft finger | Combi
Shape 2 3 4 5 5 4 1
£ [ Size 1 4 3 4 3 2 5
'S | Mass 1 5 5 3 2 1 5
£ | Texture 2 5 5 5 5 5 3
2 | Deformability 2 4 4 5 5 4 2
Clutter 2 5 5 4 3 2 3
Computational cost 4 5 5 3 1 5 4
Repeatability 3 4 3 3 2 2 4
Lifetime 3 5 4 3 1 3 3
Cost 3 5 5 2 1 5 3
Modularity 2 4 4 3 1 5 3
Gentleness 2 1 2 3 3 5 4
Dexterity 1 2 2 4 5 1 1
Availability 5 5 1 5 1 5 1
Total (without Availability) 117 114 97 70 104 89
Total (with Availability) 142 119 122 75 129 94

As shown in Table 5.2, the parallel-jaw gripper has the highest score. As a result, a parallel-jaw gripper is
used in the remainder of this thesis. The next section considers synthesis approaches for this type of gripper.
Note that outside the context of this thesis, the most promising grippers are the parallel-jaw and rotational
joint grippers. The rotational joint gripper is not considered in the remainder of this thesis because it is not
available (R20). However, it may be a relevant gripper for future work.

5.4. Synthesis Approach

In the previous section, the parallel-jaw gripper was selected to be used in combination with the vacuum
gripper on RSIR. The next step in implementing a parallel-jaw gripper is to define an algorithm that computes
a grasp pose when presented with an item. This section presents a literature study into such algorithms for
the two-fingered gripper, and selects the best one to be used in this thesis.

A brief recap of the literature study accompanying this thesis is presented [135]. Grasp synthesis refers to
the problem of finding a grasp configuration that satisfies a set of criteria relevant for the task. The main chal-
lenges in grasping are the diversity in objects, tasks, and grippers, as well as the complex physics involved. A
metric is a measure of how good a grasp is. Both metrics and synthesis approaches can be analytical (based
on object models) or data-driven (based on previous experiences and often machine learning). The main ad-
vantages of analytical approaches is that they are easy to design, but due to the assumptions they make, they
often do not work well in practice. Approaches that represent an object by a primitive geometry (for example,
its principal axis) are generally faster than those that represent it as its full geometry. Data-driven approaches
generally achieve better performance, but require training data and generalize poorly across grippers and
tasks.

5.4.1. Available Approaches

Since the literature study focussed on grippers with at least three fingers [135], it does not provide a sufficient
overview on grasp synthesis for parallel-jaw grippers. Hence this subsection presents a literature study into
grasp synthesis approaches for parallel-jaw grippers. Note that most of these approaches would also work
with a rotational joint gripper or a soft (two-)fingered gripper.

Analytical Approaches

First the analytical synthesis approaches are considered. These are split up into approaches that synthesize
grasps based on an object’s primitive geometry (such as primitive axis), and those that synthesize a grasp
based on the object’s surface.

Primitive Geometry

The first type of analytical synthesis approaches is based on an object’s primitive geometry. Suzuki et al.
model an object based on its principal axis, which they obtain from analysing the point cloud [124]. The
gripper positions itself above the object’s centroid, rotates to be perpendicular to its principal axis, lowers
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until it touches the plane, and closes. Figure 5.12 illustrates the gripper orientation. This simple approach
achieves a 86% success rate with an inexpensive depth camera. Failures are likely due to the object shape (e.g.
spherical objects) and weight (e.g. a hammer). It takes 4.2 seconds for the algorithm to output a grasp pose,
although this runtime includes segmenting the scene.

Gripper

Figure 5.12: Visualization of the grasp synthesis approach by Suzuki et al. [124]. The gripper approaches the object normal to the plane
and perpendicular to the object’s principal axis.

Stuckler et al. also use an object’s principal axis, but consider its bounding box as well [121]. For grasping
the object from the side, its silhouette is obtained and simplified into a bounding box. Grasps are sampled in
an ellipse around this bounding box. Top grasps are sampled along both principal axes through the centre of
the bounding box. The resulting set of grasps is filtered based on collisions and reachability, and ranked based
on four properties. These properties are: their distance to the object centre, grasp width, grasp orientation,
and distance from the robot. The latter two are due to the robot arm geometry. A 99% success rate is achieved
for a limited set of objects while requiring only 0.16 seconds to synthesize a grasp. An advantage of this
approach is that it automatically determines whether a side or top grasp is more appropriate. Figure 5.13
shows some successful grasps. The authors assume an item’s centre of mass coincides with its centroid, but
the algorithm also performs well for (some) items that violate this assumption.

Figure 5.13: Examples of successful grasps by Stuckler et al. [121]. Note that the "top" grasps are not normal to the plane.

As opposed to Stuckler et al., Stoyanov et al. [120] consider collisions before sampling grasps. They argue
that pre-computed grasps are often infeasible at runtime due to collisions with the environment, especially in
clutter. They employ a constraint-based grasp formulation, which has as an additional advantage that grasp
synthesis can then be integrated with the motion planning step. A primitive grasp envelope is defined from
heuristics, from which grasps in collision with the environment are removed (Figure 5.14). The approach
achieves an 84% success rate in sparse clutter. Computing the grasp envelopes takes 0.06 seconds, but this
relies on an efficient model of the environment. Creating this model requires the depth camera to move
around the scene, and takes 40 seconds for the scene considered by the authors.
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Figure 5.14: The constraint-based grasp formulation by Stoyanov et al. [120]: the primitive grasp envelope (left) and the resulting grasp
envelope after removing grasps that are in collision with the environment (right).

Surface

The previous three approaches arguably work well, but the question remains how well their primitive object
representation works for any given object. Some approaches avoid this simplification step and directly syn-
thesize grasps based on the object’s geometry. The approach by Baumgartl and Henrich synthesizes grasps
based on pairs of parallel lines, obtained from the object’s edges [17]. The pairs are ranked based on the line
lengths and whether the object fits between the jaws of the gripper. Examples of grasps are presented in Fig-
ure 5.15. This simple approach achieves a success rate of 79% with grasp synthesis taking only 0.03 seconds.
Note that the approach assumes that the objects have already been segmented.

Figure 5.15: Examples of successful grasps by Baumgartl and Henrich [17]. The object’s bounding box is indicated in blue, the edge
segments in red, and the centre of the grasp pose in green.

Similarly to Baumgartl and Henrich, the approach by Pas et al. finds grasps by exploiting parallel surfaces
[129]. It relies fully on sampling, rather than using, for example, an edge detector. To keep this feasible, it uses
geometry to reduce the size of the sample space. The space is thus defined as grasps that are collision-free,
have part of the item between the fingers, and have the item’s principal curvature matching the direction of
the hand. The latter is a heuristic that discards otherwise good grasps, but it speeds up the synthesis process
by looking only at grasps that are likely to be successful. The resulting sample space contains tens to hundreds
of grasps, after which itis reduced by clustering similar grasps. Grasps that have no inverse kinematic solution
are discarded, and the remainder is ranked based on how easy the robot can reach them. Advantages of this
approach are the simple interpretation, that it requires only the point cloud and gripper geometry, and its
success rate of 73% for unseen items. Additionally, the clustering allows to select a region of interest, thus
allowing the robot to grasp a specific part of an item. Finally, the ROS code is available. Disadvantages are the
complex mathematics involved, the drop of success rate for dense clutter, and that no runtimes are reported.
The full approach also includes machine learning, which is discussed later in this section.

Klingbeil et al. [64] take a more complex approach, using the basic idea that a good grasp is when the
object shape matches the gripper shape. A 2D slice of the depth map is taken, in which shapes similar to the
gripper’s geometry are found (Figure 5.16). This process is repeated for multiple slices and rotations of the
depth map. Although the approach achieves a 90% success rate for objects in dense clutter, it is very compu-
tationally expensive. The authors consider only few rotations to keep the approach feasible. Even so, the time
from when the object is presented until it is picked up is 83 seconds on average. This number is not listed
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Figure 5.16: Visualisation of the approach by Klingbeil et al. [64]. A 2D slice of the depth map (left) is taken, here defined as a column.
The resulting image (middle) is inspected for shapes similar to the gripper’s shape (right).

in the paper, but estimated from the accompanying video. It is not clear at which point during this process
the synthesis is complete, but considering that the pick-and-place cycle at Vanderlande is approximately 9
seconds [127], it is likely that the majority of the 83 seconds runtime stems from grasp synthesis.

Finally, Ala et al. present an approach based on boundary and convex segments, called grasplets (see Fig-
ure 5.17) [11]. The grasplets are obtained from the object’s point cloud, and a pair of grasplets forms a grasp.
Feasible grasps are obtained from analysing pairs of grasplets, realizing that the grasplets need to be opposite
each other for a parallel-jaw gripper to successfully grasp the object. An advantage of this approach is that
specific grasp areas can be specified, for example only the top part of an object. The authors show an exam-
ple of grasping the handle of a mug, when provided with an algorithm that detects the handle in the image.
Overall, this approach is a more sophisticated but also more complex variant of the simple edge-detection
approach by Baumgartl and Henrich. It achieves an 88% success rate on isolated objects, requiring 12 sec-

onds to synthesize a grasp.
Graspable convex segments
@ mmmm Graspable boundary segments

Figure 5.17: Boundary and convex segments as defined in the approach by Ala et al. [11]

Data-driven Approaches

Data-driven approaches generally achieve better performance than analytical approaches. The remainder of
this section thus considers data-driven approaches. Most of these were already considered in the literature
survey corresponding to this thesis [135], but they are included here for completeness.

Learning Evaluation Metrics
Approaches that learn evaluation metrics work as illustrated in Figure 5.18: they require sensory data and a
grasp pose as input, and output the probability of the grasp pose resulting in a successful grasp. Grasps are
sampled and the grasp resulting in the highest probability is selected.

Mabhler er al. use this type of approach with a convolutional neural network to predict grasp success given
a depth image and a gripper pose [86]. When presented with an image, the system samples grasps through
the cross-entropy method (CEM) to find a grasp with a high predicted success. The network is trained on Dex-
Net 2.0: a synthetic dataset of 6.7 million data points created in simulation. The trained network achieves a
94% success rate on a physical robot for novel objects, requiring 2.5 seconds to synthesize a grasp. Figure 5.19
shows some planned grasps. CEM is the main cause for the long runtime, as the approach only requires 0.8
seconds without it, but then the success rate also drops to 80%. The approach works well even for some
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Figure 5.18: The general inputs and output of an algorithm that learns an evaluation metric.

smooth or deformable objects. It only grasps objects from the top, which might be a limitation for some
applications.
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Figure 5.19: Examples of color images and the grasp success predicted by the Dex-Net 2.0 neural network in the approach by Mahler et
al. [86]. The planned grasp using the CEM approach is shown in black.
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Pas et al. extended their previously mentioned approach by including a Support Vector Machine (SVM)
to predict whether a grasp is successful or not. This reduces the sample space, but otherwise the algorithm
remains the same. To obtain training data, they gather depth data from two directions for 36 items, and auto-
matically label it. The labelling is done based on antipodal grasps. The interpretation of such as grasp is that
the robot can hold the object by applying sufficiently large forces along the line connecting the two contact
points. Whether a grasp is antipodal can be derived from the gripper contact points and friction. The SVM
improves the success rate from 73% to 88% for isolated items, and to 73% for dense clutter. The advantage of
the SVM is the increase of improvement, though it should be noted that without the SVM, the approach still
achieves a remarkable success rate and saves the time otherwise used for data acquisition and training.

Learning Optimal Grasp Poses

The previous data-driven approaches have as a disadvantage that they need to sample grasp pose, which
is usually computationally expensive and thus time-consuming. To avoid this, some approaches apply an
algorithm that directly transforms an input image to a grasp pose, as shown in Figure 5.20.

Sensory data Grasp pose

Algorithm

Figure 5.20: The general inputs and output of an algorithm that learns an optimal grasp pose.

Pinto and Gupta select 18 grasp poses (defined by their angle with respect to the object), and use a neural
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network to determine which of those poses is most likely to result in a successful grasp [104]. They point
out the problems with human-annotated data, which is incomplete and biased by semantics. Instead, their
approach obtains training data from trial and error during 700 hours. The top 10 grasps are re-ranked based
on how successful nearby data points are, to account for actuator inaccuracies. The approach achieves a
modest 66% success rate for unseen objects in dense clutter, and 73% for seen objects in different conditions.
This approach considers only grasps from the top.

Instead of predicting grasp success for a given grasp pose, the neural network by Morrison et al. [92]
directly outputs a grasp pose and quality measure for every pixel in an input image. This avoids the com-
putationally expensive CEM. The network is trained on an adjusted version of the Cornell dataset, and its
output is filtered to remove outliers. The system achieves a success rate of 92% on isolated objects. However,
the main contribution of this work is that the synthesis takes only 19 milliseconds, allowing the authors to
create a closed-loop system. This system continuously observes the environment and computes the optimal
grasp pose ("visual servoing"), allowing it to handle dynamic scenes. For example, it has an 81% success rate
for grasping dynamic objects in clutter. A big disadvantage, however, is that the system requires a camera
mounted on the robot’s wrist. Otherwise, the bulky robot arm can occlude the objects and the system cannot
find a grasp pose.

Learning Optimal Motions

Previous approaches, with the exception of Morrison et al., all relied on the sense-plan-act pipeline: sense
the environment, synthesize a grasp, and execute the grasp. However, as Morrison et al. showed, continuous
feedback makes an approach more robust against disturbances. One approach for this is to learn optimal
motions, that is, have an algorithm that directly outputs the motion control given the sensory data. Levine
et al. do just this [75]. They use a convolutional neural network and an overhead camera that observes both
the objects and the robot arm. The system achieves a 90% success rate for picking the first 10 objects out
of a bin, including smooth and deformable objects. An advantage is the system’s robustness to differences
in the scene, such as poor camera calibration and gripper wear. However, to achieve the impressive perfor-
mance, the model was trained for two months, using over 800,000 grasp attempts and up to 14 robots (see
Figure 5.21).

Figure 5.21: Four of the robots used by Levine et al. during training, adapted from [75]. All four robots are in the same joint
configuration.

Kalashnikov et al. continue the work by Levine et al. and focus on off-policy training to decrease the
required training data by one third [61]. For the same bin emptying task, the approach by Levine et al. has a
76% success rate and the approach by Kalashnikov et al. 88%. The improved approach also shows corrective
behaviours, such as pregrasping motions to handle otherwise ungraspable objects (see Figure 5.22). Despite
the improvement, the approach still needs a large amount of training data.

On the other hand, Yan et al. criticise deep learning approaches that predict grasp success from an im-
age and a grasp pose, as the additional optimization step scales exponentially with the action space during
runtime [144]. Their neural network architecture directly learns the distribution of good grasp poses from
self-supervised grasping trials. This architecture keeps a constant inference time for increasing action spaces,
at the cost of requiring more training data. Note that a shorter inference time does not directly translate to
faster picking. Instead, it allows the feedback loop to run at a higher frequency. Whether the picking also
becomes faster depends on the hardware and software constraints, such as safety limits on joint velocities.
The architecture shows an increase in average grasp success up to 3 million data points. It achieves an 83%
success rate on a physical robot for unseen objects in sparse clutter. Although the constant inference time is
promising, the increased need for training data is a big disadvantage.
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Figure 5.22: An example of pregrasping motions by the approach by Kalashnikov et al. [61].

Berscheid et al. combine grasping with shifting to improve grasping success rate for items in bins and
clutter. Shifting refers to pressing the gripper on the item and moving it parallel the supporting surface.
Thus the item is moved to a less cluttered location, allowing the robot to grasp it. The deep reinforcement
learning approach revolves around 5 motion primitives: 3 that define the gripper’s location and angle for
three different opening widths; and 2 for shifting objects along the gripper’s two axes. Figure 5.23 shows the
basic control scheme. The robot decides whether to shift or not by comparing the predicted grasp success
before and after shifting. This is more efficient than pure reinforcement learning. After training on blocks
and cylinders for 110 hours (100 for grasping and 10 for shifting), the robot can completely empty densely
cluttered bins at 274 picks per hour. For other items such as toothpaste and markers, the approach achieves
a success rate of 92% when the items are isolated. Advantages of this approach are the inclusion of shifting,
the high success rate, good runtime, and the availability of the source code and trained model. However,
a big question is how well the system performs for densely cluttered items that are not blocks or cylinders.
Additionally, it is likely that the system requires some level of retraining when applied on a different set-up.

1
[Estimate max grasp probability Tf)]

b < g ¥ > 1,

[Estimale max shift reward ;’)J [Grasp]
[

P < ps

Figure 5.23: The basic control scheme in the approach by Berscheid et al. [22]. If the predicted success for a grasp is sufficiently high,
the robot grasps; if not, the robot checks if shifting results in better grasps. If this is the case, the robot shifts and tries to grasp again,; if
not, the robot concludes the bin is empty.

5.4.2. Summary of Approaches

Table 5.3 summarizes the parallel-jaw synthesis approaches considered in this thesis. Furthermore, Table 5.4
presents a complete summary of the synthesis approaches considered in the thesis and the corresponding lit-
erature study. This table might be useful for future work. In summary, analytical and data-driven approaches
have similar success rates for parallel-jaw grippers. The data-driven approaches can handle a larger variety
of items, but require training and do not generalize well across tasks.
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Table 5.4: Summary of grasp synthesis approaches considered in this survey. N/A = not applicable, "-" = no data available. “Successful grasps were created for all presented objects, but no success rate is
reported. 56_380: requires images from multiple views. “Success rate when selecting the correct preshape. &368&0: requires the object to be represented by shape primitives. °Property is not
required for creating grasp candidates, but might be required to calculate the evaluation metric(s). TFor perfectly predicting the grasp stability on a 5-level scale. 8 For the first 10 objects in dense clutter,
without replacement. hEor the first 10 grasping attempts, estimated from the video accompanying the paper by Kalashnikov et al. [61]. b bbApproach requires the camera to be mounted on the robot’s
wrist. ¢ ccEstimated from the video accompanying the paper.

Required Properties Object Variety Success Rate Runtime Grasp Type
o |8 1 z @ | o
|5 - @ o | 8|35 . ; £ | & | & || Required
Literature Fingers | Clutter E © m S m S8 8 m m Rate ,_”mm::m Compliance Tactile Time (s) | Process M M. £ Training
o g 3 2 = 5| @ S| 5| 8 (%) Environment Feedback o |3 3
2|2 SN &8 BlEE Data
g | A = 2 © ||
o, Lei etal. [73] 3 None X X -a Physical Passive No <1 Synthesis X
m Maldonado et al. [89] 4 Sparse X X [ XX 80 Physical Active No - -
m Suzuki et al. [124] 2 None X X [ X[ X |[X 86 Physical None No 4.2 Synthesis
@ Eppner and Brock [39] 3 None X X | X[X[X|X 62°¢ Physical Passive No - - X | X
o Miller et al. [90] 3 Dense XETXe[xXe|[[ X [ X -a Simulation N/A N/A 262 Synthesize List X ' X
= Stuckler et al. [121] 2 Sparse || X | X X | X X[ X |99 Physical Active No 0.16 Synthesis X
m Stoyanov et al. [120] 2 Sparse X X | X X | X || 84 Physical Passive No 0.06 Synthesis X
= A Sparse X X [ X X|X || 84 Physical Passive No 40 Picking X
m, Roa and Sudrez [108] =2 None X X [ X X | X -a - - - 182 Synthesis X
lm Lippiello et al. [79] 2-5 None X | X | X X | X -4 Simulation N/A N/A <1 Synthesis X
< Hang et al. [50] 3 None X X | X X | X 90 Simulation N/A N/A 21 Synthesis X
° Lippiello et al. [80] =3 None x? X X -a Physical None No 1.5 Object Modelling
& Baumgartl et al. [17] 2 Sparse || X X [X|X|X 79 Physical None No 0.03 Synthesis X
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- .m Liu et al. [81] 3 None X X [ X | X 90 Physical None No 4 Synthesis X | X ++
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= Song et al. [118] 4 None X X X | X X 88 Physical None No - - 4+
m 8 Choi et al. [29] 4 None X X | X[ XX 87 Physical Passive No - - ++
W 3 | Schmidtetal. [116] 5 None X X | X 55 Simulation - - - - +++
o0 W. Pinto et al. [104] 2 None X X [ X | X 76 Physical None No - - T+
m 3 Dense || X X [ XX 66 Physical None No - - .
m O [ Morrison et al. [92] 2 None XPbb X [ X[X][X[X |92 Physical Passive* No 0.02 Synthesis X ++
— Dense X X [X[|X]|X]|X |81 Physical Passive* No - - X ++
Levine et al. [75] 2 None X X | X|X|X[X 80 Physical Passive No - - +++
W Dense || X X | X | X|X|X ||908 | Physical Passive No 28" Grasp Cycle 4+
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5.4.3. Selecting the Best Approach

This subsection selects the best grasp synthesis approach to be applied in RSIR. The best approach is selected
in a manner similar to selecting the best gripper technology. The same requirements and weights are used.
However, four of the requirements are defined slightly differently for synthesis approaches:

¢ Computational cost is reported as runtime in literature, either for only the synthesis process or the
complete grasping cycle.

* Repeatability is reported as grasp success rate in literature. Although there is no consensus on what a
successful grasp is [135], most approaches consider a grasp successful if the robot can lift the item and
hold it for several seconds.

* Dexterity is reflected in approaches allowing to specify a certain grasp type: object area, binary type,
or preshape. Object area refers to selecting a specific part of the object to (not) be grasped. Binary type
allows to specify a precision or a power grasp, where precision grasps use only the fingertips and power
grasps use all of the gripper [41]. An approach does not score on binary type if it requires retraining
between tasks. Preshape allows to define a specific preshape, such as one from a human taxonomy,
and is typically only used for grippers with more than two fingers. Hence preshape is not considered in
this evaluation.

¢ Availability considers the amount of time required to implement the algorithm for RSIR. Simpler al-
gorithms and algorithms that need little training data score higher because they require less time for
implementation.

Since lifetime and cost are not applicable to a synthesis approach, they are not considered. Additionally,
the approach must be able to work with only RGB and depth data from a camera located above the robot arm
during runtime, as this is what is currently available for RSIR (R19, R20). Approaches that require more data
are not considered. Finally, only approaches that report a runtime and success rate on a physical robot are
included, because these metrics are an indication of the approach’s performance (R5, R14, R23).

Table 5.5 shows exactly how the requirements are mapped to a score. Table 5.6 shows the resulting scores.
In the table, the most promising approaches are found to be those by Baumgartl and Henrich and Berscheid
et al.. Recall that the former synthesises grasps based on detected edges, whereas the latter uses reinforce-
ment learning to combine grasping and shifting. The approach by Baumgartl and Henrich is selected to be
implemented, as I am more familiar with analytical approaches than with transfer learning. However, the
other high-scoring approaches are also promising and might be considered in future work.

Table 5.5: Score definitions for the synthesis approaches. Success rates are rounded to the nearest multiple of 10.

Scores
1 2 3 4 5
. . . At least two items
No items with sig- . -
. . . with  significantly
Item variety nificantly different | - - - .
. different proper-
properties are used .
ties are used
» | Clutter None - Sparse - Dense
S | Computational cost | >5 (synthesis) 1-5 (synthesis) 0.5-1 (synthesis) | 0.1-0.5 (synthesis) | <0.1 (synthesis)
E (Runtime [s]) >60 (cycle) 45-60 (cycle) 30-45 (cycle) 15-30 (cycle) <15 (cycle)
’::; Repeatability <60 70 80 90 100
g | (Success rate [%])
~ . Neither object area Object area or bi- Object area and bi-
Dexterity . - -
nor binary type nary type nary type
(Grasp types)
Requires  training,
Requires training, | but training data or .
Availability and no training data | pre-trained model is (?omplex algo- Some.what simple Simple algorithm
X . . rithm algorithm
is available available; or a very
complex algorithm
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Table 5.6: Ranking of the synthesis approaches suited for a parallel-jaw gripper for RSIR. The total score is calculated as the sum of the
products between the weight and the score. Total scores are highlighted to improve clarity.

Analytical approaches Data-driven approaches
=]
.2
A P = =N~ < | =
I G T - I B A (el B I I
R R I = T - B B O I A O B
%0 | g g 8 S| 3 5| © I5) o | =% ‘D
S| F gl | |8 | =s|l5|l5|E|E| <
= N o | S | B o = L2125 < =
S| 2| 72| |8 S| = | Q2| A
wn V7 = o0 E < < — -~ 3]
« | g = | = S | A
3
3
m
Shape 2 5 5 5 5 5 5 5 5 5 5 5
= Size 15|55 |5]|5]|5]|5]|5]|5]5]| 5
E Mass 1|51 |1]51|1]|5]|5|5]|5]5
= Texture 255|551 |5]|1]|5]|5]|5]5
g Deformability 2 1 5 5 1 1 1 1 5 5 5 5
Clutter 2 1 3 3 3 5 1 1 1 5 5 5
Computational cost | 4 | 2 2 3 5 1 1 3 2 4 | 4 5
Repeatability 34|53 |3 |4 |4 |3 |4)| 4|4 4
Dexterity 1 1 3 3 3 1 5 1 1 1 1 1
Availability 5 5 3 4 5 3 2 2 2 1 1 2
Total 80 | 83|86 |95 |62 |61 |58 |73 84|84 | 93
5.4.4. Adjustments

This section explains the synthesis algorithm by Baumgartl and Henrich in more detail and proposes some
improvements. Figure 5.24 illustrates the steps in the algorithm as proposed by Baumgartl and Henrich. A
line represents a gripper jaw, thus two parallel lines represent the position of a parallel-jaw gripper. The
algorithm consists of the following steps:

1. Take an RGB image of the scene. The items are assumed to be located on a flat surface with known
height, although the paper also shows a successful grasp for overlapping objects.

2. Detect the edges in the RGB image using a Hough transformation.
3. Detect the lines in the edges. This is part of the Hough transformation.
4. Create pairs of parallel lines. This is also part of the Hough transformation.

5. Rank the line pairs based on a quality metric. The longer the lines are, the higher the metric is. Lines
that are not long enough for the gripper jaws are filtered out, as well as line pairs that are further apart
than the maximum opening of the gripper jaws.

6. The best line pair is used for computing the gripper position. The angle and location of the line pair
provides the gripper location and rotation, using the known height of the supporting surface. The dis-
tance between the lines provides the gripper opening. While moving the gripper, force feedback is used
to detect (unexpected) collisions.

The algorithm works quite well, with the paper reporting a 79% success rate and 0.03 seconds runtime.
However, there are three limitations in implementing it in RSIR. First and foremost, the flat surface assump-
tion is invalid for some scenarios encountered by RSIR (R26, R28, R29). This assumption is mainly used to
determine the height of the grasping position. Baumgartl and Henrich propose force feedback to handle
uncertainty, and this could be used to detect the supporting surface and obstacles in RSIR. However, this is
unlikely to be a good solution, as lowering the gripper quickly creates impact on the obstacles, thus damag-
ing the items (R27), and lowering the gripper slowly takes up too much time (R14). Since RSIR has access to
a depth camera, the obvious alternative is to use the available depth information to determine the grasping
height. This depth information is included in the algorithm for RSIR.

The second limitation is the validity of the metric. Using the length of the lines as a metric is a poor choice
for some items, as illustrated in Figure 5.25. The longest line pairs clearly do not result in the best grasps.
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Instead, a human would reason that it’s better to grasp the plush by an arm or foot, or by its head. These grasps
are based on the thought that a good grasp encloses the item. For the algorithm, this can be implemented
as a large volume between the paired lines, when depth information is available. Figure 5.25 shows that this
new metric (enclosed depth) results in more reasonable grasps. Enclosed depth is a logical successor to the
metric by Baumgartl and Henrich and is simpler than most metrics commonly used in literature, which often
consider force balancing and thus require item properties such as centre of mass and friction coefficient [109].

1. Take RGB image 2. Detect edges 3. Detect lines

4, Pair lines 5. Rank line pairs 6. Compute gripper position

(x,y,2,6)

Figure 5.24: Steps in the synthesis algorithm by Baumgartl and Henrich.

(b) The three best grasps according to the (c) The three best grasps according to the
metric by Baumgartl and Henrich. metric of enclosed depth.

(a) The RGB image of an example item [78].

Figure 5.25: An example item and the resulting grasps using two different metrics.

The final limitation comes from detecting edges in an RGB image. It was found during initial tests that
the algorithm gets confused by the packaging of items. This is illustrated in Figure 5.26. The example con-
tains several boxes, which are relatively easy to grasp. However, the straight lines on the packaging take the
attention away from the edges of the boxes. Figure 5.26¢ shows there are many detected edges that are not
relevant for grasping, and thus the algorithm is slow. Increasing the threshold for an edge detection improves
runtime, but also ignores important edges, as is visible in Figure 5.26d. One way to solve this is to instead de-
tect edges in the depth image. Figure 5.26e shows that this improves the edge detection. Hence from here on
the algorithm in RSIR uses the depth image to detect edges. The exact implementation of the grasp synthesis
approach is discussed in chapter 7.
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(a) The segmented

RGB image of the scene. (b) The segmented and filtered depth image of the scene.

(e) Edge detections based on the depth image.

Figure 5.26: An example of a carrier with boxes, and the edge detections based on the RGB and depth images.



Ontology and Reasoning

This chapter develops the ontology and reasoning used in RSIR, thus answering the question: "What method
best provides the knowledge and reasoning capabilities RSIR should contain?". The previous chapter provided
some important background information on grasping. This chapter builds on top of that by researching
knowledge for failures, tasks, and items in section 6.1 (the knowledge acquisition phase in Methontology).
The background on grasping will prove especially useful in specifying knowledge on item properties. Af-
terwards, section 6.2 considers Methontology’s integration phase by investigating which existing ontologies
RSIR’s ontology can be based on. The development of RSIR’s ontology and reasoning is then considered in
section 6.3, with the final models being presented in section 6.4.

6.1. Required Knowledge

This section completes the knowledge acquisition phase of Methontology. Recall that the aim of this phase
is to obtain the domain knowledge required to specific the ontology. To this end, subsection 6.1.1 discusses
failures, subsection 6.1.2 discusses tasks, and subsection 6.1.3 discusses knowledge of items. Note that these
three categories are the same categories used for specifying the competency questions.

6.1.1. Failures

This subsection considers the knowledge RSIR must contain about failures. To this end, the failures that can
occur in SIR are investigated. These failures are derived from tests done on SIR and failures in robotics in
general. Figure 6.1 summarizes those failures. The figure features three types of failures: component failures,
derived failures, and critical failures. Component failures occur due to unavailable or inaccurate sensors,
actuators, or (software) modules [55]. An example of an inaccurate component is when there is dust on
a camera’s lens. Derived failures are caused by other failures, such as inaccurate components or FM-GtP
sending an empty input carrier. Finally, critical failures are failures that cause SIR’s pipeline to fail.

41
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Figure 6.1: Causes and failures that can occur in SIR. The "repeated failure blocks" are blocks that are added twice in the diagram for
clarity.

Note that Figure 6.1 is not meant to be a complete list of failures, but rather a basis for RSIR’s ontology and
reasoning. RSIR should also be robust against failures not foreseen at design, as it was concluded previously
that RSIR is not meant to have hard-coded rules for every possible failure scenario. However, providing RSIR
with information as depicted in Figure 6.1 likely improves its reasoning capabilities.
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Segmentation Failures

Segmentation failures come from inaccuracies in sensing and processing. The camera images are noisy due
to the limited camera resolution and items moving in the carrier [35]. The segmentation algorithm also has
limited accuracy and it can merge multiple items together, split one item into multiple segments, or miss an
item [35][93][129]. Figure 6.2 provides an example of this. These failures result in an incorrect estimation of
the item’s shape and position. Missing items is also a problem on the hardware level, as depth information
cannot be measured or is measured incorrectly for specific items, such as items that are transparent, reflec-
tive, light-absorbing, too flat, or too small [35]. In such cases, the robot might incorrectly conclude that the
carrier is empty. However, it is also possible that FM-GtP made an error and sent an empty input carrier [24].

(a) The RGB image of three milk cartons. (b) The corresponding segmentation.

Figure 6.2: An example of a segmentation failure in SIR. The segmentation merges the three items into one, misses some parts of the
items, and labels part of the carrier as item.

Grasping Failures

Grasping failures are mostly caused by the limitations of the gripper and grasp synthesis approach. This was
discussed in more detail in chapter 5. The resulting grasp pose can be inaccurate, or it might be that no grasp
pose is found at all. An inaccurate grasp pose likely results in a failed grasp, which is when the item is not
in the robot’s gripper after the grasp has been attempted. Other causes for failed grasps are inaccuracies in
the RGB camera, depth camera, or actuation of the robot arm [35][93][120]. A related case is when a grasp is
barely stable, an example of which is shown in Figure 6.3. Although the grasping was successful, the resulting
grasp is likely to cause failures later in the pipeline. Hence it might be preferred to put the item back and
grasp it in a way that leads to a more robust grasp.

Figure 6.3: An example of a grasp that could be considered poor for RSIR, adapted from [69]. The cup swings around as the gripper lifts
it. This grasp is not robust and the gripper is likely to drop the item when the arm moves.

Another type of grasping failure is grasping multiple items at once [35][64][75]. This can happen due to in-
accuracies in previous steps in the pipeline, but also because items are stuck to each other due to lids, hooks,
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glue, tape, or stickers [35]. Grasping multiple items at once is undesirable for RSIR, as RSIR currently does
not detect the number of items in the gripper. In this case, the order is completed incorrectly. A final set of
failures that occur during grasping stems from motion control. The motion planner might not find a motion
plan, or might take too long trying to find one. When it does find a plan, it might be inaccurate, for example
when the endpoint is not the desired robot pose, or when it collides with the environment. Such collisions
can not only result in a failed grasp, but can also cause damage to the item [36].

Verification Failures

After grasping, the robot lifts the item to the verification camera. However, the robot might drop the item
because the grasp was not robust enough to withstand the accelerations [129]. Alternatively, the robot can
collide with the environment due to actuator inaccuracies or unmodelled obstacles [129]. When verifying
whether a grasp was successful, the robot works with an inaccurate RGB camera and an imperfect verifica-
tion algorithm. Especially the camera can be a limiting factor, due to the item moving when the image is
taken, the item being deformable, or the item being too large for the camera view [35][128]. RSIR might thus
be unable to detect the item that is in the gripper. When it does detect the item, the inaccuracies can still
cause the algorithm to incorrectly estimate the item’s footprint.

Placing Failures

The final group of failures stems from the placing task. An incorrect size estimation of the item or incorrect
depth information can cause the item to not fit at the computed place pose [35]. It might also be that the
output carrier is full, in which case it is not useful to attempt placing at all. Finally, it can be that the item is
stuck to the gripper and thus does not end up in the output carrier.

In summary, there is a large variety of failures that can occur in RSIR, most of which can only be detected
through other failures. The inaccuracies in RSIR’s hardware and software components are the main cause
behind failures. However, isolating the cause behind a failure might be difficult in practice, because many
causes can be behind one failure.

6.1.2. Tasks

The next aspect RSIR must contain knowledge about is tasks, which is the subject of this subsection. The
knowledge about tasks is required to have RSIR reason about how it can complete a task, which in turn is
useful for generalizing RSIR to other related tasks. An example of such a related task is picking an item from
the input carrier, scanning its barcode, and sorting it by placing it onto one of three moving belts.

This subsection attempts to capture knowledge of tasks by going through three steps: determining the
list of related tasks, researching implementations for said tasks, and converting those implementations into
a list of capabilities. A capability can be defined as: "a generic term referring to an action the robot has been
programmed to perform, a skill the robot provides, or a behavior the robot has available" [96]. A capability
can thus be considered the lowest-level behaviour of a robot, such as moving an arm, or activating a gripper.
Capabilities are often considered in modelling tasks because knowledge of capabilities allows a robot to con-
struct more complex behaviour [19][37]. Hence using capabilities allows the robot to do a vast variety of tasks
without having hard-coded knowledge about said tasks.

Related Tasks

The first step in obtaining knowledge about related tasks is to construct the list of related tasks RSIR should
be expandable to. This is done based on the envisioned future for RSIR, applications in Vanderlande’s market
segments, ideas and experience from Vanderlande employees, own ideas, and robotics applications encoun-
tered in literature. The knowledge RSIR contains should allow it to:

¢ Jtem Variety

1. Handle a large variety of items [125][134].

(a) Switch between grippers [24]. Having access to multiple grippers allows RSIR to select the
gripper that is most suited for grasping the presented item.

(b) Do preshaping. A preshape refers to the pose of a gripper before grasping [135], some exam-
ples of which are presented in Figure 6.4. Especially for grippers with three or more fingers, it
is common to select a preshape, move to the item, and then close the fingers. This is because
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such approaches generally take less computing time and are less susceptible to modelling er-
rors than approaches that compute the desired fingertip locations [135]. RSIR should allow
for preshaping if it is to be equipped with a gripper with three of more fingers in the future.

(c) Shift items. Shifting refers to moving an item in the carrier without grasping it, for example
by pushing against its side. This behaviour allows the robot to reposition the items such that
previously ungraspable items become graspable [22][61].

(d) Limit the grasp force. This prevents items from getting damaged [24]. Since the maximum
allowed force can depend on aspects such as the type of gripper, grasp pose, and fragility of
the item, this capability relates to the knowledge base.

A4+

Figure 6.4: Preshapes for a three-fingered hand [90]. From left to right: spherical, cylindrical, precision-tip, and hook grasps.

2. Handle different types of clutter. Besides the three types of clutter using for grasping, there are
two types of clutter that depends on the location of the item as illustrated in Figure 6.5. Both the
grasping and the placing approach should handle the following types of clutter [24][134]:

(a) Item in isolation: only one item in the carrier.

(b) Item in sparse clutter: multiple items in the carrier, but not touching each other.
(c) Item in dense clutter: multiple items in the carrier, touching and/or overlapping.
(d) Densely packed item: multiple items in the carrier, arranged in an organized way.

(e) Item in narrow spaces: (multiple) item(s) arranged near non-moveable surfaces, such as
items close to the carrier’s edge, or boxes located in a truck.

(a) Densely packed items. (b) Items in narrow spaces.

Figure 6.5: Additional types of clutter encountered by RSIR.

3. Handle different item flows. RSIR may be applied in warehousing applications that have moving
items. Vanderlande defines the following item flows, visualized in Figure 6.6 [24][134]:

(a) Singulated flow: single items not lying against or next to each other, either in fixed windows
or with fixed aps between them.
(b) Single flow: items not lying against or next to each other, with varying distance between them.

(c) 2D flow: items possibly lying against to or next to each other, with varying distance between
them, but not stacked on top of each other.

(d) Bulk flow: items possibly on top of each other, lying against or next to each other, in any
configuration.

4. Handle different supporting surfaces. This goes for both grasping and placing actions. The fol-
lowing supporting surfaces can be discerned:
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Figure 6.6: Types of item flows defined by Vanderlande [134].

1
Singulated flow .
|
|

(a) Flat surface, such as the bottom of a carrier.

(b) Uneven surface, such as an item located on top of several other items, or on a tilted belt. For
grasping, this can be a problem because some grasp synthesis approaches (primarily those
that do not use depth information) simply lower the gripper to a predefined height [135]. This
does not work if the height of the supporting surface is unknown or varying.

(c) Vertical stack [134], which is when the robot’s approach direction is perpendicular to the
direction of gravity. The difficulty in this type of stack is that the robot cannot freely push
against the item, or there is a risk of the robot pushing the item off the stack.

(d) Point support
i. Taking from an item from a robot or human
ii. Handing an item to a robot or human
(e) No support
i. Dropping an item
ii. Throwing an item
iii. Catchingan item

¢ Grasping
1. Synthesize a grasp for each type of gripper RSIR has.

2. Grasp selectively. This is for future scenarios where multiple item types are in one carrier com-
partment [24]:
(a) Recognize a specific item in the carrier.
(b) Synthesize a grasp for one specific item in the carrier.
(c) Search for a non-visible item. It may be that the target item is occluded by other items. In
that case, the robot must search for the target item.

(d) Grasp an item in a specific location. For example, when items are stacked on top of each
other, it is preferred to grasp the item on top, because grasping an item near the bottom might
cause the stack to topple over.

¢ Placing
1. Place the item stably [24]. Stable placement of items prevents them from getting damaged, as well

as allowing other items to be stacked on top of them.

2. Place an item such that it can be picked up again. This might be a future scenario where the
placing algorithm is more complex, and has a preferred orientation to place the item in. In that
case, it might be required that the robot grasps the item, places it differently, then grasps it again.

3. Estimate the item’s pose. This is required for placing the item in a specific orientation, such as
placing plants such that they are standing on their plant pots.
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¢ Robot Movement

1. Avoid static obstacles [24], such as the edges of the carrier or other items.

2. Avoid dynamic obstacles [24], such as obstacles located on a conveyor belt that move with an
unpredictable velocity.

3. Scan barcodes on items.

4. Move with different velocities. This may be useful since some failures in RSIR are due to the grip-
per dropping the item during movement [36]. In such a scenario, it might be beneficial to try the
same grasp but move the robot arm with a lower velocity.

¢ Human Interaction

1. Allow the operator to determine whether an action was successful. This is useful when RSIR can-
not (confidently) determine whether an action was successful, or when it incorrectly concludes
an action was (not) successful.

2. Allow the operator to edit the knowledge base. Again, this is useful for correcting wrong conclu-
sions, or providing the robot with more knowledge about the item.

3. Inform the operator of failures that occur [24]. This way the operator can take over when the
robot cannot solve the failure. Non-critical failures (such as failing to grasp an item with a specific
gripper) can be useful for better understanding the limitations of each component.

¢ Reasoning

1. Reason whether RSIR can handle an item before the input carrier arrives [24][125]. FM-GtP will
not delegate carriers to RSIR if it knows that the carrier contains items that RSIR cannot handle.
Hence it is useful for RSIR to answer queries from FM-GtP whether it can handle a specific item.
For example, RSIR can reply that the item cannot be handled if the item properties are outside the
gripper specifications, or when a previous attempt with said item failed.

2. Implement learning to predict whether an item can be handled [125]. Future versions of SIR may
include machine learning algorithms to determine when to use which gripper.

3. Estimate item properties. Before an item is encountered by RSIR, nothing about its properties is
known. However, the robot could make better decisions about what components to use (gripper
type, synthesis approach) if it knew more about the item. Hence it may be favourable to esti-
mate the properties of items that are common. The properties should then also be saved in the
knowledge base.

¢ Failure Detection. These tasks are derived from section 6.1.1 and help in detecting failures:

1. Detect whether there is an item in the gripper. This can verify that a grasp was successful.

2. Detect whether a specific item is in the gripper. This can verify that the correct item was grasped
from the carrier, for future scenarios when there are multiple item types in one compartment.

3. Detect how many items are in the gripper. If this is possible, grasping multiple items is no longer
a failure, but an advantage that allows the system to complete orders faster.

4. Detect the stability of a grasp. This could prevent the robot from moving too quickly when it does
not have a firm hold on the item.

Implementations of Tasks

A literature study is done to find implementations for each task in the list of related tasks. Each implementa-
tion is then broken down into capabilities. The implementations and break-downs are included in Appendix
B. To summarize, to be expandable to every related task in the list, RSIR must be able to implement all of the
capabilities in Table 6.1. Note that most of these capabilities are processing capabilities.
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Table 6.1: The capabilities required for the implementations of related tasks that RSIR must be expandable to.

Actuating capabilities

Processing capabilities

Processing capabilities (cont’d)

Activate gripper

Add item to model

Determine surface roughness from mea-
surements

Activate pneumatic link

Compare sensory data to item model

Determine target item position

Apply known vertical force

Compute angular displacement from
RGB images

Estimate item shape

Apply vertical force

Compute deactivation moment

Estimate surface height

Deactivate gripper

Compute expected motion

Find free spot in gripper rack

Deactive pneumatic link

Compute grasp location

Find gripper in gripper rack

Knock on item

Compute grasping force

Find suitable placement area

Move gripper

Compute motion command

Isolate target item from segmentation

Move gripper horizontally

Compute placement pose

Map grasp from known model to sensory
data

Move robot arm

Create environment model

Predict item position

Orientate item for placing

Create item model

Run placement simulation

Push item

Create motion plan

Segment carrier into rectangles

Rotate item in-hand

Detect barcode

Segment depth image

Slide over item

Detect denting from position measure-
ments

Segment image

Tap item Detect empty areas Segment RGB and depth image

Touch item Detect grasp on human Segment RGB image

Communicating capabilities Detect item Select rectangle segment for placement
Ask operator for confirmation Detect item footprint Set maximum grasp force

Knowing capabilities Detect item in depth image Set robot arm velocity

Know conveyor velocity Detect item in RGB and depth image Synthesize grasp

Load corrrect item property

Detect item in RGB image

Synthesize grasp on specific area of item

Load drop location

Detect material in RGB image

Synthesize grasp via simulation

Load environment model

Detect robot arm in image

Synthesize place pose

Load item model

Detect semantic item part

Track belt

Load surface height

Detect slip from gripper position mea-
surements

Track item on belt

Recall positions of previous target
items

Detect slip from tactile measurements

Update environment model

Select gripper with position sen-
sors

Detect supporting surface via force

Verify grasp validity

Select gripper with preshape

Detect target item

Verify item by comparing arm loads

Select gripper with tactile sensors

Detect toppling in force measurements

Verify item by comparing carrier masses

Select motion primitive

Detect toppling in position measure-
ments

Verify item by comparing images

Select vacuum gripper

Detect ungraspable item

Verify item through gripper position

Sensing capabilities

Determine conveyor velocity

Verify item through pressure

Record sound

Determine item height

Verify items in gripper by comparing seg-
mentations

Sense acceleration

Determine item material from tactile
measurements

Verify specific item by comparing proper-
ties

Sense arm load

Determine item position

Sense deformation

Determine item shape

Sense depth

Determine item shape from depth image

Sense force

Determine item shape from RGB image

Sense grasping force

Determine item shape from tactile mea-
surements

Sense gripper position

Determine item’s primitive shape

Sense mass of carrier

Determine item’s principal axis

Sense pressure in gripper

Determine local item shape from tactile
measurements

Sense robot arm torque

Determine maximum grasp force

Sense strain

Determine shift direction

Determine stiffness from acceleration

Take depth image
measurements
Take RGB image Determine stiffness from tactile measure-
ments
6.1.3. Items

This subsection considers the knowledge RSIR must contain about items. The specifications of SIR from
chapter 2 provide a first set of item properties RSIR should contain: dimensions, mass, orientation, point
cloud, footprint, and segmentation mask. Because the item cannot be damaged, its fragility is also impor-
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tant. Furthermore, the vacuum gripper was found to have limitations based on item friction, porosity, mass,
mass eccentricity, deformability, and the presence of removable features. On top of these, item shape and
texture can result in a small contact area between the suction cup and item, thus resulting in a failed grasp.
Tests were done at Vanderlande based on the GS1 category of an item.

The gripper technologies in chapter 5 were found to have limitations based on the item’s dimensions,
level of clutter, grip strength (that is, mass and friction coefficient), and fragility. The synthesis approaches
were found to be limited by an item’s primitive shape, size, mass, texture, deformability, and level of clutter.
The properties used by the synthesis approaches are shape, primitive shape, mass, principal axis, bounding
box, centroid, centre of mass, and presence of parallel lines or surfaces.

The research into failures in section 6.1.1 shows that an item’s transparency, reflectivity, light absorbency,
height, and size are limiting factors for the depth camera. Inaccurate segmentation can be due to a visual
similarity between the item and carrier, for example when an item’s colour or visual texture matches that of
the carrier. An item’s interlockability can cause the robot to grasp multiple items at once, whereas an item’s
stickiness might cause it to stick to the gripper.

Finally, although not currently used, two more properties might be useful in the future: an item’s material
and EAN code. The former can be used to estimate other properties, such as stiffness. The latter could be used
tolook up an item’s category. For example, if an item’s EAN code is known, the robot could look up more infor-
mation using EAN-based search engines. There are several such database available [5][6][7][8][33]1(38][471(72],
some of which can be accessed via APIs [6][7][8][38][72]. For example, the EAN code 8713439227062 belongs
to the computer mouse in Figure 6.7a. When searching for this EAN code, the information in Figure 6.7 is
found. Although this search capability is not further researched in this thesis because RSIR has no access to
an item’s EAN code, it could be the subject of future work.

Product name for EAN 8713439227062:

Trust Computer Products Trust Zelo Silent Click Draadloze Muis Zwart

Issuing country: NL

SH 435 H 27062 H

i

2

(a) A computer mouse that is (b) The results obtained using EAN-search [7]. In English: "Trust Computer Products Trust Zelo Silent
used for testing SIR. Click Wireless Mouse Black". The text is linked to an Amazon listing for the product.
GS1 Company Prefix 8713439
Last Change Date Feb. 25, 2020
Party Data Language nl

GS1 Company Prefix Licensee

Party Name Trust International B.V.
Role BUYER
Role CARRIER

GS1 Key Licensee

Party Name Trust International B.V.
Role BUYER
Role CARRIER

(c) Part of the results obtained using GS1global [47].

Figure 6.7: An example of a product and the information gained when searching for it in EAN code databases.

This concludes the knowledge acquisition phase of Methontology. The next section handles the integra-
tion phase by looking into existing ontologies that contain (some of) the knowledge RSIR should contain.
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6.2. Existing Ontologies

This section researches existing ontologies and the possibilities for integrating RSIR with one or multiple of
them. Recall that the first step in Methontology’s integration phase is to select a meta-ontology. A meta-
ontology is the most general type of ontology, describing general aspects such as space, time, and events [59].
However, meta-ontologies are of little use to robotics because they are too high-level [130]. For example,
whether a robot’s device is a Physical Entity or an Abstract Entity is of little importance in practice. Hence
this thesis instead selects which mid-level ontology to base RSIR on. Mid-level ontologies are of more use
to robotics because they describe domains, tasks, and activities [59]. Additionally, a decision must be made
on which low-level ontologies RSIR is integrated with. These are ontologies specific to an application [59].
The first and second subsections of this section consider mid-level and low-level ontologies, respectively.
Afterwards, RSIR’s ontology is developed in section 6.3.

6.2.1. Mid-level Ontology

There are two mid-level ontologies relevant for RSIR: CORA and KnowRob. CORA (Core Ontology for Robotics
and Automation) is the 2015 IEEE standard ontology that "allows for the representation of, reasoning about,
and communication of knowledge in the robotics and automation domain" [59]. The ontology covers robot
systems, robot parts, and robot poses, and is integrated with several other ontologies (SUMO, CORAX, RPARTS,
POS). KnowRob, on the other hand, is inspired by Cyc [130]. Cyc is a common-sense ontology in develop-
ment since 1984, originally designed by a team of professional ontologists and logicians [87][130]. KnowRob
was published in 2009, before IEEE’s ontology standards were created [59][96], and thus KnowRob is not inte-
grated with those standards. A second version of KnowRob is in development and was first published about
in 2018 [21], but its ontology is not yet available.

Whether RSIR should be based on CORA or KnowRob comes down to three aspects: level of standardiza-
tion, ease of integration, and integrated ontologies. The level of standardization of CORA is obviously high.
KnowRob, in contrast, leans more towards application than standardization, and with a second version of
KnowRob coming up it is likely that the ontology changes. Regarding ease of integration, KnowRob is al-
ready implemented, but lacks documentation and following the installation instructions results in several
errors. CORA, on the other hand, is not implemented, but has excellent documentation. The final aspect
is the ontologies that are integrated with CORA or KnowRob. If an ontology based on CORA is relevant for
RSIR, it could be preferred to select CORA over KnowRob, or vice versa. Hence the next subsection discusses
lower-level ontologies that could be relevant for RSIR.

6.2.2. Low-level Ontologies

This subsection considers low-level ontologies that are relevant for RSIR. They can be divided into two cat-
egories: those containing task knowledge and those containing item knowledge. Out of the ontologies pre-
sented in this subsection, several are chosen for integration with RSIR.

Task Knowledge

One of the main aspects of RSIR’s ontology is the knowledge about tasks. There is a handful of ontologies that
attempt to capture this knowledge. K-CoPMaN (Knowledge-enabled Cognitive Perception for Manipulation)
connects sensory information to abstract symbolic knowledge. This allows the robot to answer new types of
queries, such as inferring which items are missing on a partially set table. Based on this inference, the robot
can determine what task it should perform next. For example, if the milk is missing, the robot reasons it
must drive to the fridge to get it. The focus of K-CoPMaN seems to be on matching sensory information with
symbolic knowledge, rather than reasoning about tasks.

RoboEarth is an extension of KnowRob that, as the authors describe it, is "a Wikipedia-like platform that
robots can use for sharing knowledge about actions, objects, and environments" [131]. Action recipes are
computed in the cloud and must be locally executed by an engine based on CRAM [4]. However, CRAM at-
tempts to achieve robustness by hard-coding rules [40], which was concluded to be insufficient for RSIR. Fur-
thermore, it might be undesirable for Vanderlande to have RSIR’s reasoning dependent on the cloud: RSIR’s
powerful computer might be faster at computing action recipes than the cloud, and can keep working even if
the cloud is not available. Finally, it is unclear how much of RoboEarth is applicable to RSIR, as the examples
of RoboEarth only show robots moving around a hospital room and serving drinks.

One of IEEE’s study groups is currently developing the Task Ontology: an ontology to describe robot task
structures and reasoning [96]. The ontology is integrated with CORA, and considers concepts such as tasks,
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capabilities, and constraints. Although it is unfinished, it seems to be the most complete ontology regarding
tasks so far. Figure 6.8 shows a fragment of the current version of the ontology.

SUMO:Process
SUMO:Proposition SUMO:Object
TO:Robot Behavior A
CORA:Robotic
4 dependsOn ?
realzes \ Environment
behaves
TO:Task solves
abstractPart
hi
skt CORA-Robot

dependsOn
abstractPart

TO:Device

TO:Subtask

TO:Constraint evaluates
evaluates
TO:Performance TO:Evaluation TO:Capability

pich abstractPart

TO:Platform hasCapabilty

Figure 6.8: A fragment of the Task Ontology [96]. The solid arrows represent sub-class relations.

Closely related to the Task Ontology is the ontology developed in the thesis of Vredeveldt [139]. This on-
tology aims to assess the capabilities of autonomous underwater vehicles (AUVs) and is henceforth referred
to as the AUV Ontology. It is presented in Figure 6.9. The ontology is integrated with the Task Ontology and
introduces several new concepts, such as Components requiring Inputs and providing Outputs, and Capabil-
ities being split into three categories based on their function (Planning, Execution, and Evaluation). The AUV
Ontology provides a good example of how to extend the Task Ontology.
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Figure 6.9: The AUV Ontology [96].

A final ontology considering tasks is the one by Barck-Holst et al., henceforth referred to as the Grasping
Affordance Ontology. This ontology focusses on grasping actions, different item shapes and sizes, and the
success or failure of an attempted grasp. Figure 6.10 shows this ontology. One unique aspect of the Grasping
Affordance Ontology is that it considers item properties (Shape and Size), which is relevant for RSIR. The au-
thors do not mention having integrated their ontology with other ontologies.
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(b) The class structure of the ontology as used during the experiment by Barck-Holst et al..

Figure 6.10: The Grasping Affordance Ontology [16].

Item Knowledge

There are several other ontologies that might provide useful concepts or structures, despite being in a (slightly)
different domain than RSIR. For example, the OMICS (Open Mind Indoor Common Sense) ontology contains
knowledge on concepts such as human desires and items and their locations [48]. It is used by KnowRob to
determine where to look for items [130]. For example, OMICS allows the robot to reason that fridges are com-
monly found in the kitchen. RSIR needs no knowledge of fridges, but the reasoning algorithm behind OMICS
could still be used, for example if rectangular items are more often in the corner of a carrier than spherical
items. When RSIR detects an item in a corner, using OMICS it could infer knowledge about the item’s shape.

The Good Relations ontology describes stores, products and services found on the internet. For example,
it contains information about store opening hours, product prices, and product numbers [54]. According to
Good Relations, their ontology is used by Google, Yahoo, Best Buy, and others [2]. Figure 6.11 shows a part of
the ontology that is relevant for RSIR. Because many shops use Good Relations, RSIR could use the ontology
to look up missing information. For example, if RSIR has the EAN code of a product, RSIR could scan the
internet for webshops that sell that product and specify more information, such as weight and size.

Finally, there are two ontologies based on Wikipedia. Because Wikipedia contains a large amount of
knowledge, using an ontology based on it could provide RSIR with general information, such as the fact that
apples are a type of food. When presented with an apple, the robot could decide to handle it carefully because
food is commonly fragile. The two ontologies are DBpedia and YAGO. DBpedia extracts structured informa-
tion from Wikipedia [87][137]. YAGO does this too, but also considers some other sources [137]. Unfortu-
nately for RSIR, the knowledge they contain is on subjects such as sports, people, animal species, countries,
and historical events [14][15][44][122]. This is not the type of knowledge RSIR can work with and thus these
ontologies are not considered.

6.2.3. Selection of Ontologies

Based on the research into existing ontologies, it can be concluded that CORA is the most promising mid-
level ontology to base RSIR on. This is because it is an IEEE standard, has excellent documentation, and is
integrated with the most promising task ontology: the IEEE Task Ontology (and the closely-related AUV On-
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gr:ProductOrService

gr:name rdfs:Literal
gr:description rdfs:Literal
gr:datatypeProductOrServiceProperty any
gr:hasEAN_UCC-13 xsd:string
gr:hasGTIN-14 xsd:string
gr::hasGTIN-8 xsd:string
gr:hasStockKeepingUnit xsd:string
gr:hasMPN xsd:string
gr:condition rdfs:Literal
gr:category rdfs:Literal

r:color rdfs:Literal

gr:quantitativeProductOrServiceProperty

v gr:weight

gr:QuantitativeValue l< gr:width

gr:hasUnitOfMeasurement xsd:string

gr:hasMinValue rdfs:Literal < gr:height

gr:hasMaxValue rdfs:Literal
gr:hasValue rdfs:Literal

< gr:depth

Figure 6.11: Part of the Good Relations ontology regarding products, adapted from [54].

tology). These advantages outweigh the disadvantage of CORA not having an off-the-shelf implementation
like KnowRob does. Furthermore, the Grasping Affordance Ontology and Good Relations ontology provide
good examples of how to include item properties. Because they are not integrated with CORA, they will not
be integrated with RSIR. However, the two ontologies are used as an inspiration for RSIR.

6.3. Conceptualization

This section considers the conceptualization phase of Methontology: the general structure of RSIR’s ontology
and reasoning is iteratively developed based on the acquired background knowledge and existing ontologies.
Subsection subsection 6.3.1 explains the main idea behind the ontology and reasoning. Afterwards, several
iterations of the ontology and reasoning are considered. Subsection 6.3.2 discusses two iterations of the al-
gorithm for combining capabilities to achieve a task. Similarly, subsection 6.3.4 discusses two iterations of
the ontology for reasoning about failures. The next section in this chapter presents the final version of the
ontology.

6.3.1. Main Idea behind the Ontology

This section explains the main idea behind RSIR’s ontology. The ontology starts with a Robot. A Robot is
equipped with one or multiple Devices, where each Device provides one or multiple Capabilities. Each Capa-
bility is defined by its prerequisites (Inputs) and its outcomes (Outputs), as well as its Constraints. The Robot
must perform Capabilities one after another to complete a Task. An ordered list of Capabilities the Robot
executes is called an Action Plan. Additionally, RSIR knows the concept of Target Item to keep track of the
knowledge of the item.

Figure 6.12 illustrates this main idea. In this simplified example, the Task is to obtain a grasp pose. The
Robot has four Devices it can choose from: two cameras and two algorithms. In this case, each Device pro-
vides one Capability. Given this knowledge, RSIR should be able to reason that the correct way to combine
these Capabilities is as shown in Figure 6.13a. Putting the Capabilities in a chronological order results in the
Action Plans shown in Figure 6.13b. Note that there are three Action Plans because it makes no difference
when Sense Input Carrier Depth is executed, as long as it is executed before Synthesize Grasp. RSIR should
choose one of these Action Plans to execute.
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Robot Devices Capabilities
Input RGB Sense Input RGB Image
. I
Camera Carrier RGB
Input Depth Sense Input Depth Image
F——>
@ Camera Carrier Depth
Segmentation RGB Image Segment Segmentation
. —P . ——>
Algorithm Input Carrier
RSIR
Depth Image
Grasp Synthesis - > Synthesize Grasp Pose
Algorithm Segmentation Grasp
—P

Figure 6.12: An example to illustrate the concepts of Robot, Device, and Capability. In this example, each Device provides one
Capability. Robot icon adapted from [45]

Sense Input RGBImage Segment Segmentation
Carrier RGB v Input Carrier
Synthesize Grasp Pose
Depth Image Gras
Senselnput | W 2
Carrier Depth

(a) The combination of Capabilities that leads to successful completion of the Task.

Sense Input Segment Sense Input Synthesize
Carrier RGB Input Carrier Carrier Depth Grasp

Sens.e Input Sen.se Input ) SegmenF Synthesize
Carrier RGB Carrier Depth Input Carrier Grasp

Sense Input Sense Input Segment Synthesize
—] —>
Carrier Depth Carrier RGB Input Carrier Grasp

(b) The three Action Plans that complete the Task.

Figure 6.13: The correct combination of capabilities for the example in Figure 6.12 when the Task is to obtain a grasp pose.

It follows that the seven main concepts behind RSIR’s ontology are: Robot, Device, Task, Constraint, Ac-
tion Plan, Capability, and Target Item. The first four concepts are part of CORA and the Task Ontology. Capa-
bility is inspired by the UAV Ontology. Including the concept of Capability allows one Device to provide mul-
tiple Capabilities. For example, the motion execution Device provides all Capabilities that include motion,
such as moving to a grasp pose and moving to a place pose. If the motion execution Device is unavailable,
the Robot immediately knows that all Capabilities provided by that Device are now unavailable. Because a
Capability is defined by its Inputs, Outputs, and Constraints, the capabilities from section 6.1.2 can easily be
included in the ontology.

The concepts of Target Item and Action Plan are unique to RSIR. The concept of Target Item contains all
knowledge of the item, similar to the Grasping Affordance Ontology and the Good Relations ontology. The
concept of Action Plan allows RSIR to combine and order Capabilities in a way that completes a Task. Addi-
tionally, Action Plans can be saved so they can be re-used later, which saves computation time.

The three aspects of RSIR’s ontology that were iterated upon are the algorithm for creating Action Plans,
the representation of item properties, and the reasoning about failures. The next three subsections discuss
these aspects, respectively.
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6.3.2. Reasoning about Action Plans
This subsection discusses the algorithm for creating an Action Plan out of a set of Capabilities. Two iterations
of this algorithm are discussed, using the example in Figure 6.14a. The Task in the example is to obtain a grasp
pose. However, from the figure it becomes clear that the Robot has two options to do so: by using a vacuum
gripper and a vacuum synthesis approach, or by using a two-finger gripper and a parallel line synthesis ap-
proach. Let’s assume the target item is a sponge. Based on this knowledge, RSIR can determine a confidence
score for each Capability. The confidence score can be considered the probability of the Capability succeed-
ing. For example, the Select Vacuum Gripper Capability has a score of 0.1 because a sponge is porous, and a
vacuum gripper is nearly always unable to handle porous items. One the other hand, the vacuum synthesis
algorithm has a high confidence score because the sponge’s shape makes it easy to detect flat surfaces. More
on calculating confidence scores is discussed in later in this section.

Figure 6.14b shows the two Action Plans that RSIR can find, along with their confidence scores. The con-
fidence score of an Action Plan is the product of the confidence scores of its Capabilities. It is clear that
selecting Action Plan B, which uses the two-finger gripper, is the preferred option for this example.

Vacuum Gripper

Vacuum Gripper Properties
Sense Input RGB Image Select Vacuum Properties Synthesize Grasp Pose
. —————» .
Carrier RGB Gripper > Depth Image Vacuum Grasp
—>
0.9 0.1 0.9

Two-Finger Gripper
Two-Finger Gripper

Properties :
Sense Input Depth Image = Se‘s“ Properties PSVnTrTSL‘_Ze Grasp Pase
: > . >
Carrier Depth "20_ inger Depth Image ar(a_i ethine
0.8 MPRET 9 %P o6
(a) The Capabilities the Robot has access to, including their confidence scores.
Sense Input Select Vacuum Synthesize Action Plan
A) o€ P > : > Y ;
Carrier Depth Gripper Vacuum Grasp Confidence: 0.072
0.8 0.1 0.9
Select Synthesize .
Sense Input L s Action Plan
B) Carrier Depth Tu(\;o.—Flnger Pargllel Line Confidence: 0.432
ripper ras
0.8 PPET 09 P o6

(b) Two Action Plans that complete the Task, and the confidence score per Action Plan.

Figure 6.14: A.

For both iterations of the planning algorithm, the algorithm starts at the "end" of the Action Plan. That
is, the algorithm first looks for Capabilities that provide a grasp pose, since this is what defines the task. If
this Capability requires any Inputs, the algorithm looks for other Capabilities that provide those Inputs. This
process continues until no more Inputs are required.

Iteration 1: Greedy Plans
The first iteration of the algorithm could be considered greedy. When presented with multiple Capabilities
that provide the same Output, the algorithm selects the Capability with the highest confidence score. Fig-
ure 6.15 illustrates the reasoning steps for the example. Because the vacuum synthesis has a higher confi-
dence score than the parallel line synthesis, the algorithm selects the vacuum synthesis. Based on this, it then
selects the vacuum gripper. Hence this approach results in the suboptimal Action Plan A. This is because the
algorithm does not take into account the low confidence of the vacuum gripper when selecting the vacuum
synthesis approach.

From this simple example, it can be concluded that the greedy algorithm does not result in the optimal
action plan. In the example, RSIR selects an action plan that is six times less likely to succeed than the optimal
action plan. Hence this algorithm must be improved.
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Task requires Grasp Pose.
Grasp Pose is provided by:

. Synthesize
Synthesize v .
Parallel Line
Vacuum Grasp
Grasp
0.9 0.6

Synthesize Vacuum Grasp is added to the Action Plan.
Synthesize Vacuum Grasp requires Vacuum Gripper Properties.
Vacuum Gripper Properties is provided by:

Select Vacuum
Gripper
0.1

Select Vacuum Gripper is added to the Action Plan.
Synthesize Vacuum Grasp requires Depth Image.
Depth Image is provided by:

Sense Input
Carrier Depth

0.9

Sense Input Carrier Depth is added to the Action Plan.

All requirements have been met.
The resulting Action Plan is:

Sen.se Input Select.\.f’acuum N Synthesize
Carrier Depth Gripper Vacuum Grasp
0.8 0.1 0.9

Figure 6.15: Steps of the greedy algorithm for creating action plans.

Iteration 2: Complete Plans

The second iteration of the algorithm for creating action plans computes all possible action plans. This is
illustrated in Figure 6.16. The improvement over the greedy algorithm is that this complete algorithm always
finds the optimal action plan. An additional advantage is that having access to all possible action plans cre-
ates the possibility for exploration. It will become clear in chapter 9 that executing a suboptimal action plan
is sometimes favourable because it provides the robot more information about the item.

The disadvantage of the complete algorithm is that it is more computationally expensive than the greedy
algorithm (R14). This is especially true when the robot has many redundant Capabilities. There are two rea-
sons why this increased computation time is not critical. The primary reason is that action plans rarely need
to be computed. As an example, consider a robot that does the same pick-and-place task one hundred times.
If the components of the robot are not changed during this time, the action plans need only be computed
once: before the first pick-and-place cycle. For every pick-and-place cycle afterwards, only the confidence
scores need to be updated, which is far less computationally expensive than computing the action plans. The
second reason is that the current version of RSIR has relatively few redundant components, thus the compu-
tation time for RSIR is likely to be reasonable.

The complete algorithm for computing action plans is included in the final version of RSIR.
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Task requires Grasp Pose.
Grasp Pose is provided by:
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Vacuum Grasp
Grasp
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There is a choice. Currently considering Action Plan A.
Synthesize Vacuum Grasp is added to Action Plan A.
Synthesize Vacuum Grasp requires Vacuum Gripper Properties.
Wacuum Gripper Properties is provided by:

Select Vacuum
Gripper
0.1

Select Vacuum Gripper is added to Action Plan A.
Synthesize Vacuum Grasp requires Depth Image.
Depth Image is provided by:

Sense Input
Carrier Depth

0.8

Sense Input Carrier Depth is added to Action Plan A.
All requirements have been met for Action Plan A.

Currently considering Action Plan B.
Synthesize Parallel Line Grasp is added to Action Plan B.
Synthesize Parallel Line Grasp requires Two-Finger Gripper Properties.
Two-Finger Gripper Properties is provided by:

Select
Two-Finger

Gri
ripper o o

Select Two-Finger Gripper is added to Action Plan B.
Synthesize Parallel Line Grasp requires Depth Image.
Depth Image is provided by:

Sense Input
Carrier Depth

0.8

Sense Input Carrier Depth is added to Action Plan B.
All requirements have been met for Action Plan B.

The resulting Action Plans are:

A:I Sen.se Input | ) Select_\facuum |, Synthesize
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e (e Select Synthesize
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Figure 6.16: Steps of the complete algorithm for creating action plans.

6.3.3. Reasoning about Item Properties

The second aspect of RSIR that underwent iterations is the representation of item properties. To illustrate
these iterations, consider an item of unknown mass and a robot with access to three grippers. Each gripper
can handle a mass as shown in Figure 6.17. Let’s assume that gripper 2 has a confidence score of 0.8 and
the other grippers have a confidence score of 0.6. Let’s furthermore assume that RSIR attempts a grasp with
gripper 2 but fails. The conclusions RSIR can draw about the item’s mass are the subject of this subsection.
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Gripper 1 Gripper 2 Gripper 3
0 | 2 ) . : g
Iltem mass [kg|

Figure 6.17: An example of three grippers, each capable of handling masses within a range of 2kg.

Iteration 1: Deterministic Properties

The first iteration of RSIR regarding item properties considers item properties as deterministic. Given the
failure of gripper 2, RSIR concludes that the item is either lighter than 2kg or heavier than 4kg. Based on this
conclusion, gripper 1 and gripper 3 are equally likely to succeed during the next attempt.

This type of reasoning is too simple for two reasons. The first reason is that it does not consider the prob-
abilistic nature of the capabilities. Since gripper 2 has a confidence score of 0.8, there is a 20% chance that
gripper 2 fails even if the item has a mass between 2 and 4kg. If this is indeed the case, RSIR incorrectly con-
cludes that the item’s mass is not within this range and henceforth selects the wrong grippers. The second
reason is because this reasoning cannot include knowledge about the distribution of masses in the system.
For example, it might be that there are more light items than heavy items in the system. Then it would be
more reasonable to select gripper 1 over gripper 3. However, RSIR would still consider gripper 1 and gripper
3 equally good, because it does not consider this knowledge of mass distributions.

Iteration 2: Probabilistic Properties

The second iteration regarding item properties models properties as discrete probability distributions. Fig-
ure 6.18 shows this distribution before and after gripper 2 has failed. The latter distribution is computed
using Bayes’ rule. Note that the probability of the mass being between 3 and 4kg is non-zero. When using
information about the mass distribution in the system, the item mass looks as shown in Figure 6.19. From
the distribution after gripper 2 has failed it can be concluded that gripper 1 is more likely to succeed than
gripper 3, as would be expected.

ltem mass (no prior knowledge on mass) Item mass after Gripper 2 has failed (no prior knowledge on mass)
: : - - T T T T T T

01

Probability
Probability

Item mass [kg] Item mass [kg]

(a) The mass distribution before attempting gripper 2. (b) The mass distribution after gripper 2 has failed.

Figure 6.18: Item mass modelled as a discrete probability distribution, using no knowledge of mass distributions in the system.
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(a) The mass distribution before attempting gripper 2. (b) The mass distribution after gripper 2 has failed.

Figure 6.19: Item mass modelled as a discrete probability distribution, using knowledge of mass distributions in the system.

This method of modelling item properties is used in the final version of RSIR. One important aspect in
modelling continuous variables using discrete probability distributions is the resolution. In the examples of
Figure 6.18 and 6.19, the resolution is 1kg. However, different resolutions might give different results.

6.3.4. Reasoning about Failures

The final aspect of RSIR that underwent iterations is the reasoning about failures. There are three iterations of
this. To illustrate the iterations, consider the example when RSIR attempts to validate a successful grasp with
the verification camera, but the verification algorithm concludes that there is no item in the gripper. RSIR’s
goal is then to determine the (most likely) cause of the failure and to create a new action plan that prevents
this failure from occurring again. For example, the cause could be that the verification camera is inaccurate,
or that the item cannot be handled by the gripper.

Iteration 1: Deterministic Reasoning

The first iteration of failure reasoning is based on the research into failures from section 6.1.1. When consider-
ing only the example failure, the scheme from section 6.1.1 is simplified into Figure 6.20. Based on tests done
at Vanderlande, conditional probabilities can be computed or derived. For example, it can be derived from
Figure 6.21 that P(Inaccurate verification|No item detected in gripper) = 1.16/16.7 = 0.07. When all condi-
tional probabilities are known, RSIR can compute what the most likely cause is behind a failure. For example,
the probability that the gripper could not handle the item is 0.8-0.6 = 0.48, and the probability that the depth
camera was inaccurate is 0.8-0.4-0.7- 0.3 = 0.07. Once the most likely cause has been found, RSIR selects an
action plan that does not include the capability behind that cause. If this is not possible, RSIR moves on to
the second most likely cause, then the third most likely cause, etcetera.

The main disadvantage of this approach is that modelling the system as shown in Figure 6.20 takes time
and that and the model must be updated every time a capability is added to or removed from the system.
Furthermore, the conditional probabilities can be difficult to obtain and are item-dependent.
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Figure 6.20: Causes for grasping failures that can occur in SIR. The "repeated failure blocks" are blocks that are added twice in the
diagram for clarity. Values of probabilities are included only as an example.
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Figure 6.21: Failures observed for SIR [36]. Listed percentages are percentages of the total number of pick-and-place attempts
performed.

Iteration 2: Action-based Probabilistic Reasoning

The second iteration attempts to make the probabilities item-dependent by including knowledge of the item
and capability constraints. The item properties are modelled as probability distributions as explained pre-
viously. Furthermore, a capability can have a constraint per item property. This is modelled as shown in
Figure 6.27, which uses confidences. For this example, the vacuum gripper has a 20% chance of succeeding
if the item’s mass is 5kg. The confidence score of the gripper for the mass is then Zc; p;, where c; is the confi-
dence of the gripper for mass i and p; is the value of the mass distribution for mass i. This confidence score
is then added to Figure 6.20. For example, the probability that the gripper could not handle the item was pre-
viously computed to be 0.48. This probability is now combined with the confidence score of the capability.
Assuming no prior knowledge of the mass, the confidence score of the gripper from Figure 6.27 is 0.65. Then
the score of the gripper becomes 0.48/0.65 = 0.74. The capability with the highest score is pointed out as the
cause behind the failure.

Success confidence for the vacuum gripper
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Figure 6.22: The constraints on item mass for the vacuum gripper, modelled as confidence values.

Furthermore, the item properties are updated according to the most likely cause. Let us assume that the
most likely cause is the gripper. Using Bayes’ rule, the most likely mass distribution can be derived. Fig-
ure 6.23 shows an example of how a mass distribution changes when Bayes’ rule is applied using the gripper
from Figure 6.27.
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(a) The prior knowledge of the mass distribution. (b) The mass distribution after the gripper has failed.

Figure 6.23: Item mass distribution before and after the gripper has failed.

The main advantage of this approach is that RSIR includes knowledge of the item when reasoning about
the cause behind a failure. Capabilities that are less likely to succeed given the knowledge are more likely to be
the cause. Additionally, the item properties are updated when RSIR decides what the cause behind a failure is.

This approach has two disadvantages. The first is that the system must still be modelled as shown in
Figure 6.20, which must be updated every time a capability is added to or removed from the system.

The second disadvantage is that the cause behind a failure can be derived incorrectly. To illustrate this,
consider a system that has the grasp synthesis approach in Figure 6.24 and no other synthesis approaches.
Regardless of the item properties, this synthesis approach has a confidence of 0.5. This can be the case for
example if the algorithm behind the approach was designed poorly. Consider now an item that is transpar-
ent, and the verification algorithm concludes that there is no item in the gripper. The cause behind this is
that the verification camera cannot detect transparent items. However, RSIR does not know this. Following
Figure 6.20, the score for the cause to be the synthesis is 0.48/0.5 = 0.96, whereas the score for the inaccu-
rate verification is 0.07/ P, with P being the confidence score of the verification camera. P would have to be
smaller than 0.07 for RSIR to point out the verification camera as the cause behind the failure. This is very
unlikely, since RSIR does not know that the item is transparent, and the verification is generally reliable. Thus
RSIR points out the synthesis approach as the cause, and updates the item properties according to the limi-
tations of the this approach. During the next attempt, the synthesis approach still has a confidence score of
0.5, and the cycle repeats. Thus RSIR never finds the true cause of the failure.
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Figure 6.24: A capability that has a probability of success of 0.5, regardless of the item’s mass.

Iteration 3: Plan-based Probabilistic Reasoning

The final iteration of reasoning about failures abandons the model from Figure 6.20. Instead, all actions that
the robot has executed are entered into a probabilistic model. A Bayesian network is selected as this model,
because it is relatively simple and because it is the logical next step from the Bayes’ rule used in the previous
iteration. The exact model is explained in more detail in the next section.
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The advantage of this approach is that RSIR reasons about all actions it has performed. For the example
of the transparent item, this means that RSIR mainly updates the item properties based on the limitations
of the synthesis approach, but also slightly based on the limitations of the verification camera. After several
attempts, RSIR will know that the item is likely transparent.

The abandoning of the model in Figure 6.20 is both an advantage and a disadvantage. A strong advantage
is that the Bayesian network does not need to be updated manually if the robot’s capabilities change. The
disadvantage that the Bayesian network provides less insight into the failure modes. It provides a likelihood
of failure per capability, but not to the level of detail that Figure 6.20 provides. However, the advantage out-
weighs the disadvantage because updating the model manually goes against the requirement that RSIR must
be (easily) expandable to related tasks (R3). Hence the final version of RSIR makes use of a Bayesian network.

This concludes the iterations of RSIR. The next section explains the final version of RSIR’s ontology and
reasoning.

6.4. Resulting Ontology and Reasoner

This section provides the final version of RSIR’s ontology (subsection 6.4.1) and reasoner (subsection 6.4.2).
Readers that are unfamiliar with terminology in the field of ontologies are referred to Appendix C.1 for a brief
introduction to the terminology.

6.4.1. Ontology

This subsection presents RSIR’s ontology. Some parts of section 6.3.1 are repeated here for the sake of com-
pleteness. The ontology is visualized in Figure 6.25, with some details being visualized in Figure 6.26. The
concepts are discussed below, but their formal definitions included in Appendix C.2. Note that all concepts
in the ontology have the domain http://www.semanticweb.org/vi#, except when stated otherwise. The
domain can be shortened to vi:, but is omitted in this section for clarity. Furthermore, the object properties
present in Figure 6.25 are explained in more detail in Table 6.2.

RSIR’s ontology starts with a Robot. A Robot is equipped with one or multiple Devices, where each Device
provides one or multiple Capabilities. Each Capability is defined by its inputs and outputs (Input/Output),
as well as its Constraints. The Robot must perform Capabilities one after another to complete a Task. A Task
is defined by a required Output. An ordered list of Capabilities the Robot will execute is called an Action Plan.
The concept of Target Item contains knowledge of the item.

As shown in Figure 6.26, Devices are split up into Communicating, Knowing, Processing, Sensing, and
Actuating Devices. Capabilities are split up into the same categories. These categories are taken from CORA,
with the exception of Knowing. This category was added to keep track of knowledge such as gripper proper-
ties, something that was not present in CORA. These classifications are purely for clarity and have no influ-
ence on any of the reasoning done by RSIR. Similarly, the Actuating, Knowing, and Processing Capabilities, as
well as the Input/Output have been given subclasses for clarity.

Table 6.2: Object properties in RSIR’s ontology.

Object property Domain Range Explanation
. . Links an action plan to the list of actions in it, and the

abstractPart ActionPlan Robot u Capability robot for which it is defined.

constraint Capability Constraint Adds a constraint to a capability.

propertyConstraint | Capability ItemProperty Prov1de§ the limitations of a capability based on item
properties.

input Capability Information Defines the information/state a capability needs to be
performed.

output Capability Information Defines the information/state that completing a capa-

bility results in.

provides Device Capability Defines what capabilities can be done using a device.
Could be split up into actuating, communicating, pro-
cessing, knowing, and sensing parts.

taskOutput Task Information Defines at what state or knowledge a task is complete.

robotPart Robot Device
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Figure 6.25: The final version of RSIR’s ontology.
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Figure 6.26: Details of the final version of RSIR’s ontology.

Constraints are divided into two subclasses: Cardinality Constraints and Item Property Constraints. Car-
dinality Constraints define constraints regarding the number of capabilities of a certain type that can be used
in an action plan. For example, there is a constraint that the system can only use one gripper during a pick-
and-place cycle. Secondly, Item Property Constraints define the limitations of capabilities. For example,
the limitations on item mass for a vacuum gripper are shown in Figure 6.27, where the vacuum gripper has a
20% chance of succeeding if the item’s mass is 5kg. Limitations on Capabilities are assumed to be known and
remain fixed unless they are changed manually.

Item Properties are split up into Default Properties and Persistent Properties. Any properties that inherit
from Default Property are considered when reasoning about the item properties. Any properties that inherit
from Persistent Property do not change between pick-and-place cycles. For example, Mass is a Persistent
Property, whereas Orientation is not. Figure 6.26 shows six properties, but properties can be added, removed,
and linked to Default Property as desired.



66 6. Ontology and Reasoning

Success confidence for the vacuum gripper

0.8

o
o

Confidence
o
.

1 2 3 4 5 6
Item mass [kg]

Figure 6.27: The limitations of a vacuum gripper on the item’s mass, modelled as confidence probabilities.

In addition to the concepts and object properties in Figure 6.25, RSIR contains several data properties.
They are visualized in Figure 6.28 and summarized in Table 6.3. Each Capability should have an execution-
Time and defaultConfidence. A Capability can optionally have an assertedConfidence, which is the confi-
dence score computed from the item properties and the constraints of the Capability.

An ItemProperty must be defined by at least its definedOnValue and its defaultPdfValue. The define-
dOnValue defines the discretization of the property, for example, {1.0, 2.0, 3.0, 4.0} for mass (in kg), or {solid,
semi-porous, porous} for porosity. The set of values can have any number of entries and supports both num-
bers and strings. The defaultPdfValue is the default discrete probability distribution of a property, which
contains knowledge of the general distributions of properties in the system. Obviously, the distribution must
have the same discretization as the definedOnValue. The pdfValue is the (non-default) distribution as com-
puted by the Bayesian network. Finally, the confidenceValue contains the confidences for which an example
is presented in Figure 6.27.

Table 6.3: Data properties in RSIR’s ontology.

Data property Domain Range Explanation
confidence - - The category of confidences.
Derived fi i h ilities i i 1 h
actionPlanConfidence | ActionPlan xsd:decimal erlve.d Tom const.ramts on the capabilities in an action plan and the
target item properties.
assertedConfidence Capability xsd:decimal Derived from constraints and target item properties.
e . Default confidence, when the specific limitations of the capability are
faul fi 1 : 1 A .
defaultConfidence Capability xsd:decima unknown but there is still a general confidence that applies
executionTime Capability xsd:decimal An estimate of how long executing the capability takes.
value - - The category of values.
- R . . Defi inality, in thi hy imil. ilities thi
cardinalityValue CardinalityConstraint | xsd:nonNegativelnteger efines a cardinality, in this case how many similar capabilities the
robot can use at once.
s Defines the confidence values of a capability being successful for an
confidenceValue ItemProperty xsdistring item with said property. String represents an array, e.g. "0.1 0.5 0.9".
. Provi he definition for thi . Stri 8
definedOnValue ItemProperty xsd:string rov:des the de. nition (ir the property. String represents an array,
e.g. "small medium large".
. Defines the discrete probability density function of an item property,
pdivalue ItemProperty xsdistring using the definedOnValue as definition for the property.
. The defaul i f th fValue. I ith unk i
defaultPdfvalue ItemProperty xsd:string e fie ault version of the pdfValue. Item with unknown properties
are give these values.
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Figure 6.28: Hierarchy of RSIR’s data properties.

6.4.2. Reasoner
The reasoning of RSIR contains three aspects: creating action plans, computing confidences and execution
times, and deriving item properties. These three aspects are discussed in this subsection.

Action Plans

The goal of this reasoning is to convert a Task to an Action Plan. To do so, RSIR combines the capabilities a
Robot has access to based on the output defined by the Task and the inputs and outputs of each Capability.
RSIR finds all possible (non-redundant) combinations of Capabilities that complete the Task. Additionally,
the cost is computed for each Action Plan according to a cost function. This is a function of the plan’s confi-
dence and execution time. An Action Plan’s confidence is the product of the confidences of all the Capabilities
that are in the plan. Similarly, an Action Plan’s execution time is the sum of the execution times of all the Ca-
pabilities that are in the plan. The Action Plan with the lowest cost is selected for execution.

Capability Confidence and Execution Time

When the Action Plan’s cost is being computed, a Capability’s confidence is taken as its assertedConfidence,
if this is defined. The assertedConfidence is computed from the knowledge of the item properties and the
Capability’s constraints using Equation 6.1. Here, c;(i) is the i th confidenceValue for property j, p (@) is the
item’s i pdfvalue for property j, n j is the number of values defined for property j, and m is the number of
properties for which the capability has constraints defined. Note that if no constraint is defined for a property,
the capability is assumed to have a confidence of 1.0 with respect to that property, that is: ¢; (i) = 1Vi.

m N
assertedConfidence = [ (}_ ¢; (i) p; (i) (6.1)
j=1i=1
If no assertedConfidence is known (for example, if a Capability has no constraints), the defaultConfidence
is used instead. If no defaultConfidence is known, RSIR assumes a confidence of 1.0 and outputs a warning.
Similarly, if no executionTime is defined, RSIR assumes a large value and outputs a warning.
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Deriving Item Properties

The reasoning that derives item properties uses the Bayesian network presented in Figure 6.29. The network
includes all actions the Robot has executed until a failure was detected, excluding any actions that have no
constraints. These are actions 1 through N. Excluding actions without constraints simplifies the network and
thus increases the inference speed. The network also includes the properties that are constraints of one (or
more) of the actions. These are properties 1 through M. Outcomes are defined as binary, with 1 denoting a
successful result and 0 denoting a failure. The first step is to determine the outcome of an action due to one
property. For example, the outcome of sensing the RGB image given the item’s transparency distribution. An
action has an outcome of 1 if and only if the outcome of that action due to a property is 1 for all properties.
For example, if sensing the RGB image succeeds for the item’s mass but not for the item’s transparency, then
sensing the RGB image fails. Similarly, the outcome of the complete action plan is 1 if and only if the outcome
of all the actions is 1.
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Figure 6.29: The Bayesian network used to infer item properties.

The added value of the Bayesian network comes from the fact that it can infer outcomes and item prop-
erties based on an observation. Given the currently known distributions of each property (pdfvalue), the
confidence for each action due to a property (confidenceValue), and the outcome of an action plan (1 or 0,
i.e. success or failure), the network infers the most likely item property distributions and the likelihood of
each action having failed. This way, a failure is used to gain knowledge of the item. When RSIR next creates
an action plan, the capability confidences are computed according to the inferred item properties. Hence
capabilities that likely caused a failure are unlikely to be selected again. Similarly, a successful execution of
an action plan is used to gain knowledge of the item. This knowledge could be saved and loaded the next time
the robot encounters that item.

This concludes the development of RSIR’s ontology and reasoner. Appendix C.3 presents an example for
a simple robot that uses RSIR for a grasping task. The next chapter discusses the implementation of RSIR.



Implementation

This chapter addresses the problem of implementing RSIR (RQ3). Section 7.1 explains the general software
architecture. Afterwards, sections 7.2, 7.3 and 7.4 explain the implementations of the state machine, on-
tology, and reasoner, respectively. Using these implementations, the following chapters can evaluate RSIR’s
performance.

7.1. Software Architecture

This section explains RSIR’s software architecture. RSIR is implemented on top of the Robotics Operating Sys-
tem (ROS), because it is the standard for robotics software [88] and because the components of SIR are already
implemented in ROS. Thus implementing in ROS simplifies the implementation process (R1, R16). Figure 7.1
illustrates RSIR’s software architecture for a grasping task. The main node is the state_machine. The state
machine contains the information about the robot’s state and sensory information (such as depth images).
Additionally, the state machine queries the reasoner for action plans and converts the reasoner’s response
into low-level commands. For example, the action defined by the reasoner is synthesizeBaumgartlGrasp,
but the state machine understands that this means calling the /synthesis/baumgartl service and saving
the result into the graspPose variable.

The state machine communicates with the reasoner through the rosprolog_service node. This node lis-
tens for service calls and converts said calls into Prolog-understandable queries. This node contains the
ontology and part of the reasoner. Additionally, the rosprolog service node can call the Bayesian network
to estimate the item properties after a failure has occurred, or after an action plan has been executed suc-
cessfully. Note that although the Bayesian network is considered part of the reasoner, it is implemented as a
separate node: bayesian_network. This is discussed in more detail in section 7.4.

Finally, there are the nodes that implement capabilities defined in the knowledge base. In the case of
Figure 7.1 they are: gray_camera, stereo_camera, moveit_client, and baumgartl_synthesis. For example, the
baumgartl_synthesis node implements the grasping approach developed in this thesis. Nodes that imple-
ment capabilities can be added, removed, and changed as desired by the engineer. However, it is important
that there exist implementations for all capabilities that a robot can use (as defined in the ontology).
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Figure 7.1: The software architecture used in RSIR. Displayed are ROS nodes and services. The nodes on the right are always present in
RSIR, whereas the nodes on the left are specific to an application and can be changed as desired.

7.2. State Machine

This section explains the state machine. The state machine is the core of RSIR. It connects the output of the
reasoner to the ROS implementations of capabilities, and detects any failures that occur. It is implemented
using Smach because Smach provides a simple implementation for state machines in Python, provides a data
structure (userdata) to store the inputs and outputs of capabilities, and is already in use by Vanderlande. The
states in RSIR’s state machine are shown in Figure 7.2. Their functions are as follows:

* Init initializes the knowledge base and moves the robot to its initial position. The former handles as-
pects such as resetting asserted item properties to their default values, reactivating components that
were concluded to be in failure, and computing the confidences of components given the target item.

¢ GetPlan queries the reasoner for an action plan. The state machine saves this action plan as a list of
strings. For example, getting a segmentation of the input carrier can be done using the action plan:
["senseInputCarrierRGB", '"segmentInputCarrier"].

¢ Task executes a task, in the order as tasks appear in the action plan. Tasks are implemented by methods
execute_X, where X is the name of the capability as it appears in the knowledge base. For example, the
method execute_senseInputRGB implements the capability that is defined as senseInputRGB in the
knowledge base. If the task is executed successfully, the system moves on to the next task in the action
plan.

¢ Failure is reached when a task execution fails. This state calls the reasoner to derive the item properties
from the failure, and queries the reasoner for a new action plan.

* Finish is reached when RSIR has successfully executed the last action in its action plan. It calls the
reasoner to derive the item properties based on the executed action plan. Furthermore, it asks the user
whether the task should be repeated for a new item.

¢ Terminate cleans up any processes before RSIR exits, such as closing the cameras.

The outputs of the tasks are saved in the userdata struct using the names defined in the knowledge base.
For example, the grasp pose computed by a synthesis algorithm is saved in userdata.graspPose. At compile
time, Smach requires a list of properties that userdata can have. Hence this list is hard-coded, and must be
updated every time a new type of input/output is added to the knowledge base. To facilitate this, one can run
Rosprolog and use the query all_smach_keys (Keys). The output of this query can directly be pasted into
the script for the state machine.

Unfortunately, Smach’s userdata only supports basic data types, such as integers, arrays, and strings.
This means that inputs and outputs that are complex or structured cannot be accessed via this struct. As a
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Figure 7.2: The state machine used in RSIR.

result, it not possible to include RGB images, segmentation masks, and point clouds in the userdata, and
they were defined as global variables instead.

7.3. Ontology

This section addresses the problem of implementing RSIR’s ontology, that is, it handles the implementation
phase in Methontology. Decisions made in this phase consider the ontology language, reasoner, and tools
used.

Recall that the common trade-off in selecting an ontology language is between expressiveness and de-
cidability. The most prominent ontology language is OWL 2, which is divided into several sub-languages as
shown in Figure 7.3. The sub-languages limit expressiveness but improve decidability. For example, ontolo-
gies using features outside of OWL 2 DL are undecidable. OWL 2 is split up further into profiles, examples of
which are OWL 2 Lite, OWL 2 QL (Query Language), and OWL 2 RL (Rule Language) [87].

_OWL 2 (Full)

./: . '//r DI—/{_ ‘\-\‘\

\ f\
\.
\

Figure 7.3: Venn diagram showing the relation between the OWL 2 profiles [32].

There are some languages that can be used to expand OWL 2, such as SWRL and SHACL [65][101]. The
use of these languages allows to define rules. For example, if it is known that person A is the parent of person
B and person A has a brother that is person C, then SWRL rules can conclude that person B has an uncle that

is person C [101]. These types of rules cannot be defined in OWL 2. However, the use of such rules also makes
the ontology less decidable [101].

Another important fact regarding the ontology languages is that KnowRob is implemented in OWL 2 DL
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[87]. Even though RSIR’s ontology is not integrated with the KnowRob ontology, KnowRob still provides useful
functionalities. The main functionality is that KnowRob provides an implementation for using ontologies
with ROS. Furthermore, current work on KnowRob considers the robot learning from actions demonstrated
by humans in virtual reality, or learning from instruction videos on the internet [19]. Although currently
immature and irrelevant, this research might become relevant in the future if RSIR is applied in tasks it is not
familiar with (R3).

Another aspect of KnowRob is that it uses the standardized language SWI Prolog (henceforth referred to as
Prolog) to load, save, and query for knowledge saved in its ontologies [20][102][130]. According to Pangercic
et al.,, Prolog "combines fast inference and computation with declarative, logics-based semantics" [102]. The
fast inference and logics-based semantics are promising for RSIR (R2, R14). It should be noted that Prolog
goes beyond simple OWL reasoning [87] and the reasoning designed in Prolog is saved in a Prolog file, rather
than in the ontology file.

When considering these advantages, it is promising to implement RSIR in KnowRob. Additionally, the
use of Prolog eliminates the need for languages such as SWRL and SHACL, because Prolog proved capable
of implementing most of the reasoning done by RSIR over the course of this thesis. However, implement-
ing in KnowRob comes with three disadvantages. The first is that RSIR’s ontology is not integrated with the
KnowRob ontology. This makes it difficult to use some of KnowRob'’s functionalities with RSIR. However, this
is not a problem at this point in time because RSIR does not make use of most of KnowRob’s functionalities,
and approaches exist for mapping concepts between ontologies [42]. This is, however, the second disadvan-
tage: the fact that most of KnowRob’s functionalities are unused by RSIR. Although they are unused, they
could be taking up computational resources, thus decreasing performance (R14). This is especially relevant
because KnowRob is shown to be slow in demonstrations [3]. The final disadvantage is that KnowRob’s doc-
umentation is outdated, and thus it might be time-consuming to get the system to work correctly.

Despite these disadvantages, RSIR is implemented in KnowRob because of the advantages it brings. The
evaluation of RSIR must determine whether its performance is sufficient despite KnowRob’s unused func-
tionality possibly using up computational resources.
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Figure 7.4: A part of RSIR’s ontology visualized in Protégé.

Finally, Protégé is used to aid in implementing the ontology. Protégé is a semantic editor that helps in con-
structing, visualizing, and debugging ontologies [49][94][137]. Figure 7.4 shows RSIR’s ontology being edited
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in Protégé. This is more user-friendly than constructing ontologies directly in XML (or similar) files [98]. Fur-
thermore, Protégé comes with the built-in reasoner HermiT. This reasoner detects any inconsistencies in the
ontology and thus helps in debugging. Note that this reasoner is not the "reasoner" RSIR makes use of to, for
example, create action plans. HermiT is only used at design time. The resulting ontology is saved as an XML
file such that it can be loaded by Prolog at runtime. More about the reasoning is discussed in the next section.

7.4. Reasoner

The previous section considered the implementation for the ontology. However, an ontology is only a set of
facts, and thus a reasoner is required to draw conclusions from those facts. Following the decisions in the
previous section, this section explains how the reasoner is implemented in Prolog and Python.

Prolog is a logic programming language. The logic programming paradigm is vastly different from the
more commonly-used paradigms that contain languages such as Python, C++, and Matlab [100]. Because of
this, Prolog is well-suited for deriving conclusions from the facts saved in an ontology. However, it also means
that Prolog is not as well-suited to mathematical computations as languages such as Python are. Hence im-
plementing the Bayesian network in Prolog is not ideal.

Two approaches can solve this problem. The first approach is to expand Prolog with the capabilities re-
quired to easily create Bayesian networks. ProbLog claims to do just this [74]. However, a quick test in their
online editor shows that ProbLog does not accept variables as probabilities. This is critical, because the item
probability distributions and capability confidences must be passed from the ontology and thus cannot be
hard-coded in ProbLog. The second approach is to implement the Bayesian network in another program-
ming language, such as Python. The disadvantage of this is that the reasoner then consists of two files: the
Prolog file and the Python file. This requires communication between the two languages, and makes it less
clear to the user which file is responsible for which part of the reasoning.

Because ProbLog is not an option, the Bayesian network is implemented in a language other than Prolog.
Python is selected for this language, because of its user-friendly syntax, integration with ROS, and integration
with pomegranate. Pomegranate is a well-documented, easy-to-use package that implements a large variety
of probabilistic models, including Bayesian networks [117]. RSIR’s Bayesian network is thus implemented
in pomegranate. It requires the relevant item properties (as specified in the ontology), the executed action
plan, and the result of the action plan (success or failure). It outputs the likelihood of each action having
failed, as well as the most likely distribution per item property. Regarding the inputs, the network supports
any number of item properties and any number of actions in the action plan. Additionally, it supports any
definition of item properties, as long as the entries are unique. For example, mass can be defined as [1,2,3],
[0.1,0.2,0.3,0.4,0.5,0.6],0r ["1ight","medium", "heavy"].

7.5. Grasp Synthesis

The grasp synthesis approach is implemented in Matlab because of Matlab’s built-in edge and line detection
algorithms, its ease of use with point clouds and images, and its familiarity. Matlab can communicate over
ROS using the ROSmatlab toolbox, and custom ROS messages and services can be defined by using an add-on
[132]. Appendix D.1 presents the steps of the algorithm in full detail.






Grasping Approach Evaluation

This chapter addresses the problem of evaluating the grasp synthesis approach that was selected and im-
proved upon in chapter 5. The insight this evaluation gives is also useful for implementing the approach
into RSIR. Recall that this evaluation is not meant to be a full test of the gripper and synthesis approach, as
such an evaluation is outside the scope of this thesis (R34). Instead, this section provides a general idea of
the limitations of the grasp synthesis approach and a starting point for future work. Specifically, section 8.1
investigates the influence of the approach’s parameters, section 8.2 evaluates the general performance of the
synthesis approach (R13, R24, R31), and section 8.3 evaluates the approach when it uses segmentations (R25).

All evaluations (with the exception of the evaluation of the parameters) are done based on the depth
data from 20 input carriers obtained from the set-up in Eindhoven (R26, R32). The synthesis approach is
evaluated based on the variety of items it can synthesize reasonable grasps for (R23), the quality of the grasp
the algorithm concludes to be the best grasp (R24), and the time it takes to synthesize a grasp (R14). Whether
a grasp is reasonable or not is determined by a human.

Figure 8.1: The items used in evaluating the grasp synthesis approach.

Each carrier differs in the items it contains. To get a good overview of what items the synthesis approach
can handle (R32), the following item properties are varied: shape, size, texture, deformability, level of clutter,
reflectivity, transparency, and colour. The former five are the main properties synthesis approaches are evalu-
ated on in literature [135]. Usually this also includes mass, but mass is meaningless in this evaluation because
only the synthesis algorithm is evaluated, whereas mass is a limitation for the gripper hardware. Reflectivity
and transparency are limitations of the depth camera and can thus hinder the synthesis approach. Colour is
currently not relevant but might be in future work (R3), when edges are detected based on the RGB image.
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Figure 8.1 shows the set of items considered in the evaluation. Note that this set of items is not purely selected
based on what RSIR’s vacuum gripper cannot handle. It can be useful in practice if the fingered gripper can
handle items that the vacuum gripper can also handle, as this would require less switching between grippers
and would thus save time (R6, R14). Hence some items that the vacuum gripper can handle are included in
this evaluation.

Several aspects of the approach were kept constant to limit the scope of the evaluation. The paired lines
were not filtered based on gripper length, minimum gripper opening width, or maximum opening width. This
is to make the evaluation less dependent on the specific gripper it is used with (R3). For the same reason, the
maximum grasping height was not considered. Additionally, the metric used in all tests is enclosed depth.

8.1. Tuning Parameters

This section investigates the effect of the tuning parameters of the synthesis algorithm. Insight in these effects
allow for better tuning of the algorithm, which in turn could result in a larger variety of items being grasped
(R5, R23) or a decrease in runtime (R14). There are nine parameters that can be tuned. They are summarized
in Table 8.1. The full evaluation, including examples, is included in Appendix D.2. The runtimes resulting
from the evaluation in the appendix are presented in Figure 8.2.

In summary, the parameters that most influence the resulting grasps and runtime are the fudge factor,
peak factor, and angular difference. These parameters influence the edge detections, line detections, and
line pairs, respectively. The tuning of these parameters comes down to a trade-off between runtime and the
number of grasps found. The number of peaks could be tuned alongside the peak factor to limit the runtime.

Table 8.1: Tuning parameters for the grasp synthesis approach.

Parameter name Matlab name Interpretation Unit Effect
Grasp opening en- | enlargeGrasp- Extra amount by which the gripper metres Prevents collisions between the grip-
largement Opening is opened before grasping per and the item
Dilute strength dilStrength Strength V\{lth which to dilute the pixels Compensa.tes for missing parts of the
segmentation mask segmentation
. Creates a trade-off between the num-
Fudge factor fudgeFactor Threshold for edge detections - ber of detected edges and the runtime
Maximum distance between two Merges multiple detected lines into
Fill gap fillGap detected lines to merge them into | pixels oneg P
one
Dilute strength for dilStrengthEdge Strength Wl.t h which to dilute the pixels | Strengthens detected edges
edges edge detections
Maximum number of Hough o .
Number of peaks nPeaks . . - Limits the number of detected lines
peaks to identify
Peak factor facPeak Minimum value to be considereda | Creates a trade-off between the num-
Hough peak, defined as a fraction ber of detected lines and the runtime
Angular difference | dTheta Supllarlty measure for finding line degrees AllOYVS to grasp 1.10n—parallel edges,
pairs but increases runtime
Number of gripper . Number of points to check for de- Determines accuracy when determin-
nGripperDepths . L - . R
depths termining a line’s depth ing a line’s height
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Runtimes for the synthesis algorithm based on the variation of parameters (1/2)
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(a) Parameters that have little influence on the runtime.

Runtimes for the synthesis algorithm based on the variation of parameters (2/2)
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(b) Parameters that greatly influence the runtime. Note the logarithmic vertical axis.

Figure 8.2: Runtimes for the synthesis approach when evaluating the effect of the parameters. When one parameter is changed, the
others are kept constant. The dashed red line indicates the average runtime over all runs of the algorithm.

8.2. General Performance

This section evaluates the general performance of the synthesis approach. The type of evaluation is ex-
ploratory rather than descriptive. A descriptive evaluation of the synthesis approach is not useful at this
stage, because too little is known about the competences of the synthesis approach. For example, it might
be that one set of parameters is exceptionally good at grasping circular items, whereas another set of param-
eters is exceptionally good at grasping in clutter. If this is the case, it is wise to implement three versions of
the synthesis algorithm in RSIR: one for circular items, one for items in clutter, and one for all other cases.
Because of RSIR’s reasoning capabilities, it could select the best version of the synthesis approach based on
what it knows about the item. However, at this point in time, it is unknown which sets of parameters result in
which competences. Hence this evaluation explores what items the approach can handle, and which sets of
parameters work for which items.

8.2.1. Method

Grasps are synthesized for the 20 input carriers, and the three highest-ranking, qualitatively different grasps
are saved (R23, R24). The approach is run several times with different parameters until a reasonably success-
ful grasp is found, while keeping the runtime short (R14). The runtime is the average time measured using
Matlab’s tic toc function during five runs of the algorithm. Qualitatively different grasps are defined as il-
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lustrated in Figure 8.3, which shows the top six synthesized grasps for a jar of peanut butter. Four of these
grasps are similar to each other and thus there are only three qualitatively different grasps among the six
grasps.

a) Grasp 1. (b) Grasp 2. ¢) Grasp 3. d) Grasp 4. (e) Grasp 5. (f) Grasp 6.

Figure 8.3: The top six highest-scoring grasps for a jar of peanut butter.

To get some insight into how the item properties influence the grasp synthesis algorithm, the correlation
coefficient between the item properties and the parameters is determined, as well as the correlation coeffi-
cient between the item properties and the grasp score and runtime. This insight allows better tuning of the
parameters to grasp a larger variety of items (R5, R23) or achieve a shorter runtime (R14). Only parameters
that vary between carriers and only the highest-ranking grasp in each carrier is used for this analysis. The
item properties used are number of curves, size, clutter, reflectivity, and transparency. Other properties such
as mass and shape are not included because they are irrelevant (in the case of mass) or because the item test
set is too small (in the case of shape). Pearson’s correlation coefficient is used with a significance level of 0.1.

Finally, the artificial segmentation shown in Figure 8.4 is passed to the algorithm, henceforth referred
to as the "box segmentation”. This prevents the algorithm from synthesizing grasps on the carrier, yet tests
its performance when not provided with a segmentation of the items in the carrier (R31). Without the box
segmentation, the algorithm considers the edges of the carrier promising locations for grasps, which is unde-
sirable.

Figure 8.4: The segmentation as used in the evaluation of the synthesis approach’s general performance.
The green area is part of the segmentation mask, whereas the red area is not.

8.2.2. Results

Figure 8.5 shows some of the highest-scoring grasps synthesized by the algorithm. The average grasp score of
the highest-scoring grasps is 0.74 with a standard deviation of 0.17. Furthermore, Figure 8.6 summarizes the
runtime, which is 1.67 seconds on average with a standard deviation of 0.79. Finally, Table 8.2 presents the
correlation coefficients. More results are included in Appendix E.1, including the depth data, detected edges
and lines, and all resulting grasps.



8.2. General Performance

79

Figure 8.5: Some of the highest-scoring grasps synthesized by the algorithm when using the box segmentation.

Table 8.2: Correlation between item properties, parameters of the grasp synthesis algorithm, and results. The values are listed as p(p),
where p is the correlation coefficient and p is the p-value. Statistically significant results are highlighted in green.

Fudge factor | Peak factor | Angular difference | Max grasp score | Runtime
Curves -0.25(0.29) | -0.65 (0.00) -0.37 (0.11) -0.04 (0.88) 0.31(0.19)
Size 0.34 (0.14) 0.35 (0.13) -0.18 (0.45) -0.35 (0.13) -0.05 (0.84)
Clutter 0.14 (0.57) 0.39 (0.09) 0.19 (0.45) 0.20 (0.41) -0.16 (0.52)
Reflectivity 0.19 (0.42) -0.26 (0.26) -0.28 (0.23) 0.07 (0.77) 0.29 (0.22)
Transparency | 0.26 (0.27) | -0.31(0.19) -0.19 (0.42) 0.00 (0.99) 0.25 (0.28)
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Runtimes for the 20 carriers when using a box segmentation
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Computer mice (overlap)
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Toothpastes (1)

Toothpastes (2)

Figure 8.6: Runtimes for the 20 carriers when using the box segmentation.

8.2.3. Discussion

The results show that the approach synthesizes reasonable grasps for a variety of items, some of which are
typically not handleable by a vacuum gripper, such as the belt and the net of walnuts. Additionally, the grasp
score generally is a good measure of how good a grasp is. Reasonable grasps have a score of at least 0.6,
whereas grasps that are unlikely to succeed have a score lower than 0.4. The range of approximately 0.4 to 0.6
implies uncertainty. Figure 8.7 shows two grasps with a score within that range. The grasp on the socks might
succeed if the fingers force the fabric into a crease between the fingers. Similarly, the success of grasping the
walnuts depends on whether one or multiple walnuts end(s) up between the fingers. However, it is difficult
to predict whether these situations will occur. Hence it is useful that the score implies uncertainty.

(a) A pair of socks (score = 0.49). (b) A net of walnuts (score = 0.38).

Figure 8.7: Some of the results from Appendix E.1 that have a grasp score approximately between 0.4 and 0.6.

The second important metric for the synthesis algorithm is its runtime, which is 1.67 seconds on average.
An advantage is that the runtime is quite consistent when using the proper parameters. However, it is signif-
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icantly longer than the 0.03 seconds reported by Baumgartl and Henrich [17]. Four possible causes could be
behind this. One cause is the metric: the calculation of enclosed depth is relatively expensive and not con-
sidered by Baumgartl and Henrich. A second cause is that Baumgartl and Henrich filter lines and line pairs
based on the limitations of the gripper. The evaluation in this thesis did not use such filtering, thus resulting
in the algorithm considering more grasps and therefore having a longer runtime. The third cause could be
the used hardware. The evaluation in this thesis used a common PC, but Baumgartl and Henrich might have
used more advanced hardware. The final cause could be differences in implementation. The implementation
by Baumgartl and Henrich is different from the implementation used in RSIR, and this can have a big impact
on runtime [140]. One example of this is the programming language: an algorithm optimized in Matlab is
generally slower than the same algorithm optimized in C++ [140].

Note also that the runtime of 1.67 seconds is relatively long with respect to the 9 seconds SIR takes to finish
a pick-and-place cycle [127]. However, once again, hardware plays an important role in this. SIR is equipped
with a powerful computer that is capable of quickly doing segmentations and motion planning. Hence the
synthesis algorithm is expected to be faster when implemented on that hardware.

Finally, there is significant correlation between the item’s curves and level of clutter, and the peak factor
parameter. The results show that items with more curves require a lower peak factor. In practice, this means
that the filtering on line detections is less strict. It makes sense that this is required for detecting items with
curves, because the lines on such items are less strong than on items with many straight edges. Furthermore,
items in more cluttered carriers require a higher peak factor. This is likely because the algorithm tends to
detect lines between items, as shown in Figure 8.8. A high peak factor filters out most of those unwanted
lines, which otherwise cause a long runtime. These results give reason to split the algorithm into three: one
set of parameters for clutter, one set of parameters for items with many curves, and one set of parameters for
general cases. Further research is required to see if using three such variants results in a better performance
than when using only one variant.

Figure 8.8: One of the results from Appendix E.1 that shows line detections between items in clutter.

Limitations of the Synthesis Approach

There are three main limitations regarding the competences of the synthesis algorithm. The first one is re-
garding the item. As could be expected, the algorithm performs worse for items that have few or no straight
edges. Figure 8.9 shows some examples of this. Some of the detected lines are actual edges, but some lines
seem unrelated to the edges. Reasonable grasps are synthesized for some of the items in Figure 8.9, but the
question rises how much of this success can be attributed to the design of the algorithm, and how much of it
must be attributed to random line detections.
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(a) The grey-scale image for a jar of peanut butter.

(b) The grey-scale image for two belts and a pair of glasses.

(c) The detected lines for the jar of peanut butter. (d) The detected lines for two belts and a pair of glasses.

Figure 8.9: Some of the results from Appendix E.1 that show poor line detections due to the items having few straight edges.

The second limitation is regarding the reliability of the depth image. Figure 8.10 illustrates this. The depth
camera cannot detect the liquid in the bottles or the reflective areas of the peanut butter jar, leaving the
synthesis algorithm to fill in this missing data. In the case of the washing liquid, too much data is missing and
the filtered image estimates the liquid lower in the carrier than it is in reality. Hence the algorithm synthesizes
a grasp that would cause a collision. A similar situation occurs for the jar of peanut butter. In this case the
resulting grasp is reasonable, but has a low score because the height of the jar is not estimated properly.

The final limitation is the similarity between grasps. From the results, it becomes clear that many of the
high-scoring grasps are similar to each other. These grasps could be grouped together into one grasp. This
would decrease the runtime, since the time-consuming calculation of enclosed depth would be executed
fewer times. Additionally, in practice it might occur that the highest-scoring grasp proves unsuccessful. In
that case, the robot might try the second-best grasp. However, if all the top-scoring grasps are similar, this is
not useful.
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(a) The raw depth image for bottles of washing liquid, (b) The raw depth image for a jar of peanut butter,
with missing points highlighted in red. with missing points highlighted in red.

-

(c) The filtered depth image for the bottles of washing liquid. (d) The filtered depth image for the jar of peanut butter.

Grasp pose number 1; Score: 0.82

Grasp pose number 1; Score: 0.54

(e) A synthesis result that unlikely leads to a successful grasp. (f) A reasonable grasp, but with a lower score than it should have.

Figure 8.10: Some of the results from Appendix E.1 that show poor(ly ranked) grasps due to missing depth information.

Limitations of the Evaluation Method

The main limitation in this evaluation is that it only tests the synthesis approach and not the full grasping
approach. When considering the full grasping approach, other factors may cause grasps that look good now
to fail. Examples of such factors are inaccuracies in the motion control and modelling of the gripper.

A second limitation is the scope of this evaluation. Compared to the set of items RSIR can encounter
in practice, the set of items considered in this evaluation is tiny. Additionally, the evaluation tuned several
parameters per carrier. On the one hand, the parameters should not be tuned to obtain in-depth knowledge
of the competences of one specific set of parameters. On the other hand, more parameters could be tuned
to investigate their influence and derive new sets of parameters. For example, the evaluation metric could
be investigated more. Figure 8.11 illustrates an example where the current metric is insufficient. The robot
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would be better off grasping the top carton, which could be when the metric includes the item height. A final
limitation in scope is that the algorithm is only testing using Matlab’s implementations for filtering depth
images, detecting edges, and detecting lines. There are more such algorithms available, and an improvement
in those could result in better grasps.

(a) The highest-scoring grasp (score = 0.91). (b) The second highest-scoring grasp (score = 0.85).

Figure 8.11: An arguably wrong ranking of potential grasps.

A third limitation is that this evaluation required a box segmentation to prevent the approach from syn-
thesizing grasps on the carrier’s edges. In practice, the carrier is not guaranteed to be at the same location
every time, thus this box segmentation might not suffice. The segmentation could be made smaller to avoid
the carrier’s edges regardless of the exact position of the carrier. This might suffice when there are items near
the centre of the carrier. However, it might be a problem if all the items are near the edge of the carrier, as
these will not be (fully) visible to the synthesis algorithm.

The final limitation in this evaluation is that the RGB camera was not fully calibrated to be aligned with
the depth camera. This makes no difference in the grasp synthesis, as the synthesis is based only on the depth
data. However, it does create a slight difference when visualizing the grasps on the grey-scale image. This is
especially apparent in some figures in Appendix E.1 that visualize the detected lines.

8.2.4. Conclusion

The goal of the grasp synthesis approach is to enable RSIR to grasp more items than if it only used the vacuum
gripper. This section evaluated the grasp synthesis approach based on the variety of items it can handle (R5,
R23), what it considers to be the best grasp (R24), and its runtime (R14), all when it is not provided with a
segmentation of the items in the carrier (R31).

The approach synthesizes reasonable grasps for a variety of items (R5), some of which are typically not
handleable by a vacuum gripper (R23). This includes items in isolation, items in sparse clutter, and items in
dense clutter (R25, R28), as well as multiple types of items being in one carrier (R30). The grasp score generally
is a good measure of how good a grasp is (R24). During testing, the algorithm had a reasonable runtime (R14)
on an ordinary computer (R15), but it could be faster when implemented on better hardware. The set of items
the approach can handle is limited because it requires the items to have several (near) straight edges, and it
requires (most of) the item to be detectable by the depth camera. If the latter is not the case, the quality of
grasps is estimated poorly. Furthermore, the algorithm cannot take the complete carrier as input because it
then synthesizes grasps on the edge of the carrier. To counter this, a rectangular segmentation is provided.
If the use of such a segmentation is feasible in practice, the segmentation mask can be hard-coded and no
further segmentations are required at runtime (R31).

Initial results show that it might be beneficial to create three variants of the grasp synthesis algorithm:
one for items with many curves, one for items in clutter, and one variant for general cases. Further research
is required to conclude whether using these three variants indeed results in better performance than when
using only one (general) variant. The limitations in this evaluation are the lack of testing on a physical robot,
the relatively small item set used, the limited variation of tuning parameters, and the need for the rectangular
segmentation. The final limitation is a misalighment between the RGB and depth cameras, but this only
influences the visualization of the results.
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8.3. Performance for Segmentations

This section considers the synthesis algorithm’s performance when making use of the segmentation that SIR
can provide (R25, R28). Making use of such a segmentation could improve the synthesis performance com-
pared to when it uses the box segmentation. The outcome of SIR’s segmentation algorithm consists of n
masks, where 7 is the number of detected items. There are two ways this set of masks can be passed to the
synthesis algorithm. The first way is to provide the mask of only one item. In this case, the algorithm syn-
thesizes a grasp for that specific item. This type of segmentation is referred to as a partial segmentation. The
other way is to merge the masks into one mask and pass this mask to the algorithm. In that case, the algo-
rithm can select the item most suited for synthesis. This type of segmentation is referred to as a complete
segmentation. The downside of a complete segmentation is that synthesis might take longer (R14), because
more items are taken into account. This section evaluates the synthesis approach’s performance for both
ways of passing the segmentation mask.

8.3.1. Method

The first challenge in this evaluation is obtaining the segmentations, as the set-up used for evaluation does
not include the segmentation algorithm. Instead, the 20 carriers used in this evaluation are recreated on the
main SIR set-up in Veghel, which is capable of segmenting. The resulting masks are manually mapped to the
images obtained on the set-up for evaluation.

The synthesis parameters used are the same as those used in the evaluation with the box segmentation
in section 8.2, with the exception of the peak factor and the dilute strength. The peak factor requires tuning
because the original value results in a much larger number of detected lines, most of which were irrelevant.
This increased number is likely due to the algorithm considering a smaller area of the carrier when it uses a
segmentation. Hence the peak factor is tuned on a case-by-case basis, but is kept constant for all the items
in one carrier. The dilute strength is set at 20 for all carriers, because this value decently makes up for some
parts of the items that are missing in the segmentation.

The evaluation metrics are the same as those used in the evaluation with the box segmentation in section
8.2. However, for the partial segmentations, the synthesis is run and the highest-scoring grasp is saved per
segment. For the complete segmentations, the three highest-scoring, qualitatively different grasps are saved
for only 5 out of the 20 carriers to limit the scope. The grasps are then compared to those synthesized using
the box segmentation. For all cases, the runtime is recorded using Matlab’s tic toc function and averaged
over 5 runs of the algorithm.

8.3.2. Results

Some examples of segmentations as output by SIR’s algorithm are presented in Figure 8.12. The segmenta-
tions for all carriers, including the manually mapped ones, are included in Appendix section E.2.

Examples of grasps synthesized using the partial segmentations are shown in Figure 8.17, with Figure 8.16
summarizing the runtimes. The average runtime over all carriers is 1.01 seconds with a standard deviation of
0.56. The average grasp score of the highest-scoring grasps is 0.58 with a standard deviation of 0.31.

Examples of grasps synthesized using the complete segmentations are shown in Figure 8.15, with Fig-
ure 8.14 summarizing the runtimes. The average runtime over the 5 carriers is 1.35 seconds with a standard
deviation of 0.90 seconds. For the same 5 carriers and the box segmentation, this is 1.29 and 0.80 seconds,
respectively. The average grasp score of the highest-scoring grasps is 0.83 with a standard deviation of 0.11.
For the same 5 carriers and the box segmentation, this is 0.84 and 0.072, respectively.

Again, all results are included in appendix E.2, including the depth data, detected edges and lines, result-
ing grasps, and runtimes.
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(c) The highest-scoring grasp for the green segment.

Runtime (seconds)

(a) Three cartons of milk. (b) Two belts and a pair of glasses.
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Figure 8.12: Examples of masks computed by SIR’s segmentation algorithm.

(b) The highest-scoring grasp for the yellow segment.

(d) The highest-scoring grasp for the blue segment.

Figure 8.13: An example of grasps synthesized using partial segmentations.

Runtimes for the complete segmentation, compared to the box segmentation

[ IBax segmentation
[ Completa segmentation

\ mmh

Washing liquids Walnuts and toothpicks  Milk cartons (overlap) Milk cartons (no overlap) Toothpastes

Figure 8.14: Runtimes for 5 carriers when using the complete segmentations.
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Figure 8.15: An example for the top three grasps using the complete segmentation (left) compared to the top three grasps using the box
segmentation (right).
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Runtimes for the 20 carriers when using segmentations per item
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Figure 8.16: Runtimes for the 20 carriers when using the partial segmentations.
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8.3.3. Discussion

The results are now discussed for the partial segmentations and the complete segmentations.

Partial Segmentations

For the partial segmentations, the resulting grasps are very similar to those found with the box segmentation
(R5, R23), and they have similar grasp scores (R24). However, in two cases, the partial segmentation allowed
to find grasps not found with the box segmentation. The cases are shown in Figure 8.17a. The grasp on
the toothpicks was not found previously because they are located so near the edge of the carrier that they
are outside the box segmentation. This is not the case for the milk. This new grasp was likely not found
using the box segmentation because there were two more milk cartons in the segmentation. The other milk
cartons are on their side and thus have stronger edges, likely taking the attention away from the milk carton
in Figure 8.17a.

In two other cases, good grasps found with the box segmentation were not found with the partial seg-
mentation. These cases are shown in Figure 8.17b. The grasp on the socks is likely not found because the
segmentation is imperfect and cuts off the depth information on the top right of the sock. It is unclear why
the grasp on the toothpaste is not found. This might be due to parameter tuning.

(a) Two grasps found when using the partial segmentation (b) Two grasps found when using the box segmentation
that were not found when using the box segmentation: that were not found when using the partial segmentation:
toothpicks(left) and milk carton (right). toothpaste (left) and socks (right).

Figure 8.17: Some of the resulting grasps from appendix E.2 that differ when the partial segmentation is used compared to when the box
segmentation is used.

The use of segmentations has several more consequences for the grasp synthesis algorithm. First, some-
times the algorithm fails because the segment is a false detection. Second, some items are not grasped be-
cause they are not detected by the segmentation network, even if they are more graspable than the other
items in the carrier. Finally, the synthesis algorithm cannot find (equally good) grasps for all segments. This
is reflected in the grasp score’s lower average and larger standard deviation compared to that for the box seg-
mentation. Hence randomly selecting one segment to synthesize a grasp on is not advisable.

The runtime for partial segmentations is similar to the runtime with the box segmentation (R14), and
shows the same trend per carrier (for example, that the carrier with the walnuts and the toothpicks has along
runtime). However, there is a large variation in runtime between the items in a carrier. The variation appears
between different items, between the same item in different poses, and between the same item in similar
poses. For example, for the carrier in Figure 8.18, the algorithm takes 2.1 seconds for the grasp on the left
mouse, but only 1.0 seconds for the grasp on the right mouse. This is because more lines are detected for the
mouse on the left. Looking at Figure 8.18, the left mouse has stronger straight lines (where depth information
is missing), and this is likely why more lines are detected on that mouse.
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(a) The two grasps on the computer mice, visualized in one image. (b) The corresponding edge detections.

Figure 8.18: An example of a carrier from appendix E.2 that results in a different runtime depending on which item mask is passed to
the grasp synthesis algorithm.

Because there is no significant improvement in grasp quality or runtime, and segmenting the carrier is a
time-consuming process, it is generally not advisable to run the synthesis algorithm with the partial segmen-
tations. The exception to this is when an item is very near the edge of the carrier or when no box segmenta-
tion is available. Furthermore, if multiple item types are in one carrier and only of those types is of interest, it
might be useful to use a partial segmentation to force the synthesis algorithm to grasp that one type of item.

Limitations in this evaluation are the same as those for the evaluation using the box segmentation. An ad-
ditional limitations is that the segments were manually mapped between the images from Veghel and those
from Eindhoven. Hence the segmentations used in this evaluation are not a perfect representation of reality.
However, the algorithm mostly makes up for this by diluting the segmentation masks.

Complete Segmentations

The consequences for using a complete segmentation are similar to the consequences for using a partial
segmentation. There is no significant difference in resulting grasps (R5, R23), grasp score (R24), or runtime
(R14) between the complete segmentation and the box segmentation. Even so, the top-ranked grasps are
different for some carriers, as visible inFigure 8.15. The cause behind this is likely the same cause that changes
the grasps for the partial segmentation compared to the box segmentation. However, it should be noted that
the grasp scores are similar for all grasps in Figure 8.15. Therefore it might make only a slight difference in
practice that the partial segmentation ranks the grasps differently compared to the box segmentation.

It is not advisable to use the complete segmentation in practice, because there is no significant improve-
ment in grasp quality or runtime, and segmenting the carrier is a time-consuming process. It might be the
case that the complete segmentation can allow the algorithm to synthesize grasps for items very near the edge
of the carrier, similar to the partial segmentation. However, such items were not present in this evaluation, so
no conclusions can be made regarding that capability.

8.3.4. Conclusion

This section evaluated the grasp synthesis approach based on the variety of items it can handle (R5, R23),
what it considers to be the best grasp (R24), and its runtime (R14), all when it is provided with a segmen-
tation of the items in the carrier (R31). Note that this evaluation is the same as in section 8.2 except for the
provided segmentation. Two types of segmentations were considered: partial segmentations (which contains
one item) and complete segmentations (which contains all the items in the carrier).

Partial segmentations mostly result in similar grasps and runtimes compared to the box segmentation in
section 8.2 (R5, R14, R23, R24). However, the partial segmentations can find grasps that the box segmentation
cannot find for items that are very near the edge of the carrier, or items that are graspable but have less
detectable edges than other items in the carrier. The synthesis approach cannot find equally good grasps for
all segments, and fails if the segment is a false detection. Given this fact and the fact that segmenting is a
time-consuming process (R14), it is not advisable to use partial segmentations. The exception to this is when
an item is very near the edge of the carrier, or when no box segmentation is available.

Similarly, there is no difference in grasp scores or runtimes when using the complete segmentation com-
pared to the box segmentation. The one difference is that the grasps are ranked differently (R24), but this
likely makes little difference in practice because all those grasps have similar grasp scores. Again, it is not
advisable to use complete segmentations in practice, except when no box segmentation is available.
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In summary, this chapter evaluated the grasp synthesis approach based on the grasps it synthesizes (R24)
and the time it takes to do so (R14). The tuning of the approach’s parameters is a trade-off between runtime
and the number of grasps found. When properly tuned, the approach synthesized reasonable grasps for a
variety of items (R5), including items in clutter (R25, R28, R30), some of which are typically not handleable
by a vacuum gripper (R23). It had a reasonable runtime on an ordinary computer (R14, R15). The approach
was not suited for grasping items without straight edges or items that were not detectable by a depth camera.
Furthermore, it required a segmentation to prevent it from grasping the carrier. For this, a simple rectangular
segmentation (R31) was preferred over a segmentation of the items in the carrier (R25), because the latter is
more computationally expensive and provided no improvement in performance for most cases. This evalua-
tion was mostly limited by the lack of testing on a physical robot and the relatively small item set used (R32,
R34). The next chapter uses this grasp synthesis approach to demonstrate RSIR on a physical robot.






Ontology and Reasoner Evaluation

This chapter addresses the problem of evaluating RSIR’s performance, thus answering the research ques-
tion: What is RSIR’s performance on selecting the correct actions to be executed after the model and software
architecture have been implemented? First, section 9.1 addresses Methontology’s evaluation phase: it con-
firms that the ontology is correct by answering the competency questions. Section 9.2 then evaluates RSIR’s
performance for a virtual robot tasked with grasping an item with unknown properties. Finally, section 9.3
demonstrates RSIR being used for a grasping task on a robotic set-up. For this final section, the grasp synthe-
sis approach evaluated in chapter 8 is used.

9.1. Competency Questions

This section goes through the competency questions defined in subsection 4.1.3 to evaluate the design of
RSIR. Section 9.1.1 evaluates whether RSIR can answer all competency questions, and 9.1.2 discusses in more
detail the limitations in the answers RSIR can give.

9.1.1. Answers to Competency Questions

This subsection evaluates whether RSIR can answer the competency questions. If RSIR is designed according
to its requirements, it can answer all the questions. This subsection provides the logic behind the answers.
Concrete Prolog queries that RSIR uses are included in appendix E1.

Task Questions
Recall that the competency questions regarding tasks are:

Q1. What capabilities does the system have access to?

Q2. How are the capabilities constrained?

Q3. What is the predicted performance of each capability?

Q4. What actions must the system do to complete a task?

Q5. How confident is the system that it can complete a task?

Q6. What is the predicted performance for completing a task?

Q7. If there are multiple approaches to completing a task, which approach is optimal?

RSIR answers Q1 by looking at which Devices a Robot is connected to and what Capabilities these Devices
provide. A Capability is constrained by the Inputs it requires, any Item Property Constraints it might have, and
any Cardinality Constraints it might have. Item Property Constraints are defined as a confidence of the Capa-
bility succeeding if the item has that property. An example is illustrated in Figure 9.1. Cardinality Constraints
limit how many Capabilities within one group a robot can use during one action plan. For example, a con-
straint is that a robot with one arm can only use one gripper during a grasping task. This answers Q2. The
answer to Q3 can be found through the cost function, which can currently be a function of the capability’s
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execution time (¢;) and confidence value (c;). For example, the cost function C; = v/%;/¢;, where C; is the cost
of capability i. To answer Q4, RSIR looks at the Capabilities a Robot has access to and chains these such that
each Capability’s Input is provided by another Capability’s output. In doing this, RSIR starts at the definition
of the Task and continues until all input constraints are satisfied. The resulting Action Plan is an ordered list
of actions that the Robot must do to complete the task. Q5 and Q6 can be answered by the same cost function
that answered Q3. Following the same example, the cost of the action plan would be C = \/ﬂ /Tl ¢; with
i iterating over all the actions in the action plan. Finally, RSIR finds the optimal approach by selecting the
action plan with the lowest cost, thus answering Q7.

Success confidence for the vacuum gripper

Confidence

0.2

1 2 3 4 5 [
Item mass [kg)

Figure 9.1: The limitations of a vacuum gripper on the item’s mass, modelled as confidence probabilities. For example, the vacuum
gripper has a 20% chance of succeeding if the item’s mass is 5kg.

Failure Questions
Recall that the competency questions regarding failures are:

Q8. What kinds of failures can occur?
Q9. Which of these failures are likely to occur?
Q10. When a failure has occurred...

(a). ...what type of failure is it?
(b). ...what is the cause behind the failure?
(c). ...what can be concluded about...

(i). the properties of the item?
(ii). the capabilities of the robot?
(iii). the actions the system should take to prevent this failure from re-occurring?

RSIR contains the answer to Q8 through the constraints defined for capabilities. An Item Property Con-
straint defines for which values of a property a capability can fail, thus any failure with one or more Item
Property Constraints can cause a failure. When provided with this constraint and the probability density
function of the item, RSIR can compute the confidence value per capability. Capabilities with lower confi-
dence values are more likely to cause a failure, thus answering Q9. The state machine detects a failure when
executing a specific action, answering Q10(a). Based on this detection, the Bayesian network infers which ca-
pability and item property most likely caused the failure, as well as the most likely probability distributions of
the item’s properties (Q10(b,c)). No conclusions are drawn for the capabilities because they are assumed fixed
(Q10(a)(i)). However, the costs per action plan are re-computed based on the inferred item properties: plans
that are unlikely to succeed given the new knowledge get a higher cost. This way, RSIR answers Q10(a) (iii).

Item Questions
Finally, the competency questions regarding items are:

Q11. Which item properties are relevant for the task at hand?
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Q12. Which item properties are independent of the scenario?
Q13. Which item properties are dependent on the scenario?
Q14. Which item properties are known, and with what accuracy?

Q15. Which item properties can be estimated?

The answer to Q11 depends on the selected Action Plan. For example, the relevant item properties are dif-
ferent when a vacuum gripper is used to complete a task compared to when a fingered gripper is used. When
an action plan is selected, RSIR can find the relevant item properties by finding the Item Property Constraints
on the Capabilities in the Action Plan. Item properties that are independent of the scenario are a subclass of
Persistent Property (Q12). On the other hand, properties that are dependent on the scenario are a subclass of
Item Property but not of Persistent Property (Q13). Item properties that are known are saved as discrete prob-
ability distributions for the Target Item, thus answering Q14. Finally, RSIR can answer Q15 by defining a Task
that has as output the desired Item Property. For example, the triple vi:taskl vi:taskOutput vi:’Mass’
defines a task for which the Robot estimates the target item’s mass.

RSIR has no implementation to answer the competency question: What tasks should the system do to
complete a goal? However, this is acceptable because the design of such an algorithm was considered to be
outside the scope of this thesis.

9.1.2. Limitations

Although RSIR can answer all the required competency questions, there are three limitations in its design.
The first is clear: the lack of an algorithm for answering the question What tasks should the system do to
complete a goal? In its current state, RSIR can reason how to complete a task, but it cannot reasoner whether,
for example, it is better to first estimate an item property and then attempt a grasp, or to immediately attempt
a grasp. This limitation means that the algorithm RSIR uses for exploration is based on randomly selecting
one action plan, which is not optimal.

The second limitation is that RSIR was developed using the sense-plan-act paradigm. This allows RSIR
to create action plans and use each action’s output as the next action’s input, and it works well for most
of the implementations of related tasks. However, it makes it so that RSIR is unsuited for feedback-heavy
capabilities such as visual servoing. There is a workaround to implementing feedback-heavy capabilities, but
thisis notideal. Additionally, although many related tasks were considered, it is infeasible to investigate every
possible related task for RSIR and every implementation of said task. Instead, RSIR was designed to handle
most of the related tasks considered.

A final limitation in RSIR’s ontology is that it does not contain knowledge of dependencies between item
properties. In fact, the Bayesian network is built on the assumption that properties are independent. This
assumption is violated in some cases. Consider the example of a large, heavy item with an eccentric centre of
mass. The vacuum gripper can handle this item if it is heavy but small, or if it is large but light. However, it
cannot handle the item if it is both heavy and large because of the mass eccentricity. This knowledge cannot
be contained in RSIR using only Mass and Size, because the properties are assumed to be independent. A
workaround is to include a Mass Eccentricity property. However, it is unclear if this workaround is applicable
to all cases were properties are dependent.

In summary, RSIR can answer the required competency questions, but it only uses a simple algorithm
for exploration, is unsuited for feedback-heavy capabilities, and cannot capture knowledge of dependencies
between item properties.

9.2. Ontology and Reasoning

This section addresses the problem of evaluating RSIR’s performance regarding whether it selects the optimal
action plan (R6), the item properties it estimates, and the time it takes for its reasoning (R14). The first results
are presented in subsection 9.2.1. Afterwards, subsections 9.2.2, 9.2.3, and 9.2.4 investigate the influence of
prior knowledge, the influence of exploration, and the system’s robustness, respectively.

All evaluations use the following set-up. A robot is tasked to grasp an item and verify that the grasp was
successful. To do so, the robot must select one gripper, one synthesis approach, and one method to verify
the grasp. There are four verification methods: move the item to the verification camera and detect the
item’s footprint; measure the opening of the gripper; measure the payload on the robot arm; and measure
the pressure in the vacuum gripper. Table 9.1 summarizes the limitations of the capabilities the robot has.
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The capabilities are presented in more detail in appendix E2. Additionally, the robot has knowledge of five
item properties: mass, porosity, shape, size, and transparency. At the start of a test, the robot is presented
with one of the eight items presented in Figure 9.2. These items are selected because together they have a
large variety in item properties. The robot has no knowledge about the specific item it encounters. RSIR then
computes the action plans and selects one of them to be executed.

Table 9.1: The general limitations of the capabilities available to RSIR during evaluation.

Capability Best at handling Worst at handling Requires the use of
Three-finger gripper Spherical shapes Non-spherical shapes, heavy masses -
- Two-finger gripper (large) Shapes with straight edges, large Spherical shapes -
3 masses
'g Two-finger gripper (small) Shapes with straight edges Spherical shapes -
65 . Porous items, sizes smaller than the suction
Vacuum gripper (large) Flat surfaces, large masses cup -
Vacuum gripper (small) Flat surfaces, small sizes Porous items, large masses -
25 Circular Spherical shapes Non-spherical shapes Three-finger gripper
é g | Flatsurface Flat surfaces Non-flat surfaces Vacuum gripper
E & | Parallelline Shapes with straight edges Shapes without straight edges Two-finger gripper
BB . A . o0 :
&' & | Principal axis Shapes with strong principal axis Shapes without strong principal axis Two-finger gripper
. Use item footprint - Transparent items -
& -2 | Use gripper opening - Small sizes Two- or three-finger gripper
£ § | Use payload Large masses Small masses -
< [Use pressure - - Vacuum gripper
5 Move to verification pose quickly Small masses Large masses -
B Move to verification pose slowly Small masses, Large masses - -
S Sense input depth - Transparent items, complex shapes -
anaaes .
& J m
Dog food Glasses Milk Petri Dish Sponge Stressball Teddy Bear | Toothpicks
Mass 2.5kg 0.5kg 1.5kg 0.5kg 0.5kg 0.5kg 1.0kg 0.5kg
Porosity Solid Solid Solid Solid Porous Solid Semi-porous | Solid
Shape Complex Complex Box Disk Box Sphere Complex Cylinder
Size 25cm 10cm 15cm 10cm 25cm 5cm 20cm 5cm
Transparency | Opaque Semi- Opaque Transparent | Opaque Opaque Opaque Semi-
transparent transparent

Figure 9.2: The items considered during the evaluation of RSIR.

Action plans are executed virtually. This is done by first computing the likelihood of a capability suc-
ceeding based on its constraints and the item’s properties (which are unknown to the robot). If an action is
executed, a random number is generated and compared against the likelihood of success. This determines
whether an action succeeds or fails. Any action with one or more constraints can fail, but failures are only
detected during the action that verifies that there is an item in the gripper. RSIR goes through 100 grasping
cycles, continually updating the beliefs it has about the item and recomputing action plan confidences. This
test is done 5 times for each item to lessen the influence of randomness. Unless specified otherwise, RSIR
only creates action plans during the first grasping cycle and updates said plans (instead of recreating them)
for every cycle afterwards.

RSIR’s performance regarding is determined as follows. Once RSIR has completed its 100 cycles, the sta-
bilization cycle is determined from the resulting data. The stabilization cycle is defined as the cycle that is
start of 10 consecutive cycles with the same action plan. The number of cycles executed before the stabi-
lization cycle is reached is counted, which is a measure for how quickly the system stabilizes. Additionally,
it is inspected whether the action plan selected after stabilization is the action plan that would be optimal if
the item properties were known (R6). Additionally, the confidence of said optimal action plan is included, as
well as the runtime for the exploitation evaluation (R14). RSIR’s performance regarding its estimation of item
properties is done by plotting the item properties for two points in time: directly after the stabilization cycle
and 20 cycles after the stabilization cycle. The results are compared with the item’s actual properties.
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The evaluations differ in the following aspects. First is the prior knowledge RSIR has: in some cases it
knows nothing, whereas in other cases it has knowledge about the distribution of item properties that it can
encounter. Secondly, the exploitation to exploration ratio differs between evaluations.

9.2.1. Exploitation

During the exploitation evaluation, RSIR has no prior knowledge of the item, and thus assumes the properties
to be evenly distributed. RSIR does no explorations, thus during every cycle the action plan with the lowest
cost is selected and executed. The runtime is recorded as the time required for a full cycle: creating/updating
the action plans, selecting and executing the best plan, and updating the item properties based on the out-
come of the execution. This is measured for 100 grasping cycles that have a 50% chance of succeeding, for
the case where RSIR reuses the action plans and for the case where it does not. Since initial tests suggested
that reasoning is quicker for successes than for failures, the runtime was also measured when the chance of
success was 100% and 0%.

Results

The results for the action plans are presented in Table 9.2. RSIR takes 16 grasping cycles on average to sta-
bilize, with a standard deviation of 20 cycles. Additionally, Table 9.3 presents the runtimes, with Figure 9.3
showing the runtime per grasping cycle for one test of RSIR when it does not reuse action plans. Figures of
the estimated item properties are included in appendix E3.

Table 9.2: Results for the action plan when RSIR does not explore, averaged over 100 grasping cycles.

Number of cycles Fraction of tests
o . Confidence of the

Item before stability that result in the . )

. . . optimal action plan

is reached optimal action plan

Dog food 24 +18 0.0 0.77
Glasses 39 + 36 0.40 0.12
Milk 2.0+0.0 1.0 0.87
Petri dish 30+31 0.40 0.028
Sponge 7.0x2.0 1.0 0.26
Stressball 1.0+ 0.0 1.0 0.70
Teddy bear 27+74 0.40 0.047
Toothpicks 44+28 0.60 0.30

Table 9.3: Runtimes for RSIR per full grasping cycle when not doing explorations, average over 100 cycles.

Reuse of Probability of .
. . Runtime (seconds)
action plans | successful execution
Yes 1 0.44 £ 0.05
Yes 0.5 0.78 £ 0.39
Yes 0 0.90 £ 0.13
No 0.5 8.1+7.6
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Figure 9.3: The runtime of RSIR when action plans are recreated for every grasping cycle.

Discussion
During most tests, RSIR stabilizes at the optimal action plan (R5, R6) because of the information it derives
from failures (R4). For some items RSIR does not find the optimal action plan. For example, the vacuum
grippers are never used in any of the cycles because the item is assumed to have a probability of only 0.33
to be solid. Hence the vacuum grippers get a high cost and action plans with vacuum grippers are never
selected. For example, the optimal action plan for the dog food makes use of a vacuum gripper, and is thus
never selected. The solution to this lies in gathering more knowledge about the item’s properties. In the case
of the vacuum gripper, this property is porosity. The figures in Appendix E3 shows that the distribution for
the item’s porosity is never updated. This is because the only capabilities with knowledge about porosity - the
vacuum grippers - are never selected. These capabilities must be selected to gain more knowledge, despite
the fact that they are not the capabilities that lead to the highest chance of success according to RSIR’s beliefs.
This calls for exploration.

A second result regarding stabilization is that the number of cycles required to reach stability differs
greatly. Items that stabilize quicker seem to be those for which the optimal action plan has a high confi-
dence and for which the optimal plan is found.

The time it takes for RSIR to reason is relatively short (R14) on an ordinary computer (R15) when reusing
action plans. The results show that the reasoning is significantly faster for a successful execution than for a
failed execution. This is likely because a failed execution contains more uncertainty (which capabilities failed,
which capabilities succeeded, which item properties caused the failure?) than a successful execution, when
it is known that all capabilities succeeded. RSIR seems to be faster when reusing action plans than when not
reusing them, although this cannot be confirmed due to the large variation of the data for not reusing plans.
This large variation is due to the odd pattern shown in Figure 9.3. The raw data show that the cycles with
short runtime always select the large two-finger gripper, parallel line synthesis, and verification through the
gripper opening. This consistency suggests that there is a bug in the architecture, which is likely a timeout
that occurs because the reasoner is taking too long, and the reasoner ends up selecting the first action plan in
memory instead. If this is the case, it is clear that the reuse of action plans greatly improves RSIR’s runtime.

The correctness of the estimated item properties varies. For some items, such as the milk, the properties
are estimated correctly. For other items, such as the dog food, the properties are estimated incorrectly. This
incorrect estimation is partially due to a lack of knowledge in the capabilities and partially due to blaming the
cause of a failure on the wrong property. An example of the former can be seen in the item’s mass. Masses
between 0.5 and 2.0 kg have identical probabilities for all items because the only capabilities that contain
knowledge about mass are the 3-fingered gripper, the small 2-fingered gripper, and the small vacuum gripper.
Out of these, only the former is selected by RSIR. This gripper can handle all masses up to 2.0 kg equally well,
which explains how the mass probability distribution got its shape.

The wrong selection of a cause behind a failure can be seen in the results for the petri dish. The opti-
mal action plan has only an 2.7% chance of succeeding, so even when RSIR selects this plan, failures occur.
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The cause for these failures is mainly the transparency of the item. However, as more failures occur, RSIR
concludes the item is more transparent, larger in size, and different in shape. These last two conclusions are
incorrect. However, RSIR does not realize this because the optimal action plan is limited by transparency,
size, and shape. Other capabilities that can differentiate between these three properties must be executed to
correct these wrong conclusions. Again, this calls for exploration.

Conclusion

This section evaluated RSIR’s performance for selecting the optimal grasping approach when presented with
an item with unknown properties. During most tests, RSIR found the optimal action plan (R6) for a variety
of items (R5). This is because RSIR reasoned about the causes of failures and in the future selected actions
that were less likely to fail (R4). The reasoning was finished within a relatively short time (R14) on an ordinary
computer (R15) when reusing existing action plans. However, RSIR occasionally did not find the optimal
action plan and incorrectly estimated the item’s properties. This is due to exploitation of incorrect knowledge
about the item and wrong conclusions about failures. The most promising solution to this seemed to be the
introduction of exploration.

9.2.2. Prior Knowledge

The previous evaluation concluded that RSIR did not find the optimal action plan partially because it ex-
ploited incorrect knowledge about the item’s properties. Some of this incorrect knowledge came from the as-
sumption that item properties are evenly distributed (for example, that only 33% of the items is non-porous).
This evaluation instead provides RSIR with more accurate prior knowledge (shown in Figure 9.4) and investi-
gates the effects on the selected action plan and item properties. Again, RSIR does no explorations.

Prior knowledge about the item properties
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Figure 9.4: The prior knowledge about item properties that is provided to RSIR.

Results

Table 9.4 presents the resulting action plans when RSIR applies the prior knowledge in Figure 9.4 compared
to when it assumes evenly distributed item properties. Additionally, appendix E4 presents figures of the esti-
mated item properties.
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Table 9.4: Results for the action plan when RSIR uses prior knowledge, compared to when it does not.
Number of cycles Fraction of tests
Item Prior knowledge before stability that result in the Co'nﬁdeane of the
. . . optimal action plan
is reached optimal action plan
Dog food Yes 22+1.8 0.80 0.77
No 24+ 18 0.0
Milk Yes 1.0+ 0.0 0.0 0.87
No 2.0+0.0 1.0
Petri dish Yes 29 +20 0.60 0.028
No 30 +31 0.40
Sponge Yes 13.6 £ 22 1.0 0.26
No 7.0+2.0 1.0
Discussion

The effects of the prior knowledge on RSIR finding the optimal action plan (R6) varies depending on the item
(R5). Based on the prior knowledge, the action plan with the lowest cost contains the vacuum gripper. Be-
cause this is the optimal action plan for the dog food, RSIR stabilizes more quickly for the dog food. However,
it also leads RSIR to believe the vacuum gripper is optimal for the milk, even though it is not. Because RSIR
does not explore, it never finds the optimal action plan for the milk. The results for the petri dish and sponge
do not differ greatly from those for the evaluation without prior knowledge. This is likely because the confi-
dence of the optimal plan is relatively low, and thus there is no action plan that is clearly a lot better than the
others. This makes it harder for RSIR to reason, and thus the added benefit from prior knowledge is small.

The prior knowledge both improves and worsens the accuracy of the estimated properties. Improvements
can be seen in the transparency for all items except the petri dish and the porosity for the dog food and milk.
This is because these items’ properties are in line with what RSIR believes to be most common. Properties
that are uncommon, on the other hand, are estimated with worse accuracy. This is the case for the dog food’s
shape and mass, the petri dish’s mass, shape, size, and transparency, and the sponge’s porosity and size. Note
that the values of all of these properties have a low probability in Figure 9.4. Because of this low probability,
RSIR attributes the cause of failures to other properties, and thus ends up with an incorrect belief of the prop-
erties.

Conclusion

This subsection evaluated RSIR’s performance for selecting the optimal grasping approach when presented
with an item with unknown properties and prior knowledge about the distribution of said properties. RSIR
more often selected action plans that performed well based on the prior knowledge. This resulted in RSIR
finding the optimal grasping approach for items for which those plans were optimal, but not for items for
which those plans were not optimal (R5, R6). Similarly, RSIR estimated the item properties well for items
whose properties were in line with the prior knowledge, but poorly for items whose properties were not in
line with the prior knowledge. It can be concluded that providing RSIR with prior knowledge is not sufficient
to make it always find the optimal action plan. Instead, the most promising solution to this seemed to be the
introduction of exploration.

9.2.3. Exploration

Previous evaluations showed that RSIR might use explorations to correct wrong conclusions about failures
and item properties. Hence this evaluation considers the effect of randomly selecting an action plan every
n grasping cycles, for n=5 and n=2. During the remaining cycles, the action plan with the lowest cost is
selected. Again, RSIR has no prior knowledge of the item, and thus assumes the properties to be evenly dis-
tributed. This evaluation is done for three items: the dog food, milk, and sponge.

Results

Table 9.5 presents the resulting action plans when RSIR explores compared to when it does not explore. On
average, RSIR takes 11+14 cycles to stabilize without exploration, 9.1+£7.7 cycles when exploring 1 in 5 cy-
cles, and 8.6+7.0 cycles when exploring 1 in 2 cycles. Appendix E5 presents figures of the estimated item
properties.
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Table 9.5: Results for the action plan when RSIR explores, compared to when it does not explore.

Number of cycles Fraction of tests Confidence of the
Item Number of explorations before stability that result in the . .
. . . optimal action plan
isreached optimal action plan
None 24 +18 0.0
Dog food 1in5 10+ 8 0.0 0.77
lin2 13+6 1.0
None 2.0+ 0.0 1.0
Milk lin5 3.6+2.2 1.0 0.87
lin2 3.4+09 0.8
None 7.0+2.0 1.0
Sponge 1lin5 14+ 8 1.0 0.26
1lin2 9.0+8.0 1.0

Discussion

The results show that exploration allows RSIR to find the optimal action plan (R6) for all items (R5). Addition-
ally, the estimated item properties are more correct than when exploration is not used for the dog food and
the milk. This is however not the case for the sponge, for which the estimations are still mostly incorrect. This
is likely due to the fact that the confidence of the optimal action plan is low, and thus RSIR still draws incor-
rect conclusions about which item properties caused a failure. There is no significant change in the number
of cycles before stability is reached.

A limitation in this evaluation is that explorations are done randomly, which is not at all an optimal ap-
proach to obtaining knowledge about the item. A better approach would take into consideration which prop-
erties have the most uncertainty and which capabilities have knowledge of those properties, for example.
This could lower the number of cycles required for stabilization. However, designing such an approach is
considered outside the scope of this thesis because it is closely related to deciding between estimating item
properties and executing the task (the competency question that is outside the scope of this thesis). Note also
that the explorations in this evaluation are only useful for the dog food when itis done every 1 in 2 cycles. This
is another indication that the algorithm for exploring must be designed properly to achieve the best results
with RSIR.

Conclusion

This subsection evaluated RSIR’s performance for selecting the optimal grasping approach when presented
with an item with unknown properties. In this evaluation, RSIR did random explorations to correct wrong
conclusions about failures and item properties (R4). The explorations allowed RSIR to find the optimal action
plan (R6) for all items (R5). Additionally, the estimated properties were more correct for two out of the three
items. The use of explorations had no effect on the number of cycles required for stabilization. The most
promising approach to further improving RSIR is to design a more intelligent algorithm for exploration.

9.2.4. Robustness

The evaluation using exploration showed that RSIR finds the optimal action plan in most cases. However, this
evaluation (as did all previous evaluations) assumed that the confidence values of the capabilities are known.
However, in practice these values are inaccurate, for example due to limited knowledge of the capabilities or
limited available data for machine learning. For example, it might be that the confidence value for a capability
and a semi-porous item is defined as 0.2, but in reality this capability succeeds only 10% of the time. For RSIR
to be applicable to grasping (R1) and other related tasks (R3), it must handle such imperfect knowledge of its
capabilities. This subsection evaluates RSIR’s robustness to such imperfect knowledge.

The imperfect knowledge is introduced as follows. For each value for a constraint on a capability, a ran-
dom number (noise) is added. This random number is generated from a normal distribution with a mean of
0 and a deviation of 0.1. This deviation is large enough to introduce inaccuracies but small enough to not re-
move the general knowledge of RSIR. The resulting confidence values are constrained to be between 0 and 1.
As an example, Figure 9.5 shows the resulting confidence for the three-fingered gripper and an item’s shape.
The inaccuracies are added to the confidences before the evaluations are done, and are not changed during
the evaluations. The remaining parameters are the same as those for exploration in subsection 9.2.3. The
results are compared against those of exploration without noise to determine how robust RSIR is.
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Figure 9.5: An example of the confidence values after noise is added.
Results

Table 9.6 compares the resulting action plans when RSIR has perfect knowledge about its capabilities and
when the noise is added. Additionally, appendix E6 presents figures of the estimated item properties.

Table 9.6: Results for the action plan when RSIR explores, compared to when it does not explore.

Number of cycles Fraction of tests
Item Exploration | Noise before stability that result in the Co'nﬁdenc? of the
. . . optimal action plan
is reached optimal action plan
Dog food lin5 Yes 46+25 0.0 0.77
No 10+£8 0.0
lin2 Yes 9.8+6.7 0.4
No 13+£6 1.0
Milk 1in5 Yes 1.0+ 0.0 1.0 0.87
No 3.6+22 1.0
lin2 Yes 1.0+ 0.0 1.0
No 3.4+09 0.8
Sponge lin5 Yes 11+6 0.8 0.26
No 14+8 1.0
lin2 Yes 1424 1.0
No 9.0 +£8.0 1.0
Discussion

The fraction of tests for RSIR finds the optimal action plan is slightly lower compared to when RSIR has perfect
knowledge about its capabilities (R6). This makes sense because RSIR is less able to reason because of the
noisy knowledge it has. Regarding stabilization, the milk is somewhat of an odd case because in all 5 tests,
RSIR selects the optimal action plan during the first cycle and selects no other plans after that. Hence the
stabilization for the milk has a standard deviation of zero. The results show no significant increase in number
of cycles before stability is reached for the other items. This shows that RSIR has a decent level of robustness
and can be applied in practical applications (R1, R3).

The figures of the item properties show that the estimation of the properties is slightly worse compared to
when there is no noise on the confidence values. The biggest worsening seems to be for the item’s size, where
RSIR incorrectly concludes that the item is smaller than 20 cm. A closer look at the noise explains this: the
large two-fingered gripper is often selected, and Figure 9.6 shows that the confidence for large sizes is greatly
underestimated. Hence RSIR quickly discards large item sizes if an action plan with the large two-fingered
gripper succeeds. Finally, there seem to be no other general trends in the results for the item properties.



9.3. Demonstration 103

Noise added to the confidence of 'useGripperTwoFingerLarge'

1 = = = T T
I:lCDrrect values
-Nois‘_.r values
1 1 1 |I |._
3 4

5

o o o
- =z} [=:}
T T T

Confidence value

=
ma
T

Size
Figure 9.6: The confidence for the large two-fingered gripper for an item’s size.
The main limitation in this evaluation is the limited number of tests done. These results are no evidence

that RSIR is robust for all possible item properties and tasks. However, this evaluation does provide some first
positive results that point towards robustness.

Conclusion

This subsection evaluated RSIR’s performance for selecting the optimal grasping approach when provided
with imperfect knowledge about its capabilities and when presented with an item with unknown properties.
This performance is relevant because perfect knowledge is not available in practical applications (R1, R3). The
imperfect knowledge caused RSIR to not find the optimal action plan in a small fraction of tests on a variety
of items (R5, R6). Additionally, the estimation of item properties was slightly worse. This is because RSIR was
less able to reason about failures because of the noisy knowledge it had (R4). There was no significant change
in number of grasping cycles RSIR required to stabilize.

9.3. Demonstration

This section performs the final evaluation of RSIR: its ability to implement a pick-and-place approach (R1).
Because of the limited components available in the lab in Eindhoven (R19), it is not possible to evaluate the
full pick-and-place approach. Instead, the robot has access to the following capabilities:

1. Loading the verification pose, which is the pose the robot must move to after grasping an item
2. Taking an RGB image of the input carrier.

3. Taking a depth image of the input carrier.

4. Using a parallel-jaw gripper (a Schunk gripper).

5. Loading a segmentation that does not include the edges of the carrier.

6. Synthesizing a grasp using the algorithm developed in this thesis.

7. Moving a virtual version of the robot to the grasp pose.

8. Activating the gripper.

9. Moving a virtual version of the robot to the verification pose.

10. Asking the human operator whether the grasp was successful.

When executed in this order, the robot completes the task. Because of the limited components avail-
able, RSIR can only use this action plan to complete the task. Hence this demonstration does not evaluate
RSIR’s reasoning capabilities. Instead, this demonstration proves that RSIR can be integrated with existing
components to complete a grasping task (R1, R19). A video of the demonstration is available at https:


https://youtu.be/X2FCn5cXoZs
https://youtu.be/X2FCn5cXoZs
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//youtu.be/X2FCnb5cXoZs. The demonstration shows that RSIR correctly creates the action plan, commu-
nicates with the required components over ROS, detects failures, infers item properties and causes behind
failures, and retries the grasping approach after failure.

In summary, this chapter evaluated RSIR by answering the competency questions, evaluating RSIR’s per-
formance for grasping an item with unknown properties, and demonstrating its implementation on a robotic
set-up. RSIR was able to answer all competency questions. When grasping an unknown item, RSIR found the
optimal grasping approach when doing sufficient explorations. Reasoning was better for items with prop-
erties that are common compared to those that are uncommon. Initial results indicated decent robustness
against incomplete knowledge about capabilities. RSIR finished its reasoning within a reasonable amount of
time. Finally, RSIR worked correctly when completing a grasping task using components of a physical robot.


https://youtu.be/X2FCn5cXoZs
https://youtu.be/X2FCn5cXoZs
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Conclusion

This chapter concludes the development of RSIR: a pick-and-place robot with reasoning capabilities that
make it more robust against failures, and a new grasping approach that allow it to handle more items. To-
gether, the reasoning and grasping approach result in a higher pick-and-place capacity. In developing RSIR,
this thesis answered the research question: How can a pick-and-place task of a robotic arm with access to
multiple grippers be modelled using knowledge representation and reasoning such that the system is robust
against failures, such that it can handle a larger variety of unknown items, and such that it can be expanded
to other related tasks? Additionally, a main requirement for RSIR is that it must provide information about its
reasoning process. The research question is divided into the following subquestions:

RQ1. What knowledge and reasoning capabilities should RSIR contain?
RQ2. What method best provides this knowledge and these reasoning capabilities?
RQ3. What software architecture best integrates this knowledge and reasoning with the robot?

RQ4. What is RSIR’s performance on selecting the correct actions to be executed after the model and
software architecture have been implemented?

Knowledge and Reasoning

To achieve the improved capacity, RSIR must contain knowledge (RQ1) about tasks, failures, and item proper-
ties. This knowledge is best captured in an ontology, because ontologies are expandable, can provide robust-
ness, and provide insight into the robot’s thought process. The best development method for the ontology
is Methontology. The best approach to achieving robustness (RQ2) is though traded control and applying
known capabilities in new ways (as opposed to developing qualitatively new behaviour).

Following Methontology, the ontology that best captures the knowledge (RQ2) is based on the Core Ontol-
ogy for Robotics and Automation [106] and the Task Ontology [96]. These ontologies were extended to include
all knowledge required by RSIR. The resulting ontology revolves around a robot being equipped with multi-
ple devices, where each device provides one or multiple capabilities. A capability is considered a block with
inputs and outputs, as well as constraints. RSIR combines capabilities into an ordered list called an action
plan. When the actions in an action plan are executed consecutively, they complete the defined task. RSIR
selects the best action plan according to a cost function based on the estimated probability of success and
estimated execution time. Furthermore, item properties are modelled as probability density distributions
because this allows RSIR to handle uncertainty. Capability constraints are modelled as confidence scores per
item property. If an action plan is complete or fails, a Bayesian network infers the most likely item properties
based on the prior knowledge of the item, the capabilities executed, and the constraints of each capability.
It also provides information about which capability most likely caused the failure. Based on the information
from the network, RSIR recomputes the costs of the action plans and selects a new plan to execute.

The software architecture (RQ3) that was selected to implement RSIR is based on a state machine that

communicates with the ontology, reasoner, and other modules over ROS. The ontology was implemented
in KnowRob because of its connection to ROS. The reasoner was implemented in Prolog (which is part of
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KnowRob) and Python (for the Bayesian network).

Finally, RSIR’s performance was measured (RQ4) by how much of the required knowledge it contained,
by how often it selected the optimal action plan, by how well it estimated an unknown item’s properties, and
by how much time it required for its reasoning. RSIR contained all of the required knowledge with the excep-
tion of the knowledge required to device when to exploit knowledge and when to explore for new knowledge.
When doing sufficient random explorations, RSIR nearly always found the optimal action plan, even when the
knowledge it had about its capabilities’ constraints was noisy. Furthermore, the estimation of item properties
was generally better with explorations than without explorations. The estimations got worse when noise was
introduced to RSIR’s knowledge of the constraints on its capabilities. When provided with prior knowledge
about the distribution of item properties in the system, the belief RSIR had about item properties improved
for items that are common and declined for items that are uncommon. Finally, the time it took for RSIR to
execute and reason about a task was 8.1 seconds when creating action plans, or 0.78 seconds when updating
action plans. The number of pick-and-place attempts it required to find the optimal action plan was 8.6 on
average when exploring often. This is reasonable with respect to the time other components of RSIR take.

The main limitation in RSIR’s design is that is developed using the sense-plan-act paradigm. This works
well for most of the implementations of related tasks, but it makes it so that RSIR is unsuited for feedback-
heavy capabilities such as visual servoing. Additionally, RSIR cannot contain knowledge of dependencies
between item properties. These two limitations are inherent to RSIR’s design.

Furthermore, there are several limitations that could be improved given more time. The main limitation
in this category is the simple algorithm RSIR uses for exploration. A better exploration algorithm could likely
better infer item properties and achieve the optimal action plan in less pick-and-place cycles. A second lim-
itation is that the components were implemented without a focus on code optimization, which increases
runtime. For example, the function in RSIR that creates action plans uses the rdf _assert and rdf _retract
functions, which are computationally expensive compared to saving knowledge in dynamic memory. An-
other important limitation is that the state machine currently does not distinguish between failures due to
unavailable components and failures due to other causes.

Grasping Approach

The grasping approach most suited for RSIR (RQ2) uses a parallel-jaw gripper, because this gripper is best
at grasping items that RSIR’s vacuum gripper cannot handle. The approach synthesizes grasps based on
detecting parallel lines in depth images. This approach is most suited for RSIR because of its simplicity,
low computational cost, and high grasp success rate. Additionally, using depth information improves the
evaluation metric, makes the approach less sensitive to visual textures, and allows the approach to detect the
height of an item’s supporting surface.

The resulting grasp synthesis algorithm was evaluated based on the variety of items it can grasp and its
runtime. It was tested on a set of items encountered by RSIR. It can synthesize reasonable grasps for a variety
of items, some of which are typically not graspable by a vacuum gripper, and it has a reasonable runtime
of 1.57 seconds. The grasp metric is generally a good measure of how good a grasp is. Furthermore, the
approach can work with a simple rectangular segmentation, as opposed to an item segmentation that is more
computationally expensive to obtain.

The main limitations of the grasping approach are that it requires the items to have several (near) straight
edges, and it requires most of the item to be detectable by the depth camera. Itis also relatively slow compared
to its equivalent in literature. This might be due to the changes in the algorithm (using depth data) or the
implementation. A final limitation is the limited set of items the approach was tested on in this thesis.



Future Work

This chapter presents future work that can be done regarding RSIR. The first section presents future work
regarding scientific research topics that have not been answered in this thesis. The second section, on the
other hand, presents future work in engineering that must be done to make RSIR available for application in
Vanderlande’s systems.

Further Research
This section presents possible research topics for future work. The following topics could be interesting:

» The first potential topic for future research is how to effectively integrate feedback-heavy control ca-
pabilities into RSIR. This is an interesting topic because the feedback-heavy capabilities deviate from
the sense-plan-act paradigm that is the basis for RSIR, and thus likely require a drastically different ap-
proach. Furthermore, a version of RSIR that can effectively implement such capabilities would be more
general than the current version of RSIR. This generalizability is not only one of the goals of RSIR, but
is also a goal of ontologies in general [87][130][131].

* The second potential topic for further research is intelligent exploration. In this thesis, RSIR explored
randomly once every n cycles, but this approach wastes precious time if the selected action plan does
not provide new information about the item, or if the best action plan is (likely) already used. Future
work could focus on how to explore efficiently, thus answering the competency question "What tasks
should the system do to complete a goal?" Ideally, this knowledge would be integrated into the ontology.

¢ A final topic could be to acquire information from the internet and add this to the ontology. Examples
are the online search based on EAN-codes mentioned in this thesis, and the research being conducted
by the researchers behind KnowRob that aim to learn from instruction videos on the internet or actions
demonstrated in virtual reality [19]. Given the vast amount of information available on the internet, it
is likely that RSIR can find useful information through such online searches. The research would focus
on how to effectively search for this information and how to integrate it into the ontology.

Finally, future research could focus on an ontology for emergent behaviour and/or shared control. How-
ever, these topics are less related to RSIR because emergent behaviour and shared control were not consid-
ered in the design of RSIR.

Implementation Improvements

These improvements focus on further improving and testing RSIR to include it in Vanderlande’s systems. This
category of future work is divided into three levels of priority based on how important the work is in getting
RSIR ready for warehousing applications.

High Priority
High priority work is work that must be done before RSIR can be fully tested. Exploration. Two more im-

portant points are to find a better algorithm for filling in the missing data in the depth image, and testing
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the approach on a physical set-up. The former is important because the poor filtering is a limiting factor in
synthesizing grasps. The latter is crucial because it could prove that the synthesized grasps actually lead to
the robot grasping the item. Finally, it is important to have a closer look at the parameters, because they have
a big influence on the runtime. Selecting a poor value for the peak factor, for example, results in an impracti-
cally long runtime. The answer to this problem most likely lies in the number of peaks parameter because it
sets an upper bound for the number of detected lines and thus the runtime. This must be researched in more
detail.

Medium Priority
Medium priority work considers testing RSIR on a larger set of items than considered in this thesis, and on
the actual SIR set-up. To do so, the constraints on SIR’s capabilities must be determined. This includes se-
lecting the relevant item properties, discretizing said properties, and finding the confidence values per item
property per capability. This can be done based on expert knowledge (likely inaccurate) or statistical analy-
sis and/or machine learning (based on performance tests, likely more accurate). Note that this includes the
grasp synthesis approach based on parallel lines. The conclusion of this thesis already provided some sug-
gestions for creating four variants of the synthesis approach, based on the provided segmentation and the
item. Furthermore, the state machine should be edited so that it distinguishes between component failures
and unavailable components. This provides RSIR with the information required to draw correct conclusions.
Once the above work is finished, RSIR can be set up on the SIR system and it could run (unsupervised) for
a while. RSIR could load and save its knowledge so that it can recall knowledge about items it has encoun-
tered before. This test should give good insight into how well RSIR estimates the items’ properties and how
well it selects action plans.

Low Priority

Finally, low priority work focusses on minor improvements that could be beneficial for RSIR in the long run.
The are two main points for improvement regarding RSIR in general. The first point is to re-use actions done
in a previous action plan. For example, if RSIR segments the input carrier to determine an item’s size, it
can re-use the segmentation for grasp synthesis. However, another example is that RSIR cannot re-use a
segmentation after a grasp has failed, because the robot arm might have moved the items. The questions
of when and how RSIR can re-use information could be the subject of future work. The second point of
improvement for RSIR is code optimization, especially regarding the creation of action plans and the grasp
synthesis algorithm.

Finally, there are four minor points of improvement for the grasp synthesis algorithm. The first point is to
investigate more evaluation metrics for the grasp synthesis approach. For example, it could into account the
item’s centroid, or the item’s height with respect to the other items in the carrier. Similarly, more algorithms
could be investigated for detecting edges and lines. The third point is to expand the approach to more grasps
besides top grasps, for example by determining the angle of the item’s top surface. The final point is to imple-
ment the synthesis approach in a language other than Matlab, because then the point cloud can be passed
via ROS, the approach can be started via a ROS launch file, and it likely improves runtime.
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GS1 Product Categories

This appendix presents the GS1 definitions for the five categories for which an additional gripper can achieve
the most improvements for RSIR. The definitions are as shown as in Figure A.1.

Name Example GDSN Description
code
Not packed NE The item is supplied without packaging or
N 'unpackaged'.
Net g NT A package with an open structure of threads or

strips, woven in a regular pattern with openings
between the threads. The packaging is intended
for holding or carrying products.

Card cM A flat packaging on which the product is mounted

or is attached to for presentation purposes.

Box BX A non-specific term referring to a non-flexible,
three-dimensional packaging with closed sides
completely enclosing the contents and may be
made of any material. Although some boxes are
suitable for reuse or reclosing, they may also be

single use, depending on the product hierarchy.

Blister pack g BPG A type of packaging where the item is packaged
between a preformed 'blister' (usually made of
transparent plastic) and a cardboard
'carrier'. These may be attached to each other by
means of staples, heat welding, gluing or in some
other way. In some cases, the blister packaging is
completely wrapped around the product like an
oyster shell. Blister packs are usually made from
polyvinyl chloride by thermoforming, but almost
any thermoplastic may be formed into a blister.

Cylinder cY A non-flexible, cylindrical packaging with straight

sides and circular ends of equal size.

Figure A.1: Definitions for the GS1 categories for which an additional gripper can achieve the most improvements for RSIR.
Adapted from [97].
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Implementations of Related Tasks

This appendix presents the results of the literature study done to find implementations for related task RSIR
should be expandable to. Each implementation is broken down into capabilities. This appendix follows the
same structure as the list of related tasks in section 6.1.2.

Item Variety
* Switch between grippers. Vanderlande implements this by having a rack in which grippers are hanging
located next to FM-GtP. The grippers are modular and can be swapped through a pneumatic system. To
swap grippers, the robot moves to a free spot in the rack, deactivates the pneumatic link, moves to an
occupied spot, and activates the link. Capabilities: Move robot arm, Activate pneumatic link,
Deactivate pneumatic link, Find free spot in gripper rack, Find gripper in gripper
rack

¢ Do preshaping. A preshape is defined as a gripper pose [135]. Hence making the gripper use a preshape
is as simple as setting its pose. The main difficulty in using preshapes is the algorithms that determines
when to use which preshape. To provide the knowledge of the preshape to RSIR, the gripper can be
included once per preshape. For example, consider the gripper in Figure B.1. Capabilities: Select
three-fingered gripper (spherical), Select three-fingered gripper (cylindrical), Select
three-fingered gripper (precision tip), Select three-fingered gripper (hook)

A4+

Figure B.1: Preshapes for a three-fingered hand [90]. From left to right: spherical, cylindrical, precision-tip, and hook grasps.

 Shift items. Items can be shifted by closing the gripper, then pushing the gripper onto the item and
moving the gripper parallel to the bin. The approach by Berscheid et al. determines when and how
to shift based on machine learning [22], but a similar approach to shifting could be implemented ana-
lytically. Capabilities: Close gripper, Take RGB image, Take depth image, Determine item
position, Move robot arm, Apply vertical force, Move gripper horizontally

¢ Limit the grasp force. The main challenge in this action is determining what the maximum grasp
force is. Once this is determined, setting the limit is simple. Capabilities: Determine maximum grasp
force, Set maximum grasp force

Three other aspects regarding item variety are types of clutter, item flows, and supporting surfaces. Be-
cause the implementation differs per task, these aspects are discussed for grasping and placing separately.
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Grasping

» Synthesize grasps for each type of gripper RSIR has. The literature study done prior to this thesis
provides an overview of synthesis approaches for grippers with two or more fingers [135]. The ap-
proaches can be analytical (based on item and/or gripper models) or data-driven (based on prior ex-
perience). Some analytical approaches simplify the item model to make synthesis easier. Note that
the differences in grasp synthesis approaches mostly come from the algorithms used. Hence most ap-
proaches can be considered a "synthesize grasp" capability, for which the required inputs differ (for
example, depth data or an item’s primitive shape). Capabilities: Take depth image, Determine
item’s principal axis, Determine item’s primitive shape, Synthesize grasp via simulation,
Estimate item shape, Load item model, Map grasp from known model to sensory data,
Synthesize grasp

¢ Recognize a specific item in the input carrier. The most straightforward way to recognize a specific
item is through vision, as machine vision approaches have proven useful in detecting objects and cam-
eras are already present in SIR [24]. Detection algorithms can be based on RGB images, depth im-
ages, or both. Capabilities: Take RGB image, Take depth image, Detect item in RGB image,
Detect item in depth image, Detect item in RGB and depth image

¢ Synthesize a grasp for one specific item in the carrier. Implementations for this are:

— An extension of the approach currently used by Vanderlande [125]: instead of passing the full seg-
mentation mask to the synthesis algorithm, it could pass only the segment that contains the target
item. Capabilities: Segment image, Detect target item, Isolate target item from segmentation

— Another implementation is to determine the target item’s location, and to include this in the syn-
thesis approach’s metric [135]. An example of such a metric is a metric that minimizes the distance
between the gripper centre and the target item’s centroid. Capabilities: Detect target item,
Determine target item position

¢ Search for a non-visible item. An approach based on heuristics moves non-target items within a com-
partment, or between compartments, to make the underlying items visible. The system remembers
where previous target items were detected and searches there. If none were detected previously, the sys-
tem chooses items based on how likely they are obscuring other items (that is, their size and their height
in the carrier). Capabilities: Segment image, Synthesize grasp, Move robot arm to grasp pose,
Move robot arm, Determine item size, Determine item height, Recall positions of previous
target items

¢ Grasp an item in specific location. Again, this can be done by including the location in the synthesis ap-
proach’s metric [135]. An example is a metric that selects the item with the largest average height. This
makes the synthesis approach grasp the topmost item. This functionality is included in the synthesis
approach and is thus not a separate capability. Capabilities: none

Types of Clutter
¢ Grasp an item in isolation. Many grasping approaches in literature consider items in isolation, as this
is the simplest type of item placement [135]. Capabilities: Synthesize grasp

¢ Grasp an item in sparse clutter. Items in sparse clutter could be picked up with synthesis approaches
for items in isolation, as long as a segmentation is provided in which only one item is present [125].
Otherwise, approaches that work on dense clutter can be used [135]. Capabilities: Segment image,
Synthesize grasp

¢ Grasp an item in dense clutter. Some synthesis approaches are designed to handle dense clutter. An
example of a consequence is that these approaches cannot assume the target item is on a supporting
surface at a known height. These approaches can also be used for items in sparse clutter or isolation
[135][125]. Capabilities: Synthesize grasp

* Grasp a densely packed item. Densely packed items may pose problems. For example, the items in the
corner of a carrier cannot be picked up with a fingered gripper, as this gripper requires two sides of the
item to be approachable. In this case, the item could be shifted such that it can be picked up. Shifting
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items was considered earlier in this appendix. Capabilities: Detect ungraspable item, Determine
shift direction

¢ Grasp an item in a narrow space. Implementations for this are:

— The general approach is synthesizing grasps and checking for collisions afterwards, and leaving
navigating around obstacles to the motion planner citeSchooten[121]. Capabilities: Synthesize
grasp, Verify grasp validity, Create motion plan, Move robot arm

— Another approach is to explicitly include the environment in the grasp synthesis. For example,
the environment can be included through depth information or a 3D model of the environment
[135][120][90]. Capabilities: Take depth image, Load environment model, Synthesize grasp

— Yet another approach to grasping in narrow spaces is through reinforcement learning, thus having
the system learn by itself to detect narrow spaces and navigate around them. These approaches
generally take an RGB image of the scene as input and output the desired motion command
[75][61]. Capabilities: Take RGB image, Compute motion command, Move robot arm

Item Flows
The implementation for grasping depends on how predictable the item flow is:

¢ For predictable flows, a general approach is to predict the position of the item on the conveyor using
the conveyor velocity, and to plan a trajectory based on that prediction. This approach requires pre-
cise calibration. Capabilities: Know/Determine conveyor velocity, Predict item position,
Synthesize grasp

e For less predictable flows, a common approach is visual servoing. This requires less calibration, but
does require continuous sensing and computing of the motion command. Visual servoing allows the
robot to handle unexpected disturbances and uncertainty [62][92][75]. The camera can be either static
or attached to the robot, and the motion command can be computed analytically or through machine
learned algorithms. An example for analytical computation tracks the item using its known 3D shape
[62]. Machine learning algorithms can be based on neural networks and/or reinforcement learning
[92][75]. Machine learning approaches typically benefit from cameras attached to the robot, because
the relative visual input makes it easier to learn [92]. Capabilities: Take RGB image, Detect item,
Detect robot arm in image, Synthesize grasp, Compute motion command

Supporting Surfaces
There are several implementations for grasping from different supporting surfaces:

¢ Assume supporting surface. This is the easiest solution but also the least general one. A handful of
grasp synthesis approaches make this assumption [135]. One example is the approach by Baumgartl
and Henrich considered in this thesis [17]. Capabilities: Load surface height, Synthesize grasp

» Estimate supporting surface. This is a more common approach to handling surfaces and usually makes
use of a depth camera [135]. The grasp synthesis approach developed in this thesis falls under this
category. For approaches that assume a flat surface, the process could be split into two capabilities:
estimating the height and synthesizing the grasp pose. However, it is more common to directly pass
the depth data to the synthesis approach. Capabilities: Sense depth, Estimate surface height,
Synthesize grasp

¢ Detect supporting surface. If the supporting surface is not estimated, it can be detected via force feed-
back: the gripper is slowly lowered until a force is detected, which indicates that the gripper has reached
the item or supporting surface. This is currently being researched by Vanderlande. Capabilities: Move
robot arm, Sense force, Detect supporting surface via force

¢ Grasp from a vertical stack. The approach that won the Amazon Robotics Challenge in 2016 makes
no clear distinction between the horizontal and vertical stacks (shown in Figure B.2) when it comes to
grasping [30]. Instead, they define four motion primitives: suction grasp from the top, suction grasp
from the front, suction grasp from the side, and pinch grasp (using two fingers). Their metric, based on
the item and the surrounding clutter, takes care of selecting the proper primitive. Capabilities: Take
depth image, Synthesize grasp, Select motion primitive
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Figure B.2: The horizontal stack (bin, left) and the vertical stack (shelf, right) handled by the system by Corbato et al. [30].

¢ Take an item from a human (or robot). From a robot’s point of view, this is not significantly different
from other grasping challenges (for example, grasping hanging goods or grasping items that move un-
expectedly). The main challenge comes from the risk in human-robot interaction. One way to decrease
this risk is to use haptic feedback for recognizing when the robot has grasped the human instead of the
item [53]. A support vector machine can recognize this based on the sensed force and deformation.
Capabilities: Sense force, Sense deformation, Detect grasp on human

¢ Catch an item. An implementation for this is to predict the item’s motion and catch it where its tra-
jectory intersects with a predefined horizontal plane [? ]. The main challenge in this is the required
high-frequency feedback loop (visual servoing), and designing the algorithm that detects the item [? ][?
]. Detecting the item is easier when using cameras with a viewing direction perpendicular to the item’s
trajectory [? ][? |. Capabilities: Sense RGB image, Detect item, Compute expected motion,
Compute grasp location, Move robot arm

Placing

The implementations of tasks regarding placing are:

¢ Place the item stably. Two implementations for this are:

— The approach by Baumgartl et al. places sensor-modelled items stably on non-planar surfaces
based on the item’s geometry [18]. The approach consists of four steps: selecting a location on
the placement area suitable for the item, orienting the item, computing the placement pose, and
computing the quality metric. Orienting can be done according to the item’s principal axis or
semantic need (e.g. an upright orientation). Figure B.3 illustrates the approach. In step 1, the
placement area is selected and the item is oriented. It is lowered until it touches the supporting
area, and is then rotated until there are three points of contact between item and supporting area.
The metric is evaluated (using the item’s centre of mass and coefficient of friction) to confirm that
the item is in static equilibrium. Capabilities: Find suitable placement area, Orientate
item for placing, Compute placement pose
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Figure B.3: Illustration of some of the steps in the placing approach by Baumgartl et al., adapted from [18]. From left to right: the
placement area and orientation of the item, first contact between item and supporting area, a result for a left-handed rotation, and a
result for a right-handed rotation.

— Another option is to run a physics simulation to determine which item poses are stable [18]. The
disadvantages are that the environment must be modelled, and that simulations are relatively
computationally expensive, especially for deformable items [90][113]. Capabilities: Create item
model, Create environment model, Run placement simulation

¢ Place anitem such that it can be picked up again. An implementation of this places items such that they
are densely packed but have enough distance between them to be picked up again [17]. The carrier in
which items are placed is divided into rectangles based on the items’ bounding boxes. Figure B.4 illus-
trates these rectangles after two items have already been placed. Capabilities: Detect empty areas,
Segment carrier into rectangles, Detect item footprint, Select rectangle segment for

placement

Figure B.4: The rectangular segments created by the algorithm by Baumgartl et al. [17]. Two items have already been placed in the
carrier (black). The remaining areas are sorted based on the item’s bounding box.

 Estimate the item’s pose. Implementations for this are:

— One implementation is to match the sensory (depth) data to a known item model [19]. Since the
pose of the model is known, the pose of the detected item can be determined. However, this does
require the item model to be known. Capabilities: Sense depth, Load item model, Compare
sensory data to item model

— An item’s pose can also be determined through its principal axis, as done by Baumgartl et al. [17].
The principal axis can be computed given (noise, incomplete) geometrical data of the item. Ca-
pabilities: Take depth image, Determine principal axis

— Another common approach in describing an item’s pose is by using its primitive shape. Examples
of primitive shapes are spheres, cylinders, and cones. A primitive shape can be determined from
the item’s (noisy, incomplete) geometrical data and the pose of the shape can be saved. Capabili-
ties: Take depth image, Determine item’s primitive shape

— Semantic knowledge. A final way to estimate an item’s pose is through semantic knowledge, for
example by recognizing certain parts of the item (such as the handle of a mug [11]), or recognizing
the orientation of an item (such as "upright" [18]). Capabilities: Take depth image, Take RGB
image, Detect semantic item part
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B. Implementations of Related Tasks

Types of Clutter

When it comes to placing, the clutter present around the supporting surface can be considered obstacles [17]
or part of the supporting surface [18]. Because of this, placement algorithms do not explicitly consider the
type of clutter.

Item Flows
The implementation for item flows for placing is very similar to that for grasping:

For predictable flows, the position of the (items on) the conveyor can be estimated, and the robot’s
trajectory can be computed to match said position [? ]. Capabilities: Know/Determine conveyor
velocity, Predict item position, Synthesize place pose

For less predictable flows, the robot can make use of visual servoing [62] [92][75]. Capabilities: Take
RGB image, Track belt, Track item on belt, Track robot arm, Synthesize place pose,
Compute motion command

Supporting Surfaces
Implementations for placing on different supporting surfaces are:

Drop the item, which is the easiest solution and which is commonly used [135]. However, the item
might get damaged and the approach likely does not fill the carrier efficiently. Capabilities: Load drop
location, Move robot arm, Deactivate gripper

Assume surface height. As with grasping, this is easy but not general. Capabilities: Sense output
depth, Estimate surface height, Synthesize place pose

Sense supporting surface. Again, this approach is similar to the approach for grasping. Capabilities:
Move robot arm, Sense force, Detect supporting surface via force

Hand an item to a human. The study by Huber et al. shows that the performance of a robot handing
an item to a human is surprisingly efficient, despite the robot using a (relatively simple) minimum-jerk
velocity profile with a set end position [57]. The hand-off is approximately 1 second slower compared
to when a human is handing the item to a human, mainly because the robot waits after the human
has taken the item from the robot’s gripper. This study shows that a simple algorithm already results
in fast human-robot hand-off. However, it might be beneficial to have the robot partially deactivate
its gripper when presenting the item to the human, so that the human does not need a lot of force to
pull the item out of the gripper. Capabilities: Compute motion plan, Move robot arm, Wait for
human, Partially deactivate gripper

Throw the item. This is done at Vanderlande by moving the robot arm at high velocity and deactivating
the gripper at the correct time. Capabilities: Move robot arm, Compute deactivation moment,
Deactivate gripper

Robot Movement
The implementations of tasks regarding robot movement are:

Avoid static obstacles. Known, static obstacles can be included in motion planning software such as
Movelt! [28]. This makes the motion planner automatically avoid collisions with said obstacles. Mea-
surements from depth cameras could add runtime information. Additionally, a shape could be added
to the simulated gripper to take into account that not only the gripper but also the item in the grip-
per should not collide. Capabilities: Update environment model, Add item to model, Create
motion plan, Move robot arm

Avoid dynamic obstacles. Avoiding (unpredictable) dynamic obstacles requires continuous feedback,
as opposed to the sense-plan-act approach commonly used by motion planners such as Movelt! [28].
Visual servoing is a common way of implementing this. Although the exact algorithm may differ (such
as which camera data to use), the common factor in visual servoing approaches is the continuous
feedback [92][75][61][62]. Capabilities: Take RGB image, Take depth image, Move robot arm,
Compute motion command
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¢ Scan barcodes on items. This can be implemented by moving the item to the camera and then rotat-
ing the item to show its different surfaces. If the barcode is occluded by the gripper, the robot places
the item back on the table in a different position and tries again. This approach can use off-the-shelf
barcode scanning software [64]. Capabilities: Rotate item in-hand, Take RGB image, Detect
barcode, Move gripper, Grasp item, Place item

* Move with different velocities. After the reasoner has determined with what velocity the robot arm
should move, RSIR can enter this value in the motion planner and/or executer [28]. Capabilities: Set
robot arm velocity

Human interaction
The implementations of tasks regarding human interaction are:

¢ Allow the operator to determine whether an action was successful. The operator can answer a yes/no
question on whether the action was successful. This could be entered via the command line or inte-
grated in FM-GtP’s user interface. Capabilities: Ask operator for confirmation

* Allow the operator to edit the knowledge base. The operator could edit the knowledge base with the
tool that the ontology is created in, if this tool is user-friendly enough. Another option is to have the
operator update the knowledge base through the FM-GtP user interface. This editing task is not part
of the ontology as that would lead to the ontology editing itself, possibly creating errors. Capabilities:
none

* Inform the operator of failures that occur. RSIR could print information to the command line, or be
integrated with FM-GtP’s user interface. If RSIR is implemented in middleware such as ROS, it could
also use ROS’s logging system as a basis for communicating failures to operators. This is not a separate
capability, because RSIR must always communicate about the actions it undertakes. Capabilities: none

¢ Estimate item properties. This task has a large variety of implementations and has thus been given its
own section in this appendix.

Reasoning
The implementations of tasks regarding reasoning are:

¢ Reason whether RSIR can handle an item before the input carrier arrives. Based on the known proper-
ties of an item, RSIR should determine whether an item can be handled or not. This is a query to the
knowledge base and therefore not included in the ontology. Capabilities: none

¢ Implement learning to predict whether an item can be handled. The resulting algorithms can be con-
sidered black boxes that require an input and result in some outputs, usually including a confidence
score. For example, a machine-learned grasp synthesis approach can take a depth image and gripper
parameters as input and output a grasp pose and confidence score [135]. In this case, the black box is
the capability Synthesize grasp. Hence learning is considered at implementation the implementa-
tion level, and does not introduce any new capabilities. Capabilities: none

Failure Detection
The implementations of tasks regarding failure detection are:

¢ Detect whether there is an item in the gripper. There is a large variety of implementations for this:

— Vanderlande detects items by determining the item’s footprint. This is done by taking an RGB
image of the gripper from below. If the footprint of the item is non-zero, it can be concluded
that there is an item in the gripper [128]. Capabilities: Take RGB image, Determine item
footprint

— Another approach is to use a vacuum sensor in the vacuum gripper. If the pressure is suffi-
ciently low compared to the atmospheric pressure, it can be concluded that there is an item in
the gripper [30][128]. Capabilities: Select vacuum gripper, Sense pressure in gripper,
Verify item through pressure
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— For a parallel-jaw gripper, it might be that the command to close has been executed but the posi-
tion reading of gripper is (still) larger than 1cm. In this case, it can be concluded that the gripper
is not fully closed and therefore there is an item in the gripper. However, during tests it was found
that this approach often did not work for thin items [75]. Capabilities: Select gripper with
position sensors, Activate gripper, Sense gripper position, Verify item through
gripper position

— It is also possible to take an image of the carrier, attempt a grasp, and take another image of the
carrier. The images before and after grasping can be compared to determine whether there was
an item in the gripper [75]. This approach used an RGB camera for taking the image, but this
could also be done with a depth camera. Additionally, it can also be used for images of the output
carrier before and after placing the item. Capabilities: Take RGB image, Take depth image,
Deactivate gripper, Verify item by comparing images

— Asimilar approach to comparing images before and after grasping is to segment the image before
and after grasping, and count the number of items in each of them. Depending on the difference,
it can be concluded whether there is an item in the gripper. Capabilities: Take RGB image, Take
depth image, Segment RGB image, Segment depth image, Segment RGB and depth image,
Verify item by comparing segmentations

— If there is a scale underneath the carrier, the mass of the carrier before and after grasping can be
compared. If the difference is sufficient, it can be concluded that the item is in the gripper [93].
Capabilities: Sense carrier mass, Verify item by comparing carrier masses

— The load on the robot arm can be measured and compared to the load when there is no item in
the gripper. If the load is sufficiently larger, it can be concluded that there is an item in the gripper.
Capabilities: Sense arm load, Verify item by comparing arm loads

¢ Determine whether a specific item is in the gripper. Implementations for this are:

— Most of the approaches for "Detecting whether there is an item in the gripper" can be used, and
their values can be compared to the value corresponding to the target item. For example, the
footprint of the item could be compared to a list of footprints in a database. Capabilities: Load
correct item property, Verify specific item by comparing properties

— If an RGB image of the item in the gripper is available, a Siamese-like neural network can be used
to compare an image of the grasped item with product images in a database [145]. Capabilities:
Take RGB image, Load product image, Verify specific item by comparing item images

¢ Detect how many items are in the gripper. Again, the images before and after grasping or dropping
can be (segmented and compared) to determine how many items were in the gripper [75]. Capabilities:
Take RGB image, Take depth image, Segment RGB image, Segment depth image, Segment
RGB and depth image, Verify items in gripper by comparing segmentations

¢ Detect the stability of a grasp. One approach for this makes use of detecting slip. The more the item
slips, the more unstable the grasp. Slip can be measured using tactile sensors. Additionally, this ap-
proach increases the grasping force until slip is no longer detected [103]. Select gripper with
tactile sensors, Detect slip from tactile measurements, Compute grasping force, Set
grasping force

Item Property Estimation

The implementations for estimating item properties are presented in Table B.1. The properties considered
are based on those discussed section 6.1.3. Besides the capabilities, the required hardware is listed per imple-
mentation. This gives a clear overview of what hardware must be added to RSIR to implement the estimation
of item properties.
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Details on the Resulting Ontology

This appendix presents more details on RSIR’s ontology. Section C.1 presents an introduction to terminology
used in the field of ontologies. Secondly, C.2 provides the definitions of the concepts in RSIR’s ontology.
Finally, C.3 presents an example for a simple robot that uses RSIR to reason about a grasping task.

C.1. Introduction to Ontology Terminology

This appendix discusses some basic terminology in the field of ontologies. This terminology must be under-
stood to fully understand RSIR’s ontology. Some of the terms discusses in this appendix are specific for the
implementation of RSIR. This implementation is discussed in chapter 7. However, these terms are necessary
for understanding RSIR’s ontology and are therefore included in this appendix.

RSIR’s ontology is implemented in the Web Ontology Language (OWL). In OWL, resources are defined by
their Universal Resource Identifiers (URIs). For example, RSIR defines arobotashttp://www.semanticweb.
org/vi#Robot. This URI can be split into the namespace (http://www.semanticweb.org/vi#) and the
resource (Robot). By defining a namespace vi: as http://www.semanticweb.org/vi#, we can simplify
the URI to vi:Robot to improve readability [112].

OWL defines relations between resources through triples. A triple consists of a Subject, Predicate, and Ob-
ject as shown in Figure C.1. A predicate can have its range and domain defined. For example, the Predicate
vi:robotPart has a domain of vi:Robot and a range of vi:Device. Thus vi:robotPart can only create
relations between robots and devices. Predicate names always start with a lower case letter. They are occa-
sionally referred to as Properties. An ontology in OWL consists mostly of a collection of triples. The ontology
can be saved in one of several formats, one of which is XML [112].

. Predicate
Subject ——
i vi:robotPart
vi:Robot ———

Figure C.1: The definition of a triple (top) and an example of a triple (bottom).

Furthermore, an important distinction in OWL is between Classes and Individuals. This distinction is very
similar to that between Classes and Instances in object-oriented programming: Individuals can have relations
with other Individuals and data types, whereas Classes cannot. For example, the class vi:Robot can have the
predicate vi:robotPart with vi:Device, but it is impossible to define an execution time of 5 seconds for
vi:Robot. Instead, vi:robotA, which is an individual of vi : Robot, can have an execution time of 5 seconds.
Class names always start with an upper case letter, whereas Individual names always start with a lower case
letter. OWL also contains the subclass relation through the predicate rdfs:subClass0f. Besides Classes
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and Individuals, OWL contains the definition of Datatypes. Examples of Datatypes are integers, strings, and
booleans [94][112].

The difference between Classes and Individuals has consequences for Predicates: Predicates fall apart
into Object Properties and Data Properties. For Object Properties, the Subject and the Object are classes
or individuals. An example is vi:Robot vi:robotPart vi:Device, where vi:robotPart is the object
property. For Data Properties, on the other hand, the Subject is an individual and the Object is a datatype.
An example is vi:robotA vi:executionTime 5.0, where vi:executionTime is the data property. Char-
acteristics can be defined for object properties, such as symmetry and inverses. For example, an object
property ex:hasSpouse would be symmetric, because if ex:personA ex:hasSpouse ex:personB, then
also ex:personB ex:hasSpouse ex:personA. An example of inverse is that vi:provides has the inverse
vi:isProvidedBy [94][112].

A final piece of basic information is that many OWL ontology editors come with a reasoner. This rea-
soner can infer knowledge from what is defined in the ontology. For example, if the ontology contains the
knowledge that ex:personA ex:hasSpouse ex:personB and that ex:hasSpouse is symmetrical, the the
reasoner infers that ex:personB ex:hasSpouse ex:personA. Reasoners are also useful for debugging, be-
cause they detect inconsistencies in the ontology. For example, if vi:cameral and vi:camera2 are both
vi:Devices and the triple vi:cameral vi:robotPart vi:camera?2 is defined, then the reasoner gives an
error. This is because vi: cameral is not a vi:Robot and vi:robotPart is only defined for subjects that are
vi:Robots [94][112]. Note that the reasoner in the editor is not the same as the reasoner that is referred to as
"RSIR’s reasoner" in this thesis.

C.2. Definitions of Concepts in the Resulting Ontology

This appendix provides the definitions for the concepts in RSIR’s ontology. Concepts solely used for organi-
sation purposes (such as Moving Capability and Gripper Knowing Capability) are not included because such
concepts can be freely added, removed, or renamed if the application requires so. The concepts in RSIR are:

¢ Abstract [59]: Properties or qualities as distinguished from any particular embodiment of the prop-
erties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as
mathematical objects such as sets and relations, but they cannot exist at a particular place and time
without some physical encoding or embodiment.

¢ Action Plan: Alist of capabilities that, when followed by the robot in the appropriate order and executed
successfully, results in the outputs as defined by each capability in the list.

¢ Actuating Capability: A capability that allows the robot to move and act in the surrounding environ-
ment (based on the CORA definition for robotActuatingPart [59]).

* Actuating Device: A device that allows the robot to move and act in the surrounding environment
(based on the CORA definition for robotActuatingPart [59]).

¢ Agent [59]: Something or someone that can act on its own and produce changes in the world.
¢ Attribute [59]: Qualities that we cannot or choose not to reify into subclasses of object.

¢ Capability [96]: A generic term referring to an action the robot has been programmed to perform, a
skill the robot provides, or a behaviour the robot has available.

¢ Cardinality Constraint: A constraint concerning the number of similar capabilities a robot can use.

¢ Communicating Capability: A capability that serves as an instrument in a robot-robot or human-robot
communication process by allowing the robot to send (or receive) information to (or from) a robot or
human (based on the CORA definition for robotCommunicatingPart [59]).

¢ Communicating Device: A device that serves as an instrument in a robot-robot or human-robot com-
munication process by allowing the robot to send (or receive) information to (or from) a robot or human
(based on the CORA definition for robotCommunicatingPart [59]).

* Constraint: A limitation of a capability.
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* Default Property: An item property that is given a default probability density function, and that is
considered when reasoning about the item’s properties.

¢ Device [59]: A device is an artefact whose purpose is to serve as an instrument in a specific subclass of
a process.

¢ Entity [59]: The universal class of individuals. This is the root node of the ontology.

* Goal [96]: The externally defined desired end (or continuing) state of the system. Note that the goal is
the action that the operator or other external entity wants the robot to do. If the task is decomposed to
subtasks, the goal is the desired end (or continuing) state of each subtasks, as defined by the task.

¢ Input/Output: Any possible abstract or physical outcome of a capability, such as a robot state (e.g. an
activated gripper) or gained knowledge (e.g. the bounding box of an item).

¢ Item Property: An item property is an abstract representation of a physical aspect of an item. Examples
are Mass, Primitive Shape, and EAN Code.

¢ Item Property Constraint: A constraint regarding the item properties a capability can handle.

¢ Knowing Capability: A capability that allows the robot to load (or save) knowledge from (or to) a knowl-
edge base.

* Knowing Device: A device that allows the robot to load (or save) knowledge from (or to) a knowledge
base.

¢ Object [59]: Corresponds roughly to the class of ordinary objects. Examples include normal physical
objects, geographical regions, locations of processes, and the complement of objects in the physical
class.

* Persistent Property: An item property that persists over time, i.e. it does not change or is assumed not
to change depending on the scenario under which the robot encounters the item. For example, Mass
and Porosity.

¢ Physical: An entity that has a location in space-time. Note that locations are themselves understood to
have a location in space-time. [59]

* Process [59]: The class of things that happen and have temporal parts or stages. Examples include
extended events like a football match or a race, actions like pursuing and reading, and biological pro-
cesses. The formal definition is: anything that occurs in time but is not an object.

* Processing Capability: A capability that allows the robot to process information (based on the CORA
definition for robotProcessingPart [59]).

* Processing Device: A device that allows the robot to process information (based on the CORA definition
for robotProcessingPart [59]).

¢ Proposition [59]: Propositions are abstract entities that express a complete thought or a set of such
thoughts. As an example, the formula "(instance Yojo Cat)" expresses the proposition that the entity
named Yojo is an element of the class Cat.

¢ Relation [59]: The class of relations. There are three kinds of relation: predicate, function, and list.
Predicates and functions both denote sets of ordered n-tuples. The difference between these two
classes is that predicates cover formula-forming operators, while functions cover term-forming op-
erators. A list, on the other hand, is a particular ordered n-tuple.

* Robot [59]: An agentive device in a broad sense, purposed to act in the physical world in order to
accomplish one or more tasks. In some cases, the actions of a robot might be subordinated to actions
of other agents, such as software agents (bots) or humans. A robot is composed of suitable mechanical
and electronic parts. Robots might form social groups, where they interact to achieve a common goal.
A robot (or a group of robots) can form robotic systems together with special environments geared to
facilitate their work.
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¢ Sensing Capability: A capability that can play the role of a sensing part of a robot when it is connected
to the robot (based on the CORA definition for robotSensingPart [59]).

* Sensing Device: A device that can play the role of a sensing part of a robot when it is connected to the
robot (based on the CORA definition for robotSensingPart [59]).

¢ Target Item: The item that is the focus of the robot’s attention.

» Task [96]: A restatement of the goal from the robot’s perspective. If the goal is the expression of what the
operator wants done, the task is how the robot interprets it (i.e., task planning). Tasks are accomplished
via behaviours and actions.

C.3. Example Ontology for Robot Kevin

This appendix provides an example of RSIR’s ontology and reasoner for a simple robot. The example consid-
ers robot Kevin. Kevin was engineered to grasp items. To do this, Kevin has six Devices: a depth camera, an
RGB camera, a synthesis module, a vacuum gripping mechanism, a fingered gripper, and a motion module.
The vacuum gripping mechanism can use either a large or a small suction cup. The synthesis module can
synthesize grasps for a vacuum gripper and for a fingered gripper. Through these devices, Kevin has access
to the capabilities visualized in Figure C.2a. Additionally, Kevin contains knowledge of three Item Proper-
ties: Mass, Transparency, and Porosity. Kevin knows that some of its Capabilities have Constraints regarding
these properties as shown in Figure C.2b. Additionally, Kevin knows that he is twice as likely to encounter a
non-porous item than a porous item.

Because the engineers would like Kevin to grasp an item, the task is defined with a vi:taskQutput of
vi:hasGrasped. The engineers define the cost function as C = v/f/c, where C is the cost, ¢ is the execution
time, and c is the confidence score. They define it like this because they think both execution time and
confidence are important.
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Figure C.2: The capabilities Kevin has access to.
Kevin’s Ontology

The ontology for Kevin is visualized in three figures. First, Figure C.3 shows the capabilities Kevin has, and
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which inputs they require and outputs they provide. Second, Figure C.4 presents the constraints on the capa-
bilities, and how they are connected to the devices. Finally, Figure C.5 shows the item properties, their default
probability distributions, and the confidences per capability.
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Task Execution

Kevin is powered on and finds the task that he must complete in his ontology. He starts reasoning about what
capabilities he can use to complete this task. Kevin comes up with the three action plans shown in Figure C.6.
Now Kevin must decide which of these plans is the best one. Kevin was not given any information about the
item he must grasp, so he assigns the default properties to the item. This includes the knowledge that non-
porous items are more common than porous items. Now Kevin can calculate the cost for each Action Plan
using the cost function and each plan’s confidence score and execution time.

Confidence Execution Cost
Time
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Grasp
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Gripper Grasp
useSmall synthesize
C) Vacuum senseDepth F—— Vacuum graspltem 0.105 6.00 23.4
Gripper Grasp

Figure C.6: The action plans Kevin creates to complete the task, with the confidences, execution times, and costs as computed from the
default knowledge of the item.
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Kevin concludes that Action Plan B is the best, because Action Plan B has the lowest cost. He is now
ready to execute the plan. He starts by readying his large vacuum gripper. Then he takes a depth image,
and synthesizes a grasp pose. Finally, he uses the motion module to move to the grasp pose and activate the
gripper. But the motion module gives an error that says that the grasp has failed!

Now Kevin must reason about what went wrong. He enters into his Bayesian network what he knows
about the item property distributions and the constraints on his capabilities. The network then looks like
Figure C.7, and the probabilities are defined as shown in Tables C.1 through C.3. Note that the network does
not include the graspItem capability. This is because Kevin believes that this capability can never fail, be-
cause it has no constraints.
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Figure C.7: The Bayesian network for Robot Kevin after grasping with the vacuum gripper has failed.
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Table C.1: The probability distributions Kevin enters into the Bayesian network.

Probability Value
P(Transparency = Opaque) 0.334
P(Transparency = Semi-transparent) | 0.333
P(Transparency = Transparent) 0.333
P(Mass=1) 0.334
P(Mass = 2) 0.333
P(Mass = 3) 0.333
P(Porosity = Solid) 0.666
P(Porosity = Porous) 0.334
P(Outcome =1) 0

P(Outcome = 0) 1

Table C.2: The conditional probabilities Kevin enters into the Bayesian network, part 1.
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Table C.3: The conditional probabilities Kevin enters into the Bayesian network, part 2.
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After running the inference, Kevin checks the results. The likelihoods of each capability having succeeded is
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shown in Table C.4. Kevin can see that the most likely cause of the failed grasp is the senseDepth capability.
He can also see that if the large vacuum gripper failed, it is more likely that it failed because of the item’s
porosity than because of the item’s mass. Kevin does not use this information, but it does help the engineers
understand what is going on in Kevin’s mind.

Table C.4: The likelihood of each capability having succeeded, per item property and for all properties combined.
For example, the likelihood that the vacuum gripper succeeded despite the item’s mass is 0.95.

Transparency | Mass | Porosity | All properties
senseDepth 0.29 1.00 1.00 0.29
useLargeVacuumGripper | 1.00 0.95 | 0.51 0.48
synthesizeVacuumGrasp | 1.00 1.00 | 0.92 0.93

The information that Kevin does use from the results of the inference is the updated item properties,
visualized in Figure C.8. For example, Kevin sees that the item is more likely to be porous than he had thought
before. Kevin takes another look at the three Action Plans he created. He recomputes the confidence scores
based on his new knowledge of the item. They have the costs as shown in Figure C.9. And behold, now Kevin
sees that Action Plan A has the lowest cost. Thus the next time Kevin attempts to grasp the item, he will use
the fingered gripper instead.

Item property probability distributions before and after Bayesian inference
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Figure C.8: The beliefs Kevin has about the item properties before and after Bayesian inference.
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Figure C.9: The action plans Kevin creates to complete the task, with the confidences, execution times, and costs as computed from the
inferred knowledge of the item.
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D.1. Implementation of the Algorithm

This section explains RSIR’s grasp synthesis algorithm as implemented in Matlab. Because Baumgartl and
Henrich do not provide much detail on the implementation of their algorithm, their implementation might
differ from the implementation in RSIR, although the algorithms follow the same basic idea. Because Matlab’s
Hough transform does not output the lines and pairs of lines, some additional coding is required. The steps
in RSIR’s grasp synthesis algorithm is as follows:

1. The algorithm receives a ROS service call containing the RGB image, segmentation, and gripper param-
eters. The latter consists of the minimum opening width, the maximum opening width, the maximum
grasping height, and the finger width (all defined in metres). Figure D.2 illustrates these parameters
and Figure D.1 shows an example of an RGB image and segmentation.

(a) The RGB image. (b) The segmentation visualized onto the RGB image.

Figure D.1: RGB and segmentation.
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Figure D.2: The gripper parameters used by RSIR’s grasp synthesis algorithm.

2. The corresponding point cloud is loaded from a file. This point cloud is not passed via the ROS service

call because Matlab could not correctly read the point cloud from that call. The point cloud is projected
onto the horizontal plane. The resulting depth image is shown in Figure D.3a.

(a) The raw depth image. Pure white areas indicate NaN values. (b) The depth image after filtering.

Figure D.3: The depth image before and after filtering.

The segmentation is diluted as shown in Figure D.4. This prevents important information from being

lost, as the segmentation might miss some areas of the item or be just on the edge of it, which would
mean the edges of the item are not within the segmentation.

(a) The undiluted segmentation mask, indicated in green.

(b) The segmentation mask diluted by 20 pixels, indicated in green.

Figure D.4: En example of a segmentation mask before and after it is diluted.

4. The depth image is prepared for edge detection. First, the image is filtered using Matlab’s fillmissing



D.1. Implementation of the Algorithm 135

function to remove any NaNs. The image is then inverted and rescaled to values between 0 and 1,
with 1 being closest to the camera. Areas of the image that are not within the segmentation mask are
replaced with the smallest value present in the image. Finally, the image is rescaled again to have values
between 0 and 1. The rescaling creates more contrast that helps in detecting edges. Figure D.3b shows
the resulting depth image. Alternatively, the RGB image can be used instead of the depth image. In this
case, the RGB image is converted to a grey-scale image and it is not rescaled.

5. The gripper’s minimum opening width, maximum opening width, and length are converted from me-
tres to pixels. The pixels/metre resolution is determined from the depth image and the RGB image.

6. The edited depth image is now used for detecting edges, using Matlab’s edge function with the Sobel
method. The resulting image is called the binary gradient mask. It is diluted so that the edges are more
apparent. An example for detected edges is shown in Figure D.5a.

Unpaired lines: 6 found

(a) The detected edges. (b) The detected lines.

Figure D.5: The results of the edge and line detection algorithms.

7. The Hough transform is used on the binary gradient mask using the Matlab function hough, resulting
in alist of lines. The lines are visualized in Figure D.6. Pairs of lines are created by combining lines with
similar angles. The required level of similarity for lines to be paired is defined by a parameter.

8. For each pair oflines, the lines are shortened such that they overlap when projected onto each other and
such that the length of the line is at most the finger width. Figure D.6 illustrates this. This is a necessary
step because lines that have little or no overlap are unlikely to result in good grasps. Additionally, the
distance between the lines is calculated.

(a) The original pair of lines. (b) The parts of the lines that overlap. (c) The lines after applying the finger width.

Figure D.6: Illustration of the overlap between pairs of lines. The dotted lines show the size of the original lines.

9. At this point, infeasible line pairs are filtered out. Pairs are infeasible when the distance between the
lines is larger than the maximum opening width or smaller than the minimum opening width, or if
the length of the lines is smaller than the finger width. Finally, pairs that appear more than once are
removed until they only appear once. This filtering is useful for improving runtime, especially since the
next step is relatively time-consuming.
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10. The line pairs are ranked based on the defined metric. The current version of the algorithm only con-

siders enclosed depth. This is a measure for how much of the volume between the gripper fingers is
occupied by the item. It is a number between 0 and 1, and could thus act as a confidence score. The
enclosed depth is computed as:

Y Xym(x,y)-max(hg —d(x,y),0)
YxXym(x,y)-max(hg - h;,0)

where m is the grasp mask, d is the depth image after NaNs are removed, hg is the grasping height,
h; is the item height, and x and y are the image coordinates. Note that a small value of d(x, y) means
that (x, y) is close to the camera. The grasping mask is defined as m(x,y) = 1 if (x, y) is between the
lines in a line pair and m(x,y) = 0 if (x,y) is not between the lines. The item height is defined as
h; = min(m(x, y)d(x,y)). Finally, the grasping height is the height at which the gripper fingers are.
It is computed through hg = min(min(d(xy, yn)), hi — hg max). This equation evaluates the depth at n
points on the lines to determine the height of the lines. These points are selected slightly further apart
than the detected lines are, to prevent the fingers from colliding with the item. Additionally, the gripper
is lifted such that the "hand" of the gripper does not collide with the item. This is where the maximum
grasping height hg .4, comes in. Figure D.7 shows some examples of the enclosed depth.

0.00 0.36 0.92

Figure D.7: Three examples of values of the enclosed depth metric. From top to bottom: the enlarged grasp, the grasp mask with the

depth image in it, and the value of the metric. The lines in the top row are the lines on which the points (x,, y,,) are taken.

11. Finally, the line pair with the highest value of the metric is selected as the grasp. Again, the lines are

taken slightly further apart than the detected lines are. How much further apart they are taken is defined
by a parameter. The pose’s image coordinates are then converted to coordinates in the robot frame
through known transformation matrices. The ROS service call is answered with a string containing the
grasp pose (as a quaternion) and the gripper opening. Figure D.8 illustrates the resulting grasp pose.
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Grasp pose number 1; Score: 0.94

Figure D.8: The resulting grasp pose.
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D.2. Grasp Synthesis Algorithm Parameters

This appendix investigates the influence of the synthesis algorithm’s parameter on the resulting grasps and
the runtime. The parameters are varied one for the carrier and default parameters shown in Figure D.9. Ev-
ery time one parameter is investigated, the other parameters are kept at their default values. The runtimes
resulting from this carrier are visualized in Figure 8.2.

The grasp opening enlargement is the extra distance by which the gripper is opened with respect to the
line pair. This is illustrated in Figure D.10. A larger grasp enlargement could provide robustness to uncer-
tainties in depth information and motion control. However, a large enlargement can also result in a different
grasp than was intended. This is visible in Figure D.10d: because the enlargement causes the previously
best grasp to collide with the carrier, the approach considers another grasp that is arguably less good. Grasp
opening enlargement has no influence on the runtime.

(c) Grasp opening enlargement = 0.1 m (d) Grasp opening enlargement = 0.15 m

Figure D.10: Highest-scoring grasps for different values of the grasp opening enlargement.

The dilute strength enlarges the segmentation mask as shown in Figure D.11. The enlarged mask includes
some parts of the image that are not part of the target item. If a segmentation of an item is provided, this way,
the algorithm sees both the item and the background and can thus detect the edges of the item. Additionally,
the dilution prevents the algorithm from detecting lines on the edge of the segmentation mask (as shown
in Figure D.11, there is a lower bound for which this works). The dilution is also useful in cases where the
segmentation misses parts of the item. Interestingly, Figure D.11 shows that the line detections are slightly
different for different values of the dilute strength. This is likely due to the segmented image being larger, and
thus allowing for more line detections. The dilute strength influences the runtime, but this is likely due to the
(irrelevant) additional lines being detected.
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(a) Dilute strength = 1 px (b) Dilute strength = 1 px

(c) Dilute strength = 5 px (d) Dilute strength = 5 px

(e) Dilute strength = 100 px (f) Dilute strength = 100 px

Figure D.11: The filtered and segmented depth image (left) and detected lines (right) for different values of the dilute strength.

The fudge factor defines a threshold for detecting edges. Figure D.12 illustrates this. A lower threshold
results in more edges and thus more line detections. The fudge factor should be selected properly: too high a
threshold filters out important edges and thus important grasps, but too low a threshold results in irrelevant
edges that slow down the approach significantly.
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(c) Fudge factor = 1 (d) Fudge factor =1

(e) Fudge factor = 6 (f) Fudge factor =6

Figure D.12: Detected edges (left) and detected lines (right) for different values of the fudge factor.

The results for different values of the fill gap are shown in Figure D.13. The fill gap is the maximum pixel
distance between two line segments for the lines to be merged into one. As expected, the figure shows that
larger values of the fill gap result in longer lines. The fill gap should be tuned properly to detect the full edges
of items, without merging edges of multiple items into one (as visible in Figure D.13e). The fill gap influences
the runtime insofar that small values of the fill ap result in fewer line detections and thus a shorter runtime.
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(a) Fill gap = 1 px (b) Fill gap = 1 px

(d) Fill gap = 80 px

(c) Fill gap = 80 px

e

(e) Fill gap = 200 px (f) Fill gap =200 px

Figure D.13: Detected lines (left) and highest-scoring grasps (right) for different values of the fill gap.

The dilute strength for edges enlarges the edge detections. Figure D.14 illustrates this. There are no
differences in detected edges for small values of the strength, but larger values cause the approach to detect
the edge of the segmentation, resulting in invalid edge detections. The dilute strength must be larger than
the dilute strength for edges to prevent this. The dilute strength for edges does not significantly influence the

runtime.



142 D. Details on the Grasp Synthesis Algorithm

(a) Dilute strength for edges = 1 px for edges = 1 px

9 found

(b) Dilute strength

(o) Dilute strength for edges = 3 px (d) Dilute strength for edges = 3 px

Unpaired lines: 10 found

(e) Dilute strength for edges = 20 px (f) Dilute strength for edges = 20 px

Unpaired lines: 9 found

(g) Dilute strength for edges = 100 px (h) Dilute strength for edges = 100 px

Figure D.14: Detected edges (left) and detected lines (right) for different values of the dilute strength for edges.
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The number of peaks puts an upper bound on the number of detected lines, as illustrated in Figure D.15.
As expected, if lines are discarded, the runtime is decreased. If no lines are discarded, the number of peaks
does not influence the runtime. Note that the value of the number of peaks does not equal the number of
detected lines.

(a) Number of peaks =5 (b) Number of peaks = 5

(c) Number of peaks = 20 (d) Number of peaks = 20

(e) Number of peaks = 500 (f) Number of peaks = 500

Figure D.15: Detected edges (left) and highest-scoring grasps (right) for different values of the number of peaks.

The peak factor influences the number of detected lines, as it defines the minimum value for the algo-
rithm to detect a Hough peak. It is one of the parameters that influence the runtime the most. Lower values
result in more line detections, and a longer runtime. On the other hand, higher values decrease runtime, but
might overlook important edges. This is illustrated in Figure D.16. The peak factor could be tuned along with
the number of peaks, as the latter can prevent the algorithm from detecting an unreasonable number of lines.
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(b) Peak factor = 0.05

(c) Peak factor =0.1 (d) Peak factor =0.1

(e) Peak factor = 0.2 (f) Peak factor=0.2

(g) Peak factor = 0.3 (h) Peak factor = 0.3

Figure D.16: Detected edges (left) and highest-scoring grasps (right) for different values of the peak factor.
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The angular difference determines how similar lines must be to be considered a pair. It is defined in
angles. For example, an angular difference of 2 implies that lines with at most 2 degrees difference between
them are considered a pair. This is especially relevant for items with non-parallel edges, such as tubes of
toothpaste. Figure D.18 shows that the resulting grasp does not change for angular differences above a certain
value. However, the larger the angular difference, the longer the runtime.

(c) Angular difference = 5° (d) Angular difference = 50°

Figure D.17: Highest-scoring grasps for different values of the angular difference.

The number of gripper depths is the number of points the algorithm evaluates to determine the height of
a line. Selecting this value too low could result in an incorrect estimation of the line’s height. The value does
not influence the runtime.
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(c) Number of gripper depths = 500, score = 0.95 (d) Number of gripper depths = 5000, score = 0.95

Figure D.18: Highest-scoring grasps for different values of the number of gripper depths.

In summary, the parameters that most influence the resulting grasp and runtime are the fudge factor,
peak factor, and angular difference. These parameters influence the edge detections, line detections, and
line pairs, respectively. The number of peaks could be tuned alongside the peak factor to limit the runtime.
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(a) The grey-scale image. (b) The raw depth image.

Unpaired lines: 9 found

(c) The filtered and segmented depth image.

(d) The detected lines for the default values of the parameters.

Grasp pose number 1; Score: 0.95

(e) The resulting grasp for the default values of the parameters.

gripperLength enlargeGraspOpening dilStrength | fudgeFactor fillGap |dilStrengthEdge  nPeaks
1 0.0500 0.0150 5 1 80 3 200

facPeak dTheta | nGripperDepths
0.2000 2 100

(f) The default values of the parameters.

Figure D.9: The carrier considered while inspecting the parameters,
and the synthesis algorithm’s outcome for the default values of the parameters.






Grasp Synthesis Results

This appendix shows the results for the evaluation of the grasp synthesis approach. Sections E.1, E.3, E.2 and
E.4 shows the results for the box segmentation, mapped segmentations, partial segmentations and complete
segmentations, respectively.

E.1. Grasps for Box Segmentations

This appendix presents the grasp synthesis results for the box segmentation. For each test, the following
figures are included: the greyscale image of the carrier, the raw depth image of the carrier, the depth image
after filtering and segmentation, the detected edges, the detected lines, and three synthesized grasps. The
three grasps are the grasps with the highest scores that are qualitatively different. Additionally, the values of
synthesis algorithm’s parameters that are used to achieve the results are included for each test. The results
are presented in Figures B.3 through B.22. Furthermore, Table E.1 summarizes the contents of each carrier
and the properties used for calculating correlations.
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E. Grasp Synthesis Results

Table E.1: The contents of the carrier, the item grasped with the grasp that has the highest grasp score, and properties of said item. To
compute the correlation coefficient, item properties have a value of 0, 1, or 2, where 0 denotes no presence of said property and 2
denotes full presence of that property. For example, a Transparency of 0 means the item is opaque.

Carrier Contents Item with highest grasp Curves | Size Clutter B(?ﬂect- Trans-

number score ivity parency|

1 Peanut butter (side view) Peanut butter (side view) 0 1 0 1 0

2 Peanut butter (top view) Peanut butter (top view) 2 1 0 0

3 Two toothb.rushes and peanut Peanut butter (top view) 2 1 2 0 0
butter (top view)
Three bottles of washing up liquid | Washing up liquid (side

4 . 1 2 2 1 1
(overlap) view)

5 Three bottles of washing up liquid | Washing up liquid (side 1 9 1 1 1
(no overlap) view)

6 Marbles (label on top) Marbles 2 1 0 1 1

7 Marbles (label on side) Marbles 2 1 0 1 1

8 Marbles and two tin cans Tin can (top view) 2 0 0 2 0

9 Two pairs of socks Pair of socks 1 2 2 0 0

10 One pair of socks Pair of socks 1 2 0 0 0

1 Two belts (top view) and a pair of Belt (top view) 0 1 2 0 0
glasses

12 Two belts (side view) and a pair of Belt (side view) 9 1 1 0 0
glasses

13 Two computer mice (overlap) Computer mouse 0 2 2 1 0

14 Two computer mice (no overlap) Computer mouse 0 2 1 1 0

15 Walnuts and two packs of tooth- Walnuts 9 2 1 0 0
picks (edge)

16 Walnuts and two packs of tooth- Toothpicks (top view) 2 0 1 1 1
picks (centre)

17 Three cartons of milk (overlap) Carton of milk (side view) 0 2 2 0 0

18 Three cartons of milk (no overlap) | Carton of milk (side view) 0 2 1 0 0

19 Flve tubes of toothpaste (1 stand- T.ube of toothpaste (side 0 1 1 0 0
ing) view)

20 Flve tubes of toothpaste (2 stand- T.ube of toothpaste (side 0 1 2 0 0
ing) view)
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 8 found Grasp pose number 1; Score: 0.54

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 3; Score: 0.26 Grasp pose number 4; Score: 0

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.1: Grasp synthesis for a peanut butter jar on its side.
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a) The grey-scale image

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 57 found

(b) The raw depth image.

Grasp pose number 1; Score: 0.83

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 4; Score: 0.81 Grasp pose number 6; Score: 0.09

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.0500 2 100

(i) The parameters used for this result.

Figure E.2: Grasp synthesis for a peanut butter jar.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 75 found Grasp pose number 1; Score: 0.94

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 7; Score: 0.9 Grasp pose number 10; Score: 0.73

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 0.5000 80 3 200 0.0500 2 100

(i) The parameters used for this result.

Figure E.3: Grasp synthesis for a peanut butter jar and two toothbrushes.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 45 found Grasp pose number 1; Score: 0.76

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.74 Grasp pose number 4; Score: 0.7

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1.5000 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.4: Grasp synthesis for three bottles of washing up liquid.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 55 found Grasp pose number 1; Score: 0.82

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.66 Grasp pose number 3; Score: 0.53

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1.5000 80 3 200 0.0800 2 100

(i) The parameters used for this result.

Figure E.5: Grasp synthesis for three bottles of washing up liquid.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 51 found Grasp pose number 1; Score: 0.79

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.78 Grasp pose number 6; Score: 0.53

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.0500 2 100

(i) The parameters used for this result.

Figure E.6: Grasp synthesis for a net of marbles.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 65 found Grasp pose number 1; Score: 0.54

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.26 Grasp pose number 4; Score: 0.05

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 0.5000 80 3 200 0.0800 2 100

(i) The parameters used for this result.

Figure E.7: Grasp synthesis for a net of marbles.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 49 found Grasp pose number 1; Score: 0.95

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.76 Grasp pose number 3; Score: 0.75

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.0800 2 100

(i) The parameters used for this result.

Figure E.8: Grasp synthesis for a net of marbles and two tin cans.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 31 found Grasp pose number 1; Score: 0.49

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.32 Grasp pose number 3; Score: 0.24

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.9: Grasp synthesis for two sets of socks.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 49 found Grasp pose number 1; Score: 0.49

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.48 Grasp pose number 7; Score: 0.24

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.10: Grasp synthesis for a set of socks.



E.1. Grasps for Box Segmentations

161

(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 46 found Grasp pose number 1; Score: 0.87

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 3; Score: 0.74 Grasp pose number 10; Score: 0.55

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.11: Grasp synthesis for two belts and a pair of glasses.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 74 found Grasp pose number 1; Score: 0.84

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.61 Grasp pose number 3; Score: 0.39

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.0900 2 100

(i) The parameters used for this result.

Figure E.12: Grasp synthesis for two belts and a pair of glasses.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 44 found Grasp pose number 1; Score: 0.63

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.62 Grasp pose number 4; Score: 0.6

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.13: Grasp synthesis for two computer mice that overlap.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 66 found Grasp pose number 1; Score: 0.76

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.54 Grasp pose number 4; Score: 0.53

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.14: Grasp synthesis for two computer mice.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 22 found Grasp pose number 1; Score: 0.38

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.28 Grasp pose number 4; Score: 0.25

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 2 100

(i) The parameters used for this result.

Figure E.15: Grasp synthesis for a net of walnuts and two packs of toothpicks, all at the edge of the carrier.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 60 found Grasp pose number 1; Score: 0.79

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 4; Score: 0.74 Grasp pose number 6; Score: 0.51

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.16: Grasp synthesis for a net of walnuts and two packs of toothpicks.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 9 found Grasp pose number 1; Score: 0.91

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.85 Grasp pose number 3; Score: 0.07

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 2 100

(i) The parameters used for this result.

Figure E.17: Grasp synthesis for three cartons of milk that overlap.



168 E. Grasp Synthesis Results

(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 9 found Grasp pose number 1; Score: 0.91

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.9 Grasp pose number 3; Score: 0.88

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 2 100

(i) The parameters used for this result.

Figure E.18: Grasp synthesis for three cartons of milk.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 11 found Grasp pose number 1; Score: 0.79

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.76 Grasp pose number 3; Score: 0.69

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 6 100

(i) The parameters used for this result.

Figure E.19: Grasp synthesis for five tubes of toothpaste.
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(a) The grey-scale image (b) The raw depth image.

(c) The depth image after filtering and segmentation. (d) The edges detected in the filtered and segmented depth image.

Unpaired lines: 8 found Grasp pose number 1; Score: 0.75

(e) The lines detected from the edges. (f) One of the synthesized grasps.

Grasp pose number 2; Score: 0.7 Grasp pose number 3; Score: 0.54

(g) One of the synthesized grasps. (h) One of the synthesized grasps.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 6 100

(i) The parameters used for this result.

Figure E.20: Grasp synthesis for five tubes of toothpaste.
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E.2. Segmentation Masks

This section presents the segmentations found on the SIR set-up in Veghel, as well as the results for manually
mapping the segmentations to the images obtained on the set-up in Eindhoven. The segmentation masks are
shown in Figures E.21 through E.24.
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Figure E.21: Results for manually mapping the segmentation masks (1/4).
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Figure E.22: Results for manually mapping the segmentation masks (2/4).
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Figure E.23: Results for manually mapping the segmentation masks (3/4).
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Figure E.24: Results for manually mapping the segmentation masks (4/4).
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E.3. Grasps for Partial Segmentations

This appendix presents the full results of the synthesized grasps when including segmentation masks. For
each test, the following figures are included: the grey-scale image, the segmentation mask visualized on the
raw depth image, the detected lines per segment, and the highest-scoring grasp per segment. Additionally,
the values of the parameters are included. These can vary between tests, but not within a test. That is, if one
test has three segmentations, the same parameters are used for all segments.

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.44

(a) The grey-scale image
Unpaired lines: 4 found

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(e) The parameters used for this result.

Figure E.25: Grasp synthesis for a peanut butter jar on its side, using segmentations.
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v,

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.83

(a) The grey-scale image
Unpaired lines: 52 found

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |di|5trength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths

1

0.0500 0.0150 5 1 80 3 200 0.0500 2 100

(e) The parameters used for this result.

Figure E.26: Grasp synthesis for a peanut butter jar, using segmentations.
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(a) The grey-scale image (b) The segmentation mask visualised on the raw depth image.
Unpaired lines: 69 found

Grasp pose number 1; Score: 0.95

(c) The detected lines for segment 1.
Unpaired lines: 1 found

(d) The synthesized grasp for segment 1.

No grasp found

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 50 found Grasp pose number 1; Score: 0.63

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘diIStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 0.5000 80 3 200 0.0500 2 100

(i) The parameters used for this result.

Figure E.27: Grasp synthesis for a peanut butter jar and two toothbrushes, using segmentations.
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(a) The grey-scale image
Unpaired lines: 35 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.69

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |di|5trength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths

1

0.0500 0.0150 5 1.5000 80 3 200 0.1000 2 100

(e) The parameters used for this result.

Figure E.28: Grasp synthesis for three bottles of washing up liquid, using segmentations.
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(a) The grey-scale image
Unpaired lines: 4 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.62

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

Unpaired lines: 57 found Grasp pose number 1; Score: 0.82

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 23 found Grasp pose number 1; Score: 0.85

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1.5000 80 3 200 0.0800 2 100

(i) The parameters used for this result.

Figure E.29: Grasp synthesis for three bottles of washing up liquid, using segmentations.
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(a) The grey-scale image
Unpaired lines: 23 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.65

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |di|5trength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths

1

0.0500 0.0150 5 1 80 3 200 0.0500 2 100

(e) The parameters used for this result.

Figure E.30: Grasp synthesis for a net of marbles, using segmentations.
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(a) The grey-scale image
Unpaired lines: 29 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.05

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |di|5trength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 0.5000 80 3 200 0.0800 2 100

(e) The parameters used for this result.

Figure E.31: Grasp synthesis for a net of marbles, using segmentations.
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(a) The grey-scale image
Unpaired lines: 2 found

(b) The segmentation mask visualised on the raw depth image.

No grasp found

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

Unpaired lines: 30 found Grasp pose number 1; Score: 0.78

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 6 found Grasp pose number 1; Score: 0

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘diIStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.0800 2 100

(i) The parameters used for this result.

Figure E.32: Grasp synthesis for a net of marbles and two tin cans, using segmentations.
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(a) The grey-scale image
Unpaired lines: 31 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.45

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

Unpaired lines: 19 found Grasp pose number 1; Score: 0.22

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(g) The parameters used for this result.

Figure E.33: Grasp synthesis for two sets of socks, using segmentations.
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(a) The grey-scale image
Unpaired lines: 16 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.22

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |di|5trength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths

1

0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(e) The parameters used for this result.

Figure E.34: Grasp synthesis for a set of socks, using segmentations.
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(a) The grey-scale image
Unpaired lines: 4 found

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

Unpaired lines: 28 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0

Grasp pose number 1; Score: 0.87

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 15 found Grasp pose number 1; Score: 0.95

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(i) The parameters used for this result.

Figure E.35: Grasp synthesis for two belts and a pair of glasses, using segmentations.
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(a) The grey-scale image
Unpaired lines: 1 found

(b) The segmentation mask visualised on the raw depth image.

No grasp found

(c) The detected lines for segment 4.
Unpaired lines: 20 found

(d) The synthesized grasp for segment 4.

Grasp pose number 1; Score: 0.2

(e) The detected lines for segment 5. (f) The synthesized grasp for segment 5.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(g) The parameters used for this result.

Figure E.36: Grasp synthesis for two belts and a pair of glasses, using segmentations (continued).
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(a) The grey-scale image
Unpaired lines: 54 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.81

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

Unpaired lines: 80 found Grasp pose number 1; Score: 0.88

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 7 found Grasp pose number 1; Score: 0.32

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.0900 2 100

(i) The parameters used for this result.

Figure E.37: Grasp synthesis for two belts and a pair of glasses, using segmentations.
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(a) The grey-scale image
Unpaired lines: 29 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.68

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |di|5trength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths

1

0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(e) The parameters used for this result.

Figure E.38: Grasp synthesis for two computer mice that overlap, using segmentations.
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(a) The grey-scale image
Unpaired lines: 53 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.6

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

Unpaired lines: 17 found Grasp pose number 1; Score: 0.67

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(g) The parameters used for this result.

Figure E.39: Grasp synthesis for two computer mice, using segmentations.
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(a) The grey-scale image
Unpaired lines: 10 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.21

(c) The detected lines for segment 1.
Unpaired lines: 14 found

(d) The synthesized grasp for segment 1.

Grasp pose number 1; Score: 0.6

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths

1 0.0500 0.0150 5 1 80 3 200 0.1200 2 100

(g) The parameters used for this result.

Figure E.40: Grasp synthesis for a net of walnuts and two packs of toothpicks, all at the edge of the carrier, using segmentations.
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(a) The grey-scale image
Unpaired lines: 42 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.57

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

Unpaired lines: 12 found Grasp pose number 1; Score: 0.78

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1000 2 100

(g) The parameters used for this result.

Figure E.41: Grasp synthesis for a net of walnuts and two packs of toothpicks, using segmentations.
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(a) The grey-scale image
Unpaired lines: 6 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.94

(c) The detected lines for segment 1. (d) The synthesized grasp for segment 1.

‘gripperLength‘enlargeGraspOpening |di|5trength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths

1

0.0500 0.0150 5 1 80 3 200 0.1200 2 100

(e) The parameters used for this result.

Figure E.42: Grasp synthesis for three cartons of milk that overlap, using segmentations.
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(a) The grey-scale image
Unpaired lines: 5 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.93

(c) The detected lines for segment 1.
Unpaired lines: 1 found

(d) The synthesized grasp for segment 1.

No grasp found

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 3 found Grasp pose number 1; Score: 0.9

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘diIStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 2 100

(i) The parameters used for this result.

Figure E.43: Grasp synthesis for three cartons of milk, using segmentations.
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(a) The grey-scale image
Unpaired lines: 5 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.78

(c) The detected lines for segment 1.
Unpaired lines: 0 found

(d) The synthesized grasp for segment 1.

No grasp found

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 2 found Grasp pose number 1; Score: 0

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘diIStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 6 100

(i) The parameters used for this result.

Figure E.44: Grasp synthesis for five tubes of toothpaste, using segmentations.
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(a) The grey-scale image
Unpaired lines: 0 found

(b) The segmentation mask visualised on the raw depth image.

No grasp found

(c) The detected lines for segment 4.
Unpaired lines: 0 found

(d) The synthesized grasp for segment 4.

No grasp found

(e) The detected lines for segment 5. (f) The synthesized grasp for segment 5.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘diIStrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 6 100

(g) The parameters used for this result.

Figure E.45: Grasp synthesis for five tubes of toothpaste, using segmentations (continued).
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(a) The grey-scale image
Unpaired lines: 3 found

(b) The segmentation mask visualised on the raw depth image.
Grasp pose number 1; Score: 0.7

(c) The detected lines for segment 1.
Unpaired lines: 2 found

(d) The synthesized grasp for segment 1.

No grasp found

(e) The detected lines for segment 2. (f) The synthesized grasp for segment 2.

Unpaired lines: 5 found Grasp pose number 1; Score: 0.7

(g) The detected lines for segment 3. (h) The synthesized grasp for segment 3.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘diIStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepths
1 0.0500 0.0150 5 1 80 3 200 0.1200 6 100

(i) The parameters used for this result.

Figure E.46: Grasp synthesis for five tubes of toothpaste, using segmentations.
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E.4. Grasps for Complete Segmentations

This appendix presents the full results of the synthesized grasps when including segmentation masks. For
each test, the following figures are included: the grey-scale image, the segmentation mask visualized on the
raw depth image, the detected lines per segment, and the highest-scoring grasp per segment. Additionally,
the values of the parameters are included. These can vary between tests, but not within a test. That is, if one
test has three segmentations, the same parameters are used for all segments.
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Unpaired lines: 55 found

(a) The grey-scale image.

Grasp pose number 1; Score: 0.89

(b) The filtered depth image using the segmentation mask.

Grasp pose number 1; Score: 0.82

(c) One of the synthesized grasps using the mask.
Grasp pose number 2; Score: 0.67

(d) One of the synthesized grasps without using the mask..

Grasp pose number 2; Score: 0.66

(e) One of the synthesized grasps using the mask. (f) One of the synthesized grasps without using the mask.

Grasp pose number 3; Score: 0.67 Grasp pose number 4; Score: 0.51

(g) One of the synthesized grasps using the mask. (h) One of the synthesized grasps without using the mask.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepthsl
1 0.0500 0.0150 20 1.5000 80 3 200 0.4000 2 100

(i) The parameters used when using the segmentation mask.

Figure E.47: Grasp synthesis for three bottles of washing up liquid, comparing between no segmentation and a segmentation mask.
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Unpaired lines: 56 found

(a) The grey-scale image.

Grasp pose number 1; Score: 0.73

(b) The filtered depth image using the segmentation mask.

Grasp pose number 1; Score: 0.79

(c) One of the synthesized grasps using the mask. (d) One of the synthesized grasps without using the mask..

Grasp pose number 3; Score: 0.7 Grasp pose number 4; Score: 0.74

(e) One of the synthesized grasps using the mask.

Grasp pose number 5; Score: 0.57

(f) One of the synthesized grasps without using the mask.

Grasp pose number 6; Score: 0.51

(g) One of the synthesized grasps using the mask. (h) One of the synthesized grasps without using the mask.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepthsl
1 0.0500 0.0150 20 1 80 3 200 0.6000 2 100

(i) The parameters used when using the segmentation mask.

Figure E.48: Grasp synthesis for a net of walnuts and two packs of toothpicks.
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Unpaired lines: 9 found

(a) The grey-scale image.

Grasp pose number 1; Score: 0.94.

(b) The filtered depth image using the segmentation mask.

Grasp pose number 1; Score: 0.91

(c) One of the synthesized grasps using the mask.
Grasp pose number 2; Score: 0.86

(d) One of the synthesized grasps without using the mask..

Grasp pose number 2; Score: 0.85

(e) One of the synthesized grasps using the mask.

Grasp pose number 3; Score: 0.27

(f) One of the synthesized grasps without using the mask.

Grasp pose number 3; Score: 0.07

(g) One of the synthesized grasps using the mask. (h) One of the synthesized grasps without using the mask.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepthsl
1 0.0500 0.0150 20 1 80 3 200 0.4900 2 100

(i) The parameters used when using the segmentation mask.

Figure E.49: Grasp synthesis for three cartons of milk that overlap.
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Unpaired lines: 9 found

(a) The grey-scale image.

Grasp pose number 1; Score: 0.9

(b) The filtered depth image using the segmentation mask.

Grasp pose number 1; Score: 0.91

(c) One of the synthesized grasps using the mask. (d) One of the synthesized grasps without using the mask..

Grasp pose number 2; Score: 0.89 Grasp pose number 2; Score: 0.9

(e) One of the synthesized grasps using the mask.

Grasp pose number 3; Score: 0.88

(f) One of the synthesized grasps without using the mask.

Grasp pose number 3; Score: 0.88

(g) One of the synthesized grasps using the mask. (h) One of the synthesized grasps without using the mask.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilstrengthEdge‘ nPeaks ‘facPeak ‘ dTheta ‘nGripperDepthsl
1 0.0500 0.0150 20 1 80 3 200 0.3600 2 100

(i) The parameters used when using the segmentation mask.

Figure E.50: Grasp synthesis for three cartons of milk.
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Unpaired lines: 7 found

(a) The grey-scale image.

Grasp pose number 1; Score: 0.7

(b) The filtered depth image using the segmentation mask.

Grasp pose number 1; Score: 0.75

(c) One of the synthesized grasps using the mask. (d) One of the synthesized grasps without using the mask..

Grasp pose number 2; Score: 0.7 Grasp pose number 2; Score: 0.7

(e) One of the synthesized grasps using the mask.

Grasp pose number 3; Score: 0.64.

(f) One of the synthesized grasps without using the mask.

Grasp pose number 3; Score: 0.54

(g) One of the synthesized grasps using the mask. (h) One of the synthesized grasps without using the mask.

‘gripperLength‘enlargeGraspOpening |diIStrength‘fudgeFactor‘ fillGap ‘dilStrengthEdge‘ nPeaks ‘ facPeak ‘ dTheta ‘nGripperDepthsl
1 0.0500 0.0150 20 1 80 3 200 0.4000 6 100

(i) The parameters used when using the segmentation mask.

Figure E.51: Grasp synthesis for five tubes of toothpaste.






Ontology and Reasoner Results

This appendix presents the results of the evaluation of RSIR. Section E1 presents the Prlog queries that RSIR
uses to answer competency questions. Afterwards, section E2 presents the ontology used in the evaluation
of RSIR. Finally, sections E3, E4, E5 and E6 present the results for the evaluation using exploitation, prior
knowledge, exploration, and noisy knowledge of capabilities, respectively.

E1. Queries for Answering Competency Questions

This section provides the concrete queries that RSIR uses to answer the competency questions. For each
question, a screen capture is included that shows the query being entered in ROSprolog, and the output RSIR
gives.

Task Questions
The task questions are answered as follows:

Q1. What capabilities does the system have access to?

?- rdf(vi:robotE,vi:robotPart,Device).
vi:device_camera_input_RGB ;
vi:device_camera_input_depth ;
vi:device gripper_opening_sensor ;
vi:device vacuum_sensor ;
vi:fizyr_segmentation ;
vi:grippers_evaluation_robot ;
vi:smartrobotics_motion ;
vi:synths_evaluation_robot ;
vi:verification_gripper_opening ;
vi:verification_vacuum_pressure.

?- rdf(vi:grippers_evaluation_robot,vi:provides,Capability).
ili vi:selectGripperThreeFinger ;
vi:selectGripperTwoFingerLarge ;
vi:selectGripperTwoFingersmall ;
vi:selectGripperVacuumLarge ;
vi:selectGripperVacuumsmall.

Figure E1: The queries that answer Q1. The first query finds Devices, whereas the second query finds the Capabilities the Device
provides.

Q2. How are the capabilities constrained?

205
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?-

Constraint
Constraint

rdf(vi:'selectGripperVacuumLarge',vi:'propertyConstraint',Constraint).
vi:selectGripperVacuumLargeSize ;
vi:selectGrippervVacuumPorosity ;

Constraint = vi:selectGripperVacuumShape.

e
p
0
o]
0
o]
0
o]
0

rdf(vi:'selectGripperVacuumPorosity',P,0).

= rdf:type,

owl: 'NamedIndividual' ;
rdf:type,
vi:'ItemPropertyConstraint' ;
rdf:type,

vi:'Porosity' ;
vi:confidenceValue,
literal('e.99 0.2 0.01").

Figure E2: The queries that answer Q2. The first query finds constraints,
whereas the second query finds the details for a constraint.

Q3. What is the predicted performance of each capability?

?- vi_prolog:capability_cost(robotE,senseVerificationRGB,Cost).
Warning: assuming default confidence for capability http://www.semanticweb.org/vi#tsenseverificationRGB

Cost

Figure E3: The query that answers Q3. A warning is printed because the system uses the capability’s default confidence, rather than the

confidence computed based on the item’s properties and the capability’s constraints.

Q4. What actions must the system do to complete a task?

7- createactionplans{robotE,taskVerifyItem).

(...)

actionPlan_a®_d26_e23:

- senselnputCarrierDepth
selectGripperTwoFingerSmall
synthesizeParallelLineGrasp
moveToGraspPose
activateGripperToGrasp
senseGripperOpeningAfterGrasping
verifyItemThroughGripperOpening

with confidence: ©.5959008000000001

with execution time: 2803.25

with cost: 75.10928145266668

actionPlan_a®_d22_e1l:

- senselnputCarrierDepth
selectGripperTwoFingerLarge
synthesizeParallelLineGrasp
moveToGraspPose
activateGripperToGrasp
senseGripperOpeningAfterGrasping
verifyItemThroughGripperOpening

with confidence: 0.5959008000000001

with execution time: 2003.25

with cost: 75.10928145266668

true.

Figure E4: The query that creates the action plans. Only two resulting action plans are included in the figure for brevity.

Q5. How confident is the system that it can complete a task?

Q6. What is the predicted performance for completing a task?

Q7. If there are multiple approaches to completing a task, which approach is optimal?
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?- bestactionplan(roboti,taskverifyltem,BestActionPlan).

l5ae))

actionPlan_a3_di11_ail:

selectGripperVacuumsmall

senseIlnputCarrierDepth

senselnputCarrierRGB

segmentInputRGBImage

synthesizeFizyrGrasp

moveToGraspPose

activateGripperToGrasp

senseSuctionPressureAfterGrasping

verifyItemThroughPressure
with confidence: 1.0
BestActionPlan = [vi:senseInputCarrierDepth, vi:selectGripperSchunk,
vi:synthesizeBaumgartlGraspUnsegmented, vi:moveToGraspPose, vi:activ
ateGripperToGrasp, vi:senseGripperOpeningAfterGrasping, vi:verifylte
mThroughGripperOpening]

Figure E5: The query that answers Q5, Q6, and Q7. All action plans are created (Q5) and for each the confidence score (Q6), execution
time, and cost are computed. The action plan with the lowest cost is selected as the optimal plan (Q7). Out of the action plans created
by this query, only one is included in the figure for brevity.

Failure Questions
The failure questions are answered as follows:

Q8. What kinds of failures can occur?

i:'selectGripperVacuumLarge',vi: 'propertyConstraint’',Constraint).
vi:selectGripperVacuumLargeSize ;
Constraint vi:selectGripperVacuumPorosity ;
Constraint vi:selectGripperVacuumShape.

?- rdf(vi:'selectGripperVacuumPorosity',P,0).
rdf:type,

owl: 'NamedIndividual' ;

rdf:type,

vi:'ItemPropertyConstraint' ;

rdf:type,

vi:'Porosity’ ;

vi:confidenceValue,

literal('®.99 0.2 0.01").

OTWOoOTOTWOT™

Figure E6: The query that answers Q8. Any capability that is constrained for one or more item properties can fail.

Q9. Which of these failures are likely to occur?

rolog:capability_confidence(robotl,moveToGraspPose,Confidence).

Warning: assuming default confidence for capability http://www.semanticweb.org/vi#moveToGraspPose
Confidence = 0.8.

Figure E7: The query that answers Q9. Capabilities with low confidence scores are more likely to fail. The queries in Figure E6 provide
more details on what item properties would likely cause the capability to fail.

Q10. When a failure has occurred...

(a). ...what type of failure is it?
(b). ...what is the cause behind the failure?
(c). ...what can be concluded about...
(i). the properties of the item?
(ii). the capabilities of the robot?
(iii). the actions the system should take to prevent this failure from re-occurring?

This question is answered by the Bayesian network, and thus there is no Prolog query to answer it. How-
ever, question Q10(c)(iii) is answered by the query in Figure E5 after the Bayesian network has updated the
item properties.
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Item Questions
Finally, the competency questions regarding items are:

Q11. Which item properties are relevant for the task at hand?

?- rdf(vi:actionPlan_a3_d11_a1l,vi:abstractPart,_cCapability),rdf(_capability,vi:propertyConstraint,_Constraint),
rdf(_Constraint,rdf:type,Property).owl_individual_of(Property,vi:'ItemProperty').
i:'Primitiveshape’ ;

rimitiveShape' ;

ransparency’ ;

"PrimitiveShape’ ;
i:'Transparency' ;
i:'Porosity’' ;
i:'PrimitiveShape’ ;
i:'Mass'.

Figure E8: The query that answers Q11. In this example, the properties relevant for Action Plan vi:actionPlan_a3_d11_al are
derived.

Q12. Which item properties are independent of the scenario?

?- owl_individual_of(Property,vi:'PersistentProperty'),rdf(Property,rdf:type,owl:'Class").
vi:'Mass' ;

vi:'PrimitiveShape’ ;

vi:'Size' ;

vi:'Texture' ;

vi:'Transparency’' ;

Figure E9: The query that answers Q12.

Q13. Which item properties are dependent on the scenario?

?- owl_individual_of(Property,vi:'ItemProperty'),
not{owl_individual_of(Property,vi:'PersistentProperty')),rdf(Property,rdf:type,owl: 'Class').
vi:'BoundingBox' ;
vi:'Footprint' ;
vi:'Segmentation’ ;

Figure E10: The query that answers Q13.

Q14. Which item properties are known, and with what accuracy?

?- vi_prolog:item_properties(robotE,Property,Probability,Definition).

'"Mass',

= '0.2 0.3 0.2 0.2 0.1",

'9.5 1.6 1.5 2.0 2.5' ;

'"Porosity’,

= '0.95 0.04 0.01",
= 'solid semi porous' ;

'"PrimitiveShape’,

= '0.2 0.3 6.3 0.1 0.05 0.05",

'sphere cylinder box disk cone complex' ;
'Size',
= '6.10.2 6.3 0.3 0.1',
= '5 10 15 20 25' ;
= 'Transparency’,
Probability = '0.7 0.2 0.1°',
Definition = 'opaque semi transparent' ;

Figure E11: The query that answers Q14.

Q15. Which item properties can be estimated?
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?- createactionplanforoutput(robot1, 'Mass')

(...)

actionPlan_c10_d2_a0:
selectGripperVacuumLarge
senselnputCarrierDepth
senselnputCarrierRGB
segmentInputRGBImage
synthesizeFizyrGrasp
moveToGraspPose
activateGripperToGrasp
senseSuctionPressureAfterGrasping
verifyItemThroughPressure
sensePayloadAfterGrasping
knowIntrinsicPayload
estimateMassFromPayload

with confidence: ©.29514489903360003

actionPlan_c10_d11_a1l:
selectGripperVacuumSmall
senselnputCarrierDepth
senselnputCarrierRGB
segmentInputRGBImage
synthesizeFizyrGrasp
moveToGraspPose
activateGripperToGrasp
senseSuctionPressureAfterGrasping
verifyItemThroughPressure
sensePayloadAafterGrasping
knowIntrinsicPayload
estimateMassFromPayload

with confidence: 0.29514489903360003

true.

Figure E12: The query that answers Q15 for the example of estimating an item’s mass. Only the last two action plans are included in this
figure for brevity.

?- createactionplanforoutput(robotl, 'Segmentation’).

Considering task: taskSegmentation...

Retracting previously computed action plans...

Computing action plans...

Warning: assuming default confidence for capability http://www.semanticweb.org/vi#segmentInputRGBImage

falseWarning: assuming default confidence for capability http://www.semanticweb.org/vi#tsenseInputCarrierRGB

Merging action plans...

Removing invalid action plans...

Recovering chronological order of action plans...

Calculating confidences and execution times for action plans...
Warning: assuming default confidence for capability http://www.semanticweb.org/vi#segmentInputRGBImage
Warning: assuming default confidence for capability http://www.semanticweb.org/vi#senseInputCarrierRGB

actionPlan:

- senselnputcCarrierRGB

- segmentInputRGBImage

with confidence: ©.6859999999999999
true.

Figure E13: The query that answers Q15 for the example of estimating an item’s segmentation. The output shows that there is one
action plan that estimates this property.
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?7- createactionplanforoutput(robotl, 'PrimitiveShape’).

Considering task: taskPrimitiveShape...

Retracting previously computed action plans...

Computing action plans...

Merging action plans...

Removing invalid action plans...

Recovering chronological order of action plans...

Calculating confidences and execution times for action plans...

true.

Figure E14: The query that answers Q15 for the example of estimating an item’s primitive shape. The output shows that there are no
action plans that estimate this property.

This concludes the section on concrete queries that answer the competency questions.

E.2. Ontology Used for Evaluation

This section presents the capabilities available to RSIR during its evaluation of grasping an unknown item
in section 9.2. The capabilities are listed in Table E1. Furthermore, Figures E15, E16, and E17 present the
limitations on the capabilities regarding item properties. Finally, all gripper capabilities have a Cardinality
Constraint of 1, meaning RSIR can only use one gripper when grasping the item.

Table E1: The capabilities available to RSIR when evaluating its reasoning capabilities for grasping an unknown item.

Capability Input Output
knowIntrinsicPayload - intrinsicPayload
knowVerificationPose - verificationPose
» | selectGripperThreeFinger . grlpperRadlus, minOpeningWidth, useOpeningSensing-
% 2 Gripper
2 5 . . i Length, maxGraspingHeight, maxOpeningWidth,
E 1 TwoFingerL - sripper
g g selectGripperTwoFingerl.arge minOpeningWidth, useOpeningSensingGripper
] i h GraspingHeight, maxOpeningWidth,
8 . . . gripperLength, maxGraspingHeight, maxOpening )
selectGripperTwoFingerSmall minOpeningWidth, useOpeningSensingGripper
selectGripperVacuumLarge - activationPressure, deactivationPressure, suctionCupArea
selectGripperVacuumSmall - activationPressure, deactivationPressure, suctionCupArea
senselnputCarrierRGB - inputCarrierRGB
w~§ senselnputCarrierDepth - inputCarrierDepth
é = | senseVerificationRGB isAtVerificationPose verificationRGB
§ g senseGripperOpeningAfterGrasping hasGrasped, useOpeningSensingGripper measuredGripperOpening
& | senseSuctionPressureAfterGrasping hasGrasped measuredPressureAfterGrasping
sensePayloadAfterGrasping hasGrasped measuredPayload
segmentInputRGBImage inputCarrierRGB segmentation, itemCountInInputCarrier
synthesizeCircularGrasp gripperRadius, inputCarrierDepth graspPose
synthesizeFlatSurfaceGrasp segmentation, inputCarrierDepth, suctionCupArea | graspPose
w 8 . . gripperLength, inputCarrierDepth, maxGrasp-
5 ;E synthesizeParallelLineGrasp ingHeight, maxOpeningWidth, minOpeningWidth graspPose
23 - - . ——
§ _§ synthesizePrincipalAxisGrasp ‘s/\e;ig‘?:lfmanon, inputCarrierDepth, maxOpening graspPose
o
&~ o verifyltemThroughGripperOpening measuredGripperOpening, minOpeningWidth itemIsInGripper
. activationPressure, deactviationPressure, mea- | . .
verifyltemThroughPressure suredPressureAfterGrasping itemIsInGripper
verifyltemThroughFootprint verificationRGB itemlIsInGripper, footprint
verifyltemThroughPayload intrinsicPayload, measuredPayload itemIsInGripper
moveToGraspPose graspPose isAtGraspPose
w5
= % activateGripperToGrasp isAtGraspPose hasGrasped
B
=9
2 & | moveToVerificationPoseSlowly hasGrasped isAtVerificationPose
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Figure E15: The constraints for the grippers when evaluating RSIR.



E Ontology and Reasoner Results

ouapyuoD

212

10

20

£0

0

S0

90

40

80

60

L0

20

£0

0

S0

90

40

80

60

L

HISH Jo uonenjeas ayj 1oy sepljiqeded sisayjuks dseub ay) jo ssouapyuon

20UBpYUOD

20UBpYUOD

20

£0

0

S0

90

40

80

60

20

£0

0

S0

90

40

80

60

20UBpYUOD

aouUspyuoDy
Figure E16: The constraints for the grasp synthesis approaches when evaluating RSIR.



213

E2. Ontology Used for Evaluation

aunssaud ybnosg Apap [ ]

peojfed ybnosy ApepT )

Buwado seddu ybnou Apea [T
dioo) Yo Apea

Amos asod uopeaan o) BAoK I
Appainb asod uoneauan o) aAo [

yidap jnduy mm._mml

xajdwog auoD 3810 xog 1apulifn alaydg

adeyg

20LBPYUDD

aledsuel) WwaledsuglFwag anbedo

Kfouasedsuesy

snoJod snolod-jwag pllos

1€0

4 ¥0

150

190

440

480

160

L

Kysosod
HIS¥ Jo uonenjeaa auy Joj sanjiqedes Bujurews. sy jo sasuapyuo)

20UBpYUOD

s0UapYUCD

S¢

oziS

w.mms_

20

£0

0

S0

90

40

20

60

20

£0

0

S0

90

40

80

60

2oUBpYUOD

20LBPYUDD

Figure E17: The constraints for the remaining capabilities when evaluating RSIR.
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E.3. Estimated Item Properties using Exploitation

This section presents the estimated item properties for the evaluation of RSIR where it exploits knowledge.
The properties are presented in Figures E18 through E25.
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Figure E18: The estimated item properties for the dog food, when RSIR exploits knowledge.
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Item properties for the glasses, without exploring, directly after the stabilization cycle
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Figure E19: The estimated item properties for the glasses, when RSIR exploits knowledge.
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ltem properties for the milk, without exploring, directly after the stabilization cycle
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Figure E20: The estimated item properties for the milk, when RSIR exploits knowledge.
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Figure E22: The estimated item properties for the sponge, when RSIR exploits knowledge.
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Figure F23: The estimated item properties for the stressball, when RSIR exploits knowledge.
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Figure F24: The estimated item properties for the teddy bear, when RSIR exploits knowledge.
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Item properties for the toothpicks, without exploring, directly after the stabilization cycle
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Figure E25: The estimated item properties for the toothpicks, when RSIR exploits knowledge.

E4. Estimated Item Properties using Prior Knowledge

This section presents the estimated item properties for the evaluation of RSIR where it exploits knowledge
and has access to prior knowledge. The properties are presented in Figures E26 through E29.
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Figure E28: The estimated item properties for the petri dish, when RSIR exploits knowledge and has access to prior knowledge.
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Item properties for the sponge, with prior knowledge, without exploring, directly after the stabilization cycle
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Figure E29: The estimated item properties for the sponge, when RSIR exploits knowledge and has access to prior knowledge.

E5. Estimated Item Properties using Exploration

This section presents the estimated item properties for the evaluation of RSIR when it uses explorations.

E5.1. Exploring 1 in 5 cycles

This subsection presents the estimated item properties for the evaluation of RSIR when it explores once every
5 grasping cycles. The properties are presented in Figures E30 through E32.
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Item properties for the dog food, exploring 1 in 5 cycles, directly after the stabilization cycle
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Figure E30: The estimated item properties for the dog food, when RSIR explores once every 5 grasping cycles.
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Figure E31: The estimated item properties for the milk, when RSIR explores once every 5 grasping cycles.
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Item properties for the sponge, exploring 1 in 5 cycles, directly after the stabilization cycle
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Figure E32: The estimated item properties for the sponge, when RSIR explores once every 5 grasping cycles.

E5.2. Exploring 1 in 2 cycles

This subsection presents the estimated item properties for the evaluation of RSIR when it explores once every
2 grasping cycles. The properties are presented in Figures E33 through E35.



E5. Estimated Item Properties using Exploration

229

Probability density

Probability density

Probability density

Probability density
5

0.05

Size

Item properties for the dog food, exploring 1 in 2 cycles, directly after the stabilization cycle

12

Probabilty density

Probabilty density

12

Porosity

——

==

Solid Semi-porous  Porous
Transparency
Opaque  Semi-ransparent Transparent

Porosity

Probability density

Solid Semi-porous  Porous

Transparency

—t—

Lo

Opaque

Semi-transparent Transparent

Probability density

Probability density

Item properties for the dog food, exploring 1 in 2 eycles, 20 cycles after the stabilization cycle

>

&

2

Shape

Sphere Cylinder

Number of cycles before stability is reached: 13.416.5
Fraction of tests that resulted in the correct action plan: 1.0

Box

Disk

Cone  Complex

Confidence of optimal action plan: 0.7

Shape

Sphere Cylinder

Box

Disk

Cone  Complex

Number of cycles before stability is reached: 13.446.5

Fraction of tests that resulted in the correct action plan: 1.0

Confidence of optimal action plan: 0.77

Figure E33: The estimated item properties for the dog food, when RSIR explores once every 2 grasping cycles.
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Figure E34: The estimated item properties for the milk, when RSIR explores once every 2 grasping cycles.
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Figure E35: The estimated item properties for the sponge, when RSIR explores once every 2 grasping cycles.

E6. Estimated Item Properties for Robustness

This section presents the estimated item properties for the evaluation of RSIR when it has noisy knowledge
about its capabilities and when it uses explorations.

E.6.1. Exploring 1 in 5 cycles

This subsection presents the estimated item properties for the evaluation of RSIR hen it has noisy knowledge
about its capabilities and when it explores every 5 grasping cycles. The properties are presented in Figures
E36 through E38.
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Figure E36: The estimated item properties for the dog food, when RSIR has noisy knowledge about its capabilities and explores once
every 5 grasping cycles.
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Figure E37: The estimated item properties for the milk, when RSIR has noisy knowledge about its capabilities and explores once every 5
grasping cycles.
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Item properties for the sponge, exploring 1 in 5 cycles, with confidence noise, directly after the stabilization eycle
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Figure E38: The estimated item properties for the sponge, when RSIR has noisy knowledge about its capabilities and explores once
every 5 grasping cycles.

E.6.2. Exploring 1 in 2 cycles

This subsection presents the estimated item properties for the evaluation of RSIR hen it has noisy knowledge
about its capabilities and when it explores every 2 grasping cycles. The properties are presented in Figures
E39 through F41.
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Figure E39: The estimated item properties for the dog food, when RSIR has noisy knowledge about its capabilities and explores once

every 2 grasping cycles.
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Item properties for the milk, exploring 1 in 2 cycles, with confidence noise, directly after the stabilization cycle
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Figure E40: The estimated item properties for the milk, when RSIR has noisy knowledge about its capabilities and explores once every 2
grasping cycles.
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