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An Industrially Applicable Solver
for Compressible, Turbulent Flows

van

JOHAN Kok

De nauwkeurigheid in grenslagen van de numerieke methode van Jameson voor
compressibele stromingen kan sterk verbeterd worden door het toepassen van
een specificke matrix-vorm van artificiéle diffusie — waarbij de artificiéle diffusie
enkel in de richting loodrecht op de wand verminderd wordt — zonder dat dit
een toename van de rekenkosten tot gevolg heeft (zie dit proefschrift).

*
Bij de ontwikkeling van numerieke methoden voor complexe, niet-lineaire ver-
gelijkingen, zoals de Reynolds-gemiddelde Navier-Stokes vergelijkingen, is het
uitvoeren van numerieke experimenten essentieel.

*
Voor zeer complexe geometrién vergt het uitvoeren van een stromingssimulatie
m.b.v. een multi-block flow solver een dergelijk grote inspanning, dat het gevaar
dreigt dat men het verkrijgen van een oplossing al als een succes beschouwt,
onafhankelijk van de nauwkeurigheid van deze oplossing.

*
Indien men een stelsel vergelijkingen dimensieloos maakt, dient het aantal scha-
lingsgrootheden gelijk te zijn aan het aantal fysische dimensies in het probleem.
De vorm van de dimensieloze vergelijkingen is dan gelijk aan die van de oor-
spronkelijke vergelijkingen. Van deze regel wordt vaak afgeweken waardoor de
dimensieloze variabelen en vergelijkingen niet meer uniek gedefinieerd zijn en
als gevolg daarvan de kans op fouten toeneemt.

*
Aangezien de stad het domein is van voetgangers en fietsers, en derhalve in het
verkeer hun veiligheid voorop hoort te staan, dient het snelverkeer 6f volledig
gescheiden te worden van het langzaam verkeer, 6f zich volledig aan te passen
aan het langzaam verkeer. Zolang dit niet het geval is, is het terecht dat de
automobilist, als veroorzaker van deze onveilige situatie, volledig aansprakelijk
wordt gesteld voor eventuele ongelukken.

*
Mensen die over alles een mening en over iedereen een oordeel hebben, hebben
over niets nagedacht.

*
Niets is zo verwonderlijk als het feit dat er iets is in plaats van niets.
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SUMMARY

In this thesis, a flow solver for the steady, compressible, Reynolds-averaged Navier—-
Stokes equations is discussed. This solver is intended for industrial applications,
in particular for simulating compressible, turbulent flows around transport-type air-
craft to support the integration of propulsion systems with wing-body configurations.
Starting point for the development of the flow solver is an existing solver for the
steady, compressible Euler equations. Viscous and turbulent effects are incorporated
by means of the thin-layer Reynolds-averaged Navier-Stokes equations and algebraic
turbulence models. Thus, the wing boundary layer (and its effect on the wing pres-
sure distribution) is captured, while growth potential to more general viscous flows
is ensured.

Since the existing Euler flow solver has been accepted and used extensively by
industry, a maximum reuse of methods and software is required. This solver was
based on the use of multi-block structured grids, so that arbitrary complex geometries
could be considered. The Euler equations were discretized in space by a cell-centred
finite-volume scheme using central differences and explicit scalar artificial diffusion.
The discrete equations were solved by a pseudo-time integration method using explicit
Runge-Kutta schemes and implicit residual averaging.

Considering at first a straightforward extension of the numerical scheme for the
Euler equations to the Navier-Stokes equations, further improvements are needed. A
matrix artificial-diffusion scheme is employed in order to reduce the grid dependency
of the numerical solution in boundary layers, without a significant reduction of con-
vergence speed or increase of computation time compared to scalar artificial diffusion.
An efficient solution procedure is obtained by using a multi-grid scheme in order to
accelerate the pseudo-time integration method. A robust scheme for multi-block grids
with cells of high aspect ratio is obtained by using the concept of multi-block inside
multi-grid, a W-cycle multi-grid scheme with five pre- and five post-relaxations, and
high-aspect-ratio scaling of artificial diffusion and residual averaging. Also, attention
is given to a robust (numerical) implementation of the algebraic turbulence models.
In particular, for the Johnson-King model, attention is given to detailed problems
related to the extension of the model from 2D to 3D and to its implicit algebraic
relations.

Finally, an assessment is made of the numerical accuracy and efficiency of the
Navier-Stokes solver, and its applicability to typical transport-type aircraft configu-
rations is demonstrated.
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INTRODUCTION

Between 1985 and 1990, a flow solver for the steady, compressible Euler equations was
developed at NLR. This solver was intended for the simulation of steady, compressible,
inviscid flow around transport-type aircraft in subsonic or transonic cruise conditions,
and included means for the simulation of the effect of propulsion systems on the
flow. The flow solver was part of a flow-simulation system called ENFLOW, which
included tools for grid generation and flow visualization. This system was based on
the use of multi-block structured grids, so that arbitrary complex geometries could
be considered.

The main application of the Euler flow solver has been to support the integra-
tion of propulsion systems with wing-body configurations. One is then primarily
interested in the effect that the presence of the propulsion system has on the wing
pressure distribution. A strong distortion of this pressure distribution is undesired,
since, generally, the wing has been carefully designed to meet certain aerodynamic
requirements, usually in terms of lift, drag, and geometric characteristics. However,
for the application region considered, large differences may still exist between the
wing pressure distribution predicted by the Euler equations and the measured pres-
sure distribution (e.g. shock locations may easily be off by 15% of the local chord for
a given angle of attack in transonic cruise). The main cause for this difference is, of
course, that the displacement effect of the wing boundary layer has been neglected in
the Euler flow solver.

Around 1990, it was decided that the Euler flow solver should be extended with
means for simulating the effect of the wing boundary layer on the wing pressure
distribution. For transport aircraft in cruise conditions, these boundary layers are
generally turbulent. The choice was made to model the wing boundary layer using
the thin-layer Reynolds-averaged Navier-Stokes (TLNS) equations, and simple alge-
braic turbulence models, under the assumption that for the application region, the
boundary layers are generally attached or only weakly separated. Although only the
wing boundary layer was taken into account and only simple algebraic turbulence
models were considered, growth potential towards more complex viscous flows had to
be ensured.

The actual extension of the Euler flow solver with the thin-layer Navier—Stokes
equations and algebraic turbulence models, resulting in the Euler/Navier-Stokes flow
solver ENSOLYV, is the topic of this thesis. Since the flow solver is aimed at industrial
applications, it is important that the computational method has sufficient numerical
accuracy, efficiency, and robustness so that the method may be used reliably within its
region of application. This region of application, as for the Euler flow solver, consists

1



2 1. Introduction

of the simulation of compressible flow around transport-type aircraft in transonic
cruise conditions, in particular to support the integration of propulsion systems with
wing-body configurations.

Before going into a detailed discussion of the extension, an overview is given
of the original Euler flow solver, a short description is given of how the turbulent
boundary layers and wakes are modelled, and requirements and project constraints
for the extension are formulated.

1.1 GENERAL OVERVIEW OF EULER FLOW SOLVER

A short overview is given of the concepts that were used to develop the existing
NLR Euler flow solver (see also Boerstoel et al. [11, 12]). These concepts include a
number of major design choices which in general must be made when developing a
computational method for flow simulation. These choices are outlined here (with-
out an extensive discussion or justification) as they form the starting point for the
development of the Navier-Stokes flow solver ENSOLV:

— The Euler flow solver was aimed at the simulation of steady, compressible,
inviscid flow around transport-type aircraft in subsonic or transonic cruise con-
ditions.

— The flow solver was based on the Euler equations. Inviscid flow may also be
modelled using potential-flow theory. However, in case of strong shocks, not
negligible generation of vorticity (e.g. due to propulsion systems), or complex
vortex sheets (for complex configurations), potential-flow theory is difficult to
be applied.

— The choice was made to deal with arbitrarily complex geometries, instead of
a limited number of simple geometries (e.g. only wing-body configurations).
This allowed for the simulation of the flow around complete aircraft, including
propulsion systems.

— Boundary conditions were included to simulate the effect of propulsion systems
on the flow.

— In order to deal with complex geometries, the solver was based on multi-block
structured grids. Such a grid consists of a division of an arbitrary domain into
a number of non-overlapping blocks, each with the topology of a cube. Within
each block, a structured grid is present, made up of hexahedral cells. An alter-
native approach could have been the use of unstructured grids, usually existing
of tetrahedral cells. In general, for structured grids it is easier to develop accu-
rate and efficient flow-solution algorithms, but at the cost of a more man-hour
consuming grid-generation task, compared to unstructured grids. In order to
minimize these costs, significant investments have been made in the develop-
ment of efficient (interactive) means for the generation of multi-block structured
grids [104, 105}, parallel to the development of the flow solver: ENDOMO for
the generation of the multi-block topology, and ENGRID for the generation of
the grids within the blocks.
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— The equations were discretized by a cell-centred finite-volume scheme using cen-
tral differencing and explicit artificial diffusion. Following the work of Jameson
[52], this artificial diffusion consisted of a blending of second- and fourth-order
differences. The finite-volume concept ensures conservation, needed for cor-
rect prediction of shocks. A cell-centre scheme was chosen over a cell-vertex
scheme, because it results in a simpler scheme at block boundaries (in partic-
ular at edges and vertices). For non-smooth grids, cell-vertex schemes can be
more accurate than cell-centre schemes. However, the structured grids are re-
quired to be smooth within blocks. The Jameson-type scheme, developed for
transonic flows, was chosen for its robustness and its cheapness compared to
upwind schemes (factor 2 to 3). Upwind schemes, however, are generally more
accurate at flow-field discontinuities, resulting in sharper shocks, and are in
particular preferred for supersonic and hypersonic flows.

— The discrete equations were solved using an explicit Runge-Kutta time-inte-
gration scheme, accelerated by local time stepping, implicit residual averaging,
and enthalpy damping. It was argued that such an explicit scheme has a similar
efficiency as implicit time-integration schemes for the considered applications
(the slower convergence counterbalanced by the lower cost of one time step),
while being simpler to implement, in particular for the multi-block concept.

1.2 MODELLING OF TURBULENT BOUNDARY LAYERS AND WAKES

The flow of air around transport aircraft at cruise conditions occurs at high Reynolds
numbers, implying that the viscous effects are mostly limited to (thin) boundary
layers and wakes, and that the flow in these regions is generally turbulent. The
extension of the Euler flow solver is in first instance aimed at capturing the turbulent
boundary layer on the wing surface as well as the near wake downstream of the wing,
while ensuring growth potential towards capturing all boundary layers and wakes, or
towards more complex flows with viscous effects not only limited to such thin layers.
At cruise conditions, these wing boundary layers are mostly attached or only weakly
separated, while the cross flow in the boundary layer is weak across the largest part
of the wing.

The turbulent boundary layers and wakes are here essentially described by the
Reynolds-averaged Navier-Stokes (RANS) equations. In this model, the flow is con-
sidered to be the sum of a mean flow and turbulent fluctuations. The mean flow is
described by the RANS equations, which are obtained by applying an appropriate
averaging procedure to the Navier-Stokes equations [20]. Here, only steady mean flow
is considered. The RANS equations contain unknown terms (the so-called Reynolds
stresses and the turbulent heat flux) which describe the effect of the turbulent fluc-
tuations on the mean flow. A turbulence model is required to model these terms,
and thus close the system of equations. The choice was made to use initially simple
algebraic turbulence models (in particular the model of Baldwin and Lomax [6]). For
attached or weakly separated boundary layers on transport wings, standard algebraic
turbulence models give results which are usually hardly distinguishable from those
obtained with more generally applicable turbulence models (such as two-equation
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models), see for instance Holst [46]. For boundary layers with shock-induced separa-
tion, or strong adverse pressure gradients, turbulence models are required which take
non-equilibrium effects into account. For this reason, it was also decided to use the
model of Johnson and King [56] (which is an algebraic model extended with a partial
differential equation along configuration surfaces). Algebraic turbulence models can
be easily separated from the other parts of the flow solver, thus allowing them to be
replaced by different models in the future.

The thin-layer Reynolds-averaged Navier-Stokes (TLNS) equations are a simpli-
fied form of the RANS equations, retaining in the viscous terms only derivatives in the
direction normal to configuration surfaces (a reduction of the computational effort in
the order of 50% in 3D). As shown by Blottner [10], all terms of the Euler equations,
and of the first-order boundary-layer equations are contained in the TLNS equations,
but some curvature terms are neglected, compared to the second-order boundary-
layer equations. For the TLNS equations, grids may be used with high aspect ratios
of the grid cells (small mesh sizes in the direction normal to the configuration surface,
and larger mesh sizes in the tangential directions). In order to accurately represent
the terms of the full RANS equations that were neglected in the TLNS equations,
grids would be required with significantly lower aspect ratios (several orders of mag-
nitude), thus increasing the computational effort considerably. Future extension of
the TLNS equations to the full RANS equations is very well possible, and similar (if
not identical) numerical techniques may be used for both systems of equations.

Thus, the TLNS equations, together with algebraic turbulence models, may be
considered as the least expensive method for simulating the wing boundary layer,
while retaining growth potential towards the simulation of the boundary layer on
all aircraft components, or the simulation of more complex viscous flows (e.g. with
strong separation). Methods based on coupling the Euler equations to a boundary-
layer method, although possibly cheaper than solving the TLNS equations, generally
lack this growth potential.

1.3 REQUIREMENTS AND PROJECT CONSTRAINTS

In this section, we formulate the main project constraints within which the new flow
solver ENSOLV had to be developed, as well as the requirements which the new
solver had to satisfy. The project constraints essentially have been described in the
two previous sections, and can be summarized as follows.

1. Region of applicability: The flow solver shall be used to simulate compressible,
turbulent flow (steady in the mean) around transport-type aircraft in subsonic
and transonic cruise conditions. The region of applicability is limited to flows
for which the following assumptions hold:

— Viscous and turbulent effects are limited to thin boundary layers and
wakes.

— Wing boundary layers are attached or weakly separated.

— No strong cross flow occurs in the wing boundary layers, apart from the
wing tip region.
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For these flows, the main interest concerns the wing pressure distribution, and
thus it is in particular the wing boundary layer that must be captured.

2. Flow model: The flow solver shall be based on the steady thin-layer Reynolds-
averaged Navier-Stokes (TLNS) equations in combination with standard alge-
braic turbulence models. This allows for the separate simulation of the wing
boundary layer and wake, while the flow over other aircraft components (such
as the nacelle) is modelled as inviscid.

3. Starting point: Starting point for the development of the flow solver shall be
an existing solver for the compressible, Euler equations. Since this solver has
been accepted and used extensively by industry, a maximum reuse of methods
and software is required. Further, the functionality of the existing Euler solver
must be retained.

4. Geometrical complezity: The flow solver must be able to deal with complex
geometries, typically complete (transport) aircraft, as far as the topology is
concerned. In fact, since the concept of multi-block structured grids has been
adopted to deal with complex geometries, this means that the flow solver must
be able to deal with arbitrary multi-block topologies. (Note that this does not
imply that the flow solver shall be able to deal with arbitrary (complex) flows.)

If a computational method is to be applied in a routine manner (as part of a
design process), it is important that such a method is sufficiently robust and efficient,
as well as sufficiently accurate, or at least that its accuracy has been assessed.

For assessment of accuracy, it is important to identify separate error sources.
This is done by distinguishing the subsequent phases of the physical and math-
ematical modelling that are present in developing a numerical simulation method
[93, 101]:

1. physical reality,

2. physical model: a conceptual model stating which physical effects are taken into

account, and which effects are neglected,

3. continuous mathematical model, introducing representation errors with respect

to the physical model,

4. discrete mathematical model, introducing discretization errors,

5. solution procedure, introducing solution errors, and

6. software implementation.

In the context of accuracy assessment, validation is defined as the assessment of
the physical relevance of a simulation, i.e. the assessment of the physical modelling
errors, consisting of the neglected physical effects and the representation errors. For
validation it is necessary to relate to the ‘outside world’: physical simulations or
experiments, such as a wind-tunnel measurement (with its own error sources), and
other numerical simulation methods. Verification is defined as the assessment of the
numerical accuracy of a simulation, i.e. the assessment of the numerical discretization
errors, for which reference to the outside world is not needed. Verification presupposes
negligible solution errors ~ i.e. the solution procedure should be sufficiently converged
(ideally to machine accuracy) - as well as the absence of implementation errors.
Validation presupposes that the discretization errors have been assessed.
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The current work focuses on the numerical scheme, which consists of the discrete
mathematical model and the solution procedure. The physical and continuous mathe-
matical model are required before hand. Together they are named flow model, and are
presented in the following chapter. A general validation of these models lies outside
the scope of this thesis. We will, however, perform comparisons with experimental
results and results of some other computational methods for a few individual test
cases in chapter 6. The software implementation (and the assessment of implemen-
tation errors) also lies outside the scope of this thesis. For recent research conducted
at NLR into an appropriate software structure for CFD software see Vogels [117].

The following requirements are imposed with respect to the numerical scheme:

1. Numerical accuracy: It is required that for practical applications, the numerical

errors are at least smaller than the physical modelling errors. For 2D airfoils,
the physical accuracy for the lift and drag coefficients for methods based on the
RANS equations with algebraic turbulence models lie in the order of 3 to 5%
(Holst (46], Haase [40]) for subsonic and transonic conditions with attached or
weakly separated boundary layers. For 3D cases, for more complex geometries,
and for more difficult flow conditions, the accuracy may certainly be expected
to be less. Thus, it is required that it must be possible to keep numerical errors
in lift and drag within 5%, while maintaining an acceptable computation time
(as specified in the subsequent requirement).
For validation of physical models (in particular turbulence models), it should
be possible to obtain numerical errors that are an order of magnitude smaller
than the physical modelling errors. Thus, it is also required that it must be pos-
sible to keep numerical errors in lift and drag within 0.5%, with a considerable
computation time (order of one day at 400 Mflop/s).

2. Efficiency: In order for numerical simulations to be useful during a design pro-
cess, computation times (excluding grid generation) must be of the order of
several hours for a complete aircraft configuration (at most ten to allow an
overnight computation). For this requirement, a computational speed of 400
Mflop/s is considered, which should be obtainable on a modern supercomputer.
Modern supercomputers have computation speeds in the order of several hun-
dred Mflop/s to several Gflop/s (e.g. the NEC-SX4/16 parallel/vector super-
computer has a peak performance of 2 Gflop/s on a single processor).

3. Robustness: The computational method must be robust. This means that
within the application region converged results must be obtainable without any
user interaction (tuning of parameters) as far as the flow solver is concerned. It is
not required that the solver shall give converged results for arbitrary grids which
may be excessively skew or non-smooth. Instead, parallel to the development of
the flow solver, tools for the generation of multi-block structured grids have been
developed which deliver smooth grids that are orthogonal near configuration
surfaces (i.e. within boundary layers).

In the following chapters, we will first present the continuous flow model. After
that, the space discretization, the solution procedure, and turbulence modelling will
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be discussed, keeping in mind the three main numerical requirements just formu-
lated. Finally, in chapter 6, a verification of these requirements will be performed,
and the application of the flow solver to a few typical aircraft configurations will be
demonstrated.



1. Introduction




2

FrLow MODEL

2.1 INTRODUCTION

Consider the compressible, subsonic or transonic flow around a transport-type air-
craft. In the introduction, it has been stated that the turbulent boundary layers and
wakes of the wing will be modelled by the Reynolds-averaged Navier-Stokes (RANS)
equations, and in particular by the thin-layer approximation thereof (TLNS equa-
tions). Other regions of the flow will be modelled as inviscid and are described by
the Euler equations, consistent with the existing Euler flow solver. In this chapter,
all these equations will be described, including boundary conditions and the scaling
to make the equations dimensionless. As will be seen later, the RANS equations
are a set of unclosed equations, with terms (the Reynolds stresses and the turbulent
heat flux) which need to be defined by a so-called turbulence model. As stated in
the introduction, algebraic turbulence models are used, which will be discussed in
chapter 3.

The three sets of equations considered (RANS, TLNS, and Euler) can be written in
the same conservation form, consisting of five partial differential equations describing
the conservation of mass, momentum, and total energy. Corresponding to these
equations, the density p, the momentum vector per unit volume or mass flux pi,
and the total energy per unit volume pE are taken as the basic dependent variables
(where @ € R? is the velocity vector, and E is the total energy per unit mass). These
variables form the components of the flow-state vector U € R5:

P
U= pt |. (2.1)
pE

The general conservation form of the equations is then given by

U

—+V-F=0, 2.2

5 (2.2)
where the flux matrix ¥ € R3*® depends on the precise equations considered (RANS,
TLNS, or Euler) and V is the gradient operator. Since the interest only concerns
steady (mean) flows, equation (2.2) reduces to

V-F=0. (2.3)
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The independent variables are the time ¢ € [0,00), and the position vector ¥ €
D C R3, where D is the flow domain. The boundary 8D of the flow domain consists
of a configuration surface 8D, and an outer boundary dD,. Considering a Cartesian
reference frame with unit base vectors €; (i € {1,2,3}), the position vector may be
expressed as Z = z;€; (using the Einstein summation convention). The Cartesian co-
ordinates (z,,x2,23) are also sometimes denoted as (z,y, z). Similarly, the velocity
vector and the gradient operator are expressed as @ = u;€; and V = €; 8/0z;, respec-
tively. Furthermore, it is assumed that the flow domain is described by a boundary-
conforming curvilinear coordinate system (£,7,() € [0,1]® (or separate parts of the
flow domain can be described by such a system). This coordinate system can be
considered to correspond to the grid which is used to discretize the equations.

In order to render the equations dimensionless, at least four reference quantities
must be defined to scale all variables, since the equations contain four basic dimen-
sions (time, length, mass, and temperature). When exactly four appropriate reference
quantities are used, the scaling of every variable is uniquely defined, and the dimen-
sionless equations have a form identical to the dimensional equations. Here, the four
reference quantities are chosen as the free-stream values of density poo, pressure poo,
and temperature To,, and a relevant length scale L (usually a representative length
of the aerodynamic body such as the wing chord). Considering all variables and
equations from here on to be dimensionless, this is equivalent to setting these four
variables (but now scaled) equal to one:

po=1 po=1, Teo=1 L=1. (2.4)

In the following sections, the specific form of the general continuous equation (2.2)
are defined for the RANS equations (section 2.2), the TLNS equations (section 2.3),
and the Euler equations (section 2.4). To complete the continuous flow model, bound-
ary conditions must be added, which are described in section 2.5. Initial conditions
are not needed in the continuous flow model, since only steady flows are considered.
Finally, in section 2.6 flow parameters are identified and suitable dimensionless groups
are derived.

2.2 THE REYNOLDS-AVERAGED NAVIER—STOKES EQUATIONS

Generally, a turbulent flow can be considered to be the sum of a mean flow and
turbulent fluctuations around this mean. The smallest time and length scales of the
fluctuations can be very small compared to the scales of the mean flow, so that gener-
ally less resolution is required to describe the mean flow than to describe the complete
turbulent flow. (See for an order of magnitude of these different scales e.g. Tennekes
and Lumley [113].) Furthermore, one is often only interested in mean properties of the
flow, and not in all (small-scale) details. Therefore, through an appropriate averaging
procedure, equations describing the mean flow have been derived from the general
Navier—Stokes equations [14, 20, 84, 113, 123]. The mean-flow equations are called
the Reynolds-averaged Navier—Stokes equations, and for a compressible, turbulent
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flow are given by (using the Einstein convention)

9p + 9(pu;)

ot Oz; =0

dpu; I(puiu;) dp _ Omj

o7 oz;  8m 9z 29
6,9_E N O(pEu;) . O(pu;) - O(uitij — Qj)

ot Oz ; Iz; Ozj

where p is the static pressure, 7;; are the Cartesian components of the total stress

tensor T, and (); are the Cartesian components of the total heat-flux vector (j In

these equations, already some simplifying assumptions have been made (see for a

discussion [14, 20]). All dependent variables in the RANS equations are actually

averaged quantities (time-averaged or Favre-averaged) describing the mean flow.
The RANS equations may also be written in the form of equation (2.2),

a—U+V-3'°=V-i}"d, (2.6)
ot

in which the convective flux matrix ¢ € R5*® and the diffusive lux matrix ¥¢ € R3%3
are given by

pil 0
Fe=| paal +pI |, F¢= T ) (2.7)
pEaT + paT g-17-QT

The term @ @” is a tensor of order 2 with Cartesian components u;u;, and the term

I is the unit tensor of order 2 with Cartesian components §;; (the Kronecker delta).
In order to close the equations, equations of state are needed, expressing the
pressure (and internal energy) in terms of the basic dependent variables. Also, the
stress tensor and the heat-flux vector must be related to the basic variables.
Assuming a calorically perfect gas, the internal energy e and the pressure p are
given by
e = c¢,7T,

p = RpT,

with T the temperature, ¢, the specific heat at constant volume, and R the gas
constant. Since the total energy F is the sum of the internal energy and the kinetic
energy,

(2.8)

E=c+1af (2.9)

(with ||-|| the Euclidean norm), the pressure is directly related to the basic dependent
variables by

p=(y—1lpe=(y-1) (pE~ %pHﬂH2), (2.10)

where 7 = ¢p/c, is the ratio of specific heats at constant pressure (c,) and constant
volume (c,), and where the relation R = ¢, — ¢, has been used.



12 2. Flow Model

The total stress tensor T consists of the sum of the viscous stress tensor 7 and

the Reynolds-stress tensor 7%,

Tij = T35+ Tiy (2.11)

For a Newtonian fluid, employing the Stokes’ hypothesis, the viscous term is given
by

Ty = 2u (Sij - 559-3;51'3') :
1 6Uj + 3u,

2 (91'1' (91'_7' ’
with S the rate—of-strain tensor, and with x the molecular dynamic viscosity. The
Reynolds-stress tensor is an unknown term in the RANS equations, representing the
effect on the mean flow of turbulent fluctuations in the velocity field. In an eddy-

viscosity turbulence model, the Reynolds stresses are modelled using the Boussinesq
hypothesis [84],

(2.12)

Ou
Tg = 24 <Sij - %éx—:éij) — %pk(sij, (2‘13)

with p; the so-called eddy-viscosity coefficient and with & the turbulent kinetic energy.
The total heat-flux vector consists of the sum of contributions due to heat conduc-
tion and due to turbulence, which are modelled using, respectively, the law of Fourier
and a gradient hypothesis,
or
6.’1,',' ’
with kp, the thermal conductivity coefficient, and &; the turbulent conductivity coeffi-
cient. Similar to the Reynolds stress tensor, the turbulent heat-flux vector represents
the effect on the mean flow of turbulent fluctuations in the temperature and velocity
fields.
The dynamic viscosity coefficient u is assumed to be given by the Sutherland law

[64],

Qi = —(kn + K1) (2.14)

= |

with oo its free-stream value, and Ts a constant. The thermal conductivity coefficient
Ky, is assumed to be proportional to the dynamic viscosity,

- (1)3’2 Too + T

u Koo

Eh o Bheo (2.16)

The eddy-viscosity coefficient p; is defined by one of the turbulence models given
in chapter 5. In the algebraic models employed there, the turbulent kinetic energy
is usually neglected in the Boussinesq relation (or assumed to be contained in the
pressure). Similar to the thermal conductivity coefficient, the turbulent conductivity
coefficient x; is assumed to be proportional to the eddy-viscosity coefficient,

%t — constant. (2.17)
e
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Integrating equation (2.6) over an arbitrary fixed volume segment @ ¢ D and
applying Gauss’ divergence theorem, the integral form of the RANS equations may

be obtained,
i/// UdV+// 'ﬂ‘mdA:/ Fé. mdA, (2.18)
dt Q a0 9)

where 9} is the boundary of , and where 7 is the unit vector normal to 8§ and
pointing outward of 2. This integral form is the starting point for the discretization of
the equations by a finite-volume method (see chapter 3). Note that a steady, uniform
flow satisfies the integral equations, because

/ mdA=0. (2.19)
[5;9]

For the numerical discretization of the equations and for the derivation of the
TLNS equations, it is useful to write the RANS equations in conservation form in the
curvilinear coordinate system (£, 7, (),

Ja—U + Q(?C-ng) + Q(G'C‘JVn) + 2(C'FC-JVC)
ot o€ on o¢ (2.20)
_ 0 4 0 0 d '
= ag(? JVE) + an(sr JVn) + ag(g JV(),
with J the determinant of the Jacobian,
d(m,y,z)) OF (6.i" 5:3)
J=det (o202 ) 292 (22 9T 2.21
“(eng) =5 (5n 5 221
and with
o 0% 0f 0% o0 OF
_or oz _or oz =297 2.
JVE 87yx8§’ JVn BCXE)&’ JV¢ 6§X8n (2.22)

For the discretization, J is usually identified with the volume of a grid cell, and J VE
is identified with an area vector belonging to a face of a grid cell (see chapter 3). For
a discussion of the conservation form of the equations in curvilinear coordinates see
e.g. Vinokur [115]. Also, see the derivation in appendix A.

2.3 THE THIN-LAYER REYNOLDS-AVERAGED NAVIER-STOKES
EQUATIONS

The thin-layer Reynolds-averaged Navier-Stokes equations are used to describe com-
pressible, turbulent flows in which the viscous and turbulent effects are limited to
thin layers, such as thin boundary layers and wakes. The TLNS equations are a sim-
plification of the full RANS equations, where in the diffusive terms only derivatives
in the so-called thin-layer normal direction are retained [10]. This normal direction is
orthogonal to a solid surface or a wake-centre surface. One of the curvilinear coordi-
nates £, 7, or ¢ is assumed to coincide with the thin-layer normal direction. In the cage
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of two solid surfaces (or wakes) making an intersection, also more than one thin-layer
normal direction is allowed. This allows the simulation of e.g. the boundary layers
on both the wing and the fuselage of an aircraft with the TLNS equations. However,
the interaction region of the two boundary layers is not accurately modelled, since
cross derivatives which may be significant in that region have been neglected in the
TLNS approximation.

Using the curvilinear coordinates (£,7,¢), the TLNS equations may be written as

aU a e a (3 a C

Tr * 5g@IVE + 53TV + 5 (3 TV0)
oF¢ N oF} N BFZ’-
¢ on o¢

(2.23)

This equation is equivalent to the RANS equations in the form of equation (2.20),
with the diffusive flux vector F¢ € R® given by

0
F=54JV¢t= 7% J Ve, (2.24)
@7t -t

with 7€ a shear stress vector and Q¢ a heat flux. However, in the TLNS equations, the
diffusive flux vector F¢ is only taken into account when the £ direction corresponds
to a thin-layer normal direction. Otherwise it is neglected.

Expressions for the shear stress vector 7% and the heat flux Q¢ are obtained using
equations (2.11) to (2.14), but retaining only derivatives in the £ direction,

ou o
£ _ = 1 (=6, 27 ) 7
= 7 = (u+ut)(an£+3(n 8n€)n)’

—_— oT
Q¢ = Q-7 = —(fih+"~t)%,

(2.25)

with ¢ = V¢/||VE|| the unit vector in the direction normal to the surfaces { =
constant and with n¢ the distance in the same direction, dn = d¢/||V¢]|.

As for the RANS equations, one also wants to write the TLNS equations in integral
form. Define the co-variant vectors 3§, §,, and 5¢ in the &, 7, and { directions,
respectively, as

. 10% 102 , 10%

_ Loz L _10F . _10% 2.26
%$=T8 "TTEy %TTaC (2.26)
Recombining the flux vectors F, F¢, and ch into a flux matrix F9,

F = F{sf + FAsT + FEaf, (2.27)

and considering that the vector § is orthogonal to the contra-variant vectors Vn
and V(, equation (2.23) can be rewritten in the form of equation (2.20). Thus, the
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integral form of equation (2.18) also applies, which may be written as

i///Uvar// Fo.mdA =
dt Q a0
// F(3e -m)dA + // FH(8, -m)dA + // F(5, - ) dA.
aQ 80 N

2.4 THE EULER EQUATIONS

(2.28)

The Euler equations for a compressible, inviscid flow are obtained by neglecting the
terms due to viscosity, heat conduction, and turbulence from the RANS equations
(in the form of equations (2.5) and (2.6)), resulting in

o . Apw)

ot da; =0
dpu; d(puiuy) op _
5 + oz, + Bz, = 0, (2.29)
OpE O(pEu;) O(puy) _
ot + Bwj + 8zj - 0,
or equivalently,
ou ¢
E—I—V-B’ =0. (2.30)

Note that for a steady inviscid flow, the equations for the conservation of mass and
energy (equations (2.29a) and (2.29c)) may be combined into

OH

i 2.31
i =0 (2:31)

with H = E + p/p the total enthalpy per unit mass. Thus, for a steady inviscid flow
the enthalpy will be constant along streamlines or even throughout the flow domain
if the same value is specified at all inflow boundaries (and no recirculation occurs).
Similarly, it can be shown that the entropy S = ¢, In(p/p”) is constant along path
lines (the paths followed by material elements) in unsteady inviscid flows, and thus
constant along streamlines in steady inviscid flows.

The Euler equations may also be written in integral form,

i// UdV+// F i dA =0, (2.32)
dt Q an

or using the curvilinear coordinate system (£,7,¢),

ou

0 e 9 (e 9 e -
g e T IV 5 (T IV g (3T IV =0 (2.33)

+ J—

on
The integral form of the Euler equations allows solutions in which the flow state is
discontinuous across a surface (weak solutions). In steady flows, requiring the flux
vector ¢ - 77t to be continuous at the surface of discontinuity (with 7 normal to the
surface), two types of solutions are obtained (see e.g. [65, 103]):
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— shock waves, for which the normal velocity component (@ - 77t) and the pres-
sure are discontinuous, while the tangential velocity components and the total
enthalpy are continuous, and

— contact discontinuities, for which the normal velocity component equals zero,
and the pressure is continuous, while the tangential velocity components and
the total enthalpy are possibly discontinuous.

For these weak solutions, the total enthalpy is still constant along streamlines, and
thus isenthalpic flow will still occur if the same value is specified at all inflow bound-
aries. Across a shock wave, the entropy is discontinuous, and must increase in the
flow direction for the solution to be physically valid (the so-called entropy condition).
As a consequence, the normal Mach number (ratio of normal velocity component and
speed of sound) must decrease in the flow direction, being larger than one upstream
of the shock (supersonic flow) and smaller than one downstream of the shock (sub-
sonic flow for shock waves normal to the flow), while the pressure increases. For
transonic flows around aircraft, a supersonic-flow region is commonly present on the
upper side of the wing, starting near the leading edge, and ending in a shock wave
further downstream on the wing. Slip surfaces, which are contact discontinuities for
which the tangential velocity is discontinuous, are typically present downstream of
the wing trailing edge.

For the RANS equations, discontinuous solutions are not allowed. Slip surfaces
would be immediately smeared out by viscous (and turbulent) diffusion, resulting
in wakes of finite thickness. Shock waves, however, are distributed over regions of
such small dimensions (of the order of magnitude of the mean free path of the gas
molecules for strong shocks [65]) that they may still be seen as discontinuities. For
the TLNS equations, viscous diffusion is only taken into account in the thin-layer
normal direction, so that slip surfaces are allowed if the surfaces are tangential to this
direction.

2.5 BOUNDARY CONDITIONS

The flow model must be completed by appropriate boundary conditions, which are
described in this section. Conditions are considered for both the TLNS and the Euler
equations. For the flow around a (transport-type) aircraft, the following boundaries
may occur:

— solid surface,

— far-field boundary,

— symmetry plane, and

— propulsion-system boundaries (inlets and outlets of jets, propeller disks),
while, in order to perform 2D simulations with a 3D method, also the

— plane of infinite continuation
is considered. Boundary conditions for the propulsion systems were already developed
for the Euler solver. A boundary condition for a jet-engine inlet suitable for the
Navier-Stokes equations was recently developed at NLR. Main idea of such boundary
conditions is to specify general properties (such as mass flux, total temperature, etc.),
so that the main effect of the propulsion system on the flow is taken into account.
These propulsion-system boundary conditions are not considered further here.
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In the following subsections, the vector 7 will be the unit vector normal to the
boundary of the flow domain and pointing outward of the flow domain.

2.5.1 Solid surface

At solid surfaces, viscous effects cause the flow to ‘stick’ to the surface, thus implying
that the velocity must be equal to zero (no-slip condition). Furthermore, adiabatic
flow is assumed, i.e. the heat flux through solid surfaces is required to be equal to
zero. Thus, for the TLNS equations, the following boundary conditions are applied
at solid surfaces:

@ = 0,

m-VI = 0. (2:34)

In the case of the Euler equations, due to the absence of viscous effects, the flow is
allowed to slip along the surface, so that only the normal velocity component must
be equal to zero (slip condition),

a-m=0. (2.35)
When for the TLNS equations, only the wing boundary layers are modelled, and not
the boundary layer on e.g. the fuselage, then the no-slip condition is applied at the
wing surface, while the slip condition is applied at the fuselage surface.

2.5.2 Far-field boundary

It is assumed that at infinity, a uniform flow is present, given by

P = Poo,
g = d, (2.36)
P = Poo-

In the discrete model, the far-field boundary will be located at a finite distance from
the configuration. Assuming the flow in the far field to be inviscid, the same boundary
condition may be applied for the TLNS equations as for the Euler equations.

At the far field, a boundary condition can be derived by applying local charac-
teristic theory. The main idea is to require characteristic variables of incoming char-
acteristics to be equal to their free-stream values, while, in the discrete model, the
other characteristic variables are extrapolated to the far-field boundary from within
the flow domain (51]. This boundary condition belongs to the class of non-reflective
boundary conditions. This means that waves are not reflected at the far-field bound-
ary back into the domain, which could otherwise slow down the convergence of the
flow computation considerably.

Consider the Euler equations in curvilinear coordinates (equation (2.33)). Let the
far-field boundary be given by ¢ = constant, with the ¢ direction pointing outwards
of the flow domain. Assume that at the far field the curvilinear coordinate system
reduces to a rectilinear system (thus J and V¢ are locally constant, and we may also
assume that ||V€|| = 1). Neglecting the derivatives of the flow state to n and ¢, the
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Euler equations may be written in the one-dimensional characteristic form derived in
appendix A,

ov ov

— +A—=0, 2.37

ot o (2.37)
with A = diag()1,...,As) a real diagonal matrix and V € R® the state vector of
characteristic variables or Riemann invariants (see e.g. Courant and Hilbert [27]).
The characteristic variables are propagated along the corresponding characteristics
dé/dt = X;, which are incoming if A\; < 0 and outgoing if A; > 0. The diagonal
elements \; are the eigenvalues of the Jacobian of the convective flux in € direction,
A& = d(F¢-m)/dU (also derived in appendix A), and are given by

A = U-m, i €1{1,2,3},
M = U-M+te (2.38)
As = U-m-—c

in which 7 = V¢ is the outward unit vector normal to the far-field boundary, and in
which c¢ is the local speed of sound,

c= /22 (2.39)
p

The characteristic variables are defined by the differential relation dV = LdU, with
L the matrix with the left eigenvectors of A¢ as its row vectors. Using the primitive
flow variables p, @, and p, this relation can be written as (with the row vectors of £
suitably scaled)

dVi = —cpdp/p + codp/p,

dVea = §-di,

dVs = t-di, (2.40)
dVy = mi-did+ (c/v)dp/p,

dVs = m-di— (c/v)dp/p,

with (17, §,%) orthonormal. Consider the entropy S = ¢, In(p/p”), so that dV; = dS.
In order to obtain simple algebraic expressions for V; and V5, it is assumed that the
flow at the far field is isentropic (dS = 0, which implies vdp/p = dp/p), resulting in the
following expressions for the characteristic variables (apart from additive constants):

o = 5

Vo = -5,

Vs = @-1, (2.41)
Vi = Roww = u@-m+2c/(y—1),

Vs = Rin = @-m-—2/(y-1),

where the differential relation 2dc/c = dp/p — dp/p = (v — 1)dp/(~yp) has been used
(which follows from equation (2.39)).

Finally, the boundary conditions are defined as follows. We only consider subsonic
flow at the far field, meaning that the Mach number (Mo = |[#x||/coo) is smaller
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than one. In case of inflow (@ - 711 < 0), there are four incoming characteristics (1,
2, 3, and 5) and the corresponding boundary conditions are

S = cn(peo/p),
-8 = U5

" 2 2.4
@7 = i L (2:42)
R = to-m— (2600)/(7_ 1)'

In case of outflow (i - M > 0), there is only one incoming characteristic (5) with
corresponding boundary condition,

Ry, = ﬁoo T — (2600)/(7 - 1) (243)

2.5.3 Symmetry plane

In the case of a symmetric problem, it is sufficient to consider only half of the flow
domain. In that case a symmetry boundary condition must be prescribed at the
symmetry plane. This condition consists of requiring the normal velocity compo-
nent as well as the normal gradients of density, pressure, and the tangential velocity
components to be equal to zero,

m-4 = 0,

m-Vp = 0,
m-V(@-5 = 0, (2.44)
m-vV(g-t) = 0,

m-Vp = 0(,

with § and ¢ unit vectors tangential to the symmetry plane.

2.5.4 Plane of infinite continuation

In order to do a 2D computation (with a 3D method) two parallel planes can be
defined, so-called planes of infinite continuation (usually given by y = constant),
between which the 2D configuration is extended. At the two planes, the normal
gradient of the basic variables are required to be equal to zero,

m-Vp = 0,
m-V(pd) = 0, (2.45)
m-V(pE) = 0.

This boundary condition may also be employed for simulating an infinite sheared
wing, by giving the free-stream velocity also a component in the direction normal to
the plane of infinite continuation. (The 2D airfoil must then be defined as a cross
section of the wing normal to the leading edge.)

2.6 FLOW PARAMETERS AND DIMENSIONLESS GROUPS

Now that the general equations and boundary conditions describing the compressible
flow around an aircraft configuration have been defined, we must identify suitable
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parameters for defining a particular flow. The solution of the TLNS equations depends
on the following:

— the aircraft configuration in terms of its geometric form and an associated char-
acteristic length scale L,
the free-stream density poo, velocity @s,, and temperature T,
the gas constant R and the specific heat at constant pressure ¢,
the free-stream dynamic viscosity fte and thermal conductivity & co,
the constant of the Sutherland law Ts, and
the constant ratio of turbulent conductivity and eddy viscosity &¢/ ;-

Thus, the solution of the TLNS equations depends on twelve parameters, considering
the geometric form of the aircraft configuration to be given. Since the equations con-
tain four basic dimensions (time, length, mass, and temperature), eight dimensionless
groups can be derived by applying dimensional analysis (see e.g. [98]):
— the angles of attack a and side slip 3, specifying the direction of the free-stream
velocity with respect to the Cartesian coordinate system as defined in figure 2.1,

— the free-stream Mach number My, = oo /Coo,

— the ratio of specific heats v = ¢,/cy,

— the free-stream Reynolds number Reso = poo Uoo L/ tioo,

— the Prandtl number Pr = ¢p ptoo /K00,

— the turbulent Prandtl number Pr; = cpus/k¢, and

— the ratio of the constant of the Sutherland law and the free-stream temperature

0s =Ts /T,

with ueo = ||#eoll, and with ¢y the free-stream speed of sound. (For the Euler
equations the latter four parameters are not needed.) Note that it is customary in
aerodynamics to define the zz plane parallel to the symmetry plane or root plane
of the aerodynamic configuration, with the z axis parallel to the reference axis of
the body (e.g. the chord-wise direction) and pointing downstream, and with the 2
axis pointing upwards. Figure 2.1 also gives the direction of the three components
(lift, drag, and side force) of the aerodynamic force working on the aircraft and the
direction of the three components (pitch, roll, and yaw) of the moment exerted by
the flow on the aircraft (with respect to a certain reference point, e.g. its centre of
gravity).

The eight dimensionless groups, together with the four variables of equation (2.4)
(i-e. Poo; Poo, Too, and L), now completely define the twelve flow parameters. Thus,
to define a specific flow case, it is sufficient to give the dimensionless groups. Four
of these groups are given specific values, which are considered to be suitable for the
applications of interest [14]:

|

|

y=14, Pr=072, Pry=09, 05=04. (2.46)

For completeness, the dependence of the flow parameters on the dimensionless
groups and on Peo, Poo, oo, and L is specified. The free-stream velocity is defined as
in figure 2.1,
cosa COs 1Y

sin 3 Uoo, (2.47)

sin o

1

e
i

(e8]
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Figure 2.1: Definition of free-stream velocity and of forces and moments

with ¢ = arcsin(sin 8/ cosa) the orthogonal projection of 3 on the zy plane, and
with the magnitude of velocity (and the speed of sound c.,) given by

Uoo = Coo Moo,  Coo = 1/7_17_03‘ (2.48)
Poo

\ The other parameter are given by
L
R = po;—‘ 3 Cp = %R7 Hoo = pojzﬁ_)
2’°°u o 7 ; . €oo (2.49)
p Hoo t P
= L= Ts = 65T — =
Kh,00 Pr ) S S Lco L PTt

2.7 SUMMARY

In this chapter, we have described the continuous equations by which the compress-
ible, turbulent flow around transport-type aircraft will be modelled. In particular,
the turbulent boundary layers and wakes of the aircraft wing are described by the
thin-layer Reynolds-averaged Navier—Stokes equations. Other regions of the flow will
be modelled as inviscid and are described by the Euler equations. The integral form of
these continuous equations, given by equations (2.28) and (2.32), respectively, will be
the starting point for the numerical method presented in the subsequent two chapters.

' The continuous equations are complemented by the boundary conditions of section
2.5. For a given aircraft configuration, the solution of the equations is determined by
eight dimensionless groups of which four may be chosen freely (the free-stream Mach
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and Reynolds numbers, and the angles of attack and side slip), while the remaining
four have been given specific values (equation (2.46)).




3

SPACE DISCRETIZATION

3.1 INTRODUCTION

In the previous chapter, we have described the flow model in terms of a set of contin-
uous equations (in particular the TLNS equations) complemented by a collection of
boundary conditions. A numerical method for approximating such a set of equations
generally consists of first deriving a set of discrete equations, and second developing
a procedure for solving these discrete equations. Since, in our case, the flow model
consists of steady equations, only discretization with respect to spatial directions is
needed. However, one may also consider the unsteady equations, discretize them
both in space and time, and integrate in time until a steady solution is obtained.
In that case, one should ensure that the final solution is independent of the method
used to perform the time integration, and is in fact the solution of the discretized
steady equations. In this chapter, the space discretization of the unsteady equations
will be discussed. This discretization will be equivalent to a direct discretization of
the steady equations. In the next chapter, the solution procedure will be discussed,
which will be based on the idea of integration in time.

The starting point for the space discretization of the TLNS equations is the dis-
cretization of the Euler equations as used for the existing Euler flow solver. As
outlined in chapter 1, the main concepts of this discretization are:

— multi-block structured grids,

~ a cell-centred finite-volume scheme, and

— central differencing with explicit artificial diffusion.

First, a literature review will be presented, discussing these concepts and the possibil-
ities for extending this discretization to the TLNS equations. After briefly describing
multi-block structured grids in section 3.3, a direct extension of the methods for the
Euler equations to the TLNS equations is described in section 3.4, resulting in the
so-called basic scheme, followed by the discretization of the boundary conditions in
section 3.5. However, it follows from the literature review that this basic scheme will
not satisfy the requirements formulated in chapter 1 (in particular the requirement on
numerical accuracy). Therefore, the method is further extended in section 3.6 with a
matrix artificial diffusion scheme, which reduces the grid dependency of the numerical
solution in boundary layers. Also, in that section, a further extension of the space
discretization is described (scaling of the artificial diffusion for high-aspect-ratio grid
cells) which is needed in order to obtain an efficient solution procedure, as will be
discussed in chapter 4.

23
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3.2 LITERATURE REVIEW

The three main concepts of the space discretization are major design concepts that
influence the structure of the complete flow solver. Switching to other concepts, e.g.
changing from multi-block structured grids to unstructured grids, would be a consid-
erable effort and pose a serious risk, and in fact would almost amount to developing a
completely new flow solver. Thus, when extending an existing flow solver, one should
evaluate if the objectives can be met maintaining these main concepts.

Multi-block structured grids are probably the most popular type of grids for aero-
dynamic flow simulations [12, 100], and many solutions of the Euler and Navier—Stokes
equations for complete aircraft using this type of grids may be found in the literature
(18, 35, 45, 62, 63, 91, 96]. The main drawback of this approach is the man-hour
consuming grid-generation task. An advantage is that accurate and efficient flow-
solution algorithms may be more easily developed than for alternative approaches.
The main alternatives for using multi-block structured grids are:

— Chimera approach (e.g. [9, 38]): also a multi-block approach, but one in which
the blocks are allowed to overlap. The Chimera approach simplifies the grid
generation task, but at the expense of an increased complexity of the flow
solver, in particular with respect to the coupling of the blocks.

— Unstructured grids (e.g. [25, 75]): grids in which no structure is assumed, and
that usually consist of tetrahedral cells, although also prismatic or hexahedral
cells are sometimes used. If not automatic, grid generation is certainly less time
consuming. There are however difficulties for application to the Navier—-Stokes
equations. Apparently there seems to be some need for local structure of the
grid (e.g. through using prismatic cells) to properly describe boundary layers.

— Cartesian grids (e.g. [89]): grids which are defined as the intersection of constant
Cartesian coordinate planes (as opposed to the multi-block structured grids
being curvilinear body-fitted grids) usually with local refinement of grid cells.
For Cartesian grids, the difficulty lies in the treatment of the intersection with
the geometry surface and in the treatment of the boundary conditions at this
surface.

All three approaches, but some more than others, lighten the grid generation task
compared to the multi-block structured-grid approach. Unstructured grids are par-
ticularly gaining popularity. Their main strength lies in faster grid generation for
complex geometries. Also, adaptation of grids to the flow solution (to improve the
accuracy) may simply be done through adding and deleting grid points. However,
grid adaptation, though perhaps somewhat limited in its potential compared to un-
structured grids, is certainly also possible for structured grids through grid-point
movement [41, 42, 43].

Boundary layers are easily captured using body-fitted curvilinear grids (such as
multi-block structured grids) with grid cells of high aspect ratio. A high grid resolu-
tion in boundary-layer normal direction can be obtained without needlessly increasing
the resolution in tangential directions. The alternatives do not offer any advantages
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in this respect, if not making the capturing of boundary layers more difficult. Numer-
ical methods will, in general, not be more efficient or accurate. Thus, although the
alternatives to multi-block structured grids do offer some advantages, these advan-
tages are not relevant for our purposes (extension from Euler to Navier-Stokes), and
therefore we do not change the grid approach. The alternatives could be considered,
for example, when one wants to reduce the total turn-around time of the complete
flow simulation (including grid generation).

For compressible flows, the main alternative to using a cell-centre scheme (storage
of flow variables at cell centres) is the cell-vertex approach (storage at cell vertices)
[50, 73, 109]. For incompressible flows, also frequently the staggered grid approach is
used (storage of pressure at cell centres and of velocity components at the appropriate
cell faces), e.g. [126], the advantages of which are related to the particular form of the
incompressible equations. Cell-vertex schemes are very similar to cell-centre schemes.
They are in particular used for unstructured grids, since for such grids a cell-vertex
scheme is in general argued to be more accurate than a cell-centre scheme, see e.g.
[50]. For structured grids, in practice similar accuracies are obtained for both schemes
(e.g. for 2D transonic airfoils see [73, 109]). It has been shown theoretically that for
central differencing of first- and second-order derivatives, cell-vertex schemes require
less smoothness of the grid than cell-centre schemes to obtain the same order of
accuracy [80, 109], but this effect may be lost when artificial diffusion (or upwinding)
is considered. We do not consider the choice between cell-centre and cell-vertex
schemes to be decisive for the question whether a sufficiently accurate Navier-Stokes
solver can be obtained, and thus stick to the cell-centre approach. Moreover, for multi-
block grids, a disadvantage of cell-vertex schemes is that they require the coupling of
blocks at block faces, edges, and vertices, increasing the complexity of the flow solver
compared to cell-centre schemes, which only require the coupling of blocks at block
faces (as long as the TLNS approximation is used).

The differencing scheme of the existing Euler solver (central differencing with
artificial diffusion) is basically the method developed by Jameson et al. [48, 51, 52].
In combination with a Runge-Kutta time-integration scheme (possibly accelerated by
residual averaging, enthalpy damping, and multi grid), it is a highly popular scheme
mainly due to its simplicity, robustness, and cheapness.

An important property of any differencing scheme for the compressible flow equa-
tions is the correct treatment of flow discontinuities, in particular shock waves (occur-
ring in transonic and supersonic flows) and contact discontinuities (only for inviscid
flow). For the Jameson scheme, with the artificial diffusion consisting of a blending
of 2nd and 4th-order differences, oscillation-free shocks distributed over three to four
grid cells can be obtained (when the shock is aligned with the grid). However, no
special facility is included for treating contact discontinuities, which may be strongly
smeared.

The main alternative for the Jameson-type scheme consists of the large collection
of upwind schemes (see e.g. [95, 118]). Two important classes of upwind schemes for
hyperbolic systems of conservation laws are the approximate Riemann solvers (ARS),
e.g. the schemes of Roe [94], Osher [86], and Harten [44], and the flux-vector splitting
(FVS) schemes, e.g. Steger—Warming [108] and Van Leer [68]. The ARS schemes are
generally capable of sharply capturing flow discontinuities (both shocks and contact
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discontinuities) usually with only one or two interior points (when the discontinuity
is aligned with the grid). The FVS schemes are also generally capable of sharply
capturing shocks, but tend to smear out contact discontinuities due to significant
cross-wind diffusion. In their original form, these upwind schemes are only first-order
accurate. Several approaches exist to obtain higher-order accurate, oscillation-free
upwind schemes from the first-order schemes, such as the MUSCL approach of Van
Leer [69] and the addition of limited anti-diffusive fluxes [95].

Basing on an analogy with upwind schemes, Swanson and Turkel [111] have im-
proved the Jameson scheme following the notion of matrix artificial diffusion. Their
scheme resembles upwind schemes, and is claimed to be only slightly more diffusive
at shocks (compared to the Roe scheme). Since all characteristic wave speeds are
taken into account, it seems the matrix scheme should in principle be able to sharply
capture contact discontinuities, although Swanson and Turkel do not show this.

The important question is now how these different types of differencing schemes
will behave when applied to the Navier-Stokes equations, and in particular for high-
Reynolds-number boundary layers. Van Leer et al. [71] have shown that schemes that
are not capable of sharply capturing contact discontinuities for the Euler equations
(i.e. schemes containing serious cross-wind diffusion) tend to diffuse boundary layers
unless very fine grids are used. The Jameson-type scheme and the FVS schemes
fall into this class. With the flux-difference splitting scheme of Roe, for example,
boundary-layer solutions with considerably less grid dependency can be obtained.
Swanson and Turkel show [112] that their matrix scheme (provided some parameters
are given appropriate values) has a grid-convergence behaviour for boundary layers
far better than the Jameson scheme, and in fact quite similar to the Roe scheme.

In conclusion, it may be expected that the requirements formulated in chapter 1
can be met, maintaining the main concepts of the space discretization of the exist-
ing Euler solver. The Jameson-type scheme, however, must be improved along the
lines of the matrix artificial-diffusion scheme of Swanson-Turkel to reduce the grid
dependency of the numerical solution in boundary layers.

3.3 MULTI-BLOCK APPROACH AND DOMAIN DISCRETIZATION

In order to define a finite set of discrete equations, first the flow domain must be
discretized. A bounded flow domain is considered by setting the far-field boundary
at a finite distance from the configuration. The discretization of this bounded domain
consists of dividing the domain in a finite number of volume segments called cells,
which together form a grid. In a structured 3D grid, these cells are hexahedral
shaped, are packed face-to—face, and can be numbered in an ordered way using a
triple index (3, 7, k) (with neighbouring cells having subsequent index values). If the
flow domain can be described by a curvilinear coordinate system (£,7,¢) € [0,1]3,
then a structured grid can be seen as the image of a uniform mesh in the unit cube
by the mapping of (£,7,() to (z,y,z) (see figure 3.1).

Around a complex aeronautical configuration, a boundary-conforming structured
grid can, in general, only be generated using the multi-block approach [106]. In such
an approach, the flow domain is divided in a set of non-overlapping blocks. Each
block has the topology of a cube, thus having six block faces, and can be described
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Figure 3.1: Mapping from computational to physical domain in 2D

by a curvilinear coordinate system (¢,7,¢) € [0, 1J3, so that a structured grid can be
defined in each block separately. In order to reduce the complexity of multi-block
domains and the number of blocks, blocks are not required to be packed block-face—
to-block-face. Instead, block faces are divided into subfaces (called elementary faces),
and two distinct blocks may border only at one (or a few) of those elementary faces.
The collection of blocks, block faces, elementary faces (as well as edges and vertices)
and their relations is called a multi-block topology. The definition of a multi-block
topology is here constrained by the requirement that the grids are continuous across
the elementary faces.

For each block, the structured grid divides the block into the grid cells Q; ; x with
t=1...N;,j=1...Nj,and k = 1... N;. The grid cell indices i, j, and k correspond
to the curvilinear coordinates ¢, 7, and (, respectively. Each grid cell has the topology
of a cube, and thus its boundary surface 92; ; x is the union of six cell faces denoted
by Si_1/2,5k, Si+1/2.4.k Sisj—1/2.k Sijj+1/2,ks Siyjk—1/2 and S j ky1/2 (see figure 3.2).

Figure 3.2: Cell faces of cell Q; ; «
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3.4 BASIC SCHEME

In a cell-centred finite-volume approach, cell-averaged values of the flow state (U) are
thought of as being located at the centres of the grid cells, and the discrete equations
are obtained by applying the continuous equations in integral form (equation (2.28)
for the TLNS equations) to every grid cell Q; ;. Define the cell volume V; &,

I

1Jk

and the cell-face area vectors A\ AE /2,0 and A%

i+1/2,5,k° z]k+1/2’
—O(‘ _ _’
A pin = / / M dA,
Sit1/2.5.k
1'(9) _ -
Avjvijpr = / / m dA, (32)
‘l J+1/2,k

(k)
Aiyj»k"-l/? //
c Jivk41/2

where 17 is the unit vector normal to the face Siv1/2,5,k> Si.j+1/2,k» OF Si j k+1/2, and
pointing in the positive ¢, j, or k direction, respectively. The computation of these
geometric quantities is done such that the cell-face area vectors are exact if the edges
of the grid cells are straight lines (which may be freely assumed), and such that
the summation of the area vectors of one cell equals zero, so that equation (2.19) is
satisfied.

Considering in equation (2.18) the volume segment € to be a grid cell Q; ; x, this
equation becomes

dU;
d’] & + R =
3.3
R k= D; 7.71’5 ( )
i, ‘/2,1 k

with the discrete flow state U; ; x defined by taking the average of the continuous flow
state U over the grid cell ; ; x,

1
Uik = 57— / / / Udy, (3.4)
i,j,k Qi,j,k

and with the residual R; ; depending on the flux balance D; ;i given by
D= [[ @) - 54, v0)) s, (35)
o9, ik

with the convective flux matrix (5¢) depending on the flow state vector only, and with
the diffusive flux matrix (3%) depending on the flow state vector and on its gradient
through the stress tensor and the heat-flux vector (equation (2.25)). For steady flows,
the discrete equations reduce to

R;;r=0. (3.6)
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The flux balance D; ;; is defined by summing the different flux contributions from
the six faces of cell Q; ; x. To obtain a conservative discretization, a unique flux must
be defined for each cell face. The convective flux across cell S; j k41 /2, for example,

is approximated by
Fic,j,k+1/2 = // Fe(U) -mdA
: J.k+1/2 (3,7)

—

k
I (Uigkt1/2) - A(,]),k+l/2'

Q

To obtain the flow state U; jr11/2 at cell faces from the flow states assigned to the
cell centres, a central scheme using simple averaging is employed,

Ui k2 = 3 Uik + Ui jrr) - (3.8)

The gradient of the flow state at cell faces (needed for the diffusive flux) is evaluated
by a finite-difference approximation. The precise discretization of the convective and
diffusive fluxes is presented in sections 3.4.1 and 3.4.2.

As is well known, this central difference discretization of the convective fluxes leads
to so-called odd—even decoupling for the Euler equations, which means in 1D that
the solution in grid cells with even indices is independent from the solution in cells
with odd indices (not considering the boundary conditions). In other words, there is
no diffusion present and thus point-to-point oscillations will not be suppressed. This
will generally prevent any solution method from converging. To resolve this problem,
a form of artificial diffusion is added, as presented in section 3.4.3. Furthermore, this
artificial diffusion is defined such that shock waves are represented in an acceptable
manner, i.e. such that the entropy condition is satisfied (section 2.4) and no strong
oscillations around the shocks occur. Unique fluxes are defined at the cell faces for
the artificial diffusion, so that the conservative discretization is retained.

Summarizing, the discrete mathematical model consists of the set of equations
given by equation (3.6) for each grid cell (i =1...N;, j=1...N;j,and k= 1... Ny)
in each block. The residual R; ;x is the sum of the convective, diffusive, and artificial
diffusive flux balances, divided by the cell volume,

Rijk = (D —Di; — D8 i)/ Viik- (3.9)

The flux balances are found by summing the appropriate fluxes across the six faces
of each cell,

c — c N ol c c
Dijx = Fi+1/2,j,k Fi—l/2,j,k + Ff J+1/2,k Fi,j~1/2,k + Fz; k+1/2 F‘,j,k—l/2’

d — pd d d d
vk = Foujojn—Filijo i+ L 2k~ Fiio1an T F! k12 k=125
a — __La Q a

Di,j,k - Fi+1/2,j,k Fi—1/2,j,k + Fz d+1/2,k Fi,j—l/z,k + Fz Jhk+1/2 Fi,j,k——l/2'

(3.10)
(The diffusive flux balance D¢ equals zero for the Euler equations.)

The space discretization of equation (2.18) that now has been obtained has the
following properties:
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— The discretization is conservative, a necessary requirement for the correct rep-
resentation of shock waves (see Lax and Wendroff [66]).

— The discretization is uniform-flow consistent, i.e. a constant uniform flow sat-
isfies the equations exactly. This is a consequence of the summation of area
vectors of one grid cell being equal to zero. Generally, this allows coarse and
highly stretched grids in the far-field domain, where the flow solution is a small
perturbation of a uniform flow.

— If the grid is sufficiently smooth (i.e. it is considered to be the image under a
twice differentiable mapping of a uniform grid in the unit cube), the discretiza-
tion is second-order accurate in regions where the flow is smooth (thus, outside
flow discontinuities such as shock waves). This is a consequence of using central
differences, and of using fourth-order artificial diffusion in smooth-flow regions
(see section 3.4.3).

— The finite-volume discretization can also be seen as a finite-difference discretiza-
tion of the equations in curvilinear coordinates (equation (2.23) or (2.33)), iden-
tifying J with the cell volume V and identifying JV¢ with the cell-face area
vector A (see e.g. [116]). Sometimes the space discretization is more easily
understood from this point of view.

3.4.1 Convective fluxes

The expression for the discrete convective flux across a certain cell face, is obtained
by taking the product of the convective flux matrix F¢ (given by equation (2.7)) with
the cell-face area vector. Let (I, J, K) be a cyclic permutation of (4,7, k). For all cell
faces Sy j k41,2, the following expression results:

raq
Fi k12 = | (pd)g+pA%) ; (3.11)
(PE+p)g LIK41)2

with ¢ = @ - AX) The values at the cell face of the flow-state vector U and of the
pressure p are found by averaging,

Unsk+i2 = 3WUnak +Unsk+1), (3.12)
Pruk+1/2 = %(PI,J,K + P15, K+1)-
The volume flux gz, 7,x41/2 is calculated by
(PD1,0x4172 AL 9 1)
qr,J,K+1/2 = hEALZ (3.13)

P1,J,K+1/2

As indicated by Vinokur [116], this is a reasonably efficient method for evaluating the
convective flux in line with the finite-volume concept. It gives better results near solid
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surfaces than computing the convective fluxes first at cell centres and subsequently
averaging the fluxes (instead of the flow states) to the cell faces.

It can be shown that constant total enthalpy is an exact solution of the discrete
Euler equations, consistent with the continuous equations, as follows. In case of
constant total enthalpy, the balance for one grid cell of the discrete convective fluxes in
the energy equation equals the total enthalpy times the balance of convective fluxes in
the continuity equation. If the same holds true for the balance of the artificial diffusive
fluxes (see section 3.4.3), then satisfaction of the discrete continuity equation implies
that the discrete energy equation is satisfied if the total enthalpy is constant.

3.4.2 Diffusive fluxes for the TLNS equations

For the discretization of the diffusive fluxes of the TLNS equations, we consider
the equations in curvilinear coordinates (equations (2.23)). The expression for the
discrete diffusive flux across a certain cell face is then given by equation (2.24), iden-
tifying JVE with the cell-face area vector as indicated above. Let (I,J,K) be a
cyclic permutation of (i, j, k). If the K direction corresponds to a thin-layer normal
direction, then for all cell faces S; ; k1/2, the diffusive flux is given by the following
expression:

(3.14)

0
d - -n
FrLok+12 = T H IJK+U2"
i

n
-Q ILJLK+1/2

For the other directions, the diffusive fluxes are equal to zero.

The velocity at the cell face is found from averaged cell-centre values of density
and momentum,

(p@) 1,0,k + (pU)1,5 K41

(3.15)
pr, 0K + pr.JK+1

UrgKk+1/2 =

which is consistent with the definition of the volume flux in the expression for the
convective fluxes (equation (3.13)).

The normal vector component 7 of the total stress tensor and the heat-flux
component in normal direction Q" are given by equation (2.25), and thus are given
in discretized form by

21 aiz 1 —- au _,
TIJK+1/2 = (p+ Ht)I,J,K+1/2 n +3({n- an o K+1/2,
w 3.16
. oT (3.16)
QI,J,K+1/2 = —(kpn+ Kt)I,0,K+1/2 n ;
N/ 1,JK+1/2

with 7 = AU /|| A&)|| the unit vector normal to the cell face. The normal derivatives
of velocity (84/0n) and temperature (9T /9n) at cell face Sy j k +1/2 are approximated
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by central differences as is usually done for the TLNS equations [116],

(3_1?) _ Uy, g,K4+1 — Ur,0,K
On )1 1 k+1/2 (An)rg 41/
(3_T> _ Tokn—Traxk 3
M/ ki) (An)rgr41/2 (3.17)
Viaka + VoK
(An)I,J,K-H/Z ¥
2[4k 1

The dynamic- and eddy-viscosity coefficients are evaluated at cell centres [73, 110],
according to equation (2.15) and chapter 5, respectively. Values at cell faces are found
by averaging,

(U105 + B1,0,K+1),

((e) 1,0,k + (e) 1,0, K41)-

HIJK+1/2 = 3
- f (3.18)
(Nt)I,J,K+1/2 = 3

3.4.3 Scalar artificial diffusion model

In the basic scheme, the artificial diffusive flux is defined according to the scalar
diffusion model. This model is basically the model developed by Jameson et al.
[48, 52]. The artificial-diffusive divergence is defined as a blending of second-order
differences to obtain physically acceptable representations of shock waves and fourth-
order differences to damp high-frequency modes (preventing odd-even decoupling).
This results in first-order and third-order differences for the fluxes at cell faces. Let
(I, J, K) be a cyclic permutation of (i, 5, k). For all cell faces St j k41,2, the artificial
diffusive flux is given by

2 4
Ff pieise = Ndranp it kanss = Fiokaije)s (3.19)

with f(2) and f() the first- and third-order differences, and A a scaling factor which
ensures that the artificial diffusion has the correct magnitude compared to the con-
vective fluxes.

The first-order difference f(2) is evaluated as

2 2 * *
f }K+1/2 65,.)],K+1/2(U1,J,K+1 ~Ulsk) (3.20)

with U* = (p, pii, pH)T. The enthalpy is used instead of the energy, so that constant
enthalpy is an exact solution of the discrete Euler equations. For a scalar convection
equation with a wave speed ), it may easily be seen that taking ¢/ = 1/2 (and
o = 0) would lead to a first-order accurate upwind scheme. Near shock waves,
such a first-order formulation ensures an oscillation-free solution (see e.g. [95]). In
order to obtain a second-order accurate discretization away from shock waves, the
first-order difference is switched on only near shock waves. This may be done by
letting the factor €(?) depend on a shock sensor v,

652,.)],K+1/2 = mm{ k@ max{vy Jk, V1,4 K+1}} (3.21)
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with k¥ a numerical parameter (taken equal to 1). The shock sensor is calculated
using the second-order difference of the pressure [52],

-2 _
VioK = \pr.x+1 — 2010k + P1,J,K 1|‘ (3.22)
P1,0,k+1 + 201,50, + Pr,J,K—1

In regions where the pressure is smooth (thus away from shock waves), the shock
sensor is of O(h?) (with h the mesh size and considering smooth grids), and thus the
artificial-diffusive residual (R; jx = DZ; ,/Vi ; x with f) = 0) becomes of O(h3). For
transonic flows, the shock sensor is usually about 0.1 near shock waves. Thus, ¢(2) has
a value that is considerably smaller than the value it would have for the first-order
accurate upwind scheme which would ensure an oscillation-free solution. However,
in practice oscillation-free shocks are also obtained with this lower value, at least for
transonic flows. This is partly due to the fact that a scalar scaling factor A being
equal to the maximum wave speed is used (as will be seen later on), which increases
the artificial diffusion for the characteristic equations with lower wave speeds.
The third-order difference f(4) is evaluated as

4 4 * *
fI(,J),K+1/2 = 6(1,.)I,K+1/2(U;,J,K+2 = 3U7 gk+1 +3Uf gk = Ul g k1) (3.23)

To avoid oscillations, the third-order difference must be turned off near shock waves,
which is done by setting the coefficient e(*) as

4 2
e i1y = KO max {0, & — kO L, (3.24)

with k) and k(*) numerical parameters. Considering only the third-order differences
(f® = 0), the artificial-diffusive residual can be seen to be of O(h3). The numerical
parameter k(4 influences the convergence speed of the solution method, and is limited
by stability requirements for the explicit Runge-Kutta time integration schemes de-
scribed in the next chapter (or conversely, for a given value of (), one should choose
a Runge-Kutta scheme with a sufficiently large stability region), see appendix B. We
take k() = 2, consistent with the Runge-Kutta schemes that will be chosen in the
next chapter. The parameter &(*) influences the switching of the fourth-order diffu-
sion near shocks. If chosen too small, the third-order difference may not be switched
off sufficiently near shocks, thus causing oscillations, while if chosen too large, the
convergence speed may be strongly affected. In practice, k() = 1/2 has been found
to be suitable.

As stated before, the scaling factor A is defined such that the artificial diffusion
has the correct magnitude compared to the convective fluxes. Based on an analogy
with the first-order accurate upwind scheme, it is seen that the scaling factor must be
proportional to the convective wave speed. For a set of equations, the wave speeds are
equal to the eigenvalues of the Jacobian of the convective flux dF¢/dU (see appendix
A). At cell centres, the scalar scaling factor is defined as the spectral radius of the
convective Jacobian in K direction (multiplied by the area vector),

N = [nare A+ cr.nae | 9] (3.25)
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in which fngJ) i is the average of the area vectors in K direction,

(K K TK)
Ag,J),K = %(ES,J?KH/z + A} S K-1/2)) (3.26)
and ¢y, i is the local speed of sound (¢ = y/7p/p). The scaling factors at cell faces
are obtained by averaging,

K K K
/\g,J?K+1/2 = %()‘g,J),K + Ag,J?KH)- (3.27)

3.5 DBOUNDARY CONDITIONS

The space discretization of the basic scheme must be completed by discretizing the
boundary conditions. Not only conditions at the flow domain boundary are con-
sidered, but also conditions at faces between blocks (so-called internal faces). These
latter conditions deal with the coupling of the equations in different blocks. Boundary
conditions are applied at the elementary faces of the multi-block grid, so that at one
block face (containing several elementary faces) different boundary conditions can be
applied. They are used to evaluate the convective, diffusive, and artificial diffusive
fluxes across cell faces that are located at an elementary face.

For the discretization of the boundary conditions, the dummy-cell concept is used.
At internal faces, values of the flow-state vector are needed from the two blocks
adjacent to the face. Also, the artificial diffusive flux at a cell face just inside a
certain block, having a 4-point stencil, requires values of the flow-state vector of the
adjacent block. In order to keep the evaluation of the fluxes for a certain block as much
as possible local to that block (i.e. using only data belonging to that block, which
simplifies both the data management and the computational algorithm), one layer of
so-called dummy cells is introduced at each block face (see figure 3.3). The layer of
dummy cells outside a certain block face is indicated by indices ¢ = 0, ¢ = N; + 1,
J=0,7=N;+1,k =0, or k=N, + 1 depending on its location. Values of
the state-vector in the dummy cells are obtained by using the boundary or coupling
conditions. Thus, for each block the flow-state vector U; ; x is defined for

(i,5,k) € {0...Ni+1} x {0...N; + 1} x {0... Ny + 1}. (3.28)

Then, fluxes across block faces can be evaluated in the same manner as the fluxes at
grid-cell faces internal to the block, using the dummy-cell values.

To keep the evaluation of the artificial diffusive fluxes at block faces completely
local, a second layer of dummy cells would be required, due to the 4-point stencil.
However, for certain boundary conditions (e.g. at internal faces where the grid is not
smooth across the face [60]) the definition of flow-state values at this second dummy
cell would be computationally complex, if possible at all. Therefore, such a second
layer of dummy cells is not employed, and the artificial diffusive fluxes at internal
faces must be evaluated using data from the adjacent block directly.

As stated at the beginning of this chapter, the solution procedure will be based
on the time-integration concept. Complete time steps will be performed for each
block successively. At the beginning of a time step in a certain block, data will be
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1™ block tace

i=1 i=N,

Figure 3.3: Example of block with dummy cells (2D)

exchanged between that block and its neighbours. This exchange of data will consist
of applying the coupling conditions at internal faces, or in other words, of setting the
dummy-cell values at internal faces.

The discretization of the boundary and coupling conditions now consists of speci-
fying the method by which the values of the flow variables are obtained in the dummy
cells. Furthermore, also discrete boundary conditions are needed for the artificial dif-
fusion. In the following sections, the discrete boundary conditions will be described,
considering for simplicity the row of dummy cells at ¢ = 0.

3.5.1 Solid surface

Let the block face be a solid surface. In the case of the TLNS equations, the dummy-
cell values must be evaluated such that the no-slip condition is satisfied. This can be
done by setting the momentum vector as follows:

(pi)o,j,k = —(pid)1,j k- (3.29)

In this way, the velocity at the solid surface is identically zero, and thus the discrete
convective flux at the surface is exactly zero apart from the pressure contribution (see
equation (3.11)). Furthermore, the adiabatic wall condition for the temperature is
discretized as,

To,5k = Tk, (3.30)
assuming that the grid lines are locally orthogonal to the solid surface. To complete

the definition of the flow-state vector in the dummy cell, a fifth dependent variable
is needed. Here, the pressure is linearly extrapolated to the dummy cell in computa-
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tional space from the values internal to the block,

Do,jk = 2P1j.k = P2,jk- (3.31)

In the case of the Euler equations, the dummy-cell values must be evaluated such
that the slip condition is satisfied. This can be done by reflecting the normal com-
ponent of the momentum vector across the solid surface. The tangential components
(given by the vector (pil)ian) are linearly extrapolated in the computational space
from the values internal to the block. Thus, the following expression for the momen-
tum in the dummy cell results

(pi)ojx = (pw)mm + (pi)tan,
(pu)m = _(pﬁ)l 7.k T-)"’L,
~, R AN oy o 3.32
(D = (o) — (05 - 10) 3, (3:32)
(p)e = 2(pi)1,jk — (p)2,5.k»

with 7 the unit vector normal to the solid surface. Furthermore, the pressure and
the total enthalpy per unit mass are linearly extrapolated to the dummy cell,

Pojk = 2D1jk — P25k 3.33
Hojx = 2Hijk— Hojk- (3:33)

Again, only the pressure contribution to the discrete convective flux at the surface is
not equal to zero, since the normal velocity component at the surface is identically
Z€ero.

For viscous-flow computations, it is important that the artificial diffusion does
not interfere with the physical diffusion. For inviscid-flow computations, too much
artificial diffusion near the solid surface may create an artificial boundary layer. Thus,
the artificial diffusive fluxes in normal direction should not be too large near the
surface. A suitable boundary condition [33, 112] is to set the artificial diffusive fluxes
at the surface equal to zero,

Fly i =0. (3.34)

For inviscid-flow computations, the numerical accuracy may be improved by modify-
ing the artificial diffusive fluxes at the cell faces i = 3/2, just inside the block, such
that these fluxes do not depend on the dummy-cell values. Essentially, this may be
done by writing the general formulation of these fluxes as

a — 2) (4)
F3/2vjyk - ’\3/2,j,k (f3(/2,j,k - 3/2,j,k) ) (3.35)
with
Sk = Eoin (OFU ik = (B7U 1) (3.36)
and setting the following terms to zero:

(62U*)1,5,k

(2)
3/2,5,k

|
L

(3.37)
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Since there is no first-order term remaining in these fluxes, the coefficient €* is
computed as

@ - _
€3k = o1 kY. (3.38)

A similar modification for viscous flows is not appropriate, since it reduces the order
of accuracy from two to one, as shown in [112]. Note that now the artificial-diffusive
flux balances in the first two cells interior to the block are given by
a —
Dije = Fpjp (3.39)
ngk = Fsa/z'lc_l;‘:;z ik
315 +Js /2,],’5

3.5.2 Far-field boundary

At a far-field boundary, the boundary condition using characteristic variables, as de-
scribed in section 2.5.2, is applied. It consists of requiring the characteristic variables
of incoming characteristics to be equal to their free-stream values.

The discrete equations require a specification of all five basic flow variables in the
dummy cells. These variables are derived from the dummy-cell values of the char-
acteristic variables, which are set to free-stream values for incoming characteristics
(consistent with the continuous boundary condition), and are extrapolated from the
inside of the flow field for outgoing characteristics.

Let m be the outward unit vector normal to the far-field boundary. The vari-
ables R;, and R, always belong to an incoming and an outgoing characteristic,
respectively, and thus their dummy-cell values are set as

(Rin)O,j,k = rl-l:oo M= 2000/(7 - 1)7

. o 3.40
(Rout)o,je = ik -1+ 2¢156/(y— 1), (3.40)

with ¢ the local speed of sound. The dummy-cell values of the other three charac-
teristic variables (the two tangential velocity components, given by the vector @y,
and the entropy S) and the total enthalpy H are set depending on whether the flow
is coming in through the boundary, or going out. In case of inflow (@, - M < 0) they
are set to their free-stream values,

(ﬁtan)o,j.k 7joo - (goo . T?I,)Tﬁ,
50,k ¢ In(poo/pL,), (3.41)
Hyjr = Hy,

while in case of outflow (. - 77 > 0) they are given by

i

(tsan)o,j,k iy, .k — (1,58 - ),
50,4,k co In(p1jk/py ;1) (3.42)
Hojx = Hyjp

By treating total enthalpy separately in the numerical scheme (not computing it
from the characteristic variables), constant enthalpy becomes an exact solution of the
discrete equations in case of inviscid flow.



38 3. Space Discretization

To define a boundary condition for the artificial diffusion (to compute the artificial
diffusive flux Fy, . ), imagine a second row of dummy-cell values U, ; .. Following
[33], the boundary condition consists of setting the second-order differences of the

flow-state vector at i = 0 equal to zero,
U;,j,k el 2U6,j,k + Uil,j,k = 0, (3.43)
which is equivalent to setting the term (%) as

4 4 * * *
fl(/%,j,k = E§/)2,j,k(U2,j,k =2U7 ;1 + U i) (3.44)

3.5.3 Symmetry plane

At a symmetry plane, the continuous boundary condition is discretized by setting the
dummy-cell values of pressure and density equal to the values inside the block (thus,
normal gradient equals zero if the grid lines are assumed orthogonal to the symmetry
plane),
PO,k = P4k, (3.45)
Pojk = Pijk

while the momentum vector is reflected with respect to the symmetry plane,

(pDojr = (pi)1jk — 2 (pum)m, (3.46)
(oum) = (p@)1,5 - 171,

with 77 the unit vector normal to the symmetry plane. The artificial diffusive fluxes
at the symmetry plane are set to zero.

3.5.4 Plane of infinite continuation

The plane of infinite continuation has been defined in order to enable a 2D calculation
with a 3D method (section 2.5.4). In the direction perpendicular to the 2D domain,
i.e. between two planes of infinite continuation, only one grid cell is defined. Since
the 2D solution is independent of the third direction, the dummy cell values at the
two planes must be set equal to the values internal to the block,

Po.ik = Pi,jk,
(pojk = (PU1,5,k5 (3.47)
(PE)o,jk = (PE)jk-

The artificial diffusive fluxes at the two planes are set equal to zero.

3.5.5 Internal faces

Consider the elementary face F' that forms an interface between block B! and block
B?. We will discuss how for this face the dummy-cell values of both blocks, as well
as the convective, diffusive, and artificial diffusive fluxes through the face can be
calculated. The definition of the dummy-cell values depends on the grid properties
at the internal face. The following cases are discerned (see figure 3.4):
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~ faces with C!-continuity of grids (thus, the grid is smooth across the internal
face),

— faces with C°-continuity of grid lines (thus, both the normal mesh size and the
slope of the grid lines may jump across the internal face), and

— faces with partial continuity of grid lines (only a subset of the grid lines are
CP-continuous across the internal face).

Allowing for grids which are only C%-continuous simplifies the multi-block grid gen-
eration task. It is further allowed to locally refine the grid in certain blocks by e.g.
a factor 2 or 4 (thus locally increasing the numerical accuracy), so that only partial
continuity of the grid lines across the internal faces may result. For the multi-grid
scheme on a multi-block grid that will be discussed in section 4.4.1, partial continuity
may also occur on coarse grid levels.

a) Cl-continuity b) C%-continuity c) Partial continuity

Figure 3.4: Grid properties at an internal face

With respect to face F, define the indices (!, j!, k') for block B! and the indices
(i%,5%, k?) for block B2. Face F is given by i! = 1/2 and by 2 = 1/2, and thus the
dummy cells of block B! at face F are given by i' = 0. The variables related to
block B! will be indicated by a superscript (1) and are functions of (i%, 5!, k'), while
those related to block B? will be indicated by a superscript (2) and are functions of
(¢2, 5%, k*). For simplicity, it is assumed that the indices j! = 52 = j and k! = k? = k.

Requirements on the dummy-cell values

The convective and physical diffusive fluxes at the internal face F are computed in
the same manner as the fluxes at grid-cell faces internal to the blocks, using the
dummy-cell values. In order to obtain a conservative discretization, these fluxes at
the internal face have to be defined uniquely. For the convective flux, this means that
the values of density, momentum, total energy, and pressure at the block face must
be unique (see equation (3.12)). This results in the following requirement:

1 1 2 2
Welp + Wil = Wee + Wi, (3.48)

with W the flow-state vector U extended with pressure, W = (p, pii, pE, p)7 .
When a physical diffusive flux is evaluated at the internal face, then the normal
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derivatives of velocity and temperature must be unique (see equation (3.17)):

(1) (1) =(2) =(2)

Yk ~ %4k _ Y04k T Y1,k
Angl/)zj,k Ang%,]‘,k ’ (3.49)
T =Tode _ Toge—Tig |
Anlie Al

Requirements (3.48) and (3.49) cannot be satisfied at the same time when the
grids are not C!-continuous across the internal face. In these cases, the dummy-cell
values will be set satisfying requirement (3.48). This means that the physical diffusive
fluxes cannot be calculated using these dummy-cell values, but the values from the
adjacent block have to be used directly, taking the grid properties into account. In the
remainder of this section, we will deal with the computation of the dummy-cell values
and of the artificial diffusive fluxes (which are not computed using the dummy-cell
values).

Faces without local grid refinement

First, we consider the case when blocks are not locally refined. When the grids are
smoothly connected across face F', the dummy-cell values of block B! can be simply
copied from block B2, and vice versa,

(1 _ (2)
B (50
Wo,j,k = Wl,j,k'

Boundary conditions for grids which are non-smooth across the internal face (only C°-
continuous) were developed by Kassies et al. {60]. The main idea of these boundary
conditions is to compute a gradient of the flow-state vector W at each cell face on
face F, and subsequently use this gradient to compute a unique value of the flow-
state vector W itself at each cell face (see [60] for the details). Dummy-cell values
are then simply obtained by linear extrapolation, satisfying requirement (3.48). The
artificial diffusive fluxes at the internal face are computed using the flow-state values
of the two adjacent blocks in exactly the same way as they are computed inside blocks
(irrespective of the grid properties).

Faces with local grid refinement

We now consider the case when there are blocks present that are locally refined. Thus,
it is assumed that at face F' the grid lines are only partly continuous. For the Euler
equations, the boundary condition at this type of face has been extensively described
in reference [60]. In case of local grid refinement, the actual grid (in all blocks)
has been obtained from a basic grid which is at least C%-continuous everywhere. In
a certain block, the grid dimensions may have been increased by an integer factor
(possibly different in each direction) with respect to the basic grid, while maintaining
the same grid distribution.
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Consider face F' with adjacent blocks B and B2. In these two blocks, the actual
grid has dimensions (N}, N}, N}) and (N2, NZ, N?), respectively, while the basic grid
has dimensions (N}', N}, N}) and (N}?, N}, Nf). (Note that the basic grid has the
same dimensions in the j and k directions, i.e. along face F, for both blocks.) Then,
the refinement factors of B2 with respect to B! in the 7, j, and k directions are defined
as

N?/NP? N? N}
M=% M =L M=kt 51
Nil/Nfl ’ J le ) k N]% (3 )

We require that one of the two blocks is the fine block for all directions, and assume
that this is block B2, i.e.

M;>1, M;>1, Mp>1. (3.52)

The grid in block B? can be reduced to a grid that is C°-continuous with the grid
of block B! across face F' by fusing grid cells. This reduced grid has one grid cell
normal to F' (in the i direction) and the same number of grid cells as block B! along
face F (N} by Ny in the j and k directions). A grid cell (51, k') of the reduced grid
is formed by fusing the grid cells (i2, j2, k%) in block B? given by

2 = di, di = 1...M, .
P2 o= MG*-V)+d, d& = 1...M;, (3.53)
B = Myk'-1)+dk, dk = 1...M;.

On this reduced grid, cell-centred values of the flow state are obtained by averaging,

M; M; M

Witk = Siran 2o 2o 2o Wireae (3:54)
IR iz dj=1 dk=1

Now, the dummy-cell values are computed by first determining a unique wall value
at all cell faces SS?Z,jl, .+ of block B! on face F. This value is determined using the
flow-state values of block B! and of the reduced grid in block B?, and depends on the
grid properties of the basic grid. For non-smooth basic grids, this is simply a matter
of applying the same method as for faces without local grid refinement. If the basic
grid is C!-continuous, then the wall value is given by simple averaging,

W o =W L+ W), (3.55)
Note that a C%-continuous grid could also have been obtained without fusing grids in
the 4 direction. However, if the basic grid is C*-continuous, this could lead to a large
Jjump in normal mesh size across face F'. Taking this jump in mesh size into account
in determining the wall value W* could lead to a form of downwinding (if the flow
direction is from the large to the small mesh size), which is unstable.

Given the wall value at cell face SS)”l, x1» linear extrapolation (consistent with
re?uirement (3.48)) is used to compute the dummy-cell value at (0,3, k') of block
B b

Wéi’)l k= 2 ]/'ul),kl - Wl(‘lj)l’kx, (356)



42 3. Space Discretization

and similarly to compute the dummy-cell values at all cells (0,;2,k?%) (with j2 and
k? given by equation (3.53)) of block B?,

Wolh o = 2WE o =W, o, (3.57)

The convective fluxes for both the coarse block (B!) and the fine block (B?) are
calculated using the corresponding dummy-cell values. Consider a coarse-block cell
face S1>2 ikt at the face F' and the corresponding fine-block cell faces Sg)z 2 k2 At
these cell faces, a unique wall value WY K has been defined. Furthermore, if the area
vector of the coarse-block cell face is taken equal to the sum of the area vectors of
the fine-block cell faces, then the convective flux across the coarse-block cell face will
be equal to the sum of the fluxes across the fine-block cell faces,

M;—-1M,—1

c(2)
1/2 J‘ k1 Z Z Fl/(2 2,k (3.58)

dj=0 dk=0

with the indices (j2, k?) of the fine cells defined by equation (3.53). (The minus sign
is due to the fact that i! and i? increase in opposite directions.) Thus, a conservative
discretization is obtained.

The artificial diffusive flux at a cell face of the fine block is computed using values
from the corresponding coarse cells in the coarse block instead of dummy-cell val-
ues. The artificial diffusive flux through a cell face of the coarse block is calculated
explicitly by the sum of the fluxes through the corresponding fine-block cell faces,

M;—1 My —1

e —
1/2,1, - Z Z 1/2_72k2’ (3.59)

=0 dk=0

with the indices (52, k?) of the fine cells defined by equation (3.53).

3.6 EXTENSIONS NEEDED FOR THE NAVIER—-STOKES EQUATIONS
3.6.1 Matrix artificial diffusion model

As explained in section 3.2, the basic scheme with Jameson-type scalar artificial dif-
fusion must be improved along the lines of the matrix artificial-diffusion model of
Swanson-Turkel [111, 112]. Comparing the matrix model to the scalar model, two
effects can be distinguished: the matrix model captures shocks more sharply, and it
reduces the grid dependency in boundary layers, e.g. [3, 92, 112]. For the extension
of the existing Euler solver to the Navier-Stokes equations, we are only interested in
the second effect. For industrial applications, a reduced grid dependency in boundary
layers is important, since it is not always feasible (due to limited computer resources)
or simple to define the very fine grids required by the scalar model. The first ef-
fect (sharper shocks) comes at a cost. A different, stronger shock sensor must be
used, which may have side effects such as e.g. an increase of artificial diffusion in
stagnation regions, while several coefficients of the artificial diffusion may have to be
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retuned. Further, it results in a moderate loss of convergence speed and an increase
of computation time (in the order of 15%) per iteration [112].

We will define a modified form of the matrix-diffusion model. As will be shown,
it gives the same reduction of the grid dependency in boundary layers as the original
matrix model, but it does not result in a loss of convergence speed, nor does it require
a significant increase in computation time compared to the scalar model. Also with
this modified matrix model, the basic, robust Jameson-type shock sensor can be
retained.

First, the original matrix model of Swanson—Turkel will be described, and sub-
sequently the modified form will be presented. The main idea of the matrix model
is to scale the artificial diffusion by a matrix depending on the Jacobian matrix of
the convective fluxes instead of scaling by the spectral radius of the Jacobian. In
this way, for each characteristic equation, the artificial diffusion is scaled with the
corresponding wave speed (the eigenvalues of the convective Jacobian) so that the
appropriate amount of artificial diffusion is employed, instead of using the maximum
required amount for all characteristic equations. Thus, the scheme has similarities
with upwind schemes [111, 112].

Let (I, J, K) be a cyclic permutation of (i, 7, k). For all cell faces Sy j 11 /2, the
artificial diffusive flux is given by

2 4
FYrxt1y2 = IA(K)|I,JyK+1/2(f1(,3,K+1/2 - f§,},K+1/2)’ (3.60)

with A%) the Jacobian matrix of the convective flux in K direction (given in appendix
A), with |AU9| the absolute-value Jacobian matrix (defined below), and with
2 2
fI(,},K+1/2 = 6(I,)J,K+1/2(UI,J,K+1 —Uryk),

4 4
1(,J),K+1/2 = Cg’_)],K+1/2(UI,J,K+2 = 3Ursk+1+3Ur sk —Ur s k-1).

(3.61)

Note that now the total energy may not be replaced by the total enthalpy, as was
done for the scalar model.

Let A be the diagonal matrix with the eigenvalues of AX) along its diagonal,

A = diag(A1, M, AL, A, As),

-

AN = @ AE),

. . (3.62)
A = - A 4 || 4K,
As = g.A‘(K)_c”A'(K)”’

with ¢ the speed of sound and with AU%) the area vector in K direction. Let the matrix
Q have the right eigenvectors of AK) as its column vectors. Then, the absolute-value
Jacobian matrix is defined by taking the absolute value of its eigenvalues,

JAE)| =g |A]Q7Y, (3.63)

where the matrix |A| is defined by taking the absolute value of the elements of A.
The complete expression for |A(K)| is given in appendix A.
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In order to avoid that the eigenvalues may become zero (which would lead to
zero artificial diffusion for some characteristic equations and therefore could lead to
unphysical solutions as well as to odd—even decoupling) a lower bound is defined using
the spectral radius,

Amax = [@ - AFO| + ¢ | AT, (3.64)

so that the diagonal elements of |A| become

A = max{|A1], el max ),
X4 = max{|)\4] ,5N)\max}7 (365)
As = max{|As],eN Amax}-

Swanson and Turkel [111] at first chose % and €V to be equal to 0.25. In order to
obtain sharp oscillation-free shocks, as stated before, they also needed to modify the
shock sensor of equation (3.22), replacing it by a stronger shock sensor given by

-2 _
vt = DL =TI (3.66)
with
Dog = pryk+1+2prsk+p1ik-1, (3.67)
Divp = |prsk+1 —prakl+ ok — prakx-1l,
and with § = 0.5.

However, to improve the accuracy in boundary layers, Swanson and Turkel found
it necessary to take e~ equal to 0.01 for the boundary-layer normal direction [112]. In
this way, the amount of artificial diffusion in the normal direction is strongly reduced
for the entropy and shear waves, so that no interference occurs with the physical
diffusion. Sufficient damping of the high-frequency modes in normal direction is
provided by the physical diffusion. In practice, convergence is not affected with this
choice for €L, as will be shown in chapter 6.

We define a reduced form of the matrix diffusion model, with as main purpose the
reduction of the artificial diffusion for the normal direction in boundary layers and
wakes. For the tangential directions, the two factors e and ¢V are set to one, or,
similarly, the scalar diffusion model is applied for these directions (which is compu-
tationally more efficient). For the normal direction the two factors are set as

el = 0.01,

(3.68)

ey o= 1.

Taking ¢V equal to one, implies that X4 and )5 are equal to the spectral radius Amay,
so that the standard Jameson shock capturing scheme can be used. Thus, the factors
€ and (¥ are defined in the same way as in the scalar model (equations (3.21) and
(3.24)).

The modified matrix model is less expensive than the original model for two
reasons: it is only applied in the boundary-layer normal direction, and the expression
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for the scaling matrix |AE)| (given fully in appendix A) is simplified due to taking
Ag = As. This simplified form of the scaling matrix is given by

|A(K)II’JYK+1/2 = el + €1ACT + egBDT, (3.69)

with J the unit 5 x 5 matrix, and with the coefficients e; given by

o = (M)rsk+1/2,
-1 - .
e = ;y*()\“) = AM)1LJK+1/2>
Cr,0,K41/2 (3.70)
0 = Mg = M) o412
2 = = e 5
IAPNT 5 k12

where the scaling factors :\1 and ;\4,5 = Amax at cell faces are obtained by averaging
cell-centre values. The column vectors A, B, C, and D are given by

1 0
A= 1-1: s B = A‘(K) 3
(09
H IJK+1/2 - AK) 1,J,K+1/2 (3.71)
Lia)® i A
C = —’l_J: 5 D= “A'(K) 3
1 1,J,K+1/2 0 ILJK+1/2

and the velocity vector, the total enthalpy, and the speed of sound at the cell face are
defined by

(pti)1,0, 541 + (p@)1,5,K

'l_l: =
IJ,K+1/2 PI.JK+1 + PLJK
Hijxy172 = (pH)1,0.5+1 + (PH)1,0,K (3.72)
K1/ PI,JK+1+ PI.JK
G rktz = (V=1 (Hrskriee = 51800 k1/210207)-

The product of the absolute value of the Jacobian with the column vector E =
f@ — £4 can be efficiently computed by

JABNE = eoE + €,(C - E)A + e2(D - E)B, (3.73)

without fully computing the Jacobian itself.

3.6.2 High-aspect-ratio scaling of the artificial diffusion

In grids used for Navier-Stokes computations, very large aspects ratios of the grid
cells can appear near solid surfaces. If the same scaling of the artificial diffusion is
used as for the Euler equations, the artificial diffusion in tangential directions along
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the solid surface will be insufficient to obtain strong damping of high-frequency modes
in these directions. This will result in a poor convergence speed, in particular for the
multi-grid scheme discussed in chapter 4 (see also section 4.4.2).

Consider a scaling factor A of either the scalar or the matrix artificial diffusion
model. This scaling factor determines the strength of the damping of high-frequency
modes by the artificial diffusion (see e.g. appendix B). The scaling factor for the fluxes
in K direction (as defined by equation (3.25) for the scalar model) is proportional to
the area of the cell face normal to the K direction, or equivalently, it is proportional
to the cell volume divided by the mesh size in K direction. Thus, if a cell has a large
aspect ratio, the scaling factor, and therefore the damping of high-frequency modes,
will be small in the direction of the largest mesh size.

In order to obtain an adequate amount of artificial diffusion in the direction of
the largest mesh size, the scaling is modified following Martinelli [73]:

Mik = Ugf]?K)\I,J,K;
B £ (3.74)
W = m{ 1, ol 4ol (119) 4ot (r79) } ,
in which r(UX) is a measure of the cell aspect ratio:
A
IK | I+1/2,0,K T 4121720,k
WK (3.75)

2(K) K )
“AI,J,K+1/2 + ‘Zg,J),K—lﬂn

The coefficients a®) are chosen such that for cells with an aspect ratio of one the
scaling has no effect:

1, 3D calculations,
olF) = %, 2D calculations in (I, K) or (J, K) plane, (3.76)
0, 2D calculations in (I, J) plane.

The parameter k(") determines the extent to which the high-aspect-ratio scaling is
applied. With the value k(® = 0, no scaling is applied. With the value k(*) = 1, the
effect of multiplying the scaling factor A with v¥) is to replace the cell-face area of
the K direction in the expression for the scaling factor with the average of the cell-
face areasin I, J, and K directions. Thus, the scaling of the artificial diffusive fluxes,
and therefore also the damping of high-frequency modes, is of comparable magnitude
in the different computational directions.

Increasing the artificial diffusion strongly by setting k™ = 1, however, will also
strongly reduce the numerical accuracy. A fair compromise between numerical accu-
racy and convergence speed is given by the values k(® = 1/2 for 3D calculations, and
k) = 2/3 for 2D calculations, as employed by many authors [73, 109, 114]. (For 3D
calculations, generally larger cell aspect ratios will be present, e.g. due to large mesh
sizes in the span direction on a wing, and therefore a smaller value of k(*) is needed
to avoid too strong a reduction of the numerical accuracy.)
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3.7 REsuULTS

In this section we will verify that the space discretization gives results as expected.
In particular, the grid dependency of the numerical solution obtained with the scalar
and (modified) matrix artificial-diffusion models will be evaluated.

Two test cases will be considered: the laminar flow over a flat plate, and the
transonic, turbulent flow around the RAE2822 airfoil. The first case was used by
Swanson and Turkel to show the reduced grid dependency of their matrix model, and
thus this case is used to show that the modified matrix model gives a similar result.
The second case is a two-dimensional flow that is representative of the intended
application range of the flow solver.

Consider the laminar flow over a flat plate of length L at a Mach number M, = 0.2
and a Reynolds number Rey, = 5-103%. Let x be the coordinate along and y the
coordinate normal to the flat plate, with corresponding velocity components u and
v. Applying boundary-layer theory, a similarity solution may be derived (for the
incompressible equations) where u/uq, is a function of = Re;/ 2y/ z with the local
Reynolds number Re, = pucz/p (see e.g. Batchelor [7]). This so-called Blasius
solution is given in figure 3.5 together with the numerical solutions at z = 0.5L using
the scalar model and the modified matrix model. A range of grids has been used,

8 T T T T K 3 8 T T T T
i i
n Blasius — i n Blasius — i
7 fine -o-- i | 7 fine -o-- | i
medium -+-- R ¢ medium -+-- f
coarse G- % coarse -3 h
g | very coarse - i 1 g L very coarse - i i

0 2 < 1 1 1 1 1
0 02 04 06 08 1 u/%1.2 0 02 04 06 08 1 u/%,1.2

a) Scalar diffusion b) Matrix diffusion

Figure 3.5: Velocity distribution at £ = 0.5L for the laminar flow over a flat plate at
different grid levels (Moo = 0.2, Reoo = 5103, fine grid: 56 points in boundary layer)

) with the finest grid having approximately 56 grid points in the boundary layer (at
z = 0.5L). As can be seen, for the scalar model, only the finest-grid solution is
indistinguishable from the Blasius solution, while for the matrix model, all but the
coarsest-grid solution (with only 7 points in the boundary layer) lie on the Blasius

solution. This weak grid dependency for the modified matrix model is consistent
with the solutions of the original matrix model of Swanson and Turkel [112]. The
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reduced grid dependency of the matrix model can be seen perhaps even better for
the skin-friction coefficient Cy = 7,/ (% Poott?,) (With 7, the wall shear stress) given
in figure 3.6, where none of the solutions with the matrix model on the different grids
can be distinguished from the Blasius solution.

01 T T T T 0.1 T T ' T
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0.04
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0.02 0.02

0
0 0.2 0.4 0.6 08,4 1

a) Scalar diffusion b) Matrix diffusion

Figure 3.6: Skin-friction distribution for the laminar flow over a flat plate at different
grid levels (M = 0.2, Reew = 5- 102, fine grid: 56 points in boundary layer at
z =0.5L)

As a second test case, we consider the turbulent, transonic flow around the
RAE2822 airfoil with as flow conditions My = 0.73, a = 2.8°, Rey = 6.5 - 10°,
and with transition at 3% of the chord from the leading edge (so-called case 9 of
[26]). An 8-block C-type grid is employed, with 528 x 96 grid cells (circumferential x
normal) of which an impression is given in figure 3.7 (medium grid). Note that the
four outer blocks have been coarsened by a factor two. In figure 3.8, contour lines of
constant Mach number are shown of the numerical solutions (with scalar and matrix
artificial diffusion) on the fine grid. (The Baldwin-Lomax model has been used to
compute the eddy viscosity, see chapter 5.) Clearly visible are the boundary layer on
the upper and lower sides of the airfoil and the shock wave on the upper side. Upon
close inspection, it can be seen that with the scalar model overshoots appear in the
Mach-number distribution at the edge of the boundary layers (in particular visible
on the lower side), which are not present in the solution obtained with the matrix
model.

In figure 3.9, a detailed comparison is made of the velocity profiles at z = 0.4c on
the upper side (with ¢ the chord length) for three grid levels (medium and coarse grids
having been obtained by doubling the mesh size). The tangential velocity component
(u) and the normal wall distance (y) have been made dimensionless according to the
law-of—thewall scaling: u* = u/u, and y* = pu,y/p with u, = (,/pw)'/? the
friction velocity. Further, the theoretical solutions for the viscous sublayer (u* = yt,
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Figure 3.7: Medium (264 x 48) 8-block grid around RAE2822 airfoil
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a) Scalar diffusion b) Matrix diffusion

Figure 3.8: Lines of constant Mach number for RAE2822 case 9 (Mo = 0.73, o = 2.8°,
Reoo = 6.5 - 10°, 8-block C-type 528 x 96 grid)

valid for y* < 5) and for the log-layer (vt = In(y*)/k + C with k = 0.40 and
C =5, valid for y* > 30) have been included as reference, see e.g. [84, 98]. With the
matrix model, the grid dependency is less than with the scalar model, although the
difference is not as strong as for the flat plate. However, the reduced grid dependency
with the matrix model becomes better visible if integral quantities are considered: in
particular the skin-friction coefficient, figure 3.10, and the displacement thickness §*,
figure 3.11. On the lower side, the improved numerical accuracy is clearly visible for
both quantities. On the upper side, the results are obscured by the smearing of the
shock wave on the medium and coarse grid (revealing the dependency on the grid
resolution in tangential rather than in normal direction).

Finally, also the pressure coefficient Cp = (p — Poo)/(5P00t%,) is given in figure
3.12, together with the experimental results of [26] as a reference. Although less
pronounced, also here the reduced grid dependency can be seen for the matrix model,
in particular on the upper side upstream of the shock, and on the aft part of the lower
side.
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Figure 3.9: Velocity profile in law—of-the-wall coordinates on upper side at z/c = 0.4
for RAE2822 case 9 (Mo = 0.73, a = 2.8°, Res = 6.5 - 10%) at different grid levels
(fine: 8-block C-type 528 x 96 grid)
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Figure 3.10: Skin-friction distribution for RAE2822 case 9 (M, = 0.73, a = 2.8°,
Rew = 6.5 - 10°) at different grid levels (fine: 8-block C-type 528 x 96 grid)
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Figure 3.11: Displacement thickness for RAE2822 case 9 (M, = 0.73, a = 2.8°,
Reo = 6.5 - 10°) at different grid levels (fine: 8-block C-type 528 x 96 grid)
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Figure 3.12: Surface pressure coefficient for RAE2822 case 9 (M, = 0.73, a = 2.8°,
Reo = 6.5 - 10°) at different grid levels (fine: 8-block C-type 528 x 96 grid)
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SOLUTION PROCEDURE

4.1 INTRODUCTION

In the previous chapter, the TLNS equations have been discretized in space as a
first step in deriving a numerical method for approximating the continuous equations
presented in chapter 2. For the steady-flow equations, this space discretization has
resulted in a set of non-linear, algebraic equations. In this chapter, the procedure
by which these equations are solved will be discussed. The solution procedure will
be based on the time-integration idea: the unsteady equations, which have been
discretized in space only (semi-discretized) and form a set of ordinary differential
equations, are integrated in time until a steady solution is obtained.

As for the space discretization, the starting point for developing a solution pro-
cedure for the TLNS equations is formed by the solution procedure used for the
Euler equations. This solution procedure consists of explicit time integration using
Runge-Kutta schemes, accelerated by local time stepping, implicit residual averag-
ing, and enthalpy damping. In section 4.2, a literature review will be presented, and
the possibilities for extending this solution procedure to the TLNS equations will be
considered. A direct extension of the method for the Euler equations to the TLNS
equations is described in section 4.3 resulting in the so-called basic scheme. How-
ever, it is well-known that the convergence speed of this basic scheme is insufficient
(in the light of the requirement formulated in chapter 1). Therefore, the method
is further extended in section 4.4 with a multi-grid scheme in combination with a
variable-coefficient implicit residual averaging scheme. In particular, multi-block as-
pects of these schemes will be considered. Also, the scaling of the artificial diffusion
for high-aspect-ratio grid cells, presented in the previous chapter, will be discussed.

4.2 LITERATURE REVIEW

There are many different solution procedures for solving the type of non-linear, dis-
crete equations considered here. A first major distinction can be made between
schemes which are based on the time-integration concept, and schemes which are not,
such as Newton-iteration schemes (e.g. [37, 103]). Time-integration schemes may be
divided into explicit and implicit schemes, where implicit schemes sometimes reduce
to a Newton-iteration scheme for infinite time steps. For the compressible Euler and
Navier-Stokes equations, both explicit and implicit schemes are frequently used in
the literature (the choice between strategies perhaps often depending on personal
preferences).

a3
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In traditional explicit schemes (¢.g. Lax—Wendroff [67]), the discretization of time
and space derivatives is interdependent, so that steady-state solutions depend on the
time step. To avoid this problem, semi-discretization methods, with separate space
discretization and time integration as considered here, were developed. In particular,
an efficient explicit scheme for the Euler equations was developed by Jameson et al.
[52], based on Runge-Kutta type schemes. This efficiency was obtained by acceler-
ating the time integration by local time stepping, implicit residual averaging, and
enthalpy damping.

Implicit time discretization of the unsteady Euler or Navier—Stokes equations re-
sults in a set of non-linear discrete equations to be solved at each time step. Newton-
linearization is generally applied to reduce these equations to a set of linear equa-
tions. Solving this set of equations directly is too expensive (both in computation
time and memory requirement), particularly in three dimensions, and therefore either
approximate factorization methods, such as the alternating direction implicit (ADI)
scheme (8, 88] and approximate LU-factorization [85], or iterative methods [21], such
as Gauss—Seidel iterations, are used.

An important method for improving the convergence speed of both explicit and
implicit schemes is the so-called multi-grid scheme, first developed by Fedorenko
[34], and made popular by Brandt [16]. For explicit schemes, multi-grid methods
have been developed e.g. by Ni [83] and Jameson [51] for the Euler equations, and
by Martinelli [73], Vatsa—Wedan [114] and Swanson—Radespiel [109] for the Navier—
Stokes equations. For implicit schemes, multi-grid methods have been developed e.g.
by Caughey [19] and Spekreijse [103] for the Euler equations, and by Yoon [125] for
the Navier-Stokes equations. Multi-grid theory (in particular for elliptic equations)
indicates that convergence speeds independent from the number of grid points are
obtainable. It is then important that the integration scheme, used as relaxation
operator in the multi-grid method, strongly damps high-frequency modes.

The direct extension of the Jameson-type explicit time-integration scheme to the
Navier—-Stokes equations does not give a satisfactory convergence speed, even when
employing a multi-grid acceleration [110]. This is mainly caused by the severe limit
on the time steps as a consequence of the small mesh sizes needed to represent the
boundary layers; typically, for a Reynolds number of 1-108, the height of the first grid
cell on the wing surface must be of the order of 1075 chord lengths. Furthermore, no
such resolution is required in the directions along the wing surface, resulting in mesh
sizes in these directions that are several orders larger; typically, cell aspect ratios
of the order of 10® to 10* are obtained. As a result, high frequency modes in the
tangential direction are hardly damped by one explicit time step, so that the explicit
scheme is not suitable as relaxation operator in a multi-grid scheme.

Several approaches may be considered for improving the convergence speeds for
the Navier-Stokes equations, starting from the Jameson-type explicit scheme. These
approaches are in particular aimed at dealing with grid cells with high aspect ratios.

— The Jameson-type scheme, including multi-grid, was first successfully extended
to the Navier-Stokes equations in two dimensions by Martinelli [73]. Both in the
implicit residual averaging and in the artificial diffusion, coefficients dependent
on the aspect ratios were introduced. The main effect was an improved damping
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of high frequencies in directions along configuration surfaces as a consequence
of increased artificial diffusion.

— In the semi-implicit scheme [72], the explicit treatment of the computational
directions along a configuration surface is maintained, but the computational
direction normal to the surface is treated implicitly. Thus, a strong increase
of the time step is obtained, without the expense of going fully implicit, and
as a consequence the damping of high frequencies in tangential direction is
strengthened.

— The semi-coarsening multi-grid scheme [82, 90] also appears to be suitable for
high-aspect-ratio grid cells. On each multi-grid level several coarse grids are
considered, varying the directions in which the grids have been coarsened.

The Jameson-type scheme with multi-grid and with the improvements of Martinelli
has been successfully applied in many three-dimensional flow computations [45, 50,
62, 63, 97, 114]. Although the ideal multi-grid convergence is not attained with this
approach, computation speeds as required in chapter 1 are attainable. The increase
of the artificial diffusion may reduce the numerical accuracy to some extent, for
example at trailing edges (see e.g. [109]). For the other two approaches, although
possibly having more potential, there is less evidence yet of successful applications.
Therefore, we adopt a scheme along the lines of Jameson and Martinelli, thus relying
on well-established methods.

4.3 BASIC SOLUTION PROCEDURE

The basic solution procedure, described in this section, comsists of integrating the
unsteady equations in time until a steady solution is obtained, using a Runge-Kutta
scheme accelerated by local time stepping and implicit residual averaging. This
scheme was already employed in the Euler solver and is here directly extended to
the TLNS equations by including the viscous time-step limit in the local time step.
Enthalpy damping, a procedure used in the Euler solver to improve the convergence
rate further, is not considered here since it is based on the assumption that the
enthalpy is constant, which is in general not true for viscous flows.

4.3.1 Runge-Kutta time integration

Consider the unsteady TLNS (or Euler) equations, discretized in space as described
in chapter 3. These semi-discretized equations form a set of ordinary differential
equations, given by

W Ry =0 (.1)

T (U)=0, .
which holds for all grid cells in all blocks (i.e. equation (3.3), dropping the subscripts i,
J, and k for simplicity). The residual R in a grid cell depends on the flow-state vector
in neighbouring cells, which may be dummy cells. This residual is computed following
the discrete mathematical model as described in the previous chapter, including the
boundary conditions which determine the dummy-cell values.
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Following Jameson [48], a general class of Runge-Kutta (RK) schemes, with op-
tionally frozen diffusive terms, is used to integrate the set of semi-discretized equations
in time. For time-accurate computations, a RK scheme may be chosen with a certain
required order of accuracy in time. When the time integration is only used as a means
for finding a steady solution, as is the case here, a RK scheme may be chosen so as to
obtain fast convergence (or to reduce the memory requirement). The time integration
is started from a uniform flow, with all flow variables set to their free-stream values.

One time step for a general m-stage RK scheme, going from time level n to level
n + 1, is sketched in figure 4.1, where the flow state at time level n is indicated by
a superscript n. In this RK scheme, the intermediate flow states (I/{?)) do not need
to be stored, thus saving memory compared to traditional RK schemes. Note that
the calculation of the flow states at dummy cells, the calculation of the time step,
and the application of residual averaging have been included, which will be discussed
further on.

1. Save the present flow state at time level n,

Uv® =pyn,

2. Calculate the time step At.
3. Calculate the dummy-cell values of U(®) at internal faces.
4. For stage ¢ = 1 to m do:

(a) Calculate the dummy-cell values of U(4~Y) at external
faces.

(b) Calculate the flow correction,
AU = a, At RUY,

(c) Optionally apply implicit residual averaging to the flow
correction AU.

(d) Determine the flow state at the intermediate stage g,
U =y® AU,

5. Determine the new flow state at time level n + 1,

urtl = glm,

Figure 4.1: One Runge-Kutta time step

The residual R consists of the summation of the different flux balances, given by
equation (3.9). For a certain Runge-Kutta stage the residual may be calculated using
flux balances of solutions of all previous stages. Here, the convective flux balance is
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always computed using the most recent solution, while the diffusive flux balances can
be frozen for a certain number of stages. Thus, the residual at stage q is given by

R, = (DC(U("))i,j,k — DU, 4k - Da(U("’))i,J’,k> / Vi, (4.2)
with I, the most recent stage before stage ¢ at which the diffusive terms have been
computed.

A specific RK scheme is now defined by the number of stages m and the coefficients
ag and [,. For the Euler equations, a popular scheme has been a four-stage scheme
(RK4) with one evaluation of the diffusive terms,

a1:1/4, a2=1/3, a3:1/2, a4=1, (43)
lo=0, l1=0, 12:0, l3=0, )
(This scheme has a Courant number, defined in the subsequent section, of Cpy, = 2.6.)
For the TLNS equations, this scheme is less suitable due to the single evaluation of
the diffusive terms resulting in a small diffusive time-step limit. A suitable scheme
for the TLNS equations (as well as for the Euler equations) is defined in section 4.4.1
in relation to the multi-grid scheme.

A relevant aspect is how the Runge-Kutta scheme is applied on the multi-block
grid. A complete time step is performed for each block successively, thus introducing
a time lag between the blocks. An alternative is to update all the blocks at each
stage of a time step, which would avoid any time lag and therefore would seem to
be the safest approach from the point of view of stability and convergence speed.
This requires significantly more memory (e.g. the time step and the residuals must
be stored for all blocks, instead of for one block at a time), while in practice it has
no significant advantage in stability or convergence speed [36, 96]. The loop over the
blocks is done in a Gauss—Seidel manner. This means that when updating one block,
the most recent solution in the adjacent blocks is used for computing the dummy-cell
values at internal faces (faces between blocks). These dummy-cell values only need to
be computed at the beginning of a time step, as indicated in figure 4.1, since during
a complete Runge-Kutta time step in a block the solution in the other blocks is kept
frozen. The dummy-cell values at external faces (solid surface, far field, etc.) are
evaluated at each stage.

4.3.2 Local time stepping

The Runge-Kutta scheme is accelerated by evaluating the time step locally, i.e. for
each grid cell separately [52]. In this way, larger time steps can be used where possible,
thus expelling disturbances faster. Since the semi-discretization approach has been
followed, the local evaluation of the time step does not affect the steady-state solution.
The time step, which is constant for all stages of one Runge-Kutta time step in
any grid cell, must be chosen such that the scheme is still stable. Two time-step limits
can be defined for each grid cell, one related to the convective terms and the other
related to the diffusive terms. Relations for these limits can be found by stability
considerations. The derivation of these relations is presented in appendix B.
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The convective time-step limit At. is evaluated by the following relation:

CrLVijk

i j k) ?
Nog N+ A

(Ate)ijk = (4.4)

with Cpy, the Courant (or Courant—Friedrichs-Lewy) number. The maximum eigen-
values (A9 X A(R) of the convective Jacobians in i, §, and k directions (multiplied
by the area vectors) are given by equation (3.25).

The diffusive time-step limit At, is evaluated by

2
ReVijx

4 (AL 112 + 1AT) 12+ 1A 02) A,

(Atv)i,j,k = (4'5)

with Rk a stability limit similar to the Courant number (see appendix B). The area
vector for each computational direction (X(i), AU and AW respectively) is only
included (and given by equation (3.26)) if the relevant direction corresponds to a
thin-layer normal direction. The maximum eigenvalue A” of the diffusive Jacobian is

given by
Af;}] § = max {_ (K‘h + K‘t)lnyk s (I‘l‘ + Ht)z,],k } i (46)
” Cv  Pijk 3 Pijk
Instead of taking the minimum of the two time-step limits, a conservative approach
is followed [73] to determine the final time step,

1

Atiik = 17z + 1750,

4.7)
For this approach, it is not necessary to include a third time-step limit related to
the artificial diffusion, if a suitable value of the artificial-diffusion coefficient k(4 is
chosen, as shown in appendix B.

Values for the constants Cpy, (Courant number) and Rg depend on the particular
integration scheme employed (type of Runge-Kutta scheme, application of residual
averaging), and are given in section 4.4.1.

4.3.3 Implicit residual averaging

A second method for accelerating the Runge-Kutta scheme is to apply implicit resid-
ual averaging [48]. With this method, stability for a model equation can be obtained
for any Courant number Cry, (and any diffusive stability limit Rg) as long as a suf-
ficient amount of averaging is employed [110]. For explicit time-integration schemes,
the convergence speed is generally determined by (slow converging) low-frequency
modes, while the time-step limit is determined by (fast converging) high-frequency
modes. The idea of residual averaging is to smooth the high-frequency components
present in the flow correction, thus allowing the use of a larger time step, which
results in an increased convergence rate of the low-frequency modes. At the same
time, however, the damping of high-frequency modes in the flow solution is reduced.
(In the extreme case that the high-frequency modes are completely filtered out of
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the flow correction, then the high-frequency modes in the flow solution will not be
damped at all.) See appendix B for more details. Thus, residual averaging will at first
improve the convergence speed, but applying it too strongly will on the other hand
reduce the convergence speed. In practice, the optimal convergence rate is obtained
for a Courant number of about two times the Courant number of the scheme without
residual averaging.

Consider a single-block grid. At a certain stage g the flow correction (or residual)
(AU);,j,x (as computed in step (4b) of the RK scheme) is replaced by a smoothed
residual S; ; x. The latter is computed as solution of the following difference equation:

(-8 - Do - ®ops) = (AU, (4.8)
1’7]7
fori =1...N;, j =1...Nj,and k = 1... Ny, with (5? the second-order difference
operator in i direction, (J?f)i,j,k = fi+1,j,k -~ 2f,',j,k + fi—l,j,k- (Note that (AU)i,jyk
and S; ;1 are both vectors with 5 components.) At the block boundaries, we follow
a conservative approach by applying the Dirichlet boundary condition

Si,j,k - 0, (4.9)

at all dummy cells. This boundary condition will tend to reduce the flow correction at
block faces, which we expect to be more robust than applying a Neumann condition.

For a multi-block grid, a Runge-Kutta time step is performed for each block
successively. At each stage (or optionally at alternate stages) of a RK time step, we
apply the residual-averaging operator for the considered block only. One could in
theory apply the residual averaging operator over the complete domain, but as for
the RK scheme, this would result in a significant increase of required memory, as well
as an increase of computational cost. Further, in practice it is found that applying
the averaging operator per block does not reduce the convergence speed, as long as
the block dimensions are not too small.

In the basic scheme, the coefficients (¥, €(9), and €*) are taken equal to a constant
value €. (In section 4.4.2, it will be seen that variable coefficients are more suitable
when dealing with high-aspect-ratio grid cells.) Stability analysis (appendix B) shows
that a stable scheme is obtained by taking this constant coefficient equal to

e=§<(g§i>2—1), (4.10)

with Cpp the actual Courant number and Cf; the Courant number for the scheme
without residual averaging. As stated before, the ratio of these Courant numbers is
generally taken equal to 2, implying € = 0.75.

The difference equation (4.8) can be split into three sets of difference equations
(one for each computational direction), which have the following general form, here
written for the k-direction:

((1 - e<k>5§)x) =Ye  (k=1..N), (4.11)

l’)jV
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with the boundary conditions
Xij0 =0, XijNe+1 =0, (4.12)

fori=1...N;and j=1...N;.
For each i and j, this results in a tridiagonal linear system which can be written
in the following matrix form (dropping subscripts ¢ and j):

BX =Y, (4.13)

with the left-hand-side and right-hand-side vectors given by X = (Xi,...,Xn, )7 and
Y =(Y1,...,Yn,)T, and the matrix B of dimension Ni x Ni given by

1+ 261 —€;
—€n 1+ 2¢2 —€2

B = . . (4.14)

—€N-1 1+ 2en,—1 —€Nne-1
—€N,, 1+ 2en,

Since B is a tridiagonal matrix, the system can be solved in a straightforward manner
by a direct method, using an LU-decomposition (triangular factorization) of B (i.e.
the Thomas algorithm).

4.4 EXTENSIONS NEEDED FOR THE NAVIER—STOKES EQUATIONS

The solution procedure as described in the previous section is found to require too
much computation time when used for the Navier—Stokes equations, in particular for
the 3D applications of interest here. As indicated in section 4.2, reasonable compu-
tation times may be obtained by applying a multi-grid scheme as was developed by
Jameson [51] and Martinelli [73], together with the treatment of high-aspect-ratio
grid cells of Martinelli. Here, we discuss this multi-grid scheme and in particular
consider its application for multi-block structured grids.

4.4.1 Multi-grid scheme

The multi-grid scheme, as applied here, can be considered to be an acceleration
of a time-like integration scheme. In this case, the time-like integration scheme is
an explicit Runge-Kutta scheme, with local time stepping and residual averaging.
The acceleration by the multi-grid scheme is obtained by performing relaxations (i.e.
Runge-Kutta steps) on coarser grid levels. On these coarser levels, the allowed time
step is larger, while the amount of computational work is smaller than on the finest
level.

The basic multi-grid scheme used is the Full Approximation Storage (FAS) multi-
grid algorithm [16, 17, 120]. In order to precondition the initial solution on the finest
grid level, the Full Multi-Grid (FMG) scheme [17, 103, 120] is used.

For the multi-grid algorithm, a sequence of coarse grid levels must be defined
below a given fine grid on which the solution is desired. For a structured grid, these
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grid levels are obtained by dropping every other grid point in each computational
direction from the next-finer grid. In other words, a coarse grid is obtained by fusing
eight grid cells (in 3D) of the next-finer grid into one grid cell. We number the grid
levels from [ = loar (coarsest grid) to ! = lane (finest grid), with leoar < lane. Further,
all variables at level [ will be indicated by a superscript I.

The Full Approximation Storage multi-grid scheme

On the finest grid level I = lgpe, the discrete steady-state equations must be solved,
given by
R UY =0, (4.15)

in which U’ is the collection of flow states of all grid cells in all blocks, and R’
is the residual (as defined in equation (3.9), dropping the subscripts 4, j, and %
for simplicity). This equation may be solved by applying the Runge-Kutta time-
integration scheme as described before. In general, in such a scheme the low-frequency
modes are slowly converging. The idea of a multi-grid scheme is to treat those low
frequency modes on coarser grids, where they are modes of higher frequency, and
where they can be expected to converge faster (at smaller cost).

The Full Approximation Storage (FAS) multi-grid scheme, which is a scheme
suitable for non-linear equations, may be derived as follows. Consider at a grid level
[ the following discrete equation,

RY(UY+ P =0, (4.16)

with P! a given forcing function (P! = 0 for | = lgne). Let W! be an approximate
solution to this equation (obtained e.g. by several RK time steps) such that the errors
in the defect

r = R(W*) + P (4.17)

are of low frequency. The equation for the exact solution U! can then be written as

RYUY — RM(WH + ¢t = 0. (4.18)

Since r! contains only low frequencies, this equation can be approximated on the

coarse grid level [ — 1 by
R=H UMY — RN (Tm i y(WY) + Qia () = 0, (4.19)

with 7;_1, and @;_1, restriction operators, transferring the approximate solution
and the defect to the coarse grid level. This equation can be written in the form of
equation (4.16) with the forcing function given by

P = Qi (r') - REH(T 1 (WY)). (4.20)

Solving equation (4.19), a coarse-grid correction U'~1 — T;_; ;,(W!) for the low-fre-
quency components in the solution is obtained, which is prolongated to the fine grid
by

W =Wt Iy (U = Timg (W), (4.21)
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1. Perform Ny (pre)relaxations on grid level I (resulting in an
updated solution U').

2. If level 1 is not the coarsest level (I # leoar), then:

(a) Define an initial solution U}~ on the coarser level [ — 1,
Ut =T U,

by approximating the current solution on level I, using
the restriction operator T;_j ;.

(b) Define a residual forcing function P'~! on level I — 1,
Pl—l — Ql—l,l (Rl(Ul) + Pl) _ Rl—l(Ué_l),

with R' the residual operator on level | and (Q1—1, another
restriction operator.

(c) Perform Ncg. FAS cycles (coarse grid corrections) on level
I — 1, resulting in an updated solution U'~1.

(d) Update the current solution on level I by interpolating
the correction from the next-coarser level,

Ut=U'+ I, (U =051,
where I;;_; is a prolongation operator.

3. Perform N, (post)relaxations on grid level [ (resulting in an
updated solution U*).

Figure 4.2: Recursive definition of a FAS cycle

with [, ;1 a prolongation operator. Suitable restriction and prolongation operators
will be defined later on.

A solution to the steady-state equation (4.15) can now be obtained by alternately
taking RK time steps (in the context of multi-grid called relaxation steps) and de-
termining coarse-grid corrections as just described. A coarse-grid correction can be
obtained in the same manner: performing RK time steps for the discrete equation
(4.19), and determining coarse-grid corrections using the next-coarser grid level. This
process can be continued until the coarsest grid level is reached. This results in the
FAS multi-grid scheme for solving equation (4.16) on a certain grid level [, and in
particular on the finest grid level lg,e. One iteration step or so-called cycle of the
FAS scheme consist of the steps given in figure 4.2, which define the cycle recursively.

The relaxation step on level [ actually consists of applying one RK time step,
as defined in figure 4.1. This time step must be based on the steady-state equation
(4.16) and thus in step (4b) of the RK scheme, the forcing function P! must be added
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1. Set the initial solution U} on grid level I = liy;;, to uniform flow.
2. For I = linjt to lgne — 1 do:

(a) Perform Ngoar FAS cycles on level [, resulting in an up-
dated solution U.

(b) Define an initial solution U™ on the next-finer grid level
[ + 1 by interpolating the current solution U?,

U = Jij  UY, (4.22)
where Ji41, is a prolongation operator.

3. Perform Ngpe FAS cycles on level | = g, resulting in the final
solution.

Figure 4.3: The FMG scheme

to the residual.

The form of the FAS cycle depends on the number of pre-relaxations Npre, the
number of coarse grid corrections N¢ge and the number of post-relaxations Npest. In
principle, these numbers can be chosen differently for each grid level. A V-cycle is
obtained by applying one coarse-grid correction (N¢g. = 1) and a W-cycle by applying
two (Ncge = 2). Specific choices will be made later on.

The Full Multi-Grid scheme

The FAS scheme as just described needs an initial solution on the finest grid level
to start. One can simply start from a uniform flow, but a more robust scheme is
obtained by first determining solutions on the coarse grid levels, and subsequently
prolonging these solutions to the next-finer grid levels where they form the initial
solution. This will also improve the initial (but not the asymptotic) convergence
speed. In the context of multi-grid, this process of grid sequencing is called the Full
Multi-Grid (FMG) scheme.

Consider an initial grid level li,it, with leoar < linit < lfne. The Full Multi-Grid
(FMG) scheme consists of applying the FAS scheme on the grid levels li,;; through
laine, successively, as specified in figure 4.3. The solution is transferred from a certain
grid level to the next finer level by the prolongation operator J, which will be described
later on.

Restriction and prolongation operators

In a multi-grid scheme the restriction and prolongation operators must satisfy the
following requirement so as not to ruin the convergence speed [17, 120]. Let m be
the order of the differential equation considered; for the Euler equations m = 1, and
for the Navier-Stokes equations m = 2. Further, let m, be the order of accuracy of
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the restriction operator, and m,, the order of accuracy of the prolongation operator.
Then, the requirement is
my +my > m. (4.23)

For the Euler equations, both the restriction and the prolongation operator are al-
lowed to be first order. For the Navier-Stokes equations, at least one of the operators
must be second order (or higher). Here, a first-order restriction operator is defined,
based on averaging, while a second-order prolongation operator is defined, based on
linear interpolation.

The operator Tj_y ;, for the restriction of the basic variables, is defined by volume-
weighted averaging [47, 73] of U* = (p, pii, pH)T,

0 0 0

Utg,l Vl 1 Z Z Z Vl 21+Ai,2j+Aj,2k+Ak, (4.24)

6Lik Ai=—1 Aj=—1 Ak=-1
fori=1...N/' j=1...N}7" and k=1...N;"}, with

0

0 0
Z Z Z V2li+Ai,2j+Aj,2k+Ak~ (4.25)

Ai=—1 Aj=-1 Ak=-1

Note that N} = 2Nf_l. The volume-weighted averaging is applied to total enthalpy,
because this makes it possible to apply enthalpy damping on all levels for the Euler
equations (H! = H,, implies now H!=! = H,)).

The restriction operator Q-1 ; for the restriction of residuals is defined by a simple
summation of the total flux balance [47, 73]. Since the residual is equal to the total
flux balance divided by the cell volume, the following definition results:

0 0 0
Z oY (V'RDairaizirajokrar,  (426)
= k=

i=—1 Aj=—1 Ak=—1

(Qi_1,RYijk =

?r»—a

fori=1...N71, j= 1...N;—1, and k=1...N; .

Both the prolongation operator I;;_1, for the transfer of the correction AU -1 =
U1 — U1, as well as the operator Ji;—_;, for prolongating the solution U=, are
defined by trilinear interpolation in the computational space. Thus, the prolongated
solution U' (or similarly the prolongated correction AU') is obtained by linearly
interpolating first in the 4 direction,

-1 | 1y7i—1
Agirjr = UL +1USL 0
i,J, Jh
8 rri1 ) (4.27)
A2i,j,k = ZUz,j kT Uz+1 Jhk?
then in the j direction,
B o = 34, ..+ LA
ig,2j—1,k — g ligh.k 1ip 51,k (4 28)
_ 3 1 ’ :
B, o5k = $Aipik+ 144541,k
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and finally in the k direction,

l — 3pB. . ip.
Ui, jgok—1 = 1Bigigk + 3Big s k-1,
3
1

) , (4.20)
B, isk + 1Bis gs k15

l
Uiy sk

with i = 1...N;™", j = 1...N!"" and k = 1...N;"!, and with iy = 1...N/,
Jr= 1...N]’-, and kf =1...Nj}.

For the trilinear interpolation, boundary conditions are required, in particular
values are needed in the dummy cells for the flow solution U'~! or the flow correction
AU, The dummy-cell values for the flow solution are obtained by applying the
boundary conditions as defined in section 3.5. The dummy-cell values of the flow cor-
rection are obtained by first determining the dummy-cell values of the flow solutions
U1 and Ué_l (by the boundary conditions of section 3.5) and subsequently taking
their difference.

Choices for multi-grid and Runge-Kutta schemes

Finally, we must choose the type of multi-grid cycle that will be used, as well as
suitable Runge-Kutta schemes.

For the Runge-Kutta scheme, when used within a multi-grid scheme, an important
property is the strong damping of high-frequency modes. For the Euler equations,
we will use a three-stage scheme RK3 with a single evaluation of the diffusive terms,
following Jameson [51]:

o =06, ay=06, az=1,
lo =0, I, =0, =0, (4.30)
Cpr =15, kW =2

The specified value of the fourth-order artificial-diffusion coefficient k(¥ ensures the
maximum damping of high-frequency modes for this scheme (see appendix B). The
RK4 scheme as specified before, is also found to be reasonably efficient for the Euler
equations.

For the TLNS equations, a large stability limit for the diffusive terms is desired.
The following five-stage scheme (RK5) with three evaluations of the diffusive terms
is frequently used [73, 114]:

Ot1:1/4, 01221/6, 03:3/8, 04:1/2, a5:1,
lo=0, =0 Ih=2 [3=2 Il =4, (4.31)
Cr=3, Rx=3, kW=2

Sometimes the diffusion at the third and fifth stages is calculated by a combination
of the diffusion at the first, third and fifth stages [109]. However, this option is not
part of the present scheme.

Finally, the type of multi-grid cycle should be defined. For the Euler equations,
the V-cycle with one pre-relaxation and one post-relaxation works well [47],

Npre =1, Nege =1, Npost =1, (4.32)
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while for Navier—Stokes computations the W-cycle is commonly used [73, 109, 114],
also with one pre-relaxation and one post-relaxation,

Npre =1, Nege =2, Npesy = 1. (4.33)

We found that the application of more pre and post-relaxations (Npre = Npost = 5)
generally leads to a more robust scheme. The increased robustness may be due to the
increased number of relaxations performed between two prolongations, so that pos-
sible high-frequency errors induced by the prolongation operator are damped more
strongly. For this purpose, other authors [109, 114] employed smoothing of the pro-
longated flow correction (by an operator similar to the implicit residual averaging
operator). The increase of the number of relaxations per cycle is also slightly more
efficient if in total the same number of fine-grid relaxations is performed, due to
relatively less restrictions and prolongations.

Multi-block aspects

For the multi-grid algorithm just described, we must consider how it is applied on a
multi-block structured grid. Two main strategies may be considered:

— multi-block inside multi-grid; meaning that on each grid level of a multi-grid

cycle a loop over all blocks is performed,

— multi-grid inside multi-block; meaning that a complete multi-grid cycle is per-

formed for each block successively.

This resembles the two possible strategies for the Runge—Kutta scheme, where either
all the blocks are updated at each stage of a time step, or a complete time step
is performed for each block successively. For the RK scheme, we chose the second
strategy since it requires less memory, while in practice it does not deteriorate the
convergence speed. For the multi-grid scheme, however, we choose the first strategy
(multi-block inside multi-grid). The second strategy has as effect that so much work
is done in a block before other blocks are updated (thus a large time lag between
the blocks results) that the convergence speed may be significantly reduced or the
scheme may even become unstable [96]. The memory advantage of the second strategy
(coarse-grid data only needs to be stored one block at a time) is limited. Other authors
have employed the first strategy successfully as well [4, 36, 96}.

On a multi-block grid, the prolongation of the flow correction from level I — 1 to
level I poses a problem. Consider a block at grid level [ — 1. At internal block faces,
dummy-cell values of the flow correction must be obtained from the adjacent block.
The flow correction consists of the difference between the current solution U!~! and
the initial solution U} ™!. The current solution is available in the adjacent block, but
the initial solution is not (to save memory) and should be redetermined by restricting
the solution U!. We found the implementation of this algorithm to be needlessly
complex. Instead, we simplified the algorithm by setting the dummy-cell values of
the correction to zero. This results in an underrelaxation of the correction near
block interfaces, which also improves the robustness, while in practice no reduction
of convergence speed is found. (See section 4.5, where single-block and multi-block
convergence histories are compared.)
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For the definition of the coarse grid levels two options may be considered: global
coarsening and local coarsening. Global coarsening means that the same number of
grid levels is used in each block. For a grid with a large number of blocks, there will
usually be some block with small grid dimensions which then limits the number of
grid levels in all other blocks. Therefore, we also allow the option of local coarsening
which means that the maximum number of grid levels is used in each block separately.
In figure 4.4, 1D examples are given for both these coarsening options.

block 1 block 2 block 1 block 2

|-¢—4+H—4—0—'—H+Hﬂ+++o—++—l levet 2 |_,_,_H_,_,_H_,_,_,_,_,_,_,_l_,_,_,_,_,_| level 4
I—%eea:::%:e% level 1 }—4—4——0—¢—o—+—4—f—4—+—1 levet 3
level 2

b—,—{ level 1

a) Global coarsening b) Local coarsening

Figure 4.4: Coarsening options for two blocks with different dimensions

A consequence of local coarsening is that at a certain coarse grid level, there may
not be a grid defined for each block. We can make this grid complete, however, by
considering the coarsest available grid to be present in the blocks that could not be
further coarsened, as sketched in figure 4.5. The solution in these blocks can then
just be used to determine the dummy-cell values of the other blocks, or optionally one
could also perform relaxations in these blocks. At block interfaces, the grid may then
be partially continuous, and thus appropriate boundary conditions, as described in
section 3.5.5, must be used. We expect the local coarsening scheme to be successful
when the blocks that can be further coarsened are in regions of the flow field where
convergence is usually the slowest (such as in the boundary layers). Results with
local coarsening are shown in section 4.5. (A concept related to local coarsening is
described by Mavriplis [74] for a multi-grid scheme applied to the Euler equations on
adaptively-refined unstructured grids.)

block 1 block 2
|—H—H—H—H—H—H—0—H—‘-¢—0—H—+«| level 4
ey [ |
[t f——{ level3
}; — { — I level 2
| ; N R V-

Figure 4.5: Complete locally coarsened grid for two blocks with different dimensions



68 4. Solution Procedure

4.4.2 Treatment of high-aspect-ratio grid cells

The multi-grid scheme that has been defined in the previous section is known to give
poor performance on grids with high-aspect-ratio cells. The main problem is that
high-frequency modes in the direction of the large mesh size are poorly damped. To
resolve this problem, two modifications of the scheme are important that were intro-
duced by Martinelli [73]: using varying coefficients in the residual averaging scheme,
and scaling the artificial diffusion for high-aspect-ratio cells. (For some analysis of
the effect of high-aspect-ratio cells on the high-frequency damping, see appendix B.)

Residual averaging with varying coeflicients

For a grid cell with a high aspect ratio (of the order 10%), the time step is limited by the
smallest mesh size, usually in boundary-layer normal direction. For the larger mesh
sizes, usually in tangential directions, the time step is thus several orders of magnitude
too small for obtaining a good damping of high-frequency modes. Applying residual
averaging allows larger time steps, but at the same time reduces the high-frequency
damping even further. Therefore, residual averaging is only applied in the direction
of the smallest mesh size by defining the residual-averaging coefficients dependent
on the cell aspect ratio. For the direction of the largest mesh size, this means a
larger time step and no residual averaging, and therefore improved damping of the
high-frequency modes.

The appropriate time step for a computational direction does not just depend
on the related mesh size, but more general it depends on the spectral radius of the
related convective flux Jacobian (as in equation (4.4)). Thus, the residual-averaging
coeflicients are defined as a function of the ratio of the spectral radii of the different
computational directions. Let (I,J,K) be a cyclic permutation of (i,7,k). The
coefficients €(5) are defined as follows:

1 1K) ?

(K) _ I1,J,K

€I,J,K = max Z (6 A(I) N )\(J) T )\(K) ) - 1 ’ O ) (434)
1,J,K 1,J,K 1,J,K

with € a constant coefficient, A(X) given by equation (3.25), and A¥) evaluated
similarly as in equation (3.74),

E®) 0]
5 (1 + (N L (MK ) NOB
I1,J,K ( I,J,K) ( I,J,K) I,J,K (435)
IK I K
rg,J,I){ = )‘g,},x ’\g,sz-

With residual averaging, we have found that a reasonably efficient and robust
scheme is obtained for € = 1.5. For the three- and five-stage schemes, residual aver-
aging is best applied every stage, while for the four-stage scheme, residual averaging
is best applied every odd stage. Appropriate stability limits are generally obtained
by scaling Crp, with € and Ry with ¢2 (see appendix B). For the RK5 scheme,
used for the TLNS equations, the stability limits are then given by Cfr, = 4.5 and
Rk = 1.5CpL. For the RK3 and RK4 schemes, used for the Euler equations in
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combination with enthalpy damping, the stability limits are given by Crr, = 3.2 and
CrL = 4.2, respectively.

High-aspect-ratio scaling of the artificial diffusion

To further improve the damping of high-frequency modes in the direction of the
largest mesh size for a grid cell with high aspect ratio, the artificial diffusion is scaled
as described in section 3.6.2. The high-frequency damping becomes most effective,
if the parameter k™ is taken equal to one, with the damping being the same in all
directions. In this case, the perfect multi-grid convergence, independent from the
number of grid cells, may be obtained. However, this could seriously reduce the
numerical accuracy, since the artificial diffusion may then easily be increased by a
factor of the order 10*. As stated before, a lower value of k(® = 1/2 for 3D flow
calculations seems to be a reasonable compromise between convergence speed and
numerical accuracy.

4.5 RESULTS

In this section, we will verify that the solution procedure behaves as expected. In
particular, the convergence speeds of the basic scheme (single grid), and of the im-
proved scheme (multi-grid scheme and treatment of high-aspect-ratio grid cells) will
be evaluated, and we will consider whether the computation times are sufficient to
satisfy the efficiency requirement stated in chapter 1.

Two-dimensional inviscid flow

We will first evaluate the multi-grid scheme on a grid without cells of high aspect ratio,
which is typically used for inviscid flows. On such a grid it must be possible to obtain
a convergence speed near to the ‘ideal’ multi-grid convergence, i.e. a convergence
speed independent of the number of grid points. As a test case, we take the inviscid,
transonic flow around the NACA0012 airfoil with the flow conditions a = 1.25° and
My, = 0.8. An O-type single-block grid is used with 256 x 128 grid cells. Figure 4.6
gives an impression of this grid and of the flow solution obtained on it.

Since for this case, the Euler equations are to be solved, we use as basic solution
method the RK3 scheme with enthalpy damping and constant-coefficient residual av-
eraging. Figure 4.7 gives the convergence history in terms of the residual of the mass
equation (root-mean-square value over the complete grid) and the lift coefficient ver-
sus the number of relaxations. For the multi-grid scheme, the number of relaxations
performed on the finest grid is considered, which is equal to the number of multi-grid
cycles times the number of pre- and post-relaxations. The multi-grid scheme, using a
V-cycle with Npre = Npost = 1, gives a significant increase of the convergence speed
compared to the basic scheme. Using varying-coeflicient residual averaging gives a
similar convergence speed. The ‘ideal’ multi-grid convergence, however, is not yet
reached (figure 4.8). We approach the ideal more closely, if the number of pre- and
post-relaxations is increased to Npre = Npost = 9, in which case the convergence on
the finest of the four grid levels is only slightly slower than on the other grid levels. A
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possible explanation is that if not enough relaxations are applied, then high-frequency
errors introduced by the prolongation operator are not sufficiently damped and re-
duce the convergence speed. Generally, one could state that a single explicit time step
is not a strong enough smoother (of high frequencies) as required by the multi-grid
theory as relaxation operator; five explicit time steps apparently do form a strong
enough smoother (see also appendix B).

To quantify the increased convergence speed with the multi-grid scheme, we con-
sider the number of fine-grid relaxations needed to obtain a convergence of the lift,
drag, and pitch coefficient within 107* or 10~ of the fully-converged value (i.e. within
1 or 0.1 count for the drag coefficient), or to obtain a root-mean-square residual of
the mass equation of 107%, as given in table 4.1. Also, the needed CPU-time is given
(on the NEC-SX4). With Npre = Npost = 1, the multi-grid scheme is 2.1 times as
expensive per fine-grid relaxation as the basic scheme, while with Nyre = Npost =
it is only 1.6 times as expensive (due to the reduced number of restrictions and pro-
longations). In terms of the convergence of the residual, the multi-grid scheme is 6
to 9 times as efficient as the basic scheme in terms of number of relaxations, and 3 to
6 times in terms of the CPU-time. However, the multi-grid scheme gives a stronger
improvement of efficiency for the force coefficients: factors 20 to 50 (relaxations) or
10 to 25 (CPU-time).

Whether the multi-grid convergence speed is maintained for a multi-block grid is
verified for the same test case, where the grid is divided into four blocks of equal size
in the circumferential direction. Basically the same scheme is employed as for the
single-grid case (with the treatment of the blocks following the part on multi-blocks
aspects of section 4.4.1). Using a V-cycle with Npe = Npost = 1, the convergence
completely breaks down on the third grid level (figure 4.9). Again, if the number
of pre- and post-relaxations is increased to Npre = Npost = 5, then the convergence
speed improves, and in fact becomes practically equal to the convergence speed for
the single-block case (figure 4.10). Thus, we may conclude that for the considered
multi-grid scheme, increasing the number of pre- and post-relaxations does not only
improve the efficiency but also the robustness of the scheme.
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converged within 10™¢ mass residual
lift drag pitch of 1075
SG 2670(194) | 864(62.7) | 1570(114) 1810(131)
MG-1 | 56(8.57) | 18(2.75) | 64(9.79) 318(48.7)
MG-5 | 90(10.3) | 30(3.42) | 50(5.70) 200(22.8)
converged within 107°
lift drag pitch
SG >3200(232) | 2290(166) | 3100(225)
MG-1 | 150(23.0) | 132(20.2) | 162(24.8)
MG-5 | 120(13.7) | 60(6.84) | 100(11.4)

Table 4.1: Number of fine-grid relaxations (CPU seconds) performed to obtain a certain
level of convergence for inviscid flow around NACA0012 airfoil (M = 0.8, a = 1.25°)

on finest grid level (256 x 128), comparing single grid (SG) with multi grid with 1 or
5 pre- and post-relaxations (MG-1 resp. MG-5)

H

T,

a) Grid b) Pressure distribution

Figure 4.6: Impression of O-type single-block grid (256 x 128 grid cells) and inviscid
flow solution around NACAQ012 airfoil (Mo, = 0.8, a = 1.25°)
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Figure 4.7: Convergence history for inviscid flow around NACAQ012 airfoil (Mo, = 0.8,
a = 1.25°) on finest grid level (2566 x 128) comparing the basic method (single grid),
multi grid with constant-coefficient residual averaging (multi grid a), and multi grid
with varying-coefficient residual averaging (multi grid b)
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Figure 4.8: Convergence history for inviscid flow around NACAQ012 airfoil (M = 0.8,
a = 1.25°) on four subsequent grid levels using V-cycle multi grid, comparing Npe =

Npost =1 with Npre = Npost =

5
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Figure 4.9: Convergence history for inviscid flow around NACAQ012 airfoil (Moo = 0.8,
a = 1.25°) on four subsequent grid levels using V-cycle multi grid with Npre =

post =
1, comparing results for single-block grid with those for four-block grid
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Figure 4.10: Convergence history for inviscid flow around NACA0012 airfoil (Mo, = 0.8,
a = 1.25°%) on four subsequent grid levels using V-cycle multi grid with Npre = Npost =
5, comparing results for single-block grid with those for four-block grid
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Two-dimensional turbulent flow

Next, we will evaluate the multi-grid scheme on a grid with cells of high aspect ratio,
typically used for viscous flows. On such a grid, we do not expect to reach the ideal
multi-grid convergence completely, as explained in section 4.4.2. As a test case, we
take the turbulent, transonic flow around the RAE2822 airfoil at the flow conditions
My = 0.73, @ = 2.8°, Rey = 6.5 - 10%, and transition at 3% (case 9). This case was
also used in the previous chapter, but here we first employ a somewhat coarser, single-
block grid (C-type with 256 x 64 grid cells). With the basic solution method, consisting
of the RK5 scheme with constant-coefficient residual averaging, the convergence is
very slow, in particular for the force coefficients (figure 4.11). The multi-grid scheme,
using a W-cycle with Npre = Npost = 5, improves the initial convergence speed, but
seems to give the same asymptotic convergence speed as the single-grid computation.
As anticipated, the high cell aspect ratios are the problem. Using varying-coefficient
residual averaging and high-aspect-ratio scaling of the artificial diffusion (with the
parameter k(*) = 2/3), a convergence speed is obtained on this grid which is close
to the ideal multi-grid convergence. The scaling of the artificial diffusion, however,
also modifies the numerical solution, reducing the lift coefficient by 0.004 (0.5%) and
increasing the drag coefficient by 2 counts (1%) (with the friction drag only increased
by 0.2 counts) on the finest grid. As can be seen from the surface pressure and skin-
friction distributions, figure 4.13, the high-aspect-ratio scaling appears to smear out
the shock and to create a peak in skin friction at the trailing edge, both involving
regions with high gradients in tangential direction. (The mild flow separation at the
foot of the shock and at the trailing edge are also suppressed.) To reduce these effects,
either the number of cells in tangential direction should be increased (as done for this
flow case in the previous chapter) or the high-aspect-ratio scaling should be reduced
(e.g. by setting k®) = 1/2, as we will do for 3D flow computations).

Again, the increased convergence speed with the multi-grid scheme is quantified
by considering the number of fine-grid relaxations and the CPU-time needed to obtain
a convergence of the lift, drag, and pitch coefficient within 104, or to obtain a root-
mean-square residual of the mass equation of 10722, as given in table 4.2. With
high-aspect-ratio scaling, the efficiency of the multi-grid scheme, compared to that
of single grid, is increased by factors 44 (relaxations) or 18 (CPU-time) for the drag
coefficient, and by factors 13 (relaxations) or 6 (CPU-time) for the mass residual.
(Note that, for single-grid computation, the lift and pitch coefficients were not yet
converged within 10™* after 2000 relaxations.)

So far in this section, the scalar model has been used for the artificial diffusion. We
will also consider the effect on the convergence speed of the matrix artificial-diffusion
model. Since matrix diffusion reduces the artificial diffusion in boundary-layer normal
direction to improve the numerical accuracy, we may expect that it also reduces the
convergence speed. This reduction is minimized by applying the matrix diffusion
only on the finest grid level of a multi-grid cycle. As can be seen from figure 4.12,
the asymptotic convergence speed is lowered, but the initial convergence speed is not
affected by matrix diffusion, in particular on the finest grid level. For most practical
computations, the computations will not be converged to levels at which the reduction
of the convergence speed by matrix diffusion occurs. From table 4.2, it can be seen
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converged within 107* mass residual
lift drag pitch of 10722
SG >2000(200) | 1740(174) | >2000(200) 1990(199)
MG-a | 600(142) | 170(40.1) | 390(92.0) | 440(104)
MG-b | 110(26.0) | 40(9.44) | 80(18.9) 150(35.4)
MG-c | 140(33.3) | 40(9.52) | 90(21.4) 150(35.7)

Table 4.2: Number of fine-grid relaxations (CPU seconds) performed to obtain a certain
level of convergence for turbulent flow around RAE2822 airfoil (case 9, Mo, = 0.73,
a =2.8°, Rew = 6.5-10%) on finest grid level (256 x 64), comparing results for single
grid (SG) with those for multi grid without and with high-aspect-ratio scaling (MG-a
and MG-b, resp.) and multi grid with matrix diffusion (MG-c)

converged within 10™* mass residual
lift drag pitch of 1073
MG-b | 110(159) | 50(72.5) | 70(101) 340(493)
MG-c | 80(116) | 40(58.4) | 60(87.5) 360(525)

Table 4.3: Number of fine-grid relaxations (CPU seconds) performed to obtain a certain
level of convergence for turbulent flow around RAE2822 airfoil (case 9, Mo, = 0.73,
a = 2.8°, Rew = 6.5 - 10%) on finest grid level (512 x 96) of the 8-block grid, using
multi grid with scalar and with matrix diffusion (MG-b and MG-c, resp.)

that the number of relaxations, as well as the CPU-time, to obtain force coefficients
converged within 10~ is practically the same for scalar and matrix diffusion.

Finally, we also present the convergence for this flow case on the fine multi-block
grid (512 x 96 grid cells) employed in the previous chapter (figure 4.14 and table
4.3). The multi-grid scheme on this 8-block grid uses the local coarsening strategy
explained in section 4.4.1: 4 grid levels are used in the 4 inner blocks (near the airfoil),
and only 3 grid levels in the 4 outer blocks. After 300 fine-grid relaxations, the mass
residual is converged to 1072 on the finest grid, and up to that level scalar and matrix
diffusion give practically identical convergence speeds. All force coefficient are then
converged within 107%. Converging the force coefficients within 10~ only takes about
100 fine-grid relaxations, which is equivalent to 10 multi-grid cycles and takes about
140 CPU seconds.
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Figure 4.11: Convergence history for turbulent flow around RAE2822 airfoil (case 9,
Mo = 0.73, a = 2.8%, Reo, = 6.5-10%) on three subsequent grid levels (fine: 256x64),
comparing the basic method (single grid), multi grid without high-aspect-ratio scaling
(multi grid a), and multi grid with high-aspect-ratio scaling (multi grid b)
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Figure 4.12: Convergence history for turbulent flow around RAE2822 airfoil (case 9,
My = 0.73, o = 2.8°, Reso = 6.5 - 10°) on three subsequent grid levels (fine:
256 x 64), comparing scalar artificial diffusion with matrix artificial diffusion
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Figure 4.13: Turbulent flow around RAE2822 airfoil (case 9, Moo = 0.73, a = 2.8°,
Reo, = 6.5 - 10°%) on finest grid level (256 x 64), comparing the solution without
high-aspect-ratio scaling of the artificial diffusion (multi grid a) with the solution with
high-aspect-ratio scaling (multi grid b)

0.9 T T T T T
T T T T T

iffusion —— scalar diffusion —
rsnc:(lrei]; g:gﬂi:g: ----- C matrix diffusion -----

0.85 | 4

08 |
\ 075 -
07}
0.65
1 1 1 1 1 06 | L 1 - A
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
fine-grid relaxations fine-grid relaxations
a) Residual of mass equation b) Lift coefficient

Figure 4.14: Convergence history for turbulent flow around RAE2822 airfoil (case 9,
Mo = 0.73, @ = 2.8°, Reco = 6.5-10°) on three subsequent grid levels of the 8-block
fine grid (512 x 96 cells)
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converged within 107° mass residual
lift drag side pitch roll yaw of 1072
80(655) | 50(409) | 60(491) | 80(655) | 80(655) | 50(409) 980(8020)

Table 4.4: Number of fine-grid relaxations (CPU seconds) performed to obtain a certain
level of convergence for turbulent flow around ONERA M6 wing (My = 0.84, a =
3.06°, Res, = 11.8-10°) on finest grid level (256 x 64 x 48) using multi grid with
matrix diffusion

Three-dimensional turbulent flow

As a 3D test case, we consider the turbulent flow around the ONERA M6 wing with
the flow conditions Mo, = 0.84, & = 3.06°, Re., = 11.8 - 108, and transition at 3%
of the local chord. A 12-block CO-type grid is employed with 256 x 64 x 48 grid
cells (chordwise, normal, and spanwise directions). Figure 4.16 gives an impression of
the grid in the half space and of the flow solution (obtained with the Cebeci-Smith
turbulence model). The same multi-grid scheme as for the 2D turbulent flow case is
employed (W-cycle, Npre = Npost = 5, RK5, high-aspect-ratio scaling), but with the
high-aspect-ratio scaling parameter reduced to k() = 1/2. The convergence speed
(figure 4.15) appears to decrease on finer grids (thus the ideal multi-grid convergence
is not fully reached). Again, this can be attributed to the high cell aspect ratios,
which are generally larger in 3D than in 2D (due to large mesh sizes in spanwise
direction). For practical computations, however, we consider this convergence speed
to be sufficient. The force coefficients are converged within 10~ in 80 fine-grid
relaxations (8 multi-grid cycles) which takes less than 11 CPU minutes, while after
980 fine-grid relaxations (about 2 CPU hours) the mass residual has dropped to 10~%°
(table 4.4) and the force coefficients are converged well within 10~¢. .
Computations for wing-body configurations including a propulsion system may
require about 4 times as many grid cells (in the order of 3 million) if only the boundary
layer on the wing is simulated. Computation times are increased by the same factor,
and thus 3/4 to 8 CPU hours will then be needed, depending on the required level of
convergence. This falls within the efficiency requirement stated in chapter 1.
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| Figure 4.15: Convergence history for turbulent flow around ONERA M6 wing (Mo, =
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Figure 4.16: Impression of 12-block grid (256 x 64 x 48 grid cells) and pressure dis-
tribution on the surface of ONERA M6 wing as well as in part of the symmetry plane
(Mo = 0.84, @ = 3.06°, Reoo = 11.8 - 10°)
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TURBULENCE MODELLING

5.1 INTRODUCTION

In the description of the flow model, as well as in the space discretization and in
the solution procedure, we have left one issue open: the modelling of turbulence. In
this chapter, we will discuss some turbulence models, and focus mainly on the robust
implementation of these models.

As stated in chapter 2, simple algebraic models are used. These models were de-
veloped for two-dimensional, attached turbulent boundary layers and wakes, making
use of a priori knowledge of the flow physics. Mainly due to their simplicity and
cheapness, they are often used as a first step in developing a Navier—Stokes solver for
turbulent flows around wings, and as such have become a standard. These models
are not generally applicable, but reasonable results have been obtained for attached
or mildly separated boundary layers not deviating strongly from essentially 2D flows
(46, 97]. Further, for these types of flow, there was no evidence that more sophis-
ticated models (such as two-equation models) would give significantly better results
[14, 46], at the time when the development of this Navier—Stokes solver started.

First, a short review of turbulence models is given (section 5.2), followed by de-
scriptions of the algebraic models considered here: the Cebeci-Smith model, the
Baldwin-Lomax model, and the Johnson-King model (sections 5.3 to 5.5), and fi-
nally a discussion of the numerical implementation of these models (section 5.6).

5.2 REVIEW OF TURBULENCE MODELS

For the Reynolds-averaged Navier-Stokes equations, a turbulence model is needed to
model the so-called Reynolds-stress tensor and the turbulent heat-flux vector, which
describe how the turbulent fluctuations influence the mean flow. Two main classes
of turbulence models may be considered: eddy-viscosity models and Reynolds-stress
transport models.

In the eddy-viscosity turbulence models, the Reynolds-stress tensor is usually as-
sumed to be proportional to the rate-of-strain of the mean flow (Boussinesq’s hypoth-
esis). The resulting scalar coefficient of proportionality is called the eddy-viscosity
coefficient. This coefficient can be expressed as the product of a turbulence length
and a turbulence velocity scale. Based on the number of additional partial differential
equations (PDE’s) that is employed to model these scales, a further classification can
be made ranging from algebraic (or zero-equation) models to two-equation models.

Reynolds-stress transport models (see e.g. [107]), also referred to as second-order
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turbulence-closure models, usually introduce seven additional PDE’s to the RANS
equations: one for each of the six components of the (symmetric) Reynolds-stress
tensor, and one for the turbulent dissipation rate. These models are more sophisti-
cated than the eddy-viscosity models, in the sense that they are in principle capable of
dealing with history effects (important e.g. in separated flows) and with more complex
turbulent flows (e.g. including strong streamline curvature). However, Reynolds-stress
transport models strongly increase the computational cost and the complexity of the
flow solver, and they are still in a research stage, at least from the point of view of
applicability to flow computations in aircraft industry. Therefore, these models are
not, further considered here.

Algebraic or zero-equation models

Algebraic models, also called zero-equation models, express the turbulence scales in
terms of the mean flow and the distance to the wall (or to the wake-centre line) using
algebraic relations. Standard models in CFD literature are the Cebeci-Smith (CS)
model [20] and the Baldwin-Lomax (BL) model [6]. Also the Johnson-King (JK)
model (sometimes called a half-equation model) may be mentioned here [55, 56). This
model combines an algebraic eddy-viscosity distribution with an ordinary differential
equation (in 2D) or a partial differential equation (in 3D) along the configuration
surface for the maximum Reynolds shear stress. For these models, the following
observations can be made:

— Algebraic models are not ‘complete’, i.e. they require a priori knowledge of the
(turbulence) properties of the flow field [123]. The definition of the turbulence
scales will have to be tuned for different types of flow. In fact, the three models
here referred to were designed for 2D boundary layers and to some extent for
wakes.

— These models have a so-called strong dependency on the geometry, since they
use the normal distance to the wall to define the turbulence scales.

— Difficulties in applying these models to more complex flows or configurations
are encountered when the boundary layer is no longer well-defined, due to the
fact that they use integral properties of boundary layers (CS), maxima within
the boundary layer (BL), or even both (JK), to represent turbulence length and
velocity scales.

— All three models give reasonable results for flows with attached boundary layers,
with weak shocks, and without strong 3D effects (i.e. with approximately 2D
boundary layers) (see e.g. [97]).

— For boundary-layer flows with strong adverse pressure gradients or separation,
the BL and CS models fail to predict sufficiently accurate pressure distributions.
For this type of flow, the JK model gives a strong improvement over these models
(e.g. a better shock prediction for the difficult case 10 of the RAE2822 airfoil),
but still the results are not fully satisfactory [2, 46, 97].
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One-equation models

Traditional one-equation models (e.g. [13, 39]) employ one additional PDE for the
transport of the turbulent kinetic energy (k) to define the turbulence velocity scale,
while the turbulence length scale is defined by algebraic relations. Thus, these models
still have similar deficiencies (in terms of incompleteness, geometry dependence, and
difficulties for complex flows or configurations) as algebraic models.

Recent models, in particular the models of Baldwin-Barth [5] and of Spalart—
Allmaras [102], however, employ a PDE directly for the eddy viscosity, without intro-
ducing additional algebraic relations (for the length scale). Thus, they may be more
easily applied to complex configurations, although they still depend on the normal
distance to the configuration surface. It seems that these models may be included in
RANS flow solvers without a significant increase of numerical stiffness, or computa-
tional complexity, compared to algebraic models [57, 97]. Concerning the accuracy
of these models, varying results have been reported in the literature. They seem to
be successful for e.g. boundary layers with shock-induced separation (both in 2D and
3D) (e-g. [57, 97]), but are less successful for more simple flows [123].

Two-equation models

Two-equation models employ two additional PDE’s to define the two turbulence
scales, and are therefore in principle complete. The two most popular classes of
models are the k—e models and the k—w models.

In k-€ models the turbulent kinetic energy (k) and the turbulent dissipation rate
(€) are used as dependent variables of the PDE’s. The standard Jones-Launder high-
Reynolds-number k- model [58] has an incorrect near-wall behaviour for boundary
layers. Many low-Reynolds number variants have been introduced to correct this
behaviour (see for an overview e.g. [87, 122]), usually with wall functions depending
on the distance to the wall, but with only limited success. Like the algebraic CS
and BL models, k—¢ models generally give acceptable results for quasi-2D flows with
attached boundary layers and weak shocks, but fail for boundary layers with adverse
pressure gradients and separation (e.g. [122]).

In k-w models the turbulent kinetic energy (k) and the specific turbulent dis-
sipation rate (w = €/k) are used as dependent variables of the PDE’s. The stan-
dard k-w model of Wilcox [121] has two main advantages over k—e models (see
[121, 122, 123)):

— Correct near-wall behaviour in boundary layers is obtained without the intro-

duction of wall functions (no geometry dependence).

— Good results have been reported for boundary layers with favourable and ad-

verse pressure gradients.
An important disadvantage of the standard k—w model is its dependence on the free-
stream value of w [76]. Modifications to resolve this problem have been proposed by
Menter [78] and by Wilcox [124], with Menter’s modification dependent on the wall
distance. Furthermore, although the k-w model gives better results than the k—e
model for boundary layers with adverse pressure gradients, its success for flows with
strong shock/boundary-layer interaction, in particular shock-induced separation, is
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limited [77, 78]. An important extension of the k-w model is the so-called shear-
stress transport (SST) model of Menter [78]. This extension has been shown to
give good results for a number of cases, both 2D and 3D, with strong shock-induced
boundary layer separation, competitive with results of the JK model [79]. Another
interesting variant of the k-w model is the k—g model (g = 1 /w?) which recently has
been applied successfully to complete aircraft configurations [59].

Concluding remarks

When we started the extension of the Euler flow solver to a Navier—Stokes solver,
it was decided that algebraic turbulence models would be used, in particular the
model of Baldwin and Lomax. For turbulent boundary layers around airfoils and
wings, this model formed a standard and thus was a good starting point, also con-
sidering its cheapness compared to e.g. two-equation models. At that time, more
sophisticated turbulence models did not seem to give better results for these types
of flow. However, for boundary-layer flows with strong adverse pressure gradients
or (mild) shock-induced separation, the prediction of pressure distributions with the
BL model was insufficient. Therefore, we later also included the JK model, which
gives a strong improvement for this type of flow, as stated before. The mathematical
modelling as well as the numerical implementation of the JK model, however, are not
straightforward (in particular for 3D boundary layers) as will be seen in section 5.6.

The Navier-Stokes flow solver was mainly developed for simulating the effect of,
mostly attached, wing boundary layers on the wing pressure distribution for trans-
port aircraft in subsonic or transonic cruise condition. For this application, algebraic
turbulence models can be used. When the flow solver is further extended for more
general applications, including e.g. the interaction of boundary layers on separate
aircraft components, more sophisticated turbulence models are required. In partic-
ular the k-w models (including the k—g model), which have no explicit geometry
dependence, are then good candidates.

5.3 THE CEBECI-SMITH TURBULENCE MODEL

The three algebraic models described here were originally developed for (2D) bound-
ary layers, and therefore explicitly make use of the theory of turbulent boundary
layers (e.g. [23, 98]). The boundary layer may be divided into a region next to the
wall, called the inner layer, where the turbulence is influenced by the nearby presence
of the wall, and an outer layer or defect layer, where this is not the case. These two
layers have their own characterizing scales, which may be used to obtain universal
velocity profiles (for boundary layers with zero pressure gradients and smooth walls).
The outer layer is characterized by the friction velocity u, = \/7w/pw (With 7, the
wall shear stress) and the boundary-layer thickness §, and the tangential velocity u
is given by the so-called defect law,

(), o

Ur

with n the distance to the wall and u, the velocity at the edge of the boundary layer.
The inner layer is characterized by the friction velocity and the (molecular) kinematic
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viscosity v = p/p, and the velocity is given by the so-called law of the wall,
ut = f(nt), (5.2)

with ut = u/u, and n* = nu,/v. In the inner layer, a thin viscous sublayer very
close to the wall can be distinguished where viscous effects dominate over turbulence
effects. In this sublayer, the shear stress 7 = udu/8n is constant, from which it
follows that the velocity must vary linearly as ut = n*. The inner and outer layers
have an overlap region called the log layer. Matching the defect law and the law of
the wall results in a log law for the velocity given by ut = In(n*)/x + 5 with k = 0.4
the Von Kdrman constant. The viscous-sublayer and log-layer solutions are valid for
nt < 5 and nt > 30, respectively, and already have been depicted in figure 3.9.

All three algebraic models use separate formulations for the eddy-viscosity coef-
ficient in the inner layer and in the outer layer. Also, all models use the normal
distance n to the wall. Assume that the curvilinear coordinates (£,7,() of a block
are defined such that the { direction is approximately orthogonal to the wall, which
is given by ¢ = 0. The normal distance is then given by

¢ d¢
nen0 = [ e (53)
integrated along a line £ = constant and n = constant.

In the Cebeci-Smith model [20], the eddy viscosity in the inner and outer layers
is determined as follows. Consider the kinematic eddy viscosity (1 = p:/p) to be
the product of a velocity scale (u') and a length scale or ‘mixing length’ (I'), anal-
ogous to the molecular kinematic viscosity v (i.e. »; = u'l'). In the region near the
wall (i.e. the inner layer with exception of the viscous sublayer) the velocity scale is
determined according to the Prandtl mixing-length hypothesis: u' = I'|8u/dn|, with
u the tangential velocity component. Experiments indicate that the mixing length
varies linearly with the wall distance in this inner layer, I’ = kn, with k = 0.4 the Von
Kérman constant. Assuming the resulting Reynolds shear stress 7% = p,0u/0n to
be constant, again the log law is obtained. In the CS model, the inner eddy viscosity
is now expressed as

v"(€,n,¢) = (knDa)* 3] (5.4)
with the velocity gradient replaced by the magnitude of the vorticity vector & = V x4,

and with the mixing length multiplied with the Van Driest damping term D4. This

damping term ensures that the model is also valid in the viscous sublayer, and is
defined by

nt
Dd(é)naC) = 1—-exp <_Z:|_—)’

n*(&,7,0) ’)“;IL" (5.5)

wEn = \/—;—7

with A" = 26. The subscript w refers to values at the wall (n = 0 or ¢ = 0). In
order to avoid that, in case of (slightly) separated boundary layers, the eddy viscosity
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becomes identically equal to zero, the wall shear stress is replaced by the maximum
shear stress, 7,(€,m) = max¢{u||&||}. (The maximum shear stress equals the wall
shear stress for most attached boundary layers.)

In the outer part of the boundary layer, the Clauser formulation is used to de-
termine the eddy viscosity, which assumes that the velocity scale u’ is proportional
to the magnitude of velocity at the edge of the boundary layer and that the mixing
length I’ is proportional to the displacement thickness,

V?Ut(ﬁ,ﬂ,C) = KUE 6*71(’ (56)

with K = 0.0168, u.(£,n) = ||@|| the velocity magnitude at the edge of the boundary
layer (given by n = d or { = (.), and §* the (incompressible) displacement thickness,

5 (en) = /06(1—%)(1”, - /OC‘ (1—%)%, (5.7)

where 8(£,7) is the boundary-layer thickness. The Klebanoff function g is included
to represent the intermittent behaviour of turbulence at the edge of the boundary
layer,
1
k(€ () = T+55(m/0)

The outer-viscosity formulation depends on the boundary-layer thickness. The de-
termination of this quantity is problematic, especially in a (general) 3D flow, and is
discussed in section 5.6.

Finally, the two eddy viscosity formulations must be combined. In the original
CS model the eddy viscosity is defined as the minimum of the inner and outer values,
but here the following smooth blending is employed [14],

(5.8)

11
(6. 0) = o tanh (25 (59)
t
For the CS model, but also for the other two algebraic turbulence models, transi-
tion from laminar to turbulent flow is obtained by simply setting the eddy viscosity
to zero upstream of a specified transition line, and switching the turbulence model
instantaneously on at the transition line. In the numerical implementation (section
5.6), this discontinuous eddy-viscosity distribution is smoothed out over a few grid
cells.

5.4 THE BALDWIN-LOMAX TURBULENCE MODEL

The Baldwin-Lomax model [6] was developed from the Cebeci-Smith model, with
as main aim to avoid the (explicit) calculation of the boundary-layer thickness. This
has made the BL model fairly robust and simple to implement, and therefore it is
probably the most popular algebraic turbulence model, used in many Navier—Stokes
flow solvers. The BL model also includes an eddy-viscosity formulation for wake flows.

Above a solid surface, the eddy viscosity is defined using inner and outer formula-
tions in the same way as in the CS model. However, the outer formulation, containing
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the boundary-layer thickness, is modified. For wake flows, no inner layer (influenced
by the presence of a solid surface) is present, and thus only an outer-like formulation
is used.
The general formulation of the outer viscosity, both for boundary layers and wakes,
is given by
V?Ut(éy 7, C) = KCcpfw')’K» (510)

with C¢p, = 1.6. The quantity f,,, representing the product of the velocity and length
scales, is given by

. Tmax
fw(§777) = min {fmaxnmax,kaU(zjif 2 } , (5.11)

fmax

with Cwk = 0.25. The first argument (of the minimum operator) is in particular
intended for boundary layers and the second argument for wake flows. The velocity
scale fmax is the maximum in normal direction of the so-called ‘Baldwin-Lomax
function’ f, given by

f(&n,¢) = n ||| Da (5.12)

(with Dy the Van Driest damping term, which is taken identical to one in wakes). The
length scale npax is the location of this maximum. The normal distance n represents
either the normal distance to the wall or the normal distance to the centre line of the
wake. The velocity scale ug;r is defined as the difference between the maximum and
the minimum, in normal direction, of the velocity magnitude,

waie(§, ) = max{{lall} — min{ ]} (5.13)

The Klebanoff intermittency function +yx, equation (5.8), requires the boundary-
layer thickness, which is estimated by Baldwin and Lomax as § = Timax/Cxleb, With
Cxieb = 0.3.

In a wake flow, the values of fmax, 7max, and uqir are obtained by taking the
maxima and minima along a line passing through the complete wake (thus on both
sides of the wake centre). This, together with the absence of an inner viscosity in the
wake, may cause the eddy viscosity to be discontinuous near trailing edges. Therefore,
the eddy viscosity in the wake is reformulated as a blending of the local eddy viscosity
and the trailing-edge eddy viscosity [14]. Let the trailing edge be given by & = 0,
let there be an eddy viscosity p{®(n,() defined at the trailing edge (i.e. in the plane
£ = 0) by the solid-surface formulation, and let g(¢,7,¢) be the local eddy viscosity
in the wake. The final eddy viscosity is then defined as

(€0, 0) = 1t (&,m,¢) + (U (n,¢) — pb(€,m,C)) e UEMAO/B, (5.14)

with d the distance to the trailing edge, and B proportional to a rough estimate of
the boundary-layer thickness at the trailing edge,

B =8Re /L. (5.15)
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5.5 THE JOHNSON-KING TURBULENCE MODEL

The Johnson—King turbulence model was developed to treat two-dimensional, turbu-
lent boundary layers with separation due to strong adverse pressure gradients (such
as shocks) [53, 56]. For this type of turbulent boundary layers it is important to
take history effects into account. This was achieved through formulating an ordinary
differential equation (ODE) along the solid surface for the maximum Reynolds shear
stress, which was derived from the equation for turbulent kinetic energy.

In the JK model, a distribution of the eddy viscosity p is defined similar to the
CS and BL models (a blending of inner and outer viscosities based on algebraic re-
lations). Such a distribution assumes the turbulence in the boundary layer to be
in local equilibrium, so that the eddy viscosity can be directly related to the local
mean-flow quantities. Roughly, local equilibrium means that locally the production
and dissipation of turbulence (i.e. of the turbulent kinetic energy or of the Reynolds
shear stress) are in balance, while convection and diffusion of turbulence are negli-
gible. However, when strong pressure gradients in stream-wise direction are present,
this assumption of local equilibrium is no longer valid so that history effects (i.e. con-
vection and diffusion) must be taken into account and the eddy viscosity distribution
must be modified accordingly. Johnson and King have done this by requiring that
the maximum through the boundary layer of the Reynolds shear stress, modelled as
8 = 14]|||, satisfies a certain ODE along the solid surface. This requirement can
be fulfilled by scaling the outer viscosity by an appropriate scaling factor o. If this
scaling factor is equal to one, then we can state that the boundary layer is in equi-
librium, and thus this factor indicates to what extent the turbulence deviates from
local equilibrium.

The extension of the JK model to three dimensions is not straightforward. Usually,
the ODE for the maximum Reynolds shear stress is replaced by a 3D partial differen-
tial equation (PDE) covering the complete flow domain (see e.g. [1, 2]). However, the
form of this PDE is not accurately defined in the literature, and quite some details
remain unclear. We have chosen to use a 2D PDE along solid surfaces, for which the
relation with the original ODE is more clear. The numerical solution method for this
equation will be described in section 5.6.

In the literature, different modifications to the original JK model can be found.
Here, the improvements of Johnson and Coakley [55] are employed. For the outer
viscosity, sometimes the Baldwin—Lomax formulation is used, in particular in 3D (as
done by Abid et al. [1, 2}), but we use the original Clauser-type formulation with the
boundary-layer thickness evaluated as suggested by Johnson [54].

Basically, the JK model introduces five additional dependent variables, which are a
function of the curvilinear coordinates (£,7) along the solid surface (which is assumed
to be given by ¢ = 0):

— the variable g = (‘rﬁ)fnl/ % with (77)m the maximum in ¢ direction of the
Reynolds shear stress 77 divided by density,
the location of the maximum Reynolds shear stress n,y,
the scaling factor of the outer viscosity, o,
the variable geq = (T, )m'/%, with (rh.)m the maximum Reynolds shear stress

p.eq
assuming an equilibrium boundary layer, and
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— the location of the equilibrium maximum Reynolds shear stress Teg,m.

The eddy-viscosity distribution will depend on the first three variables. In particular,
the maximum Reynolds shear stress is used as a velocity scale, ul,(¢,n) = 1/g, for
the inner eddy viscosity, while as stated before, the outer eddy viscosity is scaled by
the factor 0. The last two variables (geq and neq,m) are used in the PDE for the
maximum Reynolds shear stress.

For the additional dependent variables, five relations are needed to close the sys-
tem of equations. The most important one is the PDE for the maximum Reynolds
shear stress (i.e. for g). Four algebraic relations are used to define implicitly the other
four variables, one of which states that the factor ¢ should have such a value that the
maximum of the Reynolds shear stress satisfies the PDE.

The JK model will now be described in three parts:

— the eddy-viscosity distribution (defining i, given ., nm, and o),

— the PDE for the maximum Reynolds shear stress, and

— the four algebraic relations closing the model.

In the subsequent description, a subscript m will refer to values evaluated at the
location of the maximum Reynolds shear stress (n = n,,), and a subscript w will
refer to values evaluated at the wall (n = 0).

The eddy-viscosity distribution

Similar to the CS and BL models, the eddy-viscosity distribution in the JK model
consists of an inner and an outer formulation.

The original inner viscosity formulation of the JK model is given by,

nisi (&m Q) = Iianm/%"u;n, (5.16)

in which, instead of using the Prandtl mixing-length hypothesis, the velocity scale u/,
is used, which depends on the maximum Reynolds shear stress (u!, = 1/g). The term
V/ Pm/p is included for compressible flows as suggested in [55]. Also, the definition of
the Van Driest damping term follows [55],

Dk (€,1,¢) 1 —exp (— fl’frzT n)

e = mocfun ]
w

with A* = 17. (A value for A" different from the CS model is needed, because the
inner viscosity behaves as n® instead of n?.) The friction velocity u, is defined such
that it is negative in case of (2D) separation,

(5.17)

u.(§,n) = sign(ry) Ug—"—’ﬂ, (5.18)
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where 7, is the component of the wall shear stress in the direction of the velocity at
the edge of the boundary layer,

o e
Tw(&,M) = Hw (%)w : ATk (5.19)

with the subscript e indicating the edge of the boundary layer (defined as in the
Cebeci-Smith model).

In order to improve the JK model for boundary layers with zero or favourable
pressure gradients (which was a well-known deficiency of the model, see e.g. Holst
[46]), Johnson and Coakley [55] redefined the inner viscosity as a blending of the
original formulation and a formulation using the Prandtl mixing-length hypothesis

ViiML)
v = (1-9) vy + Y,
n
_ vV Pw Ur
L(&m) = max{m |m|+@u’m’0'005 T

The mixing-length inner eddy viscosity (ui?ML)) is equal to the inner viscosity of the
Cebeci-Smith model, given by equation (5.4), but with the actual wall shear stress
Tw = [t ||0E/On||,, used in the Van Driest damping term Dy.

For the outer viscosity, two options are considered. In both options, the outer
viscosity is scaled by the factor o. In the first option, the outer viscosity is given by
the Clauser-type formulation (as in the Cebeci-Smith model, equation (5.6)),

v (€,m, ) = oKue 6* vk, (5.21)

with the boundary-layer thickness (needed e.g. to define the displacement thickness,
but also for the subsequent PDE) evaluated as suggested by Johnson [54]. This
procedure for evaluating the boundary-layer thickness is described in section 5.6. In
the second option, the outer viscosity is given by the Baldwin-Lomax type formulation
(equation (5.10)),

v (& m,Q) = 0K Cep fuvk - (5.22)

In this case, the boundary-layer thickness is estimated by § = 1.9nmax [1], where
Timax 18 the location of the maximum of the Baldwin-Lomax function. In the original
Johnson-King model, the first option (Clauser) was used, which we will also do
here. The second option was mainly introduced by Abid et al. [1, 2] to avoid the
calculation of the boundary-layer thickness in 3D. However, this formulation was
shown by Johnson [54] to give worse results for 2D airfoils.

Finally, the inner and outer eddy viscosity formulations must be combined. A
blending function is defined which is slightly different from the one used in the CS
and BL models,

pe(€,m, ¢) = prg™t (1 — exp (— :j;)) - (5.23)

t
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The PDE for the maximum Reynolds shear stress

The eddy-viscosity distribution as given by the previous equations depends on the
maximum Reynolds shear stress through the variable g. In the original Johnson-King
model, formulated in 2D, this variable was required to satisfy an ODE along the solid

surface, given by

um@ = RHS, (5.24)
ds

with u,, the tangential velocity component at the location n = n,,, with s the arc
length along the solid surface, and with the right-hand side equal to

_a 9 Cai _
RHS = oL (1 geq> + 70785 - 078 — ) max{/o — 1,0}, (5.25)

in which a; = 0.25, Cyir = 0.5 and
Ly (¢,m) = min{sn,,,0.094}. (5.26)

The ODE for the maximum Reynolds shear stress had been derived by Johnson
and King from the equation for the turbulent kinetic energy &, which under boundary-
layer assumptions is given by (at the location n = n,,),

dkm . g Ou
UmK = (Tp )m <6n)m €m + Dm, (527)

with the left-hand side representing convection of turbulent kinetic energy, the first
term on the right-hand side representing production, €, representing dissipation, and
D, representing diffusion. To arrive at equation (5.24), the following modelling steps
were made (see in particular [56] for a full derivation):
— assuming a constant ratio of maximum Reynolds shear stress and maximum
turbulent kinetic energy, (72),/km = a1, following Bradshaw {13],
— modelling the turbulent dissipation rate using the velocity scale u), = (Tf)% 2
and the length scale Ly, as €, = (u!,)% /Lo,
—~ modelling the normal velocity gradient using a velocity scale based on the equi-
librium maximum Reynolds shear stress (72, ),, and the length scale L,, as

peq
(0u/0n)m = (TR )%/ Ly, and

p€q
— modelling the diffusion term as
Cait (u7,)°
= ——" -1,0
™= 0 (076 — 1) max{vo — 1,0}

(also a velocity scale to the third power divided by a length scale; for more
detail see [53]).
The third step ensures that when production and dissipation are in balance, i.e. in
case of equilibrium, then the maximum Reynolds shear stress equals the equilibrium
maximum Reynolds shear stress, or equivalently g = geq. The relation in the third
step can be related to the Prandtl mixing-length hypothesis, and therefore the length
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scale L,, has been modelled analogous to the mixing length, i.e. varying linearly with
the wall distance in the inner layer, and proportional to the boundary-layer thickness
in the outer layer.

When applying the JK model in three dimensions, the ODE is usually extended to
a 3D PDE defined on the complete flow domain [1, 2, 97]. However, the rationale and
the precise details of this extension are not made clear. In particular, the maximum
Reynolds shear stress, and thus the variable g, is independent of the direction normal
through the boundary layer (since it is a maximum in this direction). The same is
true for the velocity component u,,. Thus, the introduction of a PDE in which these
variables are dependent on the normal direction does not seem logical. Furthermore,
when this 3D PDE is discretized in space, the small mesh sizes in boundary-layer
normal direction will render the equation more stiff than necessary. On the other
hand, a 3D PDE could be solved together with the five basic flow equations as one
system of equations, simplifying the numerical method, but this does not seem to be
the practice.

To avoid the uncertainties that accompany a 3D PDE, we extend the original
ODE to a 2D PDE along the solid surface. Including the time derivative, to facilitate
a solution procedure based on time integration, this PDE is given by

== + (im - V9*) == = RHS, (5.28)

with i, the velocity vector at the location n = n,,, and with the same right-hand side
as for the ODE. The metric vectors V&* and Vn* are independent vectors tangent to
the wall (i.e. contravariant base vectors of the tangent space), and are taken as

.1 0F .1 oz

V&= e ™ VIt = X e (5.29)

s = LloT 0F . o oz 0% '
= T oy = 3¢ “ |

Numerical discretization of these equations will only involve differences along the solid
surface. Note that the 2D PDE of equation (5.28) combined with equation (5.29) will
be valid irrespective of the ¢ direction (since ¢ does not appear in equation (5.29)).

The first-order hyperbolic PDE of equation (5.28) must be supplemented with
boundary conditions. The PDE is defined on a two-dimensional domain (the solid
surface) and thus the boundary of this domain is a curved line. Let 7t be the unit
vector in the 2D domain that is normal to this curved line, and that is pointing
outward of the domain of the PDE. In case of inflow (&, - 7 < 0), a Dirichlet
condition is applied,

9 = Geq> : (5.30)
while in case of outflow (i@, - 7 > 0), no boundary condition should be given. In

general, inflow will occur at the transition line and outflow will occur at the trailing
edge.
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Closure of the model

To close the Johnson—King model, four algebraic relations are needed as was stated
at the beginning of this section. First, assume that the Reynolds shear stress is given

by 8 = p; |||, and consider the maximum of the Reynolds shear stress divided by
density,

(m3),, = mgx{?}. (5.31)

From the definition of the variable g it then follows that the relation

(TPR)m =g72 (5.32)

must be satisfied, where g satisfies the PDE of equation (5.28). This algebraic relation
implicitly defines o, since both y; and the PDE depend on ¢. However, in practice we
found that this relation does not always give realistic solutions for o. Considerations
on this matter are made in section 5.6.4, where equation (5.32) is replaced by equation
(5.67).

The second algebraic relation is given by the statement that n,, is by definition
the location of the maximum Reynolds shear stress (equation (5.31)). This is also an
implicit relation, since the eddy viscosity depends on 7n,y,.

Finally, two relations are needed to define the equilibrium variables Jeq and neq -
Consider an equilibrium eddy-viscosity distribution s e, given by equations (5.16)
through (5.23), with um, = 1/geq, "m = Meq.m, and o = 1, and consider the related
equilibrium Reynolds shear stress 72 = i ¢ql|5||. Then, geq is defined similarly to
equation {5.31) as

2 R Tog
Jeq = (Tp@q)m =max{ — } (5.33)
¢ | »p

while neq,m is by definition the location of the maximum equilibrium Reynolds shear
stress. Again, these are two implicit algebraic relations.

Summary

For the Johnson-King model, we can summarize the complete flow model, consisting
of the basic flow equations as well as the PDE and the four implicit algebraic relations,
as follows. Consider as the dependent variables the flow-state vector U, and the JK
variables g, N, 0, geqs and nNeqm. The eddy viscosity depends on the first four
variables: 114(U,g,0,n.,). The dependent variables are defined by six equations,
consisting of two time-dependent PDE’s,

ou
U - 1 R(U’Hi(U’gvanm)) = 0
ot
(5.34)
99 JK
g v + R (U7gao‘ageqanm) = Oa

ot
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and four implicit algebraic equations,

Nim P N = fn(U,m(U, g,0,1nm)),
o 97?2 = U mU,g,0,nm)), (5.35)
Tegm 1 Teqm = Nm(U, 1t(U, geq) 1,Teq,m)),
Geq b 9ee = TmlU, (U, geqs 1, Meqm)),
where 7, and 7, are functions to evaluate the maximum Reynolds shear stress
and its location. (For shortness, 7,,, denotes (77),.) The solution method for the

Johnson—King model in section 5.6.4 will be based on this form of the equations.

IHllustration

At this point, we will illustrate some aspects of the functioning of the JK model that
will be useful in the subsequent discussion on the numerical implementation. We
consider the transonic, turbulent flow around the ONERA M6 wing at the conditions
My, = 0.8447, Reo, = 11.78 - 108, and a = 5.06° (with transition at 3% of the
local chord). The pressure distribution on the upper side of the wing features a
lambda shock structure (figure 5.1a). Near the tip, the boundary layer separates due

a) Pressure distribution b) Streamlines of wall shear stresses

Figure 5.1: Flow solution on upper side of ONERA M6 wing (Mo = 0.8447, Reoo =
11.78 - 10%, a = 5.06°)

to the presence of a single strong shock as can be seen from the pattern of surface
streamlines obtained from the wall shear stresses (figure 5.1b). Figure 5.2 gives the
pressure distribution and the distribution of several Johnson-King variables at the
span-wise station 1 = 0.65 (7 being the distance to the root divided by the semi-span).
Included are both the non-equilibrium values (g, nm,, and o), as well as the equilibrium
values (geq; Tm,eq, While ¢ = 1), where the locations of the maximum Reynolds shear
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Figure 5.2: Surface pressure distribution and Johnson-King variables on upper side of
ONERA M6 wing at span-wise station 1 = 0.65 (Mo, = 0.8447, Reoo = 11.78 - 105,
a = 5.06°)
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stresses have been scaled by the boundary-layer thickness. Upstream of the shock,
the Johnson-King model indicates that the boundary layer is in equilibrium (o = 1),
so that the maximum Reynolds shear stress equals the equilibrium value (g & geq),
while the stream-wise variation is only weak. The maximum stress is here located
near the inner layer. Downstream of the shock, there is a strong increase of the
maximum stresses (decrease of g and geq), While the location of the stresses moves
more towards the outer part of the boundary layer. These effects are moderated in
the non-equilibrium values, due to the transport effects taken into account in the
JK model. This moderation can also be seen from the scaling factor o, which is
smaller than one downstream of the shock, reducing the outer eddy viscosity, and
thus reducing the maximum stress relative to the equilibrium value. Further aft,
the maximum stresses decrease, while again this effect is moderated for the non-
equilibrium value, now related to a value of ¢ larger than one.

5.6 NUMERICAL IMPLEMENTATION

The numerical implementation of the turbulence models described here may at first
seem straightforward, since these models consist for a large part of algebraic relations.
However, a number of problems are encountered in practice, mainly due to the fact
that these models strongly depend on the (2D) boundary-layer concept. Even for a
wing with attached boundary layers, there may be regions (such as the tip) where the
models are applied outside their application range and may fail to function properly.
There, one cannot require more than that the models give reasonable values for
the eddy viscosity that do not cause the computation to break down. (Of course,
this does not guarantee that the solutions obtained are accurate in such regions.)
The Johnson-King model was originally designed for 2D problems, and the extension
towards 3D (although formally described in the previous section) also poses a number
of problems.

5.6.1 Computation of boundary-layer and displacement thickness

The first problem we will consider is the evaluation of boundary-layer integral quanti-
ties, in particular the boundary-layer and displacement thicknesses. These quantities
are needed for both the CS and the JK model. The standard method for computing
the boundary-layer thickness consists of searching along a line through the boundary
layer normal to the surface for the location where the velocity magnitude equals e.g.
95 or 99 percent of the maximum velocity. However, spurious oscillations in the nu-
merical solution can easily cause this method to fail. To avoid this problem, Johnson
[54] proposed the following procedure. An estimate of the boundary-layer thickness is
obtained by first finding the maximum fnax (located at 1 = npay) in ¢ direction (the
direction normal to the surface) of the ‘Baldwin-Lomax function’ given by equation
(5.12), after which the boundary-layer thickness is estimated by

6(&,m) = 1.2y, (5.36)

with n/, the first location beyond n = nmax where f = 0.5 fmax and 7173 > max-
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In the numerical implementation, one must make sure that the boundary-layer and
displacement thicknesses are continuous functions of the velocity profile. A smooth
change in the velocity profile is not allowed to cause a discontinuous change in these
boundary-layer quantities. Violation of this requirement will generally prevent the
flow solver from converging. Thus, we compute several quantities by appropriate
interpolations between grid cells. Let & be the grid index in normal direction. Then,
the distance n,/; is computed by

0-5fmax - fi,j,k1/2—1
+
fijkiyn = Figkrjn—1

Ny/2 = N ka1 (ﬂi,j,k1/2 - ni»jy’h/z—l)’ (5.37)

with &y /5 the index of the first grid cell away from the wall with f < 0.5 fmax,

fivjvkl/2_1 > 0‘5fmax Z fi,j,kl/z' (5.38)
Similarly, the velocity magnitude at the edge of the boundary layer is computed by

0ij — Mijk—1 (

Ue = ||t 5k, 1 + Walls 5k, — Nl@li,5,00—1)s (5.39)

iij’ke - ni1j1ke -1

with k. the index of the first grid cell away from the wall with n > 6,
i jke—1 < 03 < Nk, - (5.40)

Finally, the (incompressible) displacement thickness 07 ; can be computed by

Ee—1

. X ll%i,5,|

o = Z (1__11]— (An)i ik, (5.41)
k=1 €

with An the mesh size in normal direction.

5.6.2 Computation of maxima and their locations

In the BL and JK models, maxima are evaluated along the direction normal through
the boundary layer (the ¢ direction). Moreover, the locations of these maxima are
needed, in particular the location ny .y of the maximum of the Baldwin—Lomax func-
tion and the location n,, of the maximum Reynolds shear stress. These locations
must be defined carefully, for example through linear interpolations as described in
the previous section, so that discontinuous jumping of these locations does not pre-
vent the solver from converging. However, such a measure is not sufficient, because
in general, the location of a maximum is not unique. For example, it may occur that
two local maxima with values close to each other cause an oscillation in the location
of the maximum during the time-integration procedure. For 2D boundary layers, for
which these turbulence models were designed, generally one unique maximum exists,
but there are exceptions, for example local peaks may occur in the BL function close
to the wall [22]. Furthermore, we found that in 3D the occurrence of non-unique
locations of maxima was so frequent, in particular for the JK model, that in practice
the solution procedure would not even start converging.
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To resolve this problem, we approximated the location of a maximum by an in-
tegral formulation that will always give a unique value, even when the location itself
is not unique. The integral formulation for the location nmax of the maximum of
the Baldwin—Lomax function, or similarly for the location of the maximum Reynolds

shear stress, is given by
Gi q
/ ( f ) ndn
(:O fmax

/; (fi) i

When a unique maximum exists, this formulation will converge to the exact location
of the maximum for ¢ — oco. It was verified that for ¢ = 8, the correct location was
obtained for a 2D boundary layer with a clear unique maximum (as illustrated in
figure 5.3), while the method was robust in case of non-unique maxima. The upper
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Figure 5.3: Location of maximum of Baldwin—Lomax function for RAE2822 airfoil case9
(Mo = 0.73, Reoo = 6.5 - 10°%, a = 2.8°)

limit of integration (; is a rough estimate of the boundary-layer edge or simply the
boundary of the computational domain. A related idea was used in {22] in which an
algebraic turbulence model was derived from both the BL and the CS models using
integral formulations based on the BL function.

A further well-known problem for the BL model is that an incorrect location of the
maximum of the BL function may be found outside the boundary layer, for example
due to the presence of a vortex. Several measures may be taken to resolve this
problem. When the flow is dominated by a large vortex structure, as for delta wings,
the Degani—Schiff criterion [28] is generally used, which ensures that the correct local
maximum nearest to the wall is taken. However, this criterion has some arbitrariness
in it (a local maximum is only considered when the function drops to at least 90% of
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this local maximum in the direction away from the wall) and is not very robust (e.g.
an occasional peak in the BL function very close to the wall may give rise to a low
amount of eddy viscosity, destabilizing the computation). For transport-type wings,
with only a relatively small tip vortex, the Degani—Schiff criterion has no significant
effect on the flow solution away from the tip. Thus, we do not employ this criterion
(although it is optionally available in the solver). We do employ a method of [29]
for determining a rough estimate of the edge of the boundary layer that is used as
an upper bound for the search for the maximum of the BL function. This method
consists of determining the boundary-layer edge for a velocity profile corrected for
inviscid flow effects.

5.6.3 Transition

The turbulence models are switched on instantaneously at a specified transition line,
as stated in section 5.3. In the numerical implementation, however, this discontinuous
eddy-viscosity distribution may be problematic, and therefore the eddy viscosity is
smoothed out over approximately four grid cells [14],

with u¢ the discontinuous eddy-viscosity distribution, with the constant Ciy = 2.78,
with Az the distance from the transition line, and with (Ax)¢ran the length of a fixed
number of cells (Niran = 4) downstream of the transition line.

5.6.4 Numerical method for the Johnson-King model

The Johnson—King model is not a purely algebraic model. It contains a partial dif-
ferential equation along solid surfaces. The numerical method for approximating this
equation will follow the same approach as that followed for the basic flow equations.
The unsteady PDE (equation (5.28)) is first discretized in space and subsequently
integrated in time until the steady solution is reached. The main differences with the
numerical method used for the basic flow equations follow from the facts that the
PDE has a non-conservation form and that the PDE is defined along a 2D curved
space (the solid surface).

Further, the JK model contains four implicit algebraic relations, for which also a
proper solution procedure must be defined.

Space discretization of the PDE

The PDE for the maximum Reynolds shear stress (equation (5.28)) is a linear, first-
order, advection equation with variable coeflicients and a source term. It has a
non-conservation form, so that it cannot be discretized by a finite-volume method as
used for the basic flow equations. Instead, we resort to a finite-differencing method.
First, we followed a similar approach as for the basic equations: central differenc-
ing with explicit fourth-order artificial diffusion. For 2D attached or mildly sepa-
rated flows, where the advection velocity (u,,) is always of one sign, this resulted
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in smooth solutions. For 3D flows around wings, however, the advection velocity
field (i, -VE*, iy -V*) may contain separation lines, in particular in regions where
the 3D flow field separates strongly (e.g. at the tip vortex). At such a separation
line, the solution of the PDE will in general be discontinuous, since information is
transported to the separation line from opposite directions. The central differenc-
ing scheme will then give highly oscillatory solutions. To resolve this problem, we
discretized the equations by a second-order fully-upwind scheme. This scheme does
not ensure oscillation-free solutions (see e.g. [118]), but in practice we found it to be
sufficiently robust for the simple linear advection equation considered here, since the
stencil of the fully-upwind scheme does not reach across the separation lines.

Figures 5.4 and 5.5, give an impression of a typical advection velocity field on a
wing surface (ONERA M6 wing), and of the corresponding solution g of the Johnson—
King PDE. The corresponding pressure distribution on the upper surface was already
given in figure 5.1. The velocity field has mainly the same direction as the free-
stream velocity, except near the leading edge and near the wing tip. The stagnation
line can be recognized on the lower side near the leading edge. The solutions of g
on the upper and lower sides are coupled at the leading edge and at the tip, but not
at the trailing edge, where the flow leaves the wing. Near the tip, the velocity is
directed from the lower side to the upper side, except near the trailing edge. There
the velocity is directed towards the tip on both sides (due to the presence of a tip
vortex), and therefore a discontinuous solution is found. High gradients in g are
present downstream of the transition lines (at 3% of the local chord) and downstream
of the shock waves on the upper side, as well as near the tip where shock-induced
separation and a tip vortex are present.

Let k be the grid index in the direction normal to the wall (thus, corresponding
to the ( direction). The solid surface is then described by a 2D grid, with the indices
(z,7) indicating the cell centers of this grid. The five additional dependent variables
(g, m, O, Geq, and Teq,m) defined along the solid surface are then functions of the
indices (7, ) (corresponding to £ and 7, respectively) fori =1...N;and j = 1...N;.

The discretization of the PDE for the maximum Reynolds shear stress with a
second-order fully-upwind differencing scheme results in the following equation in
each grid cell (4, 7):

dgi.;
99 | g =,

dt (5.44)
with the advection term QX given by
JK _ € (+ - -
2 =i (gi+1/2,j - 91—1/2,3‘) + )‘?,j (g?:j+1/2 - gi,j—l/Z)’ (5.45)

where the values at the cell faces are computed by linear extrapolation from the
upwind direction, i.e.

92;1/2,3' = 39i; - 39i-1j (5.46)

- = 34, .. — Llg .
9125 = 39i-1j 29i-2,5,
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if /\f’j >0, or

+ = 34, — La . ..

9it1/2,; = 29+l 29i+2,5, (5.47)
- - 3, S G ’
i—172,5 = 29ii 29i+1,5,

if )\f’ ; <0, and with similar expressions for the j direction. The values of A and A"
are given by
MNi = Gme (V€
Ny Um - (V)i
where V&* and Vn* can be easily computed according to equation (5.29).
Because we want to solve the discrete equations by a Runge-Kutta scheme with

frozen numerical diffusion (similar to the basic flow equations), we rewrite the advec-
tion term Q’¥ as the sum of central differences and numerical diffusion,

(5.48)

Il

n = Q0+ Q5+ Qi + Qi (5.49)
with the central differences given by
Q5 = A (915 — gim1j — §(Gir2s — 9i-2))s (5.50)
Q7 = MN,(9ij — g1 — 1(Gigra — 9ij—2)),
and with the numerical diffusion given by
di
QF = 1A 1(gi42s — 49i415 +69i5 — 49i-1 + gim2,5); (5.51)
h .
Qir = 1A 1(gii+2 — 491541 + 605 — 491 + g j—2)-

The difference equation (5.44) must be supplemented with boundary conditions.
As for the basic flow equations this can be done using the dummy-cell concept. In
general, the solid surface will be divided into a number of faces, belonging to different
blocks. Two layers of dummy cells are added at each boundary of a face: i = —1,
z':O,z‘:N,-+1,i=N,-+2,andj:—1,j:0,j:Nj+1,andj=Nj+2.

Consider the boundary given by j = 1/2. At this boundary, the dummy-cell values
are determined depending on the type of boundary.

1. Trailing edge: At the trailing edge no continuous boundary condition is present
(outward flow), and thus the dummy-cell values are set by extrapolation,

gio = 20i1— Gi2,

5.52
i1 = 2gip—9gi1- (5.52)

These dumnmy-cell values are used in the central differences and in the numerical
diffusion, but cancel out in the total residual due to the upwinding.

2. Symmetry plane: If the boundary lies on a symmetry plane, the dummy-cell
values are set by reflection,

gi,0 = g1,

5.
gi—1 = Gi2- ( 53)



102 5. Turbulence Modelling

tip tip

leading
edge

leading
edge

trailing
edge

N\
\ A\
root root
upper side lower side
a) Physical domain
tip tip
- flow from lower side~ flow 1o tower side~ - flow 1o upper side
K\\{})
. & raing g
edge edge edge

stagnation line

. —— ]
flow to upper side }—1

flow from lower side

root root
upper side lower side

b) Computational domain

Figure 5.4: Streamlines of advection velocity field for Johnson-King PDE on surface
of ONERA M6 wing (Moo = 0.8447, Reso = 11.78 - 10°%, o = 5.06°, 4-block CO-type
256 x 64 x 48 grid)
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Figure 5.5: Distribution of solution g of Johnson-King PDE on surface of ONERA M6
wing (Moo = 0.8447, Reoo = 11.78 - 10°, o = 5.06°, 4-block CO-type 256 x 64 x 48
grid)
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3. Slip solid surface: When only the boundary layer on the aircraft wing is taken
into account, then other configuration surfaces, in particular the surface of
the aircraft fuselage, have to be treated inviscidly, i.e. the slip condition for the
velocity is applied there. At such boundaries, there is essentially no contribution
to the advection term, since the velocity component normal to the boundary is
equal to zero. The dummy-cell values are set by extrapolation as for the trailing
edge.

4. Plane of infinite continuation: If the boundary lies on a so-called plane of
infinite continuation (needed to do 2D calculations), then the dummy-cell values
are set by copying,

gi0 = Giz1, (554)
gi-1 = Gia-

5. Internal boundary: At the boundary j = 1/2, let the face F' be adjacent to
another face F» that represents a solid surface. The other face has indices
i? and j2. Let the boundary for this face be given by j2 = 1/2. Then, the
dummy-cell values are set by copying,

2
g§2 ,)]_v

2
gi,-1 = 91(2,)2;

3i,0
(5.55)

with superscript (2) indicating values belonging to face F5.

Apart from the boundaries of a face, a boundary condition also has to be applied
at the transition line (given as ¢ = %yran(j)). In the numerical model, the transition
is distributed over three to four grid cells. Therefore, we start the Johnson-King
model only a fixed number of grid cells N'X = 5 downstream of the transition line
to avoid a strong interference with the numerical transition. Here, g is set using the
equilibrium value geq. This value is also set before this point, so that g is defined over
the complete wing surface. Thus, an equilibrium solution is assumed, consisting of

gii = (geq)i>
- (5.56)

O'i,j =
for 4 < tran(§) + N'® — 1, and the difference equation (5.44) is applied for

itran (.7) + NJK S ? =
1 < j < N; (5.57)
If igran > 1 and NJX > 1 then the value at the dummy cell i = 0 is not needed.

Solution method

For the discretized PDE of equation (5.44), we will use a solution method similar to
the method used for the basic flow equations. The PDE will be integrated in time,
using a Runge-Kutta scheme, until a steady solution is obtained. For the combina-
tion with the solution procedure for the basic flow equations, there are two options:
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integrate all equations simultaneously as one system of equations, or integrate the
basic flow equations and the Johnson—King PDE by taking separate, subsequent time
steps. We have chosen the latter option, because it allows a complete separation of
the basic flow solver and the turbulence models, thus simplifying the implementation
and allowing an easy replacement of turbulence models. Further, there were indica-
tions in the literature [1] that such a procedure would work. If the JK model was
defined with a 3D PDE equation instead of a 2D equation, then the simultaneous
integration with the basic flow equations could be done more easily. The replacement
of the turbulence model with e.g. a two-equation model would then still be possible if
the system of equations (and the number of equations) would be defined sufficiently
general. However, such an approach would be hindered by details of the Johnson-
King model, such as the fact that the advection velocity field in the JK PDE is not
equivalent to the velocity field of the 3D flow itself.

We will now present the complete solution method. Consider the basic flow equa-
tions, as well as the PDE and the four implicit algebraic relations of the JK model,
in the form as summarized at the end of section 5.5 (equations (5.34) and (5.35)). In
these equations, the basic dependent variables are the flow-state vector U, and the
JK variables g, nm, 0, geq, and Tteq,m

Consider first only the two time-dependent equations for U and g. As time in-
tegration forward Euler is considered here for simplicity, although the equations are
actually integrated by Runge-Kutta schemes. Let superscript n indicate the time
level. The two equations can be integrated simultaneously by

dg " JK n N LN N n
a + R (U 9,0 ageqanm) = 07
i (5.58)
(E) + R(Unvﬂ’t(Un7gn70nan?n)) = 07
with " b
q ="
(E) — (5.59)

However, as stated before, subsequent time steps are taken for the two equations,
which can be written as

d n
<E§“) + RJK(Un)§n1anyggqan21)

0,
(5.60)
dt

The values of the other four variables (o, nm, geqs Teq,m) at time level n are
obtained using the four algebraic equations. Each equation involves an eddy-viscosity
coefficient, which is defined using values of the four variables at the previous time
level. For the variables nm, geq, and neq,m this results in

ny, = AU, w(U™ g% 0™ nn 1),
(95,)2 T (U™, (U™, g2t L)), (5.61)

Negm = AU m(U™, g0t 1m0 1))

dU\"
(_> + R(Un’ut(Unygn+17Unvn21)) = 0.
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The evaluation of the variable ¢ is less straightforward, since it does not appear
as left-hand or right-hand side in equation (5.35). We derive a method for evaluating
o by linearizing as follows. Generally, the maximum of the Reynolds shear stress is
found in the outer part of the boundary layer, or at least in the part of the boundary
layer where the eddy viscosity depends significantly on the outer eddy viscosity (see
(56]). Thus, we consider for the eddy viscosity only the outer viscosity, which depends
linearly on o, so that one can write

/l,t(U,g, a, nm) = Uﬁt(U,g,nm)- (562)
As a consequence, also the maximum Reynolds shear stress depends linearly on o,
Tm (U7 Bt (U7 9,0, nm)) = O'Tm(U, ,at (Ua 9, nm)) (563)

Using the second relation of equation (5.35), the variable o is then found by

o = (g")* . (5.64)
Tm (Un7 /"t(Unﬂ gn’ ”%))

Since equation (5.62) is only approximately true, we replace fi; by the expression
(U, g,0,nm) /0 (which depends only weakly on ¢), but with ¢ and n,, evaluated at
the previous time level. Then, the value of ¢™ is found by

n n—1 (gn)—2
Tm(Un7 /-l'l(Unv gn’ Un_la n:ln_l))

. (5.65)

Following a somewhat different reasoning, a similar scheme for computing ¢ has been
derived in [1, 2].

It was found that for 2D flows, this scheme for evaluating o generally worked
well. However, for 3D flows we often found that the solution scheme for o diverged.
Analysing the flow solution, we discovered that in these cases, the maximum of the
Reynolds shear stress was located near the inner region of the boundary layer (see
figure 5.2c of the ONERA M6 wing at station n = 0.65, where this is the case for
z/c < 0.4). The eddy viscosity is then strongly determined by the inner formulation,
which is independent from ¢. Thus, unless unrealistic, high values are used for o,
it is not possible to satisfy the second relation of equation (5.35). Furthermore, the
problem mainly occurred in regions where the equilibrium maximum Reynolds shear
stress varied only weakly in stream-wise direction (see figure 5.2b), i.e. dg/ds ~ 0,
suggesting that g = geq and ¢ = 1 would be a reasonable solution for the PDE of
equation (5.28). In other words, these are regions where transport effects are not
important, and therefore an equilibrium boundary layer may be assumed. Thus,
we solved the problem by setting ¢ = 1 when the maximum of the Reynolds shear
stress is located in the inner layer. To locate the inner layer, the parameter a,, =
(V;?ML) / V?(‘;fl))m is used, which is smaller than 1 in the inner layer, and larger than 1
in the outer layer (given in figure 5.6 for the ONERA M6 wing at station 7 = 0.65).

The outer viscosity uf(‘;f]) is computed with o = 1. To obtain a smooth distribution
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Figure 5.6: Ratio of equilibrium inner and outer viscosities on upper side of ONERA
M6 wing at span-wise station 7 = 0.65 (Mo, = 0.8447, Reoo = 11.78-10%, a = 5.06°)

of o, we define the value of ¢ at time level n by taking the following two steps:
* o_n——l (g")_2
T (U, e (U™, g7, 071, i)
tanh(a,/o*) ,
tanh(aym,) ’

(5.66)

so that o™ is computed with equation (5.65) for a,, > 1 and ¢" =1 for a, < 1.
Substituting o™ = ¢™~! = o, it is seen that at convergence, the following implicit
algebraic relation for o is satisfied,

_ tanh((7f)m g? am /o) _,
( f)m - tanh(ay,) g

(5.67)

which replaces the algebraic relation of equation (5.32) (i.e. the second relation of
equation (5.35)).

One time step of the solution method for the Johnson-King model can now be
summarized by the scheme outlined in figure 5.7. Note that the eddy viscosity is
computed twice: once at step 1, so that no old value of the eddy viscosity is required
(and therefore does not need to be stored), and once before the basic flow equations
are integrated. Also, an equilibrium eddy viscosity is computed at step 4.

Step 5 actually consists of taking several Runge-Kutta time steps (instead of
simply forward Euler). A 5-stage scheme is used, given in reference [70], that was
specifically tuned to obtain optimal convergence for the second-order fully-upwind
scheme employed here.
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1. IJ?_ = ut(Un7gn,o.n—1’n;1n—1),
2. nn, = fim(U™,p),
ny—2
3. o* = a”"l——(g) ,
Tm(Un>Nt+)
oAl — MU*,
tanh (o)
4. (98)7% = (U™ (U™, 9ot Liniem)),
o,m = (U™ pe(U™, 927", 1,50 m))s
d n
3. (d_i) = _RJK(Un’gn’a.n’ggq’n;Ll),
6. :u? = )u’t(Un)gn-'—l’o-nanTr’h),
du\" I
7. (E) —_ _R(U ,ﬂt )

Figure 5.7: Solution method for the Johnson—King model

Finally, we must consider how the solution method for the JK model is combined
with the multi-grid algorithm used for the basic flow equations. The multi-grid al-
gorithm (combined with other measures) is used to resolve the stiffness in the basic
flow equations due to the small mesh sizes in normal direction. Because the Johnson-
King equation does not involve the normal direction, this equation is not as stiff as
the basic flow equations, and thus there is less need to apply the multi-grid algorithm
also to this equation. Therefore, we integrate the Johnson-King equation only on the
finest grid level; on the other grid levels the eddy-viscosity coeflicient is obtained by
restriction. Typically, when 5 Runge-Kutta time steps are taken for every fine-grid
relaxation of the basic flow equations, the convergence of the Johnson-King equation
is fast enough, for most practical computations, as to not deteriorate the convergence
for the basic flow equations.

5.7 RESULTS

In this section, we will verify that the implemented turbulence models give results
consistent with results found in the literature.

First, two turbulent, transonic conditions for the RAE2822 airfoil are considered:
Moo = 0.73, Reoo = 6.5 10%, a = 3.19°, and Mo, = 0.75, Reoo = 6.2 108, o = 3.19°
(resp. cases 9 and 10 of [26], both with transition at 3% of the chord). These two
cases were also used in the 1987 ATAA viscous transonic airfoil workshop [24, 46, 61]
as well as by other authors [55, 97]. Most authors used an angle of attack o = 2.8°
(wind-tunnel correction suggested in [26]), which is also used here. The same grid
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is employed as in chapter 3 (i.e. 8-block C-type 528 x 96 grid), where already some
results were presented for case 9 with the BL model.

For case 9, the surface pressure and skin-friction coefficients computed with all
three turbulence models are given in figure 5.8, together with the experimental data.
The skin-friction coefficient has been scaled by the dynamic pressure at the boundary-
layer edge (Cy = 7 /(3peu?)). The results with the BL and CS models are consistent

15 T T T T 0.007 . r T -
experiment © experiment ¢
C PenmEL Cf BL —
cs
0.006 K -
0.005 | 1
0.004 ' / lower side
0.003 fif
0.002 |- ( Ty
0.001 e o
0+
15 . . ) . -0.001 L : . .
0 02 0.4 06 08 4/ 1 0 02 0.4 06 08 s/ 1
a) Pressure coefficient b) Skin-friction coefficient (7w /(3 peu?))

Figure 5.8: Computational and experimental results for RAE2822 case 9 with the
Baldwin—-Lomax (BL), Cebeci-Smith (CS), and Johnson-King (JK) turbulence models
(Moo = 0.73, Reos = 6.5 - 10%, o = 2.8°, 8-block C-type 528 x 96 grid)

with the results of the workshop, with the CS model predicting the shock slightly more
forward than the BL model. At the workshop, it was found that the JK model pre-
dicted the shock location too far forward for cases without strong shock-induced sep-
aration (as this case 9). Johnson and Coakley [55] modified the inner eddy-viscosity
formulation of the JK model, resulting for case 9 in a shock location close to that
of the CS model and the experiment, and in a shock strength closer to that of the
experiment than is the case for the CS model. The computational results presented
here are consistent with these results.

For case 10, the surface pressure and skin-friction coefficients computed with the
CS and JK turbulence models are given in figure 5.9, together with the experimental
data. This case has strong shock-induced separation. For such a case, the CS model
does not yield satisfactory results, predicting the shock too strong and too far down-
stream. The JK model was designed to deal with strong adverse pressure gradients,
and as can be seen, gives a substantial improvement of the pressure distribution. For
the BL model, the strong separation is too difficult. (Converged results can only be
obtained if the model is modified; typically increasing the constant Cy from 0.25
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Figure 5.9: Computational and experimental results for RAE2822 case 10 with the
Cebeci-Smith (CS) and Johnson—King (JK) turbulence models (M = 0.75, Reo =
6.2 108, o = 2.8°, 8-block C-type 528 x 96 grid)

to 1.0 will do the trick, resulting in a pressure distribution comparable to the CS
model, but with the shock location even further aft.) These results are consistent
with the workshop results, which showed that all considered turbulence models (for
methods based on the RANS equations) predicted the shock location too far aft, with
the exception of the JK model, while further all models did not predict the pressure
level on the rear part of the upper side correctly.

The application of the turbulence models in 3D is shown for the ONERA M6 wing.
A 4-block CO-type grid with 256 x 64 x 48 grid cells has been used. The test case
for the ONERA M6 wing (Mo = 0.8447, Re,, = 11.78 - 10%, o = 5.06°, transition
at 3% of the local chord) has strong shock-induced separation, and has been used
by several authors, e.g. [2, 97]. In the course of this chapter already several figures
relating to this case have been presented. Figure 5.10 shows the surface pressure
distribution at four span-wise stations (1 being the distance to the root divided by
the semi-span) computed using the CS and JK models, as well as the experimental
data [99]. The convergence history is given in figure 5.11, where the computation
with the JK model has been started from a solution obtained using the CS model.
As for case 10 of the RAE2822 airfoil, the CS model predicts the shock location too
far aft, in particular at the two most outboard stations, where the shock-induced
separation is located. Again, the JK model clearly improves the results, giving a
shock location and strength reasonably close to the ones found in the experiment.
In the literature, different results can be found for this case with the JK model,
sometimes similar to our results, and sometimes with the shock further upstream
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(see in particular [97]). These differences may be a consequence of different versions
of the JK model (e.g. with or without the Johnson—Coakley modification, with the
Clauser-type or the BL-type outer-viscosity formulation), while also the extension to
3D may vary. We have chosen a variant of the JK model that gives proper results
in 2D for both weak and strong shock-induced separation, while in the extension to
3D we have stayed as close as possible to the 2D model. The comparison with the
experiment, and the consistency of the present results with some of the results in the
literature gives confidence in our implementation of the JK model in 3D.
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Figure 5.10: Pressure coefficient for ONERA M6 wing (Mo = 0.8447, Reo =
11.78 - 105, @ = 5.06°, 4-block CO-type 256 x 64 x 48 grid)
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Figure 5.11: Convergence history for turbulent flow around ONERA M6 wing with
the Cebeci-Smith (CS) and Johnson—King (JK) turbulence models (Me = 0.8447,
Reoo = 11.78 - 105, a = 5.06°, 4-block CO-type 256 x 64 x 48 grid)
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VERIFICATION AND DEMONSTRATION

In this chapter, we will perform a verification of the requirements on numerical ac-
curacy and on efficiency for three cases: RAE2822 airfoil, ONERA M6 wing, and
Aerospatiale AS28G wing-body configuration. Further, also the robustness require-
ment will be considered. Finally, we will make a comparison to both experimental
results and results of other computational methods for practical applications (a 2D
airfoil and two wing-body configurations with nacelle) to demonstrate the application
range and to give an impression of the physical accuracy, but without a full validation.

6.1 VERIFICATION OF NUMERICAL ACCURACY

As a 2D flow case to verify the numerical accuracy, we consider the RAE2822 airfoil,
which we have already employed as a standard test case in previous chapters. For
this airfoil, we consider the same test case as in chapter 3 (M, = 0.73, a = 2.8°,
and Res, = 6.5 10% case 9 of [26]) and use the Baldwin-Lomax model. Two fine
grids are considered (identified as h = 1), both with 528 x 96 grid cells and with
the far-field boundary placed at 50 chord lengths from the airfoil, but with different
grid-point distributions around the airfoil and generated using different techniques.
In particular, the second grid was tuned at the leading edge to improve the prediction
of the drag coefficient compared to the first grid. An impression of the first grid was
given in figure 3.7. Medium (h = 2) and coarse (h = 4) grids are obtained by doubling
the mesh sizes once and twice, respectively.

In table 6.1, the lift, drag, and friction-drag coefficients are given for the two ranges
of grids, together with values for ‘zero mesh size’ (h = 0) obtained by Richardson
extrapolation from the fine and medium grid values. This extrapolation is done by
assuming a second-order accurate scheme. Whether the scheme truly has this order of
accuracy may be questioned: in particular it depends on the way in which the discrete
solution converges near shock waves, where the space discretization switches locally to
second-order artificial diffusion. When the scheme is second-order accurate, it is still
the question whether the fine and medium grids are fine enough to let the second-order
terms in the truncation error dominate the higher-order terms, and thus allow the
extrapolation. The fact that the two different grid sequences give extrapolated values
close to each other (a difference of at most 0.3%), however, supports the assumption
of second-order accuracy. The extrapolated value itself will be of third (or possibly
fourth) order accuracy [93]. In table 6.1, also the relative difference with respect
to the extrapolated value is indicated (percentage) in order to assess the numerical
accuracy. Thus, we see that the fine grid values have an estimated numerical error

113
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Cy (error) Cp (error) (Cp)#ric (error)
Grid1l | h=4 | 0.6562 0.02324 0.005564

h=2 | 0.8039 (5.3%) | 0.01948 (8.2%) | 0.005514 (1.4%)
h=1|0.8380 (1.3%) | 0.01836 (2.1%) | 0.005457 (0.35%)
h=0 | 0.8493 0.01799 0.005438

Grid2 | h=4 | 0.6191 0.01784 0.005431
h=21|0.7974 (5.9%) | 0.01745 (3.3%) | 0.005585 (2.7%)
h=1 | 0.8346 (1.5%) | 0.01790 (0.83%) | 0.005474 (0.68%)
h=0 | 0.8471 0.01805 0.005437

Table 6.1: Force coefficients and estimated errors on two ranges of grids for turbulent
flow around RAE2822 airfoil (case 9, Mo, = 0.73, a = 2.8°, Res = 6.5 - 10°, 8-block
C-type 528 x 96 grids (h = 1))

of at most 2.1%, which falls within the requirement stated in chapter 1 (at most
5%). For the second medium grid, the values have an estimated numerical error of
at most 5.9%, just outside the requirement. Thus, a grid resolution between the fine
and medium grids is needed to satisfy the requirement, unless further tuning of the
grid or automatic adaptation of the grid is performed, in which case the medium grid
might be sufficient.

As a first 3D flow case, we consider the turbulent flow around the ONERA M6
wing with the flow conditions My, = 0.84, o = 3.06°, and Reo, = 11.8-10, using the
Cebeci-Smith model; a case that also has been considered in chapter 4. A 12-block
CO-type grid is employed with 256 x 64 x 48 grid cells. The far field is placed at
approximately 10 times the semi-span (distance from root to tip) in vertical direction,
5 times the semi-span in upstream direction, and 3 times the semi-span in downstream
and span-wise directions from the wing.

For this case, the force coefficients, given in table 6.2, appear to contain only small
numerical errors: less than 1% on the finest grid level. The solution on the medium
grid already falls within the accuracy requirement of chapter 1. The ONERA M6
wing, however, is not very representative for transport-type aircraft. It has a low
wing aspect ratio and practically no rear loading.

Grid | O (error) Cp (error) (Cp)tric (error)
h =4 0.2522 0.01926 0.004579

h=2 | 02693 (27%) | 0.01721 (2.3%) | 0.005000 (1.4%)
h=1 | 0.2751 (0.69%) | 0.01693 (0.56%) | 0.005055 (0.35%)
h=0 | 02770 0.01683 0.005073

Table 6.2: Force coefficients and estimated errors on a range of grids for turbulent
flow around ONERA M6 wing (Mo = 0.84, a = 3.06°, Reso = 11.8 - 108, 12-block
CO-type 256 x 64 x 48 grid (h = 1))

As a test case representative for transport-type aircraft, we consider the AS28G
wing-body configuration with the flow conditions My, = 0.80, @ = 2.20°, and Rey, =
10.5 - 108. For this case a body is included, but we compute the boundary layer only
on the wing, using the Baldwin-Lomax model. A 32-block CO-type grid is employed
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with 1.2 million grid cells in the half space. The far field is placed at a similar distance
as for the ONERA M6 wing in terms of the wing span.

The numerical errors in the force coeflicients are clearly larger for this case, see
table 6.3, in particular that in the drag coefficient, but still fall within numerical
accuracy requirement. The largest errors are found for the total drag coefficient,
while similar to the previous cases, relatively small errors are found in the friction
drag coefficient. The error in the total drag coefficient is likely to be determined for a
significant part by the fuselage to which less attention has been payed in generating
the grid than to the wing. The error in the lift coefficient may be more indicative of
the error in the wing pressure distribution, which is what we are mainly interested in
as explained in chapter 1.

Grid | Ct (error) Cp (error) (Cp)sric (error)
h=4| 04724 0.03339 0.003746

h=2 | 0.5270 (6.1%) | 0.02516 (16%) | 0.004168 (1.9%)
h=1 05529 (1.5%) | 0.02262 (3.9%) | 0.004227 (0.47%)
h=0 1] 0.5615 0.02177 0.004247

Table 6.3: Force coefficients and estimated errors on a range of grids for turbulent flow
around AS28G wing~body configuration (Mo, = 0.80, a = 2.20°, Reco = 10.5 - 10°,
32-block CO-type grid of 1.2 - 10° cells (h = 1))

Thus, we may conclude that for the selected cases the required numerical accuracy
(less than 5% error in the force coefficients) is obtainable, in particular for a wing-
body configuration with in the order of 1 million grid cells, under the assumption that
the scheme is indeed second-order accurate. To verify that the scheme is truly second-
order accurate, one should consider more grid levels (particularly a finer level, but also
intermediate levels, i.e. h = 3/2). In such a grid-refinement study for one particular
wing-body configuration!, deviations from second-order accuracy were found, but no
further investigation was performed into the sources for these deviations. Further
research is required, to obtain more confidence in the numerical accuracy of the flow
solver. Nevertheless, we believe that the current results already give a fair indication
of the order of magnitude of the numerical errors. As an alternative, one could also
take the difference between the medium-grid coefficients and the fine-grid coefficients
as an indication for the numerical error in the fine-grid coefficients (in fact this would
be the difference between the fine-grid value and the extrapolated value if first-order
accuracy is assumed). This error also lies within the 5% norm, with exception of
the drag coeficient on the first grid for the RAE2822 airfoil, and the drag coefficient
for the AS28G wing-body configuration. The second grid for the RAE2822 airfoil
was in particular tuned at the leading edge to obtain a better prediction of the drag
coefficient. For the AS28G configuration it should also be possible to improve the
drag coefficient through careful tuning of the grid or automatic grid adaptation.

The numerical error of 5% may certainly in some cases be considered to be too
large, for example in case of validation of the continuous flow model, or in case of com-
putations for slightly different designs (or with/without nacelle) for which systematic

LA study performed by M. Laban, W.J. Piers, and R. Hagmeijer at NLR
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errors in the continuous model may be of no importance. From the previous exercise,
however, it may be concluded that in order to obtain considerably smaller numerical
errors, either very fine grids are needed (say in the order of 8 million grid cells) or
very careful tuning of the grid is required (e.g. through automatic grid adaptation).

One point that still needs to be addressed is the placement of the far-field bound-
aries. Considering a finite domain introduces a numerical error, which decreases as
the distance of the far-field boundaries to the configuration increases. In the cases
discussed, the far field has been placed at a distance for which the experience is that
the errors are smaller than the numerical errors shown here. To be rigorous one
should also assess these far-field errors by considering a range of computations with
increasing far-field distance. However, the question whether the required numerical
accuracy can be obtained is not considered to critically depend on this issue, since
the far-field distance can be increased at little expense.

6.2 VERIFICATION OF EFFICIENCY

In chapter 4 we have already seen that for 2D airfoils (528 x 96 grid), the computation
times lie in the order of several minutes. For the ONERA M6 wing (256 x 64 x 48
grid), the computation time is in the order of 10 minutes if one requires the force
coefficients (converged within 10~%) and in the order of 2 hours if one is also interested
in the details of the flow solution and therefore requires well-converged residuals.
These computation times were obtained on the NEC SX-4 (single processor) at a
computation speed in the order of 300 to 400 Mflop/s.

The AS28G wing-body configuration as discussed in the previous section is a
more typical application for which the solver is intended, and is therefore a suitable
case for verifying the efficiency requirement. Using a grid of 1.2 million grid cells,
we performed 1000 fine-grid relaxations (i.e. 100 multi-grid cycles) on the fine grid,
requiring 4 CPU hours, and resulting in a mass residual of 10~2 and force coefficients
converged well within 107%. Convergence of the force coefficients up to 10~* takes
only 1 CPU hour (see table 6.4).

converged within 10~* mass residual
lift drag side pitch roll yaw of 1072
270(65) | 160(39) | 20(29) | 280(63) | 280(63) | 240(58) | 1000(242)

Table 6.4: Number of fine-grid relaxations (CPU minutes) performed to obtain a certain
level of convergence for turbulent flow around AS28G wing-body configuration on finest
grid level (M., = 0.80, o = 2.20°, Res, = 10.5-10%, 32-block CO-type grid of 1.2-10°
cells)

A full application of the flow solver would consist of a wing-body configuration
together with a propulsion system (typically a jet engine). As explained in chapter 1,
the Navier—Stokes computation is then limited to simulating the wing boundary layer,
while on the other components the slip boundary conditions is applied. In the next
section, results for the AS28G wing-body configuration with an engine nacelle will be
shown (but computed only on a medium grid level). Including a nacelle in this case
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implied a doubling of the number of grid cells (2.4 million). Since the convergence
speed is determined by the small mesh sizes inside the wing boundary layer, which
remain the same, this increase of grid cells does not affect the convergence speed.
Thus, in this case, the computation time is doubled, when including a nacelle, which
is still within the efficiency requirement.

We may conclude that the efficiency requirement stated in chapter 1 is satisfied
(at most 10 hours) if a grid with a maximum of 3 million grid cells is employed. How-
ever, as was seen in the previous section, the grid used for the AS28G configuration
has really a minimum grid resolution as far as numerical accuracy is concerned. If
significantly finer grids are employed (say 8 million grid cells for a wing-body con-
figuration), the computation times may still be within the efficiency requirement if
one requires the force coefficients, but not when one requires the details of the flow
solutions.

6.3 VERIFICATION OF ROBUSTNESS

In chapter 1, we required that the computational method must be robust in the sense
that converged results must be obtainable without any user interaction (i.e. no tuning
of flow-solver parameters) for flow cases within the application range. In the previous
chapters, we have presented convergence histories for selected cases (either to discuss
properties of the solution procedure or to evaluate the computational efficiency), and
each of these computations was performed with the same numerical scheme with the
same numerical parameters (except when to demonstrate a property of the scheme).
The coefficients of the artificial-diffusion scheme were not adjusted (¥ =1, k® = 2,
k) =1/2, and k™ = 2/3 in 2D, k(*) = 1/2 in 3D). For the Navier-Stokes computa-
tions, the solution procedure always consisted of a W-cycle multi-grid scheme, with
5 pre- and b post-relaxations, using the 5-stage Runge-Kutta scheme as relaxation
operator, using variable-coefficient residual averaging with the coefficient £ = 1.5, and
using the stability limits Cp1, = 4.5, and Rg = 1.5Cpr. Also for the computations
that will be presented in the next section to demonstrate the application of the flow
solver, always the same numerical scheme and parameters were employed, with an
exception for the stability limit, which had to be lowered slightly for some of the most
complex flow cases (Crr, = 4.0).

Two remarks should be made. First, all computations were converged at least to
what is sometimes called ‘engineering accuracy’ which means that the force coeffi-
cients are sufficiently converged (typically within 10~*), while also the residuals have
dropped significantly (typically 2 to 3 orders of magnitude compared to the residuals
of the initial (free-stream) solution). Thus, it cannot be stated that all computations
will converge fully to machine accuracy (which is of course not even feasible for the
fine-grid 3D flow cases), and in fact for a few cases this was found not to be true.
This could sometimes be attributed to the algebraic turbulence models, which as
stated before depend completely on the boundary-layer concept. In regions where
the boundary-layer concept may no longer be valid (such as the wing-tip region),
these models might occasionally run into convergence problems, even though we have
tried to minimize the chance that this will happen as discussed in chapter 5. (Also for
applications at (or beyond) the edge of the application range, e.g. flows with strong
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shock-induced separation, the turbulence models occasionally do not converge on fine
grids.) Especially the Johnson—King model, with its implicit algebraic equations, is
an intricate model which is very hard to make completely robust. These kind of con-
vergence problems are usually very local, and it may then be questioned whether it
is worth the effort to solve such problems, considering that, even if the computation
is converged further, no significantly different flow solution is obtained.

The second remark concerns grid quality. It is true that for the computations
presented no tuning of flow-solver parameters was required. However, user interaction
was needed in tuning the multi-block grid to ensure convergence (and accuracy).
For example, the flow solver will not always converge or converge only slowly for
grids with excessive skewness or stretching, for singular multi-block topologies (such
as a face that is collapsed to an edge), or for grids with strong changes in grid
properties across block faces. Not much effort has been expended on improving the
robustness of the flow solver with respect to dealing with such difficult grids. Instead
concurrently with the flow solver, also suitable tools for generating high-quality multi-
block structured grids have been developed at NLR. Nevertheless, considering that
the grid generation is the most time-consuming part of a flow simulation, it could be
worthwhile to improve the flow-solver robustness in this respect. (In fact, that is the
typical approach for unstructured grids: simplifying the grid generation task at the
expense of a more complex flow solver.)

6.4 DEMONSTRATION

To demonstrate the application of the flow solver, we consider three cases for which
comparisons can be made to other computational methods and to experimental data.

6.4.1 VTP airfoil

As a suitable 2D flow case, a 2D airfoil is considered that is representative for
transport-type wings, i.e. it has significant rear loading and a strong adverse pressure
gradient on the aft part of the airfoil. For this airfoil, experimental results are avail-
able that have been obtained in the NLR HST wind tunnel, as well as computational
results? obtained with the ISES Euler/boundary-layer method [32]. The computa-
tional results with the present flow solver ENSOLV have been obtained within the
VTP program of the Netherlands Agency for Aerospace Programs NIVR.

A large set of experimental data is available of which 6 cases have been selected:
two Reynolds numbers, with for each Reynolds number a subsonic case and two tran-
sonic cases (one with a weak and one with a strong shock). The ISES computations
have been carried out with the experimental lift coefficient prescribed (with the excep-
tion of the first case where the angle of attack used in the experiment was prescribed).
The angles of attack resulting from the ISES computations have been used to run
ENSOLV. The flow conditions and the resulting lift and drag coefficients are given
in table 6.5. For the two subsonic cases, the Baldwin—Lomax model has been used,
while for the transonic cases the Johnson-King model has been used. Only for case
5 both models have been employed, in order to demonstrate the importance of using

2Kindly supplied by A.J. Broekhuizen.




6.4. Demonstration

119

Test case Model My Rewo | a(®) Ct Cp
1 experiment 0.50 | 12-10° | —0.58 | 0.345 | 0.0078
subsonic ISES -0.59 | 0.364 | 0.0076

ENSOLV (BL) —-0.59 | 0.375 | 0.0080
2 experiment 0.74 | 12-10° 0.03 | 0.548 | 0.0091
transonic ISES —0.18 | 0.545 | 0.0091
weak shock ENSOLV (JK) —-0.18 | 0.566 | 0.0086
3 experiment 0.732 | 12-10° 1.69 | 0.890 | 0.0155
transonic ISES 1.56 | 0.887 | 0.0145
strong shock | ENSOLV (JK) 1.56 | 0.902 | 0.0158
4 experiment 0.50 | 3.2-10° 1.24 | 0.536 | 0.0103
subsonic ISES 0.86 | 0.535 | 0.0095

ENSOLV (BL) 0.86 | 0.546 | 0.0103
5 experiment 0.74 | 3.2-10° 0.60 | 0.548 | 0.0125
transonic ISES 0.128 | 0.542 | 0.0113
weak shock | ENSOLV (JK) 0.128 | 0.574 | 0.0106

ENSOLV (BL) 0.128 | 0.619 | 0.0112
6 experiment 0.772 | 3.2-10° 2.38 | 0.689 | 0.0401
transonic ISES 1.63 | 0.690 | 0.0297
strong shock | ENSOLV (JK) 1.67 | 0.719 | 0.0333

Table 6.5: Flow conditions and coefficients for VTP airfoil

the Johnson-King model for boundary layers with strong adverse pressure gradients.
A similar grid as for the RAE2822 airfoil has been used (8-block C-type 528 x 96
grid), resulting in comparable convergence speed and numerical accuracy.

The experimental and computed pressure coefficients (figures 6.1 to 6.3) correlate
satisfactorily for the high-Reynolds-number cases and for the low-Reynolds-number
subsonic case (cases 1 to 4), with the ISES result slightly closer to the experiment.
For these cases, the differences between the ENSOLV and the ISES lift coefficients
vary from 2 to 4%, while the drag coefficients of ENSOLV differ with 5 to 9% from the
ISES values and with 0 to 5.5% from the experimental values. Although for a proper
comparison with the experiment ENSOLV should be run at the same lift coefficient,
these results seem to be in reasonable agreement with results from literature where
the accuracy of lift and drag predictions for methods based on the RANS equations for
2D airfoils is reported to be in the order of 3 to 5% for attached or weakly separated
boundary layers. The numerical-accuracy requirement specified in chapter 1 has been
based on these results from literature.

For the low-Reynolds-number case with a weak shock (case 5) larger differences
are found between the three results. The ENSOLV lift coefficient (with the JK model)
is higher than the ISES lift coefficient by 6%, while the experimental drag lies con-
siderably above the two computed values (11 and 15%). With the BL model, the
ENSOLV lift coefficient is even higher (14% above the ISES value). A number of
differences can be found in the pressure distributions (figure 6.2b). The pressure
distribution on the upper side upstream of the shock is rather irregular for the exper-
imental results, compared to both computational results. The JK and ISES results
lie fairly close: the JK model predicts only slightly lower pressures on the forward
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Figure 6.1: Pressure coefficients for VTP airfoil at subsonic conditions (M = 0.50)
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Figure 6.2: Pressure coefficients for VTP airfoil at transonic conditions with weak
shocks (Moo = 0.74)
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Figure 6.3: Pressure coefficients for VTP airfoil at transonic conditions with strong
shocks (case 3: Mo, = 0.732, case 6: Mo, = 0.772)
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Figure 6.4: Boundary-layer properties for VTP airfoil case 5 (Moo = 0.74, Recw =
3.2-10%, ccomp = 0.128°)
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upper part of the airfoil and higher pressures on the aft lower part (resulting in a 6%
higher lift coefficient); similar but less strong differences can be observed for case 2.
The BL model, however, predicts different pressure levels almost completely around
the airfoil, consistent with the considerably higher lift. These differences may be
related to differences in the boundary-layer displacement thickness and (kinematic)
shape factor (figure 6.4): on the aft part of the airfoil, the BL model predicts thin-
ner boundary layers, while the shape factor deviates clearly from the JK and ISES
results, indicating a weaker response to the strong adverse pressure gradients. The
underprediction of the displacement thickness on the upper side near the trailing edge
is the reason why a higher lift is found for the BL model: a thinner boundary layer
increases the angle between the free-stream velocity and the velocity just downstream
of the trailing edge, which corresponds to an increased circulation around the airfoil
and thus an increased lift. Thus for this case, we see the importance of taking his-
tory effects into account in the turbulence modelling for boundary layers subjected
to strong adverse pressure gradients, as is done in the Johnson-King model.

In the computations for the last case considered, case 6, the boundary layer sep-
arates strongly at the shock, and does not reattach before the trailing edge. Such a
case lies outside the intended application range, and as can be seen from figure 6.3b
is clearly too difficult for both computational methods, both predicting the shock too
far aft.

6.4.2 Aerospatiale AS28G wing—body—-nacelle configuration

As an illustration of the application of the flow solver to a transport-type aircraft
configuration, the Aerospatiale AS28G wing—body configuration with and without a
flow-through nacelle is considered. We have already considered the numerical accu-
racy and the computational efficiency for this case in the previous sections.

For the wing-body configuration, the computed pressure distributions with the
Baldwin-Lomax and Johnson-King turbulence models are given in figure 6.5 together
with the experimental results of Aerospatiale (at the conditions Mo, = 0.80, Rey, =
10.5 - 105, o = 2.20°, employing a 32-block grid with 1.2 million grid cells). As for
the VTP airfoil, this case has a strong adverse pressure gradient on the rear part
of the upper wing surface. As a consequence the two turbulence models predict
different boundary-layer thicknesses at the trailing edge on the upper side, resulting
in a lower circulation around the wing for the JK model. This leads to a more
forward prediction of the shock location, as well as to a lower level of rear loading.
Comparison with the experimental results is not fully satisfactory, in particular on
the upper side of the wing. These differences are not further investigated here. Such
investigations could be part of a validation of the physical accuracy of the flow solver,
requiring a careful checking of the wind-tunnel conditions (and corrections) and of
the geometries employed in the experiment and computation, as well as comparisons
with other computational methods.

For the configuration including the nacelle, the computed and experimental pres-
sure distributions are given in figure 6.6 (at span-wise stations located near the na-
celle), together with pressures for the configuration without nacelle. In the exper-
iments a pylon was included. The computations were performed on medium grids
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Figure 6.5: Pressure coefficients for AS28G wing-body configuration with Baldwin—
Lomax (BL) and Johnson-King (JK) turbulence models (Mo = 0.80, Reoo = 10.5 -
108, o = 2.20°)
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Figure 6.6: Pressure coefficients for AS28G wing-body and wing—body-nacelle config-
urations (Mo = 0.80, Reco = 10.5 - 10°%, o = 2.20°)
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(with nacelle: 101 blocks with 0.28 million grid cells, and without nacelle: 32 blocks
with 0.15 million grid cells) and with the BL turbulence model. An impression of the
grid is given in figure 6.7. The effect of the nacelle on the wing pressure distribution
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Figure 6.7: Impression of grid around AS28G wing—body—nacelle configuration (medium
grid: 101 blocks, 0.28 million grid cells)

is predicted in a qualitatively similar matter by the experiments and computations:
in particular the modification of the lower-side pressure distribution and the forward
movement of the shock. This, despite the fact that only medium grids are employed
and despite the differences between computed and experimental results on the upper
wing as noted before. Although more computations for similar cases would be re-
quired to be certain, the results give the impression that for a qualitative evaluation
of the effect of for example the nacelle position on the wing pressure distribution, one
may accept significant numerical errors in the computations, as well as uncertainties
in the physical accuracy, suggesting that these errors are of a systematic nature (and
thus can be corrected for).

6.4.3 VTP wing-body-engine configuration

Finally, we present some results® for a wing-body transport-aircraft configuration at
design conditions, obtained within the VIP program of the NIVR. In this case not
only the engine nacelle is taken into account, but also the boundary conditions for
simulating the effect of the jet-engine inlet and outlet are employed. For the compu-
tations without the engine, comparisons are made to experimental results obtained

3All computations presented in this section (both ENSOLV and MATRICS-V) were performed
by M. Laban, NLR.
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in the NLR HST wind tunnel and to computational results obtained with the NLR
MATRICS-V full-potential/boundary-layer method [81, 119] at the flow conditions
My, = 0.78, Reo, = 7.4-10°% and Cr = 0.57 (transition at 5% of the local chord).
Again, only the boundary layer on the wing is simulated in the ENSOLV computa-
tion, which is also the case for the MATRICS-V method. The two computed pressure
distributions (no engine), presented in figure 6.8, lie reasonably close, in particu-
lar on the inboard part of the wing. On the outboard part, ENSOLV predicts the
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Figure 6.8: Pressure coefficients for the VTP wing—body configuration (M = 0.78,
Reoo = T7.4-10°, Cr = 0.57)

shock slightly further downstream (which seems to resemble some of the results ob-
tained for the VTP airfoil). As before, it was important to employ the Johnson-King
turbulence model. Although not shown, the Baldwin-Lomax model predicted a sig-
nificantly different pressure distribution, similar to the differences found for case 5 of
the VTP airfoil. The experimental results clearly differ from the two computational
results, with the shock predicted significantly further upstream. This seems to be at-
tributable to the way in which the experimental results were corrected for tunnel-wall
interference effects, which also included a correction for different fuselages.*

As explained in chapter 1, the intended application of ENSOLV is to assess the
influence of in particular the engine location on the wing pressure distribution. Such
computations can be part of a design procedure in which, given a wing-body config-
uration with a desired pressure distribution, one tries to restore this pressure distri-

4M. Laban reported that taking into account the differences in fuselage shapes, MATRICS-V
gave pressure distributions close to the experimental results.



126 6. Verification and Demonstration

bution for the configuration including the engine nacelle (and possibly the pylon as
well) by redesigning the wing. In figure 6.9, the upper-wing pressure distributions are
shown for different steps in such a design procedure for the VTP configuration: orig-
inal wing-body configuration, original wing-body-nacelle configuration, and wing—
body-nacelle configuration with redesigned wing. Observe that the redesigned wing
with nacelle has about the same pressure distribution as the original wing without
nacelle; hence, the wing-geometry correction was successful.
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Figure 6.9: Lines of constant pressure on VTP upper wing at three subsequent steps

during a design procedure to correct for nacelle effects (Moo = 0.78, Reoo = 7.4 - 10%,
Cr = 0.57)
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CONCLUSIONS AND FINAL REMARKS

In this thesis, we have discussed the development of a Navier-Stokes flow solver,
called ENSOLV, intended for the simulation of steady, compressible, turbulent flow
around transport-type aircraft in cruise conditions. The main application consists of
the simulation of flows around wing-body configurations combined with propulsion
systems such as jet engines. Of primary interest is the effect of the presence of the
propulsion system on the wing pressure distribution. The Navier—-Stokes flow solver
was developed from an existing Euler solver. Viscous and turbulence effects were
incorporated by means of the thin-layer Reynolds-averaged Navier-Stokes equations
and algebraic turbulence models, aiming at the simulation of the wing boundary layer
and wake only, while maintaining growth potential towards more complex viscous
flows.

If a computational method is to be applied routinely in an industrial environment,
it must be sufficiently efficient and robust, and have sufficient accuracy. In chapter 1,
we have formulated requirements with respect to these properties, particularly focus-
ing on the numerical aspects of the flow solver. Considering at first a straightforward
extension of the Euler flow solver to the TLNS equations, further improvements were
needed to satisfy these requirements. The following conclusions can be drawn:

— Space discretization: The basic discretization scheme consisted of a cell-centred
finite-volume scheme using central differences with explicit artificial diffusion
and employed multi-block structured grids. In order to reduce the strong grid
dependency of the numerical solution in boundary layers, it has been necessary
to replace the scalar form of artificial diffusion by a matrix form, based on
the ideas of Swanson and Turkel [111]. However, we have modified the matrix
artificial-diffusion scheme so that it is effective in boundary layers only, while
avoiding a significant reduction of convergence speed or increase of computation
time compared to the scalar form.

— Solution procedure: The basic solution procedure consisted of explicit time in-
tegration using Runge-Kutta schemes, accelerated by local time stepping and
implicit residual averaging. To obtain an acceptable convergence speed for the
Navier—Stokes equations, we have extended the solution procedure with a multi-
grid scheme. Furthermore, the high aspect-ratios of the grid cells, typical for
high Reynolds-number boundary layers, had to be accounted for in the residual-
averaging coeflicients and the scaling factors of the artificial diffusion, following
the ideas of Martinelli [73]. On multi-block grids, we have obtained a robust

129



130 7. Conclusions and Final Remarks

scheme using the concept of multi-block inside multi-grid and employing a W-
cycle multi-grid scheme with five pre- and five post-relaxations. It has been
shown that multi-block and single-block grids give similar convergence speeds.
In particular the convergence rate of the force coefficients is strongly improved
by the multi-grid scheme.

— Turbulence modelling: The algebraic turbulence models of Baldwin—Lomax,
Cebeci—Smith, and Johnson—King have been considered. Mainly because these
models strongly depend on the 2D boundary-layer concept, it is not straight-
forward to obtain a robust implementation. In particular for the Johnson-King
model, we have analysed detailed problems, related to the extension from 2D
to 3D and to its implicit algebraic relations. The investment in implementing
the Johnson-King model, however, is worthwhile, considering it improves the
prediction of the lift considerably for airfoils and wings with strong adverse
pressure gradients compared to the other algebraic models.

In chapter 6, we have verified whether the requirements formulated in chapter 1
could be met. Considering a typical application, consisting of a transport-type wing—
body configuration including an engine nacelle, sufficiently converged solutions (force
coefficients well within 10~*) can be obtained on grids of 2 to 3 million grid cells within
the required computation time (at most 10 CPU hours assuming a computation speed
of 400 Mflop/s). Employing Richardson extrapolation, it was inferred that a minimal
numerical accuracy (numerical errors in the force coefficients within 5%) is attainable
on such grids. A more detailed assessment of the numerical accuracy may be needed
if higher accuracies are required.

With respect to robustness, we have drawn the conclusion that for typical applica-
tions, as those employed for demonstration purposes, sufficiently converged solutions
(force coefficients within 10~%) can be obtained without variation of the numerical
scheme or its parameters, provided that a high quality grid is employed. This means
that user interaction is mainly required in generating such a grid and not in fine-
tuning solver parameters.

In the future, the constraints imposed on the development of the flow solver,
particularly the region of applicability, may change. For transport aircraft, future
applications may be accurate drag prediction, which requires higher numerical accu-
racy, and the simulation of high-lift devices (take-off and landing conditions), which
involves more complex flows. Furthermore, other application areas are currently being
considered as well. Military-aircraft applications involve highly complex configura-
tions and flows. In particular, the flow solver has already been used for the simulation
of the flow around delta wings, involving strong vortices [15]. Spacecraft applications
involve flows at supersonic or hypersonic conditions, possibly leading to strong shocks,
and complex flows at the base of spacecraft.

Different applications generally lead to changing requirements, such as higher
numerical accuracy for accurate drag prediction. For these further developments of
the flow solver, the following may be considered:

— In order to extend the flow solver to more general flows, currently the full
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Reynolds-averaged Navier—Stokes equations are also included, as well as two-
equation turbulence models, which are more generic than algebraic models.

— Dependency on grid resolution in boundary-layer normal direction has been re-
duced by employing matrix artificial diffusion. The solver still shows significant
dependence on the grid resolution in tangential directions, for example at shock
waves and near wing leading edges. A successful approach to improve the grid
in these regions is automatic grid adaptation as developed by Hagmeijer {42].
Also, upwind-type schemes may be considered, in particular to improve the
numerical accuracy at shock waves.

— The form of the current matrix artificial diffusion is suitable when there is one
dominant viscous direction. If all viscous regions around an aircraft configura-
tion are to be simulated, this may no longer be true, and the matrix diffusion
would have to be reconsidered.

— The scaling of the artificial diffusion for high-aspect-ratio grid cells, which was
needed to obtain acceptable convergence speeds, may locally introduce high
numerical errors. If the grid is not carefully generated, this may suppress local
details such as trailing-edge separation.

— For supersonic flows with strong shocks, the current artificial-diffusion scheme
is not satisfactory. Either upwind schemes will have to be used, or extensions
as proposed by Jameson [49] will have to be applied.

To allow for future extensions as just described, a flow solver should have an
appropriate software structure. At NLR, also research has been done recently into
the question how to obtain a structure of CFD software that supports characteristics
as adaptability and testability, as discussed by Vogels [117].

Experience with the flow solver ENSOLV at industry, as illustrated by some of
the presented computations, has shown that the solver in its current form is very well
applicable in practice.
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APPENDIX A

FLux JACOBIAN FOR THE EULER
EQUATIONS

Both in the boundary condition at the far field and in the matrix artificial diffusion,
the Jacobian of the convective flux is used. Also, the eigenvalues and the eigenvectors
of the Jacobian are used. In this appendix, these are all derived.

First, quasi-linear forms of the Euler equations in curvilinear coordinates will be
derived, both in terms of the conservative variables and in terms of the primitive
variables. In these equations, the flux Jacobians will appear as coefficient matrices.

A non-conservation form of the Euler equations in curvilinear coordinates can be
directly derived from the basic conservation form in Cartesian coordinates (equation
(2.30)) and is given by

oUu  oFc 0F¢ o0F¢
— 4+ = VE€+ ——-Vn+ —-V(=0. Al
Using the identity
o(Jve)  0(JVn)  9(JVC)
2/ on a¢
which can be verified by substituting the expressions of equation (2.22) (and is the
equivalence of equation (2.19) for the integral form), the conservation form of equation
(2.33) can be derived. This conservation form can also be written as
ou o} 0

I+ £(F*U||V§|1)+57;(F’7J'||Vn||) ac

=0, (A.2)

FJ|Ivel) = (A.3)

in which the flow-state vector U of conservative variables and the flux vector F%¢ are

given by
P Plm
U=\ pi |, F=%-m=| punii+pn |, (A.4)
pE pHu,,

with m = V¢/||V€|| and uy, = @-m. Differentiating F¢ first to U, a quasi-linear form
can be derived from equation (A.1)

8U oU ou oUu
+||V§||A€ +IIV72I|¢‘1"——+IIVCHAC aC =0, (A.5)

with AS = dFMU - m = dFﬁ/dU the Jacobian of the convective flux in ¢-direction,
denoted as the ‘conservative’ flux Jacobian.
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Consider the state vector W of primitive variables

(£)
w=|a]. (A.6)
p

The quasi-linear form can then also be written as

ow _
¢

ow oW oW
A £ n-"" ¢
5+ IVEIBE G + 10l 75 +119¢) B

with the ‘primitive’ flux Jacobian given by B¢ = dW/dU A¢ dU/AW = dW/dU dF&/dW .
Since the conservative and primitive flux Jacobians are related by a similarity trans-
formation they have the same eigenvalues.

Now, the primitive flux Jacobian together with its eigenvalues and eigenvectors
will be derived. This Jacobian has a less complex form than the conservative Jacobian,
and thus the derivation of eigenvalues and eigenvectors is easier. Expressing pressure
in terms of the conservative variables, and total energy and total enthalpy in terms
of the primitive variables (for a calorically perfect gas),

0, (A7)

p = (v-1) (pE—;—pllpﬁllz)v

pE = Lp+iplla)?, (A-8)
pH = ap+ ol

the Jacobian matrices dW/dU and dU/dW can be derived,

JW 1 07 0
U - ~lp I/p ;s )
P —(y-na" (y-1)
1 07 0 (4.9)
dU . o
aw - —i pl 0 ,
Sl pi ok
as well as the flux Jacobian dF¢/dW,
=T
¢ Um pm 0
| uri paAT+pund @ . (A.10)
W\ M@ pHAT + pun@ Ajun

Multiplication of dW/dU with dF%/dW gives the primitive flux Jacobian,

Um  pmT 0
BE=|( 0 und w/p |. (A.11)

0 ypmT  wu,
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Let A = diag(\1,...,As) be the diagonal matrix with the eigenvalues of B¢ along its
diagonal, and let R and £ = R~! be the left and right eigenvector matrices of B¢,
respectively. It can be easily verified that the eigenvalues are given by

Ai = Um, i € {1,2,3},
M = Uyt (A.12)
Ay = Upm—C

/2 the speed of sound, and that the eigenvector matrices are given

1 0 0 p/lec —p/e
R = 06 8 & m m |,
0

with ¢ = (yp/p)
by

0
(A.13)

L

1 00 0 0 T
0 &t 1im I ,
-1/ 0 0 1/(2pc) —1/(2pc)
with (73, 3,7 ) orthonormal. The Jacobian B¢ can now be diagonalized by B¢ = LAR.

Defining the characteristic variables dV = LdW , the one-dimensional Euler equations
(considering only the &-direction) may be written in characteristic form

ov %
3 T IvelAGE =

0. (A.14)

The flux Jacobian A¢ has the same eigenvalues as B¢, as stated before, and can be
diagonalized as A¢ = QAQ™! with Q = dU/dW R and Q! = LdW/dU. The matrix
Q has the right eigenvectors of A¢ as its column vectors, similarly to the matrix R.
The column vectors may be scaled freely by a scalar, and upon doing so the matrix
Q may be shown to be equal to

Q=<
el

while its inverse is given by

T

0 0 1 1
us§ wit G+ i—cm , (A.15)
12 w? w? H+cun H-cup

-1 _
Q - 2

sk 1k

o - e 1, 1= 1 -
ki Slus tfu —k§u1+ zm/c ~k3i — 5mi/c ,
0 2 2

1-kgllal® -1 -1 kil — gum/c kglldll® + Fum/c
-k 0

(A.16)
with k = (y — 1) /%
Finally, the absolute-value Jacobian matrix (as used in section 3.6.1) is defined by
|A] = QJA|Q~. Let C; be the column vectors of Q and let R; be the row vectors of
Q~!, Then the absolute-value Jacobian matrix can be written as

5
M| = Cil\|RT. (A.17)
i=1
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After considerable manipulation, this can be shown to be equivalent to
[A] = egd + €1 (kACT - BDT) + e (~ADT + (y - 1)BCT), (A.18)

with J the unit 5 x 5 matrix, with the coefficients ep, e, and es given by

60 = IAlla

er = (Al + 1) — M, (A.19)
o — [Ag] = |As]

2 2c ’

and with the column vectors A, B, C, and D given by

1 0 2||u[|2 ( Um
A=| a |, B=| m |, ¢= , D=| -m |. (A20)
H Um 1 0

The Jacobian matrix as used in section 3.6.1 is actually defined for the convective flux
F4 = F%|| A]| across a cell face with area vector A. Thus, the absolute-value Jacobian
matrix presented in this section should be multiplied by HAH, while the unit vector
1 should be replaced by A/||4]|.




APPENDIX B

STABILITY CONSIDERATIONS

In this appendix, we will present a stability analysis for a simple model equation,
with as purpose to derive the expression for the time step used in section 4.3.2 and to
derive suitable values for the stability limits Cpr, (Courant number) and R, and for
the numerical parameter k(¥ of the artificial diffusion. These values depend on the
specific Runge-Kutta time-integration scheme used and on the amount of implicit
residual averaging. Besides stability, attention is also paid to the damping of high-
frequency modes, which is important when the RK scheme is used as relaxation
operator in a multi-grid scheme.

Consider the following 3D scalar model equation:
ou ou du du 0%u
£§27 e\ Qe L i .
v et o TV ac TN o (B-1)

with constant coefficients Aé, A", AS, AV € Rt (representing the eigenvalues of the
convective and viscous flux Jacobians). The independent variables are the spatial
coordinates (£,7,¢) € Q = [0,1]® and the time coordinate t € [0,0). The dependent
variable is a scalar function u : 2 x [0,00) — R, which is considered to be periodic.

Let the spatial domain (2 be discretized by a uniform grid of dimension N¢ x N7 x
N¢ as follows:

En¢ e,
Qp = {(ihS,jh", kRS) |i=0...N%,j=0...N",k=0...N¢}, (B.2)
h® =1/N¢ A" =1/N", h¢=1/NS,
and let u be approximated by the grid function given by
Uik - 2 X [0,00) = R. (B.3)

Equation (B.1) is discretized in space using central differencing and addition of
fourth-order artificial diffusion,

duw k

7 Rijx = 0,
LRijx = %Ag(‘séu)i,j,k + B(5§u)”k (B.4)
+ %A”(&%u)i,j,k + B"(énu)i,j’k
+ LA + B — LOM(Su)ik,
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with 7 the time step and R, ;; the residual. The first-, second-, and fourth-order
differences are given by

(Gewijk = Witljk — io1,jk,
(Gfwijk = Uir1jk — 2Uijk + Uic1 gk, (B.5)
(Gwigk = (FwWit1,k — 207Uk + (670)iz1,5k,

while the constant coefficients are given by

Py A" P\ 4\v
£ - n—="__ ¢ - -7
A = 5o A = A =50 Cn"‘(hn)Z' (B.6)
The coefficients of the artificial diffusion (B¢, B, and B¢) will be defined below.
Define the ratios p = A%/A", 0 = A%/AS, and v = AS/A". When the convective
eigenvalues are equal (A% = X7 = X¢), these ratios are the cell aspect ratios.
In order to analyse the stability properties of this equation and of the time-
integration schemes, we apply Fourier or local mode analysis. The grid function
u;,j,x may be represented by a discrete Fourier series given by

N¢—1N"—-1N%-1

wigk= 3 3 D dumaexp (365 + 65,5 +05K)) (B.7)

=0 m=0 n=0

with i2 = —1 and with the wave numbers given by
66 = 2N—”£l o = 2]’\’[—;” 6 = 27\,7?- (B.8)
Due to linearity, we may consider for simplicity only one Fourier mode,
ui gk = Gexp ((6% + 675 + k) , (B.9)
with 6¢,67,6¢ € [—m, 7). Substitution in equation (B.4) gives for the residual
Ri;, = —ziiexp (i(6% + 6"j + 6°k)) (B.10)
with z € C the Fourier symbol of the residual,
z = z4+iy = z%+z¥ +iyS,
z? = —47B%(1 - cos6%)? — 47B"(1 — cos8")? — 47B¢(1 — cos69)?,
0 = —1r07(1 - cosd"), (.1
y© = —TA%sinf¢ — 7A"sin@" — T AS sin 6S.

The semi-discrete equation (B.4) can now be written as an ODE for the Fourier

symbol 4:
di
T— =2z

dt
Note that this ODE is (marginally) stable if < 0, which is true if B¢, B?, B¢, C" > 0.

‘§>

(B.12)
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Time integration and time step

One time step of any numerical time-integration scheme for the ODE of equation
(B.12) can be represented by an amplification factor G(z),

= G(2) 4n, (B.13)

with the superscript n indicating the solution at time t™ = n7. For example, for the
standard three-stage Runge-Kutta scheme the amplification factor is given by

G(z) = 1+ a3z + az02” + 301 2°, (B.14)

while if the artificial diffusion is frozen at the first stage (the RK3 scheme defined in
section 4.4.1), the amplification factor is given by

G(2) =1+ a3z + lasy (1 + asx + foy(l + onz + i y)) . (B.15)
The time integration is stable if the following requirement is satisfied:
V65,676 € (-, 7] : |G(2)| <1, (B.16)

which typically means that z must lie in a (stability) domain as depicted in figures B.1
to B.3 for the RK3, RK4, and RK5 schemes (as defined in section 4.4.1). In general,
it is sufficient to define in the z-plane a stability limit Cpr, along the imaginary axis
and a stability limit Ry along the negative real axis (see figure B.1), i.e. to require
that

max|y| < CF,
(B.17)
max(—z) < Rg.

Not considering artificial diffusion (i.e. assuming 2% = 0), this leads to the following
requirements:

;< CrL, _ CrL
— AS 4+ An+ AS XE/hE + A1 /R + XS /RS’ (B.18)
Rk (R7)? ‘
< — = .
TS o T R
This requirement can be satisfied by defining the time step by the relation
1 1 XA XS 4\
r=a (et ) * mowe (519

which is essentially the relation used in section 4.3.2.

Standard artificial diffusion

We will now show that the time step just defined is also appropriate when the artificial
diffusion is included, provided that the artificial-diffusion coefficients B¢, B7, and
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Figure B.1: Stability region in z-plane for RK3 scheme
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Figure B.2: Stability region in z-plane for RK4 scheme
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Figure B.3: Stability region in z-plane for RK5 scheme

BS have appropriate values. Following section 3.4.3, the standard values for these
coeflicients are given by

Bt = LkWAs, B = Lk@WAn, BS = LEWAC (B.20)

The parameter k) should be defined such that high-frequency modes are strongly
damped, while the time integration remains stable.

First, we consider the inviscid equations (i.e. AY = 0). From figure B.1, it can be
seen that a small amplification factor, and therefore a strong damping, occurs at the
location z = ~R3¥* and y = 0. Thus, a strong damping of high-frequency modes is
obtained if

z4(6° = 7,07 = 7,6 =) = —RP®". (B.21)
Using the time step given by equation (B.19), one finds that
2% =7, 0" =71,6=7) = 16138 = LkWrs4 = kW0, (B.22)

with ¥4 = A% + A7 4+ A¢ and ©B = B¢ 4+ B" 4 B¢, so that an appropriate choice for
k@ is

4R

4 = K B.23
Cor (B.23)
Next, we consider the viscous equations (i.e. with A” non-zero). Let k(%) be given

by equation (B.23) and let the time step by defined by equation (B.19). If we require
that R%?" < Rk (as in figure (B.1)), then it follows that

R?{ptZA/CFL +Cn
< Ry B.
YA/CpL +C/Rg = B, (B29)

max(~-z? —z¥) = 7(16LB+C") =
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and thus the stability requirement (B.17) is satisfied.

Implicit residual averaging and scaled artificial diffusion

We will now consider the time-integration scheme together with implicit residual
averaging (section 4.3.3) as well as with the scaling for high-aspect-ratio cells (section
4.4.2) of both artificial diffusion and residual averaging. It will be seen that with
residual averaging the time-step limits can be increased (Rk stronger than Cry),
which is the reason for applying residual averaging, while the value of k(¥ can be
maintained.

Let residual averaging be applied to the residual at every stage of the RK scheme,
according to

((1—€63)(1—€e"82)(1 - 6463)5)1.,].,,c =R; (B.25)

with S; ;x the smoothed residual. Substituting the expression of equation (B.10)
for both residuals, one finds the following relation for the Fourier symbol % of the

smoothed residual:
F(e5,6%) f(€7,67) f(e°,6°) £ = =, (B.26)
with
f(e,60) =1+ 2¢(1 — cosh). (B.27)
One time step for the ODE of equation (B.12) is now given by

4"t = G(3) 4", (B.28)

i.e. the amplification factor is given by the same function G as before, but with
the Fourier symbol of the residual replaced by the Fourier symbol of the smoothed
residual. This means that instead of requiring z to lie in the stability domain of the
RK scheme, we must require Z to lie in the stability domain. If, as before, the Fourier
symbol of the smoothed residual is split as

F=F+ij =%+ 3° + i, (B.29)
with
F = i
F(€8,65) f(em,0m) f(e€,6%)
. Y (B.30)
§ =

f(,68) f(em,6m) f(e<,6¢)
then the stability requirement given by equation (B.17) is replaced by

max |g| S CIT‘L,

max(~3) < Ri, (B:31)
with Cyy, and R} the stability limits defined in the z-plane (analogous to figure B.1).
The time step is still given by relation (B.19), but with the values of Cpr, and R
increased with respect to the values of Cf, and R} (i.e. the values used for the RK
scheme without residual averaging) due to the residual averaging.
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Considering the scaling for high-aspect-ratio cells, the residual-averaging coeffi-
cients €, €7, and € are chosen as (see section 4.4.2)

—K K\ 2
¢ = max 1+p_ o -1],05,
1+p l4g-1
max{ ( I;priz) —1),0}, (B.32)
K\ 2
max 1+a + v~ ~1) 0%,
1+U+v’1

with € > 1 and 0 < & < 1, while the artificial-diffusion coefficients B¢, B, and B¢
are chosen as (see section 4.4.2)

en

€S

Bt = 1 k(4 A€ max{l (14+p~F+07%)} = &k(4)A§%(1+p_"+a_"),
B" = ék(“ A"max {1, (1+p"+v")} = kWA, (B.33)
B¢ = LkWASmax {1,4(1+0"+v ")} = LEWAL(1+e"+v7").

Since the 7 direction is the viscous direction, we have assumed small mesh sizes in

this direction compared to the other two directions, in particular in equation (B.33)
p* <1/2 and v* < 1/2 has been used.

Let the time step be given by equation (B.19). Then the following inequalities
can be derived:

. Asinft  A"sinf7  ASsin S
max|g§] < rmax

Fe€,69 T Fenm T T, 69

( Af A7 AC
= + +
"\Virac Vitde  Vii 4e<>

< CrL . ( YA " YA + YA >
= XA \e(l4+p"+4+07%) e(l+pr+ovs) e(l4+o"+v*)
- Gn
= =
(B.34)
and
4B%(1 —cos6%)?  4B"(1 — cos )2
-7 <
max(-3) < max (SN ¢ ST
4B¢(1 —cosf%)?  C"(1 — cosd")
B.
w2 (B:39)

~ 16B¢ 168" | 16B¢ ("
- 1446 144" 14+4eS 144
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Substituting the coefficients B¢, B", and B¢ by their definitions (equation (B.33)),
and using the inequalities

Af(1+p™"+07%) XA min{l l+pt+o!? 61+p‘“+a"‘}
¢ = = x . —1 _
1+ 4e € el+pf+o0"r" 1+4pl+4+0-1 (B.36)
< Ima,
3
and
1 11440\ 1.
1+4€n=mm{€—2(m) 3 I}S_2 1fp§1,v§1, (B37)
equation (B.35) becomes
2EUSA 4 B An ¢ Lo
max(—) < 24 (B.38)
CFL2A+ 'E'-Cn

From equations (B.34) and (B.38) it follows that the stability requirement given by
equation (B.31) can be satisfied by defining

Crr. = eChp,
RK = €2R;{, (B39)
g < 34Fk

- 5CI’§L

Thus, we see that with implicit residual averaging, the stability limits Cry, and Rx
may be increased by factors £ and £2, respectively. The value of k9, given by equation
(B.23), can be maintained, provided that R3* < 2R3,

1D model equation

For a 1D model equation, we will show the distribution of the amplification factor
as a function of the wave number for standard values of the stability limits Cpy, and
Ry, for the numerical parameter k), and for the residual-averaging coefficient ¢.
Consider a 1D inviscid version of the model equation with the Fourier symbol of the
residual equal to

z = z¢+iye,
¢ = —LEWCpL(1 - cosé?)?, (B.40)
yc = —CFL sin 95.

For this model equation, the amplification factor G as function of the wave number
6% is given in figure B.4a for the RK3 scheme with CrL = 1.5, in figure B.5a for the
RK4 scheme with Cy, = 2.6, and in figure B.6a for the RK5 scheme with Cpr, = 3.0.
All three schemes show reasonable damping for high frequencies (6¢ > 7/2). Figures
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B.4b to B.6b show the amplification factor when residual averaging is applied with
e = 1.5. The amplification factor is reduced for low frequencies, and is increased
moderately for high frequencies (especially for the RK3 scheme). If stronger residual
averaging is applied, then the high-frequency damping may be reduced too much,
destroying the multi-grid convergence rate.

In chapter 4, a robust multi-grid scheme is obtained by applying five pre- and
five post-relaxations or, in other words, by taking as relaxation operator five Runge~
Kutta time steps instead of only one. Figure B.7 gives the amplification factor for
the 1D model equation for five iterations of the RK5 scheme. As can be seen, strong
damping of high-frequency modes is obtained, as is required in multi-grid theory.

2D model equation

Finally, for the relaxation operator considered as last for the 1D model equation (five
RK5 time steps with residual averaging), we will show the amplification factor for
a similar inviscid 2D model equation (thus A = AV = 0). For a cell aspect ratio
of one (p = 1), the amplification factor G as function of the wave numbers #° and
0" is given in figure B.8a. The damping of high frequency modes is similar to the
1D model equation. For a high aspect ratio of p = 100, the damping of modes
which are of low frequency in the ¢ direction (# ~ 0) but of high frequency in
the n direction (6" =~ =/2) is almost completely lost for the basic scheme (figure
B.8b). Including the high-aspect-ratio scaling of residual averaging and artificial
diffusion, the strong damping of all high-frequency modes is fully restored if £(®) =1
(figure B.8¢). However, as explained in section 3.6.2, a compromise between numerical
accuracy and convergence speed is made by taking k(") = 2/3, for which the high-
frequency damping is less, but still reasonable (figure B.8d). For very high aspect
ratios (p = 10*), usually only occurring in a very small region close to solid surfaces,
the damping of high frequencies of this latter scheme is rather weak (figure B.8f), but
in practice reasonable convergence rates are obtained nevertheless (section 4.5).
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Figure B.5: Amplification factor for one iteration of the RK4 scheme
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2D

3D

BL
CFD
CPU
CS
ENSOLV
FAS
FMG
HST
ISES
JK
MATRICS-V
MG
NIVR
NLR
ODE
PDE
RANS
RK
SG
TLNS

alvcdif
A B, C,D

A+
OO Q)
A

B

B

C

Cp, Cy

Ccp; Ckleb; ka

NOMENCLATURE

ABBREVIATIONS

two dimensional

three dimensional

Baldwin-Lomax turbulence model
computational fluid dynamics

central processing time

Cebeci-Smith turbulence model

NLR Euler/Navier-Stokes flow solver

Full Approximation Storage multi-grid scheme
Full Multi-Grid scheme

NLR high-speed wind tunnel
Euler/boundary-layer method of Drela and Giles [32]
Johnson-King turbulence model

NLR full-potential /boundary-layer method
multi-grid computation

Netherlands Agency for Aerospace Programs
National Aerospace Laboratory

ordinary differential equation

partial differential equation
Reynolds-averaged Navier—Stokes equations
Runge—Kutta time-integration scheme
single-grid computation

thin-layer Reynolds-averaged Navier-Stokes equations

LiST OF SYMBOLS

constants of the Johnson-King turbulence model

column vectors of the matrix artificial diffusion model
(A,B,C,D € R%)

constant of the Van Driest damping term

cell-face area vectors in 7, j, and k directions

Jacobian of the convective flux (A € R®*3)

block

residual-averaging matrix

speed of sound or local chord length, depending on context
specific heats at constant volume and constant pressure
constants of the Baldwin-Lomax outer-viscosity formula-
tion
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LIST OF SYMBOLS (CONTINUED)

Cp drag coefficient (Cp = Fp/(5pect, Arer), with Fp the
drag component of the aerodynamic force and A a ref-
erence area, typically the plan area of the wing)

Cy skin-friction coefficient (Cy = 7, /(3poot%,), unless other-
wise indicated)

CrL Courant number

Ci lift coefficient (C, = Fi/(}pootul, Aret), with Fy, the lift

component of the aerodynamic force and A, a reference
area, typically the plan area of the wing)

Cp pressure coefficient (Cp = (p — poo)/(3p00t,))

D flow domain

Di,j,k flux balance (Di,j,k S Rs)

Dy,Djk Van Driest damping term

D¢, D¢, De convective, diffusive, and artificial diffusive flux balances
(D¢, D%, D* € R®)

e internal energy per unit mass

€; Cartesian unit base vectors (i € {1,2,3})

€g, €1, €2 coeflicients of the matrix artificial diffusion model

E total energy per unit mass

E() Entier function (nearest smaller integer)
Baldwin-Lomax function

FO, @ first- and third-order difference in artificial diffusive flux

F face

Fe, Fé, Fe convective, diffusive, and artificial diffusive flux vectors
(F¢,F4 F° € B°)

F flux matrix (F € R5%3)

g dependent variable of the Johnson-King PDE

— (+R\"1/2

(9= (Tp Jm %)

h mesh size

H total enthalpy per unit mass

(i,7,k) grid-cell indices

(I,J,K) grid-cell indices defined by cyclic permutation of (i, 7, k)

I prolongation operator (of correction)

I unit tensor of order 2 (Cartesian components 4;;)

J unit 5 x 5 matrix

J determinant of the Jacobian of the Cartesian coordinates
as a function of the curvilinear coordinates

Jip1, prolongation operator (of flow state)

k turbulent kinetic energy

k:zz, kW), kls) numerical parameters of the artificial diffusion model

k h

K constant of the Clauser outer-viscosity formulation

l grid level
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FIon &

§§E
B
E

S

(Ni, Nj, Ni)
Nprea Ncgc; Npost

p
P

PT, PTg
Q,Q
Ql—l,i
Q

r
R

Rk
Rin, Rout
Rk

RJK

Re

RHS

s

S

Si—l/?,j,kaSi,j—l/Z,ky

i,j,k—1/2
i3,k

LIST OF SYMBOLS (CONTINUED)

most recent stage before stage ¢ of Runge-Kutta scheme
at which the diffusive terms have been computed
reference length scale

matrix with left-hand-side eigenvectors of A¢

number of stages of Runge-Kutta scheme

orthonormal set of vectors with 17 normal to a specified
face or boundary

Mach number

refinement factors across a face with local grid refinement.
normal distance to solid wall or wake-centre surface (nor-
mal to planes &, 1, or { = constant)

unit vector in normal direction (normal to planes &, n, or
¢ = constant)

number of grid cells in ¢, j, and k directions

number of pre-relaxations, coarse-grid corrections, and
post-relaxations of multi-grid scheme

pressure

forcing function of multi-grid scheme

laminar and turbulent Prandtl numbers

heat flux and heat-flux vector (Cartesian components @;)
restriction operator (of defect)

eigenvector matrix of the convective Jacobian

defect (r € B5)

gas constant

residual of main flow equations (R; jx € R®)

incoming and outgoing Riemann invariants

stability limit for diffusive terms

residual of the Johnson-King PDE

Reynolds number

right-hand side of the Johnson-King PDE

arc length

entropy

cell faces in 7, 7, and k directions

smoothed residual of main flow equations (S; ;x € R°)
time

rate-of-strain tensor

temperature

restriction operator (of flow state)

constant of Sutherland law

velocity vector (4 = u;€;) and its magnitude

friction velocity (ur = (Tw/pw)'/?)
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LIST OF SYMBOLS (CONTINUED)

ul, velocity scale of Johnson—King inner-viscosity formulation
' R\1/2

(um = (Tp m)

U flow-state vector (U = (p, pii, pE)T € R®)

U* flow-state vector (U* = (p, pii, H)T € R®)

Vv state vector of characteristic variables (V € R®)

Vijk volume of grid cell Q; ; &

W flow-state vector (W = (p, pi, pE,p)T € R®) in section
3.5.5,
approximate solution (W € R®) in section 4.4.1

T Cartesian coordinates ¥ = 2;€; = (z,y, 2)7

o' angle of attack

Om ratio of equilibrium inner and outer viscosities (Johnson-
King model)

o coefficient of Runge-Kutta scheme at stage ¢

o) coefficient of high-aspect-ratio scaling

8 angle of side slip

vy ratio of specific heats

YK Klebanoff intermittency function

) boundary-layer thickness

é* boundary-layer displacement thickness

0;i Kronecker delta

An mesh size in thin-layer normal direction

At time step

AU flow correction (AU € R®)

€@ factors in formulation artificial diffusive fluxes

e, ) elk) variable coefficients of implicit residual averaging

€ numerical parameter of implicit residual averaging

el eN numerical parameters of the matrix artificial diffusion
model

n variable of similarity equation for laminar flat-plate flow

(chapter 3)
span-wise coordinate (distance to the root divided by the
semi-span) (chapters 5 and 6)

fs ratio of the constant of the Sutherland law and the free-
stream temperature

K Von Kadrmén constant

Kh thermal conductivity coefficient

Kt turbulent conductivity coefficient

A eigenvalue of the Jacobian of the convective flux

AY eigenvalue of the Jacobian of the diffusive flux

A diagonal matrix of convective eigenvalues

w (laminar) dynamic viscosity coefficient

Lt dynamic eddy-viscosity coefficient
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(Tf)m

(g,n,C)
w

Q
onN
\Y%

-l

subscripts:
e

eq

i, 7,k

m

w

o0

superscripts:

l

(9)
+

LIST OF SYMBOLS (CONTINUED)

shock sensor

kinematic eddy-viscosity coeflicient

inner and outer kinematic eddy-viscosity coefficient
density

scaling factor of outer viscosity (Johnson-King model)
shear stress vector and stress tensor (Cartesian compo-
nents 7;;)

Reynolds shear stress

maximum of Reynolds shear stress divided by density
boundary-conforming curvilinear coordinate system
vorticity vector

volume segment (grid cell)

boundary of volume segment

gradient operator (V = €;0/0z;)

Euclidean norm

value at edge of boundary layer

equilibrium value

value at the grid-cell indices

value at location of maximum Reynolds shear stress
wall value

free-stream value

variable at grid level !

value at time level n

value at stage ¢ of the Runge-Kutta scheme

variable made dimensionless according to the law-of-the-
wall scaling
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SAMENVATTING (SUMMARY IN DUTCH)

EEN INDUSTRIEEL TOEPASBARE SIMULATIEMETHODE VOOR
COMPRESSIBELE, TURBULENTE STROMINGEN

In dit proefschrift wordt een numerieke simulatiemethode voor de Reynolds-gemiddel-
de Navier-Stokes-vergelijkingen beschouwd. Deze methode is gericht op industriéle
toepassingen, met name de simulatie van compressibele, turbulente stromingen rond
transportvliegtuigen ter ondersteuning van de integratie van voortstuwingsmecha-
nismen met vleugel-rompconfiguraties. Uitgangspunt voor de ontwikkeling van de
huidige methode is een reeds bestaande simulatiemethode voor de compressibele
Euler-vergelijkingen. Viskeuze en turbulente effecten worden toegevoegd op basis van
de ‘thin-layer’ Reynolds-gemiddelde Navier—Stokes-vergelijkingen en algebraische tur-
bulentiemodellen. Op deze wijze wordt de grenslaag op de vleugel gemodelleerd (en
het effect van de grenslaag op de drukverdeling rond de vleugel), terwijl uitbreiding
naar meer algemene viskeuze stromingen mogelijk blijft.

Aangezien de bestaande Euler-simulatiemethode geaccepteerd was en intensief
gebruikt werd door de industrie, was hergebruik van methoden en software een
vereiste. Deze simulatiemethode was gebaseerd op het gebruik van multi-blok gestruc-
tureerde rekenroosters, zodat willekeurig complexe geometrieén beschouwd konden
worden. De ruimtediscretisatie van de Euler-vergelijkingen bestond uit een eindige-
volumemethode met de stromingsvariabelen gelokaliseerd in celmiddens, waarbij ge-
bruik werd gemaakt van centrale differenties en expliciete, artificiéle diffusie. Als
oplossingsmethode voor de discrete vergelijkingen werd een pseudo-tijdsintegratieme-
thode gebruikt, bestaande uit Runge-Kutta-schema’s en impliciete middeling van de
residuen.

Uitgaande van de meest voor de hand liggende uitbreiding van de numerieke me-
thode voor de Euler-vergelijkingen naar de Navier—Stokes-vergelijkingen zijn verdere
verbeteringen noodzakelijk. Een matrixvorm van artificiele diffusie wordt gebruikt
om de roosterafhankelijkheid in grenslagen te verminderen zonder dat dit ten koste
gaat van de convergentiesnelheid of de rekentijd. Een efficiénte oplossingsmethode
wordt verkregen door de pseudo-tijdsintegratiemethode te versnellen met een multi-
grid methode. Dit resulteert in een robuuste methode voor multi-blok roosters met
slanke cellen indien de volgende concepten worden gebruikt: multi-blok binnen multi-
grid, W-cyclus multi-grid met vijf pre- en postrelaxaties, en een geschikte schaling
van de artificiéle diffusie en van de middelingsoperator van de residuen. Verder wordt
er aandacht besteed aan een robuuste implementatie van de algebraische turbulen-
tiemodellen, waarbij met name voor het Johnson—King-model de uitbreiding naar 3D
en impliciete algebraische relaties van belang zijn.

Ten slotte worden de numerieke nauwkeurigheid en de efficiéntie van de simu-
latiemethode voor de Navier—Stokes-vergelijkingen geévalueerd en wordt de toepas-
baarheid voor typische transportvliegtuigconfiguraties gedemonstreerd.
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