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S U M M A R Y 

Reflection wav eform inv ersion (RWI) is a technique that uses pure reflection data to estimate 
subsurface background velocity, relying on evolving seismic images. Conventional RWI op- 
erates in a cyclic w orkflo w, with tw o ke y components in each c ycle—migration and reflection
tomography. Conventional RWI may result in suboptimal background velocity estimation, 
partly due to limited or unresolved resolution within each component in each cycle. While 
gradient pre-conditioning with the reciprocal of Hessian information helps resolve this issue 
in both components of RWI, it becomes impractical for a large number of model parameters. 
One-way reflection wav eform inv ersion (ORWI) is a reflection waveform inversion technique 
in which the forward modelling scheme operates in one direction (downward and then up- 
ward) via virtual parallel depth levels within the medium. Leveraging the ORWI framework, 
we decompose and reduce the linear Hessian operator (also known as the approximate Hes- 
sian or Gauss–Newton Hessian) into multiple smaller suboperators. In particular, the diagonal 
blocks of the monofrequency approximate Hessian operators, each corresponding to a single 
depth level within the medium, are extracted and inverted to pre-condition the correspond- 
ing monofrequency gradients in both the migration and reflection tomography components 
of ORWI. This depth-dependent gradient pre-conditioning transforms standard ORWI into a 
high-resolution, y et computationally feasib le version aimed at addressing suboptimal velocity 

estimation, referred to as high-resolution ORWI. The ef fecti veness of the proposed approach 

is demonstrated through successful applications to synthetic data examples. 

Key words: Acoustic properties; Seismic tomography; Waveform inv ersion; Wav e propaga- 
tion. 

1  I N T RO D U C T I O N  

Tarantola ( 1984 ) introduced the conventional full waveform inversion (FWI) in acoustic approximation, a well-known non-linear data-fitting 
technique to estimate high-resolution subsurface v elocity models. Conv entional FWI has become widely adopted for e v aluating shallow
subsurface targets. Indeed, incorporating refracted and diving waves, it offers a detailed subsurface model and has proven to be highly
ef fecti ve for this purpose (e.g. Vigh et al. 2011 ; Zou et al. 2014 ). Ho wever , when attempting to map the targets that lie beyond the reach
of refracted and diving waves (“deep targets”), its performance may falter (e.g. Plessix et al. 2013 ; Brittan & Jones 2019 ). This limitation
arises because, while the sampling of high-reflective model wavenumbers is nonlinearly dependent on the sampling of low-propagative model 
wavenumbers in FWI (Audebert & Ortiz-Rubio 2018 ), conventional FWI fails to acti vel y sample low-propagati ve model w avenumbers within
the deep targets because of weak transmission-after-reflection wave paths within the FWI gradient, commonly known as “rabbit-ear” wave 
paths. Scaled by reflection coefficients, the rabbit-ear wave paths exhibit weaker amplitudes compared to other wave paths within the FWI
gradient, that is the transmission wave path and migration isochrone (Fig. 1 ). This failure to sample low-propagative model wavenumbers
significantly limits the capture of high-reflective model wavenumbers by conventional FWI, highlighting the significance of model scale 
separation for reflection tomography (Mora 1989 ). 

Over the years, several variants of migration-based velocity analysis (MVA), each built upon the principle of model scale separation
based on Born modelling, have been developed. Among them, the ones incorporating w ave-equation forw ard modelling have stood out due to
the improved handling of wave propagation in comple x media. Wav e-equation MV A (WEMV A) algorithms (Sava & Biondi 2004 ) typically
optimize an image-domain error function measured on the common image gathers (CIGs) either via a classical semblance or a differential
652 
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Figure 1. The wave paths constructing the FWI gradient: the transmission wave path, labelled as number 1, the pair of transmission-after-reflection wave paths 
(rabbit-ear wave paths), labelled as number 2, and the migration isochrone, labelled as number 3. As can be observed, the pair of transmission-after-reflection 
wave paths appears in a lighter shade, illustrating its much weaker amplitude compared to the other existing wave paths. This occurs as a consequence of 
scaling by the reflection coefficient of the reflector within the medium. Hence, it can be concluded that the FWI gradient is dominated by the transmission wave 
path and migration isochrone, while the pair of transmission-after-reflection wave paths remains relatively inactive. 

Figure 2. Conventional RWI cycle in which background velocity estimation and image reconstruction alternate. 
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emblance (DS) function, measuring the flatness (coherency property) in CIGs. While with the classical semblance function, the flatness
easure of CIGs is given by the stack power of image amplitudes over surface offsets (Chauris & Noble 2001 ), the flatness measure of CIGs
ith the DS function is given by squaring the L2 norm of the deri v ati ve of image amplitudes with respect to surface offsets (Shen et al. 2003 ).
EMVA may also be formulated in the subsurface offset domain, where, at the correct velocity, the image is expected to be focused at zero

ffset. In this domain, measuring the focusing of subsurface-offset CIGs mirrors the use of the classical semblance and DS function with
urface CIGs (Shen 2005 ; Shen & Symes 2008 ; Lameloise et al. 2015 ). Alternati vel y, a scattering angle can serve as the extension parameter,
ith flatness measured on angle-domain CIGs (Biondi & Symes 2004 ). 

Expanding on the foundations of extended-domain WEMVA, Symes ( 2008 ) formulated a theory that laid the groundwork for integrating
xtended-domain WEMVA and FWI, leveraging their synergy. This theory was subsequently validated by Almomin & Biondi ( 2012 ). In
ecent initiatives to enhance MVA, Chauris & Cocher ( 2017 ) introduced the notion of inversion velocity analysis (IVA) by substituting
tandard migration with iterative migration to map cleaner CIGs, reducing migration artifacts and multiple crosstalk. Moreov er, the y adopted
 pseudo-inverse of the Born modelling operator, rather than an adjoint, to reduce the migration iterations. In the same vein, Assis et al.
 2022 ) introduced tomographic Hessian-based IVA. 

Employing migrated images for velocity model building also triggered another trend of development known as reflection waveform
nversion (R WI). R WI represents a wave-equation reflection tomography tool with a data-domain error function (Xu et al. 2012 ; Zhou et al.
012 ; Berkhout 2012 ; Wang et al. 2013 ). Conventional RWI in acoustic approximation alternately solves a two-parameter minimization
roblem for the background velocity and “reflectivity” of the subsurface. Although RWI and the migration-based traveltime waveform
nversion (MBTT; Cl ément et al. 2001 ) share some similarities, it is important to note that the migration step in MBTT operates on
eflectivities in time rather than depth—images in time are largely invariant to velocity, unlike images in depth, but this assumes a 1-D velocity
odel. 

Unlike FWI, RWI is specifically tailored to sample deep targets tomographically harnessing e xclusiv ely reflection data through the
air of transmission-after-reflection wave paths. RWI involves estimating the background velocity of the subsurface in a cyclic process as
isplayed in Fig. 2 , relying on an evolving stacked image that fits near-offset observed and modelled “phase information” within each cycle.
herefore, it is expected that RWI naturally suppresses any ambiguities initiated by the phase mismatch in the near-offset reflection data

Provenzano et al. 2023 ), particularly within the deep areas or the areas with challenging data acquisition conditions where FWI suffers
e verel y. To improve the RWI tomo gram, specificall y within reach of refractions and diving waves, some studies have also investigated the
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impact of integrating earl y-arri v al FWI and RWI in order to steer the search direction toward recovering a full (horizontal and vertical) low
local-model-wavenumber spectrum for the background velocity model (Zhou et al. 2015 ; Wu & Alkhalifah 2015 ). For a full re vie w of the
other aspects of RWI in recent years, the reader can refer to Yao et al. ( 2020 ). 

Although RWI is built upon the notion of model scale separation, making this separation has been a struggle. To address the issue,
several approaches have been put forth. Among others, we reference Alkhalifah ( 2014 ) for introducing the scattering-angle filtering solution,
Wang et al. ( 2013 ) for adopting the wavefield decomposition solution, and Xu et al. ( 2012 ) for leveraging Born modelling as the solution.
Additionally, Berkhout ( 2012 , 2014 ) introduced the joint migration inversion (JMI) technique that makes use of a one-w ay forw ard modelling
scheme called full-wavefield modelling (FWMod), parametrized based on reflectivity and acoustic background velocity, to fulfill the model 
scale separation by wavefield decomposition into upgoing and downgoing wavefields. FWMod models full (both primaries and multiples) 
downgoing and upgoing reflection wavefields within the JMI framework, in which zero-lag cross-correlations of same-direction source and 
recei ver w avefields (either both upwards or both downwards) reconstruct the reflectivity model update (small-scale medium variations), and
correlations of opposite-traveling source and recei ver w avefields (one upgoing, one downgoing) estimate the background velocity model 
update (large-scale medium variations). 

Adopting the concept of JMI for reflection waveform inversion and constraining FWMod to primary wavefield modelling (PWMod), 
assuming internal multiples are weak or resolved via pre-processing, this paper represents and investigates upon a one-way reflection 
wav eform inv ersion technique, hereafter referred to as standard ORWI. The approporiate parameterization in PWMod leads to a natural scale
separation—separation of migration isochrones and transmission-after-reflection wavepaths—in standard ORWI. This separation allows for 
the independent calculation of migration and tomography gradients within each ORWI cycle, thereby freeing tomograms from high-reflective 
model wavenumbers. Algorithm 1 shows the cyclic w orkflo w of standard ORWI, which involves an alternating sequence between the image
and background velocity reconstructions. Standard ORWI cyclically minimizes the error function 

E = 

1 

2 

∫ 
dω 

∑ 

s 

� d 

−
s,ω 

† 
� d 

−
s,ω , (1) 

where � d 

− is the residual data vector (upgoing) between the observed and modelled reflection data recorded at the Earth’s surface, the
subscript s indicates a source location, ω shows an angular frequency component, and the superscript † represents the complex conjugate 
transpose operation. 

Algorithm 1 Cyclic w orkflo w of ORWI 

Provide a smooth initial background velocity model and set the initial reflectivity model to zero when 

cycle number k = 1. 

while convergence not reached do 

for i ← 1 to m do � m is the total iteration number for updating reflectivity in cycle k. 

UPDATE the reflectivity model using one-way wave-equation 

while keeping the background velocity model fixed (migration). 

end for 

for j ← 1 to n do � n is the total iteration number for updating background velocity in cycle k. 

UPDATE the background velocity model using one-way wave-equation 

while keeping the reflectivity model fixed (reflection tomography). 

end for 

k = k + 1 � The reflectivity model can be reset to zero at this point. 

end while 

Suboptimal background velocity estimation in RWI can be attributed, among others, to the use of seismic images with limited or
unresolved resolution as well as suboptimal preservation of true amplitudes in each cycle (e.g. Hou & Symes 2015 ; Chauris & Cocher
2017 ; Gomes & Yang 2017 ). With the same line of reasoning, one can also link suboptimal background velocity estimation in RWI to
the use of tomograms with limited or unresolved resolution. Pratt et al. ( 1998 ) showed that the Newton optimization method in waveform
inversion estimates accurate velocity models with higher resolution than the gradient decent method since it uses the reciprocal of second-
order deri v ati ves of the error function (inverse Hessian) to pre-condition the gradient. Ho wever , the calculation demand of the Hessian
matrix-operator for large-scale problems in seismology renders the Newton method impossibly e xpensiv e in computing terms. Several 
attempts, either in the data or image domain, have been made thus far to approximate an ef fecti ve yet cost-ef fecti ve pre-conditioner: migration
deconvolution filters (Hu et al. 2001 ; Yu et al. 2006 ), matching filters (Guitton 2004 ; Aoki & Schuster 2009 ; Guitton 2017 ; Guo & Wang 2020 ;
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ang et al. 2021 ), point spread functions (Lecomte 2008 ; Fletcher et al. 2016 ; Yang et al. 2022 ), target-oriented solutions (Valenciano et al.
006 ; Tang 2009 ), asymptotic pseudo inverses to the Born modelling operator (ten Kroode 2014 ; Hou & Symes 2015 ; Chauris & Cocher
017 ), linear Hessian (also known as the Gauss–Newton Hessian or approximate Hessian) (Pratt et al. 1998 ), pseudo-Hessian (Choi et al.
008 ; Jun et al. 2015 ), diagonal approximate Hessian (Chavent et al. 1999 ; Shin et al. 2001 ; Plessix & Mulder 2004 ), and approximating the
pplication of the Hessian inverse operator on the search direction (Brossier et al. 2009 ; Asnaashari et al. 2013 ; M étivier et al. 2013 ; Assis &
chleicher 2021 ). Within the context of iterative least-squares one-w ay w ave-equation migration (LS-WEM), while Lu et al. ( 2018 ) obtained
n approximate Hessian b y implicitl y formulating the modelling operator and its adjoint, Abolhassani & Verschuur ( 2024) introduced a
omputationall y af fordab le, depth-dependent appro ximate Hessian, referred to henceforth as pre-conditioned LS-WEM (PLS-WEM). 

This paper aims to increase the resolution power of standard ORWI tomograms, expanding upon the findings of Abolhassani & Verschuur
 2024) on depth-dependent pre-conditioning for image reconstruction. While employing depth-dependent pre-conditioners for high-resolution
mage reconstruction with standard ORWI, we concurrently develop the required mathematical groundwork to integrate the depth-dependent
re-conditioning concept for background velocity estimation. This two-fold effort facilitates more accurate velocity estimation with ORWI.
e refer to it as high-resolution ORWI (HR-ORWI). 

In the following sections, we will first re vie w the theory of HR-ORWI. Then, we will present a brief overview of the depth-dependent
radient pre-conditioning concept for migration (PLS-WEM). Following that, we will mathematically demonstrate its relevance for tomography
ithin the context of ORWI. Next, we will provide three numerical examples, where the first two compare standard ORWI and HR-ORWI,

nd the third validates that our cost-friendly high-resolution updates in both migration and tomography loops of HR-ORWI result in a reliable
ackground velocity estimation for the Marmousi2 model. Lastly, we end with discussions and conclusions. 

 H R - O RW I  T H E O RY  

he theoretical aspects of HR-ORWI are presented here. We rely on Berkhout ( 1981 , 1982 ) for the forward problem theory. 

.1 Forw ard pr oblem 

he two-way acoustic wave equation for a homogeneous medium in the space-frequency domain can be written as 

∂ 2 u 

∂z 2 
= −ω 

2 

c 2 
u − ∂ 2 u 

∂x 2 
− ∂ 2 u 

∂y 2 
, (2) 

n which u represents the monochromatic pressure wavefield, and c is the velocity. 
Replacing the differentiations in eq. ( 2 ) with spatial convolutions (Berkhout 1982 ) gives 

∂ 2 u 

∂z 2 
= −

(
ω 

2 

c 2 
δ( x) δ( y) + d 2 ( x) + d 2 ( y) 

)
∗ u, (3) 

here ∗ denotes the spatial convolution, δ means the Dirac delta function, and the operators d 2 ( x) and d 2 ( y) represent spatial differential
perators of order 2 with respect to x and y, respecti vel y. When the initial condition u 

( z 0 ) is available, eq. ( 3 ) reads 

∂ 2 u ( x , y , z) 

∂z 2 

∣∣∣∣
z= z 0 

= h 2 ( x , y ) ∗ u ( x , y , z 0 ) . (4) 

After splitting the total pressure wavefield into up- and downgoing wavefields ( u = u 

+ + u 

−), eq. ( 4 ), following its transformation into
he wav enumber–frequenc y domain within the k x − k y plane, can be broken down into 

∂ ̃  u 

+ 

∂z 

∣∣∣∣
z= z 0 

= −i ̃  h 

+ 
1 ˜ u 

+ ( z 0 ) , 

∂ ̃  u 

−

∂z 

∣∣∣∣
z= z 0 

= + i ̃  h 

−
1 ˜ u 

−( z 0 ) , 

(5) 

here z is pointing downward, ˜ u 

+ represents the monochromatic downgoing wavefield in the wavenumber domain, and ˜ u 

− is the monochro-

atic upgoing wavefield in the wavenumber domain. The partial derivatives 
∂ ̃  u 

+ 

∂z 
and 

∂ ̃  u 

−

∂z 
e v aluated at z 0 , are denoted as 

∂ ̃  u 

+ 

∂z 

∣∣∣∣
z 0 

and

∂ ̃  u 

−

∂z 

∣∣∣∣
z 0 

, respecti vel y. Here, i = 

√ −1 , and ˜ h 

+ 
1 = 

˜ h 

−
1 = 

√ 

˜ h 2 = 

√ 

k 2 − k 2 x − k 2 y , with k = 

ω 

c . 

Inserting the derived partial deri v ati ve w avefields into the Taylor expansion for ˜ u 

± ( z 0 ± | �z| ) when k 2 ≥ k 2 x + k 2 y yields 

˜ u 

+ ( z 0 + | �z| ) = 

˜ w + z 0 +| �z| ; z 0 ︷ ︸︸ ︷ 
e −i 

√ 

k 2 −k 2 x −k 2 y | �z| ˜ u 

+ ( z 0 ) , 

˜ u 

− ( z 0 − | �z| ) = 

˜ w −z 0 −| �z| ; z 0 ︷ ︸︸ ︷ 
e −i 

√ 

k 2 −k 2 x −k 2 y | �z| ˜ u 

− ( z 0 ) , 

(6) 
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Figure 3. (a) Schematic representation of downward wav efield e xtrapolation between two virtual depth levels, considering lateral velocity variation. This 
graphic represents one single row of W 

+ 
z 0 +| �z| ; z 0 , which propagates the wavefields to a lateral position at z using a local average velocity across an operator size 

of three velocity cells. Note that the background velocity cells are defined between the virtual depth levels. (b) Schematic representation of how the incident 
wavefield interacts (reflection and transmission) at a particular virtual depth level in PWMod, where r ∪ means an upward reflectivity scalar, t + denotes a 
downward transmission scalar, and t + denotes an upward transmission scalar of a given grid point at a specific lateral location. 
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where �z denotes the extrapolation distance, ˜ w 

+ 
z 0 +| �z| ; z 0 is the downward propagator from z 0 to z 0 + �z, and ˜ w 

−
z 0 −| �z| ; z 0 is the upward

propagator from z 0 to z 0 − �z. Reverting to the space-frequency domain, eq. ( 6 ) can be expressed as follows 

u 

±( x , y , z 0 ± | �z| ) = w 

±
z 0 ±| �z| ; z 0 ( x , y , ω) ∗ u 

±( x , y , z 0 ) . (7) 

When dealing with extrapolation distances with lateral velocity changes, a matrix formulation is adopted to represent eq. ( 7 ) as 

u 

+ 
ω ( z 0 + | �z| ) = W 

+ 
z 0 +| �z| ; z 0 u 

+ 
ω ( z 0 ) , (8) 

u 

−
ω ( z 0 − | �z| ) = W 

−
z 0 −| �z| ; z 0 u 

−
ω ( z 0 ) , (9) 

where W (extrapolation/propagation matrix) is a space-variant convolutional matrix rather than a Toeplitz matrix. Fig. 3 schematically 
illustrates one row of W 

+ 
z 0 +| �z| ; z 0 propagating the wavefields downwards from z 0 to a lateral position at z using a local average velocity across

an operator size of three—selected for illustrative purposes here—velocity cells. Note that the velocity cells are defined between the virtual
depth levels. For more details on the space-variant extrapolation matrix and operator size, see Berkhout ( 1982 ) and Thorbecke et al. ( 2004 ).
One should note that the space-variant extrapolation matrix used for this research remains an approximation valid under the condition of
smooth lateral velocity changes. Interested readers are referred to Sun & Verschuur ( 2020 ) and Li et al. ( 2024 ) for insights on an accurate
extrapolation matrix for strong lateral velocity changes. 

By discretizing the subsurface into N virtual depth levels separated by �z ( �z is supposed to be suf ficientl y small to be considered
verticall y homo geneous), the fundamental equation governing the modelling of monochromatic primary reflection data recorded at the Earth’s
surface ( z 0 ) with one monochromatic physical source positioned at z 0 is given by 

u 

− ( z 0 ) = 

N ∑ 

m = 1 
W 

−
z 0 ; z m 

r ∪ ( z m 

) ◦ W 

+ 
z m ; z 0 

s + ( z 0 ) , (10) 

with 

W 

+ 
z m ; z 0 

= W 

+ 
z m ; z m −1 

T 

+ ( z m −1 ) · · · T 

+ ( z 1 ) W 

+ 
z 1 ; z 0 

, (11) 

W 

−
z 0 ,z m 

= W 

−
z 0 ,z 1 

T 

− ( z 1 ) · · · T 

− ( z m −1 ) W 

−
z m −1 ,z m 

, (12) 

where u 

− ( z 0 ) is the modelled monochromatic reflection data recorded at the Earth’s surface ( z 0 ), s + ( z 0 ) is the physical monochromatic
downgoing source at z 0 , r ∪ is the angle-independent upward reflectivity vector-operator at a layer boundary, T 

± is the angle-independent
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ownw ard/upw ard transmission matrix-operator at a layer boundary and explicitly defined by T 

± = I ± diag ( r ∪ ) , and ◦ means the Hadamard
roduct (Fig. 3 b). Note that despite expressing the forward modelling equations in three dimensions (3-D), for the remainder of this paper,
e shall consider only the 2-D case. 

.2 Optimization problem 

R-ORWI minimizes a two-parameter error function by alternating updates of the two parameters: angle-independent upward reflectivity
nd background velocity (see Algorithm 1). The error function through a linearized forward problem approximation is defined as a quadratic
unction of frequency-dependent model perturbation vectors 

E = 

1 

2 

∫ 
dωS ( δm ω ) , (13) 

ith 

S ( δm ω ) = 

N s ∑ 

s= 1 

(
� d 

−
s,ω −

∂u 

−
s,ω ( z 0 ) 

∂m 

δm ω 

)† (
� d 

−
s,ω −

∂u 

−
s,ω ( z 0 ) 

∂m 

δm ω 

)
, (14) 

nd 

m ω = 

( 

δr ∪ ω 

δc ω 

) 

, (15) 

here δm ω is the monofrequency total model perturbation vector, δr ∪ ω represents the upward reflectivity perturbation vector (the total upward
eflectivity perturbation vector δr ∪ is obtained by inte grating ov er frequenc y), δc ω denotes the background v elocity perturbation v ector (the
otal background velocity perturbation vector δc is obtained by integrating over frequency), � d 

−
s,ω represents the monochromatic residual data

ector between the observed and modelled primary reflection data at z 0 for a given source location, 
∂u 

−
s,ω ( z 0 ) 

∂m 

represents the monochromatic

ensitivity matrix—the first-order partial derivative wavefield with respect to the model parameter change—for a given source location, s
ounts the source locations, and N s shows the numbers of source locations. 

Setting the deri v ati ve of eq. ( 13 ) with respect to δm ω to zero (gradient descent optimization method) gives 

∂ E 

∂δm ω 

= 

∂S 

∂δm ω 

= 0 , (16) 

hich leads to 

m ω = Re 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

H 

a 
ω ︷ ︸︸ ︷ 

N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂m 

]† [
∂u 

−
s,ω ( z 0 ) 

∂m 

]
⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

−1 

Re 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

g ω ︷ ︸︸ ︷ 
N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂m 

]† 
� d 

−
s,ω 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

, (17) 

ith 

 

a 
ω = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂r ∪ 

]† [
∂u 

−
s,ω ( z 0 ) 

∂r ∪ 

] N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂r ∪ 

]† [
∂u 

−
s,ω ( z 0 ) 

∂c 

]
N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂c 

]† [
∂u 

−
s,ω ( z 0 ) 

∂r ∪ 

] N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂c 

]† [
∂u 

−
s,ω ( z 0 ) 

∂c 

]
⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (18) 

nd 

 ω = 

( 

g r ω 
g c ω 

) 

, (19) 

here H 

a 
ω is the monofrequency approximate Hessian matrix for all shots (equi v alent to the monofrequency Gauss–Newton Hessian matrix), g ω 

hows the monofrequency gradient vector, g r ω represents the monofrequency gradient vector for reflectivity, and g c ω denotes the monofrequency
radient vector for background velocity—note that with Gauss–Newton optimization in waveform inversion, the local convexity in inverse
odeling, despite a nonlinear forward model, resembles dealing with a linear forward model in each iteration. 

Following Jang et al. ( 2009 ) and Oh & Min ( 2013 ), the total model perturbation vector, after accounting for the ne gativ e sign indicating
he descent direction, can be expressed as the linear combination of all the monofrequency model perturbation vectors 

m = −
∫ 

dωδm ω , (20) 

here δm represents the total model perturbation vector. 
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In the n 

th cycle, the total model perturbation vector satisfies 

m 

( n + 1) = m 

( n ) + α( n ) δm 

( n ) , (21) 

where α denotes the optimization step length and reads 

α( n ) = 

� d 

−† 
(

m 

( n ) + δm 

( n ) 
)
� d 

−
(

m 

( n ) 
)

� d 

−† 
(

m 

( n ) + δm 

( n ) 
)
� d 

−
(

m 

( n ) + δm 

( n ) 
) , (22) 

resulting from minimizing the residual data with respect to the optimization step length. 
To reduce the computational load of solving the multiparameter inverse problem, we first discard the off-diagonal blocks of the

monofrequency approximate Hessian, which represent the coupling between parameter classes. This is achie ved b y setting the off-diagonal
elements of H 

a 
ω to zero. As a result, eq. ( 18 ) transforms into 

H 

a 
ω = 

[ 
H 

a , r 
ω 

H 

a ,c 
ω 

] 
, (23) 

where H 

a ,r 
ω shows the monofrequency approximate Hessian matrix to pre-condition g r ω , H 

a ,c 
ω shows the monofrequency approximate Hessian 

matrix to pre-condition g c ω , and zeroes are omitted for brevity. With this, eq. ( 21 ) turns into a system of equations with two equations with
reduced and simpler terms. We then, instead of solving the two equations simultaneously, opt to solve the equations “independently” (i.e.
minimal interdependency assumption between reflectivity and background velocity to further ease the computational load). This process 
involves an alternating scheme where we first solve the first equation to update r ∪ while keeping c fixed (migration), and then solve the second
equation to update c while keeping r ∪ fixed (reflection tomography). This alternating scheme continues until convergence is achieved. This
enables HR-ORWI to cyclically update both r ∪ and c , with an alternating scheme offering partial mitigation of the neglected interdependency
between r ∪ and c (see Algorithm 1). 

In the following section, we present how to calculate H 

a ,r 
ω and H 

a ,c 
ω in a depth-marching regime. The gradient calculations are explained

in detail in Sun et al. ( 2019 ). 

2.3 De pth-de pendent gradient pre-conditioning 

2.3.1 Reflectivity 

Since PWMod allows access to the acoustic wavefield at different virtual depth levels, g ω for the reflectivity class of parameters can be
expressed as 

g r ω = 

⎛ 

⎜ ⎜ ⎝ 

g r ω ( z 0 ) 
. . . 

g r ω ( z N ) 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂r ∪ ( z 0 ) 

]† 
� d 

−
s,ω 

. . . 
N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂r ∪ ( z N ) 

]† 
� d 

−
s,ω 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (24) 

and 

H 

a ,r 
ω = 

⎡ 

⎢ ⎢ ⎣ 

H 

a ,r 
ω ( z 0 ) 

. . . 

H 

a ,r 
ω ( z N ) 

⎤ 

⎥ ⎥ ⎦ 

, (25) 

where H 

a ,r 
ω shows a block-diagonal structure, and off-block-diagonal zeroes are here omitted for brevity. 

Within the LS-WEM context, Abolhassani & Verschuur ( 2024 ) showed that the sensitivity matrix with respect to the upward reflectivity
model at a given virtual depth level ( z � ) for a pair of source and frequency component reads 

∂ u 

−
s,ω ( z 0 ) 

∂ r ∪ ( z � ) 
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

W 

−
z 0 ; z � 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

u 

+ 
1 s,ω ( z � ) 

0 
. . . 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

W 

−
z 0 ; z � 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 
u 

+ 
2 s,ω ( z � ) 

. . . 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. . . W 

−
z 0 ; z � 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 
0 
. . . 

u 

+ 
n x s,ω 

( z � ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(26) 
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n which n x denotes the number of gridpoints at z m 

, and u 

+ 
j s,ω 

( z � ) is a complex number representing the downgoing modelled wavefield at
he j th grid point of z � . 

Integrating eqs ( 24 ), ( 25 ), and ( 26 ) into eq. ( 17 ) and then into eq. ( 20 ) yield the total angle-independent upward reflectivity perturbation
ector δr ∪ . Finally, eq. ( 21 ) is used to update the total angle-independent upward reflectivity vector r ∪ in each cycle. 

.3.2 Background velocity 

y similarity, we will here derive the sensitivity matrix for the background velocity model at a given virtual depth level ( z � ) for a pair of
ource and frequency component. 

We rewrite the monochromatic primary reflection data recorded at the Earth’s surface (eq. 10 ) into the superposition of two upgoing
avefields, one travelling from [ z � + 1 , z N ] to z 0 and the other from [ z 1 , z � ] to z 0 , 

 

−
s,ω ( z 0 ) = 

N ∑ 

m = � + 1 
W 

−
z 0 ; z m 

r ∪ ( z m 

) ◦ W 

+ 
z m ; z 0 

s + ω ( z 0 ) + 

� ∑ 

m = 1 
W 

−
z 0 ; z m 

r ∪ ( z m 

) ◦ W 

+ 
z m ; z 0 

s + ω ( z 0 ) . (27) 

The data sensitivity with respect to a single background velocity model parameter located at z � (i.e. a single column of the respective
ensitivity matrix) is found by taking the derivative of eq. ( 27 ) with respect to c j ( z � ) 

∂u 

−
s,ω ( z 0 ) 

∂c j ( z � ) 
= 

d a ︷ ︸︸ ︷ { 

N ∑ 

m = � + 1 

∂ W 

−
z 0 ; z m 

∂c j ( z � ) 
r ∪ ( z m 

) ◦ W 

+ 
z m ; z 0 

s + ω ( z 0 ) 

} 

+ 

d b ︷ ︸︸ ︷ { 

N ∑ 

m = � + 1 
W 

−
z 0 ; z m 

r ∪ ( z m 

) ◦ ∂ W 

+ 
z m ; z 0 

∂c j ( z � ) 
s + ω ( z 0 ) 

} 

. (28) 

After reintroducing W 

−
z 0 ; z m 

and W 

+ 
z m ; z 0 

as 

 

−
z 0 ; z m 

= W 

−
z 0 ; z � 

T 

−( z � ) W 

−
z � ; z � + 1 T 

−( z � + 1 ) W 

−
z � + 1 ; z m , (29) 

 

+ 
z m ; z 0 

= W 

+ 
z m ; z � + 1 T 

+ ( z � + 1 ) W 

+ 
z � + 1 ; z � T 

+ ( z � ) W 

+ 
z � ; z 0 

, (30) 

nd plugging them into eq. ( 28 ), we get 

d a = W 

−
z 0 ; z � 

T 

−( z � ) 
∂W 

−
z � ; z � + 1 

∂c j ( z � ) 
T 

−( z � + 1 ) 
N ∑ 

m = � + 2 
W 

−
z � + 1 ; z m r 

∪ ( z m 

) ◦ W 

+ 
z m ; z 0 

s + ω ( z 0 ) 

+ W 

−
z 0 ; z � 

T 

−( z � ) 
∂W 

−
z � ; z � + 1 

∂c j ( z � ) 
r ∪ ( z � + 1 ) ◦ W 

+ 
z � + 1 ; z 0 s 

+ 
ω ( z 0 ) , 

(31) 

d b = 

N ∑ 

m = � + 2 
W 

−
z 0 ; z m 

r ∪ ( z m 

) ◦ W 

+ 
z m ; z � + 1 T 

+ ( z � + 1 ) 
∂W 

+ 
z � + 1 ; z � 

∂c j ( z � ) 
T 

+ ( z � ) W 

+ 
z � ; z 0 

s + ω ( z 0 ) 

+ W 

−
z 0 ; z � + 1 r 

∪ ( z � + 1 ) ◦
∂W 

+ 
z � + 1 ; z � 

∂c j ( z � ) 
T 

+ ( z � ) W 

+ 
z � ; z 0 

s + ω ( z 0 ) , 

(32) 

n which given the assumption that W 

−
z � ; z � + 1 and W 

+ 
z � + 1 ; z � are approximate to each other, the first partial deri v ati ves of the extrapolation operator

re defined as 

∂W 

−
z � ; z � + 1 

∂c j ( z � ) 
= 

∂W 

+ 
z � + 1 ; z � 

∂c j ( z � ) 
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 
. . . 
0 

∂w j,� 
∂c j 

0 
. . . 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

n x ×n x 

, (33) 

nd w j,� means the j th row of W 

−
z � ; z � + 1 or W 

+ 
z � + 1 ; z � , with each 0 (zero in boldface) denoting a row vector of dimension 1 × n x . 

Fig. 4 provides a schematic representation of the physical interpretation of eqs ( 31 ) and ( 32 ) for a medium consisting of six virtual depth
evels, including z 0 . This illustration focuses on the scenario where c j is positioned “at the virtual depth level z 2 ” in notation (between z 2 and

z 3 in practice). 
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Figure 4. Schematic representation of d a and d b for one shot, eqs ( 31 ) and ( 32 ), in a medium with six virtual depth levels, including z 0 . (a) Receiver-side 
background velocity data sensitivity for one shot (i.e. d a ). (b) Source-side background velocity data sensitivity for one shot (i.e. d b ). 
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Now, after eq. ( 24 ), we can write, 

g c ω = 

⎛ 

⎜ ⎜ ⎝ 

g c ω ( z 0 ) 
. . . 

g c ω ( z N ) 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂c ( z 0 ) 

]† 
� d 

−
s,ω 

. . . 
N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂c ( z N ) 

]† 
� d 

−
s,ω 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (34) 

and 

H 

a ,c 
ω = 

⎡ 

⎢ ⎢ ⎣ 

H 

a ,c 
ω ( z 0 ) 

. . . 

H 

a ,c 
ω ( z N ) 

⎤ 

⎥ ⎥ ⎦ 

, (35) 

where H 

a ,c 
ω again shows a block-diagonal structure, and off-block-diagonal zeroes are here omitted for brevity. 

Incorporating eqs ( 34 ), ( 35 ), and ( 28 ) into eq. ( 17 ) and subsequently into eq. ( 20 ) give the total background velocity perturbation vector
δc . Afterward, eq. ( 21 ) is employed to update the total background velocity vector c in each cycle. 

According to eqs ( 25 ) and ( 35 ), the depth-marching nature of HR-ORWI framework facilitates constructing monofrequency, depth-
dependent approximate Hessian operators. Each monofrequency depth-dependent approximate Hessian operator is calculated for model 
parameters located on a single virtual depth level (with n x model parameters at each virtual depth level). This calculation involves both
autocor relation and cross-cor relation between the partial deri v ati ve w avefields associated with a specific depth level, while disregarding any
cross-correlation between the partial deri v ati ve w avefields of that depth level and those of other virtual depth levels. This choice, facilitated
by the frequency-domain, depth-marching nature of one-way propagators, reduces the entire monofrequency approximate Hessian, with a 
dimension of n m 

× n m 

( n m 

= N × n x , representing the total number of model parameters within the entire medium), into multiple suboperators,
each tailored to a single virtual depth level (i.e. N operators with a reduced dimension of n x × n x ). Reducing the entire monofrequency
approximate Hessian into N smaller suboperators lowers the memory and processing demands for constructing, storing, and inverting in 
large-scale prob lems, w hile still retaining essential information for pre-conditioning at each depth lev el. The inv erse of H 

a,r 
ω ( z � ) and H 

a,c 
ω ( z � )

accounts for geometric spreading and the spatial correlations of neighbouring model parameters at z � , while also performing frequency-wise
source deconvolution. Compared to the monofrequency Gauss–Newton Hessian (Pratt et al. 1998 ), this approach approximates a block- 
diagonal representation of the monofrequency Gauss–Newton Hessian by assembling all monofrequency, depth-dependent approximate 
Hessian matrices into a single large matrix representing the entire medium (Abolhassani & Verschuur 2024 ). 

2.4 HR-ORWI versus standard ORWI 

Standard ORWI leverages the same forward problem theory as HR-ORWI and similarly updates reflectivity and background velocity by 
minimizing the errors in primary reflection waveforms for each class of parameters alternately, meaning that both standard ORWI and
HR-ORWI follow the same inversion workflow, i.e. Algorithm 1. 
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Figure 5. Stacked reflectivity perturbation and one-source–receiver-pair background velocity perturbation in a two-layer model after one cycle (1 × LS migration 
and 1 × LS tomography). (a, b) Standard ORWI: (a) Stacked reflectivity perturbation and (b) One-source–receiver-pair background velocity perturbation. (c, 
d) HR-ORWI: (c) Stacked reflectivity perturbation and (d) One-source–receiver-pair background velocity perturbation. 
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Unlike HR-ORWI, standard ORWI minimizes eq. ( 13 ) as a quadratic function of δm rather than δm ω . Setting the deri v ati ve of eq. ( 13 )
ith respect to δm to zero (gradient descent optimization method) gives 

r ∪ = − Re 

{ ∫ 
d ω H 

a ,r 
ω ( x , x ) 

} −1 

Re 

{ ∫ 
d ω 

N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂r ∪ 

]† 
� d 

−
s,ω 

} 

, (36) 

c = − Re 

{ ∫ 
d ω H 

a ,c 
ω ( x , x ) 

} −1 

Re 

{ ∫ 
d ω 

N s ∑ 

s= 1 

[
∂u 

−
s,ω ( z 0 ) 

∂c 

]† 
� d 

−
s,ω 

} 

, (37) 

here H 

a ,r 
ω ( x , x ) indicates that only the diagonal elements of the monofrequency approximate Hessian possess values (see Staal 2015 ). This

ype of pre-conditioning only accounts for geometric spreading. Lastly, eq. ( 21 ) is employed in order to update the total angle-independent
pw ard reflecti vity v ector r ∪ and the total background v elocity v ector c in each c ycle. 

We now use a two-layer model to e v aluate the fidelity of the reflectivity and background velocity gradients in HR-ORWI versus Standard
RWI. The upper layer has a homogeneous background velocity of 3500 m s −1 , while the bottom layer has a homogeneous background
elocity of 3000 m s −1 . The interface is at a depth of 800 m. 41 shots are triggered every 75 m on the surface. A 10 Hz Ricker wavelet is used
s the source function with a fixed-spread acquisition geometry (the maximum av ailable of fset is 3000 m). We fix the migration offset—
ata offsets used for seismic migration—at 400 m (near-offset imaging) and use an initial background velocity model of 3400 m s −1 (i.e.

3 per cent error). Fig. 5 displays the stacked reflectivity perturbation ( δr ∪ ) and one-source–receiver-pair background velocity perturbation,
stimated after one cycle (1 × LS migration and 1 × LS tomography) of standard ORWI and HR-ORWI. 

Comparing Figs 5 (a) and (b) (standard ORWI) with Figs 5 (c) and (d) (HR-ORWI) reveals that HR-ORWI provides significantly better
esolution in both the image and tomogram than standard ORWI. In Figs 5 (a) and (b) (standard ORWI), the signature of the source function
s visible in both the image and tomogram. The pair of transmission-after-reflection wave paths in Fig. 5 (b) (standard ORWI) are unfocused
nd band-limited, as manifested by the scattering of reflected energies over a larger area compared to Fig. 5 (d) (HR-ORWI), which makes
nformation extraction from the data more challenging. In contrast, Figs 5 (c) and (d) (HR-ORWI) show superior resolution in both the image
nd tomogram. This improvement is attributed to the source signature deconvolution effect embedded in the proposed depth-dependent
pproximate Hessian operators. With better-focused transmission-after-reflection wave paths, HR-ORWI is better positioned to handle the
omplex interference of the wave paths in challenging geological settings, supporting more reliable search directions than standard ORWI. 

With acquisition configurations identical to those used in the experiment associated with Fig. 5 , we use the same two-layer model to
ompare the stacked background velocity perturbations estimated through HR-ORWI and standard ORWI. In the experiment, we use an
nitial background velocity model of 3000 m s −1 (i.e. ≈ 15 per cent error). Additionall y, we adopt the of fset-selection strategy presented in
ppendix A . That is, we fix the migration offset at 800 m (maximum effective migration offset: MEMO), use the mid-to-far-offset residual
ata ( | offsets | > 500 m) for tomography, and exclude the cycle-skipped far-offset data for tomography. Fig. 6 compares the respective
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Figure 6. Background velocity perturbation corresponding to the two-layer model, estimated after one cycle (1 × LS migration and 1 × LS tomography) for 
(a) standard ORWI and (b) HR-ORWI. 

Figure 7. Fault model example. (a) True background velocity model. (b) Initial background velocity model. 
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backg round velocity per turbations ( δc ) after one cycle (1 × LS mig ration and 1 × LS tomog raphy) of HR-ORWI and standard ORWI. Upon
comparison, it is observed that the superposition of tomographic wavepaths estimated through HR-ORWI exhibits a higher level of geometric
consistency and homogeneity with the true layer. This observation highlights the accuracy of HR-ORWI in capturing subsurface features, 
resulting in a more faithful representation of the truth. 

3  N U M E R I C A L  E X A M P L E S  

First, we validate the effectiveness of HR-ORWI compared to standard ORWI using two synthetic examples. Second, we e v aluate the
performance of HR-ORWI with synthetic data on the marine-environment Mar mousi model (Mar tin et al. 2006 ). In all the examples, we
adopt the offset-selection strategy presented in Appendix A . 

3.1 Fault model 

In the fault model example (Fig. 7 a), the observed data is generated via PWMod (only primary reflections), employing a 10 Hz Ricker wavelet.
The fault model is discretized with 201 gridpoints in the horizontal direction (20 m interval) and 201 gridpoints in the vertical direction (5 m
interval). 41 shots with 100 m spacing are used, and each shot is recorded by 201 receivers with a fixed-spread acquisition geometry at the
surface of the Earth. The maximum available offset in the data is limited to 3000 m. The data is recorded for a duration of 1.6 s. The initial
background velocity model is a 1-D linearly increasing gradient model (Fig. 7 b), and the initial reflectivity model is zero. We fix the migration
offset at 1000 m, use the mid-to-far-offset residual data ( | offsets | > 500 m) for tomography, and exclude the cycle-skipped far-offset data for
tomography in each cycle. 

The 0–30 Hz frequency band data is inverted at once, that is the inversion process does not involve a multiscaling strategy (Bunks
et al. 1995 ). Each cycle of ORWI includes 1 × LS migration and 1 × LS tomography. While Fig. 8 provides a comparison of the estimated
backg round velocity per turbations ( δc ) via standard ORWI and HR-ORWI after one cycle, Fig. 9 compares the estimated tomograms using
standard ORWI and HR-ORWI after 25 and 50 cycles. 

Comparing Figs 8 (a) and (b) reveals a clear optimization direction with HR-ORWI shortly after the first cycle, where the fault line
and balanced-amplitude background velocity perturbations are visible from shallow to deep. Emphasizing the reliability of HR-ORWI, this 
comparison also highlights the potential confusion that might be introduced with standard ORWI. 

By comparing Figs 9 (a) and (c) to Figs 9 (b) and (d), respecti vel y, it becomes evident that the estimated tomogram via HR-ORWI after 25
cycles closely aligns with, or ev en e xcel, the estimated tomogram via standard ORWI after 50 cycles. Further comparison also confirms the
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Figure 8. Background velocity perturbations associated with the fault model example estimated after one cycle (1 × LS migration and 1 × LS tomography) of 
ORWI. (a) Background velocity perturbation estimated via standard ORWI. (b) Background velocity perturbation estimated via HR-ORWI. 

Figure 9. Estimated tomograms associated with the fault model example. (a) and (c) Estimated tomograms after 25 and 50 cycles (each cycle involves 1 × LS 
migration and 1 × LS tomography) of standard ORWI. (b) and (d) Estimated tomograms after 25 and 50 cycles (each cycle involves 1 × LS migration and 1 ×
LS tomography) of HR-ORWI. 
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xistence of persistent and non-physical artifacts in tomograms estimated via standard ORWI from the first to the fiftieth cycle. The accuracy
f the tomogram estimated via HR-ORWI after 50 cycles (Fig. 9 d) is self-evident. 

Fig. 10 (convergence history) again validates that HR-ORWI exhibits faster convergence and is able to achieve a better data fit in fewer
ycles compared to standard ORWI. 
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Figure 10. Convergence history (data error curve) associated with the fault model example. 

Figure 11. Reservoir model example. (a) True background velocity model. (b) Initial background velocity model. 
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3.2 Reservoir model 

In the reservoir model example, a buried low velocity reservoir lies beneath a lens-shaped geological formation with high velocity (Fig. 11 a),
discretized into a grid of 251 points horizontally and 121 points vertically, both spaced at 10 m intervals. The observed data set is acquired
with a fixed-spread acquisition geometry, including 26 shots with 100 m spacing and 251 receivers, both distributed at the surface of the
Earth. The data set contains 1.4 s records, generated with a 15 Hz Ricker wavelet as the source function using PWMod, including only
primary reflections. The maximum available offset in the data set is limited to 2000 m. The initial background velocity model is a 1-D linearly
increasing gradient model, illustrated in Fig. 11 (b), and the initial reflectivity model is zero. We fix the migration offset at 1000 m (MEMO),
use the mid-to-far-offset residual data ( | offsets | > 500 m) for tomography, and exclude the cycle-skipped far-offset data for tomography in
each cycle. The 0–25 Hz frequency band data is inverted at once (no multiscaling), and each cycle of ORWI includes 1 × LS migration and
1 × LS tomography. Fig. 12 compares the estimated tomograms using standard ORWI and HR-ORWI after 25 and 50 cycles. 

Comparing Fig. 12 (a) with Fig. 12 (b) reveals that standard ORWI, after 25 cycles, still struggles to distinguish between the lens body
and the underlying flat lay er, w hereas HR-ORWI reliab ly resolves this. Fur ther more, while standard ORWI completely misestimates the
background velocity of the reservoir body, HR-ORWI shows an accurate retrie v al. 

Comparing Fig. 12 (c) with Fig. 12 (b) shows that the tomogram estimated with HR-ORWI after 25 cycles not only aligns with the
tomogram estimated with standard ORWI after 50 cycles but also surpasses in accuracy, especially at the reservoir level; this is observed
while both share nearly identical data errors according to Fig 13 . The accuracy of the tomogram estimated via HR-ORWI after 50 cycles
(Fig. 12 d) is self-evident. 
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Figure 12. Estimated tomograms associated with the reservoir model example. (a) and (c) Estimated tomograms after 25 and 50 cycles (each cycle involves 
1 × LS migration and 1 × LS tomography) of standard ORWI. (b) and (d) Estimated tomograms after 25 and 50 cycles (each cycle involves 1 × LS migration 
and 1 × LS tomography) of HR-ORWI. 

Figure 13. Convergence history (data error curve) associated with the reservoir model example. 
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Figure 14. Marmousi2 model example. (a) True background velocity model. (b) Initial background velocity model. 
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Fig. 13 (convergence history) again verifies that HR-ORWI comes with faster convergence and can reach a better data fit in fewer cycles
compared to standard ORWI. 

3.3 Marmousi2 model 

The Marmousi2 model example (Fig. 14 ) contains 334 × 103 gridpoints with intervals of 22 m. The observed data is generated via PWMod
(only primary reflections) with a 10 Hz Ricker wavelet as the source function. With a shooting interval of nearly 200 m, 41 shots are triggered
at the surface of the Earth, and each shot is recorded by 334 receivers planted on the surface of the Earth (fixed-spread acquisition). The
data is recorded for 4.096 s, and the maximum available offset is limited to 4 km. To build the initial background velocity model, the true
background velocity model is smoothed out by applying a square Gaussian kernel with a standard deviation of 1100 m. Subsequently, a single
vertical profile is chosen to construct the initial 1D model with a water layer on top, as shown in Fig. 14 (b). The initial reflectivity model is
set to zero. We fix the migration offset at 2 km (MEMO), use the mid-to-far-offset residual data ( | offsets | > 0 . 5 km) for tomography, and
exclude the cycle-skipped far-offset data for tomography in each cycle. As we advance through cycles and update the background velocity, a
growing number of offsets contribute to tomography as they are no longer cycle-skipped. This process continues until all offsets up to 4 km
have been taken into account. 

To invert the data within the 0–18 Hz frequency band, a multiscaling strategy is employ ed, inv olving three frequency bands: 0–5, 0–11,
and 0–18 Hz. For both 0–50 and 0–11 Hz, the inversion process involves 20 cycles, each with 1 least-squares LS migration iteration and 1
LS tomography iteration. The image does not reset to zero after each cycle. For the 0–18 Hz band, the inversion process involves a total of 60
cycles, each with 1 × least-squares LS migration iteration and 1 × LS tomography iteration, and no image reset after each cycle. Note that the
reflectivity model is reset back to zero after each frequency scale. The estimated background velocity perturbations (cycles 1 and 100) and
tomogram (cycle 100) through HR-ORWI are displayed in Figs 15 and 16 , respecti vel y. 

The estimated background velocity perturbation after the first cycle (Fig. 15 a) illustrates that the pre-conditioned tomographic gradient 
reliably points in the right direction even from the outset. The main reflections have been correctly interpreted. The tomographic update focuses
primarily on reflected events within the depth range of 0–1.5 km. Fig. 15 (b) shows the estimated background velocity perturbation after the
100th cycle. It is evident that the tomographic gradient of HR-ORWI successfully samples the low-to-intermediate model wavenumbers of 
the true background velocity properly in 100 cycles from shallow to deep, though with a depth-dependent decreasing resolution (Williamson
1991 ). 

The estimated tomogram after 100 cycles is shown in Fig. 16 (a). In addition, a smoothed version of the true background velocity model
with the aid of a square Gaussian kernel with a standard deviation of 75 m and a water layer on top is generated and shown in Fig. 16 (a). A
comparison of the two models presented in Fig. 16 indicates that the estimated tomogram has a resolution approximately similar to that of
the smoothed true model. 

To check the quality of the estimated tomo gram, dif ferent vertical profiles located at the lateral locations of 3000, 3750, and 4600 m
are extracted and plotted out in Fig. 17 . It can be seen that the estimated background velocity in all extracted lateral locations is smooth but
significantly close to the true velocity. 
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Figure 15. Background velocity perturbations associated with the Marmousi2 model example. (a) Background velocity perturbation estimated after the first 
cycle of HR-ORWI. (b) Background velocity perturbation estimated after the 100th cycle of HR-ORWI. 

Figure 16. (a) Smoothed true background velocity model of Marmousi2 generated via a square Gaussian kernel with a standard deviation of 75 m and a water 
layer on top. (b) Estimated tomogram associated with the Marmousi2 model example after 100 cycles of HR-ORWI. 
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To assess the extent of uplift in the background velocity from cycle 1 to cycle 100, various images using different background velocity
odels, including true, initial, smoothed and estimated, are presented in Fig. 18 . Upon comparing the images mapped with the initial and

stimated background velocity models (Figs 18 b and d), a significant kinematic uplift can be observed in Fig. 18 (d), attributed to the enhanced
ocus of the reflectors. After comparing the images mapped with the true and estimated background velocity models (Figs 18 a and d), a
ignificant kinematic uplift is again confirmed in Fig. 18 (d) based on the reasonably accurate positioning of the reflectors. Comparing the
mages mapped with the smoothed and estimated background velocity models (Figs 18 c and d) also suggests that a “maximum” kinematic
plift within the achie v able resolution of RWI has occurred in Fig. 18 (d). 
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Figure 17. Vertical background velocity profiles associated with the Marmousi2 model e xample. A v ertical profile of the estimated tomogram at the lateral 
location of (a) 3000 m, (b) 3750 m, and (c) 4600 m. 

Figure 18. Images using different background velocity models associated with the Marmousi2 model example. The mapped images correspond to the (a) true, 
(b) initial, (c) smoothed and (d) estimated background velocity models. 
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4  D I S C U S S I O N  

The one-way (up and down) wave-equation extrapolation technique has persisted in the seismic imaging industry despite its weaknesses 
(for details on weaknesses, see Mulder & Plessix 2004 ), as it offers computational efficiency when contrasted with direct solutions to the
Helmholtz equation. In this research, we demonstrated the potential use of one-way wave-equation forward modelling, that is PWMod, in
efficient gradient pre-conditioning to enhance suboptimal images and tomograms resulting from RWI. In terms of constructing, inverting or 
storing, depth-dependent approximate Hessians computed based on PWMod are more feasible than doing so for pre-conditioners computed 
at once for all model parameters within the medium. Despite being feasible, it remains time-intensive compared to standard ORWI (i.e.
HR-ORWI is six to nine times more e xpensiv e but requires half the iterations of standard ORWI, ef fecti vel y making it three to five times
more e xpensiv e ov erall), giv en the current implementation and the capabilities of the current computing resources. Ho wever , there are ways
to reduce the time intensity. Among others, source subsampling in the computation of H 

a (Matharu & Sacchi 2019 ) sounds promising.
According to our in-house inquiries, HR-ORWI with source subsampling in constructing H 

a 
ω —specifically, one source out of three—could 

retrieve high-resolution tomograms consistent with this study. Even though each iteration would still take two to three times longer, the
retrie v al is reached in half the iterations of standard ORWI, making it almost equally e xpensiv e ov erall. 
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Selecting one technology over another often involves e v aluating the cost-versus-quality trade-of f. While cost-ef fecti veness must remain
 key priority, compromising accuracy due to budget constraints in exploration seismology can raise significant concerns. In the reservoir
odel example presented in this paper, we clearly observed how choosing a budget-conscious technology (i.e. standard ORWI) can lead to

ncorrect subsurface illumination, resulting in misinterpretations of subsurface properties and potentially far-reaching consequences. Using
heaper technology can indeed be a double-edged sword; while it saves money upfront, the outcome could be irreversible. This portrays the
omplexity of decision-making dynamics in exploration seismology. 

Although we did not use any model-based regularization in this study, integrating approaches like structure-oriented regularization
uided by the reflectivity model may further enhance the fidelity of tomographic updates in HR-ORWI (Masaya & Verschuur 2018 ; Yao et al.
019 ; Provenzano et al. 2023 ). 

Real data applications require careful consideration of several additional factors. The negative potential impact of source wavelet
stimation errors and the absence of low-frequency data on the stability of HR-ORWI should be carefully explored. Fur ther more, addressing
mplitude versus offset (AVO) effects in the ORWI process is crucial. Qu & Verschuur ( 2021 ) recommend minimizing AVO effects before
pplying ORWI. In this study, through inverse-crime numerical examples, we assumed reduced AVO effects in the data, facilitating a thorough
 xamination of ORWI conv ergence. Challenges may also arise in accommodating anisotropy effects and integrating the Q-effect into ORWI,
s highlighted in other studies (Alshuhail & Verschuur 2019 ; Safari & Verschuur 2023 ). 

 C O N C LU S I O N S  

imited or unresolved resolution in both migration and reflection tomography components of RWI can lead to suboptimal velocity estimation.
o address this within the context of ORWI, we introduced a pre-conditioning strategy that enhanced both the migration and tomography

oops, resulting in high-resolution updates for both reflectivity and background velocity. We named this approach HR-ORWI, where diagonal
locks of the monofrequency Gauss–Newton Hessian operators, each corresponding to a specific virtual depth level, are extracted and inverted
o pre-condition their corresponding monofrequency gradients. This approach performs a partial deconvolution of the gradient while keeping
emory and computational requirements manageable. Through three synthetic examples, we demonstrated that HR-ORWI generates superior

ackground velocity estimations compared to standard ORWI. 
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P P E N D I X  A :  O F F S E T - S E L E C T I O N  S T R AT E G Y  

espite its conceptual appeal and aside from the resolution challenges, ORWI could face other limitations due to other factors: (1) Full-wave
nconsistency in the short-offset residual data for tomography due to inconsistent reflectivity and velocity models (Valensi & Baina 2021 ;
iang et al. 2022 ; Provenzano et al. 2023 ). (2) The standard practice in the RWI community for mitigating the adverse imprint of inconsistent

eflectivity and velocity models often involves using short-offset or near-zero offset data for migration (Provenzano et al. 2023 ). Ho wever ,
his can degrade the illumination and signal-to-noise ratio of the reflectivity model and result in an increased number of least-squares
igration iterations. (3) Adverse contribution of cycle-skipped long-offset reflection data in tomography (e.g. Abolhassani & Verschuur

022 ; Provenzano et al. 2023 ). 

1 Tomography offset: short offsets 

o minimize the impact of inconsistent reflectivity and velocity models on the tomog raphic g radient of ORWI, we propose muting their
ele v ant erroneous tomographic wave paths in the residual data gathers, which are typically established at short offsets. 

2 Migration offset 

uilding upon the muting of short-offset residual waveforms for tomography, we extend the migration offset to improve both the illumination
nd the signal-to-noise ratio of the reflectors. We follow Algorithm 2, aiming for an extended offset for migration (rather than short offset)
here a significant reduction in the misfit function is impracticable. The misfit indeed remains unchanged as the amplitude fit fails to
etter itself while mapping more out-of-phase reflection data into the model space. This denotes the MEMO, l ying averagel y between the
hort offset and the maximum uncycle-skipped offset in the data. Algorithm 2 is applied as a quality control measure prior to ORWI. This
lgorithm calculates the misfit function value for various offset ranges up to the maximum offset within the acquisition. Following this, on
he misfit-offset graph, we pick an offset right before the curve starts to become nearly horizontal on a logarithmic scale. 

Algorithm 2 Migration offset analysis pseudo-code 
for h ← 0 to max( offset ) do 

image ← 1x LS migration with h 
d −mod ← forward modeling with image and background velocity model 
� d − ← d −obs − d −mod � � d − is the full-offset residual data 
store the misfit function value associated with h 

end for 
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A3 Tomography offset: long offsets 

A given pair of modelled and observed seismic traces in the time domain are called cycle-skipped traces if their time distance is larger than
half a cycle time shift (Virieux & Operto 2009 ). Inspired b y v an Leeuwen & Mulder ( 2010 ), we defined Algorithm 3 as a time-domain
two-step data-selection algorithm excluding the contribution of the cycle-skipped long-offset residual data in the tomography loop of ORWI 
to obtain a tomographic update free of the damaging effect of cycle-skipping in each iteration. In Algorithm 3, we identify a given pair of
time-domain modelled and observed seismic traces as cycle-skipped if their maximum correlation lag exceeds a reference lag determined by
the dominant period of the observed trace. Based on this criterion, our time-domain data-selection algorithm relies on the cross-correlation
of these traces within a sliding window (referred to as local cross-correlation), safeguarded by a preliminary global cross-correlation of the
given traces. This global cross-correlation functions as a protection, protecting subsequent local cross-correlations from irregularities in the 
modelled waveform. Without this safeguard, the outputs of the local cross-correlations would not meet the required accuracy. 

Algorithm 3 Cycle-skipping check pseudo-code 

� D obs and D mod are 3D matrices representing the observed and modeled data (full-shot). 
� n t × n g × n s is the size of D obs . 
� n t is the total number of time samples. 
� n g and n s are the total number of receivers and the total number of shots. 
� � w and � r are the correlation-window length and reference lag. 
� ω c is the current maximum frequency in D . 
� ω m 

is the peak frequency of the seismic wavelet. 
� win c is the current correlation window. 

function CYCLESKIPPINGCHECK( D obs , D mod , n g , n s , n t , � w , � r , ω c , ω m 

) 
TIMETABLE ← a matrix of ones of size: n g × n s 
for ishot ← 1 to n s do 

ϕ ← determine the anchor offset index in the current shot gather 
ι ← ϕ 

κ ← ϕ − 1 
for m ← [1, 2] do 

flag ← true 

while 

(
m = 1 and flag = true and ι ≤ n g 

)
or 

(
m = 2 and flag = true and κ ≤ 1 

)
do 

d obs , n obs ← current observed trace and the associated first-break sample 
d mod ← current modeled trace 
if ω c > ω m 

then 
d obs , d mod ← d obs [ n obs : n t ], d mod [ n obs : n t ] 

else 
d obs , d mod ← d obs [1 : n t ], d mod [1 : n t ] 

end if 
calculate cross-correlation between d obs and d mod � global cross-correlation 
if max correlation lag < � r then 

win ← [1 : � w : n t ] 
b ← length( win ) 
for τ ← 1 to b do 

win c ← [1 : win ( τ + 1)] 
calculate cross-correlation between d obs and d mod in win c � local cross-correlation 
if max correlation lag < � r then 

if τ = b then 
tmp ← n t 

else 
tmp ← n obs + win c ( end ) 

end if 
if m = 1 then 

TIMETABLE [ ι, i s hot] ← tmp 
else 

TIMETABLE [ κ, i s hot] ← tmp 
end if 

else 
flag ← false 
break 

end if 
end for 

else 
flag ← false 

end if 
if m = 1 then 

ι ← ι + 1 
else 

κ ← κ − 1 
end if 

end while 
end for 

end for 
end function 
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