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Efficient Implementation of GPR Data Inversion in
Case of Spatially Varying Antenna Polarizations

Jianping Wang

Abstract— Ground penetrating radar imaging from the data
acquired with arbitrarily oriented dipole-like antennas is con-
sidered. To take into account variations of antenna orientations
resulting in spatial rotation of antenna radiation patterns and
polarizations of transmitted fields, the full-wave method that
accounts for the near-, intermediate-, and far-field contribu-
tions to the radiation patterns is applied for image recon-
struction, which is formulated as a linear inversion problem.
Two approaches, namely, an interpolation-based method and a
nonuniform fast Fourier transform-based method, are suggested
to efficiently implement the full-wave method by computing exact
Green’s functions. The effectiveness and accuracy of the method
proposed have been verified via both numerical simulations and
experimental measurements, and significant improvement of the
reconstructed image quality compared with the traditional scalar-
wave-based migration algorithms is demonstrated. The results
can be directly utilized by forward-looking microwave imaging
sensors such as installed at tunnel boring machine or can be used
for the observation matrix computation in regularization-based
inversion algorithms.

Index Terms— Green’s function (GF), ground penetrating
radar (GPR), microwave imaging, nonuniform fast Fourier trans-
form (NUFFT), radiation pattern, rotated array.

I. INTRODUCTION

ODAY tunnel boring machine (TBM) has become a

very powerful and important piece of equipment for
tunnel construction in underground civil engineering projects,
for instance, building metro lines and water transportation
systems. It substantially improves the working efficiency
and reduces human exposure in the hazardous work envi-
ronment compared with the conventional “hand mining”
approach. However, due to lack of adequate geological infor-
mation in front of a TBM, some potential problems or even
risks still exist during tunnel construction. For example,
unawareness of brutal change of geological structure may
cause a TBM to deviate from the planned construction path.
To avoid such problems and risks, a reliable and robust ground
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prediction system is always required to predict the ground in
front of a TBM during its operation.

As a nondestructive test tool, ground penetrating
radar (GPR) exploits electromagnetic (EM) waves to
investigate subsurface structures and objects, which provides
great potential for ground prediction in the TBMs. Although
GPR has been broadly used for geophysical investigation and
subsurface survey [1], its extension to the TBM application
brings some unique features and thus some new challenges.
In the conventional applications, GPR system typically
performs measurements along a line or over a 2-D rectilinear
grid on the ground surface, while in the TBM application,
GPR antennas are mounted on the TBM cutter-head and
acquire signals during its rotation [2]-[4]. Thus, in essence,
the GPR signals are acquired with a rotating antenna array
over a polar grid, which is named radial-scanned synthetic
aperture radar (RadSAR) [5]. However, the rotation of TBM
cutter-head constantly changes GPR antenna orientation,
i.e., antenna polarization and radiation patterns within
the synthesized antenna array, which is distinct from the
conventional (synthetic) GPR arrays. As a consequence,
this difference makes the scalar wave assumption used
for traditional imaging algorithms, for instance, Kirchhoff
migration invalid. Thus, their imaging performance is
degraded in this circumstance. Although the RadSAR has
been discussed for near-field imaging [5] and subsurface
object detection [6], in both cases, the effects of the variation
of antenna orientations during the rotation were neglected
and EM signals were treated as the scalar wave for imaging.

Due to the vector nature of EM waves, the variation
of antenna orientations within the rotating arrays constantly
changes the antenna polarizations and then the radiation pat-
terns in space with respect to the scatterers. To circumvent
the variation of antenna polarizations within the array aper-
ture, one approach is to retrieve the polarized signals in an
aligned polarization basis (e.g., H/V basis) through specifically
designed antenna arrays. A novel rotating antenna array was
proposed for full-polarimetric imaging in [7], where three
copolarized signals were measured at each spatial position.
Through a simple algebraic operation, full-polarized signals
are retrieved from the three copol measurements at each
position. Then the traditional image algorithms can be used
for image formation. However, extra antennas are needed
in this approach, which is not desirable for the practical
GPR systems with limited space for antenna installation such
as in TBM applications.
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As mentioned above, the variation of antenna orientations
causes not only the variation of antenna polarizations but also
the variation of radiation patterns with respect to the scatters.
Thus, an alternative approach to overcome the impact of the
variation of antenna orientations on imaging is to compensate
for the effects of radiation patterns on the EM signals. In the
literature, the effects of antenna radiation patterns have been
considered to get quantitatively correct GPR images with
the traditional GPR data acquisition schemes [8]-[16]. For
example, the far-field radiation pattern derived in [17] has been
incorporated in Kirchhoff migration [9] and generalized Radon
transform [10] for GPR data processing. In [11] and [12],
the diffraction tomography is discussed based on the approx-
imated Green’s function (GF) in the horizontal wavenumber—
frequency (i.e., k—f) domain. In [8], a migration approach
is presented by incorporating far-field radiation pattern and
Alford rotation to extract the azimuth direction of targets.
In [15], a matrix-based inversion approach is proposed in
which the copolarized and cross-polarized GPR data are
migrated as a matrix combining the far-field approximation
of radiation patterns and their information is merged into
one image. By integrating far-field radiation patterns, these
approaches provide superior performance compared with the
scalar-wave ones. However, the extrema in the far-field radia-
tion patterns generally lead to low image quality, especially
for the extended targets illuminated over narrow ranges of
incidence angles. To address this problem, the multicomponent
imaging approach is further improved by the use of full-wave
radiation patterns that account for the exact fields, i.e., near-,
intermediate-, and far-field contributions [16].

Although a fast Fourier transform (FFT)-based method was
suggested for exact half-space GFs computation in the k—f
domain and the multicomponent migration approach provides
the best imaging performance [16], it requires multicomponent
GPR data and assumes antenna orientations are consistent
within the aperture. Namely, their radiation patterns are lin-
early translated, i.e., shift-invariant in space. However, this
property is spoiled in the case of antennas with spatially
varying orientations, for example, rotating antenna arrays
in the TBM applications. Thus, it is not straightforwardly
applicable in our case.

In this paper, we addressed the problem of GPR imaging
by antennas with spatially varying orientations over data
acquisition aperture (e.g., rotating antenna arrays), by consid-
ering the full-wave radiation patterns through linear inversion.
The focus of this paper is the construction of the observa-
tion matrix. In the implementation, two methods were sug-
gested to efficiently compute the exact GFs of rotated dipole
antennas: interpolation-based method and nonuniform FFT
(NUFFT)-based method. Both methods consider the effects
of antenna translation and rotation in space using the shift
and rotation properties of 2-D Fourier transform. By com-
pensating the effects of the variation of antenna orientations,
the suggested approach could significantly improve the quality
of reconstructed images compared with the traditional ones.

The rest of this paper is organized as follows. In Section II,
the linear inversion formulation for the GPR imaging by
antennas with spatially varying orientations is presented.
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Fig. 1. Geometrical configuration of 3-D imaging with a rotating antenna
array. With the rotation of the linear array, the antenna polarizations constantly
change.

Then two approaches to compute exact GFs of rotated anten-
nas are discussed in Section III. Numerical simulations are
performed to demonstrate the efficiency and accuracy of
the two methods for GF computation as well as the imag-
ing performance of the suggested approach in Section IV.
Section V shows experimental results to demonstrate the sug-
gested imaging approach. Finally, some conclusions are drawn
in Section VI.

II. SIGNAL MODEL

Assume the transmit and receive (dipole-like) antennas are
placed along a radius of a circular aperture on the x; ox2
plane and their orientations are parallel to the radius, as shown
in Fig. 1. With the rotation of the circular aperture transmit
and receive antenna arrays, the antennas illuminate the scene
of interest and the scattered signals are acquired over the
space. As a consequence, an equivalent circular antenna array
is synthesized. Based on the Born approximation, the scattered
EM signals for a pair of transmitting and receiving antennas
can be formulated as [15]

EZﬁ(XR, x', w)
= / Daﬁ(xR,xT|xC,w) ®X(xc)Jﬁ(xT,w)dV
V(X“‘)

= S(w) / Dyp xR, xT|x¢, a))bﬁ(xT, o)y xHdV (1)
V (x)

where ® denotes the spatial convolution, D, is the wavefield
extrapolator that describes the wave propagation of electric
field from a pf-polarized point source Jﬁ(xT,a)) at x! to
a scatterer at x° and then to a a-polarized receive antenna
at x®, and x(x®) = 7 — 5 is the contrast function and defined
as the difference of the background physical property 7 and
scatterer’s physical property #. Here the EM physical property
n is defined as # = o + jwe, where o is the conductivity
and € is the permittivity. Moreover, in the last line of (1),
it has used the expression for point source Jﬂ(xT,a)) as a
product of the wavelet of the radiated signal S(w) and the
polarization vector bg(x”, w): Jg(xT, w) = S(w)bp(x”, w).
In space, the wavefield extrapolator D,s is explicitly rep-
resented as an inner product of the GFs of transmit and
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receive antennas

3

Dyp = Z GuGip 2)
=1

where [ € {1, 2,3} represents the electric field orthogonal
directions. G4 and Gy are the GFs in the [-direction for
a-pol receive and f-pol transmit antennas, respectively. In the
discrete form, (1) can be written as

E;ﬁ(xR,xT,a)) =S(w)- AV
Np

) Z Dy ( xT,xR‘ xp, o) x (xf) 3)
k=1

where N, is the number of partition cells of the imaging
scene and AV is the volume of each partition cell. S(w) is
the spectrum of the wavelet. Considering all the transmit and
receive antenna pairs and the discrete frequencies within the
signal bandwidth, scattered signals can be represented in a
matrix form

E' =Dw,.np)xn, - X (X) (4)

where Ny is the number of transmit—receive antenna pairs, Ny
is the number of the discrete frequencies within the operational
bandwidth, and E* is a Ny - Ny column vector formed by all
the measurements. In (4), the constant S(w) - AV has been
normalized with respect to the spectrum of each frequency.
x (X) is a vector and represents the contrast functions of the
pixels

XX = [x(x) x(x3) x ()" ®)

where superscript T refers to the matrix transpose operation
and x{, x5, ---, X§, are the positions related to each pixel
in the imaging scene. D is the matrix of the forward wavefield
extrapolator, which is represented as

D =[D;,Dy, -, Dy,]7 (6)
where Dy € CNv*Nr g =1,2,---, Ny, and
D,=[D(x/*, 1), DX/, ), - , D[, oy, )]

D (x!'*, ) =[ D (xI *1x5, 1), D (x] ¥[x5, 1)

S
s Dyp (XSTR|Xf\,p, w,)]T

wheret =1,2,---, Ny, and xSTR denotes the positions of the
sth transmit-receive antenna pair, i.e., (xR, XT).

The objective of imaging process is to retrieve the contrast
functions of the targets relative to the background media,
which requires to solve the large system of linear equations
in (4). The least squares estimation of the contrast functions
of the scatters can be represented as

1(X)=D".E (7)

where DT = (DFD)~'D#, and the superscript # and (-)~!
refer to the Hermitian transpose and the inverse operation
of a matrix. As the wavefield extrapolator D is typically a
matrix with dimensions of thousands or even more, the inverse
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operation of DD is extremely computationally expensive.
To save the computational load, (7) can be rearranged as

DDy = D7E’. (8)

Then some iterative approaches can be used to solve (8). In this
paper, we used the biconjugate gradient stabilized (BiCGStab)
method [18]. Here, as long as the matrix of forward wavefield
extrapolator D is computed, (8) can be solved to reconstruct
the contrast functions of scatterers. Therefore, the other major
computational effort has to been spent to compute the GFs
for each transmit-receive antenna pair at each frequency
with respect to the imaging region. Considering the constant
variation of antenna polarizations within the aperture, two
approaches are suggested to compute the exact GFs in the
space—frequency and wavenumber—frequency domains, respec-
tively, in the following.

III. COMPUTATION OF x—f DOMAIN EXACT GREEN’S
FUNCTIONS OF ROTATED ANTENNAS

The exact k—f domain GFs for the dipole antennas placed
on the surface of homogeneous ground (i.e., xj0x> plane) can
be denoted by [16]

@11 @12 KV +U kikoV
Gy Gy | =—¢ kikoV k%V +U )
Gs1 Gz —jkiloV  —jkI'oV
where
exp(—I'1x exp(—I'1x
y - &pChix) _ 2P( 123) (10)
Lo+ T yiTo+ 79T
i =72 +K+K (11
and
yiz =il complex propagation constants for air
(i = 0) and the subsurface (i = 1);
ni = o; + jowe;  electric material parameters for
conductivities ¢; and permittivities ¢;;
= jouo magnetic material
parameter with permeability z;
k1, ko wavenumbers on the ground plane;
w=2rf angular frequency.
In (9), “~” above G is used to indicate the wavenumber—

frequency domain, which will also be used in the following.
Taking inverse Fourier transform (IFT) of the GFs in (9) with
respect to k1 and k», their counterparts in the space—frequency
(i.e., x—f) domain are obtained

Gia(x1, x2, w)
G2 (x1, x2, w) |.
G32(x1, x2, W)

G1i(x1, x2, w)
Go1(x1, x2, w)
G31(x1, x2, w)

Note that (9) gives the exact GFs of an antenna at (0, 0, 0)
along the xi- or x;-axis. For shifted antennas in the traditional
arrays, their GFs are obtained through the linear translation in
space according to the space shift-invariant property. However,
for the rotated antenna arrays, the antennas within the aperture
are not only linear translated but also rotated. To obtain the
corresponding GFs, both translation and rotation operations

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2021 at 11:29:26 UTC from IEEE Xplore. Restrictions apply.



2390

are needed in the x—f domain. In what follows, two methods
are suggested to compute the exact GFs of rotated antennas.

A. Computation of Green’s Functions via Interpolation

For image reconstruction, GFs over a rectilinear grid in the
X1—x2—x3 coordinate system are required. Let us assume the
imaging grid in space at a certain depth is defined as

Xip = pAx1, X2y = qAx2

(xlpa-xzq) p205 15 ) le_l;
qg=0,1, ..., Ny, —1

where Ax; and Ax; are the grid intervals along the x| and x>
axes, and Ny, and Ny, are the associated numbers of sample
points. Assume a dipole antenna is placed at (x{, x5, 0) with
an orientation angle of 6 with respect to the xj-axis and
denote the antenna orientation and its normal direction as
xgp and xp, . For the convenience of discussion in the following,
we define a “local” coordinate system xp—xp, —x3 with the
origin at (x{,x7,0) and denote kg and kg, as the Fourier
counterparts of xg and xg,. Then in the “local” ky—kg —f
domain, the GFs Gf’g(kg,kgﬂw), where the superscript ¢
indicates the corresponding spatial center of the GF is at the
antenna position and the subscript € is the explicit substitution
of a (or f) in (2) and represents the antenna orientation, on a
grid @ can be directly calculated via (9), and the grid @ is
defined as

[ = (12)

k¢9_m = mAkg;
ko, n =nlkg,;
O =< (k k - 13
(ko_m» eL,n)mZO, Lo Ly -1 (13)
n=0,1, ..., LkgL_l

where the sampling intervals Aky and Aky, are determined by
the field of view of the imaging scene according to the Nyquist
criterion, and Ly, and Ly, are, respectively, the numbers
of sample points along the ky and kg, directions. In [16],
it suggests that in practical implementation, the wavenumber
sampling grid should be 4 ~ 16 times over sampled compared
with the Nyquist sampling requirements in order to get accu-
rate radiation properties of antennas, especially for the near
field. Taking the IFFT of G;‘H (ko, ko, , ) with respect to ky
and kg, , the GFs Gj(xg, xg, , @) in the x9—xg, — f domain are
obtained.

To get the GFs Gjy for imaging, a mapping of the GFs
from the xp—xp, grid to the imaging grid / has to be made,
including both linear translation and rotation operation in
space. Explicitly, this mapping can be written as

Gio (x1,x2, w; x{,x5,0) = Giy(%g, X9, , ) (14)

where
Xy = (x1 —xf) cosO + (xz — xé’) sin @
X9, = —(x1 — x{)sin + (x2 — x5) cosf.
From (14), we can see that GFs over a new grid (Xg, Xg,)
in the xp—xg, coordinate system are needed to get the corre-

sponding values on the grid /. As the new grid (g, Xp,) is
generally different from that determined by the Fourier grid @,

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 4, APRIL 2018

2-D interpolation is required to implement the mapping from
a rectilinear grid (xp, xg,) to the rectilinear grid /. Many
interpolation methods, for example, nearest, cubic, and spline,
are applicable for this operation. Considering both accuracy
and efficiency, spline interpolation is used in this paper.

In addition, we have to say that instead of taking the inter-
polation in the x—f domain, the GF Gy (x1, x2, @; x{, x5, 0)
can also be obtained via direct Fourier summation of
éf‘e (kg, ko, , w), which is expressed as

Gio (x1, x2, w; x{, x5,0)
Lkg—lLkgLfl
= Z Z G?Q(kgfm’k@,mw)
m=0 n=0
cexp{ — jko_m - [(x1 — x{) cos@ + (x2 — x5) sin6]}
cexp{ — jko,_n- [ — (x1 —x{)sin@ + (x2 — x5) cos0]}.
(15)

The computation of GFs via (15) is referred as direct summa-
tion method in the following text.

B. Computation of Green’s Functions With NUFFT

In this section, we propose to take advantage of NUFFT [19]
to accelerate the computation of x—f domain GFs.

Linear translation and rotation operations in space are
required to obtain the GFs in the previous section. Actually,
these operations can also be efficiently implemented in
the wavenumber domain. According to the properties of
2-D Fourier transform, the operations in (14) can be repre-
sented in the wavenumber domain as

Gio (k1. ko, 0 x§, x5, 0)
= 70 [Gio (x1, x2, @; x{, x5, 0)]
= Gfjy(ki cosO + ky sin 0, —ky sin 0 + ka cos 0, w)
-exp { — j[(ki cos@ + kp sin §)x{

+ (kp cos @ — kj sin (9))63} } (16)

where Glg is the counterpart of Gy in the k—f domain in
the (k1, k) coordinate system and .%,p is the 2-D Fourier
transform operator. In (16), the exponential terms describe the
translation operation in space while the trigonometric terms
are related to the rotation.

Then to get the GFs Gy of a rotated antenna over the grid 7,
the GFs 5}19 should be computed over a rectilinear grid on
the k1 —k> plane. According to (16), the corresponding val-
ues Glae have to be calculated on an irregular grid (kj cos@ +
ko sin@, —ky sin@ + ks cosf), which can be obtained directly
via (9). However, due to the varied antenna orientation angles,
the grid points (kjcos@ + krsinf, —k;sinf + k> cosf)
change for antennas at different azimuthal positions. Hence,
the point-by-point computation of GF has to be performed
for every antenna with different orientations. This is even
more computationally expensive than the interpolation-based
method.

One alternative approach to address this problem is
to exploit the similar idea as the Stolt interpolation for
1-D mapping. First, (9)—(11) are used to compute the GFs G;‘H
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in the k—f domain over the grid ®@. After the k— f domain GFs
are obtained point by point, then they can be used to calculate
the x—f domain GFs for every antenna within the aperture.
For an antenna at (xf, x5, O) with orientation of angle 6 with
respect to the xp-axis, the precomputed GFs over the regular
grid in the (kg, kg, ) basis that is rotated by 6 in counter-
clockwise with respect to the (ki, k») basis are mapped onto
the grid

ki1 =ko mcos@ +kp, ,sin0;
(k1,k2) ko = —kg  sin@ + kg, , cosb;
(ko_m, ko, _n) € ®

in the (ki, ko) basis. Obviously, after the rotation mapping
from (kg _m, ko, n) — (k1,k2), the sample points are located
on a skewed grid in the (ki, k») basis.

Thus, the problem can be restated as: using the precal-
culated k—f domain GFs over the irregular grid @' to
reconstruct their counterparts in the x—f domain over the
rectilinear grid 1. Apparently, it is a typical nonuniform
Fourier transform problem from nonuniform samples in the
k—f domain to the uniform grid in the x—f domain. Thus,
we can take advantage of NUFFT to efficiently implement
it [19]. To compute the GFs in a 3-D volume, the wavefield
calculated in a ground plane can be extrapolated to different
depth via the derived k—f domain relation [20]

Gio (k. ko, 0, x3") = Gug (k1. ko, 0, x57)
X exp{ — Fl(xgn) - x§0))} (18)

O = (17)

where xéo)

is the initial depth of the electric fields computed
directly and xgn) is the depth of the extrapolated electric fields.
As the exponential term in (18) is rotationally symmetric
around the origin on the k1—k> plane, it is directly applicable
to extrapolate the wavefield to different depths for antennas
with various orientations on the x;—x, plane.

C. Sampling Criteria

In all the three methods, the uniform sampling of éf‘e
is required for the x—f domain GFs’ computation. The
wavenumber-domain sampling spacings can be taken as [16]

2n
p-Xi

where p is the oversampling factor, X; is the dimension of the
imaging scene in the x; direction, and i € {#,6,}. As the k—f
domain GFs éf‘e are calculated only once for all the antennas
within the aperture, then X; s usually choose the value of
the maximum cross-range dimension of the imaging scene.
Considering the computational accuracy of IFFT-derived GFs
in the x—f domain, p could empirically take a value of 4-16.
Moreover, we have to mention that when the interpolation-
based method is used to compute the GFs, a large enough
value should be chosen for p so that the support region of the
computed GFs always covers the desired imaging area in the
spatial domain even after translation with respect to the most
remote antenna from the origin.

Here it should be mentioned that in this paper we use
elementary dipole sources and ideal receivers for the above

Akj =

19)
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TABLE I
COMPARISON OF THREE METHODS FOR x—f DOMAIN GF COMPUTATION

Method Direct-sum Interp NUFFT
Time [s] 1042.64 4.042 0.553

G11 - 1.269¢-8 | 1.373e-14

Lo Error Goy - 2.034e-8 1.524e-14

Gzt - 2.358¢-8 | 1.827e-14

G11 - 1.033e-4 1.255¢-7

Loo Error | Gaj - 1.500e-4 1.644e-7

Gl - 1.655e-4 1.683e-7

discussion considering two aspects. First, in practice, dipole-
like antennas, e.g., loaded dipoles or bow-tie antennas, are
widely used in GPR system. In these circumstances, the ele-
mentary dipole source could be a good approximation model
for the observation matrix construction, which will be verified
below through both numerical simulations and experimental
measurements. Second, for more complex antennas, theo-
retically we can use the superposition principle to get the
corresponding GFs.

IV. SIMULATION
A. Green’s Function Computation

In this section, GF computation methods are examined
via numerical simulations. In this simulation, the operational
frequency was 200 MHz and the relative permittivity of
soil medium was nine. Dipole antennas were placed on the
X1 oxp plane and their orientation angles were defined as
the angles from the xj-axis to antenna axes. The x3-axis
points downward, forming a right-hand coordinate system with
the x1- and xp-axis. At first, GFs for a dipole antenna at
the origin along the xj-axis were calculated in the approach
presented in [16]. Then GFs for a linearly translated and
rotated antenna were computed by the interpolation-based
method and NUFFT-based method discussed in the previous
section. In order to get accurate x—f domain GFs, four
times oversampling in the k—f domain computation was taken
for all simulations and the computation accuracy of NUFFT
was set to be le—5. The computation results are illustrated
in Fig. 2. GFs for a dipole antenna located at the origin
at a depth of 0.6 m are shown in Fig. 2(a)—(c), while the
GFs for a dipole antenna at (1, 1,0) m with an orientation
angle of 45° are displayed in 2(d)-(l). The GFs obtained
with the interpolation method and NUFFT-based method are
presented in Fig. 2(g)—(i) and (j)—(1), respectively. As a ref-
erence, the results computed by direct summation are shown
in Fig. 2(d)—(f). According to 2(d)—(1), both the interpolation-
based method and NUFFT-based method obtain the visually
equal results as those of direct summation.

The efficiency and accuracy of both methods were also
compared quantitatively and the results are listed in Table I.
The accuracy is indicated by relative L, error and relative
Lo error. The relative L, error is defined by the norm of
the differences between the computed GF with suggested
method and the reference GF divided by the norm of the
reference GF. The relative Lo, is defined by the maximum
of the differences between the computed GF with suggested
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Fig. 2. GFs for dipole antennas located at (a)—(c) (0, 0, 0) with orientation along the xj-axis and (d)—(l) (1, 0, 1) m with an orientation of 45° from the x| -axis
at a depth of 0.6 m. (d)—(f) are computed by direct summation; (g)—(i) are by the interpolation-based method; and (j)—(1) are obtained with the NUFFT-based
method. The antennas are placed on the ground surface (x; oxp plane). The operational frequency is 200 MHz and the relative permittivity of soil & = 9.

method and the reference GF divided by the norm of the
reference GF. In terms of both relative L, error and relative
Ly error, the NUFFT-based method for GF computation
achieves much higher accuracy than that of the interpolation-
based one. Although both suggested methods significantly
improve the computation efficiency compared with the direct
summation method, the NUFFT-based method is still more
than seven times faster than the interpolation-based method
for a 250 x 250 point x—f domain GF computation.

B. Imaging With Rotating Antenna Array

To demonstrate the imaging performance of the proposed
approach, numerical simulations were performed for dielectric
cylinders buried in the soil. GPR data were synthesized with
gprMax software, which uses the finite-difference time-domain
method to simulate the EM wave propagation [21]. The
geometrical configuration for the simulation is shown in Fig. 3.
Two cylinders of radius 10 cm were buried at a depth of 0.4 m
and they were joined at one end [as shown in Fig. 3(a)].
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Fig. 3. Geometrical configuration of dielectric cylinders in the soil.
(a) 3-D geometrical configuration. (b) Top view along the positive y-direction.

TABLE I

PARAMETERS FOR GPR SIMULATION WITH DIELECTRIC
CYLINDERS IN THE SOIL

Parameter Value
Wavelet Ricker [900 MHz]
Radial sampling interval 5 cm
Azimuthal sampling interval 3°
Radius of circular antenna aperture | 0.5 m
Permitivity of background soil 9.0
Soil conductivity 0.01 S/m
Permitivity of dielectric cylinders 5.0
Conductivity of dielectric cylinders | 0.05 S/m
Depth of the cavity 0.4 m

The relative permittivity of the cylinders is 5.0 and their
conductivity is 0.05 S/m. Meanwhile, the permittivity and
conductivity of background soil are 9.0 and 0.01 S/m, respec-
tively. The elementary dipole antennas were placed on the
ground surface (i.e., xoz plane) as the transceivers and the
Ricker wavelet of 900 MHz was used as the excitation
signal. To emulate the operation of GPR system used for
TBM applications, the dipole antennas were placed with
orientations along the radii at different positions. GPR signals
were acquired over eight concentric circles whose radii range
from 0.15 to 0.5 m with steps of 5 cm and the azimuthal
sampling intervals were 3°. Therefore, 960 spatial samples
were obtained within the aperture in total but their polariza-
tions varied at different azimuthal positions. For convenience,
the parameters of GPR system and the media properties are
summarized in Table II.

After synthesizing the GPR data, the accurate GFs of rotated
antennas at each position were computed over a 2 X 2 X 2 cm
volume grid with the suggested methods in the previous
section. The relative permittivity of background soil ¢ = 9.0
and conductivity ¢ = 0 were used for GF computation.
The oversampling factor p was chosen to be four. Then the
synthetic data were focused via the linear inversion method
by considering the accurate radiation patterns of the antennas
with varied polarizations at different positions (i.e., linear
inversion with accurate radiation pattern, referred to as
LI-AccuRP below). In the implementation, the BiCGStab
method was exploited to estimate the solution for the linear
system of equations. For comparison, the Kirchhoff migration
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Fig. 4. Reconstructed images of cylinders buried in the soil with three

different imaging approaches. (a), (c), and (e) 3-D images obtained by
the linear inversion with exact radiation patterns, Kirchhoff migration, and
Kirchhoff migration combining the far-field radiation patterns, respectively.
(b), (d), and (f) Their corresponding top-view images.

and the Kirchhoff migration combining the far-field approxi-
mation of the radiation patterns were also utilized for image
formation. Integrating the far-field radiation pattern aims to
correct the angle dependence of the dipole radiation, which is
generally neglected in the Kirchhoff migration. To avoid the
blow-up of the signals after correction caused by the sharp
minima in the far-field radiation patterns, only the signals that
correspond to the radiation patterns down to —13 dB with
respect to its peak were compensated in the third imaging
approach.

The images reconstructed with the three approaches
are shown in Fig. 4, where all the images are normal-
ized with respect to their own maximum absolute voxel
values and shown in logarithmic scale for comparison.
In Fig. 4(a), (c), and (f), the “L’-shape profiles of the
joint cylinders are more or less reconstructed. However,
in Fig. 4(c) and (e), the reconstructed cylinders are much
thinner than that in Fig. 4(a). This is due to the striking
angle dependence of the radiation patterns of the interfacial
dipole antennas, which significantly affects the strength of
the signals observed from different aspects with respect to a
target. Although the far-field radiation patterns were employed
to compensate for the angle dependence of the observa-
tions in Fig. 4(e) and (f), the resultant images are visually
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Fig. 5. Experimental measurement in the anechoic chamber. (a) Experimental
setup. (b) Antipodal Vivaldi antennas. (c) “L’-shape target.

even worse than that without radiation pattern correction
[Fig. 4(c) and (d)]. Specifically, the image of the cylinder
parallel to the x-axis is fractured, and in Fig. 4(f), the joint
part of the two cylinders becomes dim compared with that
in Fig. 4(d). This may result from the inadequate approxi-
mation of the far-field patterns in this case as well as the
truncation effect on the radiation patterns for signal correction.
In contrast to Fig. 4(c)-(f), the images formed with linear
inversion are remarkably improved by accounting for the exact
radiation patterns of dipole antennas [Fig. 4(a) and (b)]. Based
on Fig. 4(b), the diameters of the cylinders could be estimated
although some artifacts are observed around the object. Note
that the GFs used for imaging were computed by setting
o = 0, so they are not exact with respect to the real EM para-
meters of background soil. However, the reconstructed images
are still dramatically improved compared with those obtained
with traditional imaging approaches. Therefore, it shows the
robustness of the proposed imaging approach.

V. EXPERIMENTS

As the rotated GPR instrument was unavailable, we instead
took an experimental campaign in the anechoic chamber for
imaging in free space.

A rotated experimental platform was built in the anechoic
chamber in the Delft University of Technology to emulate the
signal acquisition for rotated arrays, as shown in Fig. 5(a).
Actually, this setup was similar to that we used in [7].
A column was installed on the base with the three-axis motion
(i.e., two-axis translation and one-axis rotation), where a
step motor was used to drive the base. On the top of the
column, a polyethylene plastic panel was mounted as a support
for the two Vivaldi antennas [see Fig. 5(b)], i.e., one for
transmitting and the other for receiving. Both Vivaldi antennas
were connected to a vector network analyzer (VNA). By linear
translation along the radius and the rotation along azimuth,
a circular planar array was synthesized. An “L”-shape object
covered with aluminum foil was placed in front of the array at
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Fig. 6. Images of experimental measurements reconstructed by (a) linear
inversion with accurate radiation pattern and (b) Kirchhoff migration.

the distance of 0.5 m. The two arms of the “L’-shape object are
about 20 and 30 cm in length, respectively, 6 cm in width, and
5.5 cm in thickness [see Fig. 5(c)]. The spatial measurements
were taken over some concentric circles with the radii ranging
from 11 to 53 cm with steps of 3 cm. In azimuth, the sampling
interval was 2.4°. The operational frequency of the VNA
sweeps from 3 to 6 GHz with steps of 20 MHz.

To consider the direct coupling between the transmitter and
the receiver and background reflections, the measurement was
also performed with the absence of the object. After back-
ground subtraction, the signals reflected from the target were
obtained. Then the linear inversion approach with accurate
radiation patterns was utilized to reconstruct the target’s image
from the frequency-domain signals. The reconstructed image is
shown in Fig. 6(a). Note that as the experimental measurement
was conducted in free space, the GFs for hertz dipole in free
space instead of half space were used for linear inversion [22].
For comparison, the signals after applying the IFT to the
measurements in the frequency domain were focused with
Kirchhoff migration as well and the formed image is presented
in Fig. 6(b). Similar to Fig. 4, the two images in Fig. 6
have been normalized with respect to their own maximum
absolute voxel values and displayed in the logarithmic scale.
From Fig. 6, one can see that both linear inversion with
accurate radiation patterns and Kirchhoff migration acquire
well-focused images of the target. However, the profile of
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the target is clearer and sharper in the image formed by
linear inversion with accurate radiation pattern [Fig. 6(a)] com-
pared with that in the image focused by Kirchhoff migration
[Fig. 6(b)]. Meanwhile, relatively larger artifacts and circu-
larly sidelobes observed in Fig. 6(b) are notably suppressed
in Fig. 6(a). Therefore, by considering the accurate radiation
patterns of the rotated antenna arrays, improved images were
obtained. As a consequence, in this case, the computation time
of the linear inversion approach (with 51 frequencies at each
spatial position, i.e., the measurements were downsampled
every three frequencies) required ~350 s [about 340 s for com-
puting DD in (8)] compared witth the ~7 s of the Kirchhoff
migration on a computer of 3.20-GHz CPU with four cores.
The increase in computation time can be considered as a cost
to be paid for the improved image quality. To accelerate the
linear inversion approach, matrix DD can be precomputed
and stored before the inversion operation, or more advanced
inversion solvers should be exploited to circumvent the com-
putation of DD.

Finally, we have to mention that although the “exact” GFs
of the hertz dipole are not exact with respect to the practical
Vivaldi antenna, significant improvement is still observed
in the reconstructed image with the suggested approach
[see Fig. 6(a)]. Again, it demonstrates the robustness of the
suggested imaging approach.

VI. CONCLUSION

In this paper, we have presented a linear inversion approach
for GPR systems with arbitrarily oriented transmit and receive
antennas over data acquisition aperture. The approach models
the wave propagation process with full-wave GFs and the
image reconstruction is formulated as a linear inverse problem.
Taking advantage of accurate GFs, the polarization and radi-
ation pattern variations of GPR antennas within the aperture
are taken into account and their effects are compensated during
the imaging process.

The focus of this paper is the construction of the obser-
vation matrix. In terms of the implementation of the pro-
posed approach, computing the GFs with respect to each
point in the scene is the key, yet the most computationally
expensive step. To improve the computation efficiency, two
methods are proposed for GF calculation: interpolation-based
method and NUFFT-based method. Compared with the direct
summation method, both methods significantly accelerate the
GF computation and their accuracies were verified through
numerical simulations. Besides being used for accurate image
formation, these two efficient approaches for GF calculation
can also benefit the investigation of the properties of the
observation matrix for near-field imaging, which is helpful
to optimize the spatial signal sampling and imaging array
design. It was shown in both simulations and measurements
the proposed approach significantly improves the imaging
performance (i.e., the sharpness of the focused image and
artifacts’ suppression) compared with the traditional imaging
algorithms such as scalar Kirchhoff migration and its combi-
nation with far-field radiation patterns. Especially, the method
proposed is more suitable for reconstructing images of

2395

polarization independent subsurface objects and structures
(such as point-like scatterers, spheres, and planar structures).
The proposed approach can also be straightforwardly extended
for full-polarimetric imaging when the signals are acquired
with full-polarimetric antenna arrays.
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