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Preface
This master thesis project was kicked­off in February 2020 and ­ much like a tiltrotor aircraft ­ went
through major transition phases to land successfully. Both, the process and outcome are captured in
this document. It is hoped that the reader finds it insightful, and that the presented techniques provide
value for future research projects.

The report is divided into four parts: Firstly, the preliminary thesis presents a tiltrotor flight dynamics
model, background information on multivariate simplex B­splines and an explanation of the observed
identification data deficiencies. Furthermore, an initial project overview is provided. As the research
objective and questions had to be revised at a later stage, the adjusted versions can be found in an
appendix. Part two, which is the scientific paper, shows how simplex spline coefficient estimators can
be augmented to reliably fit structurally deficient data sets. The third part contains conclusions and
recommendations, followed by appendices in the fourth part.

It has been a long, yet ultimately rewarding journey. I would like to thank everyone who was a part
of it. Dr. Ir. Coen de Visser, my primary supervisor, for his guidance, patience and enthusiasm. Ir.
Noor Nabi for his indispensable help in the early project phases. The members of room SIM 0.08 for
their camaraderie. And, of course, my friends and family for their unconditional support during difficult
times.

Lukas Steiner
Delft, February 2023
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Introduction
The need for using multivariate simplex B­splines on problematic identification data arose from re­
placing data tables in a tiltrotor aircraft quasi­Linear Parameter Varying (qLPV) flight dynamics model.
Tiltrotors are characterized by their ability to transition between helicopter and fixed­wing aircraft mode.
Therefore, no single linear state­space model is capable of adequately covering the entire flight enve­
lope. The qLPV technique relies on interpolation between stability and control derivatives, as well as
trim points.

For this purpose, a set of scheduling parameters, which have the largest influence on aircraft be­
haviour is identified. Typical examples for a tiltrotor are air speed, nacelle incidence and wing flap
angle. Point models are obtained, which cover a certain scheduling parameter range. The result is
pre­processed to fit the rigid, rectangular shape of a multidimensional look­up table and interpolated
during runtime. This procedure has been successfully applied to a number of aerial vehicles. However,
data tables scale badly when dimension or accuracy are increased. Furthermore, local updates using
new data are inherently difficult.

It was therefore recommended to replace look­up tables by multivariate simplex B­splines, which
do not suffer from these drawbacks. Their high approximation power enables the fitting of scattered,
globally or locally non­linear data sets characteristic of aerospace systems. Also, computations are effi­
cient and yield transparent results. There was, however, a data deficiency whose impact only became
apparent late in the project. Large portions are coplanar due to an imbalance in scheduling parameter
resolution. This so­called data collinearity caused ill­conditioned regression matrices and associated
numerical problems with coefficient estimates. Consequently, the project focus shifted from converting
the qLPV model to answering the following research question:

How can multivariate simplex B­splines be used effectively and reliably to fit collinear aero­
dynamic data sets?

Collinearity and its negative effects have been acknowledged for decades and a substantial amount
of work and time dedicated to solutions. A very popular remedy, due to its power and simplicity, is
the Ridge Regression Estimator (RRE). Being part of the Tikhonov regularization family, it augments
the basic least­square estimator with a penalty term and a tuning parameter. On the one hand this
introduces bias to the estimation, however on the other variance is reduced. No regularization scheme
could be found for multivariate simplex B­splines, despite a thorough literature study. This led to the
following research sub­questions:

1. How can regularization be integrated in the existing B­coefficient estimation framework?
2. How well does it work against regression matrix ill­conditioning?
3. How can good tuning parameter candidates be determined?

Regularization of other, more commonly employed spline types is well­known. Eilers and Marx in
1996 developed what they called the P­spline by adding a coefficient difference penalty to an ordinary
B­spline. Although it was invented and popularized as a tool for smoothing noisy data, the P­spline can
cope with collinearity just like the ridge regression estimator. The initial article presented the concept
for univariate B­splines, which later was extended by the same authors to multivariate tensor product B­
splines. The P­spline inherited the tensor product spline’s major limitations being an inherent difficulty
to fit scattered data sets and rather cumbersome calculations in higher dimensions. Simplex B­splines,
by contrast, do not suffer from these. Additional research sub­questions were therefore:

4. What is the simplex counterpart to the multivariate tensor product P­spline?
5. How does it compare to ridge regression in terms of ill­conditioning reduction, goodness­of­fit and

smoothing properties?

This master thesis report is intended to provide answers and act as entry point for further research.
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1
Introduction

Since the early days of heavier­than­air aviation two major classes of flying vehicles have emerged in
the form of fixed­wing and rotary­wing aircraft. Their distinctive principle of lift generation makes them
suitable for different mission profiles. Helicopters are the natural choice if hovering or vertical take­
off and landing (VTOL) capabilities are required. Fixed­wing aircraft, on the other hand, offer greater
payload, range, service ceiling and airspeed but require runways. Engineers in the last 50 years have
come up with numerous hybrid designs to combine the best of both worlds. Many of these are rather
exotic, and only a handful made it past the prototype stage and entered serial production. As of now,
these are exclusively military fighter jets and transports. The first group is powered by turbofan engines
and has very limited hovering capabilities. The second are so­called tiltrotors. As their names implies,
they feature large, tiltable rotors located at the tip of regular­sized aircraft wings. The tilt angle ranges
between 90° during take­off and landing, and 0° in cruise configuration. In between lies a transition
phase, where lift is generated by main wing and rotors simultaneously.

The main disadvantage of tiltrotors is their complexity. Like any other flying vehicle they need to be
safe to operate throughout their entire flight envelope. For a hybrid the envelope is deliberately large,
making design and certification a challenging, expensive and also dangerous task. Despite all efforts,
tiltrotor flight testing campaigns have a long and sad tradition of fatal accidents. In order to improve
rotorcraft safety in general the Network for Innovative Training on Rotorcraft Safety (NITROS) project
has been initiated. It funds research in relevant areas, one of them being the development of ”innovative
methods to reduce pilot workload in transformative VTOL aircraft”. In a joint effort Politecnico di Milano
and the Delft University of Technology have taken on this challenge. Starting in 2018 they have been
developing a quasi­Linear Parameter Varying (qLPV) flight dynamics model of a tiltrotor aircraft, which
is to serve as basis for further research. A crucial element of this model is the interpolation of certain
stability, control and trim parameters as a function of the current aircraft state. Currently, data points
are stored in lookup tables (LTs) and interpolated by first­order Lagrange polynomials. However, for a
number of reasons it might be favourable to use function approximators instead.

This report will outline the theory behind qLPV models in general and the model­stitching architec­
ture in particular, with an emphasis on lookup table generation and evaluation. A number of different
function approximators is presented and compared at high level to select the most suitable candidate.
The multivariate simplex spline proved to be most promising, and is briefly explained in its own chap­
ter. After the theory has been established, the thesis project is defined. The research objective and
questions are listed and motivated. Finally, the project schedule is presented.
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2
Tiltrotor Modelling

This chapter outlines the challenges in developing flight dynamic models of tiltrotor aircraft and gives
an overview of past research in the field. It then explains the theory behind one state­of­the­art ap­
proach, quasi­Linear Parameter Varying, and its implementation for a specific model. Finally, an area
of potential improvement is identified within this model.

2.1. Challenges and developments
Tiltrotors are hybrids of helicopters and fixed­wing aircraft, therefore combining features of both vehicle
classes. This leads to a number of challenges, not only from a design perspective but also for math­
ematical modelling efforts. First and foremost, they have the unique capability of rotating (tilting) their
engine nacelles as shown in Figure 2.2. When in helicopter mode (Figure 2.1a), the nacelles are at
an angle of 90 degrees and all lift is generated by the two proprotors at the wing tips. Consequently,
control is only possible by actuating the swash plates as aerodynamic surfaces are ineffective at low
speeds. This changes in conversion mode (Figure 2.1b) when the nacelles are tilted to increase for­
ward velocity. The helicopter controls are gradually phased out in favour of fixed­wing controls until the
tiltrotor is fully converted to airplane mode (Figure 2.1c).

(a) Helicopter Mode (b) Conversion Mode (c) Airplane Mode

Figure 2.1: Tiltrotor operation modes (image credit: NASA)

It is not possible to have arbitrary combinations of nacelle angle and airspeed, as can be seen in
Figure 2.2. A lower limit exists due to attitude limitations and wing stall, an upper one due to mechanical
limitations of the tilting mechanism, rotor shaft torque limits and eventually the design dive speed VD.
This so­called conversion corridor plays an important role in modelling tasks as every valid configuration
needs to be accounted for. It is also not unique but depends on aircraft gross weight, flap/flaperon
setting, rotor tip speed and atmospheric conditions.

The large variety of configurations and the resulting large flight envelopemakes creating high­fidelity,
continuous flight dynamic models a challenging task. The first systematic efforts were undertaken in the
1970s and 1980s as part of NASA’s XV­15 tiltrotor research program. Ferguson in 1988 describes the
mathematical model of a Generic Tilt Rotor Simulation (GTRS) for real­time flight simulation purposes,
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Figure 2.2: XV­15 conversion corridor, as depicted in the familiarization document [18]

based on a proprietary XV­15 model [10]. While the GTRS is relatively low­fidelity, it still serves as a
benchmark in current research. In the following years, multiple other models have been developed not
just for flight simulation but also aerolastic load predictions. However, they are either low­fidelity as
well or limited to a number of discrete flight conditions [26].

A way to improve upon the latter issue is employing the Linear Parameter Varying (LPV), or alter­
natively the closely related quasi­Linear Parameter Varying (qLPV) technique. Converting non­linear
systems to (q)LPV produces linear state­space systems whose entries depend on a number of schedul­
ing parameters. This not only allows them to cover an aircraft’s full flight envelope but also enables
better control methods than classic gain scheduling [19].

In the past, a number (q)LPV frameworks were developed for rotorcraft, fixed­wing aircraft and also
tiltrotors. One of the earliest rigorous investigations on how to apply LPV in this domain is the work by
Marcos and Balas [19], who compared three different model­building approaches to a high­fidelity non­
linear model of a commercial airliner. Lawrence, Malpica, and Theodore [16] successfully developed a
large civil tiltrotor simulation, albeit somewhat limited in number of states and scheduling parameters.
Other implementations were presented by Tischler and Tobias [27], who constructed stitched flight
dynamics models of a Cessna CJ1 business jet and a UH60 utility helicopter and demonstrated their
quality and usefulness.

At the Delft University of Technology, a high­order qLPV flight dynamics model of an XV­15 tiltrotor
aircraft is currently under development by Nabi andQuaranta [25][26]. It improves upon existingmodels
by increasing the number of scheduling parameters, including a rotor speed governor and increasing
the number of states for higher fidelity. As its improvement is the primary goal of this master thesis
project, it will be closely examined in Section 2.3 after Linear Parameter Varying (LPV)/qLPV theory is
introduced in the next section.

2.2. (q)LPV modelling theory
LPV and qLPV systems are special forms of linear state­space systems, which depend on a set of
time­varying scheduling parameters. Generally, a LPV system is of the form shown in Equation 2.1
[19]: [

ẋ
y

]
=

[
A (ρ (t)) B (ρ (t))
C (ρ (t)) D (ρ (t))

] [
x (t)
u (t)

]
(2.1)

In this equation A, B, C and D are the usual system, input, output and feed­through matrices. x
is the state, u the input and ρ the vector of scheduling parameters. In an LPV system the scheduling
parameters are strictly exogenous, i.e. not part of the system state vector. qLPV, on the other hand,
does not have this requirement and is therefore and extension of LPV. The complete state vector in a
qLPV system can therefore be broken up into scheduling (z) and non­scheduling states (w):

x (t) =
[
z (t) w (t)

]T (2.2)
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Substituting Equation 2.2 into Equation 2.1 yields ż (t)
ẇ (t)
y (t)

 =

 A11 (ρ (t)) A12 (ρ (t)) B1 (ρ (t))
A21 (ρ (t)) A22 (ρ (t)) B2 (ρ (t))
C1 (ρ (t)) C2 (ρ (t)) D (ρ (t))

 z (t)
w (t)
u (t)

 (2.3)

where the vector of scheduling parameter now consists of state and exogenous variables ξ:

ρ (t) =
[
z (t) ξ (t)

]T (2.4)

The most common approach to obtain (q)LPV models from non­linear models is the Jacobian lin­
earization, due to its simplicity and wide applicability [17]. Applying first­order Taylor series at equilib­
rium (trim) points, Equation 2.1 becomes: ż (t)

ẇ (t)
∆y (t)

 =

 A11 (ρ (t)) A12 (ρ (t)) B1 (ρ (t))
A21 (ρ (t)) A22 (ρ (t)) B2 (ρ (t))
C1 (ρ (t)) C2 (ρ (t)) D (ρ (t))

 ∆z (t)
∆w (t)
∆u (t)

 (2.5)

where ∆z (t) = z (t) − ztrim (ρ (t)), ∆w (t) = u (t) − wtrim (ρ (t)), ∆u (t) = u (t) − utrim (ρ (t)) and
∆y (t) = y (t)− ytrim (ρ (t)).

An extension to these qLPV models, the ”model stitching architecture” has been developed by Tis­
chler and Tobias [27]. This technique combines (stitches) a set of individual linear models and trim
data obtained at discrete equilibrium points, with the goal of creating a continuous, full­envelope flight
dynamics model. Stitching is done along the vector of scheduling parameters, and interpolation be­
tween stability derivatives and trim points uses lookup tables. This interpolation scheme has a number
of disadvantages, which will be pointed out later, but the overall result proved to be satisfactory for the
business jet and helicopter study cases. Nabi and Quaranta [25] [26] use the stitching techniques for
their current XV­15 tiltrotor aircraft model explained hereafter.

2.3. XV­15 Model Structure
The qLPV model of the XV­15 has been created in MATLAB Simulink using the standard elements of a
qLPV model shown in Figure 2.3, augmented by additional systems such as rotor speed governor and
stability and control augmentation system (SCAS). For an in­depth description the reader is referred to
[26], however, it is important to understand the overall structure before focusing on the areas relevant
for this research project.6 H. N. Nabi et al.

Fig. 1 qLPV model structure augmented with nonlinear equations of motion “model stitch-
ing technique”.

and trim control inputs are subtracted from the current states and control
inputs to obtain the state and control input perturbations, respectively. These
perturbations are then multiplied with the interpolated linear state-space ma-
trices to obtain the rigid body and the higher-order state accelerations, i.e.,[

ẋ6

ẋH

]
=

[
A66 A6H

AH6 AHH

] [
∆x6

∆xH

]
+

[
B6C

BHC

]
∆u (4)

Next, the rigid body mass matrix M composed of aircraft mass m and
inertia tensor J is introduced:

M =


m 0 0
0 m 0 03×3

0 0 m
Jxx 0 −Jxz

03×3 0 Jyy 0
−Jxz 0 Jzz

 (5)

Mass matrix M is multiplied with the rigid body accelerations ẋ6, obtained
through Eq. 4, to obtain the perturbed aerodynamic forces ∆Faero and per-
turbed aerodynamic moments ∆Maero, since the linearized flight mechanics
equation reads:

Mẋ6 =

[
∆Faero
∆Maero

]
(6)

The perturbed aerodynamic forces are summed with the trim aero-
dynamic forces [23] of Eq. 7, to yield the total aerodynamic forces:
Faero = ∆Faero + Ftrim and total aerodynamic moments: Maero = ∆Maero.

Xtrim = mg sin θtrim (ρ (t))
Ytrim = −mg cos θtrim (ρ (t)) sinφtrim (ρ (t))
Ztrim = −mg cos θtrim (ρ (t)) cosφtrim (ρ (t))

(7)

Figure 2.3: Generic qLPV model block diagram [26]

As any other qLPV model, the XV­15s is built around the state space matrices which change with
the scheduling parameters. These have to be carefully chosen to ensure preservation of the original
system’s most important characteristics, while keeping computational complexity low. In this particular
case altitude h, nacelle incidence angle βi, wing flap angle δf and airspeed V have been identified.
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It is, however, possible to run the model with a subset of the full vector, e.g. only nacelle angle and
velocity.

Another choice is the number of states which the model uses. Table 2.1 shows the options, which
are for the existing model collected under ”LT”. They differ in number of states available for wing and
rotor modelling, and whether or not engine dynamics are included. Them number of rigid body states
and control inputs, with the exception of engine throttle, is equal.

LT SP
Degrees of freedom 91 71 41 94 85
Rigid body states 9 9 9 12 9
Wing bending mode 2 0 0 2 2
Blade bending modes in multi­blade coordinates
(one collective & two cyclic) for each rotor

36 24 12 36 36

Blade torsional modes in multi­blade coordinates
(one collective & two cyclic) for each rotor

24 24 12 24 24

Gimbal states inmulti­blade coordinates (two cyclic)
for each rotor

8 8 8 8 8

Inflow states for each rotor based on classical Pitt­
Peters model

6 6 0 12 6

Engine dynamics 6 0 0 0 0
Control inputs
Collective pitch θ0 for each rotor 2 2 2 2 2
Lateral and longitudinal cyclic (θ1c,θ1s) for each ro­
tor

4 4 4 4 4

Aerodynamic control surfaces 4 4 4 4 4
Engine throttle 1 0 0 0 0

Table 2.1: States of XV­15 state­space point models

Since the model­stitching technique is used, the stability and control derivates are currently interpo­
lated using lookup tables. The state vector x, or more precisely its perturbation ∆x, is broken up into
six rigid body states x6 =

[
u v w p q r

]
and higher­order states xH . The three Euler angles

ϕ,θ and ψ are not included in x6 as their contribution is added in the non­linear part of the model.
Perturbations are calculated on the left­hand side of the diagram by taking the difference between actual
and trim state. Values of the latter are determined analogously to the stability and control derivatives,
i.e. by using lookup tables and the vector of scheduling parameters.

The rigid­body and higher­order state accelerations can then be calculated as follows:[
ẋ6
ẋH

]
=

[
A66 (ρ (t)) A6H (ρ (t))
AH6 (ρ (t)) AHH (ρ (t))

] [
∆x6
∆xH

]
+

[
B6C (ρ (t))
BHC (ρ (t))

]
∆u (2.6)

While higher­order states are directly integrated, the rigid body states are multiplied by the mass
and inertia matrix to get the perturbed aerodynamic forces and moments. These are then added to the
aerodynamic trim forces, which are functions of the trim Euler angles, and the non­linear gravity forces,
which depend on the instantaneous aircraft Euler angles. The result is inserted into the non­linear
equations of motion (EOM) and also integrated to obtain the current state.

2.4. Distribution of underlying state­space models
The linear state­space models, which contain the stability and control derivates, are generated by Mod­
ern Aeroservoelastic State Space Tools (MASST). This software tool, developed at Politecnico di Mi­
lano, is capable of trimming non­linear flight dynamic models at selected operating points throughout
the flight envelope [22],[3]. In this particular case, the nonlinear tiltrotor model is trimmed in symmetric
flight, i.e. v = p = r = ϕ = ψ = 0. The operating points, which are referred to as anchor points in the
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stitching framework, are determined by the choice of scheduling parameters. It is here where the con­
version corridor (Figure 2.2) comes into play, as it limits the possible combinations of nacelle incidence
angle and airspeed. Figure 2.4 shows the distribution of anchor points and how they are masked by
the upper and lower corridor boundary. Models on the rectangular grid but outside the valid area are
indicated for the sake of completeness, but do not actually exist.

Figure 2.4: XV­15 discrete linear state­space models and conversion corridor [26]

On the y­axis five discrete nacelle incidence angles have been selected, βi =
[
0 30 60 75 90

]
[deg]. The x­axis is divided into three resolution zones as shown in (see Table 2.2) to accurately capture
the tiltrotor’s behaviour at low speeds, i.e. when in helicopter mode.

V ­range [kts] V ­spacing [kts]
0­50 5
60­170 10
180­280 20

Table 2.2: Velocity resolution zones

All models located inside the conversion corridor are available at flap settings δf =
[
0 20 40 75

]
[deg] and altitudes h =

[
0 10000

]
[ft], so a four­dimensional scheduling vector can be used. If a

lower dimension is desired, e.g. only nacelle incidence angle and velocity are scheduling parameters,
the remaining ones need to be fixed or scheduled. Table 2.3 displays flap setting as function of βi
and V , where the latter is only relevant when in helicopter mode, and altitude is limited to sea level.
Consequently, all other models are disregarded.

βi [deg] V [kts] δf [deg]
90­80 0­35 75
90­80 40­280 40
75­65 all 40
60­35 all 20
30­5 all 20
0 all 0

Table 2.3: Flap scheduling
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2.5. Current interpolation scheme
In the existing model determining current trim values, control and stability derivatives is done by lin­
early interpolating entries of lookup tables. These data structures are the de­facto standard in qLPV
modelling and have been successfully used by numerous authors such as Tischler and Tobias [27],
Lawrence, Malpica, and Theodore [16], Marcos and Balas [19] and Nabi and Quaranta [25]. The work­
ing principle of lookup tables, as their name suggests, is that values are computed in advance and
stored in a structured way. Retrieving, and if necessary, interpolating are in most cases computation­
ally considerably less expensive operations than evaluating the original functions. This is especially
true for trimming aircraft models, which usually involves numerical minimization of a cost function [5].

In the given model, the trim states and control settings are stored in multidimensional arrays. The
dimension depends on the number of scheduling parameters, reaching from 2­D for nρ = 2 to 4­D
for nρ = 4. At every time step in the simulation an extraction operation is performed to retrieve the
nearest adjacent data points (xi, yi) and (xi+1, yi+1). These are then used in first­order Lagrangian
interpolation, the general form of which is shown in Equation 2.7 and Equation 2.8.

L (x) =

k∑
j=0

yj lj (x) (2.7)

where:

lj (x) =
∏

0≤m≤1
m ̸=j

x− xm
xj − xm

(2.8)

As the dimension increases beyond one, the aforementioned two steps have to be performed along
all axes, resulting in multilinear interpolation. Equation 2.9 shows the bilinear case for four points
P11 = (x1, y1), P12 = (x1, y2), P21 = (x2, y1) and P22 = (x2, y2) on a rectangular grid. So in fact, the
final result is a quadratic function.

f (x, y) ≈ y2 − y

y2 − y1
f (x, y1) +

y − y1
y2 − y1

f (x, y2)

=
y2 − y

y2 − y1

(
x2 − x

x2 − x1
f (P11) +

x− x1
x2 − x1

f (P21)

)
+

y − y1
y2 − y1

(
x2 − x

x2 − x1
f (P12) +

x− x1
x2 − x1

f (P22)

)
(2.9)

Using binary search for as index search method, Nabi et al. found the maximum amount of primitive

operations necessary for the extraction step to be
nρ∑
i=1

log2ki (ki being the number of elements along

each scheduling parameter). Similarly, the interpolation steps takes 3 (2nρ − 1) primitive operations
[26]. Both steps have to be performed for every parameter, which for the state matrix A yields:

N2 (nρ, nx) = nx
2

(
nρ∑
i=1

log2ki + 3 (2nρ − 1)

)
(2.10)

In the equations for control matrix B and trim vector the factor nx2 is replaced by nxnu and nx +nu,
respectively. Since the amount of system states exceeds the number of control inputs, Equation 2.10
represents the computationally most complex interpolation block. As a matter of fact, Nabi et al. show
that it is the entire model’s most complex part, which is hence O

(
Ntnx

22nρ
)
. This is the benchmark

which every alternative approach has to be pitted against.
It is important to note that for this concept to work all data has to be present on a rectangular

grid, albeit uniform spacing is not required. Figure 2.4 has shown, however, that models are only
available inside the non­rectangular conversion corridor. To circumvent this problem, Nabi et al. use
a simple spline function to generate a finer, rectangular grid. The resolution of grid points can be
chosen freely as they stem from an analytical function, however, in practise it is limited by real­time
performance and memory demands. To illustrate the grid, trimmed right rotor gimbal pitch is displayed
in Figure 2.5 using spacings of ∆V = 5 [kts] and ∆βi = 5 [deg.]. This particular grid leads to a number
of [h× βi × δf × V ] = [2× 19× 4× 57] = 8664 individual state­space models to be interpolated.



2.6. Investigation of alternatives 11

Development of a quasi-Linear Parameter Varying Model for a Tiltrotor Aircraft 13

angles (βi ≤ 60◦), the trim rotor collective pitch keeps the increasing speed of
the aircraft constant by contributing towards the generation of thrust.
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Fig. 6 Trim surfaces at sea level and wing flap angle δf = 20◦.

4 quasi-Linear Parameter Varying Model for XV-15

Referring to Figure 1, qLPV model augmented with nonlinear equations of
motion (stitched model) for XV-15 is developed by scheduling the linear
state-space models, presented in Section 3, with four dimensional scheduling

parameter vector ρ (t) = [h βi δf V ]
T

. The model is quasi-LPV because
two of the scheduling parameters, altitude h and velocity V , are dependent
upon the states of the system [u w θ]

T ⊂ x by ḣ = u sin θ − w cos θ and

V =
√
u2 + w2, respectively. This state dependency may result in nonlinear

feedback of the scheduling states. It should be pointed out that, in the current
study only the symmetric flight conditions are considered, therefore, altitude h

Figure 2.5: gimbal pitch (right rotor) trim surface sea level, flap setting δf = 20 [deg.] [26]

In this figure the original data points are indicated by black dots, which correspond to the available
models in Figure 2.4. As the velocity range is limited for each nacelle incidence angle, the edge models
are kept to achieve a rectangular grid. In the figure, this manifests itself as relatively smooth curvature
in the centre part, flanked by extruded two­dimensional profiles outside the velocity range.

While this approach has been successfully applied by Nabi et al., they identified a number of defi­
ciencies and possible areas of improvement. The following list has been aggregated based on remarks
in [26], [25] and from direct consultation with the authors:

1. Lookup tables are a data structure, which makes them inherently difficult to adjust and update if
new data becomes available

2. The necessity to keep the edge models to use spline interpolation over a rectangular grid can
have a negative impact on the inside area where valid data is available

3. Better interpolation accuracy can only be achieved by increasing the resolution of trim points,
which can lead to excessive memory requirements

4. Computational complexity increases exponentially with the number of scheduling parameters.
Broadening the dynamic flight envelope can therefore severely affect the model’s ability to run in
real­time

5. Using linear interpolation leads to a lack of continuity between stability and control derivatives.
This is an issue when advanced, model­based controller are to be used

2.6. Investigation of alternatives
To overcome the aforementioned shortcomings, it has been suggested by Nabi and Quaranta to use
multivariate simplex B­splines polynomials in place of lookup tables. Applying analytical functions in­
stead of data structures is indeed promising, however, a number of alternative methods exist which
should not be omitted right away.

Replacing the lookup­tables is a typical multidimensional curve­fitting task. As such, it is necessary
to first select a suitable function approximator, define its structure and then estimate all necessary pa­
rameters. de Visser, Chu, and Mulder [7] named four commonly used methods for creating accurate
global models of non­linear systems: kernel methods, polynomial models, neural networks and mul­
tivariate simplex B­splines. While all of them are capable of fitting scattered data sets, they differ in
approximation power, transparency, flexibility and computational complexity. The advantages and dis­
advantages are presented in Table 2.4, motivating the choice to choose multivariate simplex B­splines
over the alternatives. Not only do they offer high approximation power, which makes them superior
to models based on single polynomials, they are also computationally efficient. This is in contrast to
kernel methods and neural networks. The latter also suffer from inherent intransparency, which means
that performance can not be guaranteed everywhere. The only obvious downside of using this type
of spline is the need for an underlying triangulation. Finding one which is optimal, or at least close, is
not a trivial task. Furthermore, the geometric characteristics of simplices can lead to data­distribution
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problems in higher dimensions [29]. However, for the time being this is not considered an issue as the
amount of scheduling parameters limits the dimension to four.

Advantages Disadvantages
Kernel Methods

• Suitable for scattered data sets • Non­parametric, hence computationally ex­
pensive

Polynomial Models

• Simple, straightforward construction
• Widely used

• Single polynomial has limited approximation
power

• Combining local models causes discontinu­
ities which might require manual blending

Neural Networks

• Powerful, general function approximator
• Suitable for fitting any scattered data set

• Inherent intransparency, no performance
guarantees

• Global basis functions lead to non­sparse so­
lution systems, which are inefficient to solve

• Training poses a non­linear optimization prob­
lem

Multivariate Simplex B­Splines

• High approximation power on global model
scale

• Computationally efficient due to parametric
nature, linear­in­the­parameter property and
local polynomial basis

• Allows for local refinements and updates

• Triangulation required: no universal ap­
proach available to choose optimum, star­like
shape in higher dimension can lead to data­
distribution problems [29]

Table 2.4: Modelling method comparison, based on [7] unless specified otherwise



3
Multivariate Splines

This chapter presents the working principle of multivariate splines, explains why they are suitable for
improving tiltrotor (qLPV) models and discusses their implementation as well as quality assessment
methods.

3.1. Simplices, Barycentric Coordinates
As can be inferred from the name, basic polynomials of a simplex spline are defined on simplices.
These geometric structures provide a minimal span of n­dimensional space and consist of n + 1 non­
degenerate vertices [6]:

V := {v0, v1, . . . , vn} ∈ Rn (3.1)

The complex hull of V , which is the n­simplex t is then defined as:

t := ⟨V ⟩ (3.2)

While lower­dimensional simplices such as the 1­simplex (line), the 2­simplex (triangle) and 3­
simplex (tetrahedron) are easy to visualize, this becomes increasingly difficult in higher dimensions.
Multiple non­overlapping simplices which are used to partition a domain are called a triangulation, re­
gardless of dimension. Generally speaking, finding an optimal triangulation for a given data set and
simplex spline is not straightforward. It is therefore imperative to asses the simplex quality using the
metrics shown in Table 3.1. According to de Visser, Chu, and Mulder [7], minimum simplex data points
(SDP) count is the most important one as violation leads to unsolvable regression problems.

Simplex metric ’Good’ ’Bad’
radius of circumsphere center and location (SRLC) SRLC ∈ t, Rc ≤ K SRLC /∈ t, Rc > K
ratio shortest ridge and radius circumsphere (SRSC) SRSC < 2 SRSC > 2
simplex minimum angle (SMA) SMA ≥ 14◦ SMA < 14◦

simplex data points (SDP) SDP ≥ d̂ SDP < d̂

Table 3.1: Guidelines for the metrics of well defined (‘good’) and sliver (‘bad’) simplices, from [7]

A compelling feature of simplices is that they have their own local coordinate system with respect
to their barycenter. The location of each point x = (x1, x2, . . . , xn) in Cartesian coordinates can be
expressed as unique weighted vector sum of the simplex vertices, giving it a barycentric coordinate
b (x) = (b1, b2, . . . , bn):

x =

n∑
i=0

bivpi (3.3)

13
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where the vertex indices are sorted in ascending order. Also, barycentric coordinates are normalised
(see Equation 3.4) and can be converted back to Cartesian coordinates in a straightforward way [7].

n∑
i=0

bi = 1 (3.4)

3.2. Simplex Polynomials
Polynomials of degree d in barycentric coordinates can be expressed using the multinomial theorem
for general polynomials:

(b0 + b1 + . . .+ bn)
d
=
∑
|κ|=d

d!

κ0!κ1! . . . κn!
bκ0
0 bκ1

1 . . . bκn
n (3.5)

For simplification purposes the multi­index κ is introduced:

κ = (κ0, κ1, . . . , κn) (3.6)
It has the following properties:

κ! = κ0!κ1! . . . κn!
|κ| = κ0 + κ1 + . . .+ κn

(3.7)

Equation 3.5 therefore becomes:

(b0 + b1 + . . .+ bn)
d
=
∑
|κ|=d

d!

κ!
bκ =

∑
|κ|=d

Bd
κ (b) = 1 (3.8)

where d!
κ! is known as the multinomial coefficient and Bd

κ defined as the basis function of the multi­
variate spline. It has been proven by de Boor in 1987 [4] that this basis is stable; all basis polynomials
add up to unity at every point on the simplex. Consequently, any polynomial p (b) of degree d can be
written as linear combination of basis functions in the so­called B­form (Equation 3.9):

p (b) =
∑
|κ|=d

cκB
d
κ (b) (3.9)

The polynomial shape is determined by the vector of B­coefficients cκ, the total number of which
depends on polynomial degree d and dimension n:

d̂ =

(
d+ n
n

)
=

(d+ n)!

n!d!
(3.10)

3.3. B­net, Continuity and Parameter Estimation
A noteworthy property of the B­coefficients is their spatial distribution on the simplex, forming a net
structure. The relationship between B­coefficient multi­index and location is:

b (ck) =
κ

d
(3.11)

Figure 3.1 shows the B­coefficient net, or B­net in short, for a d = 3 basis function on a triangulation
of three simplices. The orientation with respect to its parent simplex is determined by the B­net rule,
which states that B­coefficients with high multi­indices must be located at vertices of low index.

This sorting scheme is very important for inter­simplex continuity of splines, which relies on the
following condition:

ct2κ0,m,κ1
=
∑

|γ|=m

ct1(κ0,0,κ1)+γB
m
γ (v∗) , 0 ≤ m ≤ r (3.12)

Graphically, the relation of B­coefficients leads to a structure spanning over the simplex boundaries.
In Figure 3.1 first­order (C1) continuity is indicated by bold lines. Generally, the higher the continuity
order, the more coefficients are involved.
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The simplex has its own local coordinate system in the form of the
barycentric coordinate system. The principle of barycentric coor-
dinates is the following; every point x = (x1, x2, . . . , xn) inside or
outside an n-simplex t , with t as in (2), can be described in terms of
a unique weighted vector sum of the vertices of t . The barycentric
coordinate b(x) = (b0, b1, . . . , bn) of x with respect to simplex t
are these vertex weights:

x =
n∑
i=0

bivpi ,
n∑
i=0

bi = 1 (3)

with pi sorted vertex indices, i.e. pi < pi+1.

2.2. Triangulations of simplices

A triangulation T is a special partitioning of a domain into a set
of J non-overlapping simplices.

T :=

J⋃
i=1

ti, ti ∩ tj ∈
{
∅, t̃

}
, ∀ti, tj ∈ T (4)

with the edge simplex t̃ a k-simplex with 0 ≤ k ≤ n− 1.
One of the most commonly used triangulation methods is the

Delaunay triangulation. Fig. 1 shows a simple Delaunay triangula-
tion consisting of three simplices (triangles).

2.3. Spline spaces

A spline space is the space of all spline functions s of a given
degree d and continuity order C r on a given triangulation T . Such
spline spaces have been studied extensively, see e.g. Lai (1990), Lai
and Schumaker (1998) and Lai and Schumaker (2007). We use the
definition of the spline space from Lai and Schumaker (2007):

Srd(T ) := {s ∈ C
r(T ) : s|t ∈ Pd, ∀t ∈ T } (5)

with Pd the space of polynomials of degree d. For example, S13(T )
is the space of all cubic spline functions with continuity order C1
defined on the triangulation T .

2.4. The B-form of the multivariate simplex spline

The simplex spline is a B-spline in the sense that it can be ex-
pressed in the well known B-form, see de Boor (1987). The B-form
follows from the multinomial theorem:

(b0 + b1 + · · · + bn)d =
∑

κ0+κ1+···+κn=d

d!
κ0!κ1! · · · κn!

n∏
i=0

bκii . (6)

Introducing the multi-index κ:

κ := (κ0, κ1, . . . , κn) ∈ Nn+1. (7)

The 1-norm of the multi-index is:

|κ| = κ0 + κ1 + · · · + κn = d, d ≥ 0. (8)

The factorial of the multi-index is defined as:

κ! = κ0!κ1! · · · κn!. (9)

Lai and Schumaker (2007) introduced a very useful lexicographical
sorting order on the elements of the multi-index:

κd,0,0···0 > κd−1,1,0···0 > κd−1,0,1,0···0 > · · ·

> κ0···0,1,d−1 > κ0···0,0,d. (10)

The total number of valid permutations of κ is d̂:

d̂ =
(d+ n)!
n!d!

(11)

Fig. 1. B-net for third degree basis function on 3 simplices together with C1
continuity structure (bold lines).

with the multi-index the multinomial equation (6) can be
simplified into:

(b0 + b1 + · · · + bn)d =
∑
|κ|=d

d!
κ!
bκ . (12)

The basis function Bdκ(b) of the multivariate spline can now be
defined as follows:

Bdκ(b) :=
d!
κ!
bκ . (13)

de Boor proved (de Boor, 1987) that
{
Bdκ(b), κ ∈ Nn+1, |κ| = d

}
is

a stable basis for the space of polynomials of degree d. This means
that any polynomial p(b) of degree d can be written as a linear
combination of Bdκ ’s as follows:

p(b) =
∑
|κ|=d

cκBdκ(b). (14)

This is the B-form of the multivariate simplex spline. In (14),
cκ is a vector of coefficients called control coefficients, or more
commonly, B-coefficients. The B-coefficients uniquely determine
the shape of the polynomial in the B-form. The total number of
B-coefficients and basis functions for a dth degree polynomial on
an n-dimensional simplex is equal to d̂, the total number of valid
permutations of κ . The B-form can be evaluated using either the
de Casteljau algorithm (Hu, Han, & Lai, 2007), or directly by simply
expanding the B-form (14), which we found to be more efficient
computationally.

2.5. The B-coefficient net

The B-coefficients are strongly structured in what is called the
B-coefficient net, or B-net for short. The B-net has a well known
spatial representation that provides insight into the structure of
B-form polynomials, see e.g. Farin (1986), Lai (1997) and Lai and
Schumaker (2007). The B-net is also very useful in the visualization
of the structure of continuity between simplices. Fig. 1 shows
the spatial representation of the B-net corresponding with a third
degree basis function (i.e. d = 3) defined on a triangulation con-
sisting of the three simplices ti, tj and tk.
There exists a direct relationship between the multi-index of

a B-coefficient and its spatial location in barycentric coordinates
b(cκ)with respect to a simplex:

b(cκ) =
κ

d
, |κ| = d. (15)

2.6. Continuity between simplices

A spline function is, per definition, a piecewise defined poly-
nomial function with C r continuity between its pieces. Continuity
between the polynomial pieces of the simplex spline are enforced

Figure 3.1: Example B­net structure [6]

From a mathematical point of view, the set of continuity conditions can be collected in matrix form:

Hcκ = 0 (3.13)
where H is the so­called smoothness matrix and cκ the global vector of lexicographically sorted

B­coefficients.
Multivariate simplex splines are frequently used in system identification and curve­fitting tasks. This

requires the B­coefficients to be chosen in a way that achieves a good fit with a given data set. The
most popular approach, due to its simplicity and availability of efficient solvers, is linear regression. The
corresponding model is of the form shown in Equation 3.14. X is the regression matrix and consists
of blocks corresponding to individual simplices. Y is the vector of measurements and r the residu­
als. If smoothness conditions have to be satisfied (Equation 3.13), the model is said to be equality
constrained.

Y = Xc+ r (3.14)
Multiple methods exist to find a cκ which minimises the residual, or more precisely, a related metric

such as the residual square. They mainly differ by how strict assumptions on noise have to be, and
how complex the required solving operations are. According to de Visser et al. [8], generalized least
squares (GLS) estimators and constrained recursive least squares (RECLS) estimators are able to
cover a wide range of typical applications. The following paragraphs will only treat GLS, as the second
method is designed for use in real­time adaptive modelling applications and hence out of scope.

The equality constrained generalized least squares (ECGLS) optimization problem is shown below.

ĉ = argmin
[
1

2
(Y −Xc)

⊤
Σ−1 (Y −Xc)

]
subject to Hc = 0 (3.15)

The assumptions made on noise are:

1. The residual noise is white and has variable magnitude; E (r) = 0, cov (r) = Σ. The residual
covariance matrix is usually estimated by using an (equality constrained) ordinary least squares
(OLS) estimator beforehand.

2. There is no state noise present

Minimizing Equation 3.15 can again be done by a variety of methods. The one used by de Visser
et al. [8] is Lagrangian multipliers. Reformulating the cost function as Lagrangian expression yields
Equation 3.16, where λ is the vector of multipliers. It is also possible to introduce constraints beyond
the smoothness matrix.

L (c, λ) =
1

2
(Y −Xc)

⊤
Σ−1 (Y −Xc) + λ⊤Hc (3.16)

Setting the partial derivatives to zero and writing the results in matrix form yields the Karush­Kuhn­
Tucker (KKT) system: [

X⊤Σ−1X H⊤

H 0

] [
c
λ

]
=

[
X⊤Σ−1Y

0

]
(3.17)
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The ECGLS / Lagrangian estimator is consequently:[
ĉ

λ̂

]
=

[
X⊤Σ−1X H⊤

H 0

]−1 [
X⊤Σ−1Y

0

]
=

[
C1 C2

C3 C4

]−1 [
X⊤Σ−1Y

0

]
(3.18)

with statistics:

cov (ĉ) = C1 (3.19)

var (ĉ) = diag (C1) (3.20)

It is possible to use the Moore­Penrose pseudo inverse to solve Equation 3.18, however, this is a
computationally very expensive method. A more efficient way is using an iterative solver. Defining Q
as the dispersion matrix:

Q := X⊤Σ−1X (3.21)

The first iteration is:

ĉ(1) =

(
2Q+

1

ε
H⊤H

)−1 (
2X⊤Σ−1Y −H⊤λ̂(0)

)
(3.22)

Subsequent iterations are:

ĉ(k+1) =

(
2Q+

1

ε
H⊤H

)−1

2Qĉ(k) (3.23)

where ε is a small number such as 10−6 and λ(0) an initial estimate for the Lagrange multipliers.

3.4. Spline Quality Assessment
A number of metrics exist to assess the quality of any multivariate simplex B­spline. They can be
grouped into model residue analysis, statistical model quality assessment and model stability analysis.

The first model residue metric is the relative root mean sqare error (RMSE). The residual ϵ is defined
as follows:

ε = Y −Xĉ (3.24)

Using the regular root mean sqare error (RMSE):

RMS (ε) =

√√√√ 1

N

N∑
i=1

(ε (i)) (3.25)

And scaling with the difference between minimum and maximum value to obtain a more useful
metric:

RMSrel (ε) =
RMS (ε)

maxYV −minYV
(3.26)

Another metric is the coefficient of determination R2 shown below, where SSres is the residual sum
of squares and SStot the total sum of squares. It gives an indication of how much variation in the data
can be explained by the regression model. As de Visser et al. notes [8] it should be used with caution
though, as overconfidence in model quality can happen in some cases.

R2 = 1− SSres

SStot
= 1−

∑
(ŷi − ȳ)

2∑
(yi − ȳ)

2 (3.27)

Next to considering residual magnitude it can also be assessed whether or not they are correlated.
The per­simplex autocorrelation function estimate is given by:
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R̂t (k) =
1

Nt

Nt−k∑
i=1

εt (i) εt (i+ k) , k = 0, 1, ..., Nt (3.28)

The residuals can be considered uncorrelated if Equation 3.29 holds true for at least α ×Nt of Nt

values of the per­simplex autocorrelation function:∣∣∣R̂t (k ̸= 0)
∣∣∣

R̂t (0)
≤ Nα√

Nt

, k > 0 (3.29)

The metric for statistical model analysis is the covariance of B­coefficients cov (ĉ), which has been
shown before in Equation 3.19. Since the coefficients have a spatial distribution, so does their covari­
ance. The resulting surface can be used to identify problematic areas.

The metric for model stability analysis are the B­coefficient bounds. These are unique to splines. If
Equation 3.30 holds, then the spline is well behaved inside its domain.

∥p∥ ≤ ∥c∥ (3.30)

where:

∥c∥ := max |cκ|
|κ|=d

(3.31)



4
Collinearity

This chapter explains how the presence of collinearity affects the solution of regression problems, in­
troduces a diagnostic method and presents possible remedies. One method, the Ridge Regression
Estimator (RRE) is discussed in more detail.

4.1. Problem Description
During the initial data set examination it became clear that it suffers from a deficiency known as data
collinearity. This can happen when data points are distributed on lines, either perfectly or very closely.

Collinearity is not a problem per se, which explains why gridded data is in most cases perfectly
adequate for curve fitting. The tiltrotor set’s specific issue is the imbalance in number of unique data
points per independent variable. Figure 4.1 shows a scatter plot of the 2D data set, as well as two side
views. It can be observed that, while there are a great number of velocity levels available, only a few
nacelle incidence angle settings exist. The ratio of effective data points is hence 57/5, which becomes
problematic when higher­order polynomials are to be used for linear least­square regression.

Figure 4.1: 2D Data Point Distribution

First of all, it needs to be noted that the presence of collinearity does not lead to a bad fit in terms of
residuals but negatively affects the model parameter estimates. Assuming the collinearity is not perfect,
which causes the cross­product matrix X ′X to be non­invertible, the main ill effects of collinearity are
[15] [1]:

1. Very low estimation precision, which leads to large, potentially correlated errors. Also, parameter
variance is excessively high.

2. The relative importance of parameters can be masked by their inflated size, potentially leading to
erroneous elimination.

18
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3. High sensitivity of coefficient estimates due to small changes in the data, reducing confidence in
the model’s prediction quality.

While we are not so much interested in the interpretation of coefficients, precise and reliable esti­
mates are essential if the qLPV model is to be used for purposes such as controller design. Collinearity
therefore needs to be diagnosed and, if not avoided altogether, contained.

4.2. Diagnostic
While collinearity is easily identified as root cause for the ill­conditioned data matrix in the given, low
dimensional case, this might not always be possible. Specifically, a column in the data matrix might be
the linear combination of multiple others [1]. To pinpoint the issue one can use Variance­Decomposition
Proportions (VDP), which assigns variance of regression parameters to singular values. If almost all
variance of a parameter can be attributed to a large singular value then (near­) collinearity is present.

An alternative, frequently employed metric are the Variance Inflation Factors (VIFs) [2]:

V IFi =
1

1−R2
i

(4.1)

where R2
i is the multiple correlation coefficient of one data matrix column regressed on the re­

maining ones. A large VIF points to collinearity, but the method has issues distinguishing coexisting
near­dependencies and suffers from numerical instability when collinearity is present [1].

4.3. Possible Remedies
If one is determined to use multivariate simplex B­splines for fitting collinear data, a number of possible
remedies exist. Naturally, each has its own advantages and drawbacks, which are briefly outlined here:

1. Introduce additional, well­conditioned data
The preferred approach. It might, however, be difficult or expensive to get new data, or the data
is inconsistent.

2. Add random increment to existing data (”joggling”)
Attractive because no change to the estimator is required, however, when collinearity is present
even small data manipulation can have a large (unpredictable) effect [1].

3. Ridge Regression a.k.a. Tikhonov regularization
Popular approach to solving ill­posed regression problems in statistics, trades bias for improved
parameter variance. This appears to be the most promising approach, as the concept has been
researched and applied for decades to much more complex problems [14]. Furthermore, it is
relatively straightforward to implement in the existing creation framework.

4. Pure Bayes estimator
Very flexible and powerful, but requires prior knowledge and a non­linear solver. Implementation
is expected to be time­consuming.

5. Lower spline polynomial degree and/or lower number of simplices
Easiest solution, but goodness­of­fit might be unacceptably poor.

6. Variable elimination
More targeted than reducing spline polynomial degree, however, extreme variance inflation causes
issues with typical selection criteria [21] [1]. Also, continuity and other constraints likely compli­
cate the process.

7. Increase inter­simplex continuity
Reducing degrees of freedom requires less uncorrelated data points, but also reduces the goodness­
of­fit.

4.4. Ridge Regression
Ridge regression, also known as Tikhonov regularization, can be employed to alleviate the problems
caused by collinearity. The underlying idea is shrinking the regression coefficient vector by imposing a
penalty on its size, which introduces a small amount of bias but greatly reduces variance [13]. It has
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been shown that the RRE can have a lower mean squared error (MSE) compared to the OLS estimator
[14], but this is not the primary motivation for using it here.

The well­known OLS estimator, which is the best linear unbiased estimator, is:

β̂ = (X ′X)
−1

X ′y (4.2)

where X is the data or design matrix, and Y the vector of measurements. Comparing, the biased
RRE as described in [14] is given by:

β̂⋆ = [X ′X + kI]
−1

X ′y = WX ′y (4.3)

where k ≥ 0 is also known as the ridge parameter. This clearly shows that the RRE works even if
X ′X itself is rank­deficient due to correlation of the predictor variables. Conceptually, Equation 4.3 is
the solution to a constrained least squares problem:

RSS (k) = (y −Xβ)
′
(y −Xβ) + kβ′β (4.4)

This shows that k is simply the Lagrange multiplier of the constraint. However, its optimum value to
achieve the minimum residual sum of squares (RSS) is generally unknown and finding it is no trivial task
[23]. A simple and therefore popular approach to finding, if not the optimum, at least good candidates
is using the so­called ridge trace. This is a plot of estimated regression coefficients as functions of k.
It is normally sufficient to consider a range of 0 < k ≤ 1 for the coefficients to stabilize [23].

The corresponding estimator variance can be calculated by [14]:

V AR
[
β̂⋆
]
= σ2Z (X ′X)Z ′ (4.5)

where
Z = I − kW (4.6)

and σ2 the usual residual variance. This illustrates that increasing k indeed decreases estimator
variance.

The aforementioned equations are valid for unconstrained parameter estimation, however, multivari­
ate simplex B­splines can have both inter­simplex continuity requirements and additional constraints.
When linear restrictions of the form Rβ = r are to be included, Equation 4.3 becomes [12]:

β̂r (k) = β̂ (k,β0)− S−1
k R′ [RS−1

k R′]−1
(
Rβ̂ (k,β0)− r

)
, k ≥ 0 (4.7)

where

Sk = X ′X + kIp (4.8)

and

β̂ (k,β0) = (X ′X + kIp)
−1
(
X ′y + kR′ (RR′)

−1
r
)

(4.9)

If no additional constraints are present, Hc = Rβ = r = 0 which simplifies Equation 4.9 to the
unconstrained RRE in Equation 4.3. The constrained RRE’s covariance matrix is given by:

Cov
(
β̂r (k)

)
= σ2MkX

′XMk (4.10)

where

Mk = S−1
k − S1

kR
′ [RS−1

k R′]−1
RS−1

k (4.11)

When reviewing the literature it appears that most authors standardize the data matrix columns
by centring and scaling, so X′X is in correlation form [23] [14] [20]. This is done for a number of
reasons, such as reducing unnecessary ill­conditioning due to model structure, and generally a better
comparability of coefficient estimates. In the context of ridge regression is typically done because the
estimated coefficients are not equivariant under scaling [13]. This is because the RRE estimate size
depends on the predictor variable’s variance [28]. Standardizing hence avoids dominance of certain
coefficients over others.
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While these findings advocate standardizing whenever possible, the user can also decide to use the
original data matrix instead [28]. There has been, to this author’s knowledge, no previous attempt to use
the RRE in combination with simplex B­splines. In case of difficulties it might therefore be necessary
to resort to the latter approach.



5
Project Definition

This chapter establishes the research project objective, lists and motivates the associated research
questions and explains how they are intended to be answered.

5.1. Research Objective
The research objective is investigating how stitched qLPV flight dynamicsmodels can benefit from using
multivariate simplex B­splines in place of linearly interpolated lookup tables by applying the procedure
to an existing tiltrotor model.

5.2. Research Questions
Below are the four research questions which have been selected, each followed by a brief motivation:

1. How does varying the number of simplices and polynomial degree affect model accuracy?
The absence of efficient algorithms makes finding optimal triangulations a very challenging task,
especially in higher dimensions. It is therefore the model designer’s responsibility to find one
which offers sufficient performance. An investigation will be performed as to how accurate differ­
ent combinations of triangulations and polynomial degrees are.

2. What is the effect of skipping data manipulation and pre­processing steps on model accuracy?
Lookup tables require data to be spread out on strictly rectangular grids. However, data generated
by simulations or flight tests is often scattered and/or limited in coverage. For example, the
XV­15 can only operate inside the non­rectangular conversion corridor. Trim state and control
settings, system and input matrices are hence unavailable for certain nacelle angle­airspeed
pairs. This necessitates data pre­processing and manipulation. Firstly, to fill the grid outside
the flight envelope with synthetic data. Secondly, to obtain gridded data from scattered input.
Thirdly, to artificially increase grid density. In the stitching architecture this is typically done by
relatively basic spline curve fitting methods, which do not offer much control over the process.
On the contrary, multivariate simplex B­splines use flexible triangulations and are able to fit any
scattered data set. It is therefore expected to have a fit of similar or better quality, in addition to a
simplified model building process.

3. How much more memory efficient is the spline­based model for similar accuracy?
Linearly interpolated lookup tables require increased trim point resolution for improved accu­
racy. This comes at the cost of computer memory, which can become unacceptable in higher
dimensions. Splines, on the contrary, are continuous functions and only require the storage of
B­coefficients and triangulation vertices. The question is therefore not if, but how much more
efficient the spline­based model is.

4. How does memory usage compare as the number of scheduling parameters is increased?
Increasing the number of scheduling parameters leads to a broader flight envelope and is there­
fore desirable. However, lookup table memory usage does not scale well with dimension due to

22
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their fundamental structure. Additionally, it is not only usable data taking up space. Synthetic
data is required to fill otherwise empty grid cells, but adds no value to the model itself. Splines
have no such issues and are therefore expected to perform significantly better.

5.3. Methodology
To answer the first three research questions it is necessary to create two branches of spline­based
stitched qLPV models. The first branch is to investigate accuracy (Q1 & Q2), the second memory
complexity (Q3). Initially only two scheduling parameters are used, but the final goal is three. Below
are the steps necessary for this endeavour. The first, preparation, is only required once while the other
two need be repeated for each model.

1. Preparation
The initial step is familiarization with the provided Matlab/Simulink model and accompanying sup­
port scripts. It needs to be understood how themodel stitching architecture has been implemented
and what additional blocks are present. A focus will be put on model inputs, outputs, states and
signal format. Next, the lookup table and interpolation blocks will be analysed. Questions include,
but are not limited to: In what format is the data stored? How are the parameters sorted? How
are the breakpoints retrieved? How is the interpolation scheme implemented?
Once the model has been understood sufficiently, attention will shift to the provided data pack­
age. Firstly, the data needs to be checked for completeness. It needs to be ensured that all
relevant model parameters available as functions of the scheduling parameters. Also, the data
might contain components such as Coriolis terms. These are added later in the quasi­non­linear
model and hence need to be removed. Secondly, the data distribution throughout the domain
is analysed. This is necessary to determine promising triangulation options and identify gaps.
Thirdly, additional data is obtained to fill the gaps and either improve the model or be used in the
verification process.

2. Curve­fitting
This step can be separated into setup and parameter estimation. Setup means deciding what tri­
angulation, spline degree and continuity are to be used. This is based on the previous data anal­
ysis and external requirements, such as a minimum degree of continuity. Next, the B­coefficients
are estimated with the help of an already existing Matlab toolbox. Developed by Coen de Visser
in recent years, this toolbox contains functions to facilitate the entire process of creating multivari­
ate simplex B­spline models. It might therefore not only be used for parameter estimation, but
also automated triangulation in dimensions beyond two.

3. Verification and Validation
These two steps are crucial, as they create confidence in model quality. While often used in­
terchangeably, verification is done to determine if a simulation model accurately represents the
chosen physical model and validation determines if simulation results accurately represent the
physical model [24].
Verification will focus on the spline function residuals and model parameters, as has been outlined
in Chapter 3. Due to the large number of individual models (over 8000 for the systemmatrix alone)
a high degree of automation is desirable. When a model shows deficiencies the user is alerted
and directed to its location for further manual inspection.
Next to judging individual spline quality it is necessary to evaluate their impact on model output. In
case of the system and control matrices these are the aerodynamic rigid body state accelerations.
Trim, as shown in Figure 2.3, is used to calculate state and input perturbations but also influences
the aerodynamic trim force. The strategy is to compare each contribution to the original LT model
by using equal inputs, which are recorded from a number of reference cases. Additionally, the
combined aerodynamic accelerations are investigated.
Finally, validation will be carried out by running the entire model using reference case inputs.
These inputs and selected state time histories are available in [26]. Since the model is open­loop,
however, it is possible that the model diverges and generates unsatisfactory results. In this case
the V&V effort will be limited to verification only.
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Answering the research questions warrants a number of different techniques, which are listed in
Table 5.1. The first two require the verification and validation techniques described above. Question
three is concerned with memory complexity. For a fair comparison it is therefore necessary to not use
the most accurate spline model, but the simplest one which matches LT accuracy. A comparison with
the high­accuracy models is included for the sake of completeness. Question four is a fundamental
one, independent of the underlying data. It is therefore be answered by a theoretical analysis rather
than studying a certain model.

# answered by
1 Verification & Validation techniques
2 Verification & Validation techniques
3 Practical memory demand analysis
4 Theoretical memory complexity analysis

Table 5.1: Research question answering methods

5.4. Project planning
Presented below are the thesis project milestones, as required by the MSc Thesis Kick­off Form (AE
2). For a detailed view of work packages and due dates see the Gantt chart.

Milestone (Expected) Date
Start MSc project 26/02/2020
Kick­off meeting 18/03/2020
Hand in literature study 22/04/2022
Submit draft thesis 10/06/2022
Green light review 16/06/2022
Request examination 16/06/2022
Thesis hand­in 01/07/2022
Defence 14/07/2022

Table 5.2: Thesis milestones



6
Appendix

This chapter establishes the adjusted research project objective, lists and motivates the associated
research questions.

6.1. Adjusted Research Objective
The research objective is to curve­fit a collinear tiltrotor stability derivative by a multivariate simplex
B­spline.

6.2. Adjusted Research Questions
1. How canmultivariate simplex B­splines be used effectively and reliably to fit collinear aerodynamic

data sets?
A good fit requires small residuals and low­variance coefficient estimates of reasonable mag­
nitude for prediction/interpolation. Collinearity can prevent simultaneous achievement of these
goals.

(a) How can regularization be integrated in the existing B­coefficient estimation framework?
This, apparently, has not be done before.

(b) How well does it work against regression matrix ill­conditioning?
This is what the RRE has been originally designed to do.

(c) How can good tuning parameter candidates be determined?
It would be very convenient if simple, established techniques could be applied.

(d) What is the simplex counterpart to the multivariate tensor product P­spline?
While sharing the concept of scaled basis functions, simplex B­splines have a local coordi­
nate system and continuity conditions.

(e) How does it compare to ridge regression in terms of ill­conditioning reduction, goodness­of­fit
and smoothing properties?
It is useful to know when to use each type.
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Abstract—Data collinearity is a serious problem when applying
curve fitting techniques for aerodynamic model identification. As
a remedy, Tikhonov regularization is routinely applied to simple
polynomials, univariate B-splines and tensor product B-splines.
However, if the data set contains significant local and global
nonlinearities, the higher approximation power of multivariate
simplex B-splines may be required. No regularization scheme
is known to exist yet for this type of spline function, which
limits their application to non- or only mildly collinear data sets.
It is therefore proposed to integrate two variants of Tikhonov
regularization: ridge regression and a spline-specific coefficient
difference penalty. Both are able to overcome data collinearity
issues, which is being demonstrated on a real system identifi-
cation problem. Furthermore, they show promise for local data
smoothing applications.

Index Terms—multivariate splines, system identification,
collinearity, Tikhonov regularization, P-spline

I. INTRODUCTION

Modern aircraft are complex systems featuring large flight
envelopes. It is not always possible or cost-effective to build
aerodynamic models from flight tests alone. Instead, data
is obtained from wind tunnel experiments or generated by
computer programs. This allows for selected experimental
parameters to be fixed while others are varied in predefined
increments. The result is often a rigid grid-like data structure.

A popular method for fitting linear models is least-square
regression, which relies on matrix inversion. If fitting data is
collinear, i.e. large portions are coplanar, the regression matrix
becomes ill-conditioned or singular. The estimator’s ability
to fit the identification data is generally not affected, but its
prediction power becomes severely degraded. This is because
low estimation precision due to ill-conditioning leads to large
potentially correlated estimator error and inflated variance.
Various methods such as VIF (variance inflation factors) or
VDP (variance-decomposition proportions) can be applied to
pinpoint the cause and assess the damage. For more insight
in this particular field, the reader is referred to the book by
Belsley, Kuh, and Welsch [2].

A number of solutions are known to overcome or, at the
very least, to alleviate the issue for general linear models. New,
non-coplanar and consistent data can be introduced. The model
structure can be adapted to yield a well-conditioned regression

matrix. The generalized inverse is able to find solutions of ill-
conditioned problems. Small random increments can be added
to coplanar data.

If none of these straightforward approaches are viable,
Tikhonov regularization is often used. This method augments
the basic least-square estimator with tunable penalties to
enforce a favourable solution. While it had originally been
applied to simple polynomial models, it was later extended to
univariate and multivariate (tensor product) B-splines [15, 9,
17].

These are useful and proven function approximators, but
aerodynamic data sets frequently contain significant local and
global nonlinearities. Multivariate simplex B-splines possess
the necessary approximation power [7, 20] but lack a dedicated
method to prevent negative effects caused by data collinearity.
Differential constraints, as presented in [6], can potentially be
used as a fix. However, the need for expert knowledge and
manual tuning limits this particular application to small, low-
complexity models.

The main contribution of this paper is, therefore, a Tikhonov
regularization scheme for multivariate simplex B-splines, with
the goal of removing numerical issues caused by strongly
collinear data sets. Being inspired by the work of Eilers and
Marx [9], the result is named the multivariate simplex P-spline.

Further contributions are the adaptation of coefficient differ-
ence penalties to multivariate simplex splines and the evalua-
tion of two established tuning parameter selection criteria. The
novel simplex P-splines are demonstrated on a highly collinear
stability derivative of the tiltrotor aircraft flight dynamics
model presented in [18].

II. PRELIMINARIES ON MULTIVARIATE SIMPLEX
B-SPLINES

This section aims to offer a broad overview of multivariate
simplex B-splines. It is based on the work of de Visser et
al., which presents the use of simplex splines in a system
identification context and beyond [5, 7, 6].

Multivariate simplex B-splines are piecewise polynomials
of predefined continuity, which exist on geometric structures
known as simplices. Per definition, a simplex provides a min-
imal span of n-dimensional space using n+ 1 non-degenerate
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vertices. These can be used to define the local barycentric
coordinate system. Multiple simplices can be combined to
form a triangulation, such as the simple one shown in Figure
1.

While this offers great flexibility, there is no general ap-
proach to choosing an optimal triangulation for a given data
set. A popular choice are subdivided (hyper-) rectangles, due
to their simplicity. It is always possible to create a rectangular
triangulation and remove simplices without data content af-
terwards, however, flexible alternatives such as the Delaunay
triangulation exist.

The well-known multinomial theorem for a polynomial of
degree d in barycentric coordinates b is:

(b0 + b1 + . . .+ bn)
d

=
∑
|κ|=d

d!

κ0!κ1! . . . κn!
bκ0
0 bκ1

1 . . . bκn
n

=
∑
|κ|=d

d!

κ!
bκ =

∑
|κ|=d

Bdκ (b) = 1

(1)

κ = (κ0, κ1, . . . , κn) is a multi-index introduced for conve-
nience. It has the following properties:

κ! = κ0!κ1! . . . κn!

|κ| = κ0 + κ1 + . . .+ κn
(2)

The total number of valid permutations is:

d̂ =
(d+ n)!

n!d!
(3)

All individual basis functions Bdκ (b) add up to 1 at every
point in the simplex, which means the basis is stable. This
is a considerable advantage over common global polynomials.
Expanding on this insight, de Boor showed in [4] that any
polynomial p can be expressed in the so-called B-form by
multiplying each basis functions with a constant cκ :

p (b) =
∑
|κ|=d

cκB
d
κ (b) (4)

It is possible to express (4) in vector notation, which is
very useful in practical applications [5]. c is the vector of
B-coefficients, and tj is an index which refers to individual
simplices j in a triangulation t:

p (b) = Bd
tj (b) · ctj (5)

A spline function’s directional derivative can be calculated
using its original B-coefficients [6].

Dm
u p (b) =

d!

(d−m)!
Bd−m (b)Ad,d−m (a) · ct (6)

where m is the derivative order, A the de Casteljau matrix,
and a the coordinate of derivative direction u.

Another important basis polynomial feature is the unique
spatial distribution of B-coefficients, which forms the so-called
B-net. An example of polynomial degree d = 4 is shown in
Figure 1. Note that coefficients are overlapping on the shared

Fig. 1: B-Coefficient Spatial Distribution (B-Net): 2 Simplices,
d = 4, n = 2

simplex edge. Their barycentric coordinates can be calculated
from its multi-index by:

b (ck) =
κ

d
(7)

Inter-simplex continuity is enforced by relating coefficients
of neighbouring simplices in the following way:

ctjκ0,m,κ1
=
∑
|γ|=m

ctk(κ0,0,κ1)+γ
Bmγ (v∗) , 0 ≤ m ≤ r (8)

where γ is a multi-index independent of κ, r is the continu-
ity degree and v∗ the out-of-edge vertex of tj . This requires the
coefficients to be sorted following the B-net rule: high multi-
index coefficients at vertices of low index and low multi-index
coefficients at vertices of high index.

The set of all continuity conditions is collected in the
smoothness matrix H . Solving the ordinary (optionally,
weighted or general) least-square problem to determine the
optimal coefficient vector estimate ĉ leads to constrained
minimization:

ĉ = arg min
c
‖Y −Bc‖22 (9)

subject to:

Hc = 0 (10)

Y is the observation vector of length N and B the regres-
sion matrix.

B =


Bt1 0 0 0
0 Bt2 0 0

0 0
. . . 0

0 0 0 BtJ

 ∈ RN×J·d̂ (11)

where each block consists of the B-form polynomial eval-
uated at each of the n points which lay inside the respective
simplex:
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Btj =


Bd
tj (b1)

Bd
tj (b2)

...
Bd
tj (bn)

 (12)

A variety of methods exist to solve the constrained op-
timization problem; however, a popular choice is Lagrange
multipliers for which efficient iterative solvers exist:

L (c,µ) =
1

2
(Y −Bc)′ (Y −Bc) + µ′Hc (13)

where µ is the constraint multiplier. Taking partial deriva-
tives, this leads to the following equations:

∂L
∂c

= − (Y −Bc)′B + µ′H

= B′Bc+H ′µ−B′Y = 0
(14)

∂L
∂µ

= Hc = 0 (15)

Setting up the Karush-Kuhn-Tucker (KKT) matrix.[
B′B H ′

H 0

] [
c
µ

]
=

[
B′Y

0

]
(16)

[
ĉ
µ̂

]
=

[
B′B H ′

H 0

]+ [
B′Y

0

]
=

[
C1 C2

C3 C4

] [
B′Y

0

]
(17)

B-coefficient covariance is given by [7]:

Cov (ĉ) = C1 (18)

The Lagrangian estimator requires both smoothness matrix
H and dispersion matrix Q = B′B to be of full rank
[5]. This requirement translates to a minimum number of d̂
non-coplanar data points to be available. Otherwise, B and,
consequently, Q become ill-conditioned or singular.

III. PENALIZED SPLINES

Tikhonov regularization is frequently used to prevent ill-
conditioning without changing model structure or data. In
its simplest form it is the well-known ordinary least-square
estimator augmented with a penalty term λP [15]:

β̂t = (X ′X + λP )
−1
X ′Y , λ ≥ 0 (19)

β̂t is the parameter vector estimate, X is the regression
matrix, and λ is the tuning parameter and P is the penalty
matrix. It is defined as:

P = Γ′Γ (20)

where Γ is the Tikhonov matrix. It is important to note
that (19) does not contain additional constraints, which are
required for spline inter-simplex continuity. The penalized
estimator is therefore derived using the Lagrange multiplier
technique presented earlier. In [21], it is explained how a

penalty can be considered an additional constraint to the least-
square minimization problem (9). For generic penalties, this
constraint is:

‖Γc‖22 ≤ t (21)

for some suitable t > 0. Expanding the first term:

‖Γc‖22 = c′Γ′Γc = c′Pc (22)

Making use of (22), the least-square minimization problem
including both constraints can be written as Lagrangian:

L (c,µ,λ) =
1

2
(Y −Bc)′ (Y −Bc) +

µ′Hc+
1

2
λ (c′Pc− t)

(23)

where µ and λ are the constraint multipliers. Taking partial
derivatives:

∂L
∂c

= − (Y −Bc)′B + µ′H + λc′P

= [B′B + λP ] c+H ′µ−B′Y = 0
(24)

∂L
∂µ

= Hc = 0 (25)

It is not necessary to compute the partial derivative with
respect to λ as it is our tuning parameter and remains in (24).
Setting up the KKT matrix leads to the following augmented
equations. [

B′B + λP H ′

H 0

] [
c
µ

]
=

[
B′Y

0

]
(26)

[
ĉ
µ̂

]
=

[
B′B + λP H ′

H 0

]+ [
B′Y

0

]
=

[
C1 C2

C3 C4

] [
B′Y

0

] (27)

The covariance matrix of the spline coefficients, adapted
from [16] for the ordinary least-square (OLS) case and utiliz-
ing previously established notation, is given by:

Ca = σ2 (B′B + λP )
−1 (28)

Retracing the steps of de Visser, Chu, and Mulder in [5],
who use insights about the generalized inverse from Rao [19],
yields the familiar result:

Cov (ĉ) = C1 (29)

Ridge Penalty (RP)

The ridge penalty, named after its characteristic structure,
is by far the most popular choice for P . The reason is its
effectiveness and extreme simplicity:

P = I (30)

where I is the identity matrix of appropriate size. This
allows for very easy and flexible integration into various
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models. While expressions for the special case of constrained
least-squares are readily available [13], the so-called ridge
regression has, at least to this author’s knowledge, not yet
been applied to multivariate simplex B-splines.

Implementation in the inverse KKT matrix (27) is straight-
forward, especially if λ is chosen to be a constant. One is,
however, free to choose a value per simplex:

λP = diag(λ1, λ2, ..., λn)I (31)

This allows for precise local application, continuity condi-
tions notwithstanding. The effect is B-coefficient shrinkage,
as its Euclidean norm is penalized. Variance will decrease as
penalty influence on the fit grows in relation to the residual
influence. Both coefficient vector magnitude and variance
approach 0 as λ → ∞. Ill-conditioning is reduced because
small B′B+λP eigenvalues increase [15]. The effect is very
visible in the regression matrix condition number, which for
normal matrices is the ratio of the largest and the smallest
eigenvalue.

In statistical literature, the columns of B′B are typically
standardized, i.e. centred and then scaled by their variance,
before the ridge penalty is applied. This procedure can be
helpful as covariates might be on a very different scale. Also,
the ridge regression estimator has an inherent ”preference” for
covariates of high variance [21]. It is, however, not essential
to achieve good results and has in fact been disregarded for
simplex B-spline applications. The reasoning is as follows:

1) Standardization requires coefficient rescaling after the
estimation, which in combination with smoothness con-
straints is not straightforward

2) Using barycentric coordinates involves data centring and
scaling, reducing the need for additional pre-processing

P-Splines using this penalty type are referred to as RP-
splines for the remainder of this article.

Difference Penalty (DP)

The difference penalty is inspired by the work of Eilers and
Marx, who applied a similar approach for their univariate and
tensor product P-splines [9, 17]. These are, in the following,
referred to as conventional. The fundamental idea is to use
the coefficients’ spatial distribution and penalize differences
between them. It has been shown that curve roughness, defined
by (32), is reduced for conventional P-splines.

R =

∫ u

l

[f ′′ (x)]
2
dx (32)

where l and u are the domain bounds, and f ′′ (x) a
(directional) derivative. A secondary, for fitting of collinear
data crucial effect is the reduction of regression matrix ill-
conditioning. Enforcing similarity between adjacent coeffi-
cients reduces both variance and relative magnitude, which
will be demonstrated in the result section.

Construction of P for the simplex DP-spline is more in-
volved than it is for the simplex RP-spline because knowledge
about relative coefficient positions is required. The basic
building block is the forward difference equation (33), adapted

from [1]. Backward and central differences were considered
as well, however, the forward direction proved to be most
beneficial in terms of geometric interpretation. The forward
difference of order k calculated at B-coefficient ci in the
direction u is given below:

∆k
i,u = ∆k−1

i+1,u −∆k−1
i,u

=
k∑
j=0

(−1)
j

(
k
j

)
cκi+(k−j)µu

= Dk
u · cκi+(k−j)µu

(33)

where Dk
u is the difference relation vector in a single

direction. The independent multi-index µ is assembled from
all unit index offset vector ω permutations and an additional
row of zeros.

ω =
[
1 −1 z

]
(34)

where z is a zero-vector of n− 1 elements.
The addition of (k − j)µu to κi results in a unit step

in the direction u. If the step leads out of the simplex,
i.e. κi + (k − j)µu /∈ κ, the difference relation is dropped.
In total, (n+ 1)! permutations of ω are possible. Two step
options are available in each direction, one leading forward
and the other backward. Of these, one is redundant because
the procedure is applied to all coefficients cκ in the B-net.
Forward differences of one cκi

are backward differences of
others.

The per-coefficient difference matrix consists of one differ-
ence relation per direction:

Dci =
[
Dk

1 Dk
2 . . . Dk

n+1

]>
(35)

It is used as the building block for the per-simplex difference
matrix:

Dtj =
[
Dc1 Dc2 . . . Dcd̂

]>
(36)

The global difference matrix comprising all J simplices can
then be assembled:

Dg = diag
([
Dt1 Dt2 . . . DtJ

])
(37)

The penalty matrix is the squared global difference matrix:

P = DgDg (38)

Consider the following example of a two-dimensional,
fourth-order simplex polynomial and first-order difference
penalty. The corresponding unit index offset vector has three
elements:

ω =
[
1 −1 0

]
(39)

This leads to a total of 3! = 6 permutations. Figure 2 shows
how they relate a single coefficient c1 = cκ1

= c211 to its 6
surrounding neighbours. For the purpose of constructing Dc1 ,
only half are required. The index offset vectors corresponding
to the 3 green links in Figure 2 are shown in (40). However,
the red ones would have been an equally valid choice.
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Fig. 2: Visualization of Dc1 , k = 1, d = 4

µ =


µ0

µ1

µ2

µ3

 =


0 0 0
0 −1 1
−1 0 1
−1 1 0

 (40)

Since k − j = 1, the coefficient matrix is composed as
follows:

c211+µu
=
[
c211 c202 c112 c121

]>
(41)

Multiplication with the coefficient difference matrix shown
below yields the forward differences used for penalization.

Dc1 =

D1
1

D1
2

D1
3

 =

−1 1 0 0
−1 0 1 0
−1 0 0 1

 (42)

∆1
1 = Dc1 · c211+µu

(43)

The procedure is repeated for every coefficients in the B-net
until all Dtj and, eventually, Dg are filled.

Fig. 3: Visualization of Dtj , k = 2, d = 4

If second order differences were to be used, a Dtj matrix
can be visualized as in Figure 3. Close to the simplex vertices
an insufficient amount of coefficients is available to form dif-
ference relations in all directions, leading to gaps. Preliminary
investigation has shown no negative effects; however, in the
following sections, only first order differences penalties are
used as a precaution.

IV. SELECTION OF TUNING PARAMETER λ

The difficulty in constructing a penalty matrix ranges
from trivial to relatively straightforward. Therefore, the actual
challenge when using Tikhonov regularization is selecting
an optimal tuning parameter λ. This is the one minimizing
estimator error.

A multitude of methods, or information criteria, have been
developed for this purpose. However, none of these appear to
be universally applicable. Furthermore, multiple estimation cy-
cles are required to compare performance. A recommendation
often found in literature is examining the ridge trace, a plot of
coefficients values as function of λ. Residual behaviour needs
to be monitored simultaneously. Covariates in statistical prob-
lems often have a physical interpretation, so expert knowledge
can be used to determine at which point they assume expected
values.

A possible metric for simplex B-splines, due to their stable
basis property, is the coefficient maximum value or fraction
of coefficients within the data range. There are, however, no
universal guidelines of what good values might be.

Instead, it has been decided to follow Eilers, Marx, and
Durb in their choice of information criteria for conventional
P-splines [8].

Generalized Cross-Validation

Developed by Golub, Heath, and Wahba, generalized cross-
validation (GCV) is a method of choosing an optimum tuning
parameter [12]. Originally intended for ridge regression, it has
been successfully applied to penalized splines before [9]. For
a particular value of λ the equation is:

GCV (λ) =
n∑
i=1

[
yi − ŷi
n− ED

]2
(44)

where n is the number of measurements, yi an observation
and ŷi its prediction. ED is the effective model dimension:

ED = tr (G) (45)

G is commonly known as the ”hat” matrix as it projects the
vector of measurements to its prediction:

G = BC1B
′ (46)

Ŷ = GY = Bĉ (47)

The fundamental idea behind leave-one-out cross-validation
is that the best estimator is the one minimizing prediction
error:

ε =
n∑
i=1

(yi − ŷi)2 (48)

The index i indicates that this particular data point has been
left out of the estimation. It is, however, not necessary to
solve n least-square problems to calculate ε as all relevant
information is contained in G.
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Fig. 4: Typical RP-Spline L-Curve (top) and V-Curve (bottom)

Next to being rotation-invariant, the GCV method does
not require a noise covariance matrix σ2 estimate. Since
collinearity can cause serious difficulty creating even a pre-
liminary model, this is a very useful property. Noise has to be
uncorrelated for an unbiased estimate of prediction error [11,
3].

L- and V-Curve

The L-curve was developed by Hansen as an alternative way
of determining a good ridge parameter [14]. It is a parametric
plot, typically on a log-log scale, which contains two essential
metrics for any Tikhonov regularization effort: penalty effect
and residual behaviour.

The top half of Figure 4 shows the L-curve for an exemplary
RP-spline estimation. On the vertical axis is the penalty effect.
Its interpretation depends on the selected penalty type. For
ridge regression, it is the squared coefficient vector magnitude:

‖P ĉ‖2 = ‖Iĉ‖2 = ‖ĉ‖2 (49)

On the horizontal axis is the residual vector squared magni-
tude. Each point in the parametric plot corresponds to a value
of tuning parameter λ. Here, it has been iterated over a range
of 10−10 to 100.

The effect on both coefficient vector length and residuals
is initially very small but grows larger as λ increases. What
gives the L-curve its name and makes it useful is the distinct
corner in the middle. It was found that the point of maximum
curvature makes for a very good choice of λ. In fact, it
outperforms GCV for correlated residuals [14]. However, no
mathematical proof of its good performance is available.

The calculation of curvature to find the maximum is not
straightforward, which is why simplified alternatives have
been developed. Eilers and Marx recognized that L-curve
point density around the corner is higher than elsewhere.
They therefore proposed the minimum of Euclidean distance
between points as an equivalent choice for λ and called the
plot V-curve [10].

Fig. 5: Identification Data Set

Fig. 6: Triangulation, Identification Data and B-net for d = 6
(coefficient colour based on simplex membership)

The bottom half of Figure 4 is the V-curve based on the L-
curve above. The L-curve corner point is approximated well
by the red circle, which corresponds to the λ determined
by V-curve minimization. This minimum, however, is a local
one. It is therefore necessary to restrict the range of λ in
some convenient way. Simplex B-splines can, for example,
have coefficient magnitude or variance thresholds based on
the identification data.

V. RESULTS

In this section multivariate simplex P-splines using both
penalty types are applied to a suitable curve fitting problem.

Identification Data and Spline Setup

Figure 5 presents the identification data, which is a single
representative state space system matrix coefficient f in the
flight dynamics model of a tiltrotor aircraft. See [18] for a
description of the model itself.

The coefficient is sampled over a range of rotor nacelle
incidence angles βi and airspeeds V . All 53 data points are
arranged along βi = [0, 30, 60, 75, 90], which results in strong
collinearity. Also, the coefficients’ non-linearity is evident. A
polynomial degree of d = 6 was therefore selected to ensure
a sufficiently good fit.

Figure 6 shows a planar view of the same data. Gaps
exist where outliers were removed. The plot furthermore
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Fig. 7: RP-spline Tuning Parameter Effects (colours of ĉ and
var (ĉ) consistent with Figure 6, colours of σ random)

includes a triangulation, which was chosen based on simplicity
and shape. The coloured circles indicate the position of B-
coefficients. Each simplex contains d̂ = 28 B-coefficients for
polynomial degree d = 6. The total of 3 × 28 = 84 is more
than the available 53 data points; however, adding additional
coplanar data would not have helped against ill-conditioning.
Inter-simplex continuity was set to C1 (first order) to ensure
sufficient smoothness for future flight-controller applications.

Ridge Penalty Effect

The effect of a tunable ridge penalty on B-coefficient
estimates is shown in Figure 7. On top are the coefficients ĉκ,
followed by their variance and augmented dispersion matrix
singular values σ (Q+ λP ). All sub-plots are functions of
tuning parameter λ and include vertical lines to indicate values
of interest. The two dashed lines are settings of λ suggested by
information criteria, the solid line is related to singular value
behaviour. In total, 251 values of λ are available to ensure
sufficient resolution for information criterion optimization.

For small tuning parameter values 10−20 ≤ λ ≤ 4×10−14,
penalty effects on coefficient estimates are negligible. These
are initially constant and inflated due to collinearity. The
inflation can be verified in Figure 8a, which shows large peaks
and valleys inside and outside the identification data enve-
lope. Increasing the tuning parameter shrinks the coefficient
estimates to zero as λ→∞.

The two information criteria optimal values are situated
between those limits. The V-curve optimum λvcopti , presented
in Figure 8b, is lower than the GCV optimum λgcvopti in
Figure 8c. Both offer much improved prediction, especially
outside the data envelope, and the residuals are not visibly

(a) λ0 = 1.00 × 10−20 (Effectively Un-
penalized)

(b) λvcopti = 3.98× 10−5

(c) λgcvopti = 2.00× 10−3

Fig. 8: RP-Spline Surfaces at Selected Tuning Parameter
Values

increased. Peaks are more pronounced in the V-curve solution,
but the positive influence is comparable.

Variance behaviour is characterized by a sudden increase
at λ ≈ 4 × 10−14 which affects 60 out of 84 B-coefficients.
This behaviour is caused by using the generalized inverse:
most implementations have a threshold under which small
singular values are considered to be 0. This avoids numerical
problems. MATLAB’s default tolerance is indicated in the σ-
plot of Figure 7 by a solid horizontal line. The penalty causes
the small singular values, i.e. those initially below 10−15, to
converge and jointly increase. Crossing the threshold clearly
has an adverse effect on the generalized inverse solution.
The jump, however, is followed by a steady decrease and
convergence phase, and later a further simultaneous decrease
toward 0.

Two points are important to note: firstly, the penalty en-
forces a lower limit on singular values. Those above 10−15

are hence initially not affected and later merge with the small
ones. The condition number κ = σmax/σmin, consequently,
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(a) λ0 = 1.00 × 10−20 (All
var (ĉ))

(b) λ0 = 1.00×10−20 (var (ĉ) ≤
100)

(c) λvcopti = 3.98× 10−5 (d) λgcvopti = 2.00× 10−3

Fig. 9: RP-Spline Variance Surfaces (B-coefficient colours
consistent with Figure 6)

decreases until Q + λP is well-conditioned. Secondly, vari-
ances at the information criteria optima are several orders of
magnitude lower than their initial values despite the intermit-
tent jump.

Figure 9 shows the B-coefficient variance surfaces corre-
sponding to Figure 8. Without effective penalization, shown
in Figure 9a, variances are greatly inflated due to collinearity.
The highest peaks occur outside the data envelope, however,
the interior area is affected as well. This is visible in Figure 9b,
which is filtered to only display coefficient variances ≤ 100.
Figures 9c and 9d show that penalty application considerably
reduces maximum variance, which is best observable by the
change in vertical axis scale. Variance inside the data envelope
is once again lower than outside, however, the difference is
much less distinct compared to λ0.

Difference Penalty Effect

B-coefficient difference penalties have positive effects sim-
ilar to the ridge type. These, and the subtle differences in
penalty behaviour, are shown in Figure 10.

The initial DP-spline coefficient estimate is equal to the ini-
tial RP-spline’s. Once the singular value threshold is reached,
however, coefficients start to vary and some even change sign.
This is a result of small singular values not converging to
a single line, but increasing in parallel. As can be seen in
the bottom part of Figure 10, the threshold is not crossed at
a single value of λ but at multiple values. Large jumps in
coefficient variance occur similar to the RP-spline, but the
peaks are spread out.

Coefficient values stabilize and shrink shortly after the
variance upset. In the limit, zero is approached, which is
similar to the ridge penalty. Here, however, the cause is not
P but the identification data being standardized to have mean

10-20 10-15 10-10 10-5 100 105
-50

0

50

V-Curve minimum
GCV minimum

 threshold crossing

10-20 10-15 10-10 10-5 100 105
10-5

100

105

1010

10-20 10-15 10-10 10-5 100 105
10-20

100

Fig. 10: DP-spline Tuning Parameter Effects

0. Eilers and Marx in [9] have shown that the conventional P-
spline becomes a polynomial of order k−1 in the limit. Brief
investigation indicated similar simplex P-spline behaviour, but
a formal proof has to be left for future research.

A further observation is variance not decreasing towards
0 but becoming constant as λ → ∞. Singular values start
diverging from approximately λ = 100. This is not of
immediate concern as λvcopti and λgcvopti are several orders
of magnitude lower; however, the rise in condition number is
worth noting.

Figure 11 shows the spline and coefficient variances surfaces
corresponding to the information criterion optima. Prediction
quality is improved and coefficient variance reduced for both
V-curve and GCV suggestions, as has been the case for the
RP-spline. Performance of both penalty types is very much on
par.

Continuity Impact

P-spline intra- and inter-simplex continuity is maintained
despite the application of penalties. Table I shows that the
vector norms of H · ĉ are small and the continuity conditions
hence met. In fact, the P-spline’s norms are smaller than the
unmodified B-spline’s.

TABLE I: Continuity Condition Verification

λ = λvcopti ‖H · ĉ‖
B-Spline d = 6 - 6.97× 10−9

RP-Spline d = 6 3.98× 10−5 3.85× 10−12

DP-Spline d = 6 1.26× 10−5 3.39× 10−12

For additional verification consider Figure 12. It shows the
1st order directional derivate splines as calculated by (6).



9

(a) λvcopti = 1.26× 10−5 (b) λgcvopti = 5.01× 10−4

(c) λvcopti = 1.26× 10−5 (d) λgcvopti = 5.01× 10−4

Fig. 11: DP-Spline Surfaces and Variance Surfaces at Selected
Tuning Parameter Values

No discontinuities are present in either direction, and C1
continuity therefore ensured.

(a) RP, V -Direction (b) DP, V -Direction

(c) RP, βi-Direction (d) DP, βi-Direction

Fig. 12: 1st Order Directional Derivative Surfaces of RP- and
DP-Splines, λ = λvcopti

Residuals and Smoothing Behaviour

A trade-off between estimator variance and bias has to be
made when applying penalties. Reduction of coefficient vari-
ance has been successfully demonstrated; however, it comes
at the expense of increased residuals. Root-mean-square error
(RMSE) behaviour of the previously estimated P-splines is
shown in Figure 13. It includes RMSE values of unregularized
B-splines for comparison. The first is d = 6, on which the P-

Fig. 13: P-Spline and B-Spline RMSE

splines are based. The second is d = 4, the highest polynomial
degree for which the KKT matrix is still well-conditioned.

Both RP- and DP-spline residuals rise as λ increases. This
is to be expected, as the unaugmented OLS estimator used
for B-spline gives the best linear and unbiased estimate.
Any deviation caused by penalties therefore deteriorates the
identification data fit. Eventually, the P-spline’s error exceeds
the d = 4 B-spline’s. See Table II for error numerical values
and their relative increase compared to the baseline d = 6
B-spline:

TABLE II: P-Spline and B-Spline RMSE Comparison

All RMSE ×10−2 Unregularized V-Curve GCV
B-Spline d=6 1.33 - -
B-Spline d=4 3.26 (+145%) - -
RP-Spline d=6 - 1.69 (+28%) 3.69 (+178%)
DP-Spline d=6 - 1.71 (+29%) 2.82 (+112%)

Both DP- and RP-splines based on V-curve optima have a
relatively moderate increase of approximately 30 % compared
to the d = 6 B-spline. GCV accepts larger errors, which are
close to or beyond the conventional, well-behaved d = 4 B-
spline. Table III shows the maximum absolute errors::

TABLE III: P-Spline and B-Spline Maximum Absolute Error
Comparison

All Errors ×10−2 Unregularized V-Curve GCV
B-Spline d=6 5.49 - -
B-Spline d=4 8.30 (+51.2%) - -
RP-Spline d=6 - 5.40 (-1.6%) 13.71 (+149.9%)
DP-Spline d=6 - 5.47 (-0.4%) 6.91 (+25.8%)

The V-curve-tuned RP- and DP-splines have maximum
absolute errors which are slightly lower than the baseline
d = 6 B-spline. GCV, by contrast, produces significantly larger
errors. Noteworthy is the large difference between RP-spline
(+149.9% error) and DP-spline (+25.8% error). This is due to
the ridge penalty having a more pronounced smoothing effect
at larger tuning parameter values. See Figure 14, where curve
roughness as measured by (32) is plotted for all B-splines and
P-splines.

Both penalty types decrease R, although not monotonously.
An important observation is that at all information criteria
locations, it is less than the d = 4 B-spline. Given their
superior residual performance it can therefore be argued that
either P-spline type using V-curve should be chosen over a
simple degree reduction.

VI. CONCLUSION

It has been shown that Tikhonov regularization of multi-
variate simplex B-splines reliably removes numerical issues



10

Fig. 14: P-Spline and B-Spline Curve Roughness in V -
Direction

caused by strongly collinear data sets while maintaining
continuity. Simplex RP-splines and DP-splines are equally
suited for this application. The tuning parameter allows for a
trade-off between coefficient variance and identification data
residuals. V-curve and GCV proved to be useful for selecting
a good compromise. However, a high λ-resolution is required
to calculate them with precision.

A brief investigation confirmed that P-splines reduce curve
roughness, but more research on the topic is necessary. The
effect of higher-order difference penalties and their relation
to differential constraints deserve particular attention. Local
application of penalties has not been assessed yet and a
direct comparison between the novel simplex and conventional
tensor product P-splines is highly recommended. Furthermore,
penalty effect demonstrations for dimensions n > 2 are still
pending.

Tikhonov regularization and multivariate simplex splines
have independently proven to be very powerful and flexible
tools. It is hoped that, jointly, they enable fitting of aerody-
namic models which was not previously possible.
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7
Conclusion

What started off as an effort to convert a look­up table based tiltrotor qLPV flight dynamics model to
multivariate simplex B­splines ended with the fitting of a single stability derivative. Despite this, the
project is considered a success.

First of all, a large amount of experience was gained in project management. The difficulties in fitting
a seemingly simple data set were initially severely underestimated. This resulted in the creation of a
system identification pipeline (see Appendix B), which was eventually unused. Also, a disproportionate
amount of time and effort was spent on futilely fixing what was in hindsight a very common and well­
researched problem. Therefore, literature should have been consulted much earlier in the process thus
applying proven solutions instead of a trial­and­error approach.

That being said, everything came together beautifully once the correct search terms were estab­
lished and the relevant literature had been collected. Tikhonov regularization can be integrated conve­
niently into least­squares B­coefficient estimators, and tuned on a per­simplex basis. The ridge penalty
is trivial to implement, yet a powerful tool against ill­conditioning. Coefficient difference penalties have
a similarly positive effect, but are more customizable at the expense of increased complexity.

The observations presented in this report give reason to believe that the multivariate simplex P­
spline is indeed a useful enhancement to classic simplex B­splines. It can be used to fit collinear data
and therefore achieve the research objective. In addition, further applications are within in reach. Firstly,
ridge regression is under certain conditions known to have lower estimator error as compared to basic
least­squares. Secondly, tensor product P­splines have been applied successfully for multidimensional
smoothing purposes. It appears that their simplex counterpart is equally capable.

One of the P­spline’s advantages is the tunable penalty. Unfortunately, this is also its main drawback
because optimization of information criteria requires numerous fits of the same data set. Computation
time scales exponentially with a model’s dimension and spline’s polynomial degree. This can become
an issue for large or complex data sets. Consequently, increasing the fitting process’ efficiency is one
of the strongest recommendations in Chapter 8.

Finally, it is expected that the multivariate simplex P­spline is a very useful new tool against data
collinearity. It can also be used for a wider range of applications. However, wielding it efficiently will
take time and practice.
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Recommendations

The recommendations have been split into two groups due to the project’s history:

1. Spline­based tiltrotor flight­dynamics model

(a) Replace look­up tables by multivariate simplex P­splines. The results should also be com­
pared to unpenalized B­splines of a polynomial degree low enough to avoid collinearity is­
sues.

(b) Investigate as to whether a single tuning parameter value works for fitting simplex P­splines
to all stability & control derivatives and trim points. If not, find an efficient way for individual
optimization of λ.

(c) Obtain consistent data for intermediate settings of nacelle incidence angle. This would avoid
ill­conditioned regression matrices in the first place.

2. Further simplex P­spline research

(a) Compare the simplex P­spline (coefficient difference penalty version) to the tensor product
P­spline which it is based on. There is reason to believe that the simplex variant inherited
all advantages of regularization, while having none of the disadvantages of tensor product
B­splines (inability to fit scatter data, cumbersome computations in higher dimensions etc.)

(b) Investigate the relation between difference penalties and differential constraints. This would
contribute to a stronger mathematical foundation and possibly new penalty options.

(c) Examine the effect of second and higher­order difference penalties, especially what hap­
pens close to simplex vertices. Such vertices where not enough coefficients are available
to construct difference constraints in all directions.

(d) Investigate if difference penalties can be expanded across simplex borders. Perhaps an
integration with the smoothness matrix is possible.

(e) Search the literature for alternative information criteria. There might be ones which are more
robust or otherwise superior to the V­curve or GCV.

(f) Find a way to automatically adjust tuning parameter search range and resolution. The cur­
rent approach of wide search range and fixed λ­increments is very inefficient.

(g) Use simplex P­splines to smooth data sets featuring correlated noise.
(h) Try local application of simplex P­splines. Efficient optimization of not one but multiple λ

simultaneously is certainly a challenge.
(i) Try simplex P­splines in dimensions higher than two. The penalties are flexible enough to

support this.
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A
Additional Demonstration Cases

A.1. Overview
This section presents three artificial data sets, which are fit using P­splines and compared to conven­
tional B­splines. The sets are based on Franke’s bivariate test function, shown in Figure A.1. Hence,
unlike the tiltrotor set, verification data is readily available to evaluate root­mean­square error perfor­
mance. The first set contains coplanar data similar to a tiltrotor stability derivative, the second requires
extrapolation and the third requires smoothing. See Table A.1 for an overview.

Figure A.1: The Function used for Identification and Verification Data, see [11] for Details

A.2. Case 1: Collinear Set
The top part of Figure A.2 shows a comparison between spline surfaces generated with and without
regularization. On the left is the unregularized B­spline. It features a peak which is several orders of
magnitude larger than the identification data. The data therefore appears flat, even though it has been
sampled from the test function in Figure A.1 (with the addition of some noise).

On the right is the regularized DP­spline, where λ has been determined by locally minimizing the
V­curve (bottom left corner). Predictive performance is much improved, which can be verified in the
RMSE plot (bottom right corner). Initially, the difference between original test function and estimated
spline on the triangulation is very large. The error becomes smaller as the tuning parameter increases
and has a minimum at approximately 10−2. Beyond this point RMSE increases due to the penalty
becoming dominant.

The V­curve plot highlights the importance of selecting the right local minimum. This can be done
by, for example, setting a threshold for coefficient estimate maxima or the condition number. The given
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Table A.1: Demonstration Case Overview

Case 1 Case 2 Case 3
Data Set
­ Base Function Franke Franke Franke
­ Data Point # 150 300 300
­ Structure coplanar random random
­ Noise Magnitude +/­ 0.5 % +/­ 0.5 % +/­ 2.5 %
Triangulation
­ Simplex # 2 2 2
­ Shape non­uniform extended square tight square
­ Regularized all all all
Spline
­ Dimension 2 2 2
­ Poly. Degree 6 6 6
­ Continuity C1 C1 C1
Penalty
­ Type DP DP DP
­ Order 1st 1st 1st
Information Criterion
­ Type V­curve V­curve GCV

Figure A.2: Demonstration Case 1

example yields very good results, as the RMSE value is close to its minimum.

A.3. Case 2: Extrapolation Set
The second set is shown in Figure A.3. A large number of identification data points is available and
organized in a random fashion, however, only 60% of the triangulation surface is covered. This leads to
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Figure A.3: Demonstration Case 2

large coefficient magnitudes outside the identification data domain and consequently bad verification
data RMSE. Regularization using a coefficient difference penalty solves this issue. Once again, the
V­curve information criterion is able to find a point close to the RMSE minimum.

A.4. Case 3: Noisy Set
The third and last example is shown in Figure A.4. Here, the issue is neither the data’s structure or
distribution, but overfitting due to high spline polynomial degree. Using a coefficient difference penalty
reduces the problem, but does not eliminate it entirely. Nevertheless, the GCV information criterion
provides a better solution in terms of RMSE (V­curve lead to underfitting in this particular case).
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Figure A.4: Demonstration Case 3



B
Spline Model Development Code

Structure
The code which was intended for creating, verifying and validating the spline­based qLPV tiltrotor flight
dynamics model is structured as shown in Figure B.1.

Data 
loading

Processing / 
formatting

TRI creation

Spline 
creation

RBSA 
(SPL&LUT)

XV-15 LUT

RBSA 
verification

Time history 
validation

Residual 
analysis

VER set

ID set

VAL cases 1-8

Data 
sets

States & Inputs

Input

VAL dat.

XV-15 SPL

Input

External data

Simulink Model

Script

Figure B.1: Code Structure Diagram

Data is loaded and pre­processed, e.g. to normalize values and remove outliers, and used to create
a suitable triangulation TRI. It is then split into a part for identification (ID) and a part for verification
(VER). The ID data is used to fit multivariate simplex splines, which are compared to the VER data in
terms of residuals. The splines (SPL) are also directly integrated in the XV­15 qLPV Simulink model in
place of look­up tables (LUT). Using time series of known control inputs allows comparisons of model
output and validation (VAL) data.

An additional verification method is the analysis of rigid body state accelerations (RBSA). It is used
as a back­up in case the model ”blows up” after a small number of time steps.
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