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Nomenclature

C = log-law intercept
cf = skin-friction coefficient, 2τw∕�ρ∞u2∞�
ch = heat-transfer coefficient, qw∕�cpρ∞u∞�Tw − Tr��
cp = specific heat capacity at constant pressure
k = thermal conductivity
Mτ = friction Mach number, uτ∕ γRTw

p
M∞ = freestream Mach number, u∞∕ γRT∞

p
Pr = Prandtl number, μcp∕k
qw = wall heat flux
R = specific gas constant
Reδ� = displacement thickness Reynolds number, ρ∞u∞δ

�∕μ∞
Reδ2 = momentum thicknessReynolds numberwith viscosity at

the wall, ρ∞u∞θ∕μw
Reθ = momentum thickness Reynolds number, ρ∞u∞θ∕μ∞
Reτ = friction Reynolds number, ρwuτδ∕μw
Re�τ = semilocal friction Reynolds number, �ρu�τ δ∕�μ
r = recovery factor
T = temperature
u = mean velocity
uτ = friction velocity at the wall, τw∕ρw
u�τ = semilocal friction velocity, τw∕�ρ
y = wall-normal coordinate
y� = semilocal wall-normal coordinate, y∕δ�v
γ = specific heat capacity ratio
δ = (or δ99), boundary-layer thickness
δv = viscous length scale at the wall, μw∕�ρwuτ�

δ� = displacement thickness
δ�v = semilocal viscous length scale, �μ∕��ρu�τ �
θ = momentum thickness
κ = von Kármán constant
μ = dynamic viscosity
μt = eddy viscosity
Π = Coles’s wake parameter
ρ = density
τw = wall shear stress

Subscripts

e = boundary-layer edge (y � δ)
r = recovery
w = wall
∞ = freestream

Superscripts

� = wall-scaled
�⋅� = Reynolds averaging

I. Introduction

ACCURATELY predicting drag and heat transfer for compress-
ible high-speed flows is of utmost importance for a range of

engineering applications.A commonapproach is to use a compressible
velocity scaling law (transformation) that inverse-transforms theveloc-
ity profile of an incompressible flow, coupled with a temperature–
velocity relation. Current methods [1,2] typically assume a single
velocity scaling law, overlooking the different scaling character-
istics of the inner and outer layers. In this Note, we use distinct
velocity scalings for these two regions and model the velocity
profile for compressible boundary layers using a classic eddy visco-
sity expression combined with a defect law. The inner-layer veloc-
ity profile is modeled using the mixing-length eddy viscosity from
Hasan et al. [3], which incorporates variable property effects through
semilocal scaling and accounts for intrinsic compressibility effects by
adjusting the near-wall damping function. The outer-layer profile is
modeled after Coles’s lawof thewake [4], scaled according to theVan
Driest (VD) velocity scaling [5]. The result is an analytical expression
for the mean shear valid in the entire boundary layer, which, com-
bined with the temperature–velocity relationship from Zhang et al.
[6], provides predictions of mean velocity and temperature profiles at
high accuracy. Using these profiles, drag and heat-transfer coeffi-
cients are evaluated with an accuracy of�4 and�8%, respectively,
for a wide range of zero pressure gradient compressible turbulent
boundary layers up to Mach numbers of 14.

II. Proposed Method

The velocity profile of a turbulent boundary layer is composed of
two parts: 1) the law of the wall in the inner layer, and 2) the velocity
defect law in the outer layer. Using an eddy viscosity model for the
inner layer and Coles’s law of the wake for the outer layer, the mean
shear for incompressible flows can be expressed as

d �uinc
dy

� uτ
δv

1

1� μt∕μw
� uτ

δ

Π
κ
π sin π

y

δ
(1)

where the first term on the right-hand side can be readily obtained by
integrating the mean momentum equation (stress balance) of equi-
librium flows, while the second term is the derivative of Coles’s wake
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function [7]. Modeling μt using simple inner-layer mixing-length
modelswould lead to a linear profile close to thewall, developing into
a logarithmic profile that extends to the outer layer, where it is added
to the wake component, as desired.
In compressible flows, the stress balance equation in the inner

layer leads to themean shear given byd �u∕dy � �u�τ ∕δ�v �∕�1� μt∕�μ�
[3]. For thewake region, followingVanDriest’s velocity scaling,uτ is
replaced with u�τ to account for mean density variations while main-
taining the same outer-layer length scale, δ [8]. With these changes,
the mean shear for compressible flows reads

d �u

dy
� u�τ

δ�v

1

1� μt∕�μ
� u�τ

δ

Π
κ
π sin π

y

δ
(2)

Now, modeling μt∕�μ based on the Johnson–King (JK) mixing-length
eddy viscositymodel [9], corrected for variable property and intrinsic
compressibility effects [3], we get

d �u

dy
� u�τ

δ�v

1

1� κy�D�y�;Mτ�
� u�τ

δ

Π
κ
π sin π

y

δ
(3)

Equation (3) provides several useful insights. Analogous to an
incompressible flow, the mean velocity in a compressible flow is
controlled by two distinct length scales, δ�v and δ, characteristic of
the inner and outer layers, respectively. The two layers are con-
nected by a common velocity scale u�τ (the semilocal friction
velocity), leading to a logarithmic law in the overlap region. More-
over, in the logarithmic layer and beyond, the first term on the right-

hand side reduces to τw∕�ρ∕�κy�, which is consistent with Van
Driest’s original arguments [5]. It is crucial to satisfy this condition;
otherwise, the logarithmic profile extending to the outer layer would
not obeyVanDriest’s scaling, while thewake component towhich it is
added would.
The near-wall damping function in Eq. (3) is given by

D�y�;Mτ� � 1 − exp
−y�

A� � f�Mτ�
2

(4)

Thevalue ofA� differs basedon the choiceof thevonKármánconstant
κ, such that the log-law intercept is reproduced for that κ [10]. With
κ � 0.41, the value of A� � 17 gives a log-law intercept of 5.2 [11],
whereas, with κ � 0.384, A� � 15.22 gives a log-law intercept of
4.17. The additive term f�Mτ� accounts for intrinsic compressibility
effects. Hasan et al. [3] proposed f�Mτ� � 19.3Mτ, which is inde-
pendent of the chosen value of κ.
The second term on the right-hand side of Eq. (3) is the wake term

accounting for mean density variations, where Coles’s wake param-
eter Π depends on the Reynolds number, as discussed in the sub-
section below. It is important to note thatΠ also depends on pressure
gradient [4]; however, the focus of the current analysis is limited to
zero pressure gradient turbulent boundary layers.

A. Characterizing Low-Reynolds-Number Effects on the Wake
Parameter

For incompressible boundary layers, Coles’s wake parameter is
known to strongly depend onReθ at low Reynolds numbers [12–14].
For compressible boundary layers, the ambiguity of the optimal
Reynolds number definition poses a challenge to characterize the
wake parameter. Fernholz and Finley [15], mainly using experimen-
tal data at that time, observed that themomentum thickness Reynolds
number with viscosity at the wall (Reδ2 ) is the suitable definition to
scaleΠ. On the other hand, Wenzel et al. [16] observed that the wake
parameter scales with Reθ for their direct numerical simulations
(DNSs) at moderate Mach numbers (M∞ ≤ 2.5), consistent with
the expectation that Π (being defined at the boundary-layer edge)
should scale with Reynolds number based on the freestream proper-
ties [8,14]. Yet, there is no clear consensus on which definition is
relevant in scalingΠ, especially for high-Mach-number flows, where
Reδ2 and Reθ are quite different from each other. Given the recent

availability of hypersonic DNS, we revisit the question of which
Reynolds number best describes the wake parameter.
First, we evaluate Π for several incompressible and compressible

DNS cases from the literature and then report it as a function of
different definitions of the Reynolds number, searching for the defi-
nition yielding the least spread of the data points. For incompressible
flows, thewake strength canbe determined asΠ � 0.5κ� �U��y � δ�−
�1∕κ� ln �δ�� − C�, where C is the log-law intercept for the chosen κ.
For compressible flows, the wake strength is based on the VD-
transformed velocity [8,15] as Π � 0.5κ� �U�

vd�y � δ� − � �U�
vd�log

�y � δ��, where �U�
vd is obtained from the DNS data. The reference

log law � �U�
vd�log, unlike for incompressible flows, cannot be com-

puted as �1∕κ� ln �y�� � Cvd, because Cvd is found to be nonuni-
versal for diabatic compressible boundary layers [17,18]. Hence,
� �U�

vd�log can be obtained either by fitting a logarithmic curve to �U�
vd

[15], or by inverse-transforming the incompressible law of the wall.
Here, we follow the latter approach by using the compressibility
transformation of Hasan et al. [3].
The value of the von Kármán constant κ plays a crucial role in

estimating Π. Spalart [19] noted that a strong consensus on κ is
needed to accurately estimate Π. However, such a consensus is yet
missing [20]. Nagib and Chauhan [10] showed that κ � 0.384 is a
suitable choice for incompressible boundary layers, verified to be
true also for channels [21] and pipes [22]. However, due to historical
reasons and wide acceptance of κ � 0.41, we will proceed with this
value. The same procedure can straightforwardly be repeated with a
different value of κ.
Figure 1 shows the wake parameter for 26 compressible and

nineteen incompressible boundary-layer flows, as a function of
Reδ2 , Reθ, Reδ� , and Re�τ∞ . The spread in the data points is found
to be quite large for all the definitions, as Π is the difference of two
relatively large quantities, namely, �U�

vd and � �U�
vd�log, at the boundary-

layer edge, as outlined above. Note that even incompressible boun-
dary layers are not devoid of this scatter [13,19]. Figure 1a shows the
presence of two distinct branches; hence, Reδ2 does not seem to be
suitable to characterize Π, unlike reported in previous literature
[1,15]. Among the four definitions of Reynolds number, Reθ seems
to show the least spread, further confirming the conclusions in
Wenzel et al. [16]. Figure 1b also reports several functional forms
of Π � f�Reθ�. Use of the modified Kármán–Schoenherr friction
formula [31] for indirect evaluation of Π does not show saturation at
highReynolds numbers as observed byColes [12] for incompressible
flows. The Cebeci–Smith (hereafter CS) relation [14] underpredicts
Π but reproduces saturation at high Reynolds numbers. Wenzel et al.
[16] modified the CS relation with a higher saturation value of Π
(0.66) and fit it to the DNS data of Schlatter et al. [23] and Schlatter
and Orlu [24]. Here, we propose a relation similar to that proposed
by [14], but fitted to the more recent incompressible DNS data of
Jiménez et al. [25] and Sillero et al. [26], in which particular care was
exercised to guarantee that the numerical boundary layers are in a
fully developed state. Those data support similar behavior as CS in
the low-Re regime, but with a higher saturation value, resulting in the
relation

Π � 0.69�1 − exp�−0.243 z
p

− 0.15z�	; where z � Reθ∕425 − 1

(5)

We also note that some high-Reynolds-number cases have a higher
value of the wake parameter than that predicted by Eq. (5). This
could be due to the previously noted high data scatter or to inaccur-
acies arising from the application of the Van Driest transformation
to the wake velocity profile, or both. Regardless, these differences
are tolerable for the scope of the present paper, as the results are not
highly sensitive to the precise value of the wake parameter (see
Sec. III).
The inset in Fig. 1b compares the skin-friction curve computed

using Eq. (5) with the modified Kármán–Schoenherr skin-friction
formula [31]. The distance between the two curves is large at
low Reynolds numbers but less so at higher Reynolds numbers.
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As expected, the incompressible DNS data of Jiménez et al. [25] and
Sillero et al. [26] follow the friction curve computed using Eq. (5).

B. Implementation of the Proposed Method

For convenience of implementation, Eq. (3) can also be expressed
in terms of the dimensional quantities τw, �μ, and �ρ as

d �u

dy
� τw

�μ� τw �ρκyD�y�;Mτ�
μt

� τw∕�ρ
δ

Π
κ
π sin π

y

δ
(6)

where μt is the dimensional form of the JK eddy viscosity model,
which can be readily used in turbulence modeling, for instance, as a
wall model in large-eddy simulations (LESs). Note that other eddy
viscosity models can also be used in Eq. (6), e.g., Prandtl’s mixing-
length model (see Appendix A).
Equation (6) covers the entire boundary layer, and it can be

integrated in conjunction with a suitable temperature model such as
the one proposed by Zhang et al. [6], which is given as

�T

Tw

� 1� Tr − Tw

Tw

1 − s Pr
�u

u∞

2

� s Pr
�u

u∞

� T∞ − Tr

Tw

�u

u∞

2

(7)

where s Pr � 0.8, Tr∕T∞ � 1� 0.5r�γ − 1�M2
∞, and r � Pr1∕3.

Moreover, a suitable viscosity law (e.g., power or Sutherland’s law)
and the ideal gas equation of state �ρ∕ρw � Tw∕ �T have to be used
to compute mean viscosity and density profiles, respectively. The
inputs that need to be provided are the Reynolds number Reθ, free-
stream Mach number M∞, wall cooling/heating parameter Tw∕Tr,
and (optionally) the dimensional wall or freestream temperature for
Sutherland’s law. It is important to note that Eq. (7) and all solver
inputs are based on the quantities in the freestream and not at the
boundary-layer edge. For more insights on the solver, refer to the
source code available on GitHub [32].

III. Results

Figure 2 shows the predicted velocity and temperature profiles for
a selection of high-Mach-number cases. As can be seen, the DNS and
the predicted profiles are in good agreement, thus corroborating our
methodology. The insets in Fig. 2 show the error in the predicted skin-
friction and heat-transfer coefficients for 30 compressible cases
from the literature. For most cases, the friction coefficient cf is
predictedwith�4% accuracy, with amaximumerror of−5.3%. The
prediction of the heat-transfer coefficient ch shows a slightly larger
error compared to cf, potentially due to additional inaccuracies
arising from the temperature–velocity relation. In most cases, ch
is predicted with �8% accuracy, with a maximum error of 10.3%.
To assess the sensitivity of the predictionswith respect to the relation

used for the wake parameter, we recomputed the results using our
method, but instead of using Eq. (5) to estimate Π, we employed the
relation proposed by Wenzel et al. [16]. The maximum error in the
cf prediction changed from −5.3 to −6.08%, with most of the cases
within error bounds of �5%. For the ch prediction, there was an
increase in the maximum error from 10.3 to 11.4%, with most of the
cases within error bounds of�8%.
Instead of using the eddy-viscosity-basedmean shear equation (6),

the mean velocity profile can also be obtained based on inverse velo-
city transformations applied to the reference incompressible profile.
Here, instead of using a single transformation for the entire boundary
layer [1,2], we rather advocate the use of distinct transformations for
the inner and outer layers. Considering the reference incompressible
velocity profile as being made up of the sum of an inner part ( �U�

inn)
and of awake correction ( �U�

wake), we separately inverse-transform the
related velocity increments to yield

d �u� � T −1
innd �U�

inn � T −1
outd �U�

wake (8)

where T inn and T out denote the inner- and outer-layer velocity trans-
formation kernels, respectively. Employing the transformation ker-
nels of Hasan et al. [3] and Van Driest [5] for T inn and T out,
respectively, and modeling �U�

inn using the JK model and �U�
wake from

Coles’s law of the wake, one can readily arrive at the mean shear
equation (6) (see Appendix B). The advantage of using Eq. (8) is

a) b)

c) d)
Fig. 1 ThewakeparameterΠ computedusing theDNSdata andplotted as a functionof a)Reδ2 , b)Reθ, c)Reδ� , andd)Re

�
τ∞ for 19 incompressible [23–26]

and 26 compressible ([27–30] and A. Ceci [Ph.D. student, Sapienza University of Rome], private communication) turbulent boundary layers.
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that it makes the proposed method modular, as it can also be applied
using other velocity transformations as building blocks [18,34–36],
althoughwithminormodifications, as discussed inAppendixC. This
is shown in Fig. 3, which compares the proposed approach with the
modular approach of Kumar and Larsson [2], both with different
inner-layer transformations. Additionally, the figure includes results
obtained with the method of Huang et al. [1] using the VD trans-
formation and the widely recognized Van Driest II skin-friction
formula [37]. Figure 3 also shows the root-mean-square error, deter-

mined as RMS � �1∕N� ε2cf , where N is the total number of

DNS cases considered. The Van Driest II formula and the method of
Huang et al. have similar RMS error of about 6%,¶ which is not
surprising as both of them are built on Van Driest’s mixing-length
arguments. The errors are systematically positive for a majority of
the cases and increase with a higher Mach number and stronger wall
cooling. The source of this error mainly resides in the inaccuracy of
the VD velocity transformation in the near-wall region for diabatic

flows. To eliminate this shortcoming, Kumar and Larsson [2] devel-
oped a modular methodology, which is quite accurate when the
transformation of Volpiani et al. [35] is used but is less accurate if
other velocity transformations are implemented. This inaccuracy is
because the outer-layer velocity profile is also inverse-transformed
according to the inner-layer transformation. In the current approach,
the velocity profile is instead inverse-transformed using two distinct
transformations that take into account the different scaling properties
of the inner and outer layers, thus reducing the RMS error with res-
pect to Kumar and Larsson’s modular method for all the transforma-
tions tested herein. The error using the proposed approach with the
TL transformation is positive for all the cases. This is due to the log-
law shift observed in the TL scaling, which is effectively removed in
the Hasan et al. [3] transformation, thereby yielding an RMS error of
2.66%, which is the lowest among all approaches.

IV. Conclusions

We have derived an expression for the mean-velocity gradient in
high-speed boundary layers [Eq. (6)] that uses distinct velocity
scalings in the inner [3] and outer [5] layers, thus covering the
entire boundary layer. Coles’s wake parameter in this expression is

Fig. 2 Predicted velocity (top) and temperature (bottom) profiles (dashed lines) compared to DNS (black solid lines) for the cases with the highest
reported Mach numbers in the respective publications: Left to right:M∞ � 13.64, Tw∕Tr � 0.18 [27];M∞ � 4, Tw∕Tr � 1 [28];M∞ � 7.87, Tw∕Tr �
0.48 (A. Ceci [Ph.D. student, Sapienza University of Rome], private communication); M∞ � 5.84, Tw∕Tr � 0.25 [30];M∞ � 5.86Tw∕Tr � 0.76 [29].
Insets: Percent error in skin-friction (top) and heat-transfer (bottom) predictions for 30 compressible turbulent boundary layers from the literature

([27–30,33] and A. Ceci [Ph.D. student, Sapienza University of Rome], private communication). The error is computed as εcf � �cf − cDNS
f �∕cDNSf × 100 and

likewise for εch . Symbols are as in Fig. 1.

Fig. 3 Error in skin-friction prediction using the proposed approach compared to different state-of-the-art approaches. The letters on the X axis denote

the velocity transformation used for that approach. HLPP, GFM, VIPL, TL, and VD stand for the transformations proposed by Hasan et al. [3], Griffin
et al. [34], Volpiani et al. [35], Trettel and Larsson [18], and Van Driest [5], respectively. The numbers are RMS values computed as outlined in the text.
Symbols are as in Fig. 1. The shaded region shows an error bar of�5%. Note that inputs for all the methods are based on properties in the freestream
instead of at the edge of the boundary layer.

¶Huang et al.’s methodwith themore accurate temperature velocity relation
in Ref. [6] leads to an RMS error of 12%.
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determined using an adjusted Cebeci and Smith relation [Eq. (5)], with
Reθ found to be the most suitable parameter to characterize low-
Reynolds-number effects onΠ. This method allows remarkably accu-
rate predictions of the mean velocity and temperature profiles, leading
to estimations of the friction and heat-transfer coefficients that are
within�4 and �8% of the DNS data, respectively. When compared
with other skin-friction prediction methods in the literature, our
approach yields the lowest RMS error of 2.66%.
Themethodology developed in this Note promises straightforward

application to other classes of wall-bounded flows like channels and
pipes upon change of the temperature–velocity relation (e.g., [38])
and using different values of the wake parameter Π [10]. Also, the
method is modular in the sense that it can be used with other temper-
ature models and equations of state.

Appendix A: Mean Shear Using Prandtl’s
Mixing-Length Model

The choice of the eddy viscosity model affects the first term on the
right-hand side of Eq. (6). By analogy, themean shear equation using
Prandtl’s mixing-length model is thus as follows:

d �u

dy
� 2τw

�μ� �μ2 � �2 τw �ρ
p

κyD�y�;Mτ�	2
� τw∕�ρ

δ

Π
κ
π sin π

y

δ

(A1)

where D�y�;Mτ� is the damping function, corrected for intrinsic
compressibility effects as

D�y�;Mτ� � 1 − exp
−y�

A� � 39Mτ
(A2)

with A� � 25.53 (or 26) for κ � 0.41, and where the additive
term 39Mτ is obtained following similar steps as for the JK model
(see Ref. [3]).

Appendix B: Deriving the Mean Shear Equation Using
Velocity Transformations

Starting from Eq. (8) and using Hasan et al. [3] and Van Driest [5]
transformation kernels, we get

d �u� � f−13 f−12 f−11 d �U�
inn � f−11 d �U�

wake (B1)

where the factors f1, f2, and f3 are given by

f1 �
�ρ

ρw
; f2 � 1 −

y

δ�v

dδ�v
dy

; f3 �
1� κy�D�y�;Mτ�
1� κY�D�Y�; 0�

(B2)

and the damping functionD�y�;Mτ� is as per Eq. (4). Here,Y denotes
the wall-normal coordinate for the incompressible flow. In Eq. (B1),
d �U�

inn is modeled using the JK eddy viscosity model as dY�∕
�1� κY�D�Y�; 0�	, which, after integration, recovers the incom-
pressible law of the wall, and d �U�

wake � �Π∕κ� sin�πY∕δ�πd�Y∕δ�
is the derivative of the Coles’s wake function. Inserting the expres-
sions for d �U�

inn, d �U�
wake in Eq. (B1), we get

d �u� � f−13 f−12 f−11
dY�

1� κY�D�Y�; 0� � f−11
Π
κ
π sin π

Y

δ
d

Y

δ

(B3)

Now, using the inner- and outer-layer coordinate transformations
as Y� � y� [3,18] and Y � y, respectively, and using dY�∕dy �
f2∕δ�v , uτ � u�τ f1, we get the dimensional form of the mean-velocity
gradient as

d �u

dy
� u�τ

δ�v

1

1� κy�D�y�;Mτ�
� u�τ

δ

Π
κ
π sin π

y

δ
(B4)

which is the same as Eq. (3) and subsequently leads to Eq. (6).

Appendix C: Implementation of the Method Using
Velocity Transformations in Refs. [34,35]

Implementing Eq. (8) with the transformations in Volpiani et al.
[35] and Griffin et al. [34] needs minor modification because the
logarithmic profile extending to the outer layer, computed by their
inverse, does not satisfy Van Driest’s scaling, which is crucial as
outlined in Sec. II. To address this issue, we enforce the Van Driest
transformation in the outer layer by modifying Eq. (8) as follows:

Y� ≤ 50∶d �u� � T −1
innd

�U�
inn;

Y� > 50∶d �u� � T −1
vd d �U�

inn � T −1
vd d �U�

wake (C1)

where T inn and T vd denote the inner-layer and Van Driest trans-
formation kernels, respectively, and Y� is the transformed coordi-
nate. The value of 50 is taken arbitrarily as the start of the logarithmic
region.
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