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Abstract. A method to achieve symmetric kinetostatic behaviour in an
extensive working range at the endpoint of an asymmetric spatial beam,
using cross-section optimization, is presented. The objective function of
the optimization is defined as expanding the beam working range to
the desired region, simultaneously maximizing symmetric behaviour in
it. To reach this goal, a beam with predefined spatial global shape and
an ‘I’ cross-section selected. The cross-sectional dimensions throughout
the beam are used as input values for the optimization. The endpoint
displacements under symmetric loadings are attained using a nonlinear
co-rotational beam element based on the Euler-Bernoulli beam formula-
tion. The optimized beams are compared to a circular cross-section beam
with the same global shape to show the efficacy of the method. Isoforce
diagrams are investigated for the optimized beams to show the symme-
try behaviour of the beam endpoint and the effect of changing different
parameters in cross-sectional optimization is discussed.

Keywords: Spatial compliant mechanism · Asymmetric beam · Sym-
metric stiffness · Cross-section optimization · Isoforce mapping

1 Introduction

The ability to design spatial elastic elements with a predetermined kinetostatic
character, i.e. the integration of the function of kinematic and spring elements,
is desirable in several application domains. In wearable device technology, for
example, it is imperative to design parts that are able to apply support forces to
the body in concordance with specific kinematics of the limbs. It is presumably
redundant to say that other application domains may partially profit from these
functional requirements as well, ranging the entire spectrum of application of
robotics and mechanisms.

In recent years, spatial compliant mechanisms have increasingly been the
topic of interest in the mechanism design community. Efforts have been made
in both the characterization as in the design and optimization of spatial com-
pliant mechanisms for the sake of advancing their applicability as full devices
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or as components. In flexures, which are flexible elements widely used for preci-
sion mechanisms, there are plenty of examples of spatial mechanisms [6,10] and
established design principles exist [4, 12].

In these applications the kinematic requirement is leading, i.e. the contrast
in stiffness between free and constraint directions must be extreme, on the other
hand, ranges of motion are often small and the spatial occupation of the mech-
anism is not restrictive. This often leads to the employment of straight or notch
flexures, in relatively complex spatial orientations and topologies with many par-
allelly connected kinematic chains. Examples of spatial compliant mechanisms
with large ranges of motion and simpler topologies, e.g. [2, 7–9, 11, 13, 14], are
emerging, but scarcer.

From an utilization perspective as well as from a fabrication perspective,
it appears convenient to consider an utmost simple topology of a cantilevered
spatial beam, that is, a beam clamped at one end and loaded at its opposite
end. The peculiar kinetostatic behaviour sought in this work is one where the
spatial beam has a plane symmetry of loading forces and corresponding endpoint
displacements, while the geometry of the beam itself is not symmetric with
respect to the same plane. This type of behaviour has not been found by the
authors in any earlier work. On the other hand, it is expected to be useful in
distinct applications where the plane or area of action of the end-effector does
not coincide with the available grounding positions. This is true for manipulator-
type devices, where the ground attachment point must not interfere with the
end-effector range of motion, and also in wearable devices where the symmetry
plane of the body is to a large extend occupied by the body itself.

The usual behaviour of whichever spatial beam is that upon loading the free
end with a force, it somehow turns about the ground attachment point as a result
of the moment produced by that force. It is hypothesised that there exist non-
uniform distributions of cross-sectional properties for which the natural turning
behaviour of the beam is corrected towards a more planar motion.

This paper presents an asymmetric spatial cantilevered beam with a semi-
symmetrical kinetostatic behaviour, generated by optimization of cross-sectional
properties of a given global beam shape. The cross-sectional shape is chosen to
be a conventional I-profile. The symmetric behaviour is optimized by minimizing
the differences in point-pairs displacements under symmetric loading about the
desired plane. The beam displacements are computed numerically with a finite
element model for beams, suitable for large displacements.

The paper is structured as follows. In section 2 the definition of the global
geometry of the beam is given together with the description of the cross-sectional
parameters to be optimized, the formulation of the objective function and the
optimization settings. In section 3 the results are shown and compared to the
non-optimized beam. A discussion on the validity and applicability of the results
and possible improvements is given in section 4, and the conclusion is given in
section 5.
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2 Methods

The global undeformed beam shape (see Fig. 1a), could be chosen arbitrarily
and will not be subject to optimization. In this particular case the reference axis
of the beam is parametrized as

(x, y, z) = (C1t
3, a− b(C2t− c)2, C3t), (1)

where t is the independent parameter ranging from 0 to 40, the constants a, b
and c are chosen as a = 1.5, b = 0.75, c =

√
2, and the constants C1, C2 and

C3 are determined such that the end of the beam reaches the arbitrarily chosen
coordinates Xe = 0.20 m, Ye = 0.15 m and Ze = 0.50 m. This is achieved by
satisfying the relations

C1 =
Xe

t3
, C2 =

»
a−Ye

b + c

t
, C3 =

Ze
t
. (2)
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Fig. 1. (a) The global shape of the beam and its projections on the main planes,
(b) parameters of the ‘I’ cross-section, and symmetric loadings in desired working
range of the beam.

The beam is clamped at the lower end and is loaded by force F at the
endpoint. The magnitude of the force, is kept constant, and the components of
the force vary with the angle α, defined from the plane of desired symmetry, as

(fx, fy, fz) = (F sinα, F cosα, 0). (3)



4 A. Amoozandeh et al.

The defined objective function f for the optimization procedure includes two
parts f1 and f2. The first part, f1, consists of the average of displacement differ-
ences in the three Cartesian coordinates for a number of point-pairs, resulting
from a mirrored loading condition with a force magnitude of F = 100 N and
an angle of ±α, where α = 30◦, 60◦, and 90◦. This error part is named sym-
metry error. This part of the objective assures a degree of symmetry of the
kinetostatic response within the region reached by the applied forces. However,
that region might be unsatisfactory in terms of in-plane and out-of-plane dis-
placement magnitudes, i.e., the resulting symmetry could be achieved only in
minimal displacement ranges or in narrow bands of offset from the symmetry
plane. For this reason, a second part of the objective, f2, is defined. The second
part considers the error of the end point displacement under the loadings in the
x and y directions concerning chosen working range, in this case, 0.12 m in the
y direction and 0.04 m in the x direction (see Fig. 1b). This error part is named
range error. The total objective function is an unweighted summation of the
above-mentioned parts and is defined as

f = f1 + f2 = (
∑

α=30,60,90

1

3
(|dx+α − dx−α|+ |dy+α − dy−α|+ |dz+α − dz−α|))

+ (|0.04− dxα=90|+ |0.12− dyα=0|+ |dxα=0|),
(4)

where α is the effective angle of F and dx, dy, dz are displacements in the three
coordinate directions. The optimization procedure is assigned to minimize the
mentioned objective function by optimizing the cross-sectional properties of the
described beam. In principle, it is possible to choose any cross-section for the
spatially curved beam. However, the I-shaped cross-section is selected among
prevalent commercial cross-sections, since changing its parameters enables a
large variety of combinations of second moments of inertia in the two main
axes, and the torsional constant. The cross-sections are doubly symmetric and
are defined by their web height H, flange width B, flange thickness to web
height ratio h̃ = h/H, web thickness to flange width ratio b̃ = b/B, and the
orientation φ (see Fig. 1b). The cross-section parameters are optimized at N
main cross-sections (see Fig. 3) and interpolated by a B-spline to find out all
other cross-section properties along the beam length. The employed interpolat-
ing B-spline is a degree-four for five or more cross-section and degree-two for
three cross-sections, associated with an open uniform knot vector with its inter-
nal knots determined based on de Boor algorithm [5]. This knot vector ensures
that the parameters of the first and last optimized cross-sections coincide with
the first and last cross-sections of the beam itself. It is important to note that
optimizing all cross-sections separately could lead to more promising results.
However, it would cause more expensive computations, and notable dimension
discontinuities between the beam elements which make the utilized mechanical
model invalid.
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The displacements mentioned in eq. (4) are derived from a self-developed
finite element solver using geometrically nonlinear co-rotational beam elements
introduced by Battini [1], based on a Euler-Bernoulli beam formulation, and the
described beam is discretized into forty elements.

For the optimization process, the Multi Start option with five random start-
ing points, using the fmincon function with the Interior-Point Algorithm from
the Matlab R© optimization toolbox is used. The optimization was subject to the
bounds on the parameters shown in table 1 as Min and Max. These bounds are
set to limit the algorithm to come up with reasonable dimensions and to keep
the I-shape through the beam. The material constants used in the model are
Young’s modulus E = 200GPa and shear modulus G = 76.9GPa.

3 Results

To evaluate the method, beams with different optimized cross-sections but iden-
tical global shape are subjected to the same loading conditions as elaborated
in section 2, and the objectives are compared. To represent the kinetostatic be-
haviour of the beam, an isoforce mapping [3] is presented. Each isoforce line
represents the displacement of the endpoint of the beam subject to a constant
magnitude of the force F (see Fig. 1b), with a full cycle of the angle α. This
mapping is shown for a reference beam, with circular cross-section and optimized
radius of 5.4 mm, (see Fig. 2a and 2d). The red points on the x and y axis rep-
resent the positions of the desired displacements when the force is applied only
in the x and y directions respectively, while the blue points represent the actual
displacements obtained when the beam is subjected to these loadings. The green
dashed lines connect the displacement of pairs of points, i.e., with opposite angle
α of force F , within the optimized region. It also shows the cross-sections, in
the undeformed and deformed configurations. This figure illustrates how straight
the endpoint of the beam moves subject to a force in the y direction only (see
Fig. 1a). It can be observed that with a circular cross-section the desired dis-
placement is poorly achieved and that a force in the y direction results in a
notable lateral drift. Similar figures are provided (see Fig. 2b,e and Fig. 2c,f) for
an I-beam with a uniform optimized cross-section (N = 1), and another I-beam
with five optimized main cross-sections (N = 5). The optimized parameters are
given in Table 1.

An analysis of the impact of the number of optimized cross-sections on the
resulting objective was performed (see Fig. 3). Also, as a benchmark, the ob-
jective achieved by a uniform circular cross-section is shown to highlight the
performance leap obtained by the optimization effort.

4 Discussion

The improvements on the symmetry behaviour obtained by optimizing cross-
sectional parameters across the I-beam are significant (see Figs. 2b and 2c) as
compared to circular beam. The obtained displacements have a undoubtedly
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Fig. 2. Isoforce mapping in the desired range, (a,d) circular beam top and rear
view (b,e) uniform ‘I’ cross-section beam top and rear view (c,f) non-uniform ‘I’
cross-section beam top and rear view. Cross-section dimensions are mentioned
in Table 1.
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Fig. 3. Objective function for circular, uniform and non-uniform optimized ‘I’
beam.
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Table 1. Optimized parameters for uniform cross-section and non-uniform cross-
sections optimization with bounds.

Parameter Min Max CS CS-1 CS-2 CS-3 CS-4 CS-5

H(mm) 4 8 5.75 5.4 6.1 6.3 6.3 6.2
B(mm) 6 12 6.77 6.5 7.6 8.8 9.2 9.2

h̃ 0.2 0.8 0.46 0.47 0.48 0.53 0.55 0.53

b̃ 0.2 0.8 0.79 0.64 0.58 0.54 0.51 0.50
φ(deg) 10 170 85.96 89.98 89.99 89.99 90.00 90.00

better match, the region of symmetry is more extended, and the path of the
endpoint subject to a force in the y-direction is straighter. It is fair to note that
the symmetry in z-direction was not improved with the optimization. Apparently,
the effect of the global shape and its inclination is hard to counteract by the
cross-section variations allowed by the given model. This also underlines the
dependence of the presented results to the initially chosen global shape. The
proposed procedure could generally be applied to every global geometry, but
the results heavily rely on it. Depending on the flexibility of the design space of
the specific problem at hand, it might be recommendable to employ a combined
optimization of global shape and cross-sections.

The optimization process shows that increasing the number of optimized
cross-sections will not indeed lead to lower errors yet make the problem compu-
tationally expensive. This optimal number of optimized cross-sections should be
investigated for each desired range and initial conditions.

There are limitations inherent to the employed mechanical model which fol-
low from the Euler-Bernoulli assumptions and from the required symmetry of
the cross-sections, of which the effect still has to be investigated. Relieving these
assumptions, which suppress all cross-sectional deformations, e.g., shear defor-
mation, warping and in-plane deformation, presumably makes more complex
behaviour emerge, possibly allowing an enhanced performance as a result.

5 Conclusion

This paper presents a new method to achieve symmetric kinetostatic behaviour
from asymmetric spatial beams using cross-sectional optimization, given a global
shape. The global shape could be designed with a specific path or line based on
requirements. The effectiveness of this method has been validated by comparing
symmetry error and range error of the optimized conventional ‘I’ beam and circu-
lar beam cross-section in a predetermined field. Rather complex cross-sectional
properties were found by optimization, using a nonlinear beam element to deter-
mine displacement differences between point pairs and minimizing them, which
resulted in an symmetric behaviour in a proportionally extensive working range.
Such design requirements are not easily achieved with existing methods for com-
pliant mechanism design, which shows the capacity of this method to handle
more complex design demands.
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