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Abstract—This paper addresses Thrust Vectoring Control (TVC)
design techniques for small launch vehicles with bounded roll-rate. The
first contribution is a 6 DoF nonlinear model that serves as a tool for
flight control system design. The nonlinear model is then trimmed and
linearized, yielding a set of linear models. Building upon this result, a
decoupled lateral and longitudinal PID controller is designed, as well
as a LQR controller. Using the full nonlinear model a backstepping
controller is developed. Particular emphasis is given to the analysis of the
resulting closed-loop system under the presence of different disturbances
that can affect the system using Lyapunov stability analysis. From the
robustness analysis of the nonlinear controller it arises that specific
inaccuracies in the position of the center of mass can be corrected,
thus an adaptive backstepping controller is developed to account for
this. Finally, a comparison between the performance of the designed
linear and nonlinear controllers is carried out and a discussion about
the adaptability of the designed controller to other launch vehicles is
presented.

Index Terms—6 DoF modelling, Launch Vehicle, LQR, PID, Backstep-
ping, Lyapunov Design

I. INTRODUCTION

ECENT studies show that there has been an increase in the

total number of spacecraft launched into space over the past ten
years, with potential growth over the next decade [1]. Small satellites
have attracted the interest of scientific research entities and private
commercial enterprises alike [2].

Small satellites are usually launched as secondary payload on a
larger mission, which has obvious limitations in terms of the launch
date and final orbit for the satellite, as the mission is developed
for the primary cargo. Thus, there have been efforts to develop
smaller launch vehicles (LVs), designed to take light payloads to
LEO. Regarding LVs, there are several options with different design
parameters and mission requirements, manufactured both by govern-
ment agencies or private companies. Evidently, all these different
launch systems need control algorithms to steer its cargo into the final
orbit. The starting point of this work is a study of control systems
for the atmospheric flight phase of rocket launchers, using linear and
nonlinear control techniques.

Usually linear methods are preferred in the design of controllers for
this flight phase [3]—[5], due to years of experience and consolidation
of the theory, as well as reliable and well documented design
procedures. Nonetheless, nonlinear control techniques have also been
proposed [6], [7], although nonlinear control is typically used in later
stages of the mission.

In line with these trends, the objective of this work can be
summarised as follows:

« Formulate a dynamical model of a generic rocket launch vehicle,
with symmetric geometry and flexible modes;

« Follow the classical linear control design process for the mod-
elled vehicle;

o Design of a nonlinear controller for the vehicle;

o Compare the performance of the designed controllers;

« Evaluate the ability to apply the designed controllers to other
rocket launchers with minimum effort.

The organization of this paper is as follows. In section II the
6 Degree of Freedom (DoF) model of a generic LV is presented.
Section III describes the classical linear control process used for these
systems. The core of this work is presented in Section IV, where
a nonlinear controller is developed for the LV. Section V presents
a comparison between the designed control systems. Finally, some
concluding remarks and directions for future work are presented in
Section VI.

II. LV MODELLING

The formulation of the dynamical model for control uses publicly
available data related with the VEGA launcher [8]-[16], comple-
mented with data from Deimos Engenharia.

This work focuses on the atmospheric flight phase, before the
separation of the first stage, comprising approximately the first 100
seconds of the mission. Control of the first stage is carried out through
a TVC system, that allows swivelling of a gimbaled nozzle around a
pivot point, with a maximum deflection of £6.5°. The TVC system
allows control of the pitch and yaw attitude, while the roll-rate is
limited by four of the six Roll and Attitude Control System (RACS)
thrusters [8]. The roll attitude is limited if it exceeds the threshold
|p| > 45°/s [11], but is not actively controlled by the TVC system.
The choice of this threshold is not arbitrary since the pitch and yaw
dynamics are coupled in the presence of roll [9], as will become
evident further ahead in this Section. The designed controllers need
to be robust to bounded roll-rates under the defined threshold.

Another important definition for the control design is that of
the reference trajectory, as it affects the controller synthesis. There
are multiple possibilities of defining the trajectory, such as ECI
coordinates, Euler angles or quaternions, and the latter are the two
most used.

Describing the problem in terms of quaternions eliminates the
known issues with Euler angles singularities [17]. However, using
appropriate definitions of reference frames makes it possible to
guarantee that the reference trajectory lies far from the singularities.
Euler angles provide a direct physical interpretation of the position
of the vehicle, while the quaternion description does not lend itself
to a simple visualisation of the attitude of the vehicle. Therefore, it
is chosen to use Euler angles to define the reference trajectory. The
controller synthesis described in this dissertation (both linear and
nonlinear) using Euler angles could be developed using quaternions
as well, with different variables and yielding a different control law,
but with similar closed-loop performance. For a description of rigid
bodies attitude dynamics using quaternions, the interested reader is
refered to [18], [19].

LVs are essentially long slender beams, hence are structurally
flexible. The IMU is not located at the center of mass of the vehicle,



therefore it measures the rigid body motion as well as local elastic
distortions caused by structural flexibility. These measurements will
be fed to the TVC system, which can excite the structural flexible
modes and lead to instability. When considering linear control, the
first flexible mode frequency is usually close to the crossover regime
of the controller, hence the control system has the potencial to
excite the flexible modes and destabilize the system [20]. Thus it
is important to model the flexible modes of the LV. Now that the
important phenomena affecting a LV are defined, the derivation of a
general dynamic model is detailed.

Definition of reference frames

Several reference frames are necessary to define the complete set
of equations of motion. Figure 1 shows the relation between the ECI
reference frame, and the launch point reference frame.

Fig. 1: ECI and launch site reference frames

For simplicity, the Inertial Planetocentric (IP) reference frame will
be considered as the inertial reference frame. The difference between
the ECI and the IP reference frames is that in the latter the x-axis
is defined by the zero-longitude meridian at zero time (time of the
launch) [21], hence only two parameters are needed to describe the
location of a point relative to the surface of the Earth.

The launch point reference frame (also shown in Figure 1) is
characterized as follows: the yr-zr plane is tangent to the surface
of the Earth at the launch point, with yr, pointing towards the north
and zy pointing towards west. The xr-axis is perpendicular to the
yr, and zr, axes and points towards the sky.

A body-fixed reference frame is also defined for the derivation
of the equations of motion. The origin of the body-fixed reference
frame is the center of mass of the launcher, with the x p-axis aligned
along the longitudinal axis of the spacecraft. The body fixed reference
frame is aligned with the launch reference frame at the time of the
launch.

The launch site is the European Spaceport, located at Kourou, in
the French Guiana. Its coordinates are § = 5° 12° 03” N, 7 = 52°
45’ 59” W (respectively for latitude and longitude) [8].

The rotation matrix from the the body frame to the inertial frame
can be obtained as the multiplication of two rotations: the rotation
from the launch point to the body reference frame ans the rotation
from the launch point to the inertial reference frame, ie. PR =
BRLIR. The first rotation is defined by Euler angles and is expressed
in (1), [18], [22].
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BR=| sosOct) — chsyp spsOsp + cpep  speh | . (1)
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Since the reference trajectory is defined using Euler angles, it is
important to know their dynamics. The set of Euler angles is denoted
by A and its derivative, X, is of the form A = f (¢,6) Pwp. The

expression for these derivatives are readily available in the literature
( [17], [18] or [21]):

¢=p+singtand - q+ cosptanf - r

A= 92cos¢-q—sin¢>~r 2)
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The second rotation depends on the Earth’s angular velocity, 2,
and the location of the launch point: L R = R(6, 7)-R(Qe, t), where:

Ccos 0 CoS T cosdsinT  sind
R(§,7) = | —sindcosT —sindsinT cosd |[. (3)
sin T cosST 0
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cosQet —sinQet 0
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External forces acting on the body

The external forces acting on the vehicle are gravity, propulsion and
aerodynamic forces (lift and drag). In order to obtain the equations of
motion it is necessary to write these forces in the body-fixed reference
frame.

The propulsion system can be swivelled around the pivot point
in two different directions, generating pitch and yaw moments to
control the trajectory. Hence the transformation of the thrust force
from the TVC reference frame to body axes needs to be defined.
To do so, consider that the thrust vector lies along the xp-axis.
A negative rotation around the yp-axis is performed, generating
a pitching moment. The angle of rotation is d,. Next, perform a
negative rotation around the z-axis, generating a yaw moment. The
angle associated with this second rotation is ¢&,. Furthermore, in
rocket launchers, it is common to have the TVC system rotated from
the principal axis of the vehicle. Therefore, a rotation of Ao = —45°
around the xp-axis is applied. The rotation matrix from the body
reference to the TVC reference frame is given by the multiplication
of the three elementary rotations defined earlier, in the sequence
R, (—45°) « Ri(—6p) + Ra(—dy):

cOpcly 50y cop 50p
TR = § (s0y + cdysdp) g (80y86p — cdy) fgcép
V2 V2

22 (cdysdp — sby) 5= (80ysdp + cdy) —gcép

(5)
With this definition, the thrust expressed in the body frame is given
by 2T =ZR - [T 0 0]%.

The aerodynamic forces expressed in the aerodynamic reference
frame are “F, = [~ D L 0]. This frame is related to the body-fixed
frame by the two aerodynamic angles: the angle of attack o and the
sideslip angle (3. This rotation can be found in [21] and is given by:

cosfcosa  sinfB  cosfsina
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LV equations of motion

With the forces identified in the previous section and the definition
of the inertial frame of reference, Newton’s second law yields:

m v + v = 4R (BT+BFA +BFQ). %

The inertial velocity is defined as “v = ERPv. Differentiating:
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where S(w) is a skew-symmetric matrix and v = [u v w]T
represents the linear velocity vector, expressed in the body-fixed
reference frame. Joining equations (7) and (8) yields the expression

for the linear acceleration in the body axis:

By_ 1 (BT +P R, 4 Fg) —S(w)Bv - 2By, (9
m m
The last term of (9) can be discarded because for LVs % << 1.
Hence, it is small when compared with other terms.
Separating (9) into scalar components and solving in order to the
linear acceleration:
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(10)
For the rotational motion, starting from Euler’s equation:
Mceym =Iw +w X Tw (11)

where Mc s represents the sum of external moments around the
center of mass. The only forces that generate torques on the launcher
are the thrust and aerodynamic forces. Euler’s equation can be used,
even though this is not a rigid body, since the temporal variation of
the position of the center of mass is small [13]. The total moment
acting on the body is:

ZMCM

lga x BFq +1og x BT

0
leCG (cdysdp — sdy) + (DcBsa+ Lsfsa)lga
—2Tloq (cbysdy + s8y) + (LeB — DsB) lga

12)
where loa = (Xcp — X) represents the lever arm between the cen-
ter of pressure and the center of gravity and leq = (Xy — Xpvpy,)
represent the lever arm between the center of gravity and the pivot
point of the thrust vector. Noting that the body-axes are principal
axes of inertia and that the launch vehicle is symmetrical, then
Izy = Ixz = 0. Hence the inertia tensor is simply

I 0 0
I=| 0 I, O (13)
0 0 I.

Furthermore, due to the geometry of the LV, it is known that I, =
[ZZ >> Iacx-

Developing equation (11) with (12) and (13) and solving w.r.t. to
the angular acceleration yields:

p=0
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(14)
From (14) it is clear that the pitch and yaw dynamics are coupled in
the presence of the roll-rate, p, as discussed earlier. Furthermore, if
p = 0, pitch and yaw dynamics are independent and can be treated
separately. In the nominal conditions, p = 0 and the roll-rate p will
be very small, so the dynamics of g and r can be simplified.

Given that this is a mass-varying system and the value of the mass
at each step in time is a parameter for the other states, its dynamics
must be defined. The initial mass of the system is m(0) = 137820 kg.
The propellant mass for the first stage is Mpop = 88383 kg [8]. The

mass flow rate is constant and only due to the exhausted propellant,
hence 7 =~ constant. The separation of the first stage of the vehicle
occurs approximately 100 s after launch, so 7 = =22 = 900 kg/s.
Hence, the differential equation that regulates the exhaustlon of mass
in time is given by:

= —900, m(0) = 137820 kg. (15)

Flexible modes modelling

As discussed in Section I, the flexible modes are very important
for the design of the control system of a launch vehicle. The most
straightforward way to include their contribution in the model is to
assume that due to bending an extra force and moment is generated
and must be added to the total forces and moments. It is also assumed
that the lateral vibrations along the yg-axis are the most relevant.
These vibrations are caused by the component of the thrust force
acting on the yp-axis. Therefore, the additional force caused by the
flexible modes shall be applied in this axis, while the additional
moment appears in the zp-axis. The equations of the flexible modes
are:

Gi = *wzzqi — 28wiqi — Tytp:
Fhex, = Ty - o0 Tpitli i=1,2
Mﬂexz = Ty : Zi\il (’rpi . lCG + tpz) q;
Fﬂex = [0 Fﬂexy O]T
Miex = [0 0 Mﬂexz]T

(16)

The full nonlinear 6 Degree of Freedom (DoF) dynamic model of
a general LV is given by (2), (10), (14), (15) and, (16), describing
respectively the Euler angle dynamics, linear acceleration, angular
acceleration, mass exhaust rate, flexible modes states and force and
moment induced by the flexible modes. Joining all the information
from the previous equations, the full nonlinear model is defined in
7.

= % > Fex — S ( B)BVB
Bw =1 (Z Mexi — Bwp x I B‘-‘-’B)
Ap=fo(A)-Pwp
m = —900 kg/s
G = —w?q; — 28wig; — Tytps, 1= 1,2
Lpg :gRBvB.

F(xu,t) = a7

Using this model it is possible to design different algorithms to
control the LV, which is the topic of the next Sections.

III. LINEAR CONTROL
Trimming and Linearization

The model presented in Equation (17) can be trimmed and
linearized around a reference trajectory, yielding a linear models
suitable for control. For linearization, rigid-body motion (without
flexible modes) is considered. Linearization is performed with frozen
parameters around the trim points in the reference trajectory. In order
to obtain valid trim points the following assumptions are considered:

« Rigid-body model;

« Movement occurs in the xpys-plane — w = 0;

« Roll angle is null, ¢ = 0.

After trimming and linearization a 10 states state-space model is
obtained, for each linearization point. Linearization was performed
every second from ¢ = 0 s to ¢ = 60 s, yielding 60 linear systems de-
scribing the evolution of the nonlinear system in time. The state vector

N . . . . . T
after trimming and linearization is x = [u v wp ¢ r ¢ 0 ¢ m]



Analysis of the poles of the linearized systems

A LV is inherently unstable because its center of gravity lies aft
of the center of pressure, hence a control system is always necessary.
Given that the LV’s mass is variable, there is no guarantee that a
controller designed for a specific trim point can stabilize the system
for all trim conditions. As such, it is useful to have insight on the
evolution of the poles with time. To simplify this analysis, the model
is decoupled into a longitudinal and a lateral model. Due to the axial
symmetry of the launch vehicle, and given that in trim points the roll
angle is null, this assumption is valid [9].

Defining Xiong = [u v T w]T as the longitudinal state and Xjat =
[wpq G}T as the lateral state, it is possible to separate the linearized
model, while maintaining essential information about the dynamics.
Note that the mass is not included in any of the models because it is
independent of all the other states and does not influence the analysis
in terms of control. As such, mass is considered a frozen parameter
for each linearization point. Furthermore, the roll angle is not a state
in any of the systems, as it is considered to be small and does not
influence the dynamics of the lateral or longitudinal systems.

Pole Zero Map

0.1 : : , , ,
=
Sl
T 005 | 1
3 X
Q
QJ
\(l:/
z 0 f o 36X X3 AR KXo e ]
<
N ‘
g .05 | : XXX 1
S : ) y
g : 2R /,\\)(
g ‘

—0.1 1 1 1 i 1

—02 -015 —01  —0.05 0 0.05 0.1

Real Axis (seconds™1)

Fig. 2: Longitudinal poles associated with state variables [u v 7 1]

Figure 2 shows the evolution of the poles of the longitudinal
models from ¢ = 0 s to t = 10 s. In the figure, the first ten linearized
models are shown. The color of the poles vary from blue to red, from
the first to the last model, respectively. The evolution of the lateral
poles is extremely similar hence it is not shown. Analysing the rest
of the linearized models some conclusions can be drawn about the
evolution of the linearized models:

o Due to the symmetry of the vehicle, the decoupled longitudinal
and lateral models are extremely similar;

« The system is inherently unstable, as there are always poles in
the right-half plane;

o Up until t=30s there are unstable complex poles;

« As times increases, the system becomes faster, since the mag-
nitude of the poles increase.

Having insight about the evolution of poles of the model with time,
controllers for the model are developed next.

LOR control

To allow tracking of the reference Euler angles, a LQR controller
using the angular velocities and Euler angles is conducted, feeding
the states [¢ r € 1] to the controller. Remember that there is no
active actuation on the x p-axis, hence the roll angle (¢) and angular
velocity (p) are not controlled.

To facilitate the tuning of the controller, first order high pass
filters are placed in the control variables, [0, J,] and (first or-
der) low pass filter are placed in the Euler angle states. The
resulting system for the synthesis of the LQR controller has 8
states, [61%”0“ Oyespore Do lpy g1 0 ], that will be fed to the
controller. Varying the filter coefficients in the ) matrix in LQR
synthesis it is possible to access its impact. The filter’s effect can be
summarised as follows:

High pass filter (control effort weight) - this filter is applied to the
control variables and prevents high frequency content in the control
signal. Increasing the importance of this filter in the Q-matrix leads to
a decrease of the control signal RMS but to an increase in the tracking
error RMS, showing a trade-off between these two parameters.

Low pass filter (performance weight) - filtering the reference
signal reduces the sensitivity of the controller to abrupt variations
(and noise) in the reference signal. Emphasizing the effect of this
filter in the -matrix lead to a decrease in the tracking error (as
abrupt variations are ignored) but the control signal RMS increases.

The coefficients of the filters are chosen such that the the controller
is able to follow the reference while being robust to noise and limiting
the high frequency in the response.

Along with the LQR controller, two SISO PID controllers (one
each decoupled model) were developed. With the PID approach it was
possible to stabilize the system, but the performance was considerably
worse than the LQR controller. Hence, its implementation is not
discussed here. Nonetheless, Table I shows a comparison of the
response of the LQR and PID controllers to a 1 ° step in the pitch
angle.

LQR PID
Rise Time (s) 0.3604  0.1228
Settling Time (s) 0.6270  2.0303
Overshoot (%) 0.1409  55.2670
OpRMS 0.6530  1.8575

TABLE I: Comparison of PID and LQR response

From table 1, it is clear that using a state feedback method such as
LQR is more advantageous than using two PIDs for the decoupled
lateral and longitudinal models, as the settling time, overshoot and
control action RMS are much better with LQR control. This com-
parison was carried out using the full linearized model at ¢ = 10 s
(for which both controllers were designed) and including the actuator
model. The actuators are modelled as a second order low pass filter,
with the transfer function [23], [24] shown in Eq. (18).

2

Wact
= . 18
(S) 52 + 2Ca,(,‘t(*)acts + wgct ( )

The LQR controller is able to stabilize the system for all trim
points. Furthermore, applying this controller to the nonlinear system
yields good results in the nominal conditions, as it is possible to
track the reference trajectory. Next the robustness analysis of the
LQR controller to parameter variation is assessed.

5'real

5communded

Robustness analysis of the LOR controller

A well designed controller must be robust to uncertainties in system
parameters. This is especially relevant for LVs, given its critical
application. Thus far, for linear control design, it was considered
that the parameters of the system were “frozen” at the trim points.
Given that the parameters of the system vary considerably in time,
it is important to guarantee that the controller is able to cope with
changes around the nominal values of said parameters.



At this point, it is important to clarify why many of parameters
of the system are time-varying and its magnitude have a consid-
erable variation. The system looses mass at a constant rate of
m = 900 kg/s. Hence, all the parameters associated with mass
distribution also change, namely, the position of the center of gravity
(Xc@), moments of inertia (I, I,y and I..) and obviously mass
(m). Variation of the aerodynamic coefficients (C,, Cy) will also
be considered, although they are not directly related with the loss of
mass.

Furthermore the effect of varying geometric parameters such as
the position of the nozzle pivot point (Xpyp) and the reference
aerodynamic surface of the rocket, S are also considered.

For each of these parameters, its value will be changed +20%
around their nominal value. The nominal value of the time-varying
parameters is considered as the trim value at t = 10 s, to be consistent
with previous sections. [, has the most important influence in
the behaviour of the system. This analysis was performed for all
aforementioned parameters, however, to improve readability, only 7,
is detailed here. Table II shows the effect of varying [,, around its
nominal value.

0.81,, 091I,, I,, 11, 1.2[,
Rise Time (s) 0.39 0.37 0.36 0.35 0.35
Settling Time (s) | 0.74 0.68 0.62 0.58 0.57
Overshoot (%) 0.00 0.00 0.22 1.08 2.27
Oprass 0.60 0.63 0.66 0.68 0.71
(Orer — O)rms 0.19 0.19 0.20 0.20 0.20

TABLE II: Summary of the effect of varying I, in the system’s
response to a step in 6

Decreasing I,, makes the system faster. On the other hand,
increasing I,, shows the opposite trend: increase in overshoot and
control action RMS and decrease in rise time and settling time. With
the previous analysis, one can conclude that even with a 20% change
in the nominal parameter, the controller is able to stabilize the system
and the control signal does not exceed the saturation limit.

IV. NONLINEAR CONTROL
Nominal design

This section is devoted to the implementation of a nonlinear
backstepping controller for the LV. The control objective defined in
Section II is to follow a reference trajectory expressed through the
Euler angles, hence to ensure that A — A4. Equivalently, this can be
written in terms of the reference tracking error, X =X — Ay, with
the objective A — 0.

As seen before, there is no actuation along the x-axis, hence the
roll angle cannot be controlled. Thus the control objective can be
defined as a function of the two controllable angles. Defining the
controlled angles as A. = [0 1/J]T and the controlled angular velocity
as w. = [g ]”, the control objective can be stated as A, — 0.

The term ) M can be written such that the dependence on the
input variables is clear. From (12), there is symmetry in the control
input term associated with the moment generated by the TVC system.
Defining ¢; = ngcg, Ug = COySOp — S0y, Ur = COySOp + SOy,
Aq = (DeBsa+ LsBsa)lga and A, = (Lef — DsB)lga:

> Mo = A+ Bu, with A = [ 44 }

Ay
B:|:C1 0

_ | UYg
o ]l

19)

In the nominal model p = 0, hence the cross-coupling terms from
the cross product w. X Jw. are zero. Cases were p # 0, will be
considered as a perturbation to the nominal model and will be treated
in subsequent sections.

Substituting Eq. (19) into (17) yields a model in strict-feedback
form:

= fO (¢70) s We

Ae
{wc = I (A+ Bu). (20)

The controlled Euler angles error dynamics can be defined as:

Xe = A — Aoy = folh, O)we — A, 21)

Regarding the controlled angular velocity, we, as the control input
for the 5\5 system, the desired control can be defined as:

We, = (/\C, Aeys Xcd) . 22)

It is possible to define a Lyapunov function using the Euler angles
error to assess the stability of the system:
- R
Vi(he) = 5)\6 Ac. (23)
To guarantee stability, the Lyapunov function must be positive-
definite and its derivative negative-definite. Checking the requirement
of positive-definiteness for Vi:
e Vi(Ae = 0) =0;
o Vi(Ae) > 0 VAc # 0, because V4 is a quadratic function.

The derivative of the Lyapunov function, (23) is

V(o) = M2 = A7 [fo(@, 0)we — Ac] . 4)

Now, substituting (22) in (24):

Vi(Ae) = AT [fo(qb, 0)a (,\C, Acd,xcd) - AC] <-wW (/\) .
(25)

Choosing « such that Vl(j\p) < -Wh (5\6), where Wl(:\c) is a
positive definite function of the reference tracking error, guarantees
stability. From (25), a suitable choice for « can be deduced, provided
that fo(¢, 0) is invertible.

Choosing ()\C,)\%)\Cd) = —fohe)™! (Kangﬂc - )\d>
yields

Vide) = =AML KangAe <0, YKang > 0, (26)

where Kne is a diagonal matrix. The inverse of matrix fo(¢,0) is
given by:

_ cos ¢ —sing
f0(¢7 0) - |: sin (;5/0039 Ccos ¢/ cos @ :| ’ 27
01— cos¢ sin¢cosf @0
fo(,0)" = —sing cos¢cosf |-

To proceed with backstepping design, W. = we — we, is defined
as the angular velocity error. Rewriting the original system in terms
of the tracking and angular velocity errors:

{Ac = f0(¢, 9)4:16 - KangAc (28)

Ge = I7" (A+ Bu) — &(he; Aeys Aey )

The derivative



LI 60,00) - (Kughe = ey

_ d ~ .
_fO 1(¢(t)79(t)) : E (Kang)\c - )‘Cd) .
(29)

The first parcel can be written as a function of the Euler angles
and angular velocities:

G (,\C, Aeys Acd) =G, =

—s%4t 0

d .1
afo (o(1),0(t)) = —cpsptd)  —sb }q-i— {

2ot 0

—spcotd  sO }r

F(#,0,q,7) (30)

The second parcel can be written using previous definitions. The
total expression for the derivative is given in Eq. (31).

oy = F(¢,0,q,7) (Kangc - Acd) 5t (/\d - Kangic) 31)

Now, defining a composite Lyapunov function for the whole system
as

Va(Ae, @e) = Vi(Ae) + %wTw (32)

The derivative of the candidate Lyapunov function is

Va(Ae,@e) = —AL KangAe + @2 I71 [1fo(, 0)Ac + A+ Bu — Lot | .

(33)
Finally, choosing u such that the derivative of the Lyapunov function,
Va(A, @) is negative definite, stability for the whole system is
guaranteed. Choosing

P (Ic Fo(6,0) A + A + L (Kuioe — w)) E

then the derivative of the Lyapunov function becomes
V2(5\67U~Je) = *S\ZﬂKangS\c*@ngw@c < 07 vI{ang > 07 Kw > 0. (35)

There are two gain matrices, Ka,, and K., that can be adjusted to
tune the controller response. Furthermore, for the nominal system, it
arises from the Lyapunov stability analysis that the only requirement
to ensure stability is that both gain matrices are positive-definite.
Matrix B is invertible because it is a real diagonal matrix and its
inverse is given by

(36)

B_lz{l/cl 0 ]

0 *1/61

The control law determined in (34) stabilizes the system in
nominal conditions. Next, robustness to parameter uncertainties will
be studied.

Robustness analysis of the nonlinear controller

The analysis will be carried on through modelling a particular
disturbance and then using the Lypunov function to obtain relations
between the gains, magnitude of the errors and parameters of the
system. Two cases are presented here: robustness to bounded roll-
rate disturbances and robustness to uncertainty in the position of the
center of mass. These two cases show two different methodologies
to assess robustness, the theoretical approach using the Lyapunov
function and a simulation approach. More cases were studied but
these two are representative of the methodologies employed.

Robustness to bounded roll-rate disturbances

As discussed earlier, in this stage of the mission, the roll-rate
is not actively controlled, as there is a roll-rate limiter that acts if
|p| > 45 °/s. [8], [11], [25]. Therefore, the system must be stable for
disturbances up to this value.

In the presence of roll-rate, the pitch and yaw dynamics are given
by:

{q = ﬁ (Aq + C1uq — (IM —I.2)pr) 37)

r = i(AT — C1Uq — (Izz *Iyy)pQ)

Rewriting the error dynamics of the controlled angular velocity in
matrix form:

Ge = I, (A+ Bu+ Pw,) — e, (38)

where P is the perturbation to the state introduced by the non-null
roll-rate and A and B are the matrices defined in (19):

0 (Izz - Izz)p
(Iyy = Loa)p 0
Now using (38) and the nominal control deduced in the (34), the

derivative of the Lyapunov function can be reformulated. Building
on previous results and using the relation we = @c + wey:

P = 39)

Vare,@e) = =ML Kanghe — @eI 7 [Iefo(0,0) + A + Bu o)
- cwcd +P®6+chd]

Substituting the nominal control, Eq. (34), and collecting the terms:

Vare,@e) = =M Kanghe — @ (K — 171 P)e

7&Zﬂ]cilpf071Kang Xc +@ZI;1Pf61ACd
—_—

«T y

(41)

The first term is negative-definite by construction, because Kyng >
0. The second term is negative definite if K., — 1 1P = 0. The third
term is a cross term between \. and . , so using Young’s inequality
(with x and y as defined in Eq. (41)) it can be written as:

_ _ < 1 17z
0L I Py Kanghe < ia;CTTwC + EAZ/\C 42)
Substituting Eq. (42) in (41) and using the definition x =
- T
[)\c &zc] :

Vo(x) < —x" Mz + %" N, 43)
[ Kue— i1 0 _
where M = 0 Kw—IgleéT , Noo=

[ |

From (43) it can be concluded that the system is input-to-state
stable, meaning that for any bounded input (in this case Ae 4), the
norm of X will be bounded. To show that the system is input-to-state
stable, the conditions for having Vi < 0 must be determined. Hence,

" Mx > %" N, (44)

For a positive-definite matrix M, using the Rayleight-Ritz inequal-
ity:
XM > Ain(M)X" % > [|%][Amax (12 P) [ Acy |

Amax (11 P)
)\min(M)

(45)

=[xl > l1Acall



It follows that if the norm of A., is bounded, then the norm of |||
remains bounded and the system is input-to-state stable. Essentially,
if the modulus of the error is larger than a given bound, the derivative
of the Lyapunov function is negative and the system is stable. If the
error is smaller than this bound, there is no guarantee on the signal
of V(%) but it is guaranteed that the error remains inside the level

—1 .
set [|x]] < 25 A, |
M is positive-definite if its eigenvalues are all real and positive.
Given that M is a block diagonal matrix, with zeros in the off-
diagonal terms, using Schur’s complement condition for positive-
definiteness, M is positive definite if and only if Kue — 51 > 0

and K, — Ic_lP — %T > 0. The first condition is meet if

Ko > 0.5
’ (46)
Kw > 0.5
The second condition can be written as K,, > I, 1P+ %T.
————
Q
Assuming that Ky = Ky, then Ky = Kol and T =
KZIZ'Pf I £y (151 P)T. Furthermore, writing
—1,-T _ | @ —c¢ “1p _ 0 1
fO fO _[—C b:|7[c P_KI|:1 0:|a (47)

where K1 = I“I:# p. Noting that K7 > 0, then the eigenvalues of

z

I7'P are always real and positive. Thus Q can be written as:

1K;K?b

K;— K§jKic “8)

Q= { K;— $KiKic }

1K;Kia

(@ is symmetric and positive-definite. Using the Rayleigh-Ritz
inequality for an arbitrary n x 1 real vector, x (in order to majorate
this matrix and cover the worst case scenario):

)\mi“(Kw)xTx <xTK,x < )\max(Kw)xTx 49)
)\min(Q)xTx <xTQx < )\maX(Q)xTx
Combining this, K,, — @ > 0 if:
Amin(]:(w)XTX > Amax(Q)XTX = Amin(l(w) > Amax(Q) (50)

Since @ > 0, then ||Q|| = Amax(Q). The trace of the matrix is
bounded by ||Q|| < tr (Q) < n||Q]], hence Amax(Q) < tr (Q).
Therefore to guarantee that M is positive-definite, Amin(Kw) >
tr (Q). From (48):

2 272
0 Y< KoK

)_ 0T
0<c20<1

r (Q) = SRR+ (51)

Finally to guarantee positive-definiteness of M then Amin(Kw) >
K2K?. This relation is shown in Figure 3. In order to guarantee
positive-definiteness of M, the minimum value of K., must be above
the blue line. Bear in mind that these are conservative values for the
choice of gains, as they were obtained for the worst case scenario.
It is guaranteed that if K, is chosen with this criteria the system
will be input-to-state stable. Lower values for these gains may also
ensure stability, although no theoretical guarantee is given. Figure 3
does not show us the maximum error, as it only relates the minimum
gain of K, for each value of Ky that guarantees positive-definiteness
of M.

The condition on the maximum error is given by equation (45).
This condition depends on the system trajectory because 71" depends
on the Euler angles. Figure 4 shows a simulation of the system
affected by a roll-rate disturbance of 45 °/s. On the left and right,

60
< 40t
)
S 20t
0
0 2 4 6 8 10

Ky

Fig. 3: Minimum value of K, as a function of the gain of the outer
loop, Ky, for the maximum allowable roll-rate disturbance
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Fig. 4: Euler angles and angular velocity for a test trajectory with
Ky =51 and Kaug = 2- I for p = 45°s

the Euler angles and the angular velocities, with the reference in
orange and simulated variables in blue. From this Figure one can see
that the disturbance starts acting at ¢ = 10 s and keeps acting until
the end of the simulation. In the presence of a non-null roll-rate,
there is a coupling between the motion in the y and z axis, which is
evident for example around ¢ = 15 s in Figure 4. The abrupt change
in reference in 1) causes the tracking of 6 to be degraded.

Robustness to uncertainty in the position of the center of mass, Pcg

Forcing Pcg to be outside the x p-axis generates moments in the
other body axis that are not accounted for in the controller. Thus,
even in the nominal case, the error increases with the uncertainty
in the position of the center of mass. Having uncertainty in the
position along z g does not have a big impact on the system. It is also
important to note that the effect of the uncertainty of the position of
the center of mass varies with the considered trajectory. This analysis
considers the nominal trajectory, for which the reference signal in v
is more demanding than in 6. The analysis is the same for the three
axis thus to avoid repetition only the analysis for uncertainty along
the yp-axis is detailed.

Considering a misalignment between the true position of the center
of gravity and the modelled position of the center of gravity along
the y-axis: Pcg = Pccy +[0 dce, 0]. This will generate moments in
all axes. For a generic force, with components along the three body
axes, the generated moment is given by (52).

laa, F, F.éca,
dca, | x| By | = _Flca, (52)
0 F, Fylga, — Fiéca,



Due to this misalignment, there are two moments (one along the x
axis and another along the z axis) that are not accounted for. Hence,
they will not be compensated by the controller.
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Fig. 5: System response with dgc, = 0.4 m

Figure 5 shows the response of the nominal system with an
uncertainty of 6GCy = +0.4 m in the location of the center of
gravity along the yp-axis. Although the system is still stable, the
controller is not able to perfectly track the reference in r and 1.
There is a static error between the reference and the actual state.
This difference occurs because the controller is using incomplete
information to compute the control signal.

Adaptive backstepping control

One approach to mitigate the effect of uncertainty in the position
of the center of mass is to estimate its true position and use this
estimate in the backstepping controller design. The goal is to design
and estimation law for the position of the center of mass and couple
it with the previously designed controller. Consider that there is a
misalignment (only) along the yp-axis. If the misalignment occurred
along the zp-axis, the procedure described here would be the same.
Furthermore, assume that the aerodynamic moments are known.
Hence, the uncertainty will only affect the moment generated by the
thrust force. In this case, the moments caused by the thrust force are:

lGAm T, T, 5CGy
5CGy X Ty = *TzlGAm (53)
0 Tz TylGA,E - Tz(sCGy

Recalling from Section II that T, = Tcdydp, the uncertainty
introduced by the misalignment in the ypg-axis is a function of the
input, thrust and the uncertainty itself. For the nominal trajectory,
the control action is smooth and the control angles are limited by
the actuators to £6.5° , thus the small angle approach is valid and
Ty ~ T'. Hence the moment induced by the perturbation is simply
Tdcg,, . Introducing this in the dynamics of the angular velocity error:

- | . 0
we =1, <A+Bu—[cwcd+[T5CGy ])

The perturbation 5CG7/ is not known hence its estimate, 6cc.,/, must

be used. Defining the estimation error as 5CGy = dcG, — 5cc,y, the
estimate can replace the perturbation in (54), yielding

(54)

o= 171 (A+Buflcwcd + Téca, [ (1) ] + Téca, { (1] D (55)

When defining the nominal backstepping controller, the control law v
was such that all nonlinear terms are cancelled and a definite negative
term in the Lyapunov function derivative is introduced. Now, the same
is done, but also cancelling the term that depends on the estimated
position of the center of mass. Then the Lyapunov function is used
to determine a dynamic update law for dcg, that guarantees stability
of the system. The new control law is given by:

- ~ - . 2 0
u=—-B"1 Iefo(P,0)Ae + A+ Ie(Kywhe — wey) —TJCGy |: 1 :|
uUN
(56)
Augmenting the control Lyapunov function to include the estimation
error:

Lz 1lep~ 1.7 11
V(Ae, e, dca,) = g Ae Ae + 500 @e + 5 Kacgy 57)

In equation (57), K3 is a gain to control the dynamics of SCGy.
The derivative of 5cgy is given by:
—5CGy = 5CGy = —5CGy (58)

dcc, = dca,

0

Using (58), the derivative of (57) can be written as:

s L = . ~ N _ 0 1 =~ A
V(Xe, @e, dca, ) = Va + Tdca, we 1, { 1 } - E(Sccycscsy
. ~ - _ 0 1 =
= Vay +dcq, <TwcTIc ! [ 1 } - Efsccy)
=0
(59)

Using (59) the dynamics of chy can be chosen such that the term
multiplying dcg,, is zero:

dco, = KTl 17! { ? ] (60)

Substituting Eq. (60) in the derivative of the new Lyapunov
function, V(S\C,cbe,gcgy) < 0. Since V is only negative semi-
definite and the system is nonautonomous, neither Lyapunov’s second
method nor LaSalle’s Invariance Principle can be applied. However,
Barbalat’s Lemma can be applied, which ensures that 1% converges
to zero, since V' converges to a bounded limit and V is uniformly
continuous. It follows that A, and . are guaranteed to converge to
Zero.

Now the backstepping controller incorporates a parameter estima-
tion update law that stabilizes the system. Furthermore, gain K3
allows some control over the speed of the convergence of the estimate
of the true position of the center of gravity over the yg-axis. It is
important to note that given the implementation of the parameter
estimation law using the Lyapunov function, the estimation error,
Scc,y, converges to a constant. However, it is not guaranteed that the
estimate converges to the real value of the position of the center
of mass. Figures 6 through 7b show the comparison of the nominal
control and the adaptive control (with parameter estimation), for a
misalignment of 0.7 m along the yp-axis.

In Figure 6a, without the adaptive law, it is not possible to track
the computed reference, because an unknown torque is acting upon
the system, which is not taken into account when computing the
control signal. In Figure 6b, with the adaptive control, the controller
is now able to track the angular velocity reference. Examining Figure
7a, without adaptive control there is a static error in the reference
tracking of v, which vanishes when using adaptive control.
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Fig. 7: Comparison of nominal and adaptive control for écg, = 0.7 m

Figure 7b shows the evolution of the estimate 5ccy with K3 = 10.
Approximately after 10 s the estimate converges to the real value of
the deviation and the TVC system is able to counteract the extra
moment induced by this deviation.

V. COMPARISON OF THE LINEAR AND NONLINEAR CONTROLLERS

It is one of the goals of this work to compare performance,
advantages and drawbacks of using linear or nonlinear methods to
control the atmospheric ascent of launch vehicles. Previously, it was
seen that the LQR controller was much more robust than the PID
controllers, hence only the performance of the LQR controller will
be analysed.

By using nonlinear techniques, two controllers were developed:
a nominal backstepping controller and an adaptive backstepping
controller, with an adaptive control law to estimate the position of
the center of mass. The benefits of the adaptive controller were seen
in the previous section and relate to the specific case of uncertainty
of the center of mass along the yg-axis. Henceforth, to get a more
general overview of linear vs. nonlinear control techniques applied to
launchers, the adaptive backstepping controller is omitted from this
comparison, although the conclusions can be extended for that case.

The performance of the LQR and backstepping controllers applied
to the nonlinear model, for two different trajectories, both for nominal
conditions and with flexible modes will be considered. The effect of
flexible modes is considered a key factor that can destabilize the
system, so this will be the disturbance considered in the present
evaluation. The two trajectories used in the simulations are the
nominal trajectory and a trajectory designed to test the flexible modes.
Results are presented in Tables III and IV, respectively for the
nominal trajectory and flexible modes trajectory.

Considering first Table III, it can be seen that the backstepping
controller present smaller reference tracking errors, but the control ac-
tion RMS is slightly higher. The overall results with both controllers
for this trajectory are similar. The nominal trajectory is smooth and
slowly varying, hence the flexible modes do not have a big impact

on the system. In these conditions, the LQR controller achieves good
performance and even though is it designed for the linearized model
at ¢ = 10 s, it is able to stabilize the nonlinear system. From
Table IV it is clear that the performance of the LQR controller is
degraded by the inclusion of the flexible modes. With both flexible
modes this controller cannot stabilize the system, which is depicted by
the exponential growth of the reference tracking error from nominal
conditions to the inclusion of both flexible modes. On the other hand,
the backstepping controller is able to stabilize the system with the
flexible modes, with performance levels similar to the nominal case.
Comparing the results of both trajectories, the performance of the
backstepping degrades with respect to the nominal trajectory, but the
controller is able to track the reference for all cases (with and without
flexible modes). The LQR controller however behaves very poorly in
the second considered trajectory with the flexible modes, as it cannot
stabilize the system.

Therefore, the backstepping controller is more robust and yields
better results than the LQR controller. Backstepping control is robust
to changes in various parameters and uncertainties and can even be
augmented with parameter estimation techniques in special circum-
stances.

Nominal 1 flex 2 flex
LOR SN2 7.92E05 7.92E-05 7.92B-05
S ?  0.1569 0.1569 0.1569
Backsionping 20 19006 1.90E-06  1.90E-06
PPIIE s~ 72 §26E-05 8.26E-05 8.26E-05
LOR Spmas  0.00088  0.00089  0.00089
Symas 000093  0.00094  0.00094
. Sppys 000099 0.00099  0.00100
Backstepping 5 """ 000104 000104  0.00105

TABLE III: Comparison of the LQR and backstepping, for
the nominal trajectory

Nominal 1 flex 2 flex
LOR SS62 0225 03743 21.1322
SSY° 68671 193424 561.6633
. 326 02133 02124 02121
Backst g
ACSIEPPINE S~ 72 55603 5.0921  5.1652
LOR Sppars 00841 02188 13707
Synis 00812 01887 09515
. Sppys 00261 00265  0.0279
Backstepping 5 U7 00042 00249 0.0265

TABLE IV: Comparison of LQR and backstepping, for the
trajectory that excites the flexible modes

Given the results obtained with the LQR controller, one could
think of designing a center of mass estimator, as developed for the
backstepping controller. However, this is not straightforward due to
several reasons. Firstly, this is a time-varying system and, as such,
if using linear control, there are several controllers for each different
part of the trajectory, with the switching done by a gain-scheduling
algorithm. Hence, it is necessary to design several estimators (for
the different parts of the trajectory). For backstepping control design
this is not a problem, as the estimator dynamics are derived from the
Lyapunov function and, therefore, are global (provided that global
stability can be proven with the selected Lyapunov function). The



linear control techniques heavily rely on trim points (and therefore on
the trajectory). If a controller is tuned for a particular trajectory, there
is no guarantee that it will work properly for a different trajectory.
For this reason, it is difficult to adapt the designed linear controllers
to other LV. It is easier to adapt the backstepping controller to another
launch vehicle, as the evaluation is based on Lyapunov stability
analysis, which will be the same independently of the parameters
of the system. What changes are the actual limits for the gains that
ensure stability for the several considerer perturbations, as these are
dependent on the trajectory and system parameters. To summarize
this discussion, Figure 8 shows a graphical comparison between the
LQR and backstepping controllers, taking into account three key
parameters:

« Robustness - measures the controller’s ability to reject exoge-
nous disturbances, measurement noise & model uncertainty;

o Performance - measures the controller’s ability to follow the
desired trajectory;

o (Easiness of) Tuning - measures the effort to tune the controller
and adaptability to other launchers.

Robustness

. i N
Tuning Performance

Fig. 8: Comparison of the LQR controller (blue), with the backstep-
ping controller (red)

In terms of tuning, the backstepping controller is superior, as it only
involves setting two matrix gains K, and K, while for the LQR
controller it is necessary to tune the control effort and performance
weight filters, in addition to solving the Riccati equation to obtain the
controller gains. Furthermore, the adaptability of the LQR to other
LVs is not straightforward. Regarding performance in the nominal
condition, the LQR behaves similarly to the backstepping controller,
albeit performance degrades for demanding trajectories.

As for robustness, it was seen that the backstepping controller
is able to reject disturbances more satisfactorily, when compared
to the LQR controller. Nevertheless, like in all other optimization
processes, there is a trade-off between adaptability to other systems
and mathematical complexity of the proposed control solution.

VI. CONCLUSION

Choosing a nonlinear control technique over linear control or vice-
versa is not a trivial choice and several parameters influence this
decision. Regarding adaptability to other LVs, nonlinear control has
clear advantages since there are far less variables to consider than
for linear control and Lyapunov analysis can be easily extended
if the parameters of the system change. Major changes on the
parameters of the system imply that the linearized models for which
the linear controllers are developed are no longer valid and it is
difficult to develop analytical guarantees for the stability of gain-
scheduling techniques. On the other hand, linear control design is
simpler that its nonlinear counterpart, as Lyapunov analysis can be
quite cumbersome.
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