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CHAPTER 1

Introduction

1.1 Background

Tall or high-rise buildings, bridges, power transmission lines, and elevator ca-
bles are examples of mechanical structures that are important in every day live.
Wind, earthquakes, and traffic are sources that act on mechanical structures.
These loads can induce, sometimes large, structural vibrations. Depending on
the nature and magnitude of the load, these vibrations can cause damage to
a structure. And, these vibrations can even result in structural failure. The
Tacoma Narrow suspension bridge is a classic example of a structural collapse
due to strong winds. During an earthquake, mutual pounding between adja-
cent buildings may occur. Besides damaging structures, vibrations can also
cause unacceptable human discomfort. As vibrations can damage structures
and can result in human discomfort, it is important to mitigate structural vi-
brations. Damping devices can be used to control structural motion. The mo-
tion of mechanical structures can be described by mathematical models, such
as (non)linear wave equations or by (non)linear beam equations. For instance,
the vibrations of bridge cables and power transmission lines are described by
wave-like or string-like problems in [1] and [2] respectively. Examples of beam-
like problems are given in [3], [4, 5], and [6] as models for bridges, tall build-
ings, and elevator cables respectively. By solving these beam- and wave-like
equations, important information on the vibrational behavior of a structure
can be found. This behavior can also be found by studying scaled models or
by doing experiments. However, these methods are usually more expensive
and can not always be applied. Nevertheless, by studying mathematical mod-
els, it is often difficult to construct solutions. In this case perturbation and
numerical methods can be used to construct approximate solutions. In case

1



2 Chapter 1. Introduction

perturbation methods are applied explicit expressions that describe the struc-
tural motion can be found. In this thesis mathematical models which describe
the transverse vibrations of tall buildings and cables will be examined.

Tall buildings can usually be found in large

Figure 1.1: Taipei 101,
which was world’s tallest
building with its 508 meters.

city centers in the United States and in Asia.
The need for tall buildings comes from busi-
nesses which want to be as close as possible
to the city center and as close as possible to
each other. Moreover, tall buildings can also be
distinctive landmarks or prestige icons of cities
or companies (see for instance the skyline of
the medieval, Italian village San Gimignano on
the cover of this thesis). In the last century
the tallest building became higher and higher.
In Dubai, United Arab Emirates, the world’s
current tallest building, the Burj Dubai, is un-
der construction. When completed, the height
of the building will rise over 800 meters. Tall
buildings are usually relatively lighter than low-
rise buildings as the building has to carry its

own weight. Moreover, some tall buildings have a heavy mass at its top. These
masses are used to damp the vibrations of the building. Since tall buildings
are lighter, these buildings are usually also more flexible than low-rise build-
ings. Consequently, tall buildings are also more susceptible to wind-induced
and earthquake-induced vibrations. In this thesis, a weakly damped, vertical
beam will be used as a simple model of a tall building in a strong wind-field.
The vibrations of other tall structures, such as TV-masts and chimneys, can
also be studied by using this model. This thesis will use this model to examine
the stabilizing effect of dampers which are installed at the top of the beam (the
so-called boundary dampers), the self-weight effect of a beam, with or without
a tip-mass, on its stability, and the possibly destabilizing effect due to gallop-
ing (a dynamic wind response). It is assumed that these effect are small but
not negligible. This self-weight effect and galloping will briefly be discussed in
this introduction. Moreover, boundary damping for beam-like problems and
string-like problems will be addressed.

The self-weight of a beam results in a compression force acting on the
beam itself. In the case of a hanging, vertical beam, it is a tensile force. This
force is not present when a beam is studied in a non-gravitational field. An
example of such a system is an antenna connected to a space shuttle by means
of a flexible mast (see [7]). This self-weight effect is also called the gravity
effect in this thesis. Furthermore, such a compression or tensile force does
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not act on horizontally orientated beams. The theory of Euler-Bernoulli and
Timoshenko can be used to describe the vibrations of a beam (see [8–10]). In
[11, 12] the frequencies of standing and hanging Euler-Bernoulli beams under
linearly varying axial forces have been studied. In this thesis the self-weight
effect on the vibration frequencies and damping properties of a weakly damped,
standing Euler-Bernoulli beam with or without tip-mass will be studied. In
[13, 14] the vibrations of a hanging Timoshenko beam have been studied. This
thesis will examine the frequencies of a standing Timoshenko beam.

In this thesis the wind-induced vibrations of tall buildings will be examined.
Several types of dynamic response of structures in wind can be distinguished.
In some cases the wind-forces and the structure interact significantly. The dis-
cipline concerned with these phenomena is aeroelasticity and encompass vortex
shedding, buffeting, flutter, and galloping. For more details concerning these
phenonema the interested reader is referred to [15, 16]. In this thesis the gal-
loping oscillations of tall structures will be studied. Galloping is an important
type of self-induced vibrations of a structure in a wind-field. It involves a low
frequency vibration with large amplitudes. For instance, power transmission
lines to which ice is accreted ([1, 2]) and tall structures [17–22] in a strong
wind-field are prone to galloping. Oscillations due to galloping are caused by
the aerodynamic instability of the cross-section of a structure. Structures with
a circular cross-section are not affected by galloping, but structures with non-
circular cross-section are susceptible to galloping. These galloping oscillations
are mainly in the direction perpendicular to the mean wind direction and occur
above a certain critical wind velocity (also called the onset wind velocity). A
mathematical model that describes the galloping oscillations of tall structures
can be obtained by using a quasi-steady approach (see [15]). In this thesis the
critical wind velocity for galloping of vertical beams subjected to boundary
damping and in a uniform wind-field will be determined. Moreover, as the
wind-field along a tall building is turbulent, the effect of turbulence on this
critical wind velocity will be studied.

As pointed out in the previous paragraphs, it is important to reduce struc-
tural motion. Control techniques can help to mitigate structural response.
Dampers, active, passive, semiactive, or hybrid, are used to dissipate the en-
ergy of the vibrations of buildings. Passive dampers are, for instance, tuned
mass dampers (TMDs), tuned liquid dampers (TLDs), tuned mass liquid
dampers (TLCDs), viscoelastic dampers, and friction dampers. The above
given methods, to increase the damping capacity of a tall buildings, only
depend on the motion of the building itself. However, also interconnecting,
passive or active, control devices can be used to reduce the, seismic or wind,
response of one or both dynamically dissimilar adjacent buildings (see [23–25]).
For further information on structural control systems the reader is referred to
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[26]. In this thesis only passively controlled tall buildings are studied. Remind
that in this thesis a tall building is modeled as a beam. Two damping sys-
tems, which are installed at the top of a standing Euler-Bernoulli beam, will
be considered. These two damping systems are examples of so-called bound-
ary damping as the damping systems are installed at the top of the beam.
To suppress the undesired oscillations of the structures, all kinds of boundary
damping can be applied. Boundary damping for wave-like problems has been
studied in [1, 27–30] and for plate-like problems in [31]. In [32–36] a model is
used to consider control feedback for the strong or uniform stabilization of a
horizontal beam with and without tip-mass. Note that the oscillation modes
of a beam or string with damping rates dn, where n ∈ N, will be damped
uniformly (i.e. exponentially) if a constant d > 0 exist such that dn ≥ d > 0
for all n ∈ N. If such a constant d does not exist, but dn > 0 the modes
will be damped strongly (i.e. asymptotically). Instead of strong (or uniform)
damping also the term strong (or uniform) stability is used. In addition, note
that strong is not the opposite of weak in this thesis. The beam or string is
weakly damped because the (boundary) damping parameters are small, but
these dampers can produce strong (or uniform) damping. Dampers can also
be connected to an intermediate point of the beam. In [37, 38] the vibrations
of a beam with a viscous damper attached at an intermediate point have been
studied. In this thesis the boundary damping is assumed to be proportional
to the velocity of the beam at the top. Since some damping mechanisms give
rise to a heavy tip-mass, vertical beams with and without such tip-masses will
be considered. In addition, it can be assumed that the beam is made of a vis-
coelastic material that satisfies the Kelvin-Voigt constitutive equation. This
is an example of a material that has the ability to absorb vibrations. Another
example of material damping has been given in [39, 40]. In this thesis beams
subjected and not subjected to Kelvin-Voigt damping will be considered.

Moreover, in this thesis, it is assumed that a tuned mass damper (TMD) is
operating at the top of the beam. A TMD is a relatively small vibratory system
and is one of the most simple and economic ways to control the vibrations of
a beam structure. The TMD can be modeled as a simple mass-spring-dashpot
system. In [4, 41, 42] the vibrations of a beam with an attached TMD have
been studied. Usually, to consider the damping behavior of a structure with
an attached TMD, the structure is described by a finite degrees of freedom
model (see for instance [16, 43–45]). In this thesis the structure is modeled by
an Euler-Bernoulli beam.

In this thesis also the passive control of a cable with and without an end-
mass will be discussed. To reduce the cable motion, dampers can be applied.
These dampers can be installed to one or both cable ends. For instance, in
[1], the wind-induced oscillations of a cable subjected to boundary damping
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have been considered, and it has been shown that boundary damping can be
used to control the cable motion. In [46–48] the vibrations of a taut cable
with a viscous damper attached to an intermediate point have been studied.
For the stay-cables of a bridge, this intermediate point is usually close to
the anchorage of the cable. One or multiple TMDs can also be applied to a
structure to obtain damping (see [49]). This TMD can be placed everywhere
along the cable. This can be profitable because the location of the damping
device is not restricted to the cable end. An extensive survey on cable dynamics
has been given in [50], and a review on cable control systems has been given
in [51]. In this thesis the string equation will be used to study the damped
vibrations of a cable with and without an end-mass. Furthermore, the initial-
boundary value problem describing the vibrations of a cable with small bending
stiffness and an attached TMD will be introduced. The damping properties
of the system without bending stiffness have been considered in [52]. In this
thesis the influence of the bending stiffness on the damping properties will be
examined.

The vibrations of a beam or

Figure 1.2: The 730-ton tuned mass
damper atop the Taipei 101.

string with or without an at-
tached damper can be described
by initial-boundary value problems
with (non)-classical boundary con-
ditions. For some of these prob-
lems, the corresponding partial dif-
ferential equation can be solved ex-
actly. In this case, by applying the
method of separation of variables or
the Laplace transform method, a so-
called characteristic equation (also
called the frequency equation) can
be found. The vibrational behav-
ior, to be more specific the frequen-
cies and damping rates, of a beam
or string are given by the roots of this equation. For many of these problems the
uniform or strong stability has been proved (see for instance [28, 29, 32, 33]).
Sometimes, also explicit approximations of the roots of the characteristic equa-
tion for the higher order modes have been derived. However, not much about
the value of the roots for the lower order modes is said. In this thesis (adapted)
classical perturbation methods will be applied to construct approximations of
all the roots of these equations. However, for other initial-boundary value
problems, the corresponding partial differential equation can not be solved ex-
actly. In the beam equation for a standing beam an extra term, compared to
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the homogeneous beam equation for a horizontal beam, is present. This extra
term represents the compression force due to the self-weight of the beam. Due
to this term this problem can not be solved exactly. In this thesis explicit
approximate solutions of these equations will be constructed by applying the
multiple-timescales perturbation method. Furthermore, in this thesis, the vi-
brations of a beam in a weakly turbulent wind-field will be studied. The
problem which describes these wind-induced vibrations also can not be solved
exactly. In this thesis a combination of the Galerkin truncation method and
a numerical scheme for equations with colored noise will be used to solve this
problem approximately.

1.2 Mathematical methods

In this thesis the following mathematical methods will be used: The method
of separation of variables, the Laplace transform method, and the multiple-
timescales perturbation method. Furhermore, Itô stochastic calculus will be
used in this thesis. In this section these methods and Itô calculus will briefly
be discussed.

• In the 18th century the method of separation of variables was used by
D’Alembert, Bernoulli, and Euler in their research on waves and vibra-
tions. This thesis will apply this method to construct solutions of lin-
ear partial differential equations. Moreover, an adapted version of this
method will be used. This adapted version has been introduced in [53]
and has been applied in [54]. The method of separation of variables can
not always be applied to find the solution of a linear partial differential
equation. A typical example is

ytt(x, t) − yxx(x, t) = 0, (1.1)

y(0, t) = 0, yx(1, t) = −yt(1, t). (1.2)

For this problem, the method of separation of variables can not be used to
find non-trivial solutions. It is also possible that the method of separation
of variables does not mean anything for a problem (see [55]). For the
problems considered in this paper, the method of separation of variables
works fine. For a description of this method, the interested reader is
referred to [56, 57].

• The Laplace transform method is a linear integral transform method.
The Laplace method is named after the French mathematician Pierre-
Simon Laplace. This method transforms a function f(t) with a real-
valued argument to a function F (s) with a complex-valued argument s.
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This function F (s) is defined by F (s) =
∫∞
0
e−stf(t)dt. This transform

can be very useful to solve ordinary and partial differential equations,
as the transformed equations can have a simpler form. The interested
reader is referred to [56, 57] for a description of the method.

• Now the multiple-timescales perturbation method (also called the
method of multiple scales) will be discussed. This method can be used
to construct asymptotic approximations of the solutions of ordinary and
partial differential equations. The main idea of the methods is as follows
(for a more extensive description and simple examples of this method,
see [58–60]). First, it is assumed that the solution u(x, t; ǫ) can be ex-
panded, near ǫ = 0, in Taylor series in ǫ, with ǫ a small parameter (i.e.
0 < ǫ≪ 1). Thus, u(x, t; ǫ) is expanded by

u(x, t; ǫ) = u0(x, t) + ǫu1(x, t) + ǫ2u2(x, t) + . . . , (1.3)

in which ui(x, t) = O(1) on space- and time-scales which are relevant to
the problem. It may turn out that the functions ui(x, t) contain terms
that are increasing in x/ǫ, x, t/ǫ, t, ǫt, ǫ2t, · · · . In this case the solution
may be valid for small values of x and t, but not for large values of
x and t. These increasing, unbounded terms are the so-called secular
terms. These secular terms should be avoided, as these may cause er-
rors in the approximate solution. This can be achieved by introducing
additional timescales, such as: x−1 = x/ǫ, x0 = x, t−1 = t/ǫ, t0 = t, t1 =
ǫt, t2 = ǫ2t, · · · . Now the solution u(x, t; ǫ) is assumed to be a function
of these new variables: u(x, t; ǫ) = w(x−1, x0, t−1, t0, t1, t2, . . . ; ǫ). Next it
is assumed that this new function can be expanded in Taylor series in ǫ:

w(x−1, x0, t−1, t0, t1, t2, . . . ; ǫ) = w0(x−1, x0, t−1, t0, t1, t2, . . .) +

ǫw1(x−1, x0, t−1, t0, t1, t2, . . .) + (1.4)

ǫ2w2(x−1, x0, t−1, t0, t1, t2, . . .) + . . . ,

in which wi = O(1) on space- and time-scales which are relevant to
the problem. In case the functions w0, w1, . . . (not containing secular
terms) have been found, a formal approximation of the solution has been
constructed by using the multiple-timescales perturbation method.

• Stochastic processes can be used to model systems that behave randomly.
Itô stochastic calculus extends the methods of calculus to stochastic pro-
cesses such as the Wiener process (or Brownian motion). A scalar stan-
dard Wiener process is a continuous-time stochastic process W (t) for
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t ≥ 0 and satisfies

(1) W (0) = 0, with probability 1,

(2) For 0 ≤ s < t the increment W (t) −W (s) is normally

distributed with mean zero and variance t− s,

(3) The increments for non-overlapping time intervals are

independent.

Although, this process depends continuously on time, it is nowhere differ-
entiable. However, formally, the derivative of W (t) can be given by the
white noise process w(t). The white noise process satisfies the following
conditions:

(1) E(w(t)) = 0, for all t,

(2) E(w(t)w(s)) = δ(t− s), t ≥ s,

in which δ(t) is the Dirac delta function. Now consider the following
stochastic integral

F (t) =

∫ t

t0

f(τ)dW (τ). (1.5)

In this thesis this integral will be evaluated in Itô sense (see [61, 62]).

1.3 Outline of the thesis

In this thesis beam-like and string-like problems, which describe the transverse
vibrations of tall buildings and cables with attached dampers, will be studied.
This thesis is organized as follows.

In chapter 2, the wind-induced, horizontal vibrations of a weakly damped,
vertical Euler-Bernoulli beam with and without a tip-mass will be studied. The
initial-boundary value problem describing these vibrations will be derived and
solved approximately by using the multiple-timescales perturbation method.
In addition, it will be shown that a combination of boundary damping and
Kelvin-Voigt damping can be used to damp the wind-induced vibrations of a
vertical beam with tip-mass uniformly.

Next, in chapter 3, the wind-induced, horizontal vibrations of a vertical
Euler-Bernoulli beam with a TMD at its top will be discussed. Perturbation
methods will be used to obtain the damping properties of this system. It will
be shown that the TMD uniformly damps the oscillation modes of the beam.
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The transverse vibrations of a standing, uniform Timoshenko beam will be
considered in chapter 4. In this chapter the effect of the compression force
due to the self-weight of the beam on the magnitude of the frequencies of the
oscillation modes of the beam will be discussed.

In chapter 5 the wind-induced vibrations of a beam in a weakly turbulent
wind-field will be studied. The aim of this chapter is to consider the influence
of turbulence on the critical wind velocity for galloping. In this chapter it will
be shown that turbulence does not significantly influence this critical wind
velocity.

In chapter 6 the vibrations of a weakly damped string with a fixed end
and with a non-fixed end, to which a mass is attached, will be studied. The
vibrations of the string can be described by an initial-boundary value problem.
In chapter 6 approximations of all the roots of the frequency equation and of
the solution of the initial-boundary value problem will be constructed. These
approximations will be used to obtain the type of damping of this weakly
damped string with an end-mass.

An initial-boundary value problem which describes the vertical vibrations
of a tensioned cable with bending stiffness and with a TMD attached at an
intermediate point along the cable will be introduced in chapter 7. Moreover,
the effect of the bending stiffness of the cable on the damping rates of the
oscillation modes of the cable will be studied. It will be shown that small
values of the bending stiffness only slightly influence these damping rates.

Finally, in chapter 8, some concluding remarks and possibilities for future
research, which are related to this thesis, will be given.
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CHAPTER 2

On the weakly damped vibrations of a

vertical beam with a tip-mass

Abstract: In this chapter the wind-induced, horizontal vibrations of a
weakly damped vertical Euler-Bernoulli beam with and without a tip-mass
will be studied. The damping is assumed to be boundary damping and global
Kelvin-Voigt damping. The boundary damping is assumed to be proportional
to the velocity of the beam at the top. The horizontal vibrations of the
beam can be described by an initial-boundary value problem. In this chapter
the multiple-timescales perturbation method will be applied to construct
approximations of the solutions of the problem. Moreover, it will be shown
that a combination of boundary damping and Kelvin-Voigt damping can be
used to damp the wind-induced vibrations of a vertical beam with tip-mass
uniformly.

2.1 Introduction

In many mathematical models oscillations of elastic structures are described
by (non)linear wave equations or by (non)linear beam equations. Examples of
wave-like or string-like problems are given in [1] and [2]. Examples of beam-like
problems are given in [3], [4], and [6] as models for bridges, tall buildings, and
elevator cables respectively. In this chapter a vertical, cantilevered, uniform

This chapter is a slightly revised version of [63].

11
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0

X

Y, η

m g
L

Figure 2.1: A simple model for a vertical cantilevered beam with tip-mass and
velocity damper.

Euler-Bernoulli beam with boundary damping and with global Kelvin-Voigt
damping (see Fig. 2.1) as a simple model for a tall building will be considered.

Tall buildings are susceptible to wind- and earthquake-induced vibrations.
Vibrations induced by wind or earthquakes can cause damage to an elastic
structure. Vortex-shedding (high frequency oscillations with small amplitudes)
and galloping (the effect of low frequency vibrations with large amplitudes)
can cause material fatigue. Since these small and large amplitudes can cause
damage to a building, it is important to have damping. To suppress the
vibrations of a structure, various types of boundary damping can be applied.
In this chapter the boundary damping is assumed to be proportional to the
velocity of the beam at the top. Some damping mechanisms give rise to a
heavy tip-mass, that is why beams with and without such tip-masses will
be considered in this chapter. Boundary damping for horizontal beams with
and without tip-masses has been studied in [32–34, 64]. In this chapter it is
assumed that the beam is made of a viscoelastic material that satisfies the
Kelvin-Voigt constitutive equation. Global and local Kelvin-Voigt damping
mechanisms for horizontal beams have been studied in [65, 66].

Furthermore, a uniform wind-flow is considered, which causes nonlinear
drag and lift forces (FD, FL) acting on the structure per unit length. A simple
model of a vertical cantilevered Euler-Bernoulli beam equation with Kelvin-
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Voigt damping subjected to wind-forces is given by

EIηXXXX + ςEIηXXXXτ + g[S(X)ηX ]X + ρAηττ = FD + FL, (2.1)

where S(X) = m + ρA(L − x), E is Young’s modulus, I is the moment of
inertia of the cross-section, ς is the coefficient of the Kelvin-Voigt viscoelastic
damping, ρ is the mass density of the beam, A is the cross-sectional area
of the beam, L is the length of the beam, η is the beam deflection in Y -
direction, τ is the time, X is the position along the beam (see Fig. 2.1), m is
the mass of the tip-mass, and g is the acceleration due to gravity. The term
[g(m+ ρA(L− x))ηX ]X in (2.1) is a linearly varying compression force due to
the weight of the beam and the tip-mass. In [11] the Ritz-Galerkin method and
perturbation methods have been used to determine closed-form approximate
solutions of the vibrations of a vertical beam.

The main goal of this chapter is to study the possibility to stabilize vertical
cantilevered beams with and without tip-masses at the top in a wind-field.
Explicit asymptotic approximations of the solutions for this problem, which
are valid on a long timescale, will be given.

A simple model for the damped, vertical, cantilevered Euler-Bernoulli
beam subjected to wind-forces is given by (2.1) and the boundary conditions
η(0, τ) = ηX(0, τ) = 0, and

EIηXXX(L, τ) + ςEIηXXXτ (L, τ) = mηττ (L, τ) − gmηX(L, τ) +

ĉητ (L, τ), (2.2)

EIηXX(L, τ) + ςEIηXXτ (L, τ) = 0, (2.3)

where ĉ is a positive constant, the damping parameter.
In [2] it has been shown that FD + FL can be approximated by

FD + FL =
ρadv

2
∞

2

(

a0 +
a1

v∞
ητ +

a2

v2
∞
η2

τ +
a3

v3
∞
η3

τ

)

, (2.4)

where ρa is the density of the air, d is the diameter of the cross-sectional area
of the beam, v∞ is the uniform wind-flow velocity, and a0, a1, a2, a3 depend on
certain drag and lift coefficients, which are given explicitly in [2].

To put the model in a non-dimensional form, the following substitu-

tions û(x, t) = κ
v∞

η(X,τ)
L

, x = X
L

, and t = κ
L
τ , where κ = 1

L

√

EI
Aρ

, will

be used. In this way the partial differential equation (2.1) becomes di-
mensionless and is given by ûxxxx + βûxxxxt + ǫ1 [(γ + 1 − x)ûx]x + ûtt =
ρadL
2Aρ

v∞
κ

(a0 + a1ût + a2û
2
t + a3û

3
t ) , in which β = ς

L2

√

EI
ρA

, γ = m
ρAL

, and

ǫ1 = gρAL3

EI
is a small parameter, that is, 0 < ǫ1 ≪ 1. In [2] it has been
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shown that the right hand side of the latter equation can be approximated by
ǫ2
(

ût − b
a
û3

t

)

+ O(ǫm1

2 ), with m1 > 1, where a and b are specific combinations
of drag and lift coefficients, which are given explicitly in [2], and are of or-
der 1, and where ǫ2 = ρadL

2Aρ
v∞
κ
a, in which ǫ2 is a small parameter. It should

be observed that β, γ, ǫ1, and ǫ2 are dimensionless parameters. Finally the

following transformation u(x, t) =
√

3b
a
û(x, t) will be used. By applying this

transformation, the following initial-boundary value problem is obtained:

L[u] = ǫ2

(

ut −
1

3
u3

t

)

+ O(ǫm1

2 ), t > 0, 0 < x < 1, (2.5)

u(0, t) = ux(0, t) = 0, t ≥ 0, (2.6)

uxx(1, t) = −βuxxt(1, t), t ≥ 0, (2.7)

uxxx(1, t) = γutt(1, t) − βuxxxt(1, t) − ǫ1γux(1, t) +

ǫ1cut(1, t), t ≥ 0, (2.8)

u(x, 0) = f(x), 0 < x < 1, (2.9)

ut(x, 0) = g(x), 0 < x < 1, (2.10)

where β = ς
L2

√

EI
ρA

,γ = m
ρAL

, ǫ1 = gρAL3

EI
, ǫ2 = ρadL

2Aρ
v∞
κ
a, ǫ1c = ĉ

√

L2

EIρA
, m1 > 1,

and

L[u] ≡ uxxxx + βuxxxxt + ǫ1[(γ + 1 − x)ux]x + utt. (2.11)

The functions f(x) and g(x) represent the initial displacement and the
initial velocity of the beam respectively. The nonlinear wind-force
ǫ2
(

ut(x, t) − 1
3
u3

t (x, t)
)

in (2.5) will give a coupling between (almost) all oscil-
lation modes. In [2, 27, 67] also this nonlinear windforce has been considered.
It has been shown that the wind-force gives a coupling between (almost) all
oscillation modes. It is also known (see section 2.4) that the nonlinear term
damps the vibrations. In this chapter the linearized initial-boundary value
problem will be considered because the main goal of this chapter is to deter-
mine the damping. If the damper damps the vibrations due to the linearized
wind-force, the damper also damps the vibration due to nonlinear wind-force
because the nonlinear term in the wind-force also damps the vibrations.

In this chapter the linearized initial-boundary value problem (2.5)-(2.10)
will be considered. Furthermore, it will be assumed that ǫ = ǫ1 and ǫ2 = αǫ,
where α = O(1). Now the following linearized initial-boundary value problem,
which describes the horizontal displacement of a damped vertical beam with
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tip-mass and with a uniform wind-flow acting on it, can be introduced:

L[u] = ǫαut, t > 0, 0 < x < 1, (2.12)

u(0, t) = ux(0, t) = 0, t ≥ 0, (2.13)

uxx(1, t) + βuxxt(1, t) = 0, t ≥ 0, (2.14)

uxxx(1, t) + βuxxxt(1, t) = γutt(1, t) − ǫγux(1, t) +

ǫcut(1, t), t ≥ 0, (2.15)

u(x, 0) = f(x), 0 < x < 1, (2.16)

ut(x, 0) = g(x), 0 < x < 1, (2.17)

in which ǫ is a small parameter, that is, 0 < ǫ ≪ 1, and L is given by
definition (2.11). The parameters α (the parameter due to the wind-force)
and c (the boundary damping parameter) are ǫ-independent. The parameters
γ (the mass of the tip-mass divided by the mass of the beam) and β (the
Kelvin-Voigt damping parameter) in general will be small parameters. For
the construction of approximations of the solution of (2.12)-(2.17), however, it
will be assumed that β and γ are ǫ-independent parameters. In this chapter a
multiple-timescales perturbation method will be applied to solve (2.12)-(2.17)
approximately.

This chapter is organized as follows. In section 2.2 the initial-boundary
value problem with c = α = 0 will be considered. This is the problem of
a vertical beam with a tip-mass and with Kelvin-Voigt damping. Further-
more, it will be explained why a multiple-timescales perturbation method will
be applied. In section 2.3 the unperturbed initial-boundary value problem
(i.e. ǫ = 0) will be considered. This is the problem of a beam with tip-
mass and Kelvin-Voigt damping. Section 2.4 will consider the energy of the
initial-boundary value problem without wind perturbation (i.e. α = 0). The
boundedness of the solutions will be shown, assuming the existence of a suffi-
ciently smooth solution. In section 2.5 formal approximations for the solutions
of the initial-boundary value problem (2.12)-(2.17) are constructed by using a
two-timescales perturbation method. Moreover, the type of damping and the
effect of the compression force (ǫ[(γ + 1 − x)ux]x) on the damping rates and
on the frequencies will be considered. Finally in section 2.7, some conclusions
will be drawn and some remarks will be made.

2.2 The problem (2.12)-(2.17) with c = α = 0

In this section the wind-forces and the boundary damping acting on the beam
are neglected. The horizontal vibrations of a vertical beam with a tip-mass
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and with Kelvin-Voigt damping are studied. These vibrations can be described
by problem (2.12)-(2.17) with c = α = 0:

uxxxx + βuxxxxt + ǫ[(γ + 1 − x)ux]x + utt = 0, (2.18)

u(0, t) = ux(0, t) = uxx(1, t) + βuxxt(1, t) = 0, (2.19)

ǫγux(1, t) + uxxx(1, t) + βuxxxt(1, t) − γutt(1, t) = 0, (2.20)

u(x, 0) = f(x), and ut(x, 0) = g(x). (2.21)

Now look for non-trivial solutions of the partial differential equation (2.18) and
the boundary conditions (2.19) and (2.20) in the form X(x)T (t). By substi-
tuting this into (2.18) and by dividing the so-obtained equation by X(x)T (t),
it follows that

X(4)

X

(

1 + β
T ′

T

)

+
ǫ[(γ + 1 − x)X ′]′

X
+
T ′′

T
= 0. (2.22)

Now the case T+βT ′ = 0 will be considered first. By considering the boundary
conditions, it can be deduced that, for the case T+βT ′ = 0, X(x) has to satisfy

ǫβ2[(γ + 1 − x)X ′]′ +X = 0, (2.23)

X(0) = X ′(0) = ǫβ2γX ′(1) − γX(1) = 0. (2.24)

So the only solution of (2.23)-(2.24) is given by the trivial solution. This can
be seen in the following way. Multiply (2.23) by (γ + 1 − x)X ′(x), integrate
the so-obtained result with respect to x from 0 to 1, and use (2.24) to obtain

ǫβ2γ2 (X ′(1))
2
+ γ(X(1))2 +

∫ 1

0

X2(x)dx = 0. (2.25)

From (2.25) it follows that X(x) ≡ 0. So the only solution of (2.23)-(2.24)
is given by the trivial solution. Therefore, the case T + βT ′ = 0 only leads
to trivial solutions. Now to separate the variables in (2.22), (2.22) can be
differentiated with respect to t or to x (see also [53, 54]). Differentiation of
(2.22) with respect to t, yields

β
X(4)

X

(

T ′

T

)′
+

(

T ′′

T

)′
= 0. (2.26)

Now separate variables to obtain

X(4) = β1X, (2.27)
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where β1 ∈ C is a separation constant. Then from (2.22), it also follows that

β1

(

1 + β
T ′

T

)

+
T ′′

T
+
ǫ[(γ + 1 − x)X ′]′

X
= 0. (2.28)

Again separate variables to obtain

ǫ[(γ + 1 − x)X ′]′ = β2X, (2.29)

where β2 ∈ C is also a separation constant. From (2.19) it follows that X(0) =
X ′(0) = 0. By substituting x = 0 into (2.29), it follows that X ′′(0) = 0, and by
differentiating (2.29) with respect to x and by substituting x = 0 into the so-
obtained result, it follows thatX ′′′(0) = 0. Now the differential equation (2.26)
subject to X(0) = X ′(0) = X ′′(0) = X ′′′(0) = 0 only has trivial solutions. So
differentiation of (2.22) with respect to t only leads to trivial solutions. Now
differentiate (2.22) with respect to x to obtain

(

X(4)

X

)′(

1 + β
T ′

T

)

+

(

ǫ[(γ + 1 − x)X ′]′

X

)′
= 0 ⇒ T ′ = θT, (2.30)

where θ ∈ C is a separation constant. Now because T ′ = θT ⇒ T ′′ = θ2T , the
following eigenvalue problem for X(x) is obtained:

(1 + βθ)X(4) + ǫ[(γ + 1 − x)X ′]′ = −θ2X, (2.31)

X(0) = X ′(0) = (1 + βθ)X ′′(1) = 0, (2.32)

(1 + βθ)X ′′′(1) + ǫγX ′(1) − γθ2X(1) = 0. (2.33)

This fourth order differential equation (2.31) can be solved exactly for ǫ = 0,
but can not be solved exactly for ǫ 6= 0.

Now consider the case β = 0 (this is the case of a vertical beam with
a tip-mass but without Kelvin-Voigt damping) and introduce the eigenvalue
λ = −θ2. In [17] it has been shown that the eigenvalues λ of problem (2.31)-
(2.33) with β = 0 are real-valued. In addition, [17], it has been shown in that
the eigenvalues are certainly positive for sufficiently small values of ǫ and γ,
that is, if ǫ and γ satisfy the following inequality:

ǫ(γ +
1

2
) < 1. (2.34)

Moreover, in [17], it has been proved that the eigenfunctions corresponding
to problem (2.31)-(2.33) with β = 0 can be chosen to be real-valued, and it
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has been shown that these eigenfunctions are orthogonal with respect to the
following inner product

〈u(x), v(x)〉 =

∫ 1

0

[1 + γδ(x− 1)]u(x)v(x)dx, (2.35)

where δ(x) is the Dirac delta function, with the properties
∫ 1

0
δ(x− 1)dx = 1,

and δ(x− 1) = 0 for x 6= 1.
Although some properties of the eigenvalues and the eigenfunctions of prob-

lem (2.31)-(2.33) with β = 0 are now known, the fourth order differential equa-
tion (2.31) for β = 0 and for β 6= 0 can not be solved exactly. To construct an
approximation of a solution, a perturbation method will be used. It has been
assumed that 0 < ǫ≪ 1. Then the term ǫ[(γ + 1− x)X(x)′]′ in (2.31) is small
compared to the other terms in the equation. In this chapter a two-timescales
perturbation method will be used in section 2.5 to solve the problem (2.12)-
(2.17) with ǫ 6= 0 approximately. The reader is referred to the book of Nayfeh
and Mook [58] for a description of this method.

2.3 The problem (2.12)-(2.17) with ǫ = 0

In this section the wind-forces, the effect due to gravity, and the boundary
damping are neglected. So problem (2.12)-(2.17) with ǫ = 0 will be considered:

uxxxx + βuxxxxt + utt = 0, (2.36)

u(0, t) = ux(0, t) = uxx(1, t) + βuxxt(1, t) = 0, (2.37)

uxxx(1, t) + βuxxxt(1, t) − γutt(1, t) = 0, (2.38)

u(x, 0) = f(x), and ut(x, 0) = g(x). (2.39)

The method of separation of variables will be applied to solve the problem
(2.36)-(2.39). Now look for non-trivial solutions of the partial differential equa-
tion (2.36) and the boundary conditions (2.37)-(2.38) in the form X(x)T (t).
By substituting this into (2.36)-(2.38), it follows that

X(4)

X
=

−T ′′

T + βT ′ = λ, (2.40)

where λ ∈ C is a separation constant. Note that the case T+βT ′ = 0 only leads
to trivial solutions. By considering the boundary conditions (2.37)-(2.38), a
boundary value problem for X(x) is obtained:

X(4)(x) − λX(x) = 0, (2.41)

X(0) = X ′(0) = X ′′(1) = 0, (2.42)

X ′′′(1) + γλX(1) = 0, (2.43)
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and the following problem for T (t):

T ′′(t) + λ(T (t) + βT ′(t)) = 0, (2.44)

where λ ∈ C is a separation constant. The boundary value problem (2.41)-
(2.43) is the same as problem (2.31)-(2.33) with ǫ = β = 0. Hence, the
eigenvalues are real-valued and positive, the eigenfunctions can be chosen to
be real-valued, and two real-valued eigenfunctions belonging to two different
eigenvalues are orthogonal with respect to the inner product (2.35). Moreover,
problem (2.41)-(2.43) can be solved analytically. The eigenvalues λn = µ4

n are
implicitly given by the roots of

hγ(µ) ≡ 1 + cosh(µ) cos(µ) + γµ(cos(µ) sinh(µ) − cosh(µ) sin(µ)) = 0,(2.45)

which is equivalent to

tan(µ) =
(cos(µ) + cosh(µ) + γµ sinh(µ))

(γµ cosh(µ) − sin(µ))
. (2.46)

The real-valued, positive roots of hγ(µ) are denoted by µn. It can be deduced
that (n − 1)π < µn < nπ, with n ∈ {1, 2, 3, ...}, the elementary proof will be
omitted here. For similar proofs the reader is referred to [68]. So there are
infinitely many isolated, real-valued, and positive eigenvalues. Definition (2.45)
will have the following approximate form (for large µ) hγ(µ) ≈ γµ cos(µ)(1 +
1

γµ
− tan(µ)) and µn → (n− 3

4
)π for n→ ∞ and for γ 6= 0.

The eigenfunctions of the problem (2.41)-(2.43) can be determined and are
given by

φ̂n(x) = sin(µnx) − sinh(µnx) + βn(cosh(µnx) − cos(µnx)), (2.47)

where βn = sin(µn)+sinh(µn)
cos(µn)+cosh(µn)

. If the tip-mass is zero, the eigenvalues and the

eigenfunctions are given by (2.45) and (2.47) respectively with γ = 0. These
eigenfunctions are also orthogonal with respect to the inner product (2.35)
with γ = 0, and µn ≈ (n− 1

2
)π (for large n).

For each eigenvalue the function Tn(t) can be determined from (2.44). So
infinitely many non-trivial solutions of the initial-boundary problem (2.36)-
(2.39) have been determined. By using the superposition principle, the solution
of the initial-boundary value problem is obtained

u(x, t) =

∞
∑

n=1

Tn(t)φn(x), (2.48)
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in which

Tn(t) =











e
−βλn

2
t (An cos(σnt) +Bn sin(σnt)) if β2λn < 4,

(An +Bnt) e
−2

β
t if β2λn = 4,

Ane
ωn1

t +Bne
ωn2

t if β2λn > 4,

(2.49)

with

σn =

√

λn −
(

βλn

2

)2

, (2.50)

ωn1,2
= −βλn

2
± 1

2

√

β2λ2
n − 4λn, (2.51)

and in which φn(x) is the normalized eigenfunction

φn(x) =
φ̂n(x)

〈φ̂n(x), φ̂n(x)〉 1

2

, (2.52)

where φ̂n(x) is given by (2.47), and where An and Bn are constants. The
constants An and Bn are determined by the initial displacement f(x) and the
initial velocity g(x) in the following way

An =

∫ 1

0

[1 + γδ(x− 1)]f(x)φn(x)dx, (2.53)

σnBn =

∫ 1

0

[1 + γδ(x− 1)]

(

g(x) +
βλn

2
f(x)

)

φn(x)dx, (2.54)

if β2λn < 4,

An =

∫ 1

0

[1 + γδ(x− 1)]f(x)φn(x)dx, (2.55)

Bn =

∫ 1

0

[1 + γδ(x− 1)]

(

g(x) +
2

β
f(x)

)

φn(x)dx, (2.56)

if β2λn = 4, and

An =

∫ 1

0
[1 + γδ(x− 1)] (ωn2

f(x) − g(x))φn(x)dx
√

β2λ2
n − 4λn

, (2.57)

Bn =

∫ 1

0
[1 + γδ(x− 1)] (g(x) − ωn1

f(x))φn(x)dx
√

β2λ2
n − 4λn

, (2.58)
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if β2λn > 4. The eigenfunctions φn(x) form an orthonormal set with respect
to the inner product (2.35). After lengthy but elementary calculations, it can
be shown that

〈φ̂n(x), φ̂n(x)〉 =

(

sin(µn) + sinh(µn)

cos(µn) + cosh(µn)

)2

(2.59)

+γ

(

sin(µn) cosh(µn) − cos(µn) sinh(µn)

µn(cos(µn) + cosh(µn))

)2

,

and it can be shown that 〈φ̂n(x), φ̂n(x)〉 → 1 if n → ∞. In section 2.5 this
property will be used to determine the type of damping.

2.4 The energy and the boundedness of solu-

tions

The energy of the cantilevered beam with a tip-mass but with no wind-force
applied to it (i.e. problem (2.12)-(2.17) with α = 0) is defined to be

E(t) ≡
∫ 1

0

1

2
(u2

t (x, t) + u2
xx(x, t) − ǫ(γ + 1 − x)u2

x(x, t))dx+

1

2
γu2

t (1, t). (2.60)

The time derivative of the energy is given by dE
dt

= −ǫcu2
t (1, t) −

β
∫ 1

0
u2

xxt(x, t)dx, where c is the (boundary) damping parameter and where
β is the coefficient of Kelvin-Voigt viscoelastic damping. So the energy is
bounded if the initial energy is bounded and ǫ(γ + 1

2
) < 1 (see also (2.34)).

The existence of a solution of u(x, t) is assumed, where u(x, t) is a twice contin-
uously differentiable function with respect to t and a four times continuously
differentiable function with respect to x. A proof of this assumption is beyond
the scope of this chapter. What can be shown for the boundedness of u(x, t)
and ξ(t)? Since ux(x, t) and uxx(x, t) are continuous, it follows that

u(x, t) =

∫ x

0

us(s, t)ds, (2.61)

and

ux(x, t) =

∫ x

0

uss(s, t)ds, (2.62)
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respectively. By using the Cauchy-Schwarz inequality, it then follows

|ux(x, t)| ≤
∫ 1

0

|uxx(x, t)|dx ≤
√

∫ 1

0

u2
xx(x, t)dx. (2.63)

From the first and the second inequality of (2.63) it follows that

u2
x(x, t) ≤

∫ 1

0

u2
xx(x, t)dx. (2.64)

By using (2.64), the following inequality is obtained

∫ 1

0

(u2
xx(x, t)−ǫ1(γ+1−x)u2

x(x, t))dx ≥
∫ 1

0

(1−ǫ1(γ+
1

2
))u2

xx(x, t)dx. (2.65)

Now, by substituting (2.65) into (2.63), it follows that

|ux(x, t)| ≤
√

2E(t)

1 − ǫ1(γ + 1
2
)
≤
√

2E(0)

1 − ǫ1(γ + 1
2
)
. (2.66)

It then follows from (2.66) and (2.61) that

|u(x, t)| ≤
∫ 1

0

|ux(x, t)|dx ≤
∫ 1

0

√

2E(0)

1 − ǫ1(γ + 1
2
)
dx =

√

2E(0)

1 − ǫ1(γ + 1
2
)
.

(2.67)
So also u(x, t) is bounded if the initial energy is bounded.

The time derivative of the energy of the damped beam with tip-mass and
subjected to nonlinear wind-forces (see also (2.5)) is

dE
dt

= −ǫcu2
t (1, t) − β

∫ 1

0

u2
xxt(x, t)dx+

ǫα

∫ 1

0

(

u2
t (x, t) −

1

3
u4

t (x, t)

)

dx. (2.68)

Since
∫ 1

0
u4

t (x, t)dx is positive, the nonlinear term in the wind-force is a damp-
ing term.

2.5 Formal approximations

In this section an approximation of the solution of the initial-boundary value
problem (2.12)-(2.17) will be constructed. A two-timescales perturbation
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method will be used. Conditions like t > 0, t ≥ 0, 0 < x < 1 will be dropped,
for abbreviation. Expand the solution in a Taylor series with respect to ǫ to
obtain

u(x, t; ǫ) = û0(x, t) + ǫû1(x, t) + ǫ2û2(x, t) + · · · . (2.69)

It is assumed that the functions ûi(x, t) are O(1). The approximation of the
solution will contain secular terms. Since the ûi(x, t) are assumed to be O(1),
and because the solutions are bounded on timescales of O(ǫ−1), secular terms
should be avoided when approximations are constructed on long timescales of
O(ǫ−1). That is why a two-timescales perturbation method is applied. By us-
ing such a two-timescales perturbation method the function u(x, t) is supposed
to be a function of x, t, and τ = ǫt. So put

u(x, t) = w(x, t, τ ; ǫ). (2.70)

A result of this is

ut = wt + ǫwτ , (2.71)

utt = wtt + 2ǫwtτ + ǫ2wττ . (2.72)

Substitution of (2.70)-(2.72) into the problem (2.12)-(2.17) yields an initial-
boundary value problem for w(x, t, τ). Assuming that

w(x, t, τ ; ǫ) = u0(x, t, τ) + ǫu1(x, t, τ) + ǫ2u2(x, t, τ) + . . . , (2.73)

then by collecting terms of equal powers in ǫ, it follows from the problem for
w(x, t, τ) that the O(1)-problem is:

u0xxxx
+ βu0xxxxt

+ u0tt
= 0, (2.74)

u0(0, t, τ) = u0x
(0, t, τ) = 0, (2.75)

u0xx
(1, t, τ) + βu0xxt

(1, t, τ) = 0, (2.76)

u0xxx
(1, t, τ) + βu0xxxt

(1, t, τ) − γu0tt
(1, t, τ) = 0, (2.77)

u0(x, 0, 0) = f(x), and u0t
(x, 0, 0) = g(x), (2.78)

and that the O(ǫ)-problem is:

u1xxxx
+ βu1xxxxt

+ u1tt
= αu0t

− [(γ + 1 − x)u0x
]
x
− 2u0tτ

−βu0xxxxτ
, (2.79)

u1(0, t, τ) = u1x
(0, t, τ) = 0, (2.80)

u1xx
(1, t, τ) + βu1xxt

(1, t, τ) = −βu0xxτ
(1, t, τ), (2.81)

u1xxx
(1, t, τ) + βu1xxxt

(1, t, τ) = γu1tt
(1, t, τ) − γu0x

(1, t, τ) + cu0t
(1, t, τ)

+2γu0tτ
(1, t, τ) − βu0xxxτ

(1, t, τ), (2.82)

u1(x, 0, 0) = 0, (2.83)

u1t
(x, 0, 0) = −u0τ

(x, 0, 0). (2.84)
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The solution of the O(1)-problem (2.74)-(2.78) has been determined in section
2.3 and is given by

u0(x, t, τ) =
∞
∑

n=1

T0n(t, τ)φn(x), (2.85)

where

T0n(t, τ) =











e
−βλn

2
t (A0n(τ) cos(σnt) +B0n(τ) sin(σnt)) if β2λn < 4,

(A0n(τ) +B0n(τ)t) e
−2

β
t if β2λn = 4,

A0n(τ)eωn1
t +B0n(τ)eωn2

t if β2λn > 4,

(2.86)

and where σn, ωn1
, ωn2

, the orthonormal eigenfunction φn(x) corresponding
to λn, A0n(0), and B0n(0) are given by (2.50)-(2.58). Now the solution of the
O(ǫ)-problem will be determined. The problem (2.79)-(2.84) has an inhomoge-
neous boundary condition. For classical inhomogeneous boundary conditions,
the inhomogeneous boundary conditions are made homogeneous. However, for
inhomogeneous non-classical boundary conditions such as (2.82), a different
procedure has to be followed. In fact, a transformation will be used such that
the partial differential equation and the inhomogeneous boundary condition,
after the transformation, “match”; if a solution which is expanded in eigen-
functions φn(x), defined by (2.47), satisfies the transformed partial differential
equation, it immediately satisfies the transformed inhomogeneous boundary
condition. A similar “matching” for a non-selfadjoint string-like problem has
been introduced in [1]. Introduce the following transformation

u1(x, t, τ) = v(x, t, τ) +

(−x2

2
+
x3

6

)

h(t, τ). (2.87)
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By substituting the latter transformation into (2.79)-(2.84) it follows that

vxxxx + βvxxxxt + vtt = αu0t
− [(γ + 1 − x)u0x

]
x
− 2u0tτ

(2.88)

−βu0xxxxτ
−
(−x2

2
+
x3

6

)

htt(t, τ),

v(0, t, τ) = vx(0, t, τ) = 0, (2.89)

vxx(1, t, τ) + βvxxt(1, t, τ) = 0, (2.90)

vxxx(1, t, τ) + βvxxxt(1, t, τ) = γvtt(1, t, τ) − γu0x
(1, t, τ) − βu0xxxτ

(1, t, τ)

+2γu0tτ
(1, t, τ) + cu0t

(1, t, τ)

−h(t, τ) − βht(t, τ) −
γ

3
htt(t, τ), (2.91)

v(x, 0, 0) = −
(−x2

2
+
x3

6

)

h(0, 0), (2.92)

vt(x, 0, 0) = −u0τ
(x, 0, 0) −

(−x2

2
+
x3

6

)

ht(0, 0). (2.93)

Introduce the following infinite sum for v(x, t, τ)

v(x, t, τ) =
∞
∑

n=1

vn(t, τ)φn(x), (2.94)

and substitute the infinite sum into the partial differential equation (2.88) and
into the boundary condition (2.91) to obtain

∞
∑

n=1

(vntt
+ λn(vn + βvnt

))φn(x) = αu0t
− [(γ + 1 − x)u0x

]
x
− 2u0tτ

(2.95)

−βu0xxxxτ
−
(−x2

2
+
x3

6

)

htt(t, τ),

and

∞
∑

n=1

(vn + βvnt
)φnxxx

(1) − γvntt
φn(1) = −γu0x

(1, t, τ) − βu0xxxτ
(1, t, τ)

+2γu0tτ
(1, t, τ) + cu0t

(1, t, τ)

−h− βht −
γ

3
htt, (2.96)

respectively. Note that the dependency of vn(t, τ), T0n(t, τ), and h(t, τ) on
t, τ have been dropped for abbreviation. Now the function h(t, τ) will be
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determined. By letting x tend to x = 1 in (2.95), by using the first boundary
condition in x = 1 (i.e. φnxx

(1) = 0), and by multiplying the so-obtained result
by γ, it follows that

γ
∞
∑

n=1

(vntt
+ λn(vn + βvnt

))φn(1) = αγu0t
(1, t, τ) + γu0x

(1, t, τ)

−2γu0tτ
(1, t, τ) − βγu0xxxxτ

(1, t, τ) +
γ

3
htt(t, τ). (2.97)

Now, by adding (2.96) and (2.97) and by using the second boundary condition
in x = 1 (i.e. φnxxx

(1) + γλnφn(1) = 0) and (2.41) in x = 1 (i.e. φnxxxx
(1) =

λnφn(1)), it follows that h(t, τ) satisfies the following first order differential
equation

h+ βht − (c+ αγ)u0t
(1, t, τ) = 0. (2.98)

From (2.44), (2.85), and (2.98) h(t, τ) and htt(t, τ) can be determined, yielding

h(t, τ) = g̃(τ)e−
t
β + (c+ αγ)

∞
∑

n=1

(βλnT0n + T0nt
))φn(1), (2.99)

htt(t, τ) =
g̃(τ)

β2
e−

t
β − (c+ αγ)

∞
∑

n=1

λnT0nt
φn(1), (2.100)

respectively, and where g̃(τ) is an arbitrary function in τ . From now on let
g̃(τ) be equal to zero, that is, g̃(τ) ≡ 0. Note that in this way h(t, τ) is a
transformation such that (2.88) and (2.91) “match”. The function htt(t, τ)
will be used to obtain a differential equation for vm(t, τ). Now a differential
equation will be obtained for vm(t, τ). Equation (2.95) can be used to obtain

this differential equation for vm(t, τ) after expanding
(

−x2

2
+ x3

6

)

in a series of

orthonormal eigenfunctions φn(x):

−x2

2
+
x3

6
=

∞
∑

n=1

Cnφn(x), (2.101)

where

Cn =

∫ 1

0

[1 + γδ(x− 1)]

(−x2

2
+
x3

6

)

φn(x)dx. (2.102)
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By using integration by parts and by using that φn(x) is a solution of problem
(2.41)-(2.43), with λ = λn, it follows that

Cn = −φn(1)

λn
. (2.103)

Multiply (2.95) by (1 + γδ(x− 1))φm(x), integrate the so-obtained result with
respect to x form 0 to 1, use that the eigenfunctions φn(x) are orthogonal with
respect to the inner product (2.35), and use (2.100) and (2.103), to obtain

vmtt
+ λm(vm + βvmt

) = −2T0mtτ
− βλmT0mτ

+ 2κmT0mt
+ ΘmmT0m (2.104)

+

∞
∑

n=1,n 6=m

(

ΘnmT0n − (c+ αγ)φn(1)φm(1)
λn

λm
T0nt

)

,

where

κm =
α

2
− 1

2
(c+ γα)φ2

m(1), (2.105)

where T0m(t, τ) is given by (2.86), and where Θmn =
∫ 1

0
(γ + 1 −

x)φmx
(x)φnx

(x)dx. In [11] explicit expressions for Θnm have been obtained for
the case γ = 0. From (2.86) it follows that T0m(t, τ) and T0mt

(t, τ) are solu-
tions of the homogeneous equation corresponding to (2.104), and that T0n(t, τ)
and T0nt

(t, τ) with n 6= m are not solutions of the homogeneous equation cor-
responding to (2.104). Therefore, the right hand side of (2.104) contains terms
which are solutions of the homogeneous equation corresponding to (2.104).
These terms will give rise to unbounded terms, the so-called secular terms,
in the solution vm(t, τ) of (2.104). Since it is assumed in the asymptotic ex-
pansions that the functions u0(x, t, τ), u1(x, t, τ), u2(x, t, τ), . . . are bounded on
timescales of O(ǫ−1), these secular terms should be avoided. In T0m(t, τ) the
functions A0m(τ) and B0m(τ) are still undetermined. These functions will be
used to avoid secular terms in the solution of (2.104) in the following way. Let
the sum of the terms in the right hand side of (2.104) that give rise to secular
terms in the solution of (2.104) be equal to zero, yielding

−2T0mtτ
− βλmT0mτ

+ 2κmT0mt
+ ΘmmT0m = 0. (2.106)

By substituting T0m(t, τ), given by (2.86), into (2.106), (coupled) differential
equations for the functions A0m(τ) and B0m(τ) can be obtained. From (2.86)
it follows that T0m(t, τ) for the case β2λm < 4, T0m(t, τ) for the case β2λm = 4,
and T0m(t, τ) for the case β2λm > 4 are given in a qualitatively different
way. Therefore, from (2.106), it follows that qualitatively different differential
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equations for A0m(τ) and B0m(τ) will be obtained for these cases. Now the
case β2λm < 4, the case β2λm = 4, and the case β2λm > 4 will be considered.

At first, the case β2λm = 4 will be considered. By substituting T0m(t, τ) =
(

A0m(τ) + B0m(τ)t
)

e
−2

β
t into (2.106), equations for A0m(τ) and B0m(τ) can

be obtained. These equations can not be used to obtain an approximation
of the solution of problem (2.12)-(2.17). The reason for this is that for the
case β2λm = 4 it can not be expected that the solution of the unperturbed
problem (2.12)-(2.17) can be expanded in a Taylor series with respect to ǫ.
To show this, a so-called auxiliary equation will be introduced. Suppose that
the solution of (2.44) is given by T (t) = ert, where r is a parameter to be
determined. By substituting T (t) = ert into (2.44) the auxiliary equation is
obtained, given by

r2 + βλr + λ = 0, (2.107)

where λ > 0. Now consider the following equation

r2(ǫ) + βλ(ǫ)r(ǫ) + λ(ǫ) = 0, (2.108)

where λ(ǫ) depends smoothly on ǫ and where λ(0) = λ. Then (2.107) is the
corresponding unperturbed equation of (2.108). From the implicit function
theorem it follows that if

2r(0) + βλ(0) = 0, (2.109)

it can not be expected that the root r(ǫ) of (2.108) can be expanded in a
Taylor series with respect to ǫ (see also [59], Chapter 10), and that there may
be bifurcation solutions. From (2.107) it follows that 2r(0) + βλ(0) = 0 if
β2λ(0) = 4. From 2r(0)+ βλ(0) = 0 and β2λ(0) = 4 it follows that r(0) = −2

β
.

Now it also follows that r(0) = −2
β

is a bifurcation point. For different values of

the parameters β and λ the solution of (2.107) will be qualitatively different.
Now assume that λm is an eigenvalue of the unperturbed problem (i.e. (2.12)-
(2.17) with ǫ = 0) such that β2λm = 4. Then it can not be expected that
the solution of the perturbed problem (i.e. (2.12)-(2.17)) can be expanded in
a Taylor series with respect to ǫ. To find an approximation of the solution of
problem (2.12)-(2.17) for the case β2λm = 4 a very different expansion will be
needed. Therefore, the case β2λm = 4 will not be considered any further in
this chapter.

Now the case β2λm < 4 will be considered. By substituting T0m(t, τ) =

e
−βλm

2
t
(

A0m(τ) cos(σmt) +B0m(τ) sin(σmt)
)

into (2.106), it follows that A0m(τ)
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and B0m(τ) are solutions of the following system of coupled differential equa-
tions

dA0m

dτ
= κmA0m − ΩmB0m, (2.110)

dB0m

dτ
= κmB0m + ΩmA0m, (2.111)

where

Ωm =

(

Θmm − βλmκm

2σm

)

, (2.112)

where κm is given by (2.105), σm by (2.50), Θmn =
∫ 1

0
(γ+1−x)φmx

(x)φnx
(x)dx,

λm = µ4
m, and where µm is the m-th positive root of (2.45). From (2.110) and

(2.111) A0m(τ) and B0m(τ) can be determined, yielding

A0m(τ) = eκmτ (A0m(0) cos(Ωmτ) − B0m(0) sin(Ωmτ)) , (2.113)

B0m(τ) = eκmτ (B0m(0) cos(Ωmτ) + A0m(0) sin(Ωmτ)) , (2.114)

where A0m(0) and B0m(0) are given by (2.53) and (2.54) respectively. Hence,
for β2λm < 4, T0m(t, τ) is found to be:

T0m(t, τ) = e−
βλm

2
t+κmτ (A0m(0) cos(σmt− Ωmτ)

+B0m(0) sin(σmt− Ωmτ)) . (2.115)

Now, by substituting τ = ǫt and (2.105) into −βλm

2
t + κmτ and by dividing

the so-obtained result by t, it follows that the damping coefficient (θ1,m), for
β2λm < 4, can be approximated by

θ1,m = −1

2

(

βλm − ǫα + ǫ(c + γα)φ2
m(1)

)

, (2.116)

where

φ2
m(1) =

4

1 + γ + γ2µ2
m

(

2 sin(µm) sinh(µm)
1+cos(µm) cosh(µm)

) . (2.117)

From (2.50), (2.112), and t = ǫτ it follows that the frequency (θ2,m) can be
approximated by

θ2,m =

√

λm −
(

βλm

2

)2

− ǫ

(

Θmm − βλmκm

2σm

)

. (2.118)
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Now the gravity-effect on the frequency will be considered. By lengthy but
elementary calculations, it can be shown that the quotient Θnn

2σn
is given by (see

[11] for a similar expression)

Θnn

2σn
=

1

4σn

(

(1 + µnχn)2 + 3
)

+

γµn

2σn

(

γµn

(

s(µn)

cos(µn) + cosh(µn)

)2

+ µnχ
2
n − 2χn

)

, (2.119)

where χn = sin(µn)−sinh(µn)
cos(µn)+cosh(µn)

, and where s(µ) = sin(µ) cosh(µ) − cos(µ) sinh(µ).

Since χn → −1 and s(µn) → 0 for n → ∞, and since σn = µ2
n if β = 0 it

follows that Θnn

2σn
= O(1) if β = 0. The compression force due to gravity, the

self-weight of the beam, and the mass of the tip-mass is represented by the
integral ǫΘnm. This integral shows up in (2.118) and does not show up in
(2.116). Hence, the compression force does not have a significant effect on the
damping rates of the oscillation modes, and has a small effect on the frequency
of the oscillation modes. Since Θnn > 0, it follows that the frequency reduces
by increasing mass of the tip-mass, that is, by increasing γ and by increasing
the mass of the beam itself, that is, by increasing ǫ.

Lastly, the case β2λm > 4 will be considered. By substituting T0m(t, τ) =
A0n(τ)eωn1

t +B0n(τ)eωn2
t into (2.106), it follows that A0m(τ) and B0m(τ) are

solutions of the following differential equations

dA0m

dτ
=

2κmωm1
+ Θmm

2ωm1
+ βλm

A0m, (2.120)

dB0m

dτ
=

2κmωm2
+ Θmm

2ωm2
+ βλm

B0m, (2.121)

where ωm1,2
and κm are given by (2.51) and (2.105) respectively. From (2.120)

and (2.121) A0m(τ) and B0m(τ) can be determined, yielding

A0m(τ) = A0m(0) exp

(

(2κmωm1
+ Θmm) τ

µ2
m

√

β2λm − 4

)

,

B0m(τ) = B0m(0) exp

(

− (2κmωm2
+ Θmm) τ

µ2
m

√

β2λm − 4

)

,

where Am(0) and Bm(0) are given by (2.57) and (2.58) respectively. Hence,
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for β2λm > 4, T0m(t, τ) is found to be:

T0m(t, τ) = A0m(0) exp

(

ωm1
t+

(2κmωm1
+ Θmm) τ

µ2
m

√

β2λm − 4

)

+

B0m(0) exp

(

ωm2
t− (2κmωm2

+ Θmm) τ

µ2
m

√

β2λm − 4

)

. (2.122)

The damping properties of T0m(t, τ) will now be considered. From (2.122)
and τ = ǫt it follows that the damping coefficients (dm1,2

) of T0m(t, τ) can be
approximated by

dm1,2
=

(

1 ± 2ǫκm

µ2
m

√

β2λm − 4

)

ωm1,2
±
(

ǫΘmm

µ2
m

√

β2λm − 4

)

. (2.123)

Now it will be shown that there exist a constant d̂ < 0 such that dm1,2
< d̂ < 0

for all m ∈ N with β2λm > 4. This property of the damping rates will
be used to obtain the type of damping of the problem (2.12)-(2.17). From
(2.51) it follows that there exists an ǫ-independent constant ω̂ < 0 such that
ωm1,2

< ω̂ < 0 for all m ∈ N with β2λm > 4. From (2.105) and (2.119) it

follows that κm

µ2
m

= O(1) and that Θmm

µ2
m

= O(1). Then there also exists an

ǫ-independent constant d̂ < 0 such that dm1,2
< d̂ < 0 for all m ∈ N with

β2λm > 4. Furthermore, it follows from (2.123) that the compression force,
which is related to Θmm, has a small effect on the damping rates.

The functions A0m(τ) and B0m(τ) have been determined for the case
β2λm 6= 4. So an O(ǫ)-approximation, given by (2.85), valid on timescales
of O(ǫ−1) of the initial-boundary value problem (2.12)-(2.17) for the case
β2λm 6= 4 has been determined. It is beyond the scope of this chapter to
prove that the O(ǫ)-approximation are indeed valid on timescales of O(ǫ−1).

2.6 Damping results

In this section the damping properties of the wind-induced vibrations of a
weakly damped vertical beam with a tip-mass will be discussed. These vibra-
tions are described by (2.12)-(2.17). In the previous section an approximation
of the solution of problem (2.12)-(2.17) for the case β2λm 6= 4 has been found
and is given by (2.85), where T0m(t, τ), for the case β2λm < 4, is given by
(2.115), and where T0m(t, τ), for the case β2λm > 4, is given by (2.122). The
damping rates of the modes such that β2λm < 4 are given by (2.116) and the
damping rates of the modes such that β2λm > 4 are given by (2.123). Now
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n φ2
n(1) θ1,n

1 0.80753 ǫα/2-0.40376(c+α)ǫ
2 0.08998 ǫα/2-0.04499(c+α)ǫ
3 0.03395 ǫα/2-0.01698(c+α)ǫ
4 0.01717 ǫα/2-0.00859(c+α)ǫ
5 0.01033 ǫα/2-0.00516(c+α)ǫ
6 0.00688 ǫα/2-0.00344(c+α)ǫ
7 0.00491 ǫα/2-0.00246(c+α)ǫ
8 0.00368 ǫα/2-0.00184(c+α)ǫ
9 0.00286 ǫα/2-0.00143(c+α)ǫ
10 0.00228 ǫα/2-0.00114(c+α)ǫ

Table 2.1: Numerical approximations of φ2
n(1) and of the damping coefficient

θ1,n for β = 0 and γ = 1.

the modes of u0(x, t, τ), given by (2.85), will be damped uniformly (i.e. ex-

ponentially) if there exist constants θ̂ and d̂ such that θ1,m < θ̂ < 0 for all

m ∈ N with β2λm < 4, and such that dm1,2
< d̂ < 0 for all m ∈ N with

β2λm > 4. If such a constant θ̂ or d̂ does not exist but θ1,m < 0 for all m ∈ N

with β2λm < 4, and dm1,2
< 0 for all m ∈ N with β2λm > 4, the modes will be

damped strongly (i.e. asymptotically). In the last paragraph of the previous

section is has been shown that there exist a constant d̂ such that dm1,2
< d̂ < 0

for all m with β2λm > 4. So the modes of u0(x, t, τ) with β2λm > 4 will be
damped uniformly. Now the value of the damping coefficients (θ1,m) of the
modes of u0(x, t, τ) with β2λm < 4 will be considered for several values of the
parameters β, c, γ, and α.

First consider the case that the Kelvin-Voigt damping is not included (i.e.
β = 0). Hence β2λm < 4 and therefore (2.116) is the damping coefficient for all
modes. Now if a beam without a tip-mass (i.e. γ = 0) is considered, it follows
that θ1,m = α

2
− 2c. So the oscillation modes of a vertical beam subjected

to wind-forces will be damped uniformly if c > α
4
. And a vertical beam not

subjected to wind-forces will be damped uniformly for every positive value of
the damping parameter c.

Now the damping rates of a vertical beam with a tip-mass but not subjected
to Kelvin-Voigt damping (i.e. γ > 0, β = 0) will be considered. Since µm →
(m − 3

4
)π for m → ∞ and for γ > 0, it follows that

(

sin(µm) sinh(µm)
1+cos(µm) cosh(µm)

)

→ 1

for m → ∞ and for γ > 0. Hence it follows from (2.117) that φ2
m(1) → 0

for m → ∞ and for γ > 0. Now consider (2.116) where the parameter ǫα
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is the negative damping due to the wind. If this wind-force is not included
(i.e. α = 0), it can similarly be deduced that the damping rates θ1,m tend to
zero for m → ∞. Hence, for this case, the modes will be damped strongly,
but not uniformly, because c is a positive parameter and because θ1,m → 0
for m → ∞. The first ten damping coefficients for this case with γ = 1 are
listed in Table 2.1. If the wind-force is included (i.e. α > 0), not all modes
of the wind-induced vibrations of the vertical beam will be damped by the
boundary velocity damper, with damping parameter c > 0. If γ (the ratio of
the mass of the tip-mass and the mass of the beam) is a small parameter, also
γµm will be small. Then the damping coefficients of the lower order modes can
be approximated by θm ≈ α

2
− 2c. Hence the velocity damper will damp the

lower modes if c > α
4
. However, a velocity damper is not sufficient to suppress

the wind-induced modes of vibrations of a vertical beam with a tip-mass. In
particular, the higher order modes will hardly be damped.

Since low and high frequency vibrations can cause damage to a building,
it is important to have damping for all of the oscillation modes. Now the
damping coefficients θ1,m of a vertical beam with boundary damping, with
Kelvin-Voigt damping, and with a tip-mass in a wind-field will be considered.

It follows in this case that the modes will be damped uniformly if α < βµ4
m

ǫ
+

(c + αγ)φ2
m(1) for all m ∈ N, where µm → (m − 3

4
)π for m → ∞ and where

(m − 1)π < µm < mπ (see section 2.3). So, if βµ4
m > ǫα for m = 1, the

velocity damper is not necessary to obtain uniform damping. But if there
exists an integer M ≥ 1 such that βµ4

m ≤ ǫα for all m ≤M and βµ4
m > ǫα for

all m > M the velocity damper is necessary to obtain damping for the first M
oscillation modes. These M modes will be damped uniformly if the damping
parameter c is such that βλm

ǫ
+ (c+ αγ)φ2

m(1) > α for all m ≤M .

2.7 Conclusions

In this chapter a weakly damped vertical beam with and without a tip-mass
in a wind-field has been considered. Boundary damping and global Kelvin-
Voigt damping have been considered. The boundary damping is assumed to
be proportional to the velocity of the beam at the top. By using the energy
integral, it has been shown that the solutions (assuming the existence of a
sufficiently smooth solution) are bounded in absence of a wind-force. Explicit
asymptotic approximations of the solutions have been derived. The damping
rates for several cases have been considered. It has been shown that if the
damping parameter is large enough (i.e. c > α

4
) that the wind-induced vibra-

tions of a vertical beam without tip-mass and without Kelvin-Voigt damping
will be damped uniformly. The vibrations of a vertical beam with a tip-mass
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but without Kelvin-Voigt damping and not subjected to wind-forces will be
damped strongly. Finally it has been shown that a combination of boundary
damping and Kelvin-Voigt damping can be used to damp the wind-induced
vibrations of a vertical beam with tip-mass uniformly. It also has been shown
that the compression force due to the mass of the tip-mass and due to the
mass of the beam itself has a small effect on the frequency.



CHAPTER 3

On aspects of damping for a vertical

beam with a tuned mass damper at the

top

Abstract: In this chapter the wind-induced, horizontal vibrations of a
vertical Euler-Bernoulli beam will be considered. At the top of the beam a
tuned mass damper (TMD) has been installed. The horizontal vibrations can
be described by an initial-boundary value problem. Perturbation methods will
be applied to construct approximations of the solutions of the initial-boundary
value problem, and it will be shown that the TMD uniformly damps the
oscillation modes of the beam. In the analysis it will be assumed that
damping, wind-force, and gravity effects are small, but not negligible.

3.1 Introduction

In recent years more and more tall building were built. For tall buildings
or high rise buildings, dampers, active or passive, are used to dissipate the
energy of the vibrations of the building. Passive dampers are for instance
tuned mass dampers (TMDs), tuned liquid dampers (TLDs), and tuned mass
liquid dampers (TLCDs). A swimming pool or a water basin for the sprinkler
installation at the top of the building already damps the vibration. A TMD is
one of the most simple and economic ways to control the vibrations of a beam

This chapter is a slightly revised version of [69].

35
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X

L

0

m

ζ

Y, η

k̂

ĉ

Figure 3.1: A simple model for a vertical beam with a tuned mass damper at
the top.

structure. The TMD can be modeled as a simple mass-spring-dashpot system
(see [43]).

In [44] a simple approach to the design of MDs is used. It is based on a 1+1
and on a 4+1 degrees of freedom (DOF) model of the system. In [4] a more
complicated model is used to consider the dynamics of a tall building with a
TMD system installed at its top. Numerical methods are used to solve this
problem approximately. The damping is considered to be Coulomb damping.
It has been concluded that the TMD needs much space to operate in real
applications. The displacement of the mass might be much larger than that
of the top floor. It has also been shown that the oscillations of the building
are effectively reduced when the TMD frequency is tuned to be equal to that
of the building.

In this chapter the stability of a tall building with a TMD at its top will be
studied. It will be assumed that the TMD can be modeled as a simple mass-
spring-dashpot system, and that the building can be modeled as a vertical
Euler-Bernoulli beam. The TMD is installed at the top of the vertical beam
to absorb the horizontal vibrations of the beam. The tip-mass is connected
to a linear spring with spring constant k̂, and to a dashpot, with damping
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coefficient ĉ. This is an example of a beam-like problem with boundary damp-
ing. In [1, 4, 17, 27, 33] also various types of boundary damping have been
considered. Furthermore, a uniform wind-flow, which causes nonlinear drag
and lift forces(FD, FL) acting on the structure per unit length, will be consid-
ered. A simple model of a vertical Euler-Bernoulli beam equation subjected
to wind-forces and with a TMD at the top is given by

EIηXXXX + [(gm+ ρgA(L−X))ηX ]X + ρAηττ = FD + FL, (3.1)

0 < X < L, τ > 0,

η(0, τ) = ηX(0, τ) = ηXX(L, τ) = 0, τ ≥ 0, (3.2)

−gmηX(L, τ) −EIηXXX(L, τ) +m(η(L, τ) + ζ(τ))ττ = 0, τ ≥ 0, (3.3)

k̂ζ(τ) + ĉζτ (τ) +m(η(L, τ) + ζ(τ))ττ = 0, τ ≥ 0, (3.4)

where E is the Young modulus, I is the moment of inertia of the cross-section,
ρ the density, A the cross-sectional area, L the length, η(X, τ) the beam de-
flection in Y -direction (see Fig. 3.1), m the mass of the tip-mass, ζ(τ) the
displacement of the mass m relative to the top of the beam, τ the time, X
the position along the beam (see Fig. 3.1), and g is the acceleration due to
gravity.

In [2] it has been shown that FD + FL can be approximated by (see also
section 2.1)

FD + FL =
ρadv∞a

2

(

ητ −
b

v2
∞
η3

τ

)

, (3.5)

in which ρa is the density of the air, d is the diameter of the cross-sectional
area of the beam, v∞ is the uniform wind-flow velocity, and a and b depend on
certain drag and lift coefficients, which are given explicitly in [2]. In section 2.1
it has been mentioned that the nonlinear wind-force ǫ2

(

ut(x, t) − 1
3
u3

t (x, t)
)

in
(2.5) will give a coupling between (almost) all oscillation modes. The nonlinear

term ρadv∞a
2

(

ητ − b
v2
∞
η3

τ

)

in (3.5) also gives such a coupling. The main goal

of this chapter is to examine the damping effect of the TMD on a vertical
beam in a strong wind-field. Therefore, in this chapter, only the linearized
initial-boundary value problem will be considered.

To put the model in a non-dimensional form the following substitutions

u(x, t) = κ
v∞

η(X,τ)
L

, ξ(t) = κ
v∞

ζ(τ)
L

, x = X
L

, and t = κ
L
τ , where κ = 1

L

√

EI
Aρ

, will

be used. By applying these transformations, the following linearized, dimen-
sionless initial-boundary value problem can be introduced, which describes the
horizontal displacement of a damped vertical beam with a TMD at the top
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and with a uniform wind-flow acting on it:

L(u) = ǫ2αut, (3.6)

0 < x < 1, t > 0,

u(0, t) = ux(0, t) = uxx(1, t) = 0, t ≥ 0, (3.7)

−uxxx(1, t) + γ(utt(1, t) + ξtt(t)) = ǫ1γux(1, t), t ≥ 0, (3.8)

kξ(t) + c̃ξt(t) + γ(utt(1, t) + ξtt(t)) = 0, t ≥ 0, (3.9)

u(x, 0) = f(x), 0 < x < 1, (3.10)

ut(x, 0) = g(x), 0 < x < 1, (3.11)

ξ(0) = ξ0 and ξt(0) = ξ1, (3.12)

in which ǫ1 = gρAL3

EI
, γ = m

ρAL
, ǫ2α = ρadL

2Aρ
v∞
κ
a, k = k̂ L3

EI
, c̃ = ĉ

√

L2

EIρA
, and

where

L(u) ≡ uxxxx + ǫ1[(γ + 1 − x)ux]x + utt. (3.13)

The functions f(x), g(x), ξ0, and ξ1 are the initial displacement of the beam,
the initial velocity of the beam, the initial displacement of the tip-mass, and
the initial velocity of the tip-mass respectively. It is assumed that ǫi, with
i = 1, 2, 3, is a small parameter, that is, 0 < ǫi ≪ 1. And, it should be
observed that α (the parameter due to the wind-force), γ (the mass of the
TMD divided by the mass of the beam), k (the spring stiffness parameter),
and c (the damping parameter) are positive, dimensionless parameters.

Now ξ(t) will be eliminated from the coupled boundary conditions (3.8)
and (3.9) to obtain an initial-boundary value problem for u(x, t). This will
be done in the following way. Subtract (3.8) from (3.9), and differentiate the
result with respect to t, to obtain

−ǫ1γuxt(1, t) − uxxxt(1, t) = kξt(t) + c̃ξtt(t). (3.14)

The boundary condition (3.8) gives the following expression for ξtt(t)

ξtt(t) = ǫ1ux(1, t) +
1

γ
uxxx(1, t) − utt(1, t). (3.15)

Substitution of this expression for ξtt(t) into (3.14) yields

kξt(t) = −ǫ1γuxt(1, t) − uxxxt(1, t) − c̃

[

ǫ1ux(1, t) +
1

γ
uxxx(1, t) − utt(1, t)

]

.

(3.16)
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Differentiate (3.16) with respect to t, substitute the so-obtained expression for
ξtt(t) into (3.15), and multiply the so-obtained equation by γ, to obtain

γutt(1, t) − ǫ1γux(1, t) − uxxx(1, t) =
γ

k
(ǫ1γux(1, t) + uxxx(1, t) − c̃ut(1, t))tt

+
c̃

k
(ǫ1γux(1, t) + uxxx(1, t))t . (3.17)

So the problem (3.6)-(3.9) can be rewritten as the following initial-boundary
value problem for u(x, t):

L(u) = ǫ2αut, 0 < x < 1, t > 0, (3.18)

u(0, t) = ux(0, t) = uxx(1, t) = 0, t ≥ 0, (3.19)

Bkγ(u) = −ǫ1kγux(1, t) − γ (ǫ1γux(1, t) − c̃ut(1, t))tt

−c̃ (ǫ1γux(1, t) + uxxx(1, t))t , t ≥ 0, (3.20)

u(x, 0) = f(x), 0 < x < 1, (3.21)

ut(x, 0) = g(x), 0 < x < 1, (3.22)

in which

Bkγ(u) ≡ kuxxx(1, t) + γuxxxtt(1, t) − kγutt(1, t). (3.23)

When u(x, t) has been determined, ξ(t) can be obtained in the following way.
Subtract (3.8) from (3.9) to obtain

ξ(t) =
−1

k
(ǫγux(1, t) + uxxx(1, t)) −

c̃

k
ξt. (3.24)

Now substitution of (3.16) into (3.24), yields ξ(t) as a function of u(x, t):

ξ(t) = (uxxx(1, t) + ǫ1γux(1, t))

(

c̃2

γk2
− 1

k

)

+

c̃

k2
(ǫ1γux(1, t) + uxxx(1, t) − c̃ut(1, t))t . (3.25)

Due to the TMD at the top of the building, the problem will have an addi-
tional degree of freedom. The displacement of the tip-mass depends on all the
oscillation modes of the building. Therefore, the TMD does not have a speci-
fied frequency. Although, it will turn out that the frequencies of beam with a
TMD at its top are close to the frequency of the TMD and the frequencies of
a cantilevered beam.

The initial-boundary value problem (3.18)-(3.22) actually contains four
small parameters ǫ1, ǫ2, ǫ3, and γ, which is the ratio of the tip-mass and the
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mass of the beam. In this chapter the influence of the parameters ǫ3 and γ on
the damping will be considered. The case that γ is small (but larger in order
than ǫ3), the case that γ is of order ǫ3, and the case that γ is of order ǫ23 will
be studied. For each case a different approach is needed to construct approx-
imations of the solutions of the initial-boundary value problem (3.18)-(3.22).
These three cases will be considered in this chapter.

This chapter is organized as follows. In section 3.2 the initial-boundary
value problem (3.18)-(3.22) with c = α = 0 is considered. It will be shown that
the eigenvalues of the corresponding boundary value problem are real-valued
and positive. In addition, it will be explained why perturbation techniques
are applied to solve the initial-boundary value problems. In section 3.3 the
vibrations of an undamped beam not subjected to wind-forces and gravity
effects, that is, the initial-boundary value problem (3.18)-(3.22) with c = α =
ǫ1 = 0, will be considered. This is the case of a beam equation subjected to
non-classical boundary conditions. In section 3.4 the energy of the beam with
a TMD at the top will be considered, and the boundedness of the solutions
will be shown when α = 0. Furthermore, the damping of the vibrations will
be shown when α = 0. In section 3.5 approximations of the eigenvalues of the
damped initial-boundary value problem (3.18)-(3.22) with α = ǫ1 = 0 will be
constructed by applying the method of separation of variables. By applying
this method, a so-called characteristic equation is obtained. The roots of this
equation will be constructed. These roots can be used to obtain the eigenvalues
of the damped initial-boundary value problem (3.18)-(3.22) with α = ǫ1 = 0.
These eigenvalues will be used to obtain the damping rates of the oscillation
modes. If ǫ3 and γ are fixed the roots of this equation can be found by using
numerical methods. The roots can also be obtained approximately because ǫ3
and γ are small parameters. In this section the cases γ = O(1), γ = O(ǫ3),
and γ = O(ǫ23) will be considered. These cases will be considered because the
ratio γ can be of lower, of equal, or of higher order with respect to ǫ3. The
construction of the approximations of the roots for these cases will turn out to
be different. These approximations of the eigenvalues gives a good indication
what scalings are necessary to construct approximations of the solutions of the
initial-boundary value problem (3.18)-(3.22) for the cases γ = O(1), γ = O(ǫ3),
and γ = O(ǫ23). In section 3.6 the multiple-timescales perturbation method will
be applied to construct approximations of the solutions of the initial-boundary
value problem (3.18)-(3.22). In this chapter only the initial-boundary value
problem (3.18)-(3.22) for the case that γ = O(1) will be solved approximately.
In this section also the stability of a vertical beam with a TMD at the top in
a wind-field will be considered. Finally, in section 3.7, some remarks will be
made and some conclusions will be drawn.
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3.2 The undamped problem with α = 0

In this section the horizontal vibrations of a vertical beam with a tip-mass at
the top will be studied. The wind-force and the damping are neglected. So, in
this section, the initial-boundary value problem (3.18)-(3.22) with c = α = 0
will be considered:

L(u) = 0, (3.26)

u(0, t) = ux(0, t) = uxx(1, t) = 0, (3.27)

Bkγ(u) = −ǫ1γ (kux(1, t) + γuxtt(1, t)) , (3.28)

where L and B are given by (3.13) and (3.23) respectively. The method of sep-
aration of variables will be used to solve (3.26)-(3.28). Now look for nontrivial
solutions of the partial differential equation (3.26) and the boundary condi-
tions (3.27)-(3.28) in the form X(x)T (t). By substituting u(x, t) = X(x)T (t)
into problem (3.26)-(3.28), a boundary value problem for X(x) is obtained:

X(4)(x) + ǫ1 [(γ + 1 − x)X ′(x)]
′

= λX(x), (3.29)

X(0) = X ′(0) = X ′′(1) = 0, (3.30)

(γλ− k) (ǫ1γX
′(1) +X ′′′(1)) = γλX(1), (3.31)

and the following problem for T (t):

T ′′(t) + λT (t) = 0, (3.32)

where λ ∈ C is a separation constant. Note that (3.29)-(3.31) is a non-standard
problem. Therefore, the eigenvalues and eigenfunctions of this problem will be
studied. First it will be shown that the eigenvalues λ of problem (3.29)-(3.31)
are real-valued and positive. The case γλ = k and the case γλ 6= k will be
considered. If γλ = k the eigenvalue λ is real-valued and positive, because
k and γ are real-valued and positive constants. Now the second case will be
considered. Let the linear differential operator L be defined by:

L[X] =
d4X

dx4
+ ǫ1

d

dx

[

(γ + 1 − x)
dX

dx

]

. (3.33)

Let X1(x) and X2(x) be two different solutions of the boundary value problem
(3.29)-(3.31) corresponding to eigenvalues λ1 and λ2 respectively, then:

∫ 1

0

(

L[X1]X2 −X1L[X2]
)

dx = (ǫ1γX
′
1(1) +X ′′′

1 (1))X2(1) −

X1(1)(ǫ1γX ′
2(1) +X ′′′

2 (1)), (3.34)
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where the dependency of X1(x) and X2(x) on x has been dropped. Now
substitute L[X1] = λ1X1 and L[X2] = λ2X2 into (3.34) and consider the
boundary condition (3.31) to obtain

(

λ1 − λ2

)

(

∫ 1

0

X1X2dx+
(ǫ1γX

′
1(1) +X ′′′

1 (1))(ǫ1γX ′
2(1) +X ′′′

2 (1))

λ1λ2

)

= 0,

(3.35)
or equivalently

(

λ1 − λ2

λ1λ2

)(
∫ 1

0

L[X1]L[X2]dx+

(ǫ1γX
′
1(1) +X ′′′

1 (1))(ǫ1γX
′
2(1) +X ′′′

2 (1))
)

= 0. (3.36)

Now introduce the following inner product on V

〈u(x), v(x)〉 =

∫ 1

0

L[u]L[v]dx+ (ǫ1γu
′(1) + u′′′(1))(ǫ1γv′(1) + v′′′(1)), (3.37)

where

V = {v ∈ L2(0, 1)|v(0) = v′(0) = v′′ = 0, ǫ1γv
′(1) + v′′′(1) 6= 0} ∪ {v ≡ 0}.

(3.38)
In this notation (3.36) becomes

(

λ1 − λ2

λ1λ2

)

〈X1(x), X2(x)〉 = 0. (3.39)

Now let φ = X1 = X2 and let λ = λ1 = λ2 then (3.39) becomes

(

λ− λ

|λ|

)

〈φ(x), φ(x)〉 = 0. (3.40)

But 〈φ(x), φ(x)〉 ≥ 0 and φ(x) is not allowed to be the zero function. So
〈φ(x), φ(x)〉 in equation (3.39) is positive, therefore λ − λ = 0, which implies
that λ is real.

Since the eigenvalues λ are real, the differential equation (3.29) and the
boundary conditions (3.30) and (3.31) only have real parameters (γ, ǫ1 and
λ). So the eigenfunctions can be chosen to be real-valued. Let φi and φj be
two real eigenfunctions corresponding to the eigenvalues λi and λj respectively.
Now substitute X1 = φi, X2 = φj, λ1 = λi and λ2 = λj into (3.39), to obtain
(

λi−λj

λiλj

)

〈φi, φj〉 = 0. If λi 6= λj it follows that 〈φi, φj〉 = 0. So eigenfunctions
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corresponding to different eigenvalues are orthogonal with respect to the inner
product (3.37).

Now it will be shown that the eigenvalues are positive. Multiply (3.29) by
X(x) and integrate the result with respect to x from 0 to 1, to obtain

∫ 1

0

(

X(4)(x) + ǫ1[(γ + 1 − x)X ′(x)]′
)

X(x)dx = λ

∫ 1

0

X2(x)dx. (3.41)

Integrating by parts and considering the boundary conditions (3.30), yields

I1 +X(1) (X ′′′(1) + ǫ1γX
′(1)) = λI2, (3.42)

in which

I1 =

∫ 1

0

(

(X ′′(x))2 − ǫ1(γ + 1 − x)(X ′(x))2
)

dx, (3.43)

I2 =

∫ 1

0

(X(x))2dx. (3.44)

In [17] it has been shown for nontrivial functions X(x) that I1 > 0 for ǫ1
sufficiently small, that is, ǫ1(γ + 1

2
) < 1 (see also section 2.2). The boundary

condition (3.31) can be rewritten in the following form

X(1) (X ′′′(1) + ǫ1γX
′(1)) =

(

γλ

γλ− k

)

X2(1). (3.45)

By substituting (3.45) into (3.42) the following second-order polynomial in λ
is obtained:

γλ2I2 + kI1 =
(

γI1 + γkX2(1) + kI2
)

λ. (3.46)

The solutions λ1,2 of (3.46) can be determined and are given by

λ1,2 =
(γI1 + γkX2(1) + kI2) ±

√
D

2γI2
, (3.47)

in which

D =
(

γI1 + γkX2(1) + kI2
)2 − 4kγI1I2 (3.48)

= 2γkX2(1) (γI1 + kI2) +
(

γkX2(1)
)2

+ (γI1 − kI2)
2 ,

and where D satisfies the following inequalities:

(

γI1 + γkX2(1) + kI2
)2
> D > 0.
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These above inequalities show that the eigenvalues λ1,2 are non-negative for
the case λ 6= k

γ
. Now, by substituting λ = 0 into (3.46), it follows that

kI1 = 0, (3.49)

because kI1 > 0, for ǫ1 sufficiently small, equation (3.49) does not hold, so
λ = 0 is not an eigenvalue. Since for the case λ 6= k

γ
and the case λ = k

γ

the eigenvalues are not zero and non-negative, it can be concluded that the
eigenvalues are positive if ǫ1 is sufficiently small. Although it can derived
that the eigenvalues are real-valued and positive, the eigenvalues can not be
determined exactly because the fourth order differential equation (3.29) can
not be solved exactly. It has been assumed that 0 < ǫ1 ≪ 1. Then the term
ǫ1[(γ + 1 − x)X(x)′]′ in (3.29) is small. Now perturbation techniques can be
used to solve approximately the initial-boundary value problem (3.30)-(3.31).

Perturbation methods can be used to solve approximately the ordinary
differential equation (3.29). By using this method, approximations for the
eigenvalues and the eigenfunctions will be found. These approximations can
be used to construct approximations of the solution of the partial differential
equation. This will be done in the next section for the initial-boundary value
problem (3.18)-(3.22) with c = α = ǫ1 = 0. Note that this method can be
used as long as the method of separation of variables can be applied to the
initial-boundary value problem.

3.3 The undamped problem (3.18)-(3.22) with

α = ǫ1 = 0

In this section the horizontal vibrations of a beam with a tip-mass at the
top will be studied. The gravity effect, the wind-force, and the damping are
neglected. This problem is given by (3.18)-(3.22) with c = α = ǫ1 = 0:

uxxxx + utt = 0, (3.50)

u(0, t) = ux(0, t) = uxx(1, t) = 0, (3.51)

kuxxx(1, t) + γuxxxtt(1, t) − kγutt(1, t) = 0, (3.52)

u(x, 0) = f(x), (3.53)

ut(x, 0) = g(x). (3.54)

The functions ξ(t) and u(x, t) are related by (3.25). Now also relations between
the initial values ξ(0) and u(1, 0) will be given. Substitution of ǫ1 = 0, c̃ = 0,
t = 0, (3.21), and (3.22) into (3.24) and (3.16) gives the following relations
for the initial displacement (f(x)) and the initial velocity (g(x)) of the beam
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at the top and the initial displacement (ξ0) and the initial velocity (ξ1) of the
tip-mass

f ′′′(1) = −kξ0, (3.55)

g′′′(1) = −kξ1. (3.56)

The method of separation of variables will be used to solve the problem
(3.50)-(3.54). Now look for nontrivial solutions of the partial differential equa-
tion (3.50) and the boundary conditions (3.51)-(3.52) in the form X(x)T (t).
By substituting this into (3.50)-(3.52), a boundary value problem for X(x) is
obtained:

X(4)(x) = λX(x), (3.57)

X(0) = X ′(0) = X ′′(1) = 0, (3.58)

(γλ− k)X ′′′(1) = kγλX(1), (3.59)

and the following problem for T (t):

T ′′(t) + λT (t) = 0, (3.60)

where λ ∈ C is a separation constant. The boundary value problem (3.57)-
(3.59) is the same problem as (3.29)-(3.31) with ǫ1 = 0. So the eigenvalues
are real-valued and positive, the eigenfunctions can be chosen to be real-
valued, and two real eigenfunctions belonging to two different eigenvalues
are orthogonal with respect to the inner product (3.37). Note that the case
X ′′′(1) = X(1) = 0 and the case X ′′′(1) = λ = 0 only leads to trivial solu-
tions. The problem (3.57)-(3.59) can be solved analytically. Expressions for
the eigenfunctions and the eigenvalues can be found. The eigenvalues λn = µ4

n

are implicitly given by the roots of

hkγ(µ) ≡ (γµ4 − k)q(µ) + kγµs(µ) = 0, (3.61)

where

q(µ) = 1 + cosh(µ) cos(µ), (3.62)

s(µ) = sin(µ) cosh(µ) − cos(µ) sinh(µ). (3.63)

The real-valued, positive, isolated roots of hkγ(µ) are denoted by µn. If µn is
a root of (3.61) then also −µn and ±iµn are roots of (3.61). The location of
the roots depends on the value of γ. For γ = 0 the roots will be exactly the
roots of a cantilevered beam without a tip-mass (see [17, 33]). The location
of the roots of the characteristic equation (3.61) for γ > 0 will be close to the
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Figure 3.2: The values of the first five roots µ of the characteristic equation
(3.61), for k = 50, as a function of γ ∈ [0, 1

2
].

location of the roots of (3.61) for γ = 0 and of the equation µ4 = k
γ
. Fig. 3.2

presents the values of the first five real roots µ as a function of γ ∈ [0, 1
2
] for

the case k = 50.
It follows that (for large n and γ fixed) µn ≈ (n− 1

2
)π, but there is not a

fixed N ∈ N such that µn ≈ (n− 1
2
)π for all n > N if γ → 0.

The eigenfunctions of problem (3.57)-(3.59) can be found and are given by

φ̂n(x) = sin(µnx) − sinh(µnx) + βn(cosh(µnx) − cos(µnx)), (3.64)

where βn = (sin(µn)+sinh(µn))
cos(µn)+cosh(µn)

. Note that the eigenfunctions (3.64) have the

same form as the eigenfunctions (2.47) of problem (2.41)-(2.43). However, the
eigenfunctions (3.64) and (2.47) differs, as the values µn for both cases are
different. In this chapter the eigenfunctions are chosen such that (see also
(3.35))

(
∫ 1

0

φiφjdx+
φixxx

(1)φjxxx
(1)

γλiλj

)

= δij , (3.65)

in which the eigenfunctions φn(x) are defined by

φn(x) =
φ̂n(x)

(

∫ 1

0
φ̂2

ndx+ (φ̂nxxx(1))2

γλ2
n

)
1

2

. (3.66)
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After lengthy but elementary calculations it can be shown that

∫ 1

0

φ̂2
n(x)dx+

(φ̂nxxx
(1))2

γλ2
n

=

(

sinh(µn) + sin(µn)

cosh(µn) + cos(µn)

)2

+

4

γµ2
n

(

q(µn)

cosh(µn) + cos(µn)

)2

+
3

µn

(

q(µn)s(µn)

(cosh(µn) + cos(µn))2

)

, (3.67)

also it can be shown that
∫ 1

0
φ̂2

n(x)dx→ 1 if n→ ∞.
For each eigenvalue Tn(t) can be determined. Hence, infinitely many non-

trivial solutions of the initial-boundary problem (3.50)-(3.54) can be found.
Then, by using the superposition principle and the initial values (3.53) and
(3.54), the solution of the initial-boundary value problem is obtained:

u(x, t) =
∞
∑

n=0

Tn(t)φn(x) =
∞
∑

n=0

(

An cos(µ2
nt) +Bn sin(µ2

nt)
)

φn(x), (3.68)

in which

An =

∫ 1

0

f(x)φn(x)dx− φnxxx
(1)

λn
(ξ0 + f(1)) , (3.69)

µ2
nBn =

∫ 1

0

g(x)φn(x)dx− φnxxx
(1)

λn
(ξ1 + g(1)) . (3.70)

Now, because of (3.24) and (3.59) and because c = ǫ1 = 0, it can be deduced
that the displacement ξ(t) of the mass at the top of the beam with respect to
the top of the beam is given by

ξ(t) =
−uxxx(1, t)

k
=

−1

k

∞
∑

n=0

Tn(t)φnxxx
(1) =

∞
∑

n=0

Tn(t)

(

γλnφn(1)

k − γλn

)

. (3.71)

Note that, from (3.59), it appears that limλn→ k
γ

(

γλnφn(1)
k−γλn

)

= −φnxxx(1)
k

. In Ta-

ble 3.1 the first five eigenvalues (µn) and the first five constant terms (−φnxxx
(1)

and φn(1)) of the infinite sums (3.68), for x = 1, and (3.71) are listed for sev-
eral values of γ. From the eigenvalues (µn) it follows that µn decreases by
increasing γ. Note that the case γ = 1 is not realistic for applications. The
constant terms can be used to compare the direction of the displacement of
the tip-mass ξ(t) (i.e. (3.71)) and the direction of the displacement of the top
of the beam u(1, t) (i.e. (3.68) for x = 1) for the n-th mode. It follows that
these displacements have the same direction for the first oscillation modes (i.e.
µ4

n <
k
γ
) and have opposite directions for the higher order oscillation modes.
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γ = 1 γ = 0.1
n µn φn(1) −φnxxx

(1) µn φn(1) −φnxxx
(1) (n− 1

2
)π

0 0.9270 0.2593 0.7327 1.5700 1.0591 1.6392 -
1 2.0177 1.9629 -2.0890 2.1186 1.6728 -3.3214 1.5708
2 4.7038 -2.0134 2.0175 4.7040 -2.0135 2.0555 4.7123
3 7.8568 2.0033 -2.0039 7.8568 2.0033 -2.0086 7.8540
4 10.996 -2.0019 2.0014 10.996 -2.0013 2.0027 10.996

γ = 0.01 γ = 0.001
n µn φn(1) −φnxxx

(1) µn φn(1) −φnxxx
(1) (n− 1

2
)π

0 1.8544 1.9529 0.2619 1.8732 1.9962 0.0249 -
1 3.1881 0.3215 -10.059 4.6851 -1.9729 -1.8345 1.5708
2 4.7063 -2.0141 2.5300 5.6371 -0.3069 31.626 4.7123
3 7.8569 2.0034 -2.0574 7.8576 2.0040 -2.7167 7.8540
4 10.996 -2.0013 2.0151 10.996 -2.0014 2.1483 10.996

Table 3.1: Numerical approximations of the first five eigenvalues µn, of φn(1),
and of −φnxxx

(1) for the case k = 1 and γ = 1, γ = 0.1, γ = 0.01, and γ = 0.001.

3.4 The energy of the beam with a TMD

The energy of the vertical beam with a TMD at the top and not subjected to
wind-forces is defined to be

E(t) =

∫ 1

0

1

2
(u2

t (x, t) + u2
xx(x, t) − ǫ1(γ + 1 − x)u2

x(x, t))dx

+
γ

2
(ut(1, t) + ξt(t))

2 +
k

2
ξ2(t). (3.72)

The time derivative of the energy is

dE
dt

= −cǫ3ξ2
t (1, t). (3.73)

So the energy is bounded if the initial energy is bounded. Substituting (3.16)
into (3.73) gives

dE
dt

= −ǫ3c
k2

(−ǫ1γuxt(1, t) − uxxxt(1, t)−

ǫ3c

[

ǫ1ux(1, t) +
1

γ
uxxx(1, t) − utt(1, t)

])2

. (3.74)
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So not only the damping parameter c does have significant influence on the
damping, but also the spring constant k and the mass of the tip-mass γ. The
existence of a solution of u(x, t) is assumed, where u(x, t) is a twice continu-
ously differentiable function with respect to t and a four times continuously
differentiable function with respect to x. Since ux(x, t) and uxx(x, t) are con-
tinuous it follows that u(x, t) =

∫ x

0
uξ(ξ, t)dξ and ux(x, t) =

∫ x

0
uξξ(ξ, t)dξ. It

then can be deduced, by using the Cauchy-Schwarz inequality, that (see also
section 2.4 for a similar estimate)

|ux(x, t)| ≤
∫ 1

0

|uxx(x, t)|dx ≤
√

∫ 1

0

u2
xx(x, t)dx

≤
√

2E(t)

(1 − ǫ(γ + 1
2
))

≤
√

2E(0)

(1 − ǫ(γ + 1
2
))
, (3.75)

where it has been assumed that ǫ
(

γ + 1
2

)

< 1. By using u(x, t) =
∫ x

0
uξ(ξ, t)dξ

the following inequality for |u(x, t)| can be derived similarly

|u(x, t)| ≤
∫ 1

0

|ux(x, t)|dx ≤
∫ 1

0

√

2E(0)

(1 − ǫ(γ + 1
2
))
dx

=

√

2E(0)

(1 − ǫ(γ + 1
2
))
. (3.76)

So also u(x, t) is bounded if the initial energy is bounded and ǫ(γ+ 1
2
) < 1 The

displacement of the mass with respect to the top of the beam is also bounded,

|ξ(t)| ≤
√

|ξ2(t)| ≤
√

2

k
E(t) ≤

√

2E(0)

k
. (3.77)

Note that ξ(t) should not be bigger then the width of the top floor because
otherwise the mass will not be at the floor. We find that larger values of k
give smaller values of ξ(t), but smaller values of ξ(t) may give less damping
(see also (3.74)).

3.5 The problem (3.18)-(3.22) with α = ǫ1 = 0

In this section the horizontal vibrations of a beam with a TMD at the top will
be studied. The gravity effect and the wind-force are neglected. So, in this
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section, problem (3.18)-(3.22) with α = ǫ1 = 0 will be considered:

uxxxx + utt = 0, (3.78)

u(0, t) = ux(0, t) = uxx(1, t) = 0, (3.79)

Bkγ(u) = ǫc (γuttt(1, t) − uxxxt(1, t)) , (3.80)

u(x, 0) = f(x), (3.81)

ut(x, 0) = g(x), (3.82)

where ǫ = ǫ3 with 0 < ǫ≪ 1. The ratio γ = m
ρAL

is also a small parameter. The

ratio can be large with respect to ǫ, can be of the order ǫ, and can be small with
respect to ǫ. Therefore, the cases γ = O(1), γ = O(ǫ), and γ = O(ǫ2) will be
considered in this section. The method of separation of variables will be used
to solve the problem (3.78)-(3.82) and to obtain the so-called characteristic
equation. At first the location of the roots of the characteristic equation will
be considered. Secondly, in subsection 3.5.1, numerical methods will be used
to obtain the roots of the characteristic equation. Finally, in subsections 3.5.2,
3.5.3, and 3.5.4 perturbation techniques will be used to obtain approximations
of the roots of the characteristic equation for the cases γ = O(1), γ = O(ǫ2),
and γ = O(ǫ) respectively. The obtained approximations can be used to
obtain the damping rates. The approximations can also be used to obtain a
good indication what scalings are necessary to construct approximations of
the solutions of the initial-boundary value problem (3.18)-(3.22) for the cases
γ = O(1), γ = O(ǫ3), and γ = O(ǫ23).

Now look for nontrivial solutions of the partial differential equation (3.78)
and the boundary conditions (3.79)-(3.80) in the form X(x)T (t). By substi-
tuting this into (3.78)-(3.80), a boundary value problem for X(x) is obtained:

X(4)(x) = λX(x), (3.83)

X(0) = X ′(0) = X ′′(1) = 0, (3.84)

γλX ′′′(1) − k(X ′′′(1) + γλX(1)) =
ǫcT ′(t)

T (t)
(X ′′′(1) + γλX(1)) , (3.85)

and the following problem for T (t):

T ′′(t) + λT (t) = 0, (3.86)

where λ ∈ C is the separation constant. The case λ = 0 only leads to trivial
solutions. From (X ′′′(1) + γλX(1)) = 0 follows that λ = X ′′′(1) = 0 or that
X ′′′(1) = X(1) = 0. Both cases only lead to trivial solutions. So the case
(X ′′′(1) + γλX(1)) = 0 only leads to trivial solutions.
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Now set λ = µ4, where µ = µ1 + µ2i, with µ1, µ2 ∈ R. Then, because of
(3.83) and (3.84) and because λ = 0 is not an eigenvalue, it follows that:

X(x) = Aφ(x), (3.87)

where A is an arbitrary constant and where

φ(x) = (cos(µ) + cosh(µ))(sin(µx) − sinh(µx)) + (3.88)

(sin(µ) + sinh(µ))(cosh(µx) − cos(µx)).

By substituting (3.88) into (3.85) and because µ = 0 does not correspond to
an eigenvalue, it follows that

(

γµ4q(µ) + k(γµs(µ) − q(µ))
)

T (t) = ǫcT ′(t) (q(µ) − γµs(µ)) , (3.89)

where q(µ) and s(µ) are given by (3.62) and (3.63) respectively. Since the
case (X ′′′(1) + γλX(1)) = 0 only leads to trivial solutions also the case
(kq(µ) − γµs(µ)) = 0 only leads to trivial solutions. Then (3.89) can be writ-
ten as

T ′(t) = θT (t), (3.90)

where θ = θ1 + θ2i, with θ1, θ2 ∈ R, is defined by θ =
(γµ4q(µ)+k(γµs(µ)−q(µ)))

ǫc(q(µ)−γµs(µ))
.

The solution of (3.90) is given by

T (t) = c0e
(θ1+iθ2)t, (3.91)

where c0 ∈ C. Now the oscillation mode with frequency θ2 will be damped
if θ1 < 0. The constant θ1 will be called the damping coefficient or damping
rate corresponding to the oscillation mode. The main goal of this section is to
determine this damping rate.

Because of (3.86) and (3.90) the following relation between θ and λ is

obtained: λ = −θ2. Now substitution of θ =
(γµ4q(µ)+k(γµs(µ)−q(µ)))

ǫc(q(µ)−γµs(µ))
and λ = µ4

into λ = θ2 yields:

µ4 = −(γµ4q(µ) + k(γµs(µ) − q(µ)))
2

ǫ2c2 (q(µ) − γµs(µ))2
. (3.92)

Equation (3.92) can be written as:

±iǫcµ2 (q(µ) − γµs(µ)) = γµ4q(µ) + k(γµs(µ) − q(µ)), (3.93)
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where θ = ±iµ2. Now only consider the case θ = +iµ2 (the case θ = −iµ2 will
lead to the same θ). Then the so-called characteristic equation is obtained and
is given by

hkγc(µ) ≡ (γµ4 − k)q(µ) + γkµs(µ) − iǫc(µ2q(µ) − γµ3s(µ)) (3.94)

≡ (γµ4 − k − iǫcµ2)q(µ) + γµ(k + iǫcµ2)s(µ) = 0. (3.95)

If a root µ is found, θ can be determined by considering the relation θ = iµ2.
So the damping rate is given by θ1 = −2µ1µ2. By taking apart the real and
imaginary parts in the characteristic equation (3.94), a system of two nonlinear
equations for µ1 and µ2 is obtained. Note that (3.94) can be expressed as a
function of θ. This is an entire function of order 1

2
. Since an entire function of

nonintegral order have infinitely many zeros, also hkγc(µ) has infinitely many
zeros (see [70]). The roots of hkγc(µ) are such that if µ1 + µ2i is a solution
then also µ2 + µ1i, −µ1 − µ2i, and −µ2 − µ1i are solutions. Since µ1 + µ2i
and µ2 + µ1i are both solutions, θ occurs in complex conjugate pairs. Before
approximations of the roots are constructed, the location of the roots in the
complex plane will be considered. The roots of hkγc(µ) will be compared to the
roots of a more simple function. Rouché’s theorem will be applied to show that
the roots of hkγc(µ) are close to the roots of the more simple function. The
function hkγc(µ) will be compared to two simple functions. Rouché’s theorem
is given by (see also [71]):

Theorem 1 (Rouché’s Theorem) Let D be a bounded domain with piece-
wise smooth boundary ∂D. Let g(z) and h(z) be analytic on D ∪ ∂D. If
|h(z)| < |g(z)| for z ∈ ∂D, then g(z) and g(z) + h(z) have the same number
of zeros in D, counting multiplicities.

Note that a function g(z) is analytic on the open set U if g(z) is (complex)
differentiable at each point of U and the complex derivative g′(z) is continuous
on U .

The zeros of hkγc(µ) for c = 0 have been considered in section 3.3. The
roots of this equation are purely imaginary or real. Now it will be shown that
there exist a sequence Rk ∈ R such that Rk → ∞ as k → ∞ and such that
the number of roots of hkγ(µ) = 0 and hkγc(µ) = 0 is the same, counting
multiplicities, in B(0, Rk), where B(0, R) = {τ ∈ C||τ | ≤ R}. Then the
roots of hkγc(µ) = 0 can be enumerated in a similar way for the controlled
case c > 0 and for the uncontrolled case c = 0. Let R > 0 be given. Now, by
Rouché’s theorem, hkγ(µ) and hkγc(µ) have the same number of roots, counting
multiplicities, in B(0, R) if

∣

∣

∣

∣

ǫc (µ2q(µ) − γµ3s(µ))

(γµ4 − k) q(µ) + γkµs(µ)

∣

∣

∣

∣

< 1, (3.96)
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for |µ| = R. Now it will be shown that there exist a sequence Rk ∈ R such
that Rk → ∞ as k → ∞ and such that (3.96) is true for |µ| = Rk. To show
that such a sequence exist, it will be shown that the following inequality is
true for sufficiently large values of R:

∣

∣

∣

∣

s(µ)

µq(µ)

∣

∣

∣

∣

<
1

ǫc + k
|µ2|

− 1

γ|µ2| . (3.97)

For µ = Reiς , R = 2nπ, and 0 ≤ ς ≤ 2π, it has been shown that

limn→∞

∣

∣

∣

s(µ)
µq(µ)

∣

∣

∣
= 0 (see Appendix A of [33]). It can also be shown that

(

1
ǫc+ k

|µ2|

− 1
γ|µ2|

)

→ 1
ǫc

if |µ| → ∞. Hence there exists a sequence Rk =

2kπ, k ∈ N and k → ∞ such that inequality (3.97) is valid for |µ| = Rk. Then,
by using the triangle inequality, it follows that

∣

∣

∣

∣

s(µ)

µq(µ)
− 1

γµ2

∣

∣

∣

∣

=

∣

∣

∣

∣

q(µ) − γµs(µ)

γµ2q(µ)

∣

∣

∣

∣

<
1

ǫc+ k
|µ2|

. (3.98)

Hence, by using (3.98), it can be deduced that
∣

∣

∣

∣

γµ4q(µ)

µ2q(µ) − γµ3s(µ)
− k

µ2

∣

∣

∣

∣

≥
∣

∣

∣

∣

γµ4q(µ)

µ2q(µ) − γµ3s(µ)

∣

∣

∣

∣

− k

|µ2| > ǫc. (3.99)

So, finally, it is obtained that (3.96) is true. Hence there exists a sequence
Rk = 2kπ, with k ∈ N and k → ∞ such that (3.96) is valid for |µ| = Rk.
Therefore, by Rouché’s theorem, the number of roots of hkγc(µ) for c = 0 and
hkγc(µ) for c > 0 is the same in B(0, Rk), counting multiplicities.

In a similar way the roots of hkγc(µ) can be compared to the roots of
(γµ4−k− iǫcµ2)q(µ), and it can be shown for γ fixed that the number of roots
of these functions is the same in B(0, Rk), counting multiplicities.

3.5.1 Numerical approximations of the roots of the
characteristic equation

Now consider the characteristic equation (3.94), in which ǫ and γ are small
parameters. In applications these small parameters and the parameters c and
k will be fixed. Now Maple can be used to construct the roots of the equation
(3.94) numerically. First approximations of the eigenvalues will be given for
k, c, ǫ, and γ fixed and n sufficiently large. Multiplying (3.94) by 2eµ

γµ4 , yields

cos(µ) =
ic

µ
(sin(µ) − cos(µ)) + O

(

1

|µ|2
)

, (3.100)
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k = 1, ǫc = 0.1, γ = 0.1
n µ1,n µ2,n θ1,n θ2,n (n− 1

2
)π

0 0.04218 1.5779 -0.13313 2.4880 -
1 0.13161 2.1039 -0.55380 4.4089 1.5708
2 0.02238 4.7026 -0.21050 22.114 4.7124
3 0.01283 7.8564 -0.20159 61.724 7.8540
4 0.00912 10.996 -0.20049 120.92 10.996

k = 0.25, ǫc = 0.01, γ = 0.025
n µ1,n µ2,n θ1,n θ2,n (n− 1

2
)π

0 0.02865 1.6890 -0.09678 2.8518 -
1 0.03096 1.9725 -0.12212 4.5467 1.5708
2 0.00222 4.6965 -0.02091 22.057 4.7124
3 0.00287 7.8564 -0.02012 61.705 7.8540
4 0.00091 10.996 -0.02003 120.91 10.996

k = 1, ǫc = 0.1, γ = 0.05
n µ1,n µ2,n θ1,n θ2,n (n− 1

2
)π

0 0.02125 1.7418 -0.07402 3.0334 -
1 0.24445 2.2589 -1.10439 5.0430 1.5708
2 0.02317 4.7016 -0.21783 22.105 4.7124
3 0.01288 7.8563 -0.20243 61.721 7.8540
4 0.00913 10.996 -0.20069 120.91 10.996

k = 1, ǫc = 0.1, γ = 0.01
n µ1,n µ2,n θ1,n θ2,n (n− 1

2
)π

0 0.00081 1.8547 -0.00299 3.4399 -
1 0.83382 3.0885 -5.15050 8.8435 1.5708
2 0.02546 4.6913 -0.23892 22.007 4.7124
3 0.01306 7.8546 -0.20522 61.694 7.8540
4 0.00916 10.995 -0.20136 120.92 10.996

k = 1, ǫc = 0.01, γ = 0.1
n µ1,n µ2,n θ1,n θ2,n (n− 1

2
)π

0 0.00428 1.5700 -0.01343 2.4650 -
1 0.01302 2.1185 -0.05516 4.4878 1.5708
2 0.00225 4.7040 -0.02112 22.127 4.7124
3 0.00128 7.8568 -0.02017 61.730 7.8540
4 0.00091 10.996 -0.02005 120.92 10.996

Table 3.2: Numerical approximations of the eigenvalues θn and the solutions
µn of the characteristic equation (3.94) for the case k = 1, ǫc = 0.1, γ = 0.1;
the case k = 0.25, ǫc = 0.01, γ = 0.025; the case k = 1, ǫc = 0.1, γ = 0.05; the
case k = 1, ǫc = 0.1, γ = 0.01; and the case k = 1, ǫc = 0.01, γ = 0.1.
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or

cos(µ) = O
(

1

|µ|

)

, (3.101)

which is valid for values of µ in a small neighborhood of (n− 1
2
)π, where n ∈ N.

In [36] it has been shown that these equations give the following asymptotic
solutions for θn and µn

θn = −2ǫc + O
(

1

n

)

+ i

(

(mπ)2 + O
(

1

n

))

, (3.102)

µn =
ǫc

mπ
+ O

(

1

n2

)

+ i

(

mπ + O
(

1

n2

))

, (3.103)

which are valid for sufficiently large n ∈ N, and where m =
(

n− 1
2

)

. Note that
the obtained approximations of the damping rate are similar to the approxi-
mations of the damping rates of a weakly damped beam, that is, a beam where
the damping at the top is proportional to the velocity of the top (see [17, 33]).
The expressions (3.102) and (3.103) show that the damping rate of the eigen-
values with large index n are dependent on ǫc. Now it can be concluded that
the oscillations are damped uniformly because (3.73) holds. The asymptotic
approximations of the damping rates are only valid for sufficiently large n ∈ N.
The damping rates for the lower order modes can be obtained numerically by
using Maple. The first five roots µn and the first five θn for several values of
ǫc, k, and γ are listed in Table 3.2. For the cases considered in Table 3.2, it
has been found that the damping rates θ1,0 of the first oscillation mode are
small and that the damping rates θ1,1 of the second oscillation modes are large
with respect to the damping rates of the other oscillation modes. Moreover,
this table presents that the parameters k, γ, and c can be chosen such that the
damping rates of the first two modes are large with respect to the damping
rates of the other modes. In this case the parameters are tuned such that
the frequency of the TMD is close to the frequency of the first mode of the
beam without TMD. In case the maximum of the smallest value of the first
two damping rates is found, it is said that the optimal damping parameters
k, γ, and c are found. In [72] it has been indicated, by numerical methods, that
in this case the frequency of the TMD should be a bit smaller than the first
frequency of the system without TMD. These optimum damping parameters
can also be found by perturbation analysis, however, this will not be done in
this thesis. By tuning the frequency of the TMD to the frequency of the n-th
mode of the beam without TMD also large damping rates for the n-th and
(n+ 1)-th mode of the beam with TMD can be found.

Now numerical values for µn and θn have been obtained. Then T (t) can be
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approximated by

Tn(t) = eθ1,nt (An cos(θ2,nt) +Bn sin(θ1,nt)) . (3.104)

By using the superposition principle, the general solution of (3.18)-(3.22) with
α = ǫ1 = 0 is found to be

u(x, t) =

∞
∑

n=0

eθ1,nt (An cos(θ2,nt) +Bn sin(θ1,nt))φn(x), (3.105)

where

φn(x) = (cos(µn) + cosh(µn))(sin(µnx) − sinh(µnx)) + (3.106)

(sin(µn) + sinh(µn))(cosh(µnx) − cos(µnx)),

and where the constants An and Bn can be determined by the initial conditions
(3.81) and (3.82) (see [73] for a method to obtain An and Bn). Substitution
of (3.105) into (3.25) yields

ξ(t) =

(

ǫ2c2

k2γ
− 1

k

)

uxxx(1, t) +
ǫc

k2
(uxxxt(1, t) − ǫcutt(1, t))

=

∞
∑

n=0

(

ǫ2c2

k2γ
− 1

k

)

φnxxx
(1)Tnt

(t) +

ǫc

k2
(φnxxx

(1, t)Tnt
(t) − ǫcφn(1)Tntt

(t)) . (3.107)

So u(x, t) and ξ(t) will be damped in a completely similar way.

3.5.2 Construction of the approximations of the roots
of (3.94) for the case γ = O(1)

In this subsection only order ǫ approximation of the roots of the characteristic
equation will be constructed. We are not interested in the higher order approx-
imations. The approximations are such that these are approximations for ǫ ↓ 0,
but also such that these are valid for all oscillation modes (i.e. ∀n ∈ N∪ {0}).
The roots of the following equation will be considered

(γµ4 − k)q(µ) + γkµs(µ) − iǫc(µ2q(µ) − γµ3s(µ)) = 0, (3.108)

where q(τ) and s(τ) are given by (3.62) and (3.63) respectively. The roots
of this equation are close to the roots of the uncontrolled case (that is, the
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roots of hkγ(µ) as considered in section 3.3). Now it is assumed that a root
µn = µ1,n + iµ2,n of (3.108) can be expressed in a power series in ǫ, that is,

µ1,n = µ1,0,n + ǫµ1,1,n + . . . , (3.109)

µ2,n = µ2,0,n + ǫµ2,1,n + . . . , (3.110)

where µi,j,n ∈ R for i = 1, 2 and j, n ∈ N∪{0}. To approximate µn also q(µ) and
s(µ) are expanded in power series in ǫ. For the case (γµ4−k)q(µ)+γkµs(µ) =
0 + O(ǫ) it follows that µn = µ1,0,n + iµ2,0,n + O(ǫ) = µ0,n + O(ǫ), where µ0,n

is the (n + 1)-th positive root of (3.61). Now, by substituting (3.109) and
(3.110) into (3.108) and by equating the coefficients of equal powers of ǫ for
n ∈ {0, 1, 2, . . .}, it follows (after lengthy but elementary calculations) that

µ1,1,n = 0, (3.111)

and that

µ2,1,n =
cµ2

0,n(q(µ0,n) − γµ0,ns(µ0,n))

2kγp(µ0,n) + 4γµ3
0,nq(µ0,n) + (kγ + k − γµ4

0,n)s(µ0,n)
, (3.112)

where p(µ0,n) = sin(µ0,n) sinh(µ0,n) and where q(µ0,n) and s(µ0,n) are given by
(3.62) and (3.63) respectively. Now approximations of the damping rates θ1,n

up to order ǫ can be found and are given by

θ1,n =
−2ǫcµ3

0,n(q(µ0,n) − γµ0,ns(µ0,n))

2kγp(µ0,n) + 4γµ3
0,nq(µ0,n) + (kγ + k − γµ4

0,n)s(µ0,n)
, (3.113)

where µ0,n is the (n + 1)-th positive root of hkγ(µ) = 0, and where θ1,n is
negative for all n ∈ N ∪ {0}. So the damping rates can be calculated if the
positive roots µ0,n of hkγ(µ) = 0 are known. In Table 3.3 the first eight values
of the damping rates are listed for k = 1 and γ = 1, γ = 0.1, γ = 0.01, and
γ = 0.001. Now compare the values of Table 3.2 and the values of Table 3.3.
In this section roots of (3.94) have been constructed for the case γ = O(1). So
only the values of Table 3.2 for the case k = 1, ǫc = 0.01, and γ = 0.1 can be
compared to the values of Table 3.3.

Since µn → (n− 1
2
)π for n→ ∞, it follows that

θ1,n → −2ǫc, (3.114)

for n sufficiently large. So the oscillation modes will be damped uniformly.
Using a multiple-timescales perturbation method an approximation of the so-
lution of (3.18)-(3.22) can be constructed. It now follows that the following
timescales are necessary: x, t and τ = ǫt. In section 3.6 such an approximation
of the solution will be constructed.
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n γ = 1 γ = 0.1 γ = 0.01 γ = 0.001

0 −0.2684ǫc −1.3435ǫc −0.0344ǫc −0.000310ǫc
1 −2.1819ǫc −5.5157ǫc −50.595ǫc −1.6826ǫc
2 −2.0352ǫc −2.1125ǫc −3.1998ǫc −500.10ǫc
3 −2.0077ǫc −2.0173ǫc −2.1164ǫc −3.6902ǫc
4 −2.0029ǫc −2.0053ǫc −2.0303ǫc −2.3076ǫc
5 −2.0014ǫc −2.0023ǫc −2.0113ǫc −2.1054ǫc
6 −2.0008ǫc −2.0012ǫc −2.0052ǫc −2.0463ǫc
7 −2.0005ǫc −2.0007ǫc −2.0027ǫc −2.0236ǫc

Table 3.3: Numerical approximations of the damping rates θ1,n for k = 1 and
γ = 1, γ = 0.1, γ = 0.01, and γ = 0.001.

3.5.3 Construction of the approximations of the roots
of (3.94) for the case γ = O(ǫ2)

In this subsection the first two terms of the approximation of the roots of the
characteristic equation (3.94) for γ = O(ǫ2) will be considered. We are not
interested in the higher order approximations. The approximations are such
that these are approximations for ǫ ↓ 0 but also such that these are valid for
all oscillation modes (i.e. ∀n ∈ N ∪ {0}). The perturbation method that will
be used in this section will also be applied in chapter 6. The characteristic
equation (3.94) for γ = O(ǫ2) is given by

(ǫ2γ2µ
4 − k − iǫcµ2)q(µ) = −ǫ2γ2µ(k + iǫcµ2)s(µ), (3.115)

where γ = ǫ2γ2 and where γ2 is ǫ-independent. The roots can be expressed
in series in ǫ. Now it will be studied how these expansions can be chosen.
Substitution of µ = µ̃ǫβ = (µ̃re + iµ̃im) ǫβ, where β, µ̃re, µ̃im ∈ R and where
µ̃re, µ̃im = O(1), into (3.115) yields

(

γ2µ̃
4ǫ2+4β − k − icµ̃2ǫ1+2β

)

q(µ̃ǫβ) = −
(

γ2kµ̃ǫ
2+β + iγ2cµ̃

3ǫ3+3β
)

×
s(µ̃ǫβ). (3.116)

A significant degeneration (see also [59]) of (3.116) arises if β = −1
2
, which

yields

(

γ2µ̃
4 − k − icµ̃2

)

q

(

µ̃√
ǫ

)

= −ǫ 3

2

(

γ2kµ̃+ iγ2cµ̃
3
)

s

(

µ̃√
ǫ

)

. (3.117)

Since s
(

µ̃√
ǫ

)

/q
(

µ̃√
ǫ

)

→ − µ̃re

|µ̃re| + i µ̃im

|µ̃im| for ǫ ↓ 0, µ̃re 6= 0, and for µ̃im 6= 0 the

case (ǫ2γ2µ
4 − k − iǫcµ2) = 0 + O(ǫ

3

2 ) will be considered. For this case the
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first order approximation of µ is proportional to 1√
ǫ
. This case will be studied

further in this subsection.
Now consider the case (ǫ2γ2µ

4 − k − iǫcµ2) 6= 0 + O(ǫ
3

2 ). For this case it

can be shown that
(

γ2kµ̃ǫ2+β+iγ2cµ̃3ǫ3+3β

γ2µ̃4ǫ2+4β−k−icµ̃2ǫ1+2β

)

= O(ǫ) for all values of µ̃ and for

ǫ ↓ 0. Then (3.115) is given by q(µ) = 0 + O(ǫ). Therefore also the case
q(µ) = 0 + O(ǫ) will be considered. In this case (3.115) can be written as

q(µ) = −ǫ
(

γ2ǫµ(k + iǫcµ2)

ǫ2γ2µ4 − k − iǫcµ2

)

s(µ). (3.118)

The order in ǫ of
(

γ2ǫµ(k+iǫcµ2)
ǫ2γ2µ4−k−iǫcµ2

)

depends not only on ǫ but also on the order

in ǫ of µ. For each order of µ the order of
(

γ2ǫµ(k+iǫcµ2)
ǫ2γ2µ4−k−iǫcµ2

)

will be different.

But it can be shown that
(

γ2ǫµ(k+iǫcµ2)
ǫ2γ2µ4−k−iǫcµ2

)

= O(1) for all values of µ except for

the case that (ǫ2γ2µ
4 −k− iǫcµ2) = 0+O(ǫ

3

2 ). Now the following ǫ-dependent
constants are introduced: G1(ǫ) = ǫ2γ2, G2(ǫ) = ǫγ2, and C(ǫ) = ǫc. By using
these constants, an expansion for the roots of (3.118) can be obtained which
is valid for all these roots. By using these constants, (3.118) becomes

q(µ) = −ǫ
(

G2(ǫ)µ(k + iC(ǫ)µ2)

G1(ǫ)µ4 − k − iC(ǫ)µ2

)

s(µ). (3.119)

Now it is assumed that a root µn = µ1,n + iµ2,n of (3.119) can be expressed in
a series in ǫ, that is,

µ1,n = µ1,0,n + ǫµ1,1,n(ǫ) + . . . , (3.120)

µ2,n = µ2,0,n + ǫµ2,1,n(ǫ) + . . . , (3.121)

where µi,0,n ∈ R, µi,j,n(ǫ) ∈ R, and µi,j,n(ǫ) = O (1) for i = 1, 2 and j, n ∈ N. To
approximate µn, q(µ) and s(µ) will also be expanded in power series in ǫ. For
the case q(µ) = 0+O(ǫ) it follows that µn = µ1,0,n+iµ2,0,n+O(ǫ) = µ0,n+O(ǫ),
where µ0,n is the n-th positive root of q(µ) = 1+cos(µ) cosh(µ) = 0 and where
µ0,n → (n− 1

2
)π if n→ ∞ (see also [17, 33]). Now by substituting (3.120) and

(3.121) into (3.118) and by equating the coefficients of equal powers of ǫ for
n ∈ {1, 2, . . .}, it follows (after lengthy but elementary calculations) that

µ1,1,n(ǫ) =
G1(ǫ)G2(ǫ)C(ǫ)µ7

0,n

(G1(ǫ)µ4
0,n − k)2 + C2(ǫ)µ4

0,n

, (3.122)

µ2,1,n(ǫ) =
G2(ǫ)µ0,n

(

k(G2(ǫ)µ
4
0,n − k) − C2(ǫ)µ4

0,n

)

(G1(ǫ)µ4
0,n − k)2 + C2(ǫ)µ4

0,n

. (3.123)
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Hence approximations of µn for the roots of (3.119) have been found. Conse-
quently, also an approximation for the damping rates θ1,n = −2µ1,nµ2,n have
been found:

θ1,n =
−2ǫG1(ǫ)G2(ǫ)C(ǫ)µ8

0,n

(G1(ǫ)µ4
0,n − k)2 + C2(ǫ)µ4

0,n

. (3.124)

Now substitute G1(ǫ) = ǫ2γ2, G2(ǫ) = ǫγ2, and C(ǫ) = ǫc into (3.124) to obtain
the damping rate for the n-th oscillation mode

θ1,n =
−2ǫ5γ2

2cµ
8
0,n

(ǫ2γ2µ4
0,n − k)2 + ǫ2c2µ4

0,n

. (3.125)

Thus it follows for the higher order modes (i.e. for n sufficiently large) that

θ1,n ≈ −2ǫc. (3.126)

So the higher order modes are damped weakly, but the damping for the first
oscillation modes is very small, that is, θ1,n = O(ǫ5). Since in applications
the first oscillation modes are important, the parameter γ should not be small
with respect to the damping parameter ǫc to obtain damping of order ǫ.

In case (ǫ2γ2µ
4 − k − iǫcµ2) = 0 + O(ǫ

3

2 ), (3.115) can be written in the
following way

ǫ2γ2µ
4 − k − iǫcµ2 = −ǫ2(γ2kµ+ iǫcγ2µ

3)

(

s(µ)

q(µ)

)

. (3.127)

The roots of (3.127) will be denoted by µ0. Now approximations of µ0 will be
considered. It was observed that in this case the first order approximation of
µ0 is proportional to 1√

ǫ
. It should also be observed that the small parameter

in (3.117) is ǫ
√
ǫ. For these reasons the root µ0 will be expanded in

µ0 =
1√
ǫ

(

µ0,0 + ǫ
√
ǫµ1,0 + . . .

)

. (3.128)

Note that both the real part µ0re
and the imaginary part µ0im

of µ0 are both

O( 1√
ǫ
). Then it can be shown that s(µ0)

q(µ0)
→ − µ0re

|µ0re |
+ i

µ0im

|µ0im
| if ǫ ↓ 0. Now,

by substituting (3.128) into (3.127) and by equating equal powers of ǫ, it is
obtained that µ0,0 is the root of the following equation

γ2µ
4
0,0 − k − icµ2

0,0 = 0. (3.129)

The roots are such that if µ0,0re
+µ0,0im

i is a solution then also µ0,0im
+µ0,0re

i,
−µ0,0re

− µ0,0im
i, and −µ0,0re

− µ0,0im
i are solutions. Now it is obtained that

µ0,0 =
±1√
2γ2

√

ic±
√

4kγ2 − c2. (3.130)
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If a root µ0 of (3.127) is found, the oscillation mode θ0 = θ0re
+ iθ0im

, where
θ0re

, θ0im
∈ R, can be determined by considering the relation: θ0 = iµ2

0. Note
that θ0re

is the damping rate of the mode θ0. Hence an approximation for θ0
has been found, given by

θ0 =
1

2ǫγ2

(

−c±
√

c2 − 4kγ2

)

. (3.131)

Now also an approximation of the solution of (3.90) can be obtained. Depend-
ing on the sign of 4kγ2 − c2 three cases have to be considered. The mode
will be damped critically for c2 = 4kγ2, and the mode will be overdamped for
c2 > 4kγ2. If c2 is large with respect to 4kγ the damping rates θ0re

will be close
to 0 and −c

γ2
. So the damping parameter c of the tuned mass damper should not

be chosen too large, that is, c2 < 4kγ. Therefore, in this chapter, these cases
will not be considered, and it is assumed that c2 < 4kγ. Now, by assuming
that c2 < 4kγ2, it is found, after lengthy but elementary calculations, that

µ1,0 =

(

− µ0,0re

|µ0,0re
| + i

µ0,0im

|µ0,0im
|

)

(

2γ2k − c2 + ic
√

4γ2k − c2

4
√

4γ2k − c2

)

. (3.132)

Since the damping rates (3.125) and the real part of (3.131) are negative and
do not tend to zero for n large, the oscillation modes will be damped uniformly.

In section 3.5 it has been shown that there exist a Rk ∈ R such that the
number of roots of (3.115) and (ǫ2γ2µ

4−k−iǫcµ2)q(µ) = 0 is the same, counting
multiplicities, in B(0, Rk). Therefore, approximations of all the roots of the
so-called characteristic equation for the case γ = O(ǫ2) have been constructed.
It also has been shown that the oscillation modes will be damped uniformly.
By using a multiple-timescales perturbation method, an approximation of the
solution of (3.18)-(3.22) for the case γ = O(ǫ2) can be constructed. From
(3.91) and (3.131) it follows that the timescale t̄ = t

ǫ
is necessary. Substitution

of (3.128) into (3.106) leads to the timescale x̄ = x√
ǫ
. It now follows that the

following timescales are necessary: x, t, t̄ = t
ǫ
, x̄ = x√

ǫ
, and τ = ǫt. This case

will not be studied in this chapter.

3.5.4 Construction of the approximation of the first

roots of (3.94) for the case γ = O(ǫ)

In the previous subsection it has been shown that the damping rate of the first
oscillation mode is relatively small with respect to the other damping rates.
Therefore only the first roots of (3.94) for the case γ = O(ǫ) will be considered
in this subsection. The obtained approximation is only valid for roots µ such
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that ǫ|µ|4 ≪ 1. The roots for the case ǫ|µ|4 ≈ 1 and the case ǫ|µ|4 ≫ 1 can be
obtained by using numerical methods. The characteristic equation (3.94) for
γ = O(ǫ) is given by

q(µ) =
ǫ

k
(γ1µ

4q(µ) + γ1kµs(µ) − ic(µ2q(µ) − ǫγ1µ
3s(µ))), (3.133)

where γ = ǫγ1 and where γ1 is ǫ-independent. Now it is assumed that a root
µn = µ1,n + iµ2,n of (3.133) can be expressed in a power series in ǫ, that is,

µ1,n = µ1,0,n + ǫµ1,1,n + . . . , (3.134)

µ2,n = µ2,0,n + ǫµ2,1,n + . . . , (3.135)

where µi,j,n ∈ R for i = 1, 2 and j, n ∈ N ∪ {0}. To approximate µn, also q(µ)
and s(µ) are expressed in power series in ǫ. For the case q(µ) = 0 + O(ǫ) it
follows that µn = µ1,0,n + iµ2,0,n +O(ǫ) = µ0,n +O(ǫ), where µ0,n is the (n+1)-
th positive root of q(µ) = 1+cos(µ) cosh(µ) = 0, and where µ0,n → (n+ 1

2
)π if

n→ ∞. Now, by substituting (3.134) and (3.135) into (3.133) and by equating
the coefficients of equal powers of ǫ for n ∈ {0, 1, 2, . . .}, it follows that

µ1,1,n = −γ1µ0,n, (3.136)

µ1,2,n = −γ2
1µ0,n

(

µ4
0,n − k − µ0,nk

(

sin(µ0,n) sinh(µ0,n) cosh(µ0,n)

sinh(µ0,n) + sin(µ0,n) cosh2(µ0,n)

))

,

(3.137)
and that

µ2,1,n = 0, µ2,2,n = 0, µ2,3,n =
cγ2

1µ
7
0,n

k2
. (3.138)

Now it is found that an approximation of the damping rate (θ1,n = −2iµ1,nµ2,n)
up to order ǫ3 is given by:

θ1,n =
−2ǫ3cγ2

1µ
8
0,n

k2
. (3.139)

So the first damping rates are small with respect to the damping parameter ǫc
and the ratio ǫγ1. It has also been found that (3.139) has the smallest value
for n = 0 with respect to the other oscillation modes such that ǫ|µn|4 ≪ 1.

3.6 Formal approximations

In subsection 3.5.2 problem (3.18)-(3.22) with α = ǫ1 = 0 has been considered.
It has also been mentioned that a slow timescale like τ = ǫt is needed to
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solve the problem (3.18)-(3.22) with α = ǫ1 = 0 approximately, by using a
two-timescales perturbation method. In this section an approximation of the
solution of the initial-boundary value problem (3.18)-(3.22) with ǫ = ǫ1 = ǫ2 =
ǫ3 will be constructed. This is the case of a vertical beam with a TMD at the
top in a wind-field. In this section conditions like t > 0, t ≥ 0, and 0 < x < 1
will be dropped, for abbreviation.

It is assumed that the solution can be expanded in a Taylor series with
respect to ǫ in the following way

u(x, t; ǫ) = û0(x, t) + ǫû1(x, t) + ǫ2û2(x, t) + · · · . (3.140)

It is assumed that the functions ûi(x, t) are O(1). The approximation of the
solution will contain secular terms. Since the ûi(x, t) are assumed to be O(1),
and since the solutions are bounded, secular terms should be avoided when
approximations are constructed on a timescale of O(ǫ−1). That is why a two-
timescales perturbation method will be applied. Using such a two-timescales
perturbation method, the function u(x, t) is supposed to be a function of x, t
and τ = ǫt. So put

u(x, t) = w(x, t, τ ; ǫ). (3.141)

A result of this is

ut = wt + ǫwτ ,

utt = wtt + 2ǫwtτ + ǫ2wττ ,

uttt = wttt + 3ǫwttτ + 3ǫ2wtττ + ǫ3wτττ . (3.142)

Substitution of (3.141)-(3.142) into the problem (3.18)-(3.22) yields an initial
boundary-value problem for w(x, t, τ). Assuming that

w(x, t, τ) = u0(x, t, τ) + ǫu1(x, t, τ) + ǫ2u2(x, t, τ) + . . . , (3.143)

then, by collecting terms of equal powers in ǫ, it follows from the problem for
w(x, t, τ) that the O(1)-problem is:

u0xxxx
+ u0tt

= 0, (3.144)

u0(0, t, τ) = u0x
(0, t, τ) = u0xx

(1, t, τ) = 0, (3.145)

Bkγ(u0) = 0, (3.146)

u0(x, 0, 0) = f(x), (3.147)

u0t
(x, 0, 0) = g(x), (3.148)
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and that the O(ǫ)-problem is:

u1xxxx
+ u1tt

= −[(γ + 1 − x)u0x
]
x
− 2u0tτ

+ αu0t
, (3.149)

u1(0, t, τ) = u1x
(0, t, τ) = u1xx

(1, t, τ) = 0, (3.150)

Bkγ(u1) = c (γu0ttt
(1, t, τ) − u0xxxt(1, t, τ))

−2γu0xxxtτ
(1, t, τ) + 2kγu0tτ

(1, t, τ)

−γ2u0xtt
(1, t, τ) − kγu0x

(1, t, τ), (3.151)

u1(x, 0, 0) = 0, (3.152)

u1t
(x, 0, 0) = −u0τ

(x, 0, 0), (3.153)

where (see also (3.23))

Bkγ(ψ) ≡ kψxxx(1, t, τ) + γψxxxtt(1, t, τ) − kγψtt(1, t, τ). (3.154)

The solution of the O(1)-problem (3.144)-(3.148) has been determined in sec-
tion 3.3 and is given by

u0(x, t, τ) =

∞
∑

n=0

T0n(t, τ)φn(x), (3.155)

where φn(x) is given by (3.66), and where

T0n(t, τ) = A0n(τ) cos(µ2
nt) +B0n(τ) sin(µ2

nt), (3.156)

in which A0n(0) and B0n(0) are defined by (3.69) and (3.70) respectively.

Now the solution of the O(ǫ)-problem will be determined. The problem
(3.149)-(3.153) has an inhomogeneous boundary condition. For classical inho-
mogeneous boundary conditions the inhomogeneous boundary conditions are
made homogeneous. However, for inhomogeneous non-classical boundary con-
ditions such as (3.151), a different procedure has to be followed. In fact, in a
similar way as in section 2.5, a transformation will be used such that the par-
tial differential equation and the inhomogeneous boundary condition, after the
transformation, “match”. To solve this problem the following transformation
will be used

u1(x, t, τ) = v(x, t, τ) +

(−x2

2
+
x3

6

)

h(t, τ). (3.157)

Substitution of (3.157) into (3.149)-(3.153) yields the following problem for
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v(x, t, τ)

vxxxx + vtt = −[(γ + 1 − x)u0x
]
x
− 2u0tτ

−
(−x2

2
+
x3

6

)

htt(t, τ)

+αu0t
, (3.158)

v(0, t, τ) = vx(0, t, τ) = vxx(1, t, τ) = 0, (3.159)

Bkγ(v) = c(γu0ttt
(1, t, τ) − u0xxxt

(1, t, τ))

−kh(t, τ) − γhtt(t, τ) −
kγ

3
htt(t, τ) − 2γu0xxxtτ

(1, t, τ)

+2kγu0tτ
(1, t, τ) − kγu0x

(1, t, τ) − γ2u0xtt
(1, t, τ), (3.160)

v(x, 0, 0) =

(

x2

2
− x3

6

)

h(0, 0), (3.161)

vt(x, 0, 0) =

(

x2

2
− x3

6

)

ht(0, 0) − u0τ
(x, 0, 0). (3.162)

It is assumed that v(x, t, τ) can be expressed in series of eigenfunctions,

v(x, t, τ) =
∞
∑

m=0

vn(t, τ)φn(x). (3.163)

Substitute (3.163) into the partial differential equation (3.158) and the bound-
ary condition (3.160) to get

∞
∑

n=0

(vntt
+ λnvn)φn(x) = −[(γ + 1 − x)u0x

]
x
− 2u0tτ

+ αu0t

−
(−x2

2
+
x3

6

)

htt(t, τ), (3.164)

∞
∑

n=0

(vntt
+ λnvn)

(

kφnxxx
(1)

λn

)

= c(γu0ttt
(1, t, τ) − kh(t, τ) (3.165)

−u0xxxt
(1, t, τ)) − γhtt(t, τ) −

kγ

3
htt(t, τ)

+2kγu0tτ
(1, t, τ) − kγu0x

(1, t, τ)

−γ2u0xtt
(1, t, τ) − 2γu0xxxtτ

(1, t, τ),

respectively. Now the function h(t, τ) will be derived. By differentiating
(3.164) with respect to x thrice, by multiplying by γ, and by taking the limit
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to x = 1 in the so-obtained equation, it follows that

∞
∑

n=0

(vntt
+ λnvn) γφnxxx

(1) = −2γu0xxxtτ
(1, t, τ) + αγu0xxxt

(1, t, τ) (3.166)

−γhtt(t, τ) − γ2u0xtt
(1, t, τ) + 4γλnu0tt

(1, t, τ).

Take the limit x = 1 in (3.164) and multiply to so-obtained result by kγ, to
get

∞
∑

n=0

(vntt
+ λnvn) kγφn(1) = −2kγu0tτ

(1, t, τ) + αkγu0t
(1, t, τ)

+
kγ

3
htt(t, τ) + kγu0x

(1, t, τ). (3.167)

Now, by subtracting (3.165) and (3.167) from (3.166) and by using the second
boundary condition in x = 1 (i.e. (k − γλ)X ′′′(1) + kγλX(1) = 0), it follows
that

kh(t, τ) = c(γu0ttt
(1, t, τ) − u0xxxt

(1, t, τ))

−αγ(u0xxxt
(1, t, τ) − ku0t

(1, t, τ)) − 4u0tt
(1, t, τ). (3.168)

The initial-boundary value problem (3.149)-(3.153) can be solved after expand-

ing
(

−x2

2
+ x3

6

)

in a series of the orthonormal eigenfunctions φn(x):

−x2

2
+
x3

6
=

∞
∑

n=0

Cnφn(x), (3.169)

where

Cn =

∫ 1

0

(−x2

2
+
x3

6

)

φn(x)dx = −
(

φnxxx
(1) + 3φn(1)

3λn

)

. (3.170)

Now the solution v(x, t, τ) will be derived. Multiply equation (3.164) by φm(x)
and integrate with respect to x from 0 to 1 to obtain

∞
∑

n=0

(vntt
+ λnvn)

∫ 1

0

φnφmdx = −
∫ 1

0

([(γ + 1 − x)u0x
]
x

+ 2u0tτ
− αu0t

)φmdx

+

(

φnxxx
(1) + 3φn(1)

3λn

)

htt(t, τ). (3.171)
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Now, by multiplying equation (3.165) by
(

φmxxx(1)
γkλm

)

, adding equation (3.171),

and by using (3.65) the differential equation for vn(t, τ), it follows that

vntt
+ λnvn = −2T0ntτ

−
(

φnxxx
(1) − kφn(1)

kλn

)

htt(t, τ) (3.172)

+αT0nt
(t, τ) +

∞
∑

j=0

T0j(t, τ) (Θjn − γφnx
(1)φj(1)) −

(

φnxxx
(1)

kγλn

)

(

γ2u0xtt
(1, t, τ) + kγu0x

(1, t, τ) − 4u0tt
(1, t, τ)

)

,

where

Θmn =

∫ 1

0

(γ + 1 − x)φmx
(x)φnx

(x)dx. (3.173)

To avoid secular terms, it then follows that

−2T0ntτ
− (αγ (kφn(1) − φnxxx

(1)) − c (γλφn(1) + φnxxx
(1))) ×

(

φnxxx
(1) − kφn(1)

kλn

)

T0nttt

k
+ αT0nt

+ T0nΘnn = 0, (3.174)

where Θnn is given by (3.173). Since T0n(t, τ) = A0n(τ) cos(µ2
nt) +

B0n(τ) sin(µ2
nt) and because of the boundary condition (3.59) (i.e. (γλ −

k)X ′′′(1) = kγλX(1)), equation (3.174) gives the following coupled differential
equations for A0n(τ) and B0n(τ):

dA0n

dτ
+

(

(

c

2
+
αk2

γλ2
n

)(

φnxxx
(1)

k

)2

− α

2

)

A0n +

(

Θnn

2µ2
n

)

B0n = 0, (3.175)

dB0n

dτ
+

(

(

c

2
+
αk2

γλ2
n

)(

φnxxx
(1)

k

)2

− α

2

)

B0n −
(

Θnn

2µ2
n

)

A0n = 0. (3.176)

Define the following constants

k1n =

(

(

c

2
+
αk2

γλ2
n

)(

φnxxx
(1)

k

)2

− α

2

)

=

(

(

c

2
+
αk2

γλ2
n

)(

γλnφn(1)

γλn − k

)2

− α

2

)

, (3.177)

k2n =
Θnn

2µ2
n

. (3.178)
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n γ = 1 γ = 0.1 γ = 0.01 γ = 0.001

0 0.2684 1.3435 0.0344 0.000310
1 2.1819 5.5157 50.595 1.6826
2 2.0352 2.1125 3.1998 500.10
3 2.0077 2.0173 2.1164 3.6902
4 2.0029 2.0053 2.0303 2.3076
5 2.0014 2.0023 2.0113 2.1054
6 2.0008 2.0012 2.0052 2.0463
7 2.0005 2.0007 2.0027 2.0236

Table 3.4: Numerical approximations of 1
2

(

γλnφn(1)
γλn−k

)2

for k = 1 and γ = 1, γ =

0.1, γ = 0.01, and γ = 0.001. The damping rate is equal to: − ǫc
2

(

γλnφn(1)
γλn−k

)2

.

From (3.175) and (3.176) A0n(τ) and B0n(τ) can be determined, yielding

A0n(τ) = e−k1nτ (A0n(0) cos(k2nτ) − B0n(0) sin(k2nτ)) ,

B0n(τ) = e−k1nτ (B0n(0) cos(k2nτ) + A0n(0) sin(k2nτ)) ,

Consider (3.177), if the wind-force is not included (i.e. α = 0) then k1n > 0.
Since φ2

n(1) → 4 for n → ∞, it appears that k1n → 2c for n → ∞. So the
oscillations will be damped uniformly for every positive value of c.

In applications only the first oscillation modes are important. In Table

3.4 the quotient 1
2

(

γλnφn(1)
γλn−k

)2

of the first eight oscillation modes are listed for

several values of γ. Note that also the case that γ is small, but not O(ǫ), has
been considered. Since the quotient is small for the first oscillation mode, c has
to be large to suppress the wind-force. Note that the values of the parameters
in Table 3.4 are similar to the values in Table 3.3.

The functions A0n(τ) and B0n(τ) have been obtained. Now the expres-
sion for vn(t, τ), u0(x, t, τ), and u1(x, t, τ) can be derived, and also an order ǫ
approximation of ξ(t, τ) can be obtained from (3.25). It is beyond the scope
of this chapter to prove that the O(ǫ)-approximations are indeed valid on
timescales of O(ǫ−1).

3.7 Conclusions

In this chapter a beam subjected to wind-forces and with a tuned mass damper
(TMD) at the top as a model for a tall building in a wind-field has been con-
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sidered. The TMD is modeled as a simple mass-spring-dashpot system. The
oscillations of this beam are described by an initial-boundary value problem.
For this problem the nonlinear terms in the beam model have been omitted.
The problem has been solved approximately by using perturbation techniques
and by using the method of separation of variables. All the calculations in this
chapter are formal. The well-posedness of the problem has been assumed, and
a proof of this is beyond the scope of this chapter. Note that the well-posedness
of the problem is not an easy question.

In this chapter the stability of the system has been considered. The energy
integral has been used to show that the system (not subjected to wind-forces)
is damped. In addition, the influence of the ratio (γ) of the mass of the tuned
mass damper (the tip-mass) with respect to the mass of the beam, and of the
damping parameter of the dashpot (ǫ3c, where 0 < ǫ3 ≪ 1) on the damping
rates of the system has been considered. It has been found (see Table 3.2
and formula (3.125)) that the ratio (γ) should not be small with respect to
the damping parameter (ǫ3c) to obtain appropriate damping rates for the first
oscillation modes. For the case that γ and ǫ3c are of equal order it has been
shown (see formula (3.139)) that the first damping rates will become small
with respect to the damping rates of the higher order modes if ǫ3 tends to
0. Furthermore, it has been shown that the tuned mass damper can be used
efficiently to damp the higher order modes.

One of the boundary conditions contains a small parameter. A multiple-
timescales perturbation method has been used to construct approximations of
the solution. It has been shown how the timescales should be chosen.
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CHAPTER 4

On transverse vibrations of a vertical

Timoshenko beam

Abstract In this chapter the transverse vibrations of a standing, uniform
Timoshenko beam will be considered. Due to gravity and the self-weight
of the beam a linearly varying compression force is acting on the beam. It
will be assumed that this compression force is small but not negligible. The
transverse vibrations of the beam can be described by an initial-boundary
value problem. Approximations of the solution of this problem will be
constructed by using a multiple-timescales perturbation method. In addition,
approximations of the frequencies will be obtained. Moreover, the effect of
the linearly varying compression force on the magnitude of the frequencies of
the oscillation modes of the beam will be discussed.

4.1 Introduction

Many structures, such as bridges, buildings, and spacecraft arms can be
modeled as flexible beams. The vibrations of a bridge can be modeled as a
horizontal beam. In [3] a horizontal beam has been considered as a model for
a bridge. The vibrations of a tall building can be modeled as a vertical beam.
A vertical beam in a gravity field is subjected to an axial force due to the
self-weight of the beam. A standing beam is subjected to a compressive axial
force and a hanging beam to a tensile axial force. An example of a standing

This chapter is a slightly revised version of [74].

71



72 Chapter 4. On transverse vibrations of a vertical Timoshenko beam

beam is a tall building and an example of a hanging beam is a stiff elevator
cable. The theory of Euler-Bernoulli and Timoshenko can be used to describe
the vibrations of a beam. The model that describes the transverse vibrations
of a vertical beam, due to the bending moment only, is the Euler-Bernoulli
beam theory. This theory is not sufficient for short beams or for the higher
modes of slender beams because of ignoring the shear force and the rotatory
moment of inertia. The Timoshenko beam theory includes the effects of shear
force and rotatory inertia.

In [11] the mode shape differential equation describing the transverse
vibrations of a hanging Euler-Bernoulli beam under linearly varying axial force
has been derived. It has been concluded that the equation can not be solved
exactly. In [11] approximate analytical solutions have been determined by
using the Ritz-Galerkin method with gravity-free eigenfunctions. Moreover, in
[11], approximate analytical solutions of this problem have been determined
for the case that gravity is dominating by using the method of matching
asymptotic expansions. In [75] this method have been applied to a similar
problem, that is, to the problem of a slightly stiff pendulum carrying a small
bob. Furthermore, it has been shown in [11] that a compression force reduces
the frequencies and that the influence of the gravity on the frequencies de-
creases by increasing mode number. In [12] the natural frequencies of standing
and hanging Euler-Bernoulli beams have been studied. The Frobenius method
has been used to solve the mode shape differential equation of a uniform
hanging beam. It has been concluded in [12] that the natural frequencies of
the hanging and of the standing beam are noticeably different. In [76] buckling
of an Euler-Bernoulli beam under self-weight has been studied. In [17] and
[69] the partial differential equation describing the vibrations of a standing
Euler-Bernoulli beam with tip-mass has been derived. A multiple-timescales
perturbation method has been used to solve this problem for the case that
the influence of the axial load is small. It has been concluded in [17] and
[69] that increasing the gravity effect (i.e. increasing compression force) and
increasing the mass of the tip-mass reduces the natural frequencies. In [13]
Hamilton’s principle has been used to obtain the governing equations of a
vertically hanging Timoshenko beam under gravity as a model for flexible
space structures. The study in [13] is restricted to hanging beams, since
standing beams under dominating gravity load will buckle due to its own
weight. In [13], by using a finite element approach, the vibrational behavior of
the flexible beam has been determined. It has been shown that the frequencies
of the vibration modes of the beam increase with increasing gravity effect
and that the influence of the gravity on these frequencies decreases with
increasing mode number. Moreover, it has been concluded in [13] that the
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inclusion of shear deformation and rotatory inertia reduces the increases (due
to the tensile axial force which is acting on the beam) of the frequencies in
the higher order modes of the hanging beam. These results have also been
found in [14], where the vibrations of a hanging Timoshenko beam have been
studied by using the Galerkin method. In [77] uniform and nonuniform beams
with various types of boundary conditions and with axial force have been
studied. And in [78] the transverse buckling of a rotating Timoshenko beam
have been studied for clamped-free and clamped-clamped boundary conditions.

In this chapter the vibrations of a standing, uniform, cantilevered beam as
a simple model for a tall building will be studied. The beam is subjected to
a linearly varying compression force. Inclusion of this compression force into
the beam model reduces the magnitude of the frequencies of the beam. The
aim of this chapter is to examine this decrease in magnitude of the frequencies,
more precisely, to study the influence of the beam parameters on this decrease.
It will be assumed that the compression force due to gravity is small but not
negligible. The Timoshenko beam theory will be used to model the transverse
vibrations of the beam. Now the vibrations can be described by an initial-
boundary value problem. The multiple-timescales perturbation method will be
used to obtain explicit approximations of the solutions of this initial-boundary
value problem. Moreover, explicit approximations of the natural frequencies
will be obtained. Note that the methods used in this chapter are not restricted
to standing beams, but can also be applied to hanging beams. This is the case
of a beam under linearly varying tensile force.

This chapter is organized as follows. Firstly, in section 4.2, the governing
partial differential equations describing the transverse vibrations of a standing,
uniform, cantilevered Timoshenko beam will be derived. Secondly, in section
4.3, the eigenvalue problem of a standing, uniform, cantilevered Timoshenko
beam will be derived. It will be shown that the eigenfunctions form an or-
thogonal set and that the eigenvalues are real-valued and positive for sufficient
small gravity effect. Then, in section 4.4, the gravity effect will be neglected.
The initial-boundary value problem describing the transverse vibration of a
uniform, cantilevered Timoshenko beam will be solved exactly. In section 4.5
the partial differential equations describing the vibrations of a standing, uni-
form, cantilevered Timoshenko beam will be solved approximately by using a
multiple-timescales perturbation method. In addition, the effect of gravity on
the frequencies and the oscillation modes will be derived. Finally, in section
4.6, conclusions will be drawn and remarks will be made.
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Figure 4.1: Timoshenko beam element.

4.2 Equations of motion

In this section the linearized equations of motion that describe the transverse
vibration and the rotation of the cross-section of a vertical, uniform, can-
tilevered beam will be derived by using the Bress-Timoshenko beam theory
and the classical dynamic equilibrium method. Due to gravity and due to the
self-weight of the beam a linearly varying axial compression force is acting
on the beam. To describe the effect of the axial force, it is assumed in this
chapter that the axial force is tangential to the slope of the beam. It can also
be assumed that the axial force is normal to the direction of the shear force.
In [79] both cases, the axial force is tangential to the axis of the slope of the
beam and the axial force is normal to the shearing force, have been considered
and for both cases the equations of motion have been derived. But, in [79],
nothing has been said on which method is more accurate. However, in [80] it
has been indicated that the equations of motion which follows from the first
assumption are more accurate. Therefore, also in this chapter, it is assumed
that the axial force is tangential to the slope of the beam. Note that also in
[77] and [81] both cases have been considered. For Bress-Timoshenko beam
theory the total slope of the beam, the bending moment, and the shearing
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force are given by (see [9])

∂η(X, τ)

∂X
= ψ(X, τ) + β(X, τ), (4.1)

M(X, τ) = EI
∂ψ(X, τ)

∂X
, (4.2)

V (X, τ) = −k′β(X, τ)AG = −k′AG
(

∂η(X, τ)

∂X
− ψ(X, τ)

)

, (4.3)

respectively, where M(X, τ) is the moment, V (X, τ) is the shear force, E is
the Young modulus, I is the moment of inertia of the cross-section, k′ is the
shear coefficient depending on the shape of the cross-section, G is the modulus
of elasticity in shear or the modulus of rigidity, A is the cross-sectional area,
η(X, τ) is the beam deflection in Y -direction (see Fig. 4.1), ψ(X, τ) is the
cross-sectional rotation angle due to bending, β(X, τ) is the shear angle, τ is
the time, and X is the position along the beam. From the Timoshenko beam
element (see Fig. 4.1), a dynamic equilibrium for the forces in Y -direction and
the moments about point n acting on this beam element can be obtained. The

angles ψ(X + dX, τ) and ψ(X, τ), and the slopes ∂η(X+dX,τ)
∂X

and ∂η(X,τ)
∂X

are
assumed to be small. By linearizing the so-obtained equilibria with respect to

ψ(X + dX, τ), ψ(X, τ), ∂η(X+dX,τ)
∂X

, and ∂η(X,τ)
∂X

, it follows that the equilibrium
for the forces is approximately given by

V (X, τ) − V (X + dX, τ) − ρAdX
∂2η(X + dX/2, τ)

∂τ 2
+ S(X)

∂η(X, τ)

∂X

−S(X + dX)
∂η(X + dX, τ)

∂X
= 0, (4.4)

and that the equilibrium for the moments is approximately given by

M(X, τ) −M(X + dX, τ) + V (X, τ)dX − ρA
(dX)2

2

∂2η(X + dX/2, τ)

∂τ 2

+ρIdX
∂2ψ(X + dX/2, τ)

∂τ 2
= 0, (4.5)

where S(X) = gρA(L−X), g is the acceleration due to gravity, L the length
of the beam, and ρ is the density of the beam. Now substitute the Taylor
series of V (X + dX) about X into (4.4) and substitute the Taylor series of
M(X+dX) about X into (4.5). Then divide the so-obtained equations by dX
and take the limit dX → 0, to get the following equations:

∂V (X, τ)

∂X
+ ρA

∂2η(X, τ)

∂τ 2
+

∂

∂X

(

S(X)
∂η(X, τ)

∂X

)

= 0, (4.6)

∂M(X, τ)

∂X
− V (X, τ) − ρI

∂2ψ(X, τ)

∂τ 2
= 0. (4.7)
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The boundary conditions of a cantilevered beam are given by

η(0, τ) = ψ(0, τ) = 0, (4.8)

M(L, τ) = V (L, τ) = 0. (4.9)

By substituting (4.2) and (4.3) into (4.6)-(4.9), the following coupled partial
differential equations and boundary conditions describing the deflection and
the angle of rotation of a uniform, cantilevered Timoshenko beam are obtained:

k′AG(ηXX − ψX) − ρAηττ − gρA[(L−X)ηX ]X = 0, (4.10)

EIψXX + k′AG(ηX − ψ) − ρIψττ = 0, (4.11)

η(0, τ) = ψ(0, τ) = 0, (4.12)

EIψX(L, τ) = 0, (4.13)

k′AG (ηX(L, τ) − ψ(L, τ)) = 0. (4.14)

To put the equations of motion (4.10)-(4.14) in a non-dimensional form, the

following substitutions x = X
L

, u = η
L
, and t = κτ , where κ = 1

L2

√

EI
ρA

, will be

used. By applying these substitutions, problem (4.10)-(4.14) simplifies to:

ψxx +

(

1

r2s2

)

(ux − ψ) − r2ψtt = 0, 0 < x < 1, t > 0, (4.15)

(

1

r2s2

)

(uxx − ψx) − utt − ǫ[S̃(x)ux]x = 0, 0 < x < 1, t > 0, (4.16)

u(0, t) = ψ(0, t) = 0, t ≥ 0, (4.17)

ψx(1, t) = 0, t ≥ 0 (4.18)

ux(1, t) − ψ(1, t) = 0, t ≥ 0 (4.19)

u(x, 0) = f(x), and ut(x, 0) = h(x), 0 < x < 1 (4.20)

ψ(x, 0) = p(x), and ψt(x, 0) = q(x), 0 < x < 1, (4.21)

where S̃(x) = 1 − x, r2 = I
AL2 , s

2 = E
k′G

, and ǫ = gρAL3

EI
, and where f(x), h(x),

p(x), and q(x) are the initial displacement of the beam in horizontal direction at
position x, the initial velocity of the beam in horizontal direction at postion x,
the initial rotation angle (due to bending) at postion x, and the initial angular
velocity at position x respectively. It should be observed that ǫ, r2 and s2 are
dimensionless parameters. The parameter ǫ is the gravity parameter, which
may be regarded as the ratio of the weight multiplied by the square of the
length to the flexural rigidity (see also [13]). Note that from (4.15)-(4.21) the
equations of motion, which describes the vibrations of a hanging beam, can
be obtained by assuming that the gravity force acts in opposite direction. In
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this chapter it will be assumed that the gravity parameter is small, that is,
0 < ǫ≪ 1. The parameter 1

r
is the slenderness ratio and 1

rs
is the shear/flexural

rigidity ratio. The parameters r2 and s2 are assumed to be ǫ-independent. In
this chapter the effect of the parameters ǫ, r2, and s2 on the frequencies will
be studied. Note that by eliminating ψ from (4.15)-(4.21) an initial-boundary
value problem for u can be obtained. By substituting s = 0 into the so-
obtained problem, the problem that describes the transverse vibrations of a
Rayleigh beam can obtained. If additionally r = 0 is substituted into this
problem, the equations of motion of a cantilevered Euler-Bernoulli beam are
obtained.

4.3 A perturbation method

In this section the initial-boundary value problem (4.15)-(4.19) will be consid-
ered. This problem describes the transverse vibrations of a standing Timo-
shenko beam. Now look for non-trivial solutions of the system (4.15)-(4.19) in

the form u(x, t) = U(x)T1(t) and ψ(x, t) = Ψ̂(x)T2(t). Note that u(x, t) ≡ 0
only leads to ψ(x, t) ≡ 0 and that ψ(x, t) ≡ 0 only leads to u(x, t) ≡ 0. By

substituting u(x, t) = U(x)T1(t) and ψ(x, t) = Ψ̂(x)T2(t) into (4.15) it follows
that

(

Ψ̂(x) − r2s2Ψ̂′′(x)
)

T2(t) + r4s2Ψ̂(x)T ′′
2 (t) = U ′(x)T1(t), (4.22)

where the primes denote differentiation with respect to the independent vari-
able, whether x or t. Let c1, c2 ∈ C. From (4.22) it follows that the case
T1(t) 6= c1T2(t) and T1(t) 6= c2T

′′
2 (t) leads to U ′(x) ≡ 0. Hence, from (4.17),

it follows that U(x) ≡ 0. Therefore, following the argument as given above
(4.22), it follows that the case T1(t) 6= c1T2(t) and T1(t) 6= c2T

′′
2 (t) only leads

to trivial solutions. If T1(t) 6= c1T2(t) and T1(t) = c2T
′′
2 (t), it appears from

(4.17)-(4.19) and (4.22) that Ψ̂ − r2s2Ψ̂′′ = 0 and Ψ̂(0) = Ψ̂(1) = Ψ̂′(1) = 0.
Hence also this case only leads to trivial solutions. Therefore, from (4.22), the
case T1(t) 6= c1T2(t) and T1(t) 6= c2T

′′
2 (t), and the case T1(t) 6= c1T2(t) and

T1(t) = c2T
′′
2 (t), it follows that (4.15)-(4.21) can only have nontrivial solutions

if there exists a constant c1 ∈ C \ {0} such that T1(t) = c1T2(t). Now look for
nontrivial solutions of the system (4.15)-(4.19) in the form u(x, t) = U(x)T (t)

and ψ(x, t) = Ψ(x)T (t), where c1Ψ(x) = Ψ̂(x). By substituting this into
(4.15), it follows that

T ′′

T
=
U ′(x) − (Ψ(x) − r2s2Ψ′′(x))

r4s2Ψ(x)
= −λ, (4.23)



78 Chapter 4. On transverse vibrations of a vertical Timoshenko beam

where λ ∈ C is a complex-valued separation constant. Now substitute u(x, t) =
U(x)T (t), ψ(x, t) = Ψ(x)T (t), and T ′′ = −λT into (4.15)-(4.19) to obtain the
following eigenvalue problem

Ψ′′ +
1

r2s2
(U ′ − Ψ) = −r2λΨ, (4.24)

1

r2s2
(U ′′ − Ψ′) − ǫ [(1 − x)U ′]

′
= −λU, (4.25)

Ψ(0) = U(0) = 0, (4.26)

Ψ′(1) = 0, (4.27)

U ′(1) − Ψ(1) = 0. (4.28)

The eigenvalue λ corresponds to the eigenfunction Φ(x) defined by

Φ(x) =

(

U
Ψ

)

. (4.29)

Multiply the left hand sides of (4.24) and (4.25) by the nontrivial functions

Ψ(x) and U(x) respectively, sum these so-obtained expressions, and integrate
the so-obtained sum by parts with respect to x from 0 to 1, to get
∫ 1

0

{(

Ψ′′ +
1

(r2s2
(U ′ − Ψ)

)

Ψ +
1

r2s2

(

U ′′ − Ψ′ − ǫr2s2 [(1 − x)U ′]
′)
U

}

dx

=

∫ 1

0

{

(

Ψ′′ +
1

r2s2
(U ′ − Ψ)

)

Ψ +
1

r2s2

(

U ′′ − Ψ′ − ǫr2s2 [(1 − x)U ′]′
)

U
}

dx.

.(4.30)

Now substitute (4.24) and (4.25) into (4.30) to obtain

(

λ− λ
)

∫ 1

0

{

U(x)U(x) + r2Ψ(x)Ψ(x)
}

dx = 0. (4.31)

Since UU = |U |2 ≥ 0, ΨΨ = |Ψ|2 ≥ 0, and because the functions U(x) and
Ψ(x) are not allowed to be identically equal to zero, the integrand in (4.31) is
positive. Therefore λ−λ = 0, which implies that λ is real. Since the eigenvalues
λ and the parameters (r2, s2, and ǫ) in the differential equations (4.24) and
(4.25) and in the boundary conditions (4.26) and (4.28) are real-valued, it
follows that the eigenfunction Φ(x) can be chosen to be real-valued. Let the
vector function Φi(x) be a vector solution of (4.24)-(4.28) corresponding to the
eigenvalue λi and let Φj(x) be a vector solution of (4.24)-(4.28) corresponding
to the eigenvalue λj . Then, again by using integration by parts, it follows that

(λi − λj)

∫ 1

0

{

UiUj + r2ΨiΨj

}

dx = 0. (4.32)
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Hence
∫ 1

0
{UiUj + r2ΨiΨj} dx = 0 if λi 6= λj . Consequently, eigenfunctions

corresponding to different eigenvalues are orthogonal with respect to the fol-
lowing inner product:

〈Φi,Φj〉 =

∫ 1

0

{

UiUj + r2ΨiΨj

}

dx. (4.33)

Now it will be shown that the eigenvalues are positive for sufficiently small
values of ǫ. Multiply (4.24) by Ψ(x), multiply (4.25) by U(x), sum the so-
obtained results, and integrate the so-obtained sum with respect to x from 0
to 1, to obtain

∫ 1

0

{

(Ψ′(x))
2
+

1

r2s2
(U ′(x) − Ψ(x))

2 − ǫ(1 − x) (U ′(x))
2

}

dx =

λ

∫ 1

0

{

U2(x) + r2Ψ2(x)
}

dx. (4.34)

It should be observed that the integral at the right hand side of (4.34) is
positive. Now it will be shown that the left hand side of (4.34) is positive for
sufficiently small values of ǫ. Then it can be concluded that the eigenvalues
are positive for sufficiently small values of ǫ. Using Ψ(x) =

∫ x

0
Ψ′(s)ds, the

following inequality on 0 < x < 1 can be derived

|Ψ(x)| ≤
∫ x

0

|Ψ′(s)|ds ≤
∫ 1

0

|Ψ′(x)|dx. (4.35)

Using the Cauchy-Schwarz inequality, it follows that

(Ψ(x))2 ≤
(
∫ 1

0

|Ψ′(x)|dx
)2

≤
∫ 1

0

(Ψ′(x))2dx. (4.36)

Furthermore, it should be observed that from (U ′(x) − (1 + 2r2s2)Ψ(x))2 =
(1 + 2r2s2)(U ′(x) −Ψ(x))2 + 2r2s2(1 + 2r2s2)Ψ2(x) − 2r2s2(U ′(x))2, it follows
that

(U ′(x))2 ≤
(

1 + 2r2s2

2r2s2

)

(U ′(x) − Ψ(x))2 + (1 + 2r2s2)Ψ2(x). (4.37)

Substitution of (4.37) into the left hand side of (4.34) yields
∫ 1

0

{

(Ψ′(x))
2
+

1

r2s2
(U ′(x) − Ψ(x))

2 − ǫ(1 − x) (U ′(x))
2

}

dx ≥
∫ 1

0

{

(Ψ′(x))2 − ǫ(1 + 2r2s2)(1 − x)Ψ2(x)
}

dx+

1

r2s2

∫ 1

0

{(

1 − ǫ

2
(1 + 2r2s2)(1 − x)

)

(U ′(x) − Ψ(x))
2
}

dx. (4.38)
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Then, by using the inequality
∫ 1

0

{

(1 − x) (U ′(x) − Ψ(x))2} dx ≤
∫ 1

0
(U ′(x) − Ψ(x))2 dx and inequality (4.36), it follows that inequality

(4.38) leads to
∫ 1

0

{

(Ψ′(x))
2
+

1

r2s2
(U ′(x) − Ψ(x))

2 − ǫ(1 − x) (U ′(x))
2

}

dx ≥
(

1 − ǫ(1 + 2r2s2)

(
∫ 1

0

(1 − x)dx

))(
∫ 1

0

(Ψ′(x))2dx

)

+

1

r2s2

∫ 1

0

{(

1 − ǫ

2
(1 + 2r2s2)

)

(U ′(x) − Ψ(x))
2
}

dx =

(

1 − ǫ

2
(1 + 2r2s2)

)

(
∫ 1

0

{

(Ψ′(x))2 +
1

r2s2
(U ′(x) − Ψ(x))

2

}

dx

)

. (4.39)

Hence from (4.34), inequality (4.39), and since Ψ′(x))2+ 1
r2s2 (U ′(x) − Ψ(x))2 ≡

0 only leads to trivial solutions, it follows that the eigenvalues are certainly
positive if

ǫ <
2

1 + 2r2s2
. (4.40)

It will be assumed that the gravity parameter, ǫ, is a small parameter, that is,
0 < ǫ≪ 1. For this case the eigenvalues will be positive.

By eliminating ψ from (4.15)-(4.21), an initial-boundary value problem for
u can be obtained. By substituting r = s = 0 into the so-obtained problem
the equations of motion of a cantilevered Euler-Bernoulli beam are obtained.
Hence, from (4.40), it follows that the eigenvalues of a standing, cantilever
Euler-Bernoulli beam are certainly positive if ǫ < 2. Note that this result also
directly follows from inequality (2.34).

Although it has been shown that the eigenvalues (λn) are real-valued and
positive for all sufficiently small values of ǫ, and that the corresponding eigen-
functions (Φn) can be chosen to be real-valued and are orthogonal with respect
to the inner product (4.33), system (4.15)-(4.19) can not be solved exactly. Sys-
tem (4.15)-(4.19) can not be solved exactly because of the linearly varying axial
compression force acting on the beam. In this chapter a multiple-timescales
perturbation method will be applied to solve problem (4.15)-(4.19) approxi-
mately. In section 4.4 the case ǫ = 0 will be considered first, and in section 4.5
the problem (4.15)-(4.21) with ǫ sufficiently small will be solved approximately.

4.4 The case without gravity (ǫ = 0)

In this section the transverse vibrations of a Timoshenko beam will be con-
sidered. The gravity effect is neglected. These vibrations can be described
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by (4.15)-(4.21) with ǫ = 0. In the previous section it has been shown that
the separated solutions of the initial-boundary value problem (4.15)-(4.19) can
be found, that is, solutions u(x, t) in the form U(x)T (t), and solutions ψ(x, t)
in the form Ψ(x)T (t), where T ′′ + λT = 0, and where λ ∈ C is a separation
constant. Now, by substituting this into (4.15)-(4.19) with ǫ = 0, the following
problem is obtained:

Ψ′′ +
1

r2s2
(U ′ − Ψ) = −r2λΨ, (4.41)

1

r2s2
(U ′′ − Ψ′) = −λU, (4.42)

Ψ(0) = U(0) = 0, (4.43)

Ψ′(1) = 0, (4.44)

U ′(1) − Ψ(1) = 0. (4.45)

In [82] this problem has been studied for the case r4s2λ 6= 1. In [82], for
the case r4s2λ 6= 1, a so-called characteristic equation and equations for the
eigenfunctions corresponding to simple eigenvalues have been obtained. In
this section the case r4s2λ 6= 1 and the case r4s2λ = 1 will be discussed. For
the case r4s2λ 6= 1 the characteristic equation will be obtained. Furthermore,
it will be shown that an eigenvalue of problem (4.41)-(4.45) can have two
independent eigenfunctions, such an eigenvalue is called a double eigenvalue
(see [68]). Moreover, it will be shown that (4.41)-(4.45) can only have such a
double eigenvalue if s2 = 1. For the case r4s2λ = 1 it will be shown that double
eigenvalues do not exist. Furthermore, it will be shown that λ = 1

r4s2 is only
an eigenvalue for specific values of the parameters r and s. The eigenfunctions
for the case r4s2λ = 1 will also be obtained. Next, in this section, the solution
of the initial-boundary value problem (4.15)-(4.21) with ǫ = 0 will be given.
Lastly, approximate forms of the eigenvalues will be derived.

Firstly the case r4s2λ 6= 1 will be studied. If r4s2λ 6= 1 the solution of
(4.41)-(4.42) can be given by

Φ̂(x) =

(

U
Ψ

)

, (4.46)

where

U(x) = c0 cosh(ω1x) + c1 sinh(ω1x) + c2 cos(ω2x) + c3 sin(ω2x), (4.47)

Ψ(x) = d0 cosh(ω1x) + d1 sinh(ω1x) + d2 cos(ω2x) + d3 sin(ω2x),(4.48)

in which

ω1,2 =

√

r2λ

2

√

∓(1 + s2) +

√

(1 − s2)2 +
4

r4λ
, (4.49)
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and where the constants ci and di, where i = 0, 1, 2, 3, in (4.47) and (4.48) are
unknown so far. Note that, in the previous section, it has been shown that
the eigenvalue λ is real-valued and positive. From (4.42) it follows that the
constants ci depend on di in the following way:

(ω2
1 + r2s2λ)c0 = ω1d1, (4.50)

(ω2
1 + r2s2λ)c1 = ω1d0, (4.51)

(r2s2λ− ω2
2)c2 = ω2d3, (4.52)

(ω2
2 − r2s2λ)c3 = ω2d2. (4.53)

By using (4.41), similar relations between ci and di can be found. Now, from
the boundary conditions (4.43)-(4.45), it follows that a solution of problem
(4.41)-(4.45) can only exist if Ad = 0, where d = [d0, d3, d2, d1]

T , and where

A =









1 0 1 0
0 1 0 ω1

ω2
ζ

ω1 sinh(ω1) ω2 cos(ω2) −ω2 sin(ω2) ω1 cosh(ω1)
ζ cosh(ω1) sin(ω2) cos(ω2) ζ sinh(ω1)









, (4.54)

where

ζ =
r2s2λ− ω2

2

ω2
1 + r2s2λ

= − ω2
1 + r2λ

ω2
1 + r2s2λ

. (4.55)

By elementary calculations, it follows that A is row equivalent to

Ã =









1 0 1 0
0 1 0 ω1

ω2
ζ

0 0 −ω2 sin(ω2) − ω1 sinh(ω1) ω1(cosh(ω1) − ζ cos(ω2))
0 0 cos(ω2) − ζ cosh(ω1) ζ(sinh(ω1) − ω1

ω2
sin(ω2))









.(4.56)

It should be observed that, for the case r4s2λ 6= 1, a solution can only exist if
the determinant of Ã is equal to zero. By putting this determinant equal to
zero, the characteristic equation is obtained, and is given by (see also [82])

hrs(λ) ≡ 2 +
(

2 + r4(1 − s2)2λ
)

cosh(ω1) cos(ω2)

−
(

r2
√
λ(1 + s2)√

1 − r4s2λ

)

sinh(ω1) sin(ω2) = 0. (4.57)

Now the eigenvalues λn, such that r4s2λn 6= 1, are given implicitly by the
positive roots of the characteristic equation. Now it will be shown that an
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eigenvalue of problem (4.41)-(4.45) can have two independent eigenfunctions.
From (4.56) it follows that a double eigenvalue can only exist if the entries
of the lower right 2 × 2 submatrix are equal to zero (see also [83]). Now this

case will be considered. From Ã33 = Ã44 = 0 (where Ãij is the (i, j)-entry

in Ã) it follows that sinh(ω1) = sin(ω2) = 0. Consequently, it follows that

cosh(ω1) = ±1 and cos(ω2) = ±1. Then from Ã34 = Ã43 = 0 it can be
concluded that a double eigenvalue can only exist if s2 = 1, ω1 = inπ, where
n ∈ N, and ω2 = mπ, where m = n + 2k + 1, and k ∈ Z. Finally, from
ω1 = inπ, ω2 = mπ, s2 = 1, and (4.49), it follows that double eigenvalues can
only exist if

2
√
λ = (m2 − n2)π2, (4.58)

2r2λ = (n2 +m2)π2, (4.59)

where m = n + 2k − 1 and n, k ∈ N. Hence it follows that λ = π4

4
(m2 − n2)2,

where m = n+ 2k − 1 and n, k ∈ N, is an double eigenvalue if r2 = 2(n2+m2)
π2(m2−n2)2

and s2 = 1.

Now the eigenfunctions for the case r4s2λ 6= 1 will be considered. The
eigenfunctions corresponding to simple eigenvalues λn 6= 1

r4s2 have been given

in [82] and are given by Φ̂n(x) = [Un(x),Ψn(x)]T , where

Un(x) = Dn

[(

cosh(ω1,n) −
1

ζn
cos(ω2,n)

)

(cosh(ω1,nx) − cos(ω2,nx)) −
(

ω2,n

ω1,n
sinh(ω1,n) − sin(ω2,n)

)

×
(

ω1,n

ω2,n
sinh(ω1,nx) +

1

ζn
sin(ω2,nx)

)]

, (4.60)

Ψn(x) = Hn

[(

1

ζn
cosh(ω1,n) − cos(ω2,n)

)

(cosh(ω1,nx) − cos(ω2,nx)) −
(

ω1,n

ω2,n
sinh(ω1,n) + sin(ω2,n)

)

×
(

ω2,n

ω1,n

1

ζn
sinh(ω1,nx) − sin(ω2,nx)

)]

, (4.61)

where ζn is given by (4.55), and where Dn and Hn are connected by (4.47)-
(4.48) and (4.50)-(4.53). The general solution of (4.41)-(4.45) corresponding
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to a double eigenvalue λn 6= 1
r4s2 is given by Φ̂n(x) = [Un(x),Ψn(x)]T , where

Un(x) = D1,n

(

ω1,n

ω2
1,n + r2s2λn

sinh(ω1,nx) +
ω2,n

r2s2λn − ω2
2,n

sin(ω2,nx)

)

+

D2,n

( −ω1

ω2
1,n + r2s2λn

cosh(ω1,nx) +
ζω1,n

r2s2λn − ω2
2,n

cos(ω2,nx)

)

, (4.62)

Ψn(x) = H1,n (cos(ω2,nx) − cosh(ω1,nx)) +

H2,n

(

sinh(ω1,nx) − ζ
ω1,n

ω2,n

sin(ω2,nx)

)

, (4.63)

in which D1,n, D2,n, H1,n and H2,n are connected by (4.47)-(4.48) and (4.50)-
(4.53). Now, by putting D1,n = 1 and D2,n = 0 into (4.62)-(4.63) and by
putting D1,n = 0 and D2,n = 1 into (4.62)-(4.63), two independent eigen-
function are found. Note that the values of H1,n and H2,n follow immediately
from the values of D1,n and D2,n and from (4.50)-(4.53). These independent
eigenfunctions are not necessarily orthogonal. But two independent eigenfunc-
tions corresponding to a double eigenvalue can be chosen orthogonal. The
Gram-Schmidt orthogonalization method can be used to accomplish this.

Now the case r4s2λ = 1 (i.e. ω1 = 0) will be considered. Substitute
r4s2λ = 1 into (4.41)-(4.42) to obtain

r2s2Ψ′′ + U ′ = 0, (4.64)

r2 (U ′′ − Ψ′) = −U. (4.65)

The solution of (4.64)-(4.65) is given by Φ̂(x) = [U(x),Ψ(x)]T , with

U(x) = c0 + c2 cos(µx) + c3 sin(µx), (4.66)

Ψ(x) = d0 + d1x+ d2 cos(µx) + d3 sin(µx), (4.67)

where µ =
√

1+s2

rs
, and where the constants c0, c2, c3, and di, in which i =

0, 1, 2, 3, are unknown so far. From (4.65) it follows that c0 = r2d1, c2 =
−r2s2µd3, and c3 = r2s2µd2. Then, by elementary calculations, it follows that
a solution of (4.64)-(4.65) and (4.43)-(4.45) can only exist if Âd = 0, where
d = [d0, d3, d2, d1]

T and

Â =











1 0 1 0
0 1 0 −1

s2µ

0 0 −µ sin(µ) 1 + cos(µ)
s2

0 0 s2 cos(µ) + 1 −1 + sin(µ)
µ











. (4.68)
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Now it will be studied for which values of s and r double eigenvalues can
occur. Double eigenvalues can only exist if the entries of the lower right 2× 2

submatrix of Â are equal to zero. Since µ =
√

1+s2

rs
> 0 it follows from (4.68)

that Â44 < 0. Hence double eigenvalues are not possible for the case r4s2λ = 1.
Then, from (4.68), it can be concluded that a solution of problem (4.64)-(4.65)
and (4.43)-(4.45) can only exist if r and s satisfy the following characteristic
equation

2s2 + (1 + s4) cos(µ) = s2µ sin(µ), (4.69)

where µ =
√

1+s2

rs
. Note that this equation also follows from (4.57) by taking

the limit r4s2λ→ 1. Therefore, λ = 1
r4s2 can only be an eigenvalue of problem

(4.41)-(4.45) if it satisfies (4.57). Hence all the eigenvalues of problem (4.41)-
(4.45) are given by the roots of (4.57). The eigenfunction corresponding to the

eigenvalue λ = 1
r4s2 is given by Φ̂(x) = [U(x),Ψ(x)]T , in which

U(x) = D
[

sin(µ)(1 − cos(µx)) + (s2 + cos(µ)) sin(µx)
]

, (4.70)

Ψ(x) = H
[

(s2 + cos(µ))(cos(µx) − 1) + ×

µ sin(µ)

(

sin(µx)

µ
+ s2x

)

]

, (4.71)

and where D and H are connected by c0 = r2d1, c2 = −r2s2µd3, c3 = r2s2µd2,
(4.66), and (4.67).

So far, it has been found that the eigenvalues of problem (4.41)-(4.45) are
given implicitly by the positive roots of (4.57). In [84] it has been shown that
problem (4.41)-(4.45) has infinitely many, isolated eigenvalues which all have
a finite multiplicity. Now the n-th positive eigenvalue (counting multiplicities)
of problem (4.41)-(4.45) will be denoted by λn. Furthermore, for each simple

eigenvalue an eigenfunction Φ̂n(x) = [Un(x),Ψn(x)]T has been found, which is
given by (4.60)-(4.61) for the case r4s2λn 6= 1, and by (4.70)-(4.71) for the case
r4s2λn = 1. In addition, it has been argued that for each double eigenvalue
λn two orthogonal eigenfunction can be obtained from (4.62)-(4.63). In the
previous section it has been shown that the eigenfunctions corresponding to
different eigenvalues are orthogonal with respect to the inner product defined
by (4.33). Hence the eigenfunctions Φ̂n(x) = [Un(x),Ψn(x)]

T corresponding to
the eigenvalues λn of problem (4.41)-(4.45) form an orthogonal set with respect
to the inner product defined by (4.33). Now the solution of initial-boundary
value problem (4.15)-(4.21) with ǫ = 0 will be constructed. From T ′′

n +λnTn = 0
the function Tn(t) can be determined for each eigenvalue λn. So infinitely
many non-trivial solutions of the problem (4.15)-(4.19) with ǫ = 0 have been



86 Chapter 4. On transverse vibrations of a vertical Timoshenko beam

determined. Using the superposition principle and the initial values (4.20) and
(4.21), the solution Γ(x, t) = [u(x, t), ψ(x, t)]T of the initial-boundary value
problem (4.15)-(4.21) with ǫ = 0 is obtained and is given by

Γ(x, t) =

∞
∑

n=1

(

An cos(
√

λnt) +Bn sin(
√

λnt)
)

Φn(x) ×

=
∞
∑

n=1

Tn(t)Φn(x), (4.72)

where λn is the n-th positive root (counting multiplicities) of the characteristic
equation (4.57). The constants An and Bn are given by

An =

∫ 1

0

f(x)φn(x) + r2p(x)ϕn(x)dx, (4.73)

Bn =
1√
λn

∫ 1

0

h(x)φn(x) + r2q(x)ϕn(x)dx, (4.74)

Furthermore, the function Φn(x) = [φn(x), ψn(x)]T is given by

Φn(x) =
Φ̂n(x)

(

∫ 1

0
{U2

n + r2Ψ2
n} dx

)
1

2

, (4.75)

in which Φ̂n(x), for the case that λn is a simple eigenvalue, is given by (4.60)-
(4.61) for the case r4s2λn 6= 1 and by (4.70)-(4.71) for the case r4s2λn = 1. For

the case that λn is a double eigenvalue, Φ̂n(x) can be obtained from (4.62)-
(4.63). The eigenfunctions Φn(x) form an orthonormal set with respect to the
inner product defined by (4.33).

Now approximations of the roots of the characteristic equation (4.57) will
be constructed. These approximate forms of the roots λn will be used in section
4.5 to determine the self-weight effect of the beam on the natural frequencies.
It should be observed that the case r4s2λ ≪ 1 and r4(1 − s2)2λ ≪ 1, and the
case r4s2λ ≫ 1 and r4(1 − s2)2λ ≫ 1 can be distinguished. In this chapter,
for simplicity, only the influence of r and λ on the approximate forms will be
studied. It will be assumed that s2 = E

k′G
(the ratio of the Young modulus

to the shear coefficient depending on the shape of the cross-section multiplied
by the modulus of elasticity in shear) is fixed and not equal to one. Hence
the case r4λ ≪ 1 and the case r4λ ≫ 1 can be studied instead of the case
r4s2λ≪ 1 and r4(1−s2)2λ≪ 1, and the case r4s2λ≫ 1 and r4(1−s2)2λ≫ 1
respectively. Firstly the case r4λ ≪ 1 will be considered. For this case it
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follows by straightforward calculations that definition (4.57) is approximately
given by

hrs(λ) = 2
(

1 + cosh(
4
√
λ) cos(

4
√
λ)
)

+ (1 +
4
√
λ)O

(

r2
√
λe

4
√

λ
)

, (4.76)

and (4.49) by ω1,2 = 4
√
λ
(

1 + O
(

r2
√
λ
))

. (4.57) with r = 0 is exactly the

characteristic equation of the cantilevered Euler-Bernoulli beam. The roots
of (4.57) with r = 0 are given by 4

√
λ1 = 1.8751, 4

√
λ2 = 4.6941, and for the

higher values 4
√
λn ≈

(

n− 1
2

)

π. Now the case r4λ ≫ 1 will be discussed.
For this case it follows by straightforward calculations that definition (4.57) is
approximately given by

hrs(λ) = r4(1 − s2)2λ

(

cosh(ω1) cos(ω2) + O
(

1

r4λ

))

, (4.77)

and that ω2
1 = r2λ

(

−s2 + 1
r4(1−s2)λ

+ O
(

1
r8λ2

)

)

, and ω2
2 =

r2λ
(

1 + 1
r4(1−s2)λ

+ O
(

1
r8λ2

)

)

. Now approximations of the eigenval-

ues λn will be constructed. From (4.77) it follows that the case
h1rs

(λ) ≡ cosh(ω1)+O
(

1
r4λ

)

= 0, and the case h2rs
(λ) ≡ cos(ω2)+O

(

1
r4λ

)

= 0
have to be considered. Note that the case that cosh(ω1) and cos(ω2) are
both close to zero should also be considered. Since for this case it is much
more difficult to find asymptotic approximations of the eigenvalues, this
case will not be studied any further in this chapter. From h1rs

(λ) = 0 it
follows that iω1,n = ω̂1,n =

(

n− 1
2

)

π + O
(

1
r4λ

)

. And from h2rs
(λ) = 0 it

follows that ω2,n =
(

n− 1
2

)

π + O
(

1
r4λn

)

. The eigenvalues λn corresponding

to h1rs
(λ) = 0 (h2rs

(λ) = 0) will be denoted by λ1,n (λ2,n). Now it follows

that
√

λ1,n =
(n− 1

2)π

rs

(

1 + O
(

1
r2n2

))

and
√

λ2,n =
(n− 1

2)π

r

(

1 + O
(

1
r2n2

))

. For
similar estimates see also [84].

4.5 Formal approximations

In this section the vibrations of a standing, uniform Timoshenko beam which
is clamped at one end and free at the other end will be considered. An approx-
imation of the solution of the initial-boundary value problem (4.15)-(4.21) will
be constructed by using a two-timescales perturbation method. Conditions
like t > 0, t ≥ 0, 0 < x < 1 will be dropped for abbreviation. By expanding
the unknown functions u(x, t) and ψ(x, t) in a Taylor series with respect to ǫ,
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it follows that

u(x, t; ǫ) = û0(x, t) + ǫû1(x, t) + ǫ2û2(x, t) + · · · , (4.78)

ψ(x, t; ǫ) = ψ̂0(x, t) + ǫψ̂1(x, t) + ǫ2ψ̂2(x, t) + · · · . (4.79)

It is assumed that the functions ûi(x, t) and ψ̂i(x, t) are O(1) on timescales
of order 1

ǫ
. The approximation of the solution will contain secular terms.

Since ûi(x, t) and ψ̂i(x, t) are assumed to be O(1), and because the solutions
are bounded, secular terms should be avoided when approximations are con-
structed on a timescale of O(ǫ−1). That is why a two-timescales perturbation
method is applied. Using such a two-timescales perturbation method the func-
tions u(x, t) and ψ(x, t) are supposed to be a function of x, t, and τ = ǫt. So
put

u(x, t) = w(x, t, τ ; ǫ), (4.80)

ψ(x, t) = ϕ(x, t, τ ; ǫ). (4.81)

A result of this is that

ut = wt + ǫwτ , (4.82)

utt = wtt + 2ǫwtτ + ǫ2wττ , (4.83)

ψt = ϕt + ǫϕτ , (4.84)

ψtt = ϕtt + 2ǫϕtτ + ǫ2ϕττ . (4.85)

Substitution of (4.80)-(4.85) into the problem (4.15)-(4.21) yields

ϕxx +

(

1

r2s2

)

(wx − ϕ) − r2ϕtt = 2r2ǫϕtτ + r2ǫ2ϕττ , (4.86)

(

1

r2s2

)

(wxx − ϕx) − wtt − 2ǫwtτ = ǫ2wττ + ǫ[(1 − x)wx]x, (4.87)

w(0, t, τ ; ǫ) = ϕ(0, t, τ ; ǫ) = 0, (4.88)

ϕx(1, t, τ ; ǫ) = 0, (4.89)

wx(1, t, τ ; ǫ) − ϕ(1, t, τ ; ǫ) = 0, (4.90)

w(x, 0, 0; ǫ) = f(x), and wt(x, 0, 0; ǫ) = h(x) − ǫwτ (x, 0, 0; ǫ), (4.91)

ϕ(x, 0, 0; ǫ) = p(x), and ϕt(x, 0, 0; ǫ) = q(x) − ǫϕτ (x, 0, 0; ǫ). (4.92)

Assuming that

w(x, t, τ ; ǫ) = u0(x, t, τ) + ǫu1(x, t, τ) + ǫ2u2(x, t, τ) + . . . , (4.93)

ϕ(x, t, τ ; ǫ) = ψ0(x, t, τ) + ǫψ1(x, t, τ) + ǫ2ψ2(x, t, τ) + . . . , (4.94)
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then by collecting terms of equal powers in ǫ it follows from (4.86)-(4.92) that
the O(1)-problem is:

ψ0xx
+

(

1

r2s2

)

(u0x
− ψ0) − r2ψ0tt

= 0, (4.95)

(

1

r2s2

)

(u0xx
− ψ0x

) − u0tt
= 0, (4.96)

u0(0, t) = ψ0(0, t) = 0, (4.97)

ψ0x
(1, t) = 0, (4.98)

u0x
(1, t) − ψ0(1, t) = 0, (4.99)

u0(x, 0, 0) = f(x), and u0t
(x, 0, 0) = h(x), (4.100)

ψ(x, 0, 0) = p(x), and ψ0t
(x, 0, 0) = q(x), (4.101)

and that the O(ǫ)-problem is:

ψ1xx
+

(

1

r2s2

)

(u1x
− ψ1) − r2ψ1tt

= 2r2ψ0tτ
, (4.102)

(

1

r2s2

)

(u1xx
− ψ1x

) − u1tt
= 2u0tτ + [(1 − x)u0x

]x, (4.103)

u1(0, t) = ψ1(0, t) = 0, (4.104)

ψ1x
(1, t) = 0, (4.105)

u1x
(1, t) − ψ1(1, t) = 0, (4.106)

u1(x, 0, 0) = 0, and u1t
(x, 0, 0) = −u0τ

(x, 0, 0), (4.107)

ψ1(x, 0, 0) = 0, and ψ1t
(x, 0, 0) = −ψ0τ

(x, 0, 0). (4.108)

The solution Γ0(x, t, τ) = [u0(x, t, τ), ψ0(x, t, τ)]
T of the O(1)-problem (4.95)-

(4.101) has been determined in the previous section and is given by

Γ0(x, t, τ) =

∞
∑

n=1

T0n(t, τ)Φn(x), (4.109)

where T0n(t, τ) = A0n(τ) cos(
√
λnt) + B0n(τ) sin(

√
λnt), where Φn(x) =

[φn(x), ϕn(x)]
T is given by (4.75), and where

A0n(0) =

∫ 1

0

f(x)φn(x) + r2p(x)ϕn(x)dx, (4.110)

B0n(0) =
1√
λn

∫ 1

0

h(x)φn(x) + r2q(x)ϕn(x)dx. (4.111)



90 Chapter 4. On transverse vibrations of a vertical Timoshenko beam

Since the unknown function Γ1(x, t) = [u1(x, t, τ), ψ1(x, t, τ)]
T satisfies the

same boundary conditions as Γ0(x, t, τ), it is assumed that the solution of the
problem (4.102)-(4.108) is given by

Γ1(x, t, τ) =

∞
∑

n=1

T1n(t, τ)Φn(x), (4.112)

where Φn(x) = [φn(x), ϕn(x)]T is given by (4.75). Now an equation for the
unknown function T1n(t, τ) will be determined in the following way: Firstly,
substitute (4.112) into (4.102) and (4.103) and multiply the so-obtained equa-
tions by ϕn(x) and φn(x) respectively. Then sum the so-obtained equations.
Finally, integrate the so-obtained equation with respect to x form 0 to 1, and
use the orthogonality of the eigenfunctions Φn(x) = [φn(x), ϕn(x)]

T , to obtain:

T1ntt
(t, τ) + λnT1n(t, τ) = −2T0ntτ

(t, τ) +

∞
∑

m=1

ΘmnT0m(t, τ), (4.113)

in which

Θmn =

∫ 1

0

(1 − x)φmx
(x)φnx

(x)dx, (4.114)

and where T0n(t, τ) = A0n(τ) cos(
√
λnt) + B0n(τ) sin(

√
λnt). From T0n(t, τ) it

follows that T0n(t, τ) and T0ntτ
(t, τ) are solutions of the homogeneous equation

corresponding to (4.113), and that T0m(t, τ) with m 6= n are not solutions
of the homogeneous equation corresponding to (4.113). Therefore, the right
hand side of (4.113) contains terms which are solutions of the homogeneous
equation corresponding to (4.113). These terms will give rise to unbounded
terms, the so-called secular terms, in the solution T1n(t, τ) of (4.113). Since it is
assumed in the asymptotic expansions that the functions u0(x, t, τ), ψ0(x, t, τ),
u1(x, t, τ), ψ1(x, t, τ), u2(x, t, τ), ψ2(x, t, τ), . . . are bounded on timescales of
O(ǫ−1), these secular terms should be avoided. In T0n(t, τ) the functions A0n(τ)
andB0n(τ) are still undetermined. These functions will be used to avoid secular
terms in the solution of (4.113) in the following way. Let the sum of the terms
in the right hand side of (4.113) that give rise to secular terms in the solution
of (4.113) be equal to zero, yielding

−2T0ntτ
(t, τ) + ΘnnT0n(t, τ) = 0. (4.115)

By substituting T0n(t, τ) into (4.115), the following system of coupled differ-
ential equations for the functions A0n(τ) and B0n(τ) can be obtained:

A0nτ
(τ) = − Θnn

2
√
λn

B0n(τ), (4.116)

B0nτ
(τ) =

Θnn

2
√
λn

A0n(τ), (4.117)
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where A0n(0) and B0n(0) are given by (4.110) and (4.111) respectively. From
the (4.116)-(4.117) the functions A0n(τ) and B0n(τ) can be determined and
are given by

A0n(τ) = A0n(0) cos

(

Θnnτ

2
√
λn

)

− B0n(0) sin

(

Θnnτ

2
√
λn

)

, (4.118)

B0n(τ) = B0n(0) cos

(

Θnnτ

2
√
λn

)

+ A0n(0) sin

(

Θnnτ

2
√
λn

)

, (4.119)

respectively. By substituting A0n(τ) and B0n(τ) into T0n(t, τ) it follows that

T0n(t, τ) = A0n(0) cos

(

√

λnt−
Θnnτ

2
√
λn

)

+B0n(0) sin

(

√

λnt−
Θnnτ

2
√
λn

)

,

(4.120)
where Θnn is given by (4.114). Now an O(ǫ)-approximation of the solution of
the initial-boundary value problem (4.15)-(4.21) has been determined. This
O(ǫ)-approximation is given by (4.109), and is valid on timescales of O(ǫ−1).
It is beyond the scope of this chapter to prove that the O(ǫ)-approximation
are indeed valid on timescales of O(ǫ−1).

From (4.120) it follows that an approximation of the frequency (ωn(ǫ)) of
the n-th mode of a standing Timoshenko beam in a gravity-field is given by

ωn(ǫ) =
√

λn − ǫΘnn

2
√
λn

, (4.121)

where ǫ = gρAL3

EI
, Θnn is given by (4.114), and

√
λn is the frequency of the n-th

mode of a gravity-free Timoshenko beam, which is given by the squareroot of
the n-th positive root of (4.57). Note that the order of the highest derivatives
(with respect to x and t) that appears in problem (4.15)-(4.21) with ǫ = 0
and problem (4.15)-(4.21) with ǫ 6= 0 are the same. Therefore, it is assumed
that ωn(ǫ) is an O

(√
λnǫ

2
)

-approximation of the magnitude of the frequency.
Due to gravity and the self-weight of the beam a linearly varying compression
force is acting on the beam. The second term of the right hand side of (4.121)
(i.e. ǫΘnn

2
√

λn
) represents the influence of this compression on the frequency of

the n-th mode of the beam. Since Θnn > 0 it follows from (4.121) that the
inclusion of the compression force in the beam model reduces the magnitude of
the frequency. Now we will study this decrease in magnitude of the frequency.
Note that the value of ǫΘnn

2
√

λn
depends on the parameters ǫ, r, and s and the

mode number n. Firstly, it should be observed that the frequency (ωn(ǫ))
reduces by increasing values of ǫ. Now the influence of r, s, and n on the
decrease in magnitude of the frequencies will be discussed. In the previous
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section approximate forms the eigenvalues λn have been constructed for the
case r4λn ≪ 1, and for the case r4λn ≫ 1. Therefore, the values of the
frequencies will be considered for the case r4λn ≪ 1, the case r4λn ≈ 1, and
the case r4λn ≫ 1. Firstly the case r4λn ≪ 1 will be studied. Now the
characteristic equation (4.57) can be approximated by (4.57) with r = 0. This
is the characteristic equation of a cantilevered Euler-Bernoulli beam. The
integrand in Θnn is given by (1−x)φ2

n(x), where φn(x) is given by (4.75). Now
φn(x) can be approximated by the n-th eigenfunction corresponding to the
cantilevered Euler-Bernoulli beam. By using this eigenfunction, the integral
Θnn can be approximated by (see [11] and [17])

Θnn

2
√
λn

=
1

4
√
λn

(

(

1 + 4
√

λnχn

)2

+ 3

)

, (4.122)

where χn = sin( 4
√

λn)−sinh( 4
√

λn)

cos( 4
√

λn)+cosh( 4
√

λn)
. It should be observed that the value of Θnn

2
√

λn

becomes small compared to the value of
√
λn for increasing values of the mode

number n. Hence it can be concluded that the decrease in magnitude of the
frequency (due to the compression force) will become relatively small (com-
pared to ωn(ǫ)) by increasing mode number n. Furthermore, from (4.121) and
(4.122), it turns out that the parameters r2 and s2 do not significantly change
the frequencies of the oscillation modes when r4λn ≪ 1.

For the case r4λn ≈ 1 numerical methods can be used to determine the
value of Θnn

2
√

λn
. In table 4.1 the first ten values of Θnn

2
√

λn
are listed for the case

r2 = 0.01 and s2 = 2.8, and for the case r2 = 0.001 and s2 = 0.5. For the
modes listed in table 4.1 the decrease in magnitude of the frequencies due to the
compression force becomes relatively small (compared to ωn(ǫ)) by increasing
mode number.

Now consider the case r4λn ≫ 1, that is, consider the higher order modes.
It should be observed that the eigenfunctions Φn(x) = [φn(x), ψn(x)]T for
this case are given by (4.75), where Un(x) and Ψn(x) are given by (4.60) and
(4.61) respectively. In section 4.4 it has been observed that for r4λn ≫ 1
two sets of roots of the characteristic equation (4.57) can be distinguished.
The roots of the first (second) set are denoted by λ1,n (λ2,n). Now the value
of the approximation of the frequencies (ωn(ǫ)) will be studied for these two

sets. The roots of the first set are given by
√

λ1,n =
(n− 1

2)π

rs
+ O

(

1
r3n

)

(see
section 4.4). Now it can be shown, by elementary calculations, that Θnn =
ω̂2

1,n

2

(

1 + O
(

1

r3
√

λ1,n

))

. Consequently, from ω̂2
1,n = r2λ1,n

(

s2 + O( 1
r4λ1,n

)
)

,
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r2 = 0.01, s2 = 2.8 r2 = 0.001,s2 = 0.5

n
√
λn

(

Θnn

2
√

λn

) √
λn

(

Θnn

2
√

λn

)

1 3.2471 0.2263 3.5038 0.22303
2 14.803 0.2468 21.519 0.19390
3 32.415 0.3377 58.448 0.19687
4 49.649 0.3934 109.98 0.20532
5 65.263 0.2922 173.47 0.07178
6 70.555 0.2604 246.27 0.01801
7 84.075 0.3349 326.22 0.00193
8 92.021 0.4562 411.60 0.00292
9 105.87 0.3324 501.12 0.00409
10 113.75 0.6524 593.77 0.00754

Table 4.1: Numerical approximations of
√
λn and Θnn

2
√

λn
for the case r2 = 0.01

and s2 = 2.8 and for the case r2 = 0.001 and s2 = 0.5.

it follows that

Θnn

2
√

λ1,n

=
rs
(

n− 1
2

)

π

4

(

1 + O
(

1

r2n

))

. (4.123)

From (4.121) and (4.123) it follows that the decrease in magnitude of the
frequency due to the compression force increases by increasing mode number n.
Note that this is not the case for a vertical, cantilevered Euler-Bernoulli beam
(see [11, 17]). Hence the inclusion of shear deformation and rotatory inertia
increases the decrease in magnitude (due to the compression force) of the
frequencies of a vertical, cantilevered beam. Now by substituting (4.123) and
√

λ1,n =
(n− 1

2)π

rs
+ O

(

1
r3n

)

into (4.121) it follows that ωn(ǫ) is approximately
given by

ωn(ǫ) =

(

(

n− 1
2

)

π

rs

)

(

1 − ǫr2s2

4

)

. (4.124)

Thus, the frequencies reduces by increasing values of the parameters ǫ, r, and
s.
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For the second set of roots (
√

λ2,n) of (4.57) it can be shown that

Θnn =

(

s2

2r2(1 − s2)2

)

(

(

1 + 1
s2

)

cos2(ω̂1,n) + (sin(ω̂1,n) − s sin(ω2,n))
2

cos2(ω̂1,n)

+O
(

1

r3
√

λ2,n

))

. (4.125)

(4.125) leads to Θnn = O(r−2). Now, since
√

λ2,n =
(n− 1

2)π

r
+O

(

1
r3n

)

(see sec-
tion 4.4), it follows from (4.121) that the frequencies are approximately given
by
√

λ2,n

(

1 + O( ǫ
n2 )
)

. Hence it follows that the decrease in the magnitude
of the frequency (due to the compression force) decreases by increasing mode
number n. Moreover, it can be concluded that the decrease in magnitude of
the frequencies for the second set is significantly smaller compared to the de-
crease in magnitude of the frequencies corresponding to the first set of roots
of the characteristic equation (4.57).

In Fig. 4.2(a) the values of Θnn

2
√

λn
and

√
λn are given for the case r2 = 0.01

and s2 = 2.8. From this figure it can also be observed that the for the higher
order modes two sets of frequencies can be distinguished. For the first set
there is a predominantly linear relationship between the values of Θnn

2
√

λn
and√

λn. For the second set the value of Θnn

2
√

λn
tends to zero for increasing values

of
√
λn. In Fig. 4.2(b) the relative influence (in per cent) of Θnn

2λn
on

√
λn is

presented. From this figure it can be observed that Θnn

2
√

λn
is relatively small

compared to
√
λn. For the first set of frequencies this percentage tends to 0.7.

Note that this value is exactly equal to 100r2s2/4 for the case r2 = 0.01 and
s2 = 2.8 (see also (4.124)).

4.5.1 An example

In this subsection the effect of gravity on the natural frequencies of a tall
building will be examined. The building has a square cross-section, and the
parameters of this building are given by E = 25×109 N m−2, I = 2.5×103 m4,
L = 180 m, ρ = 280 kg m−3, A = 1225 m2, and g = 9.81 m s−2. Moreover,
G = E

2(1+ν)
and k = 5+5ν

6+5ν
, in which ν = 0.2 is Poisson’s ratio. Hence, the non-

dimensional parameters r2, s2, and ǫ are given by 6.30 × 10−5, 2.8, and 0.314
respectively. The building is modeled as a Timoshenko beam. Now the first
ten natural frequencies (Ωn) of the building are listed in table 4.2. It can be
observed from this table that the effect of gravity (σn) on the natural frequency
(Ωn) is largest for the first bending mode. There is a reduction of 2.04% in the
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Figure 4.2: (a): The effect of gravity Θnn

2
√

λn
plotted against the frequency

√
λn

for the case r2 = 0.01 and s2 = 2.8. (b): The relative (compared to
√
λn) effect

of gravity (in per cent) for the case r2 = 0.01 and s2 = 2.8.
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n Ωn (in Hz) σn (in Hz) 100
(

σn

Ωn

)

(in %)

1 0.2284 -0.00465 -2.0366
2 1.4513 -0.00409 -0.2818
3 4.0496 -0.00423 -0.1043
4 7.8792 -0.00446 -0.0567
5 12.903 -0.00463 -0.0359
6 19.055 -0.00476 -0.0250
7 26.265 -0.00488 -0.0186
8 34.455 -0.00506 -0.0147
9 53.467 -0.00035 -0.0007
10 64.130 -0.00052 -0.0001

Table 4.2: The effect of gravity (σn) on the first ten natural frequencies (Ωn)
of a tall building in Hertz (Hz) and in per cent (%) for the case r2 = 6.30 ×
10−5, s2 = 2.8, and ǫ = 0.314.

first natural frequency. For the other modes in table 4.2 this effect is small,
that is, smaller than 0.3%. In this section it has been shown that the effect
of gravity increases by increasing mode number. For this tall building this is
also the case. However, the effect of gravity will be relatively small compared
to the magnitude of the natural frequency since the parameters r2 and ǫ are
small.

4.6 Conclusions

In this chapter the transverse vibrations of a standing, cantilevered Timo-
shenko beam have been considered. Due to gravity and due to the self-weight
of the beam a linear varying compression force is acting on the beam. It was
assumed that the compression force is small but not negligible. Inclusion of the
compression force into the beam model reduces the magnitude of the frequen-
cies of the beam. In this chapter this decrease in magnitude of the frequencies
has been studied. Note that the results found in this chapter can also be ap-
plied to hanging beams. In this case a linearly varying tensile force is acting on
the beam. Inclusion of this force into the beam model results in an increase in
the magnitude of the frequencies of the beam. In [13] the natural frequencies
of a hanging beam under gravity has been studied. Here, it has been concluded
that the influence of gravity on the frequencies of the hanging beam reduces
by increasing mode number. In this chapter similar results has been found for
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the lower order modes: the decrease in magnitude of the frequency due to the
compression force will become relatively small (compared to the magnitude of
the frequency) by increasing mode number. However, it also has been found
that the frequencies of the higher order modes can be separated into two sets
of frequencies. For the first set of frequencies it has been found that the de-
crease in magnitude of the frequency due to the compression force increases
significantly by increasing mode number. Moreover, it has been concluded that
the inclusion of shear deformation and rotatory inertia into the beam model
increases the decrease in magnitude (due to the compression force) of the fre-
quencies of a standing, cantilevered beam. And consequently, these inclusions
into the beam model of a hanging beam results in an increase in magnitude of
the frequencies. Note that this is different from the conclusion in [13], where
it has been stated that these inclusions reduces the increases in the higher
mode frequencies of the hanging beam due to gravity effects. For the second
set of frequencies it has been concluded that the decrease in magnitude of the
frequencies is less significant compared to the decrease in magnitude of the
frequencies of the first set.
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CHAPTER 5

On the galloping oscillations of vertical

beams in a weakly turbulent wind-field

Abstract: In this chapter the galloping oscillations of a weakly damped beam
in a weakly turbulent wind-field will be studied. These galloping oscillations
can be described by an initial-boundary value problem, in which a random
parametric excitation is present. This random excitation represents the wind
turbulence. The initial-boundary value problem is solved by using an eigen-
function approach and Itô stochastic calculus. In this way the maximum dis-
placement of the beam has been calculated. It will be shown that this maxi-
mum displacement is only slightly affected by the turbulence. Lastly, it will be
concluded that turbulence does not have a significant influence on the critical
wind velocity for galloping.

5.1 Introduction

Galloping is an important type of self-excited vibrations of a structure in a
wind-field and it involves of a low frequency oscillation with large amplitudes.
Tall structures [18–20, 63, 69] in a strong wind-field are susceptible to gal-
loping. Galloping oscillations are caused by the aerodynamic instability of
the cross-section of a structure. Structures with a circular cross-section are
not affected by galloping, but structures with non-circular cross-section are
susceptible to galloping. These galloping oscillations occur above a certain
critical wind velocity (also called the onset wind velocity for galloping) and
are mainly in the direction perpendicular to the mean wind direction. A quasi-
steady approach can be used to obtain a mathematical model that describes
the galloping oscillations of tall structures (see [15]).

99
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In many models it is assumed that the wind-field is non-turbulent (i.e.
steady) and uniformly distributed along the structure (see for instance [2, 18]).
However, the wind velocity along vertical tall structures increases with height
and is turbulent. In [18] the galloping oscillations of tall structures in a steady
wind with variable mean wind velocity along the structure has been studied,
and it has been shown that galloping occurs above a critical wind speed. In [19]
the galloping oscillations of a tall structure in an unsteady, uniform wind-field
has been studied. For simplicity the fluctuating part of the wind-flow has been
modeled by one harmonic term. In [20] the 2D galloping oscillations of slender
structures has been considered in a turbulent wind with variable mean wind
velocity along the structures. Here, in [20], a finite sum of harmonic terms
has modeled the fluctuating component of the wind velocity and numerical
calculations have been used to evaluate the galloping oscillations. And, in
[20], it has been concluded that the influence of the fluctuating term on the
critical wind velocity for the 2D galloping oscillations is negligible.

In this chapter the galloping oscillations of a weakly damped, cantilevered
Euler-Bernoulli beam (with a square cross-section) in a weakly turbulent wind
(with variable mean wind velocity along the beam) as a simple model for a
tall building in a turbulent wind-field (see Fig. 5.1) will be studied. Some
damping devices applied to tall buildings are installed at the top of the build-
ing. Therefore, it is assumed that the beam is damped at the top and that the
damping force is proportional to velocity of the beam at its top. In chapter
3 the critical wind velocity for galloping for this beam subjected to boundary
damping and in a non-turbulent wind-field has been has been found. This
chapter attempts to analyze the influence of turbulence on the critical wind
velocity for galloping.

The turbulent wind-field is characterized by its velocity (in mean wind
direction), which consists of a component representing the mean wind velocity
and a fluctuating component representing the turbulence. Furthermore, a
power spectral density function represents the fluctuating component of the
velocity of the turbulent wind-flow. The galloping behavior of the beam can
be described by an initial-boundary-value problem. In this problem a random
parametric (i.e. multiplicative) excitation is present. This random parametric
excitation represents the fluctuating velocity component.

In [19] the fluctuating part of the wind-flow has been modeled by one har-
monic term, and only the first bending mode shape of the beam has been
considered. Here, in [19], the resonance response has been found for specific
frequencies of this harmonic term. However, the random wind excitation is a
broad-band random process, and should be represented by more harmonics.
This has been done in [20], where also only the first bending mode has been
taken into account. In case more harmonics and more modes are taken into
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Figure 5.1: A simple model for a vertical beam in a wind-field with variable
wind speed V (X, τ).

account more resonance responses, also between different modes, may occur
(see [85]). In this chapter more harmonics and more modes will be taken into
account to examine the influence of the fluctuating velocity component on the
galloping oscillations of the beam. This influence will be studied by construct-
ing approximate solutions of the initial-boundary value problem. In a similar
way as in [86], a linear filter, which approximates the random component of
the wind velocity, will be introduced. In this way approximate solutions of
the initial-boundary-value problem can be constructed by using Itô calculus.
In this chapter it will be found that the fluctuating component of the wind
velocity does not significantly influence the wind response of the building.

This chapter is organized as follows. First, in section 5.2, an initial-
boundary value problem which describes the beam vibrations subjected to
boundary damping and a stochastic wind-force will be found. In section 5.3
the eigenfunctions of this initial-boundary value problem without a stochastic
wind-force will be obtained. Furthermore, in section 5.3, these eigenfunctions
will be used to reduce the initial-boundary value problem with a stochastic
wind-force to a system of stochastic ordinary differential equations. In section
5.4 this system will be solved numerically and the wind response of the build-
ing will be found. This response will be used to consider the influence of the
fluctuating velocity component on the critical velocity for galloping. Finally,
in section 5.5, some conclusions will be drawn and some remarks will be made.
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5.2 The governing equations of motion

This section will present the equations of motion describing the galloping oscil-
lations of a beam (with a square cross-section) in a turbulent wind-flow. First,
the velocity of the weakly turbulent wind-field will be given. And, a so-called
wind speed spectrum will represent the fluctuating velocity component in the
frequency domain. Then, the equations of motion describing the beam mo-
tion will be presented. Lastly, a linear filter will be introduced to describe the
fluctuating velocity component in the time domain.

The turbulent wind-flow will be characterized by its velocity, which is given
by V̂ (X, τ) = Ŝ(X)(v∞ + v̂(τ)). Here Ŝ(X) is the variable (with respect to
the spatial variable X (see Fig. 5.1)) mean (with respect to the time τ) wind
velocity profile along the height of the beam. This mean wind velocity increases
with height, and can be given by the logarithmic law or the power law (see
[16]). In this chapter the logarithmic law will be used:

Ŝ(X) =







ln
(

X
z0

)

/ ln
(

L
z0

)

X ≥ 10,

ln
(

10
z0

)

/ ln
(

L
z0

)

X ≤ 10,
(5.1)

in which z0 is the (surface) roughness length in mean wind direction and L
is the length of the beam. The constant v∞ represents the mean wind speed
at the top of the building. The function v̂(τ) is the longitudinal fluctuating
component of the wind velocity. Note that, for simplicity, in this chapter only
the fluctuating velocity component in mean wind direction (i.e. in Y -direction)
will be considered. The fluctuating velocity component is random, has zero
mean, and its total variance distributed across the frequency domain is given
by the wind velocity fluctuation spectrum, which is denoted by Ŝvv(ω̂) (in
which ω̂ is the circular frequency). In this chapter the wind spectrum will be
expressed by (Davenport)

Ŝvv(ω̂) =
2

3

(

σ2
vLv

v∞

)

r

(1 + r2)4/3
, (5.2)

in which Lv is the length scale of turbulence (1200 m), σv is the root mean
square of the wind velocity, and r = Lvω̂/(2πv∞). Other expressions of the

wind spectrum Ŝvv(ω̂) have been given in [16].
The turbulence intensity describes the atmospheric turbulence and is given

by Iv = σv/(Ŝ(20)v∞) at 20 meters above the ground. The turbulence intensity
depends on the roughness length z0. For z0 = 0.005 m, 0.07 m, 0.3 m, 1 m,
2.5 m it is given by Iv = 0.118, 0.173, 0.233, 0.327, 0.471 respectively (see [16]).
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Note that z0 = 0.07 m corresponds to an open terrain and z0 = 2.5 m to a city
center.

The model of a cantilevered Euler-Bernoulli beam will be used to describe
the horizontal vibrations of the tall building in a turbulent wind-field. The tur-
bulent wind-field causes nonlinear drag and lift forces (FD, FL) on the structure
per unit length. Now the following partial differential equation describes the
horizontal deflection of a vertical beam in a wind-field:

EIηXXXX + ρAηττ = FL + FD, (5.3)

where E is the Young modulus, I is the moment of inertia of the cross-
section, ρ is the density of the beam, A is the cross-sectional area of the
beam, and η(X, τ) is the deflection in Z-direction of the beam (see Fig. 5.1).
In (5.3) the term representing the compression force due to gravity and the
self-weight of the beam has been omitted, as the influence of this term on
the frequencies and damping rates of the beam is small (see chapter 3). The
boundary conditions of a weakly damped, cantilevered beam can be given by
η(0, τ) = ηX(0, τ) = ηXX(L, τ) = 0, and EIηXXX(0, τ) = ĉητ (L, τ), where ĉ is
a positive constant, the (boundary) damping parameter. Now a simple model
for the horizontal vibrations of a weakly damped, vertical, cantilevered beam
in a weakly turbulent wind-field is given by (5.3) and the latter boundary
conditions.

The magnitude of the forces (FD and FL) in cross-wind direction depends
on the angle of attack of the wind, and can be obtained by a quasi-steady
approach. According to the Den Hartog criterion a structure with a square
cross-section can be unstable (i.e. galloping may set in) for small angles of
attack (see [15, 18]). In this chapter the case that the angle of attack is small
will be discussed. Note that, in this chapter, the effect of vortex shedding will
not be considered. The wind-force (FD +FL) can be approximated by (see [2])

FD + FL =
ρad

2

(

aV̂ (X, τ)ητ − b
η3

τ

V̂ (X, τ)

)

, (5.4)

where ρa is the density of the air and d is the diameter of the cross-sectional
area of the beam. The constant a and b are specific combinations of drag and
lift coefficients, which are given explicitly in [2], and are of order 1. The values
of these drag and lift coefficients depend on the geometry of the cross-section of
the beam and can be obtained by wind tunnel measurements. In this chapter
the case that galloping may set in, that is, the case a > 0 and b > 0 will be
discussed. Moreover, in this chapter the linearized partial differential equation

(5.3) will be considered. The nonlinear wind-force ρad
2

(

aV̂ (X, τ)ητ + b η3
τ

V̂ (X,τ)

)
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in equation (5.3) will give a coupling between (almost) all oscillation modes.
However, the nonlinear term also damps the vibrations (see chapter 3). This
chapter aims to consider the influence of the unsteady component of the wind
on the critical wind velocity such that galloping may set in. Therefore, in this
chapter, the linearized problem will be considered.

To put the model in a non-dimensional form, the following substitutions will

be used w(x, t) = η(X,τ)
L

, v(t) = v̂(τ)
v∞

, x = X
L

, and t = κ
L
τ , where κ = 1

L

√

EI
ρA

. By

applying these transformations, the following initial-boundary value problem
that describes the across-wind oscillations of a beam (with square cross-section)
in a turbulent wind-field can be obtained:

wxxxx + wtt = αS(x)(1 + v(t))wt, (5.5)

w(0, t) = wx(0, t) = wxx(1, t) = wxxx(1, t) − cwt(1, t) = 0, (5.6)

w(x, 0) = f(x) and wt(x, 0) = g(x), (5.7)

in which α = aρadL
2Aρ

v∞
κ

, c = ĉ
√

L2

EIρA
, and S(x) = Ŝ(xL), with 0 < x < 1. The

functions f(x) and g(x) are the initial displacement of the beam and the initial
velocity of the beam respectively. One should observe that α (the parameter
due to the wind-force) and c (the damping parameter) are positive, dimen-
sionless parameters. The function v(t) (the functions due to the fluctuating
velocity component) is also nondimensional. Its corresponding nondimensional
spectrum is given by

Svv(ω) =
2

3

(

σv

v∞

)2(
κLv

2πv∞L

)

r

(1 + r2)4/3
, (5.8)

with r = κLv

2πv∞L
ω and in which ω is the nondimensional circular frequency

given by ω = (L/κ)ω̂.
So far, the fluctuating velocity component v(t) in problem (5.5)-(5.7) is

represented in the frequency domain by the wind spectrum (5.8). This random
function results in a parametric (i.e. multiplicative) excitation in problem
(5.5)-(5.7). In this chapter approximate solutions of problem (5.5)-(5.7) will
be constructed. But, first an explicit form in the time domain of the random
function v(t) will be given. This can be done in several ways. In case the
spectrum is a narrow band spectrum the fluctuation part can be replaced by
one harmonic term (see for instance [19]). However, the wind spectrum (5.8)
is not a narrow band spectrum. In this case the fluctuating term can not be
approximated by one harmonic term, and another approach should be used. In
[20] the fluctuating wind-force has been replaced by a finite sum of harmonic
terms with random phase angles. In this chapter another approach will be
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used: A linear filter will be introduced in a similar way as has been done in [86].
This filter approximates the wind speed spectrum. Then, approximations of
the solutions of the problem (5.5)-(5.7) can be obtained by using Itô stochastic
calculus (see [61] for a description of Itô calculus). The parametric excitation
results in resonance responses, also between different modes. By using the
finite sum of harmonic terms, these harmonic terms have to be chosen carefully
to take these resonance responses into account. By using the filter approach,
these resonance responses are directly taken into account. Therefore, in this
chapter, this filter will be used. It should be observed that

r

(1 + r2)4/3
≈ αrr

2

(r2 − ω2
r)

2 + (2ςrωrr)2
, (5.9)

in which αr, ωr, and ςr are given. These constants are chosen such that the
spectrum are approximately similar, and are given by: αr = 1.6, ωr = 0.75,
and ςr = 1.3 (see [86]). Hence, by using r = Lvκ

2πLv∞
ω and (5.8), it follows that

Svv(ω) ≈ S0ω
2

(ω2 − ω2
v)

2 + (2ςrωvω)2
, (5.10)

in which S0 = 2
3
αr

(

σv

v∞

)2 (
L
Lv

)

(

v∞
κ

)

and ωv = ωr
2πLv∞

Lvκ
. Now introduce y(t) =

[y1(t) y2(t)]
T . Then the filter can be described by

dy = A2ydt+
√

S0π[0 1]TdW (t), t > 0, (5.11)

with y(0) = [0 0]T , and in which

A2 =

(

0 1
−ω2

v −2ςrωv

)

, (5.12)

and dW (t) is a standard Wiener process (i.e. Brownian motion). Now the fre-
quency spectrum of y2(t) is exactly given by (5.10). Therefore, as the spectrum
(5.10) approximates the wind spectrum (5.8), the random function v(t) will
be approximated by y2(t). Hence, by introducing w(t) = [w1(x, t) w2(x, t)]

T ,
the partial differential equation (5.5) can be rewritten as:

dw = A1wdt+ Cwdt, 0 < x < 1, t > 0, (5.13)

in which

A1 =

[

0 1
−∂4

∂x4 0

]

, (5.14)
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and

C = αS(x)

[

0 0
0 (1 + y2)

]

. (5.15)

The solution w has to satisfy the initial conditions, that is, w(0) =
[f(x) g(x)]T ), and the boundary conditions, that is, w1(0, t) = w1x

(0, t) =
w1xx

(1, t) = w1xxx
(1, t) − cw2(1, t) = 0.

Itô stochastic calculus can be used to solve the equation (5.11). To con-
struct approximations of the solutions of equation (5.13) an eigenfunction ap-
proach will be used in this chapter. In the following section the eigenfunctions
corresponding to problem (5.13) with α = 0 will be constructed. Furthermore,
these eigenfunctions will be used to reduce problem (5.13) with α > 0 to a
system of stochastic ordinary differential equations. This system will be solved
numerically in section 5.4.

5.3 An eigenfunction approach

In the next section, an eigenfunction approach will be applied to problem
(5.11)-(5.13). First, in subsection 5.3.1, the eigenfunctions corresponding to
problem (5.13) with α = 0 will be constructed. Then, in subsection 5.3.2
these eigenfunctions will be used to reduce problem (5.11)-(5.13) to a system
of stochastic ordinary differential equations.

5.3.1 The problem (5.13) with α = 0

In this subsection the problem (5.13) with α = 0 will be studied. First,
the method of separation of variables will be used, to obtain the following
eigenvalue problem:

θΦ = A1Φ, (5.16)

with Φ1(0) = Φ1x
(0) = Φ1xx

(1) = 0 and Φ1xxx
(1) = cΦ2(1), and, in which

Φ(x) = [Φ1(x) Φ2(x)]T is an eigenfunction, and θ is the corresponding eigen-
value. Furthermore, the following inner product will be introduced on V :

〈v(x),w(x)〉 =

∫ 1

0

(v1xx
w1xx

+ v2w2) dx, (5.17)

where v = [v1 v2]
T , w = [w1 w2]

T , and V = {v = [v1 v2]
T ; v1, v2 ∈

L2(0, 1)|v1(0) = v1x
(0) = v1xx

(1) = 0}. The eigenfunctions Φn(x) of problem
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(5.16) do not form an orthonormal set. However, a set of eigenfunctions Ψn(x)
biorthogonal (with respect to the inner product (5.17)) to the eigenfunctions
Φn(x) will be defined. Lastly, in this section, orthogonality relations between
the functions Ψn(x) and Φn(x) will be given. These relations will be used in
the following subsection, to construct a solution of problem (5.11)-(5.13).

Now problem (5.13) with α = 0 will be solved by using the method of
separation of variables. Look for solutions of problem (5.13) with α = 0 in the
form u(x, t) = exp(θt)Φ(x), with Φ(x) = [Φ1(x) Φ2(x)]T. By substituting
this into problem (5.13) with α = 0 the eigenvalue problem (5.16) can be ob-
tained. Furthermore, from (5.16), it follows that the eigenfunctions of problem
(5.16) can be given by

Φn(x) =

(

φn(x)/θn

φn(x)

)

, (5.18)

in which the functions φn(x) are the solutions of the following eigenvalue prob-
lem:

φnxxxx
+ θ2

nφn = 0, (5.19)

φn(0) = φnx
(0) = φnxx

(1) = 0, (5.20)

φnxxx
(1) = cθnφn(1). (5.21)

Note that eigenvalue problem (5.19)-(5.21) can also be found by directly ap-
plying the method of separation of variables to problem (5.5)-(5.7) with α = 0.
Introduce µn by θn = −iµ2

n. Then, by solving problem (5.19)-(5.21), it follows
that the eigenfunctions φn(x) can be given by

φn(x) =
1

qn
(sin(µnx) − sinh(µnx) + βn(cosh(µn) − cos(µn))) , (5.22)

in which µn is the nth root (with positive imaginary part) of

µ(1 + cosh(µ) cos(µ)) = ic(sin(µ) cosh(µ) − cos(µ) sinh(µ)), (5.23)

and where qn = (2 − 2ic(sin(µn) cosh(µn) − cos(µn) sinh(µn))
2/(µn(sin(µn) +

sinh(µn)))
2)1/2 and βn = (cosh(µn) + cos(µn))/(sinh(µn) + sin(µn)). Now

a set of eigenfunctions has been found, given by Φn(x). It should be ob-
served that, in case Φn(x) is an eigenfunction corresponding to the eigen-
value θn, then Φn(x) is an eigenfunction corresponding to the eigenvalue
θn. The eigenfunctions Φn(x) do not form an orthogonal set. However,
there exist a set of eigenfunctions Ψn(x) biorthogonal to the eigenfunctions
Φn(x). These eigenfunctions Ψn(x) are the solutions of problem (5.16) with
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Φ1(0) = Φ1x
(0) = Φ1xx

(1) = 0 and Φ1xxx
(1) = −cΦ2(1). Hence, the eigenfunc-

tions Ψn(x) can be given by

Ψn(x) =

(

−φn(x)/θn

φn(x)

)

, (5.24)

and the corresponding eigenvalue is given by θ = −θn.
Now, in a similar way as in [73], the following orthogonal relations can be

found:

〈Φn(x),Ψm(x)〉 =

∫ 1

0

{(φnxx
/θn)(φmxx

/θm) − φnφm}dx = δnm, (5.25)

〈Φn(x),Ψm(x)〉 =

∫ 1

0

{(φnxx
/θn)(φmxx

/θm) − φnφm}dx = δnm, (5.26)

〈Φn(x),Ψm(x)〉 = 〈Φn(x),Ψm(x)〉 = 0. (5.27)

In addition, the following orthogonality relations can be deduced from (5.16):

〈A1Φn(x),Ψm(x)〉 = θn〈Φn(x),Ψm(x)〉 = θnδnm, (5.28)

〈A1Φn(x),Ψm(x)〉 = θn〈Φn(x),Ψm(x)〉 = θnδnm, (5.29)

〈A1Φn(x),Ψm(x)〉 = 〈A1Φn(x),Ψm(x)〉 = 0. (5.30)

The functions Φn(x) and Ψn(x) are complex-valued functions. The solution of
problem (5.13) with α = 0 is real-valued, as the functions f(x) and g(x), and
the parameter c are real-valued. Hence, it is more convenient to solve problem
(5.13) by using real-valued functions. Therefore, the following functions and
constants are introduced:

Φn(x) = ΦR
n (x) + iΦI

n(x), and Ψn(x) = ΨR
n (x) + iΨI

n(x), (5.31)

θn = θR
n + iθI

n, and µn = µR
n + iµI

n. (5.32)

Then, from (5.25)-(5.30), it follows that the functions ΦR
n (x), ΦI

n(x), ΦR
n (x),

and ΦI
n(x) satisfy the following relations:

〈ΦR
n (x),ΨR

m(x)〉 = −〈ΦI
n(x),ΨI

m(x)〉 = (1/2)δnm, (5.33)

〈ΦR
n (x),ΨI

m(x)〉 = 〈ΦI
n(x),ΨR

m(x)〉 = 0, (5.34)

〈A1Φ
R
n (x),ΨR

m(x)〉 = −〈A1Φ
I
n(x),ΨI

m(x)〉 = (θR
n /2)δnm, (5.35)

〈A1Φ
R
n (x),ΨI

m(x)〉 = 〈A1Φ
I
n(x),ΨR

m(x)〉 = (θI
n/2)δnm. (5.36)

Now orthogonality relations for the eigenfunctions of problem (5.13) with α =
0 have been found. These relations will be used in the next subsection to
solve the nonhomogeneous problem (5.11)-(5.13) by using an eigenfunction
approach.
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5.3.2 The problem (5.13) with α > 0

In this subsection, from problem (5.11)-(5.13), a system of stochastic ordinary
differential equations will be derived by using an eigenfunction expansion. In
the following section a numerical method will be used to solve this system.

Now it is assumed that the solution of problem (5.13) can be given in the
following form:

w(x, t) =

N
∑

n=1

TR
n (t)ΦR

n (x) + T I
n(t)ΦI

n(x), (5.37)

in which N is the number of modes that are to be taken into account. Problem
(5.11)-(5.13) can only be solved by using numerical methods. Therefore, not
all, but just a finite number of modes are taken into account. Substitute (5.37)
into equation (5.13) to obtain:

N
∑

n=1

dTR
n ΦR

n (x) + dT I
nΦI

n(x) =

N
∑

n=1

TR
n dtA1Φ

R
n (x) + T I

ndtA1Φ
I
n(x) +

N
∑

n=1

dTR
n dtCΦR

n (x) + T I
ndtCΦI

n(x). (5.38)

Now, by taking the inner product of (5.38) consecutively first with ΨR

m
(x) and

second with ΨI

m
(x), and by using the orthogonality relations (5.33)-(5.36), the

following system of first order differential equations is obtained:

dTR
m = θR

mT
R
mdt+ θI

mT
I
mdt+ h1,Ndt, (5.39)

dT I
mt

= −θI
mT

R
mdt+ θR

mT
I
mdt− h2,Ndt, (5.40)

with 1 ≤ m ≤ N , and in which

h1,N(t) = 2α(1 + y2(t))

N
∑

n=1

(

TR
n

∫ 1

0

S(x)ΦR
n,2Ψ

R
n,2dx+

T I
n

∫ 1

0

S(x)ΦI
n,2Ψ

R
n,2dx

)

, (5.41)

h2,N(t) = 2α(1 + y2(t))

N
∑

n=1

(

TR
n

∫ 1

0

S(x)ΦR
n,2Ψ

I
n,2dx+

T I
n

∫ 1

0

S(x)ΦI
n,2Ψ

I
n,2dx

)

, (5.42)
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Figure 5.2: A sample of the wind velocity v∞(1 + v(τ)) with v∞ = 20 m s−1

and turbulence intensity Iv = 0.471.

and

TR
m(0) = 2〈[f g]T ,ΨR

m(x)〉 = 2

∫ 1

0

fxxΨ
R
m,1xx

+ gΨR
m,2dx, (5.43)

T I
m(0) = 2〈[f g]T ,ΨI

m(x)〉 = 2

∫ 1

0

fxxΨ
I
m,1xx

+ gΨI
m,2dx. (5.44)

So, finally, a system of 2(N +1) stochastic, coupled ordinary differential equa-
tions has been obtained, which is given by (5.11), (5.39), and (5.40).

5.4 Stochastic analysis and results

In this section the influence of turbulence on the critical wind velocity for
galloping will be discussed. This will be done by considering the influence of
the wind speed and the turbulence intensity on the maximum displacement
of the top of a beam. The maximum displacement will be found by solving
numerically equations (5.11), (5.39), and (5.40).

In chapter 3 it has been shown that a beam in a steady wind-field is damped
(i.e. galloping will not set in) if c > α/4 (in which c is the damping parameter
and α the parameter due to the wind-force). Note that the equations of motion
of this beam are given by (5.5)-(5.7) with v(t) ≡ 0. This section will discuss
the influence of the turbulence on the critical wind velocity for galloping. The
turbulence is expected to have most influence as the beam is only slightly
damped. Therefore, the damping parameter c will be chosen such that the
galloping will not set in, but for small increases in the wind velocity galloping
may set in, that is c = 1.01(α/4). Fig. 5.2 presents a sample of the wind ve-
locity on the time interval [0, 300] for v∞ = 20 and Iv = 0.471, and illustrates
that turbulence leads to increases (and to decreases) in the wind velocity.
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In this section the building parameters are given by E = 21 × 109 N m−2,
I = 1.5 × 103 m4, L = 180 m, ρ = 284 kg m−3, and A = 1225 m2. More-

over, κ = 1
L

√

EI
ρA

. Hence, this parameter is given by 53.2 m s−1. The wind-

force parameters are given by a = 2 and ρa = 1.2 kg m−3. The wind ve-
locity is taken equal to v∞ = 10 m s−1, 20 m s−1, 30 m s−1, and 40 m s−1.
Then the non-dimensional parameter α is given by α = 4.14 × 10−3, 8.28 ×
10−3, 1.24 × 10−2, and 1.66 × 10−2 respectively. The turbulence intensity for
roughness lengths z0 = 0.005 m, 0.07 m, 0.3 m, 1 m, 2.5 m is given by Iv =
0.118, 0.173, 0.233, 0.327, 0.471 respectively. Lastly, the initial displacement
and initial velocity of the beam are chosen such that these satisfies the first
three boundary condition of (5.6) and are given by f(x) = 10−1(x2/2 − x3/6)
and g(x) = 10−1(πx − sin(πx)) respectively. Now all parameters in problem
(5.11), (5.39), and (5.40) are defined. In this chapter these equations will be
solved by taking only the first five modes into account, that is, N = 5 in (5.39)
and (5.40). These equations are numerically solved by using the trapezoidal
method for colored noise (see [87]) and, so, the maximum displacement can be
found. Table 5.1 provides the maximum displacements of the top of the beam
on a time interval of 600 s out of 25 samples. Note that it is assumed that c
is such that the maximum displacement of the beam is at its top. In case c
tends to infinity, the damper at the top will act as a rigid link. Consequently,
the displacement of the beam at the top will tend to be zero, and the damper
will not effectively damp the vibrations of the beam. In addition, note that
for different values of the beam parameters similar results will be found.

Table 5.1 shows that the fluctuating velocity component only slightly in-
fluences the maximum displacement of the beam. Furthermore, from Table
5.1, no relation between the maximum displacement and the turbulence or
mean wind velocity can be observed. It should be noted that the largest max-
imum displacement occurs in Table 5.1 for large v∞ and Iv. However, also
for these cases the influence of the turbulence on the maximum displacement
of the beam at its top is small. Since the maximum displacement does not
significantly grow for increasing turbulence intensity it is concluded that the
fluctuating velocity component does not influence the critical wind velocity for
gallopping.

5.5 Conclusions

In this chapter an initial-boundary value problem that describes the galloping
oscillations of a weakly damped beam in a weakly turbulent wind-field has been
derived. It has been assumed that the beam is damped at the top and that
the damping force is proportional to velocity of the beam at its top. Further-
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Maximum v∞
displacement (in m) 10 20 30 40

Iv

0.118 0.04203 0.04204 0.04206 0.04200
0.173 0.04201 0.04200 0.04201 0.04203
0.233 0.04203 0.04204 0.04205 0.04202
0.327 0.04204 0.04202 0.04202 0.04215
0.471 0.04204 0.04211 0.04212 0.04201

Table 5.1: Numerical approximations of the maximum displacement of the top
of the beam for different mean wind velocities v∞, and for different turbulence
intensity Iv.

more, in this chapter, the eigenfunctions corresponding to this initial-boundary
value problem (without a wind-force) has been constructed, and biorthogonal-
ity between these eigenfunctions and another set of eigenfunctions has been
shown. These eigenfunctions and Itô stochastic calculus have been applied to
the initial-boundary value problem and, so, the maximum displacement of the
beam at its top in several different wind-fields have been obtained. For these
wind-fields it has been found that the turbulence intensity of the wind-field
does not significantly influence the maximum displacement of the beam. Since
the maximum displacement does not grow for increasing turbulence intensity
it is concluded that the fluctuating component of the wind velocity does not
influence the critical wind velocity for gallopping. Thus, for a beam, which is
stable in a steady wind-field, galloping will not set in if the wind-field becomes
turbulent.



CHAPTER 6

On strong and uniform damping for a

vibrating string with an end-mass

Abstract: In this chapter the transverse vibrations of a weakly damped,
taut string with a fixed end and with a non-fixed end, to which a mass is
attached, will be studied. The damping is assumed to be boundary damping
at the non-fixed end of the string. Two types of boundary damping will
be discussed. Firstly, the damping is proportional to the velocity of the
non-fixed end of the string. Secondly, the damping is proportional to the
angular velocity of the non-fixed end of the string. The vibrations of the
string can be described by an initial-boundary value problem. The Laplace
transform method will be applied to the initial-boundary value problem to
obtain a so-called characteristic equation. The damping rates of the weakly
damped string are given by the real part of the roots of this equation, and the
frequencies of the string by the imaginary part. Asymptotic approximations
of all the roots of the characteristic equation and of the solution of the
initial-boundary value problem will be constructed. These approximations
will be used to obtain the type of damping of this weakly damped string with
an end-mass.

6.1 Introduction

In many mathematical models oscillations of elastic structures are described by
(non)linear wave equations, by (non)linear beam equations, or by (non)linear
plate equations. To suppress the undesired oscillations of the structures, all

113
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x = 1

x = 0

x

y, u

β
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Figure 6.1: A simple model of a string with attached viscous damper (α),
angular velocity damper (β) and end-mass (m) at x = 1.

kind of boundary damping can be applied. Boundary damping for string-
like problems have been studied in [1, 27–30], for beam-like problems in
[17, 32, 33, 69], and for plate-like problems in [31]. Moreover, dampers can be
attached to a intermediate point of the structure. Beam- and string-like prob-
lems with attached intermediate dampers have been studied in [37, 38] and
[46, 47, 52] respectively. For systems with attached, intermediate or bound-
ary, damper, it is important to know the damping properties. In case these
problems can be solved exactly, the damping properties are given by the roots
of a so-called characteristic equation. In this chapter approximations of the
roots of a characteristic equation of a string-like problem will be constructed.

The stability of a weakly damped, taut string with a fixed end and with a
non-fixed end, to which an end-mass is attached (see Fig. 6.1), will be studied
in this chapter. In this chapter only the transverse vibrations will be studied
and it is assumed that the vibrations are small. To suppress the transverse
vibrations of the string, boundary damping at the non-fixed end of the string is
applied. Two types of boundary damping will be discussed. The displacement
of the string can be described by the following dimensionless initial-boundary
value problem:

utt − uxx = 0, 0 < x < 1, t > 0, (6.1)

u(0, t) = 0, t > 0, (6.2)

ux(1, t) +mutt(1, t) = −ǫαut(1, t) − ǫβuxt(1, t), t > 0, (6.3)

u(x, 0) = f(x), and ut(x, 0) = g(x), 0 < x < 1, (6.4)

where m is the mass of the end-mass, α is the ǫ-independent, positive velocity
damping parameter, β is the ǫ-independent, positive angular velocity damping
parameter, and ǫ is a small, positive parameter, that is, 0 < ǫ≪ 1. Note that
α, β = O(1). In addition, note that locally, around x = 1, the angular velocity
damper adds stiffness to the string. However, for simplicity, this damper in



6.1. Introduction 115

the mathematical model is described as being applied at x = 1. This damper
is able to damp the string since the non-fixed end of the string is moving. The
functions f(x) and g(x) are the initial displacement of the string and the initial
velocity of the string respectively. It should be observed that m, ǫ, β, and α
are dimensionless parameters.

In [28] it has been shown that a velocity damper at the non-fixed end of
the string with end-mass is sufficient for strong damping but not sufficient for
uniform damping. And in [29] it has been shown that an additional angular
velocity damper uniformly damps the vibrations of the string. Moreover, in
[29], the rates of decay of energy have been obtained for specific values of the
mass of the end-mass and for specific values of damping parameters. In [30]
problem (6.1)-(6.4) with m = 0 has been considered. By using the method of
separation of variables, approximations of the eigenvalues (λn, where n ∈ N)
have been given. These approximations of the eigenvalues are only valid for a
fixed oscillation mode (i.e. for fixed n), and if ǫ → 0, but not, as claimed, for
all oscillation modes (i.e. for all n ∈ N). In [1] the problem of a string with a
small end-mass and a velocity damper but without an angular velocity damper
at its non-fixed end has been studied for fixed oscillation modes. Note that
the system considered in [1] is more complicated than problem (6.1)-(6.4).
In [1] a two-timescales perturbation method has been used to construct an
approximation of the solutions of this problem. In this way this approximation
has been given by an infinite sum of specific eigenfunctions. It will turn out that
these eigenfunctions are inadequate for the construction of approximations of
the solution of this problem valid for all oscillation modes (i.e. for all n ∈ N).

The aim of this chapter is to explain how appropriate eigenfunctions for the
construction of approximate solutions of the problem that has been considered
in [1] can be chosen. Therefore, in this chapter, problem (6.1)-(6.4) will be
considered in detail for the case

m = O(ǫ), and α ≥ 0, β = 0. (6.5)

Moreover, in this chapter, explicit approximations of all the damping rates and
frequencies of the oscillations modes of problem (6.1)-(6.4), that is, explicit
approximations of the eigenvalues of problem (6.1)-(6.4), will be constructed
for general values of the damping parameters (α and β) and the value of
the end-mass (m). It will turn out that the expansion of the approximate
eigenvalues, valid for all oscillation modes and for ǫ → 0, depends on the
quotient m

ǫβ
. Therefore, and to explain more in general the influence of the small

terms in the boundary condition (6.3), the initial-boundary value problem
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(6.1)-(6.4) will also be discussed for the following three cases:

m = O(1), and α, β ≥ 0, (6.6)

m = O(ǫ2), and α ≥ 0, β > 0, (6.7)

m = O(ǫ), and α ≥ 0, β > 0. (6.8)

The approximations of the eigenvalues will be used in this chapter to obtain the
type of damping of problem (6.1)-(6.4) for the cases (6.6)-(6.8). Furthermore,
in this chapter, the Laplace transform method and the approximations the
eigenvalues will be used to obtain an explicit approximation of the solution
of problem (6.1)-(6.4). Note that also other methods can be used to solve
problem (6.1)-(6.4) approximately (see [73], where three different methods have
been used to solve a wave equation with two resistive boundaries). In this
chapter the Laplace transform method will be used because in this way an
approximation of the solution can be obtained by straightforward calculations.

This chapter is organized as follows. In section 6.2 the Laplace transform
method will be applied to problem (6.1)-(6.4), and a so-called characteristic
equation will be obtained. In section 6.3 it will be shown that this characteristic
equation and a more simple function have the same number of roots. It will
also be proven for the case ǫβ > m ≥ 0 that this characteristic equation has
a real-valued root. Moreover, it will be shown that this root is unique and
that its value is negative. In section 6.4 explicit approximations of the roots of
the characteristic equation for the cases (6.5)-(6.8) will be constructed. These
approximations will be used to obtain the type of damping of the vibrations
of the string for several values of α, β, and m. In section 6.5 the validity of the
approximations of the roots of the characteristic equation for the cases (6.5)-
(6.8) will be shown. Lastly, in section 6.6, some conclusions will be drawn and
remarks will be made.

6.2 The Laplace transform method

In this section the Laplace transform method will be applied to obtain
an implicit solution of problem (6.1)-(6.4). By introducing U(x, µ) =
∫∞
0
e−µtu(x, t)dt, problem (6.1)-(6.4) becomes

Uxx(x, µ) − µ2U(x, µ) = −h1(x, µ), (6.9)

U(0, µ) = 0, (6.10)

(mµ2 + ǫαµ)U(1, µ) + (1 + ǫβµ)Ux(1, µ) = h2(µ), (6.11)
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where h1(x, µ) = µf(x)+g(x), and where h2(µ) = m(µf(1)+g(1))+ ǫαf(1)+
ǫβf ′(1). The solution of problem (6.9)-(6.11) is given by

U(x, µ) = C(µ)φ(x) − 1

µ

∫ x

0

h1(z, µ)φ(x− z)dz, (6.12)

in which ̺(µ) = (mµ + ǫα) cosh(µ) + (1 + ǫβµ) sinh(µ), C(µ) =

−
(

∫ 1

0
h1(z, µ) (̺(µ) sinh(µz) − hmβα(µ) cosh(µz)) dz − h2(µ)

)

/ (µhmβα(µ)),

and

hmβα(µ) ≡ (1 + ǫβµ) cosh(µ) + (mµ + ǫα) sinh(µ). (6.13)

φ(x) = sinh(µx). (6.14)

To obtain the solution of problem (6.1)-(6.4), the inverse Laplace transform of
U(x, µ) has to be applied, that is,

u(x, t) =
1

2πi

∫ ν+i∞

ν−i∞
eztU(x, z)dz =

∑

n

Res(eztU(x, z), z = µn), (6.15)

where ν is positive, and where Res(eztU(x, z), z = µn) stands for the residue
of eztU(x, z) at z = µn. The poles of U(x, s) are given by the roots of the
characteristic equation, given by

hmβα(µ) = 0. (6.16)

Note that µ = 0 is not a pole of U(x, µ). In [29] it has been shown that
(6.16) has infinitely many roots which occur in complex conjugate pairs. In
[29] it also has been shown that these roots are simple. The roots of (6.16)
with positive imaginary part will be denoted by µn = µn,re + iµn,im, where
n ∈ N and µn,re, µn,im ∈ R. In the next section it will be proven by elementary
calculations that (6.16) for the case ǫβ > m ≥ 0 has a unique real-valued root,
which is negative, and that for the case m ≥ ǫβ ≥ 0 such a real-valued root
does not exist. This root will be denoted by µ0 and is approximately given by

µ0 = −1+ǫα
ǫβ−m

+O
(

ǫe
−1

ǫβ−m

(ǫβ−m)2

)

. Now, if m ≥ ǫβ, the solution of problem (6.1)-(6.4)

is given implicitly by

u(x, t) =
∞
∑

n=1

eµn,ret
(

(

Fnφn(x) + Fnφn(x)
)

cos(µn,imt) +

i
(

Fnφn(x) − Fnφn(x)
)

sin(µn,imt)
)

, (6.17)
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where

φn(x) = sinh(µnx), (6.18)

Fn = −(1 + ǫβµn)
∫ 1

0
h1(z, µn)φn(z)dz + h2(µn)φn(1)

µn

(

1 + ǫβµn +
(

ǫ2αβ−m
1+ǫβµn

)

φ2
n(1)

) . (6.19)

And if m < ǫβ the solution of problem (6.1)-(6.4) is given implicitly by

u(x, t) = eµ0tF0 sinh(µ0x) +
∞
∑

n=1

eµn,ret
(

(

Fnφn(x) + Fnφn(x)
)

cos(µn,imt) +

i
(

Fnφn(x) − Fnφn(x)
)

sin(µn,imt)
)

. (6.20)

The convergence of the series (6.17) and (6.20) can be analyzed. The conver-
gence depends on the value of the parameters Fn, which are determined by
f(x) and g(x), and on the smoothness properties of f(x) and g(x). However,
this convergence analysis is beyond the scope of this chapter.

The damping rates (dn) of the solution (6.17) are given by µn,re and the
damping rates of the solution (6.20) by µ0 and µn,re. The frequencies of the so-
lutions are given by µn,im. The main goal of this chapter is to approximate the
values of all the complex-valued roots µn = µn,re + iµn,im of the characteristic
equation hmβα(µ) = 0. These approximations of the roots can be substituted
into (6.17) or (6.20) to obtain explicit approximations of problem (6.1)-(6.4).
In the section 6.4 explicit approximations of all the roots (µn) of hmβα(µ) = 0
will be constructed for the cases (6.5)-(6.8).

6.3 The characteristic equation and the num-

ber of roots

In this section the number of roots of the so-called characteristic equation
(6.16) will be examined. It will be proven that this characteristic equation for
the case ǫβ > m ≥ 0 has a unique real-valued root, which is negative, and that
for the case m ≥ ǫβ ≥ 0 such a real-valued root does not exist. In addition, an
approximation of this real-valued root will also be constructed. Furthermore,
it will be shown that the number of roots of this characteristic equation and a
more simple function are the same.

6.3.1 The real-valued root of the characteristic equation

The roots of the equation (6.16) occur in complex conjugate pairs. But for
specific values of α, β, and m a root of (6.16) is real-valued. Now this case will
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be considered. A root of (6.16) is real-valued if

µ(ǫβ +m tanh(µ)) = −(1 + ǫα tanh(µ)), (6.21)

in which µ ∈ R and where m,α, β, and ǫ are real-valued, non-negative con-
stants. Equation (6.21) does not have a solution for µ ≥ 0 since for this case
the left hand side of (6.21) is non-negative and the right hand side of (6.21) is
negative. Now consider the case µ < 0 and introduce: µ̃ = −µ. Then (6.21)
can be written as

p(µ̃) ≡ (1 − ǫα tanh(µ̃)) − µ̃(ǫβ −m tanh(µ̃)) = 0. (6.22)

Note that 0 < tanh(µ̃) < 1 and that ǫ was assumed to be a small positive
constant, that is, 0 < ǫ ≪ 1. Hence, it follows that 1 − ǫα tanh(µ̃) > 0.
Therefore, p(µ̃) = 0 can only have solutions if ǫβ > m tanh(µ̂). Furthermore,
it should be observed that if m = ǫ2αβ or if m = α = 0 µ̃ = 1

ǫβ
is an exact

solution of (6.22). It should also be observed that ifm = ǫβ = 0 (6.22) does not
have a real-valued root. Now it will be shown that p(µ̃) > 0 for 0 < µ̃ < 1−ǫα

ǫβ
,

that (6.22) can only have a root for the case ǫβ > m ≥ 0, that p(µ̃) < 0 for
µ̃ > 1

ǫβ−m
, that a root of (6.22) exists for the case ǫβ > m ≥ 0, and that the

root of (6.22) for the case ǫβ > m ≥ 0 is unique. Then it can be concluded
that the characteristic equation, that is, hmβα(µ) = 0, where hmβα(µ) is given
by (6.16), has one real-valued, negative root for the case ǫβ > m ≥ 0, and
does not have a real-valued root for the case m ≥ ǫβ ≥ 0.

Firstly, it will be shown that p(µ̃) > 0 if 0 < µ̃ < 1−ǫα
ǫβ

. By substituting

µ̃ = 1−ǫα
ǫβ

− q, where 0 < q < 1−ǫα
ǫβ

into (6.22), and by rearranging terms in the

so-obtained equation it follows that

p

(

1 − ǫα

ǫβ
− q

)

= ǫα

(

1 − tanh

(

1 − ǫα

ǫβ
− q

))

+ ǫβq +

m

(

1 − ǫα

ǫβ
− q

)

tanh

(

1 − ǫα

ǫβ
− q

)

. (6.23)

Since 0 < q < 1−ǫα
ǫβ

, it immediately follows from (6.23) that p(µ̃) > 0 for

0 < µ̃ < 1−ǫα
ǫβ

. Now it will be shown that a root of (6.22) can only exist if

ǫβ > m ≥ 0. Note that it has already be shown that (6.22) only has roots (if
they exist) if ǫβ > m tanh(µ̃). Therefore, to show that a root of (6.22) can
only exist if ǫβ > m ≥ 0, it only has to be shown that there does not exist a
q ∈ (0, m(1− tanh(µ̃))] such that (6.22) has a solution for ǫβ = m tanh(µ̃)+ q.
By substituting ǫβ = m tanh(µ̃)+q, where q ∈ (0, m(1−tanh(µ̃))], into (6.22),
and by dividing the so-obtained result by µ̃, it follows that

q = (1 − ǫα tanh(µ̃))/µ̃. (6.24)
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Substitute q = (1−ǫα tanh(µ̃))/µ̃ into q ≤ m(1−tanh(µ̃)), then by elementary
calculations it follows that

1 − ǫα ≤ (2mµ̃− 1 − ǫα) e−2µ̃. (6.25)

Since 0 < ǫ ≪ 1 and since (6.22) only has roots (it they exist) for µ̃ ≥ 1−ǫα
ǫβ

,

it follows that there is not a µ̃ that satisfies inequality (6.25). Hence a
root of (6.22) can only exist if ǫβ > m ≥ 0. Then, in a similar way
as it has been shown that p(µ̃) > 0 for µ̃ < 1−ǫα

ǫβ
, it can be shown that

p(µ̃) < 0 for µ̃ > 1
ǫβ−m

. Hence, from p(µ̃) > 0 for 0 < µ̃ < 1−ǫα
ǫβ

,

p(µ̃) < 0 for µ̃ > 1
ǫβ−m

, and the mean value theorem, it follows that

there exists a µ̃0 ∈
[

1−ǫα
ǫβ

, 1
ǫβ−m

]

such that p(µ̃0) = 0. Lastly, the unique-

ness of such a root will be shown. Let µ̃0 be a solution of (6.22). From
µ̃0 ≥ 1−ǫα

ǫβ
and 0 < ǫ ≪ 1 it follows by straightforward calculations that

p′(µ̃0) = −1
µ̃0(1+e−2µ̃0 )2

(

1 − ǫα + (2 − 4mµ̃2
0 + 4ǫαµ̃0 + (1 + ǫα)e−2µ̃0)e−2µ̃0

)

< 0.

Now, from p′(µ̃0) < 0, µ̃0 > 0, p(µ̃) > 0 for 0 < µ̃ < 1−ǫα
ǫβ

, and p(µ̃) < 0 for

µ̃ > 1
ǫβ−m

, it follows that µ̃0 is unique. Hence it can be concluded that the

characteristic equation, that is, hmβα(µ) = 0, where hmβα(µ) is given by (6.16),
has one real-valued root for the case ǫβ > m ≥ 0, which is negative, and does
not have such a real-valued root for the case m ≥ ǫβ ≥ 0.

Now an approximation of the real-valued root of hmβα(µ) = 0, where
hmβα(µ) is given by (6.16), for the case ǫβ > m ≥ 0, will be given. The
real-valued root of hmβα(µ) = 0 will be denoted by µ0 and the real-valued root
of p(µ̃) = 0 by µ̃0. First it should be observed that

p

(

1

2(ǫβ −m)

)

=
1

2
(

1 + e
−1

ǫβ−m

)

(

1 − 2ǫα

+

(

2ǫα +
ǫβ − 3m

ǫβ −m

)

e
−1

ǫβ−m

)

> 0, (6.26)

for 0 < ǫ ≪ 1 and ǫβ > m ≥ 0. Hence it follows that µ̃0 >
1

2(ǫβ−m)
. Since

µ0 = −µ̃0 it also follows that µ0 <
−1

2(ǫβ−m)
. Now it should be observed that

tanh(µ0) = −1 + O(e
−1

ǫβ−m ), where e
−1

ǫβ−m → 0 as ǫ → 0 and ǫβ > m ≥ 0. Fi-

nally, substitute tanh(µ0) = −1 + O(e
−1

ǫβ−m ) into (6.21) and apply straightfor-
ward calculations to the so-obtained equation, to obtain the following explicit
approximation of the real-valued root of hmβα(µ) = 0:

µ0 =
−1 + ǫα

ǫβ −m
+ O

(

ǫe
−1

ǫβ−m

(ǫβ −m)2

)

, (6.27)
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with ǫβ > m ≥ 0, and where ǫe
−1

ǫβ−m

(ǫβ−m)2
→ 0 as ǫ→ 0 and ǫβ > m ≥ 0.

6.3.2 The complex-valued roots of the characteristic

equation

Now it will be shown that hmβα(µ) and this more simple function have the
same number of zeros in the complex µ-plane. This result will be used in
section 6.5 to prove that approximations of all the zeros of hmβα(µ) have been
constructed. In above analysis it has been found that hmβα(µ) has a real-
valued zero for the case ǫβ > m ≥ 0 and that hmβα(µ) does not have such a
real-valued zero if m ≥ ǫβ ≥ 0. Therefore, the number of zeros of hmβα(µ) for
the case m ≥ ǫβ ≥ 0 and the case ǫβ > m ≥ 0 will be compared to the zeros
of different functions. For the case m ≥ ǫβ ≥ 0 it will be shown that hmβα(µ)
and

hm(µ) ≡ cosh(µ) +mµ sinh(µ), (6.28)

have the same number of zeros in sufficiently large squares in the complex µ-
plane, counting multiplicities. In this section the phrase ”in sufficiently large
squares in the complex µ-plane, counting multiplicities” will be dropped for
abbreviation. And for the case ǫβ > m ≥ 0 it will be shown that hmβα(µ) and

hβ(µ) ≡ (1 + ǫβµ) cosh(µ), (6.29)

have the same number of zeros. In this chapter a square S(0, R) is defined by

S(0, R) ≡ {z ∈ C; max{|z1|, |z2|} ≤ R}, (6.30)

where z1 and z2 are the real and imaginary part of z respectively. Rouché’s
theorem (see section 3.5) will be used to show that the number of zeros of
hmβα(µ) and a more simple function are the same.

Firstly, the case m ≥ ǫβ ≥ 0 will be considered. Note that µ = µ1 + iµ2,
where µ1, µ2 ∈ R. For this case it will be shown that for m > 0 there exists a
K such that

| cosh(µ) +mµ sinh(µ)| > |ǫβµ cosh(µ) + ǫα sinh(µ)|, (6.31)

on the boundary of S(0, Rk) for all k ≥ K, where Rk = (k + 1
2
)π and k ∈ N.

For m = 0 it can be shown in a similar way that | cosh(µ)| > |ǫα sinh(µ)| on
the boundary of S(0, kπ), where k ∈ N. Then, by Rouché’s theorem, it follows
that for the case m ≥ ǫβ ≥ 0 a sequence Rk → ∞ as k → ∞ exists such
that hmβα(µ) = 0 and hm(µ) = 0 have the same number of roots in S(0, Rk),



122
Chapter 6. On strong and uniform damping for a vibrating string with an

end-mass

counting multiplicities. By substitution of µ = µ1 + iµ2 into inequality (6.31)
and by straightforward calculations, it follows that (6.31) can be written as

(

1 − (ǫα)2 + (m2 − (ǫβ)2)(µ2
1 + µ2

2)
)

cosh(2µ1) + 2
(

m− ǫ2αβ
)

µ1 sinh(2µ1)

>
(

(m2 + (ǫβ)2)(µ2
1 + µ2

2) − 1 − (ǫα)2
)

cos(2µ2) + 2
(

m+ ǫ2αβ
)

µ2 sin(2µ2).

(6.32)

Now it will be shown that for Rk = (k + 1
2
)π, where k ∈ N is sufficiently

large, inequality (6.32) is satisfied on the boundary of S(0, Rk). Note that if
ǫβ > m it is impossible to show that inequality (6.32) holds for |µ1| → ∞.
The boundary of S(0, Rk) is given by the union of the set δS1(Rk) ≡ {µ ∈
C; |µ1| = Rk, |µ2| ≤ Rk} and the set δS2(Rk) ≡ {µ ∈ C; |µ2| = Rk, |µ1| ≤ Rk}.
Now the case µ ∈ δS1(Rk) and the case µ ∈ δS2(Rk) will be considered. Since
ǫ is a small parameter, it follows that (6.32) is certainly satisfied for the case
µ ∈ δS1(Rk) if

Rk >
2(m2 + (ǫβ)2)R2

k + 1 + (ǫα)2 + 2(m+ ǫ2αβ)Rk

2(m− ǫ2αβ) sinh(2Rk)
. (6.33)

Since
R2

k

sinh(2Rk)
→ 0 if Rk → ∞, it follows that there exists a K such that

inequality (6.33) holds for all k ≥ K. For the case µ ∈ δS2(Rk) it should be
observed that if Rk = (k+ 1

2
)π it follows that cos(2Rk) = −1 and sin(2Rk) = 0.

Hence, if µ ∈ δS2(Rk) and Rk = (k + 1
2
)π, inequality (6.32) is certainly true if

R2
k ≥ 1+(ǫα)2

m2+(ǫβ)2
. Lastly, let K be such that R2

k ≥ 1+(ǫα)2

m2+(ǫβ)2
and inequality (6.32)

hold for all k ≥ K. It then follows from the case µ ∈ δS1(Rk) and the case
µ ∈ δS2(Rk) that inequality (6.32) is certainly satisfied for all µ ∈ δS1(Rk) ∪
δS2(Rk), where Rk = (k + 1

2
)π and k ≥ K. Hence there exists a sequence

Rk → ∞ as k → ∞ such that inequality (6.32) is satisfied. Consequently,
there also exists a sequence Rk → ∞ as k → ∞ such that inequality (6.31) is
satisfied. Then, for the case m ≥ ǫβ ≥ 0, it can be concluded that hmβα(µ) = 0
and hm(µ) = 0 have the same number of roots.

Now the case ǫβ > m ≥ 0 will be considered. For this case it can be shown,
in a similar way as in the previous paragraph, that there exists a constant K
such that

|(1 + ǫβµ) cosh(µ)| > |(mµ+ ǫα) sinh(µ)|, (6.34)

on the boundary of S(0, Rk), where Rk = kπ and k ∈ N, for all k ≥ K. Then,
by Rouché’s theorem, it follows for the case ǫβ > m ≥ 0 that hmβα(µ) = 0 and
hβ(µ) = 0 have the same number of roots.
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6.4 On the construction of formal approxima-

tions of the roots the characteristic equa-

tion

In section 6.2 the vibrations of a string with one fixed end and a non-fixed end
have been considered and a so-called characteristic equation (6.16) has been
obtained. In this section approximations of the roots (with positive imaginary
part) of the characteristic equation (6.16) will be constructed for the cases
(6.5)-(6.8) in subsections 6.4.1, 6.4.2, 6.4.3, and 6.4.4 respectively.

6.4.1 The case: m = O(ǫ) and α ≥ 0, β = 0

In this subsection the type of damping of a string with small end-mass, that is,
m = ǫm1 where m1 is an ǫ-independent parameter, and with velocity damper
(i.e. α ≥ 0 and β = 0) will be considered. For this case equation (6.16) is
given by

cosh(µ) + ǫm1µ sinh(µ) = −ǫα sinh(µ). (6.35)

Usually, to construct approximations of all the roots of (6.35), it will be as-
sumed that these roots are given by a Taylor series in ǫ. Next, this expansion
will be substituted into (6.35). Then the so-obtained equation will be expanded
with respect to ǫ, and terms of equal powers in ǫ will be taken together. Lastly,
the so-obtained O(ǫn)-equations, with n = 0, 1, 2, . . ., will be solved, and these
solutions will be used to construct approximations of the roots. It should be
observed that in this way only accurate approximations of the roots of (6.35)
are constructed for small values of |µ|. To construct approximations which are
also valid for |µ| → ∞, something extra has to be done. In this chapter, in a
similar way as in section 3.5.3, the new parameter m(ǫ) = m1ǫ is introduced.
This parameter has to be treated as an O(1)-term. Now it can be assumed
that the roots of (6.35) can be expanded in a series in ǫ, given by

µn(ǫ) = µ0,n + ǫµ1,n + ǫ2µ2,n + . . . , (6.36)

where µk,n = µk,1,n + iµk,2,n, with µk,1,n, µk,2,n ∈ R for k ∈ N ∪ {0}, and
µk,1,n, µk,2,n = O(1) for k ∈ N. Now, by substituting (6.36) into (6.35), by
treating m1(ǫ) as O(1)-terms, by expanding the so-obtained equation with
respect to ǫ, and by equating the coefficients of equal powers in ǫ, the O(1)-,
the O(ǫ)-, and higher order problems can be obtained. In this way it follows
that the O(1)-problem is given by

cosh(µ0,n(ǫ)) +m(ǫ)µ0,n(ǫ) sinh(µ0,n(ǫ)) = 0. (6.37)
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n µnum,n µa,n(ǫ) (n− 1)π

1 -0.08946 + 1.4278i -0.08925 + 1.4289i 0
2 -0.07787 + 4.3034i -0.07780 + 4.3058i 3.1416
3 -0.06161 + 7.2255i -0.06163 + 7.2281i 6.2832
4 -0.04666 + 10.198i -0.04672 + 10.200i 9.4248
5 -0.03508 + 13.212i -0.03514 + 13.214i 12.566
6 -0.02667 + 16.258i -0.02671 + 16.259i 15.708
7 -0.02065 + 19.326i -0.02068 + 19.327i 18.850
8 -0.01631 + 22.410i -0.01633 + 22.410i 21.991
9 -0.01313 + 25.506i -0.01315 + 25.506i 25.133
10 -0.01076 + 28.610i -0.01077 + 28.610i 28.274

Table 6.1: Numerical (µnum,n) and asymptotic (µa,n(ǫ)) approximations of the
first ten eigenvalues µn for the case ǫ = 0.1, m1 = 1, and α = 1.

The solutions (µ0,n(ǫ)) of equation (6.37) with positive imaginary part are
given by µ0,n(ǫ) = iµ0,2,n(ǫ), where µ0,2,n(ǫ) is the n-th positive root of

cos(µ) − ǫm1µ sin(µ) = 0. (6.38)

In [27] it has been deduced that the positive roots(µn) of equation (6.38) are
such that (n − 1)π ≤ µn ≤ nπ, with n ∈ N, and µn(ǫ) → nπ if n → ∞. By
considering the higher order problems, it can be found that

µ1,1,n(ǫ) =
−α

1 +m(ǫ) +m2(ǫ)µ2
0,2,n(ǫ)

, (6.39)

µ1,2,n(ǫ) = µ2,1,n(ǫ) = 0, (6.40)

µ2,2,n(ǫ) =
α2m(ǫ)µ0,2,n(ǫ)(1 +m2(ǫ)µ2

0,2,n(ǫ))

(1 +m(ǫ) +m2(ǫ)µ2
0,2,n(ǫ))3

. (6.41)

Note that µn(ǫ) = µn,re(ǫ) + iµn,im(ǫ), with µn,re(ǫ), µn,im(ǫ) ∈ R, is given
by (6.36). Now an approximation for the frequency µn,im(ǫ) is given by
µ0,2,n(ǫ) + ǫ2µ2,2,n(ǫ). The damping coefficient µn,re(ǫ) is approximately given
by ǫµ1,1,n(ǫ). Note that there is a remarkable resemblance between (2.117) and
(6.40). In Table 6.1 the first ten numerical (Maple) approximations (µnum,n),
and the first ten asymptotic approximations (µa,n(ǫ) = µ0,n(ǫ) + ǫµ1,n(ǫ)) of
the roots of equation (6.35) are listed for the case ǫ = 0.1, m1 = 1, and α = 1.
Since µ1,1,n(ǫ) → 0 if n → ∞, the modes will be damped strongly. Note that
this result is in agreement with the result showed in [28], that is, for a string
with velocity damper and an end-mass only strong damping can be obtained.
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In general only the first modes of the string are important. Then, because ǫ
is a small parameter, also ǫµ0,2,n(ǫ) will be small and the damping coefficients
for the first oscillation modes are given by µ1,1,n(ǫ) ≈ −α. If the higher order
oscillation modes are also important an angular velocity damper at the non-
fixed end can be used to damp uniformly the vibrations of a string with an
end-mass. The effect of an additional angular velocity damper at the end of
the string will be considered in the following subsections.

The eigenfunctions corresponding to the roots of equation (6.35) are given
by equation (6.14). By substituting the approximation of µn(ǫ), which is given
by equation (6.36), into equation (6.14) and by using that cosh(ǫµ1(ǫ)x) =
1 + O(ǫ2) and sinh(ǫµ1,n(ǫ)x) = ǫµ1(ǫ)x + O(ǫ2) for x ∈ [0, 1], it follows that
the eigenfunctions can be approximated by

φa,n(x; ǫ) = sinh(µ0,n(ǫ)x) + ǫµ1,n(ǫ)x cosh(µ0,n(ǫ)x), (6.42)

in which µ0,n(ǫ) = iµ0,2,n(ǫ), where µ0,2,n(ǫ) is the n-th positive root of (6.38),
and in which µ1,n(ǫ) = µ1,1,n(ǫ), where µ1,1,n(ǫ) is given by equation (6.39).
Hence it follows that φa,n(1; ǫ) → 0 if n→ ∞ for m1 > 0 and that φa,n(1; ǫ) =
(−1)n−1 + O(ǫ) for m1 = 0. In the introduction it has been mentioned that
in [1] inadequate eigenfunctions (φn(x)) has been used in the construction of
approximate solutions. In [1] the eigenfunctions have been chosen such that
φn(1) = (−1)n−1. But, from equation (6.42), it follows that the eigenfunctions
should be such that φn(1) → 0 if n→ ∞. The velocity damper, with damping
parameter ǫα, is attached to the non-fixed end of the string, that is, at x = 1.
Therefore, the influence of the velocity damper on the damping rates of the
oscillation modes of the string depends on the value of the eigenfunctions in
x = 1 (i.e. φn(1)). If the value of the eigenfunctions in x = 1 tends to zero
for the higher order modes (i.e. n → ∞), also the part of the damping rates,
which depends on the value of the velocity damping parameter, should tend
to zero for the higher order modes. The values of the eigenfunctions in x = 1,
which are used in [1], do not tend to zero if n→ ∞. Consequently, inadequate
values of the damping rates have been obtained. To construct approximate
solutions of the problem considered in [1], it can be assumed that the solution
can be approximated by a series of eigenfunctions. Now these eigenfunctions
have to be chosen such that the so-obtained approximation of the solution
describes the influence of the terms in the boundary conditions correctly. For
instance, the eigenfunctions for the problem considered in [1] can be given by
φn(x) = sinh(µ0,n(ǫ)x), where µ0,n(ǫ) = iµ0,2,n(ǫ), in which µ0,2,n(ǫ) is the n-th
positive root of (6.38).
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6.4.2 The case: m = O(1) and α, β ≥ 0

In this subsection the vibrations of a string with an end-mass, a velocity
damper, and an angular velocity damper at its non-fixed end will be considered.
In this subsection it is assumed that m = O(1), where m is an ǫ-independent
parameter. For this case the characteristic equation is given by (6.16). In this
subsection approximations of the roots of this equation will be constructed.
Now it is assumed that the roots µn(ǫ), where n ∈ N, of (6.16) are given
by (6.36). By substituting (6.36) into (6.16), by expanding the so-obtained
equation with respect to ǫ, and by collecting equal powers in ǫ, the O(1)-,
the O(ǫ)-, and higher order problems can be obtained (in a similar way as in
subsection 6.4.3). By solving the so-obtained O(1)-problem, it follows that
µ0,n(ǫ) = iµ0,2,n, where µ0,2,n is the n-th positive root of cos(µ) = mµ sin(µ).
Then solve the so-obtained O(ǫ)-problem to get

µ1,1,n = −
α + βmµ2

0,2,n

1 +m+m2µ2
0,2,n

, (6.43)

µ1,2,n = 0. (6.44)

The damping rates of the oscillation modes are approximately given by the
negative parameter ǫµ1,1,n. If n→ ∞, it follows that

µ1,1,n → − β

m
. (6.45)

In Fig. 6.2 the damping rates (dn(ǫ) = ǫµ1,1,n) are depicted for several values
of the parameter α, β, ǫ, and m. From Fig. 6.2(a) it seems that it can be
concluded that reducing the mass of the end-mass leads to better damping
properties of the string. Next subsections will show that this is not the case.
Fig. 6.2(b) illustrates that only the damping rates of the first oscillation modes
are significantly reduced by decreasing values of α.

From (6.43) it can be concluded that the vibrations will be damped uni-
formly if β > 0 and will be damped strongly for α > 0 and β = 0. Note that
this result is in agreement with the result found in [29].

6.4.3 The case: m = O(ǫ2), and α ≥ 0, β > 0

In this subsection the vibrations of a string with at its non-fixed end an end-
mass, a velocity damper, and an angular velocity damper will be considered.
The mass of the end-mass is assumed to be very small, that is, m = ǫ2m2

where m2 is an ǫ-independent parameter. Now (6.16) is given by the following
equation

(1 + ǫβµ) cosh(µ) = −ǫ(α + ǫm2µ) sinh(µ). (6.46)
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Figure 6.2: The approximate damping rates (dn(ǫ) = ǫµ1,1,n) plotted against
the approximate frequencies (µa,n,2(ǫ) = µ0,2,n + ǫµ1,2,n(ǫ)) for (a): α = β = 1,
ǫ = 0.1, and m = 0.25(∗), 0.5(+), 1(×), 2(·), and for (b): β = m = 1, ǫ = 0.1,
and α = 0.5(∗), 1(+), 2(×), 5(·).
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In this subsection (6.46) will be solved approximately. It should be observed
that the leading order term of (6.46) is given by the left hand side of (6.46).
Moreover, it should be observed that for the construction of the approximations
of the roots of (6.46) the case 1+ǫβµ = 0+O(ǫ) and the case cosh(µ) = 0+O(ǫ)
have to be considered. For the case α = m = 0 and for the case α = m2

β
this

can easily be seen. This observation follows directly from the characteristic
equation (6.46) for these cases.

Now approximations of the roots µ of (6.46) with positive imaginary part
for the case cosh(µ) = 0 + O(ǫ) will be constructed. For this case (6.46) can
be written as

cosh(µ) = −ǫ
(

α + ǫm2µ

1 + ǫβµ

)

sinh(µ). (6.47)

Usually, to construct approximations of all the roots of (6.47) a procedure as
has been described below (6.35) is used. However, in a similar way as in section
6.4.1, to construct approximations which are valid for |µ| → ∞, something
extra has to be done. The new parameters m1(ǫ) = m2ǫ and β(ǫ) = βǫ are
introduced. These parameters have to be treated as O(1)-terms. Then it can
be assumed that the roots of (6.47) can be expanded in a series in ǫ, which is
given by (6.36). Now by substituting (6.36) into (6.47), by treating m1(ǫ) and
β(ǫ) as O(1)-terms, by expanding the so-obtained equation with respect to ǫ,
and by equating the coefficients of equal powers in ǫ, the O(1)-, the O(ǫ)-,
and higher order problems can be obtained. By solving the so-obtained O(1)-
problem, it appears that µ0,n(ǫ) = iµ0,2,n, with µ0,2,n = (n − 1

2
)π. And by

solving the so-obtained O(ǫ)-problem, it follows that

µ1,1,n(ǫ) = −
α +m1(ǫ)β1(ǫ)µ

2
0,2,n

1 + β2
1(ǫ)µ

2
0,2,n

, (6.48)

µ1,2,n(ǫ) = −µ0,2,n(m1(ǫ) − αβ1(ǫ))

1 + β2
1(ǫ)µ

2
0,2,n

. (6.49)

Now the damping rates (dn) can be approximated by ǫµ1,1,n(ǫ). Substitution
of m1(ǫ) = m2ǫ and β1(ǫ) = ǫβ into ǫµ1,1,n(ǫ) yields

dn(ǫ) = −ǫ
(

α +
ǫ2β(m2 − αβ)µ2

0,2,n

1 + ǫ2β2µ2
0,2,n

)

. (6.50)

From (6.50) an optimal damping parameter β, for fixed values of m2, α, and
ǫ, can be found. By taking the derivative of (6.50) with respect to β, it follows
that this optimal damping parameter, for the modes such that ǫ2m2

2µ
2
0,2,n ≪ α,
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n µnum,n µa,n(ǫ) (n− 1
2
)π

1 -0.10075 + 1.5629i -0.10091 + 1.5630i 1.5708
2 -0.10733 + 4.6910i -0.10740 + 4.6914i 4.7124
3 -0.11730 + 7.8241i -0.11717 + 7.8248i 7.8540
4 -0.12736 + 10.962i -0.12699 + 10.963i 10.996
5 -0.13590 + 14.103i -0.13528 + 14.104i 14.137
6 -0.14260 + 17.246i -0.14179 + 17.247i 17.279
7 -0.14771 + 20.389i -0.14674 + 20.390i 20.420
8 -0.15158 + 23.533i -0.15050 + 23.533i 23.562

Table 6.2: Numerical (µnum,n) and asymptotic (µa,n(ǫ)) approximations of the
first eight eigenvalues µn for the case ǫ = 0.1, m2 = 1.25, β = 0.75, and α = 1.

is given by β = m2

2α
. Since µ0,2,n = (n − 1

2
)π → ∞, if n → ∞, the damping

rates of the higher order modes can be approximated by

dn(ǫ) = −ǫm2

β
. (6.51)

So the value of the damping rates of the first order oscillation modes are
mainly determined by the value of the damping parameter α, and the value of
the damping rates of the higher order oscillation modes are mainly determined
by the quotient of m2 and β. In Fig. 6.3 the approximate damping rates
(dn(ǫ)) have been plotted versus the corresponding frequencies. Fig. 6.3(a)
shows that increasing the damping parameter β leads to smaller damping
rates. Furthermore, formula (6.51) and Fig. 6.3(b) suggest that increasing
the mass of the end-mass leads to larger damping rates. However, in the
previous subsection, it has been shown that this is not the case.

In Table 6.2 the first eight numerical (Maple) approximations (µnum,n) and
asymptotic approximations (µa,n(ǫ) = µn,0(ǫ) + ǫµn,1(ǫ)) of the roots (µn) of
(6.47) are listed for the case ǫ = 0.1, m2 = 1.25, β = 0.75, and α = 1.

Now an approximation of the root of (6.46) for the case (1+ǫβµ) = 0+O(ǫ)
will be constructed. For this case (6.46) can be written as

(1 + ǫβµ) = −ǫ(α + ǫm2µ) tanh(µ). (6.52)

From (1 + ǫβµ) = 0 + O(ǫ) it follows that tanh(µ) → −1 if ǫ → 0. By
substituting tanh(µ) = −1 into (6.52), and by solving the so-obtained equation
with respect to µ, it follows that

µ =
−1 + ǫα

ǫβ − ǫ2m2
. (6.53)
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Figure 6.3: The approximate damping rates (dn(ǫ) = ǫµ1,1,n(ǫ)) plotted against
the approximate frequencies (µa,n,2(ǫ) = µ0,2,n+ǫµ1,2,n(ǫ)) for (a): m2 = α = 1,
ǫ = 0.1, and β = 0.25(∗), 0.5(+), 1(×), 2(·), and for (b): α = β = 1, ǫ = 0.1,
and m2 = 0.5(∗), 1(+), 2(×), 5(·).
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So an approximation of the root of (6.46) for the case (1 + ǫβµ) = 0 +O(ǫ) is
given by (6.53).

Since the values of the damping rates (6.50) and (6.53) are negative and
do not tend to zero, the modes of a string with a very small end-mass, a
velocity damper, and an angular velocity damper at the non-fixed end of the
string will be damped uniformly. Note that this result also has been found in
[29]. If m2 = 0, (6.50) will tend to zero. Therefore, it is concluded that the
vibrations of a string without an end-mass but with a velocity damper, and
with an angular velocity damper at its non-fixed end will be damped strongly.
Consequently, if there is not an end-mass at the non-fixed end of the string,
an angular velocity damper at the non-fixed end of the string should not be
used to obtain uniform damping, a velocity damper is sufficient. But if there
is an end-mass at the non-fixed end of the string, an angular velocity damper
is necessary and sufficient to obtain uniform damping. Note that for this case
the damping rates of the first oscillation modes will be very small, that is, of
O(ǫ2). An additional velocity damper can be used to obtain damping rates of
O(ǫ) for these first oscillations modes.

6.4.4 The case: m = O(ǫ) and α ≥ 0, β > 0

In this subsection the vibrations of a string with an end-mass, a velocity
damper, and an angular velocity damper at the non-fixed end of the string
will be considered. The end-mass is assumed to be small, that is, m = m1ǫ,
where m1 is ǫ-independent. For this case (6.16) is given by

cosh(µ) = −ǫ(α sinh(µ) + βµ cosh(µ) +m1µ sinh(µ)). (6.54)

This subsection will construct approximations of the complex-valued roots of
(6.54) with positive imaginary part. It can be found that the leading order
terms of (6.54) are given by (6.16) with α = 0. In subsections 6.4.3 and 6.4.2
it was not a hard task to solve the equation corresponding to the leading order
terms. But to solve (6.16) with α = 0 is a delicate task. Therefore, the
approximations of the roots of (6.16) will be constructed in a slightly different
way. In subsections 6.4.2 and 6.4.3 approximations of the complex-valued roots
of (6.16) have been constructed for the cases (6.6) and (6.7). The first order
approximations (iµ0,2,n) of these roots are such that (n − 1)π < µ0,2,n ≤ nπ
with n ∈ N. Therefore, it is assumed that the roots µn(ǫ) of (6.54) can be
given by

µn(ǫ) = i(n− 1)π + µ̃0,n(ǫ) + ǫµ1,n(ǫ) + ǫ2µ2,n(ǫ) + . . . , (6.55)

in which µ̃0,n(ǫ) = µ̃0,1,n(ǫ) + iµ̃0,2,n(ǫ), with 0 < µ̃0,1,n(ǫ) ≤ nπ, and µk,n(ǫ) =
µk,1,n(ǫ) + iµk,2,n(ǫ), with µk,1,n(ǫ), µk,2,n(ǫ) ∈ R and µk,1,n(ǫ), µk,2,n(ǫ) = O(1)
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for k ∈ N. For abbreviation the dependency of µ̃0,n(ǫ) and µk,n(ǫ) on ǫ will
be omitted. Now, by substituting (6.55) into (6.54), by treating terms like
ǫ(n − 1) as O(1)-terms, by expanding the so-obtained equation with respect
to ǫ, and by equating equal powers in ǫ, it follows that the O(1)-problem is
given by

(1 + iǫβ(n− 1)π) cosh(µ̃0,n) + iǫm1(n− 1)π sinh(µ̃0,n) = 0, (6.56)

and that the O(ǫ)-problem is given by

(iǫm1(n− 1)πµ1,n + βµ̃0,n) cosh(µ̃0,n) + (6.57)

(α + (1 + iǫβ(n− 1)π)µ1,n +m1µ̃0,n) sinh(µ̃0,n) = 0.

Now the O(1)-problem will be considered. Equation (6.56) can also be written
as

e2µ̃0,n = −
(

1 + ǫ2(β2 −m2
1)((n− 1)π)2

1 + ǫ2(β +m1)2((n− 1)π)2

)

+ i

(

2ǫm1(n− 1)π

1 + ǫ2(β +m1)2((n− 1)π)2

)

= νn(ǫ). (6.58)

Then, by taking the logarithm of both sides of (6.58), it follows that

µ̃0,1,n =
1

2
ln |νn(ǫ)|

= −1

2
tanh−1

(

2ǫ2βm1((n− 1)π)2

1 + ǫ2(β2 +m2
1)((n− 1)π)2

)

, (6.59)

µ̃0,2,n =
1

2
arg(νn(ǫ)) + kπ, (6.60)

where arg(z) is the argument of z, and k ∈ Z is chosen such that 0 < µ̃0,2,n(ǫ) ≤
nπ. Now the O(ǫ)-problem will be considered. From (6.57) it follows (by
lengthy but elementary calculations) that

Pn(ǫ)µ1,1,n = −(α +m1µ̃0,1,n)(cosh2(µ̃0,1,n) − cos2(µ̃0,2,n) +

ǫm1(n− 1)π sin(µ̃0,2,n) cos(µ̃0,2,n)) (6.61)

−ǫ(n− 1)πµ̃0,2,n(β cosh(µ̃0,1,n) +m1 sinh(µ̃0,1,n)) ×
(β sinh(µ̃0,1,n) +m1 cosh(µ̃0,1,n)) −
βµ̃0,1,n cosh(µ̃0,1,n) sinh(µ̃0,1,n) −
β(µ̃0,2,n − ǫβ(n− 1)πµ̃0,1,n) cos(µ̃0,2,n) sin(µ̃0,2,n),

Pn(ǫ)µ̃1,2,n = −(m1µ̃0,2,n − ǫαβnπ)(cosh2(µ̃0,1,n) − cos2(µ̃0,2,n)) +

µ̃0,1,nǫ(n− 1)π(β cosh(µ̃0,1,n) + (6.62)

m1 sinh(µ̃0,1,n))(β sinh(µ̃0,1,n) +m1 cosh(µ̃0,1,n)) −
(βµ̃0,2,n − ǫαm1(n− 1)π) cosh(µ̃0,1,n) sinh(µ̃0,1,n) −
cos(µ̃0,2,n) sin(µ̃0,2,n)(ǫ(n− 1)πµ̃0,2,n(m

2
1 − β2) − βµ̃0,1,n),
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where Pn(ǫ) = −(ǫβ(n − 1)π)2 cos2(µ̃0,2,n) + (ǫ(n − 1)π)2(m1 sinh(µ̃0,1,n) +
β cosh(µ̃0,1,n))

2 + sinh2(µ̃0,1,n) + (ǫm1(n − 1)π cos(µ̃0,2,n) + sin(µ̃0,2,n))2. Now
O(ǫ2)-approximations of the roots with positive imaginary part of (6.54) are
given by i(n− 1)π+ µ̃0,n + ǫµ1,n. The damping rates (dn(ǫ)) of the oscillations
modes are approximately given by dn(ǫ) = µ̃0,1,n + ǫµ1,1,n. It can be found
by straightforward calculations that the damping rates dn(ǫ) are negative for
ǫ→ 0, and do not tend to zero for n→ ∞. Therefore, it can be concluded that
the oscillation modes will be damped uniformly. Note that also this result is
in agreement with the result that has been shown in [29]. Furthermore, note
that as µ̃0,1,n is very small, that is, of O(ǫ2), the damping rates of the first
oscillation modes will be very small. Therefore, a velocity damper is necessary
to obtain damping rates of O(ǫ) for the first modes. Now the value of (6.59)
as n → ∞ will be considered. If β = m1 it follows that µ̃0,1,n → −∞ as

n→ ∞. Furthermore, from (6.59), it follows that µ̃0,1,n → −1
2
tanh−1

(

2βm1

β2+m2
1

)

as n→ ∞ and β 6= m1. Thus, if β ≫ m1m it follows that µ̃0,1,n ≈ −m1

β
and if

β ≪ m1 it follows that µ̃0,1,n ≈ − β
m1

. Note that such approximate values also

have been obtained in the previous subsections (see (6.51) and (6.45)).
In Figs. 6.4 (a) and (b) the damping rates versus the corresponding fre-

quencies are depicted. From these figures it follows that the velocity damper
α mainly affects the damping rates of the lower order modes. Furthermore, it
can be seen that the damping rates of the higher order modes mainly depend
on β and m1.

6.5 The validity of the formal approximations

In this section the validity of the formal approximations of the roots of (6.16)
for the case (6.5) will be shown. The validity of the formal approximations
of the roots of equation (6.16) for the cases (6.6)-(6.8) can be shown in a
similar way. Moreover, it will be shown that approximations of all the roots
of equation (6.16) have been constructed for the cases (6.6)-(6.8). Firstly, the
validity of the approximation of the n-th root with positive imaginary part of
equation (6.35), that is, of

hm1α(µ) ≡ cosh(µ) + ǫm1µ sinh(µ) + ǫα sinh(µ) = 0, (6.63)

will be shown. In subsection 6.4.1 an approximation of the n-th root of equa-
tion (6.63) with positive imaginary part has been constructed and is given
by

µa,n(ǫ) = µ0,n(ǫ) + ǫµ1,n(ǫ), (6.64)
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Figure 6.4: The approximate damping rates (dn(ǫ) = µ̃0,1,n +ǫµ1,1,n(ǫ)) plotted
against the approximate frequencies (µa,n,2(ǫ) = (n− 1)π + µ̃0,2,n + ǫµ1,2,n(ǫ))
for (a): β = 5, m1 = 1, ǫ = 0.05, and α = 0.5(∗), 1(+), 2(×), 5(·), and for (b):
β = 1, m1 = 5, ǫ = 0.05, and α = 0.5(∗), 1(+), 2(×), 5(·).
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in which µ0,n(ǫ) = iµ0,2,n(ǫ), where µ0,2,n(ǫ) is the n-th positive root of
cos(µ) = ǫm1µ sin(µ), and µ1,n(ǫ) = µ1,1,n(ǫ), where µ1,1,n(ǫ) is given by (6.39).
By substitution of (6.64) into equation (6.63), it follows (by elementary calcu-
lations) that

hm1α(µa,n(ǫ)) = ǫ(α + ǫm1µ1,n)(cosh(µ0,n) sinh(ǫµ1,n) +

sinh(µ0,n)(cosh(ǫµ1,n) − 1)) + (6.65)

(sinh(ǫµ1,n) − ǫµ1,n)(sinh(µ0,n) + ǫm1µ0,n cosh(µ0,n)) = K1(ǫ)ǫ
2,

where K1(ǫ) = O(1). Now, to show that (6.64) is an O(ǫ2)-approximation
of the n-th root of equation (6.63) with positive imaginary part, it will be
shown, by using Rouché’s theorem (see section 6.3), that there exists a positive
constant K2 such that

hm1α(µn) = 0, (6.66)

and

hm1α(µn) = K1(ǫ)ǫ
2, (6.67)

have the same number of roots in B(µa,n(ǫ), K2ǫ
2), in which B(M, r) is the

ball defined by B(M, r) = {z ∈ C; |z −M | ≤ r}. Then, since equations (6.66)
and (6.67) have the same number of roots in B(µa,n(ǫ), K2ǫ

2), and since the
root of equation (6.67) is given by (6.64), it can be concluded that (6.64) is
indeed an O(ǫ2)-approximation of the n-th root of equation (6.35) with positive
imaginary part.

Now it will be shown that there exists a K2 such that equations (6.66) and
(6.67) have the same number of roots in B(µa,n(ǫ), K2ǫ

2). By using Rouché’s
theorem and by substituting µn = µa,n(ǫ) + µ̂n, where µ̂n ∈ C, into hm1α(µn),
it follows that it has to be shown that there exists a K2 such that

|K1(ǫ)ǫ
2| < |hm1α(µa,n(ǫ) + µ̂n)|, (6.68)

for |µ̂n| = K2ǫ
2. By straightforward calculations, it follows that inequality

(6.68) can be written as

|K1(ǫ)ǫ
2| < |hm1α(µa,n(ǫ)) + µ̂nh

′
m1α(µa,n(ǫ)) + O(µ̂2

n)|. (6.69)

Then, from hm1α(µa,n(ǫ)) = K1(ǫ)ǫ
2, |µ̂n| = K2ǫ

2, and the Cauchy-Schwarz
inequality, it follows that inequality (6.69) is certainly satisfied if

K2 >
|2K1(ǫ) + O(ǫ2)|
|h′m1α(µa,n(ǫ))| . (6.70)
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From cos(µ0,2,n(ǫ)) = ǫm1µ0,2,n sin(µ0,2,n(ǫ)) and |h′m1α(µa,n(ǫ))| = |(1 + ǫm1 +
ǫ2m2

1µ
2
0,n,2(ǫ)) sin(µ0,n,2(ǫ)) + O(ǫ)| 6= 0, it appears that 1/|h′m1α(µa,n(ǫ))| =

O(1). Then it can be concluded that there exists a positive constantK2 = O(1)
such that equations (6.66) and (6.67) have the same number of roots in
B(µa,n(ǫ), K2ǫ

2). Hence it follows that µa,n(ǫ), given by (6.64), is indeed an
O(ǫ2)-approximation of the n-th root of equation (6.63) with positive imagi-
nary part.

Now it will be shown that approximations of all roots of equation (6.16) for
the cases (6.5)-(6.8) have been constructed. In section 6.3 it has been shown
that equation (6.16) and a more simple function, ((1+ǫβµ) cosh(µ) = 0 for the
case ǫβ > m ≥ 0, and cosh(µ)+mµ sinh(µ) = 0 for the case m ≥ ǫβ ≥ 0), have
the same number of roots. It should be observed that the positive imaginary
parts (µn,2) of the complex-valued roots of these more simple functions are
such that (n− 1)π ≤ µn,2 ≤ nπ with n ∈ N. In the previous section approxi-
mations of the complex-valued roots of equation (6.16) for the cases (6.5)-(6.8)
have been constructed. The positive imaginary parts (µa,n,2) of these approxi-
mations are also such that (n−1)π ≤ µa,n,2 ≤ nπ with n ∈ N. Then, since the
approximations of the complex-valued roots of equation (6.16) for the cases
(6.5)-(6.8) are indeed asymptotic approximations, since equation (6.16) and a
more simple function have the same number of roots, and since the roots of
equation (6.16) occur in complex conjugate pairs it follows that approxima-
tions of all the complex-valued roots of equation (6.16) for the cases (6.5)-(6.8)
have been constructed. In section 6.3 it has been shown that equation (6.16)
has a real-valued root for the case ǫβ > m ≥ 0 and that such a real-valued
root does not exist for the case m ≥ ǫβ ≥ 0. In section 6.3 a approximation
of this real-valued root has been constructed. Hence it can be concluded that
approximations of all the roots of equation (6.16) for the cases (6.5)-(6.8) have
been constructed in sections 6.3 and 6.4.

6.6 Conclusions

In this chapter the transverse vibrations of a weakly damped, taut string with
a fixed end and with a non-fixed end, with and without an end-mass, have
been considered. The damping is assumed to be boundary damping. The case
of a velocity damper and an angular velocity damper at the non-fixed end of
the string has been considered. In [28] it has been shown that the vibrations
of a string with end mass and a velocity damper at the non-fixed end of the
string are strongly damped. In [29] it has been shown that an additional
angular velocity damper uniformly damps the vibrations of the string. In this
chapter, explicit approximations of all the damping rates and frequencies of
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the oscillations modes of the string has been constructed for several orders of
the quotient of the value of the end-mass (m) and the value of the angular
velocity damper (β). For the four cases considered in this chapter, different
expansions are needed to construct approximations of the damping rates and
frequencies. Moreover, it has been found that the vibrations of a string with
a velocity damper and an angular velocity damper but without end-mass will
not be damped uniformly. An angular velocity damper should only be applied
if an end-mass is connected to the non-fixed end of the string.
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CHAPTER 7

On the effect of the bending stiffness on

the damping properties of a tensioned

cable with an attached tuned mass

damper

Abstract: In this chapter the vertical vibrations of a tensioned cable with
bending stiffness and with an attached tuned mass damper (TMD) will be
considered. A TMD is a classic vibration absorber and it consists of a mass
which is attached to a structure by means of a spring and a dashpot. The
damping behavior of a cable with attached damper may be influenced by the
bending stiffness of the cable. In this chapter the bending stiffness is repre-
sented by the non-dimensional parameter a = EI/(TL2), in which EI is the
bending stiffness, T the constant cable tension, and L the length of the cable.
The aim of this chapter is to consider the effect of bending stiffness on the
dynamics of a cable with attached TMD. It will be discussed that the TMD is
most effective to damp the nth mode of the cable without damper in case the
frequency of the damper is tuned to be close to the frequency of this nth mode.
The TMD parameters for which the TMD is most effective are the so-called
optimum TMD parameters and result in the corresponding optimum damping
rates. These optimum damping rates will be found for a cable without bend-
ing stiffness. Then, the influence of the bending stiffness on these optimum
damping rates will be studied. In case the frequency of the damper is tuned to
the frequency of the first mode of the cable without damper, it will be found
that a ≥ 10−3 can, depending on the TMD parameters, significantly reduce
the optimum damping rates. In case the frequency of the damper is tuned
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to the frequency of the second mode, a ≥ 10−4 can significantly reduce the
optimum damping rates.

7.1 Introduction

Cable-like structures are prone to large-amplitude vibrations due to wind or
earthquake loadings. For instance, overhead transmission lines are suscepti-
ble to galloping oscillations in strong wind-fields [2]. But also the stay-cables
of bridges can exhibit undesired large vibrations (see [88]). These undesired
vibrations can cause damage to the structure. To reduce the cable motion,
dampers can be applied (see [51]). These dampers can be installed to one or
both cable ends. For instance, in [1, 89] the boundary control of a cable has
been considered. However, the dampers can also be connected to an inter-
mediate point of the cable. In [46–48] the vibrations of a taut cable with a
viscous damper attached at an intermediate point have been studied. For the
stay-cables of a bridge this intermediate point is usually close to the anchorage
of the cable. Moreover, one or multiple tuned mass dampers (TMDs) can be
applied to a structure to obtain damping (see [49]). A TMD is a classic vibra-
tion absorber which consists of a mass connected to the structure by means of
a spring and a damper. This TMD can be placed anywhere along a cable. This
can be profitable because the location of the damping device is not restricted
to the cable end.

Recently, in [52], the damping properties of a cable with an attached TMD
have been examined. Here it has been found that the damper reaches a maxi-
mal damping rate for this first mode of the cable with attached damper, when
the damper is tuned to the first natural frequency of the cable and installed
at the mid-span of the cable. For this case the damper has no effect on the
second mode. A maximal damping rate for the second mode can be achieved
when the damper is located at the 1/4th point of the cable. In [52] the effect
of the spring stiffness, the damping parameter, and the mass of the attached
TMD on the damping properties of the first oscillation modes of the cable have
also been studied.

However, in [52], the bending stiffness of the cable has been omitted. In
[37, 90, 91] the damping of a cable with bending stiffness and a viscous damper
attached at an intermediate point has been studied. Here it has been shown
that the bending stiffness may influence the damping behavior of a cable with
an attached viscous damper.

The aim of this chapter is to take the bending stiffness into account in
the model of a cable with attached TMD. Moreover, the effect of the bending
stiffness on the damping properties of a cable with an attached TMD will be
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studied. In this chapter the cable will be modeled by a horizontal, tensioned
beam with an attached TMD (see Fig. 7.1). The vibrations of a vertical beam
with a TMD at the top have been considered in [69], and it has been shown
that a TMD can be used to uniformly damp the horizontal vibrations of the
beam. In [41] the vibrations of a clamped-clamped beam with an attached
TMD have been studied.

This chapter is organized as follows. In the next section the initial-
boundary value problem that describes the cable motion will be presented,
and details of the model will be given. Also the energy of the system will
be defined. Moreover, it will be shown that the energy will decay. Then, in
section 7.3, the method of separation of variables will be applied to this initial-
boundary value problem. It will turn out that the dynamics of the cable with
attached damper is complicated. In section 7.4 this complicated dynamical
behavior will be explained by comparing the frequencies of the damped cable
to the frequencies of the corresponding undamped cable. In section 7.5 the
existence of optimum damper parameters will be discussed. Moreover, these
optimum damper parameters will be found for a cable with TMD but with-
out bending stiffness. In addition, the corresponding optimum damping rates
are given. In section 7.6 the effect of the bending stiffness on these optimum
damping rates will be discussed. Finally, in section 7.7, some conclusions will
be drawn and some remarks will be made.

7.2 Details of the model

In this chapter the vertical vibrations of a tensioned, horizontal beam with an
attached TMD will be studied as a model for a taut cable with bending stiffness
and with an attached TMD. It is assumed that the beam does not have any
natural damping before the TMD is installed. In Fig. 7.1 a simple model of
the system is given. The Euler-Bernoulli theory will be used to describe the
vertical vibrations of the beam. The TMD is attached to the beam at position
X = D. This damper is attached to the beam to absorb the vertical vibrations
of the beam. The mass of the damper is connected to the beam by means of
a spring with spring constant k̂, and a dashpot with damping coefficient ĉ.

A simple model that describes the vertical vibrations of a tensioned beam
(i.e. a cable with bending stiffness) with an attached tuned mass damper is
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X

X = D

X = LX = 0

m

k̂

Y, û

ξ̂

ĉ

g

T T

Figure 7.1: A simple model for a tensioned beam with an attached tuned mass
damper.

given by

ρAû(1)
ττ − T û

(1)
XX + EIû

(1)
XXXX = −ρAg, 0 < X < D, τ > 0, (7.1)

ρAû(2)
ττ − T û

(2)
XX + EIû

(2)
XXXX = −ρAg, D < X < L, τ > 0,(7.2)

û(1)(0, τ) = 0, û(2)(L, τ) = 0, τ > 0, (7.3)

û
(1)
XX(0, τ) = 0, û

(2)
XX(L, τ) = 0, τ > 0, (7.4)

û(1)(D, τ) = û(2)(D, τ), û
(1)
X (D, τ) = û

(2)
X (D, τ), τ > 0, (7.5)

û
(1)
XX(D, τ) = û

(2)
XX(D, τ), τ > 0, (7.6)

EIû
(1)
XXX(D, τ) −EIû

(2)
XXX(D, τ) = k̂(û(D, τ) − ξ̂(τ)) (7.7)

+ĉ(ûτ (D, τ) − ξ̂τ (τ)), τ > 0,

mξ̂ττ − k̂(û(D, τ) − ξ̂(τ)) +mg = ĉ(ûτ (D, τ) − ξ̂τ(τ)), τ > 0, (7.8)

where E is the Young modulus, I is the moment of inertia of the cross-section,
T is the constant tension in the beam, ρ the density, A the cross-sectional area,
L the length, m the mass of the TMD, ξ̂(τ) the displacement of the mass m,
τ the time, X the position along the beam (see Fig. 7.1), D is the position
where the damper is attached to the beam, and g is the acceleration due to

gravity. Furthermore, (. . .)X = ∂(...)
∂X

and (. . .)τ = ∂(...)
∂τ

. The function û(X, τ)
is the deflection of the beam in Y -direction (see Fig. 7.1), and is given by

û(X, τ) =

{

û(1)(X, τ), 0 ≤ x ≤ D,
û(2)(X, τ), D ≤ x ≤ L.

(7.9)

The solution of (7.1)-(7.8) can be given as the sum of the solution of the static
problem corresponding to (7.1)-(7.8) and the solution of (7.1)-(7.8) with g = 0.



7.2. Details of the model 143

Now let the pairs (ûs(X), ξ̂s) and (ûd(X, τ), ξ̂d(τ)) represent the solution of the
static problem and the problem (7.1)-(7.8) with g = 0 respectively. As the core
aim of this chapter is to study the dynamics of the cable, the problem (7.1)-
(7.8) with g = 0 will be examined from now on. Now, by substituting the

transformations u = ûd

L
, ξ = ξ̂d

L
, x = X

L
, and t =

√

T
ρAL2 τ into the problem

(7.1)-(7.8) with g = 0, it follows that

u
(1)
tt − u(1)

xx + au(1)
xxxx = 0, 0 < x < d t > 0, (7.10)

u
(2)
tt − u(2)

xx + au(2)
xxxx = 0, d < x < 1 t > 0, (7.11)

u(1)(0, t) = 0, u(2)(1, t) = 0, t > 0, (7.12)

u(1)
xx (0, t) = 0, u(2)

xx (1, t) = 0, t > 0, (7.13)

u(1)(d, t) = u(2)(d, t), u(1)
x (d, t) = u(2)

x (d, t), t > 0, (7.14)

u(1)
xx (d, t) = u(2)

xx (d, t), t > 0, (7.15)

a
(

u(1)
xxx(d, t) − u(2)

xxx(d, t)
)

= k(u(d, t) − ξ(t)) (7.16)

+c(ut(d, t) − ξt(t)), t > 0,

mξtt − k(u(d, t) − ξ(t)) = c(ut(d, t) − ξt(t)), t > 0, (7.17)

u(x, 0) = f(x), and ut(x, 0) = g(x), 0 < x < 1, (7.18)

ξ(0) = ξ0, and ξt(0) = ξ1, (7.19)

in which

k =
k̂L

T
, c =

ĉ√
ρAT

, m =
m̂

ρAL
, a =

EI

TL2
, and d =

D

L
, (7.20)

are dimensionless and positive parameters. In addition, f(x), g(x), ξ0, and
ξ1 are the initial displacement of the beam, the initial velocity of the beam,
the initial displacements of the mass, and the initial velocity of the mass,
respectively. It should also be observed that the functions u(x, t) and ξ(t)
are dimensionless functions. The functions f(x) and h(x) represent the initial
displacement of the beam and the initial velocity of the beam respectively.
The constants ξ0 and ξ1 represent the initial displacement of the mass and the
initial velocity of the mass respectively. From now on the conditions like t > 0
and 0 < x < d will be omitted for abbreviation.

Problem (7.10)-(7.17) describes the vibrations of the beam and the attached
mass. Now ξ(t) will be eliminated from problem (7.10)-(7.17), and a problem
for u(x, t) will be found. Substitute (7.17) into (7.16) to obtain

a
(

u(1)
xxx(d, t) − u(2)

xxx(d, t)
)

= mξtt(t). (7.21)
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Then, by differentiation of (7.16) with respect to t, and by substitution of
(7.21) into the so-obtained equation, it follows that

a
(

u
(1)
xxxt(d, t) − u

(2)
xxxt(d, t)

)

= k(ut(d, t) − ξt(t)) + (7.22)

c
(

utt(d, t) −
a

m
[u(1)

xxx(d, t) − u(2)
xxx(d, t)]

)

.

Now differentiate (7.22) with respect to t and substitute (7.21) into the so-
obtained result to obtain

a
(

u
(1)
xxxtt(d, t) − u

(2)
xxxtt(d, t)

)

= k
(

utt(d, t) −
a

m
[u(1)

xxx(d, t) − u(2)
xxx(d, t)]

)

+c
(

uttt(d, t) −
a

m
[u

(1)
xxxt(d, t) − u

(2)
xxxt(d, t)]

)

. (7.23)

This is a boundary condition for u(x, t) independent of ξ(t). Hence a problem
for u(x, t) has been found, and is given by (7.10)-(7.15), (7.18), and (7.23). In
this chapter the solutions u(x, t) of this problem will be studied. The unknown
function ξ(t) can be found by substituting the expression for ξt(t), which is
given by (7.22), into (7.16), yielding

ξ(t) = u(d, t) − a

k

(

1 +
c2

km

)

(

u(1)
xxx(d, t) − u(2)

xxx(d, t)
)

+

c2

k2
utt(d, t) −

ac

k2

(

u
(1)
xxxt(d, t) − u

(2)
xxxt(d, t)

)

. (7.24)

The energy of the cable with small bending stiffness and with an attached
TMD at position d is defined to be

E(t) ≡ 1

2

∫ 1

0

u2
t (x, t) + au2

xx(x, t) + u2
x(x, t)dx

+
k

2
(u(d, t) − ξ(t))2 +

m

2
ξ2
t (t). (7.25)

The time-derivative of the energy is

Et(t) = −c(ut(d, t) − ξt(t))
2. (7.26)

Hence, it can be concluded that when c is positive the system will be damped.
Furthermore, by substituting (7.24) into (7.26) it can be seen that the deriva-
tive of the energy depends in a complicated way on the system parameters
a, c, d, k, and m. This energy integral will be used in the next section in the
eigenvalue analysis.
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7.3 Separation of variables

In this section the method of separation of variables will be used to look for non-
trivial solutions u(1)(x, t) and u(2)(x, t) of problem (7.10)-(7.15) and (7.23). By
using the method of separation of variables a so-called characteristic equation
can be obtained. The frequencies and the damping rates of the oscillation
modes of the cable are given by the roots of this characteristic equation. Now
it will be assumed that nontrivial solutions for u(1)(x, t) and for u(2)(x, t) are
given by:

X̂(1)(x)T (1)(t), and X(2)(x)T (2)(t), (7.27)

respectively. It can be shown by elementary calculations (substitute for in-
stance (7.27) into (7.14) and/or (7.15)) that T (1)(t) = CT (2)(t), where C is
an complex-valued, non-zero constant. Consequently, nontrivial solutions for
u(1)(x, t) and for u(2)(x, t) are given by

X(1)(x)T (t), and X(2)(x)T (t), (7.28)

respectively, where T (t) = T (2)(t) and X(1)(x) = CX̂(1)(x). Now, by substitut-
ing (7.28) into problem (7.10)-(7.15) and (7.23), the following boundary value
problem for X(i)(x), with i = 1, 2, can be obtained:

aX(1)
xxxx −X(1)

xx = λX(1), 0 < x < d, (7.29)

aX(2)
xxxx −X(2)

xx = λX(2), d < x < 1, (7.30)

X(1)(0) = 0, X(2)(1) = 0, (7.31)

X(1)
xx (0) = 0, X(2)

xx (1) = 0, (7.32)

X(1)(d) = X(2)(d), X(1)
x (d) = X(2)

x (d) (7.33)

X(1)
xx (d) = X(2)

xx (d), (7.34)

amλ(X(1)
xxx(d) −X(2)

xxx(d)) = k
(

mλX(1)(d) + a[X(1)
xxx(d) −X(2)

xxx(d)]
)

+

c
Tt(t)

T (t)

(

mλX(1)(d) +

a[X(1)
xxx(d) −X(2)

xxx(d)]
)

, (7.35)

and the following problem for T (t):

Ttt + λT = 0, (7.36)

in which λ ∈ C is a separation constant. Now let

X(x) =

{

X(1)(x), 0 ≤ x ≤ d,
X(2)(x), d ≤ x ≤ 1.

(7.37)
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It should be observed that the case λ = 0 only leads to trivial solutions. Now
a solution of problem (7.29)-(7.34) will be constructed for the case λ 6= 0. By
assuming that X(1) = erx, and by substituting this into equation (7.29), it
follows that the auxiliary equation is given by

ar4 − r2 = λ. (7.38)

The roots r of (7.38) are given by

r1,2 =
1√
2a

√

1 ±
√

1 + 4aλ, (7.39)

r3,4 =
−1√
2a

√

1 ±
√

1 + 4aλ. (7.40)

Consequently, it can be observed that if λ = − 1
4a

equation (7.38) has two

repeated roots. Therefore, the case λ = − 1
4a

and the case λ 6= − 1
4a

should be
considered. In the previous section it has been shown that the energy of the
system (7.10)-(7.19) is a decreasing function in time. Hence, from (7.36), it can
be concluded that λ = − 1

4a
can not be an eigenvalue of problem (7.29)-(7.35).

Now the case λ 6= − 1
4a

and λ 6= 0 will be studied.
The general solution of (7.29)-(7.34) for this case is given by

X(x) = Aφ(x), (7.41)

in which A is an arbitrary constant, and where

φ(x) =

{

φ(1)(x), 0 ≤ x ≤ d
φ(2)(x), d ≤ x ≤ 1.

(7.42)

The functions φ(1)(x) and φ(2)(x) in (7.42) are defined by

φ(1)(x) = r2 sinh(r2) sinh(r1x) sinh([1 − d]r1) −
r1 sinh(r1) sinh(r2x) sinh([1 − d]r2), (7.43)

φ(2)(x) = r2 sinh(r2) sinh(r1d) sinh([1 − x]r1) −
r1 sinh(r1) sinh(r2d) sinh([1 − x]r2). (7.44)

Up to now the separation constant λ is unknown. This constant can be found
by considering the boundary condition (7.35). By substituting (7.42) into
(7.35) the following equation can be obtained

(

amλr1r2[r
2
1 − r2

2]q − k[mλs+ ar1r2{r2
1 − r2

2}q]
)

T (t) =

cTt(t)
(

mλs + ar1r2[r
2
1 − r2

2]q
)

, (7.45)
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where

q = sinh(r1) sinh(r2), (7.46)

s = r2 sinh(r2) sinh(r1d) sinh([1 − d]r1) −
r1 sinh(r1) sinh(r2d) sinh([1 − d]r2). (7.47)

If mλs+ ar1r2(r
2
1 − r2

2)q = 0 it follows that s = q = 0. The case s = q = 0 will
be considered later on. Now, for s 6= 0 and q 6= 0, it follows from (7.45) that

T (t) = c0e
(θ1+iθ2)t, (7.48)

in which c0 ∈ C and θ = θ1 + iθ2, with

θ =
amλr1r2(r

2
1 − r2

2)q − k(mλs+ ar1r2[r
2
1 − r2

2]q)

c(mλs+ ar1r2[r2
1 − r2

2]q)
. (7.49)

The value θ2 is the non-dimensional frequency, and θ1 is the non-dimensional
damping rate of an oscillation mode. The frequencies and damping rates can
be obtained by multiplying θ2 and θ1 by

√

ρAL2/T , respectively. The main
goal in this chapter is to find the values for θ1 and θ2, and to discuss the
influence of a on these values. For abbreviation, in this chapter, the non-
dimensional frequencies and the non-dimensional damping rates are named to
be the frequencies and damping rates, respectively. From (7.36), (7.45), and
7.49. Now substitution of λ = −θ2 and Tt = θT into (7.45) leads to the
characteristic equation:

√

1

a
− 4θ2(mθ2 + cθ + k)q = mθ(cθ + k)s, (7.50)

in which q and s are given by (7.46) and (7.47), respectively. Note that if
q = s = 0 then (7.50) is also satisfied. Thus, the frequencies and the damping
rates for the case q = s = 0 and the case s 6= 0 and q 6= 0 follow from
(7.50). It should be observed that the roots of (7.50) θ may become real-valued
for sufficiently large values of the damping coefficient c. This is the case of
overcritical damping. In addition, it should be observed that the complex-
valued roots of (7.50) occur in complex conjugate pairs. In section 7.6 the
non-zero roots of the characteristic equation will be considered.

7.4 Complicated dynamical behavior

The attachment of the damper to the cable leads to complicated dynamical
behavior. In fact, an extra degree of freedom is added to the cable. The
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Figure 7.2: (a) The values of the first four frequencies θ2,n of the cable with at-
tached damper, and (b) the frequencies of the corresponding pure cable (ωn(a))
and the frequency of the attached damper (ωd), for c = 0, m = 0.025, d = 0.9,
and a = 10−5 as a function of k ∈ [0, 1.5].

frequencies of the corresponding undamped cable with bending stiffness are
given by

ωn(a) = nπ
√

1 + a(nπ)2 (7.51)

with n ∈ N. From now on the cable with bending stiffness but without an
attached damper will be called the pure cable, and the cable with an attached
damper will be called the damped cable. In addition, the frequency of the
mass-spring-system corresponding to the attached damper is given by

ωd =
√

k/m. (7.52)

In this section it will be explained how a frequency of the cable with attached
damper can be associated with ωd and ωn(a). And, it will be argued that for
some values of the parameters k,m, c, d, and a two frequencies of the cable
can both be associated with ωd and ωn(a). Moreover, it will be discussed that
the damper most effectively damps the nth mode of the pure cable as the
frequency of the damper (ωd) is tuned to ωn. These results will be used in the
section 7.6 to explain the effect of the bending stiffness on the damping rates
of the damped cable.

In the previous section the characteristic equation (7.50) has been found.
The damping rates and the frequency of the vibrations modes of the cable
are given by the real (θ1,n) and imaginary (θ2,n) parts of the roots (θn) of
this equation, respectively. The magnitudes of the first four frequencies of
the damped cable for the case c = 0, d = 0.9, m = 0.02, a = 10−5 have been
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depicted in Fig. 7.2(a) as a function of k ∈ [0, 1.5]. And, in Fig. 7.2(b) the
magnitudes of the first three frequencies of the pure cable (ωn(a)) and the
frequency of the damper (ωd) are given, for the same values of c, d,m, and a.
For other values of c,m, d, and a similar plots can be obtained. From Fig. 7.2
it can be seen that the frequencies of the modes of a cable with attached mass
are close to ωn and ωd. Moreover, it can be seen in which way a frequency
(θ2,n) of the cable evolves as a function of k. It can also be observed that the
value θ2,n, for some values of k, can be easily associated with ωn−1, ωd, or ωn.
Moreover, for values of k such that ωd ≈ ωn, θn and θn+1 can both be associated
with ωd and ωn. In this case it is difficult to associate the nth or (n + 1)th
mode of the cable with attached damper with the nth mode of the pure cable.
Therefore, in this chapter, the frequency pair (θn, θn+1) will be associated with
the pair (ωd, ωn) in this case. Note that this insight is different from what has
been done in [52]. In [52], for the case that the frequency of the damper is
tuned to the frequency of the first mode of the pure cable (i.e. ωd = ω1), the
first and second mode of the damped cable are associated with the first mode
of the pure cable and the damper respectively, or with the damper and the
first mode of the pure cable respectively. In [52] it is not explained how they
did this association.

It will turn out that the damper is most effective to damp the nth mode of
the pure cable as the frequency ωd is tuned to be close to ωn (see also [52, 72]).
In the following section it will be illustrated that, depending on the parameters
m and d, the frequency ωd have to be tuned to be smaller, equal, or larger than
ωn. In this case the damping rates of the nth and (n+1)th mode of the damped
cable will be large (compared to the damping rates of the other modes). But,
exactly for this case the frequency pair (θn, θn+1) is associated with the pair
(ωd, ωn). Thus, to conclude that the nth mode of the pure cable is damped
effectively, both the damping rates of the nth and the (n + 1)th mode of the
damped cable should be large. In this chapter the damper is most effective to
damp the nth mode of the pure cable in case the smallest damping rate of the
nth and (n+ 1)th mode of the cable with attached damper is maximal. Note
that in [52] only the damping rates of the modes of the damped cable which
have been associated with the modes of the pure cable have been considered.

7.5 Optimum TMD parameters

In the previous section it has been mentioned that the damper is most effective
to damp the nth mode of the pure cable in case the smallest damping rate of
the nth and (n+1)th mode of the cable with attached damper is maximal. The
parameters m, k, c, and d for which the smallest damping rate is maximal will
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be called the optimum TMD parameters, and the corresponding damping rates
of the nth and (n+1)th mode will be called the optimum damping rates. The
existence of an optimum damping parameter c, for instance, can be observed
by considering the cases c = 0 and c→ ∞. In case c = 0 the cable will not be
damped. In case c→ ∞ the relative displacement of the attached damper and
the cable at the attachment point will tend to zero. Consequently, the damper
will not damp the vibrations of the cable. As the damper is ineffective for
c = 0 and c → ∞, there exists an optimum damping parameter copt ∈ (0,∞)
for which the smallest damping rate of the nth and (n+1)th mode is maximal.
It should be observed that this optimum damping parameter depends on the
other parameters of the system.

In this section the optimum TMD parameters copt and kopt and the corre-
sponding optimum damping rates will be given for several values of m and d,
in case that the frequency of the attached damper is tuned to be close to the
first or second mode of the pure cable without bending stiffness. In the next
section the influence of the bending stiffness a on these optimum damping rates
will be discussed. Moreover, in this section, it will be illustrated how changes
in the optimum TMD parameters copt and kopt influence their corresponding
optimum damping rates.

In Table 7.1 the optimum TMD parameters copt and kopt are listed for m =
0.15, 0.1, 0.05, 0.25.0.01, d = 0.5, 0.6, 0.7, 0.8, 0.9, and n = 1. These optimum
TMD parameters can be found by changing the parameters c and k such that
the smallest damping rate of the first two modes is maximal. In addition, the
damping rates and frequencies of these first two modes are presented in this
table. Note that, in a similar way, the optimum TMD parameters and the
corresponding damping rates can be found in case the damper is tuned to be
close to another mode of the pure cable.

From Table 7.1 it can be seen that a heavier mass m leads to larger copt,
higher damping rates θ1,1 and θ1,2, larger kopt, and smaller frequencies θ2,1 and
θ2,2. However, note that in applications the mass can not be chosen too heavy.
In addition, it can be observed from Table 7.1 that installing the damper closer
to the mid-span of the cable results in larger copt, higher damping rates, smaller
kopt, and smaller frequencies. Particularly, the table illustrates that installing
the damper at the mid-span of the cable (i.e. d = 0.5) results in the highest
damping rates for the first two vibration modes of the cable with damper.
However, installing the mass at the mid-span does not necessarily lead to
damping for the higher order modes. For instance, the third mode of the cable
with damper will not be damped (see [52]). Consequently, the damper does
not necessarily reduce the energy of the cable with damper most effectively
for the optimum TMD parameters. It only damps two modes most effectively.
Furthermore, it should be observed that in Table 7.1 the frequencies θ1,2 and
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m d copt kopt ωave,1 θ1,1 θ2,1 θ1,2 θ2,2

0.5 0.3689 0.8631 2.601 -0.7772 2.620 -0.7772 2.670
0.6 0.3679 0.8991 2.630 -0.7495 2.600 -0.7496 2.772

0.15 0.7 0.3667 1.031 2.731 -0.6687 2.756 -0.6687 2.847
0.8 0.3256 1.284 2.929 -0.4901 2.863 -0.4889 3.050
0.9 0.1843 1.544 3.145 -0.2506 3.010 -0.2513 3.166

0.5 0.2251 0.6876 2.755 -0.6495 2.747 -0.6497 2.841
0.6 0.2108 0.7004 2.785 -0.5889 2.610 -0.5897 3.039

0.1 0.7 0.2108 0.788 2.872 -0.5397 2.819 -0.54068 2.997
0.8 0.1769 0.9162 3.018 -0.4007 2.956 -0.4000 3.075
0.9 0.0977 1.020 3.149 -0.2124 3.073 -0.2126 3.137

0.5 0.08655 0.4103 2.936 -0.4601 2.838 -0.4609 3.078
0.6 0.08646 0.4209 2.956 -0.4513 2.918 -0.45118 3.032

0.05 0.7 0.07807 0.446 3.013 -0.3860 2.960 -0.3874 3.080
0.8 0.06079 0.4805 3.091 -0.2843 3.036 -0.2846 3.117
0.9 0.03252 0.5027 3.148 -0.1506 3.104 -0.1519 3.143

0.5 0.03228 0.2251 3.036 -0.3316 2.960 -0.3322 3.134
0.6 0.03071 0.2276 3.048 -0.3125 2.958 -0.3120 3.153

0.025 0.7 0.02757 0.2352 3.079 -0.2733 3.016 -0.2718 3.142
0.8 0.02081 0.2440 3.119 -0.2009 3.068 -0.2001 3.149
0.9 0.01107 0.2491 3.145 -0.1068 3.115 -0.1067 3.150

0.5 0.008514 0.09520 3.099 -0.2149 3.057 -0.2152 3.149
0.6 0.008275 0.09574 3.104 -0.2079 3.083 -0.2081 3.131

0.01 0.7 0.007125 0.09695 3.117 -0.1774 3.094 -0.1766 3.139
0.8 0.005247 0.09834 3.133 -0.1287 3.113 -0.1294 3.144
0.9 0.002733 0.09908 3.143 -0.06736 3.125 -0.06729 3.151

Table 7.1: The optimum TMD parameters copt and kopt, ωave,1, the optimum
damping rates (θ1,1 and θ1,2) and their corresponding frequencies (θ2,1 and θ2,2)
for m = 0.15, 0.1, 0.05, 0.025, 0.01, d = 0.5, 0.6, 0.7, 0.8, 0.9, and a = 0.
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m d copt kopt ωave,2 θ1,1 θ2,1 θ1,2 θ2,2

0.6 0.5001 4.023 5.593 -0.8258 5.983 -0.8245 6.061
0.15 0.75 0.6567 2.817 4.334 -1.462 5.144 -1.461 5.712

0.9 0.8789 4.940 5.739 -1.054 5.871 -1.055 6.143

0.6 0.04089 0.9387 6.128 -0.3920 6.190 -0.3904 6.253
0.025 0.75 0.06753 0.8930 5.977 -0.6716 6.046 -0.6691 6.160

0.9 0.04605 1.008 6.350 -0.4053 6.186 -0.4017 6.254

Table 7.2: The optimum TMD parameters copt and kopt, ωave,2, the optimum
damping rates (θ2,1 and θ3,1) and its corresponding frequencies (θ2,2 and θ2,3)
for m = 0.15, 0.025, d = 0.6, 0.75, 0.9, and a = 0.

θ2,2 are both close to the average of the frequency of the damper and the pure
cable, that is, to

ωave,n = (
√

k/m+ c2/(4m2) + nπ)/2. (7.53)

Lastly, from Table 7.1, it follows that ωave,1 is larger than ω1 = π in the case
d = 0.9, but smaller than ω1 in the cases d = 0.8, 0.7, 0.6, 0.5. Hence, it follows
that the frequency of the attached damper should be tuned, depending on the
value of d, to be larger, equal, or smaller than the first mode of the pure cable.

In figures 7.3(a) and (b) the first two damping rates has been depicted as a
function of c and as a function of k, respectively. These pictures are provided to
show that small changes in the optimum TMD parameters may significantly
change the optimum damping rates. Fig. 7.3(a) shows that decreasing the
optimum TMD parameter copt only slightly changes the optimum damping
rates, but increasing the optimum TMD parameter copt significantly changes
the optimum damping rates. For instance, an increase of 10% in copt leads to
a reduction of 36% in the smallest optimum damping rate. From Fig. 7.3(b)
it can be seen that the optimum damping rates depends sensitively on the
optimum TMD parameter kopt. For instance, an increase of 1% in kopt reduces
the smallest optimum damping rate by 10%.

The frequency of the damper can also be tuned to the second mode of
the pure cable. In this way high damping rates for the second and third
mode of the cable with damper will be found. This is illustrated in Table
7.2, where the optimum TMD parameters copt and kopt, the corresponding
optimum damping rates (θ2,1 and θ3,1) and frequencies (θ2,2 and θ3,2), and
ωave,2 are given for m = 0.025, 0.15 and d = 0.6, 0.75, 0.9. From this table it
can be seen that the damping rates are highest in case d = 0.75. Furthermore,
this table illustrates that the frequency of the damper has to be tuned to be
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Figure 7.3: The damping rates θ1,n of the first (∗) and second (+) mode of the
damped cable, for m = 0.15, d = 0.5, and a = 0, (a): as function of c around
the optimum TMD parameter copt = 0.36889, and (b): as function of k around
the optimum TMD parameter kopt = 0.86311.
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Figure 7.4: The damping rates (θ1,n) of the first (∗) and second (+) mode of
the cable with attached damper for the case m = 0.025, c = 0.011074, d = 0.9,
and k = 0.24911.

larger than the frequency of the pure cable in the case m = 0.025 and d = 0.9.
For the other cases the frequency of the damper has to be tuned to be smaller
than the frequency of the pure cable.

7.6 The effect of the bending stiffness on the

optimum damping rates

In section 7.3 the characteristic equation (7.50) has been found. The damping
rates and the frequency of the vibrations modes of the cable are given by the
real and imaginary parts of the roots (θn) of this equation, respectively. The
values of these roots depend on the spring constant (k), the damping parameter
(c), the mass of the damper (m), the point of attachment of the damper to
the cable (d), and the bending stiffness of the cable (a). The effect of the
parameters k, c,m, and d on the damping rates have been discussed in [52].
In the previous section the optimum TMD parameters kopt and copt have been
found for d = 0.5, 0.6, 0.7, 0.8, 0.9, m = 0.01, 0.025, 0.05, 0.1, 0.15, a = 0, and
n = 1, 2. In addition, the corresponding optimum damping rates have been
given. In this section the effect of a on these optimum damping rates will be
examined. In long-span cable-stayed bridges the parameters a takes values in
the practical range of 2.8 × 10−6 − 10−2 (see [90]). In this section values of a
up to 1 will be considered. The case a = 1 will be studied as a limit case.
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Figure 7.5: The damping rates (θ1,n) of the second (∗) and third (+) mode of
the cable with attached damper for the case m = 0.025, c = 0.046048, d = 0.9,
and k = 1.0082.

In a similar way as in [52], two different strategies will be used to consider
this effect. The first strategy is as follows. The parameters m and d will be
chosen as has been done in the previous section. The parameters k and c will
be chosen to be equal to the corresponding optimum TMD parameters kopt

and copt. For n = 1 and n = 2 these optimum TMD parameters have been
presented in Table 7.1 and 7.2 respectively. Then, it will be examined what
happens to the damping rates as the parameter a will be varied. Note that this
case will be considered, as in this case the nth mode of the damped cable is
damped effectively. In this chapter the case n = 1 and n = 2 will be discussed.
In Table 7.3 the first eight numerical (Maple) approximations of the damping
rates (θ1,n) and frequencies (θ2,n) are listed for the cases k = 0.24911, m =
0.025, c = 0.011074, d = 0.9, and a = 10−5, 10−4, 10−3, 10−2, 0.1, 1. From this
table it can be observed that the damping rates of the higher order modes
are only slightly influenced for increasing values of a, while the corresponding
frequencies are significantly changed. Furthermore, it can be observed that the
damping rates and frequencies of the first two modes are significantly changed
for increasing values of a. In Fig. 7.4 the damping rates of the first two modes
as function of a have been been depicted. Note that only the first two modes
have been depicted because these are significantly influenced for increasing
values of a, and because these are the most interesting ones. From this figure
and Table 7.3 it follows that the damping rates of these first two modes are
large (compared to the damping rates of the other modes) as long as ωd is
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close to ω1. As a increases the frequency ωn(a) increases, and therefore, ωd

is not close to ωn(a) anymore. Consequently, the damper is not effectively
damping the first two modes of the cable. From Table 7.3 and Fig. 7.4 it
can be observed that the first two damping rates are significantly changed for
a > 10−3. For smaller values of a the bending stiffness only slightly affects the
damping rates of the first two modes of the damped cable.

For other parameters of the mass (m) and the damper location (d) similar
results can be found. In Table 7.4 the value of the bending stiffness (a) for
which the smallest damping rate of the first two modes is decreased by more
than 10% and 25% (compared to the optimum damping rates for a = 0) has
been given. From this table it can be seen that a ≥ 9× 10−5 and a ≥ 1× 10−3

may result in a reduction in the smallest of damping rate of the first two modes
of more than 10% and 25% respectively.

The frequency of the damper can also be tuned to be close to the frequency
of the second mode of the pure cable. This results in high damping rates for
the second and third mode of the cable with attached damper. In Fig. 7.5
the damping rates of the second and third modes of the cable have been given
for the case m = 0.025, c = 0.046048, d = 0.9, and k = 1.0082. From this
figure it follows that the damping rates of the third mode becomes small as
a increases in value. Furthermore, it can be seen from this figure that a
significantly influences the damping rates as a > 10−4. In Table 7.5 the value
of the bending stiffness for which the smallest damping rate of the second and
third mode of the damped cable is reduced by more than 10% and 25% has
been presented. From this table it can be seen that the bending stiffness has
more influence in case the mass (m) of the damper is large. Furthermore, this
table illustrates that bending stiffness can significantly change the optimum
damping rates. For a ≥ 10−4 these optimum damping rates may be reduced
by more than 25%.

In the case that ωd is tuned to the frequency of a higher order mode of
the cable similar results can be found. The damping rates of the nth and
(n + 1)th modes of the cable are large as long as ωd is close to ωn(a). But,
the damping rate of the (n + 1)th mode will decrease as a increases, because
the frequency of the damper is not close the frequency of the nth mode of
the pure cable anymore. Now a second strategy will be considered. Again,
the parameters m, c, and d will be fixed and the parameter a will be varied.
But, now the parameter k is chosen such that the frequency of the damper
is close to the frequency of the pure cable with bending stiffness. In the
previous section it has been shown that ωd should be, depending on the TMD
parameters, smaller, equal, or larger than ωn. Therefore k is chosen such that
ωd = (

√

kopt/m)ωn(a)/ωn(0), in which kopt is the optimum TMD parameter
as has been defined in the previous section. Consequently, k(a) = kopt(1 +
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a = 10−5 a = 10−4

n θ1,n θ2,n ωn−1(a) θ1,n θ2,n ωn−1(a)

1 -0.10551 3.1157 - -0.10589 3.1179 -
2 -0.10815 3.1497 3.1416 -0.10814 3.1501 3.1432
3 -0.00648 6.3018 6.2844 -0.00648 6.3129 6.2952
4 -0.00894 9.4478 9.4287 -0.00895 9.4853 9.4662
5 -0.01127 12.595 12.576 -0.01127 12.684 12.666
6 -0.01201 15.743 15.727 -0.01200 15.917 15.901
7 -0.01066 18.895 18.884 -0.01065 19.193 19.181
8 -0.00762 22.052 22.044 -0.00761 22.524 22.517

a = 10−3 a = 10−2

n θ1,n θ2,n ωn−1(a) θ1,n θ2,n ωn−1(a)

1 -0.12694 3.1175 - -0.17948 3.1129 -
2 -0.08837 3.1687 3.1570 -0.03932 3.3204 3.2930
3 -0.00640 6.4229 6.4064 -0.00560 7.4342 7.4204
4 -0.00885 9.8524 9.8349 -0.00816 12.964 12.952
5 -0.01115 13.539 13.523 -0.01052 20.192 20.182
6 -0.01186 17.553 17.540 -0.01135 29.258 29.250
7 -0.01051 21.954 21.945 -0.01016 40.226 40.221
8 -0.00751 26.792 26.786 -0.00731 53.129 53.126

a = 0.1 a = 1
n θ1,n θ2,n ωn−1(a) θ1,n θ2,n ωn−1(a)

1 -0.17948 3.1129 - -0.22120 3.1478 -
2 -0.00424 13.983 4.4284 -0.00128 10.360 10.358
3 -0.00383 13.983 13.976 -0.00387 39.977 39.976
4 -0.00741 29.634 29.629 -0.00727 89.327 89.325
5 -0.01009 51.498 51.496 -0.01003 158.41 158.41
6 -0.01111 79.595 79.590 -0.01108 247.24 247.24
7 -0.01003 113.93 113.93 -0.01002 355.81 355.81
8 -0.00726 154.51 154.50 -0.00725 484.11 484.11

Table 7.3: Numerical approximations of the first eight eigenvalues θn =
θ1,n+iθ2,n of the characteristic equation (7.50), and of ωn(a) = nπ

√

1 + a(nπ)2,
for the cases k = 0.24911, m = 0.025, c = 0.011074, d = 0.9, and a =
10−5, 10−4, 10−3, 10−2, 0.1, 1.
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d
m Red. (in %) 0.5 0.6 0.7 0.8 0.9

0.15
10 2 × 10−4 4 × 10−4 9 × 10−5 6 × 10−4 7 × 10−4

25 2 × 10−2 2 × 10−2 5 × 10−3 5 × 10−3 9 × 10−3

0.10
10 4 × 10−4 5 × 10−3 1 × 10−3 6 × 10−4 2 × 10−4

25 2 × 10−2 2 × 10−2 9 × 10−3 6 × 10−3 5 × 10−3

0.05
10 3 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 1 × 10−3

25 1 × 10−2 8 × 10−3 7 × 10−3 5 × 10−3 3 × 10−3

0.025
10 2 × 10−3 2 × 10−3 2 × 10−3 1 × 10−3 6 × 10−4

25 7 × 10−3 7 × 10−3 5 × 10−3 4 × 10−3 2 × 10−3

0.001
10 9 × 10−4 6 × 10−4 5 × 10−4 4 × 10−4 3 × 10−4

25 4 × 10−3 3 × 10−3 3 × 10−3 2 × 10−3 1 × 10−3

Table 7.4: The value of a for which the smallest damping rate of the first two
modes (θ1,1 or θ1,2) is reduced by more than 10% and 25%.

d
m Red. (in %) 0.6 0.75 0.9

0.15
10 3 × 10−6 7 × 10−5 8 × 10−6

25 2 × 10−4 9 × 10−4 1 × 10−4

0.025
10 2 × 10−4 2 × 10−4 2 × 10−4

25 8 × 10−4 2 × 10−3 9 × 10−4

Table 7.5: The value of a for which the smallest of the optimum damping rates
(θ1,2 and θ1,3) is reduced by more than 10% and 25%
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Figure 7.6: The damping rates (θ1,n) of the first (∗) and second (+) mode
of the cable for m = 0.025, c = 0.011074, d = 0.9, and for k such that k =
kopt(1 + aπ2).
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Figure 7.7: The damping rates (θ1,n) of the second (∗) and third (+) mode
of the damped cable for m = 0.025, c = 0.046048, d = 0.9, and k such that
k = kopt(1 + 4aπ2).
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a = 10−5 a = 10−4 a = 10−3

n θ1,n θ2,n θ1,n θ2,n θ2,n θ1,n

1 -0.10504 3.1157 0.10117 3.1178 0.09241 3.1294
2 -0.10862 3.1498 0.11285 3.1518 0.12282 3.1721
3 -0.00648 6.3018 0.00648 6.3129 0.00643 6.4231
4 -0.00894 9.4478 0.00895 9.4853 0.00887 9.8526
5 -0.01127 12.595 0.01127 12.684 0.01116 13.540
6 -0.01201 15.743 0.01200 15.917 0.01187 17.554
7 -0.01066 18.895 0.01065 19.193 0.01052 21.955
8 -0.00762 22.052 0.00761 22.524 0.00751 26.792

a = 10−2 a = 0.1 a = 1
n θ1,n θ2,n θ1,n θ2,n θ1,n θ2,n

1 0.08488 3.2526 -0.09006 4.3271 -0.09293 10.040
2 0.13347 3.3313 -0.13096 4.5434 -0.12868 10.725
3 0.00584 7.4359 -0.00472 13.990 -0.00440 40.000
4 0.00826 12.965 -0.00758 29.639 -0.00745 89.345
5 0.01058 20.194 -0.01017 51.502 -0.01011 158.43
6 0.01138 29.259 -0.01115 79.598 -0.01112 247.25
7 0.01017 40.227 -0.01005 113.93 -0.01004 355.81
8 0.00732 53.130 -0.00726 154.51 -0.00726 484.11

Table 7.6: Numerical approximations of the first eight eigenvalues θn =
θ1,n + iθ2,n of the characteristic equation (7.50) for the cases m = 0.025, c =
0.011074, d = 0.9, and a = 10−5, 10−4, 10−3, 10−2, 0.1, 1, and k = kopt(1+aπ2)).

a[nπ]2). Then, the frequency of the damper will stay close to the frequency
of the nth mode of the cable for increasing values of a. In Table 7.6 the
first eight damping rates (θ1,n) and frequencies (θ2,n) are listed for the cases
m = 0.025, c = 0.011074, d = 0.9, and a = 10−5, 10−4, 10−3, 10−2, 0.1, 1. From
this table it can be seen that the damping rates of the higher order modes do
not significantly change for increasing values of a. However, the frequencies of
these modes increase significantly. It should also be observed that the damping
rates of the higher order modes in Tables 7.3 and 7.6 do not differ significantly.
It can be shown that the damping rates of the higher order modes for 0 < c≪ 1
are approximately given by

θ1,n ≈ −c sin(d[n− 1]π) sin([1 − d][n− 1]π). (7.54)

From Table 7.6 it also follows that the damping rates of the first two modes
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d
m Red. 0.5 0.6 0.7 0.8 0.9

0.15
10 2 × 10−4 5 × 10−4 1 × 10−4 6 × 10−4 3 × 10−4

25 22(1) 20(1) 19(3 × 10−3) 22(1 × 10−2) 3 × 10−3

0.10
10 5 × 10−4 2 × 10−1 3 × 10−1 4 × 10−4 9 × 10−4

25 18(1) 14(1) 12(1) 21(7 × 10−3) 2 × 10−3

0.05
10 2 × 10−1 2 × 10−1 4 × 10−1 8 × 10−4 2 × 10−4

25 13(1) 13(1) 11(1) 16(8 × 10−3) 4 × 10−3

0.025
10 10(1) 9.5(1) 9.3(1) 5 × 10−3 5 × 10−4

25 − − − 11(2 × 10−2) 21(10−2)

0.001
10 9.0(1) 7.2(1) 7.2(1) 8.6(1 × 10−2) 2 × 10−3

25 − − − − 13(10−2)

Table 7.7: The value of a for which the smallest of the damping rate if the
first two modes is reduced by 10% and 25%. In case the reduction is smaller
than 10% or 25% the maximum reduction and the corresponding value of a is
given.

change for increasing values of a. However, the damping rates remain large
as a increases. This can also be seen in Fig. 7.6, where the damping rates of
the first two modes are given for m = 0.025, c = 0.011074, d = 0.9. In this
case the damper is still effectively damping the first two modes of the cable.
In Table 7.7 the value of a for which the smallest damping rates of the first
two modes is reduced by more than 10% and 25% is presented. In case the
reduction is smaller than 10% and 25% for a ≤ 1 the maximum reduction and
the corresponding value of a is given. From this table it can be seen that the
first two damping rates remain large, that is, the reduction in the optimum
damping rate is smaller than 25%, for d ≤ 0.8 and for m ≤ 0.025.

In Fig. 7.7 the damping rates of the second and third mode have been
depicted for the case that the frequency of the damper is tuned to the second
frequency of the cable. This tuning is obtained by choosing k such that k(a) =
kopt(1 + a[2π]2). From this figure it can be observed that the damping rates
remain large for increasing values of a. In Table 7.8 the value of a for which
the smallest damping rate of the second and third mode is reduced by more
than 10% and 25% is presented. In case the reduction is smaller than 10%
and 25% for a ≤ 1 the maximum reduction and the corresponding value of a is
presented. From this table it can be seen that the bending stiffness influences
the smallest damping rate of the second and third mode significantly also in
case that frequency of the damper is tuned to be close to the frequency of the
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d
m Red. (in %) 0.6 0.75 0.9

0.15
10 4 × 10−6 9 × 10−5 8 × 10−6

25 2 × 10−4 20(1 × 10−3) 2 × 10−4

0.025
10 4 × 10−5 2 × 10−4 4 × 10−5

25 20(2 × 10−3) 13(7 × 10−4) 3 × 10−3

Table 7.8: The value of a for which the smallest of the damping rate of the
second and third mode is reduced by 10% and 25%. In case the reduction is
smaller than 10% or 25% the maximum reduction and the corresponding value
of a is given.

pure cable with bending stiffness. As the reduction in the smallest damping
rate is more than 25% for a > 10−4, the optimum TMD parameters for the
case a > 10−4 can better be calculated by taking the bending stiffness into
account. Thus, by calculating kopt and copt and the corresponding optimum
damping rates for fixed values of a, d, and m.

7.7 Conclusions

In this chapter a cable with bending stiffness and with a tuned mass damper
(TMD) attached to it have been considered. In [52] the damping properties
of a cable with TMD but without bending stiffness has been studied. In this
chapter the influence of the bending stiffness on the damping properties has
been examined. The bending stiffness is represented by the non-dimensional
parameter a = EI/(TL2), in which EI is the bending stiffness, T the constant
cable tension, and L the length of the cable.

The vertical vibrations of the cable can be described by an initial-boundary
value problem. In this chapter it has been shown that the energy integral of this
problem is a decreasing function in time. Moreover, the method of separation
of variables has been used to solve this problem, and a so-called characteristic
equation has been found. The damping rates of the oscillation modes are given
by the real part of the roots of this equation. These damping rates depend
on the location at which the damper is attached to the cable (d), the spring
constant of the TMD (k), the damping constant of the TMD (c), the mass of
the TMD (m), and the bending stiffness of the cable (a). The damping rates
of the nth and (n+1)th mode of the cable with damper turned out to be large
compared to the damping rates of the other modes in case the frequency of the
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damper is close to the frequency of the nth mode of the cable without damper.
In this chapter it has been argued that the damper is most effectively to damp
the nth mode of the cable without damper in case the smallest damping rate
of the nth and (n + 1)th mode of the cable with damper is maximal. It
turned out that in this case the frequency of the damper, depending on the
TMD parameters, is smaller equal or larger than the nth frequency of the
cable without damper. The corresponding TMD parameters are the so-called
optimum TMD parameters. In case that the damper is tuned to be close to
the first or second mode of the cable without damper, the optimum TMD
parameters k and c have been found for a cable without bending stiffness
and with fixed damper parameters m and d. In addition, the corresponding
optimum damping rates have been found.

In this chapter the effect of the bending stiffness on these damping rates has
been examined. In case the frequency of the damper is tuned to the frequency
of the first mode of the cable without damper it has been found that a ≥ 10−3

may result in a reduction of 25% in the smallest damping rate of the first
two modes (see Table 7.4). In case the frequency of the TMD is tuned to the
frequency of the second mode of the cable without damper it turns out that a
significantly changes the optimum damping rates as a ≥ 10−4 (see Table 7.5).

The reason for this reduction in the damping rates is an increase in the
frequency of the cable for increasing values of a. Consequently, the frequency of
the damper is not close to the frequency of the cable and the damper becomes
ineffective. Therefore, in this chapter, also the case that the frequency of
the TMD is tuned such that it stays close to the frequency of the cable for
increasing values of a has been studied. This has been achieved by changing
the parameter k. It has been shown that this strategy is effective for the case
n = 1 as d ≤ 0.8 and as m ≤ 0.025 (see Table 7.7). For the case n = 2 it also
have been found that this strategy can be effective for d = 0.75 (see Table 7.8).
In case the strategy is ineffective it is recommended to determine the optimum
TMD parameters and the corresponding damping rates by taking the bending
stiffness into account.

Lastly, in case the frequency of the damper is tuned to damp the first mode
of the cable without damper, it has been found that the bending stiffness only
slightly influences the damping rates of the higher order modes.
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CHAPTER 8

Conclusions

In this chapter some conclusion will be drawn and possibilities for future re-
search, which are related to this thesis, will be given.

In chapters 2 and 3 a tall building in a strong wind-field has been modelled
as a weakly damped, standing Euler-Bernoulli beam. In chapter 2 the damp-
ing is assumed to be a combination of boundary damping and Kelvin-Voigt
damping. The case of a tuned mass damper (TMD) installed at the top of
the beam has been studied in chapter 3. It has been concluded that both
control methods can be used effectively to damp the vibrations of a beam in
a wind-field.

In chapter it has been argued that the nonlinear term in the equation (2.5)
gives a coupling between (almost) all oscillation modes. In case the beam
is subjected to Kelvin-Voigt damping the higher order modes will be heavily
damped and the lower order modes will be weakly damped. As the higher
modes are heavily damped, it is reasonable to expect that this problem can
be truncated to a finite number of modes. It would be interesting to find a
condition such that this truncation can be done.

In chapter 3 the TMD is installed at the top of the beam. It would be
interesting to study the damping behavior of the beam in case the TMD is
installed at an intermediate point of the beam or in case multiple TMDs are
applied to the beam.

The effect of the self-weight of an Euler-Bernoulli beam and the tip-mass on
the frequencies and damping rates of the beam has been studied in chapters 2
and 3. Moreover, in chapter 4, the self-weight effect of a Timoshenko beam on
its frequencies has been discussed. In chapters 2, 3, and 4 it has been assumed
that the term representing this effect in the beam-equations is small but not
negligible. Then, in chapters 2, 3, and 4, it has been shown that the self-weight
effect on the frequencies and damping rates is also small. These research results
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can be extended by studying this effect on the dynamical behavior of the beam
in case this self-weight effect becomes larger.

In chapter 5, the wind-induced, horizontal vibrations of a beam in a weakly
turbulent wind-field have been examined. In chapter 2 it has been shown that
for a certain critical wind velocity galloping may set in for a beam in a non-
turbulent wind-field. In chapter 5 it has been shown that turbulence does not
significantly influence this critical wind velocity for galloping.

The vibrations of a cable with a fixed end and with a non-fixed end, to
which an end-mass, velocity damper, and angular velocity damper is attached,
has been addressed in chapter 6. In this chapter also the initial-boundary
value problem describing these vibrations has been introduced. To this prob-
lem the Laplace transform method and (adapted) perturbation methods have
been applied. In this way asymptotic approximations of the frequencies and
damping rates of all the oscillation modes have been found. This method can
also be applied to other beam- or string-like models with attached dampers.
For instance, this method can be applied to find the damping properties of the
systems which have been considered in [46, 47].

Lastly, in chapter 7 the damping behavior of a cable with bending stiffness
and with an attached TMD has been considered. The effect of the bending
stiffness on the damping rates, for the case that the frequency of the damper
is tuned to the frequency of the n-th mode of the undamped cable with small
bending stiffness, has been discussed in detail. It has been observed that in
case the bending stiffness is small, the bending stiffness only slightly influences
the damping rates of the vibration modes.
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Summary

Elastic structures are susceptible to wind- and earthquake-induced vibrations.
These vibrations can damage a structure or cause human discomfort. To sup-
press structural vibrations, various types of damping mechanisms, active or
passive, can be applied.

In this thesis the model of a weakly damped, standing Euler-Bernoulli beam
in a (turbulent) wind-field and the model of a standing Timoshenko beam will
be used as a simple model of a tall building. These models will be used to
study the stabilizing effect of dampers which are installed at the top of the
beam (the so-called boundary dampers), the self-weight effect of a beam on
its stability, and the possibly destabilizing effect due to galloping (a dynamic
wind response). In this thesis two passive control methods will be applied to
the Euler-Bernoulli beam. Moreover, the string-equation will be used to study
the dynamics of a cable with an end-mass and subjected to boundary damping.
The model of a tensioned beam will be used to examine the damping behavior
of a tensioned cable with small bending stiffness and an attached tuned mass
damper.

The vibrations of these beam and string models can be described by
(stochastic) initial-boundary value problems. The problem will be stochastic
if a beam in a turbulent wind-field is studied. It is assumed that the damping
effect, the self-weight effect, and the wind-force in these problems are small but
not negligible. The multiple-timescales perturbation method, the method of
separation of variables, and a combination of the Galerkin truncation method
and a numerical scheme, will be used to construct (explicit) approximations
of the beam-like problems. The Laplace transform method will be applied to
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the string-like problem. In this way a so-called characteristic equation has
been obtained. This equation have been solved by using (adapted) classical
perturbation methods.

For both control methods, the uniform stability of an Euler-Bernoulli beam
subjected to boundary damping has been established and it has been concluded
that these strategies can be used effectively to damp the wind-induced vibra-
tions of a standing Euler-Bernoulli beam. Furthermore, it has been found
that the self-weight effect on the frequencies and damping rates of an Euler-
Bernoulli and Timoshenko beam is small. For the string problem approxima-
tions of the damping rates have been constructed. These have been used to
conclude that a string with an end-mass can be damped uniformly by applying
boundary damping. Lastly, for the tensioned beam with attached damper it
has been shown that small bending stiffness only slightly influences the damp-
ing rates of the cable.



Samenvatting

Wind of aardbevingen kunnen trillingen veroorzaken in flexibele constructies.
Deze trillingen kunnen de constructie beschadigen of zorgen voor discomfort
bij haar gebruikers. Om de invloed van mechanische trillingen te verminderen
kunnen verscheidene, actieve en passieve, dempingstechnieken gebruikt wor-
den.

In dit proefschrift worden een zwak gedempte, staande Euler-Bernoulli balk
in een (turbulent) windveld en een Timoshenko balk gebuikt als een simpel
model voor een slank en hoog gebouw. Deze modellen worden gebruikt om het
stabiliserende gedrag van dempers welke zijn gepositioneerd aan de top van het
gebouw (zogenoemde randdempers) te bestuderen. Verder wordt het effect van
het eigengewicht van de balk op haar stabiliteit en het mogelijke destabilis-
erende effect door ’galloping’ (een dynamische wind belasting) beschouwd. In
dit proefschrift worden twee passieve dempingsmethoden bestudeert. In dit
proefschrift wordt ook de snaarvergelijking beschouwd, om zo het dynamische
gedrag van een kabel met een eindmassa en randdemping te bestuderen. Als
laatste wordt het model van een balk onder spanning gebruikt om het demp-
ingsgedrag van een kabel met buigstijfheid en een tuned mass damper nader
te beschouwen.

De vergelijkingen van deze balk- en snaarmodellen kunnen beschreven
worden door (stochastische) begin-randwaardeproblemen. Het probleem is
stochastisch indien een balk in een turbulent windveld wordt beschouwd.
Aangenomen wordt dat de termen die de invloed van de demping, het
eigengewicht en de windkracht in deze vergelijkingen representeren, klein maar
niet verwaarloosbaar zijn. De meertijdschalen storingsmethode, de meth-
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ode van scheiding van constanten en een combinatie van de Galerkin trun-
catiemethode en een numeriek schema worden gebruikt om (expliciete) be-
naderingen van de balkproblemen te construeren. De laplacetransformatie
wordt toegepast op het snaarprobleem. Op deze wijze wordt een zogenoemde
karakteristieke vergelijking verkregen. Deze vergelijking wordt opgelost met
(aangepaste) klassieke methoden uit de storingsrekening.

Voor beide methoden is de uniforme stabiliteit van een Euler-Bernoulli balk
met randdemping gevonden. Tevens is er geconcludeerd dat deze methoden
kunnen worden toegepast om wind-gëınduceerde trillingen van deze balk ef-
fectief te dempen. Ook is er gevonden dat het eigengewicht kleine invloed
heeft op de frequenties en dempingscoëfficiënten van de Euler-Bernoulli en
Timoshenko balk. Voor het snaarprobleem zijn benaderingen van de demp-
ingcoëfficiënten geconstrueerd. Deze zijn gebruikt om te concluderen dat de
snaar met een eindmassa uniform kan worden gedempt door gebruik te maken
van randdemping. Als laatste is gevonden dat kleine buigstijfheid de demping
van een kabel met demper slechts weinig bëınvloed.
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