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Abstract

The intensity of vehicles on the road is getting higher each year resulting in an increase in
the occurrence and duration of congestion. The negative impact of congestion is diverse,
ranging from extra time spent in the traffic network to an increase in health problems due
to the increasing emissions and fuel consumption. Dynamic traffic controllers could be used
to reduce the travel time, emissions, and fuel consumption. The controller aims to steer the
traffic flow so that the cost of a given objective function is minimal. This can be reached
by introducing dynamic control measures, like variable speed limits and ramp metering at
on-ramps. In some scenarios the reduction of travel time, emissions, and fuel consumption
conflict among each other. Using the weighted-sum method, a balanced trade-off between
those objectives is obtained.

The dynamic traffic control approach considered in this research is Model Predictive Con-
trol (MPC). Via a prediction of the traffic states, the controller optimizes the sequence of the
control inputs over a prediction horizon to minimize the criteria in the cost function. The
optimal control inputs are translated on-line to the variable speed limits and ramp metering
rates. The next control time step the optimization is carried out again using new obtained
data, to find the new optimal control inputs. MPC computes the optimal control inputs
based on a model of the traffic flow and a model of the emissions and fuel consumption rates.
The METANET model is chosen to compute the traffic flow, whereas the VT-macro model
is chosen to compute the emissions and fuel consumption.

One of the major disadvantages of conventional MPC is the large computation time re-
quired to solve the optimization problem. To reduce the computational complexity of the
optimization problem, an alternative approach, parameterized MPC, is considered. In this
approach the control inputs are computed according to some control laws, that relate the
control inputs to the traffic states and traffic outputs. The optimization algorithm has to
optimize the parameters used in the control laws to find the optimal control inputs. This
will significantly reduce the computational complexity of the optimization problem and could
make the controller fast enough for on-line control of the freeway. The main question is how
to define the control laws, so that the controller is still able to compute the optimal control
inputs and in the meantime reduce the computation time.

The approach described above is applied to a case study of a part of the Dutch A12 free-
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way, between Bodegraven and Woerden Oost. For a given demand profile, the conventional
MPC requires 9-10 hours to simulate a freeway of 14 km for a simulation period of 1 hour.
For different weights of the criteria, the controller is able to reduce 20% of the travel time,
and 40% of the total emissions and fuel consumption. Practically the same performance can
be obtained for parameterized MPC, however, in a timespan of 1 - 35 minutes for different
sets of control laws. This thesis has therefore concluded that, based on the outcome of the
scenario, the parameterized MPC approach is a good alternative for conventional MPC for
the use of on-line dynamic traffic control.
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Chapter 1

Introduction

1-1 Impact of congestion

Freeways all over the world have to deal with increasing numbers of vehicles on the road,
resulting in flows that exceed the capacity of the freeways. This phenomenon has led to an
increase in the occurrence and duration of congestion [6], [22]. All over the world, measures
are taken to reduce congestion, such as speed limits, provision of congestion information, or
on-ramp metering. Several studies have shown that traffic jams and traffic breakdowns have
a negative impact on the drivers themselves, the environment, and the society as a whole [2],
[32], [36], [45]. First of all, the mobility of vehicles in and around cities is largely reduced by
traffic jams. Furthermore, the higher intensities of vehicles on the road cause an increase in
the emissions and fuel consumption rates, a decrease of the safety and quality of life, and an
increase of the economical costs. These points are elaborated next.

• Travel time. Traffic jams increase the travel time of vehicles, as vehicles cannot drive
at the maximal allowed speed. Furthermore, congestion on freeways could spill back to
local roads around cities, affecting the travel time of other vehicles as well [21].

• Safety. The chance of accidents in dense traffic flows is higher than in sparse traffic
flows, since in dense traffic flows drivers react more heavily to changes in the relative
speed between their vehicle and the leading vehicle. Often, this results in an unstable
situation where a minor disturbance could have a major impact.

• Quality of life. Drivers, passengers, and people living nearby major freeways will en-
counter increasing health problems, like bronchitis, asthma, reduced lung function, or
even mortality, due to the high level of emissions they are exposed to. In some scenar-
ios congestion results in concentration of emissions that exceed the safety levels (e.g.,
nitrogen dioxide and particulates) [5], [36]. Furthermore, the increase in emissions (like
CO2) and fuel consumption due to congestion also contributes to the global climate
change worldwide [36]. Congestion also reduces the comfortability of drivers, as they
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2 Introduction

have to spend longer time in the vehicles. They are then easily stressed and frustrated
as they have to endure (large) delays. More vehicles on the road also lead to higher
noise productions. This affects the drivers themselves, but also the people living in
the neighborhood of the traffic network. Another effect of the occurrence of congestion
is the fact that drivers should leave earlier from home and later from work to avoid
congestion.

• Economical issues. The increasing travel time and fuel consumption also affect the
economy. On the one hand longer unproductive hours are spent in the traffic networks,
on the other hand a larger amount of fuel is consumed due to the traffic jams. As the
price of fuel increases, the costs of traffic jams also increase. The impact of traffic jams
and delays on the economy is estimated at 2.7 - 3.6 billion euro for the traffic network
in The Netherlands in 2008 [54].

1-2 Dynamic traffic management

1-2-1 Motivation

In the last decades the intensity of vehicles on freeways in The Netherlands has grown [9]. The
current capacity on freeways is not always able to handle this demand resulting in frequent
traffic breakdowns and traffic jams. In order to tackle this increasing problem the operational
capacity on freeways should be increased. There are multiple solutions that can be explored
that could increase the operational capacity on freeways, such as the construction of new
roads, the use of intelligent vehicles, or the use of dynamic traffic management [10]. On the
short term, dynamic traffic management seems to be a sound solution. Most of the necessary
installations are already available on freeways or can easily be installed. It requires, e.g.,
message signs above freeways, loop detectors in the roads, ramp metering installations at
on-ramps, or traffic signal systems at intersections of freeways.

According to [42] the operational capacity on freeways is underutilized. In other words,
with some intelligent control the capacity efficiency on freeways can be increased, without the
construction of new roads. By applying dynamic control inputs the throughput of the traffic
flow can be improved and congestion reduced. Various control inputs could be considered
to achieve this goal among which are variable speed limits, ramp metering rates, and route
guidance [32]. Variable speed limits can be used to control the density of the vehicles on
freeways. By regulating the maximum speed the traffic flow can be smoothened. For instance,
if a high density wave downstream a freeway is higher than the critical density, a low density
wave can be formed upstream by the actuated speed limits to compensate for the high density
wave. This will counteract the formation of shock waves [23]. Ramp metering rates can
regulate the inflow of the vehicles from the on-ramp to the freeway [42]. A lot of congestion
occurs in the vicinity of on-ramps due to the merging behavior of vehicles that want to enter
the freeway. By limiting this number, the merging behavior can be controlled and thereby
congestion is reduced. Route guidance could also limit the number of vehicles that want to
enter the freeway by rerouting vehicles to other roads. By rerouting vehicles, the intensity of
vehicles on the available roads is spread more equally, which could prevent congestion [40].
The study performed in this thesis is restricted to the use of variable speed limits and ramp
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1-2 Dynamic traffic management 3

metering rates, because route guidance requires a more complex model of the traffic flow [33],
which is beyond the scope of the thesis project.

The values of the optimal control inputs (variable speed limits and ramp metering rates)
that steer the traffic flow in the desired direction depend on the goal of the controller. Such
goal could be to reduce the travel time, to maintain a certain level of safety, or to reduce
the emissions or fuel consumption. These criteria sometimes coincide, and sometimes conflict
with each other. For example, the emissions of vehicles are higher when they drive at the
maximum allowed speed than for lower speeds, but the travel time is lower for higher speeds
[12]. When the focus of the controller lies only on the reduction of emissions, this could lead
to other values of the optimal control input than when the focus would lie on the reduction
of the travel time. Therefore, it could be wise to combine the criteria to get a balanced
trade-off between those criteria. The focus of the controller in this project is chosen to be a
combination of the reduction of the travel time, emissions, and fuel consumption.

1-2-2 Model predictive control approach

Now that the control measures are selected, the question remains how the optimal values for
these control measures can be computed, so that the goal of the controller is met. In the
literature many approaches are suggested to compute these values (e.g., [10], [26], [35], or
[42]). One of the approaches discussed is Model Predictive Control (MPC) [22]. Using traffic
models that represent the real traffic behavior, emissions rates, and fuel consumption rates
MPC estimates and predicts the current and future traffic states from measurement data and
a priori knowledge. Via an optimization algorithm the MPC controller computes the optimal
control inputs over the predicted horizon that minimizes an user-defined cost function under
certain conditions (e.g., from now to 15 min in the future). Next, it applies the control inputs
corresponding to the next time step to the real traffic system. Finally, in the first time step
some new measurement data is available from the real traffic flow and the procedure can be
started all over again using a shifted prediction horizon.

MPC has several advantages that makes it very suitable for on-line dynamic traffic control
[7], [8]. First of all, MPC can be applied to nonlinear time-varying models, as in fact the
traffic flow is. Secondly, it can handle (nonlinear) constraints (e.g., maximum queue lengths
at on-ramps), multi-criteria cost functions, and disturbances or model uncertainties. Thirdly,
MPC is very flexible in the sense that it can be easily adapted to other traffic situations [22].
For instance, when a lane on a part of the freeway is closed due to work or an incident, it can
be adapted on-line in the model.

The major drawback of MPC is the required computation time. Although it is in many
cases faster than conventional optimal control approaches it still is too slow for on-line control
[22], [58]. One of the goals in this thesis is therefore to find a way to reduce this computation
time without compromising the advantages of MPC listed above and without loosing accuracy.
The required computation time is large due to the fact that the controller needs to find the
optimal values for all control inputs over a the prediction period. In order to speed up this
process the control inputs could be computed indirectly using control laws. These control laws
relate the control inputs (variable speed limits and ramp metering rates) to the traffic states
and outputs (e.g., density, speed). The optimization algorithm then only has to optimize the
parameters used in the control laws to find the optimal control inputs. When the control laws
are defined such that the number of parameters is less than the number of control inputs, the
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4 Introduction

required computation time could be reduced as the optimization algorithm has to optimize
less parameters. The use of control laws to compute the control inputs is called parameterized
Model Predictive Control [1], [58].

1-3 Problem statement

1-3-1 Research questions

The goal of the thesis is to develop a dynamic traffic controller that is able to, on the one
hand, minimize the travel time, emissions, and fuel consumption of vehicles on freeways and,
on the other hand, compute the optimal control sequence fast enough for on-line control. The
approach studied in this thesis is the Model Predictive Control approach.

In order to achieve this goal, the following research questions are formulated:

1. Are the models used in the MPC approach a good representation of the real traffic
behavior?

2. What are the available dynamic traffic control measures that could be used to steer the
traffic flow?

3. How does the control approach deal with a multi-criteria control objective (travel time,
emissions, and fuel consumption) in the computation of the optimal control inputs?

4. Is the developed controller able to compute the optimal control inputs within a given
time frame? If not, how can the controller be altered so that the required computation
time is less than the given time frame?

5. Is the parameterized MPC approach able to maintain a similar level of accuracy com-
pared to conventional MPC, while reducing the required computation time?

1-3-2 Methodology

In order to answer the research questions, first a literature survey is conducted to determine
which models accurately represent the traffic behavior and can be applied in the MPC frame-
work. Once the models are selected, they are implemented in MATLAB R©, to simulate the
traffic behavior. Next, the objective of the control approach is defined, in the form of a cost
function. Two different methods to define this cost function are studied, one of which is
selected next for further use in the project.

To test the MPC control approach a case study is conducted. Real data and the real net-
work lay-out involving part of the Dutch A12 freeway, between Bodegraven and Woerden, are
used to simulate the traffic behavior for a given demand profile. The chosen demand profile
results in congestion when no control is active. In this way, it can be seen whether or not
MPC is able to resolve the congestion. The control approach is set under certain constraints
that are also active in the real traffic network. Additional constraints, like maximum queue
lengths at on-ramps, are implemented to see how MPC deals with these constraints and how
the control inputs are effected by these constraints. The dynamic traffic control measures to
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1-4 Outline of the chapters 5

control the traffic flow are chosen to be the variable speed limits and the ramp metering rates.
To parameterize the conventional MPC approach, some control laws are defined. These

control laws are implemented in the MPC framework and tested under the same conditions
as the conventional MPC approach. The required computation time is recorded and the ac-
curacy of the parameterized MPC controller is compared to the conventional MPC controller.
From these results a conclusion is drawn towards the use of parameterized MPC in general
and the control laws studied in particular, for applications of on-line dynamic traffic control.

1-4 Outline of the chapters

The structure of the report is as follows. In Chapter 2 the traffic models used in the MPC
approach are explained. The chapter presents an overview of the available models that de-
scribe the traffic behavior and gives the equations of the METANET and VT-Macro models.
Chapter 3 discusses the concept of the conventional MPC approach. Chapter 4 presents the
parameterized MPC approach. It states the motivation for the parameterization and provides
the general framework for parameterization of the control inputs.

Chapter 5 describes the case study in detail and explains the set-up for the scenarios
studied in this thesis. It presents the results for conventional and parameterized MPC and
makes a comparison between these methods.

Finally, Chapter 6 provides the conclusions and outlines future work. The chapter summa-
rizes the answers to the research questions and gives some suggestions and recommendations
for further research.
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Chapter 2

Traffic models

The dynamic traffic control approach MPC is a model-based approach. Using measurement
data and a priori knowledge as input, the model estimates and predicts the current and future
traffic behavior. Based on this prediction the MPC approach computes the optimal control
inputs to steer the traffic flow in the desired direction. It is therefore important that the
model used in the MPC approach accurately and efficiently represents the real behavior of
traffic flow, emissions and fuel consumption.

Prior to this thesis a literature survey has been conducted to select the most suitable
model for this approach. From this survey it became clear that there are two models required
to represent the traffic behavior. One model to describe the traffic flow and one to compute
the traffic emissions and fuel consumption of the traffic flow.

In Section 2-1 an overview of traffic flow models will be discussed, from which METANET
is chosen to be used in the MPC approach. In Section 2-2 the traffic emissions and fuel
consumption models are discussed, from which VT-Macro will be selected. Note, however,
that MPC is a general approach that can use other models as well. So, when a model that
is more accurate or that requires less computation time is available, this model can easily be
implemented in MPC too.

2-1 Traffic flow models

2-1-1 Overview of traffic flow models

Microscopic and macroscopic traffic flow models

Traffic flow models can be classified as either microscopic traffic flow models or macroscopic
traffic flow models [25]. The former ones describe the behavior of individual vehicles with
respect to their direct surroundings. The latter ones describe the behavior of vehicles as a
continuous stream, more on an aggregate level. Some traffic flow models are in between those
classes and are called mesoscopic traffic flow models.

Microscopic models are often based on car-following behavior and lane-change behavior
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8 Traffic models

[25], [30]. A car-following model describes the distance between two consecutive vehicles. It
describes the reaction of the follower when the leader is changing its speed. A lane-change
model describes the possibility of the follower to overtake the leader. It computes this overtake
manoeuvre based on the available gap, the speed difference with its predecessor, the attitude
of the driver and so on. Using these two models microscopic traffic flow models estimate the
behavior of all individual vehicles which together leads to one model of the traffic flow.

Macroscopic traffic flow models, on the contrary, describe the aggregate behavior of ve-
hicles [30]. They compare the stream of vehicles with a stream of fluid flowing through a
pipe. Using the conservation law of mass, they make a balance of vehicles: the number of
vehicles in the network is equal to the number of vehicles entering the network minus the
number of vehicles leaving the network plus the number of vehicles that stays in the network.
They (sometimes) also use additional equations, e.g., speed equation. Macroscopic models
are therefore based on the average speed of vehicles and the intensity of vehicles on the road
(density).

Microscopic traffic flow models can describe the traffic flow very accurately as they in-
corporate every movement of all the vehicles in one model. However, microscopic traffic flow
models depend on a lot of parameters, such as the attitude of the drivers, the acceleration
of vehicles, the type of road or weather conditions, which makes them hard to calibrate in
order to represent the real traffic flow, using the limited amount of data available. Another
drawback is the fact that microscopic traffic flow models have to compute the behavior of all
individual vehicles. The more vehicles on the road, the larger the computation time will be,
as for each vehicle a number of equations has to be solved. For large-scale traffic networks,
such as freeways, microscopic traffic flow models are not suitable for on-line applications [25].

Macroscopic traffic flow models are often less accurate than microscopic traffic flow mod-
els, as they model only the aggregate behavior of vehicles and not the individual behavior.
However, this largely reduces the number of parameters that have to be calibrated. In fact,
with the available data set obtained from loop detectors in the road, the model can easily be
calibrated [32]. Also, the complexity of the model does not depend on the number of vehicles
in the network. As macroscopic traffic flow models only use aggregate states of the vehicles,
the number of equations to be solved remains the same for every amount of vehicles in the
traffic network and as a result they are much less computationally intensive than microscopic
traffic models.

The control inputs used to control the traffic flow, such as variable speed limits and ramp
metering rates, aim to steer the aggregate behavior of vehicles rather than the individual
behavior of vehicles. Therefore, for these control purposes the use of macroscopic traffic flow
models is accurate enough to represent the traffic flow behavior. Given the advantages of
macroscopic traffic flow models with respect to microscopic traffic flow models, the model
used in the MPC approach is preferred to be macroscopic [25].

Types of macroscopic traffic flow models

There are three main types of macroscopic traffic flow models, based on the order of the
model. All of these types are founded on the conservation of vehicles. The first type of
macroscopic traffic flow models was developed by Lighthill, Whitham, and Richards in 1955
and 1956 and is known as LWR-type models [37]. This model assumes that the density on
the road can describe the desired speed of vehicles. Using this relation a first-order partial
differential equation can be formulated. The main drawback of this type of macroscopic traffic
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2-1 Traffic flow models 9

flow model is the fact that the equations do not yield a unique solution. Therefore, this model
uses characteristic curves to determine the flow [25].

In 1971 Payne developed a second-order macroscopic traffic flow model, known as Payne-
type model [44]. His model is based on two partial differential equations. He extended
the LWR-type model by incorporating the relationship between the actual speed and the
desired speed of vehicles, based on the car-following model. He identified in his expression a
convection, relaxation, and anticipation term.

The third-order macroscopic traffic flow model was developed in 1996 by Helbing [24]. He
describes the behavior of traffic based on three partial differential equations, by taking the
density, speed, and the variance of the speed as states.

The type of macroscopic model chosen for this case study is the Payne-type model. The
LWR-type models are too simplistic to describe the traffic flow in an accurate way [25]. The
Helbing-type models are too complex. It has been shown in the literature that second-order
type models are able to describe the traffic flow in an accurate way [32], [42]. METANET
[39] is one of the most frequently used second-order macroscopic traffic flow models and will
be used in this case study as well.

2-1-2 Extended METANET model

The traffic flow model selected for this case study is an extended version of the model
METANET [39], which is a second-order macroscopic traffic flow model. METANET has
the ability to model the traffic flow accurate enough for control purposes, while the computa-
tional complexity of the model is far less than for microscopic traffic flow models. Besides the
complexity, the model has also the advantage that it can be easily calibrated with data gener-
ated by loop detectors in the road. The model can be applied to free-flow, dense, or congested
traffic conditions with prescribed characteristics (location, intensity, duration). Furthermore,
METANET can be used in combination with dynamic control inputs, such as ramp metering
rates and variable speed limits.

Model description

METANET is based on Payne’s model, but it uses discrete states instead of continuous ones.
The discretization is done both in time and space. The time discretization step is global and
defined as Ts, but the space discretization strip is defined differently. The traffic network
is represented by links and nodes, whereby links represent homogeneous freeway stretches.
Each freeway stretch has uniform characteristics, such as the same number of lanes along
the freeway stretch or the same road geometry. A node is placed at locations where a major
change in the road geometry occurs, as well as at junctions, on-ramps, and off-ramps.

A freeway link is divided into Nm segments of length Lm. For each segment i of each link m
at each time step t = k ·Ts for k = 0, 1, · · · the macroscopic variables flow, density, and space-
mean speed are computed. Figures 2-1(a) and 2-1(b) illustrate the discretization of a freeway
network into links and nodes, and the discretization of links into segments, respectively.

Freeway network links

The METANET model consists of freeway links, origin links, and destination links. Each of
these links has its own set of equations.

Master of Science Thesis Johan ’t Hart



10 Traffic models

Traffic network

n n+ 1
m− 1 m m+ 1

on-ramp off-ramp

(a) Traffic network

… …1

qm,i−1 qm,i
vm,i

ρm,i

Segment

i

Traffic link m

Nm

(b) Traffic link

Figure 2-1: Traffic network discretized into links m and nodes n (a). Links are further discretized
into segments (b)

Freeway links are described by the equations of the Payne model [44], but then discretized
in time and space.

qm,i(k) = ρm,i(k)vm,i(k)λm (2-1)

ρm,i(k + 1) = ρm,i(k) +
Ts

Lmλm
(qm,i−1(k) − qm,i(k)) (2-2)

vm,i(k + 1) = vm,i(k) +
Ts

τ
(V [ρm,i(k)] − vm,i(k)) +

Ts

Lm
vm,i(k) (vm,i−1(k) − vm,i(k))

−
νTs

τLm

ρm,i+1(k) − ρm,i(k)

ρm,i(k) + κ
(2-3)

where qm,i(k), ρm,i(k), and vm,i(k) are the flow, density, and space-mean speed of link m of
segment i at time step k, λm denotes the number of lanes of link m, Lm denotes the length of
the segments of link m, and V [ρm,i(k)] denotes the desired or equilibrium speed of the vehicles
as a function of the density of link m of segment i. The parameter τ is a time constant, the
parameter ν is an anticipation constant, and the parameter κ is a model parameter.

The equilibrium speed V [ρm,i(k)] is empirically determined and takes the form

V [ρm,i(k)] = vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

(2-4)

where vfree,m denotes the free-flow speed of link m and ρcrit,m the critical density per lane of
link m. The variable am is a parameter of the fundamental diagram.

In order to account for the speed reduction caused by merging phenomena in the vicinity
of an on-ramp, the term

−
δTsqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
(2-5)

is added to Equation 2-3, where δ is a model parameter and qo(k) is the inflow into the traffic
network from origin o at time step k.

In order to account for the speed reduction caused by weaving phenomena when there is
a lane drop the term

−
ψTs∆λmρm,Nm

(k)v2
m,Nm

(k)

Lmλmρcrit,m
(2-6)
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2-1 Traffic flow models 11

is added to Equation 2-3, where ψ is a model parameter and ∆λm is the difference in lanes
at that location.

Origin links are placed at the origins of the network, such as on-ramps or mainstream
origins. They can be described by a simple queue model, where it is assumed that the inflow
of vehicles to the network is not dependent of the traffic conditions downstream of the freeway.
The equation is given by

wo(k + 1) = wo(k) + Ts(do(k) − qo(k)) (2-7)

where wo(k) denotes the queue length at the origin o at time step k, do(k) denotes the demand
of the origin o at time step k, and qo(k) denotes the outflow of the origin o into the traffic
network at time step k. The outflow is dependent on the demand of the origin, the traffic
conditions of the first segment of the entering link, and the ramp metering rate applied at
the origin

qo(k) = min

[

do(k) +
wo(k)

Ts
, Qo · ro(k), Qo

(

ρmax,m − ρm,1(k)

ρmax,m − ρcrit,m

)]

(2-8)

where the variable Qo(k) is the capacity of the road of the origin o at time step k and ρmax,m

and ρcrit,m are the maximum and critical density of link m connected to origin o, respectively.
The variable ro(k) is the ramp metering rate of origin o at time step k and lies in the range
[rmin, 1], where rmin is the minimum allowed rate at that origin. This allows the model to
control the input to the freeway network.

Destination links are bounded by the downstream traffic conditions. If no measurements
for boundary conditions are available, it is assumed that the downstream traffic conditions
are not congested

ρm,Nm+1(k) < ρcrit,m (2-9)

vm,Nm+1(k) = vfree,m (2-10)

where ρm,Nm+1(k) and vm,Nm+1(k) are respectively the virtual density and speed of link m
connected to a destination (end of considered traffic network or an off-ramp).

Freeway network nodes

Freeway network nodes are placed to connect the links to each other. The nodes of the
network are modeled without any dynamic behavior. The nodes distribute the traffic flow
that enters the node n via the links µ upstream the node to the exiting links σ downstream
the node. The turning rate βσ,n(k) is introduced to decide the ratio of vehicles that leaves the
node n to a specific exiting link σ. E.g., when the traffic network has an off-ramp, the node
splits the traffic flow into two parts, where one part remains on the freeway, while the other
part leaves the traffic network via the off-ramp. Also, when an on-ramp is present, the node
combines the flow of the freeway with the flow of the on-ramp into one flow, downstream the
on-ramp. The equation to describe this behavior is given by

Qn(k) =
∑

µ∈In

qµ,Nµ
(k) ∀n

qσ,0(k) = βσ,n(k) ·Qn(k) ∀σ ∈ On (2-11)
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12 Traffic models

where Qn(k) is the total traffic flow entering node n at time step k, In is the set of links
entering node n, and On is the set of links leaving node n.

When a node has more than one leaving links (e.g., at off-ramps), the density on both
these links has to be taken into account to compute the speed of the last segment Nµ of link µ
entering the node in Equation 2-3. This speed is affected by the downstream density (antici-
pation term of the equation). To incorporate both densities, a so-called virtual downstream
density is defined as

ρµ,Nµ+1(k) =

∑

σ∈On

ρ2
σ,1(k)

∑

σ∈On

ρσ,1(k)
(2-12)

where ρµ,Nµ+1(k) is the virtual downstream density of link µ of the virtual segment Nµ + 1
at time step k. The quadratic term is used to account for the fact that one congested leaving
link may block the entering link even if there is free flow in the other leaving link.

When a node has more than one entering links (e.g., at on-ramps), the influence of
the upstream speeds has to be taken into account in Equation 2-3 (convection term of the
equation) for the first segment i = 1 of link σ. To incorporate these upstream speeds, a
so-called virtual upstream speed is defined as

vσ,0(k) =

∑

µ∈In

vµ,Nµ
(k) · qµ,Nµ

(k)

∑

µ∈In

qµ,Nµ
(k)

(2-13)

where vσ,0(k) is the virtual upstream speed of leaving link σ of the virtual upstream segment
0 at time step k.

Extensions to the METANET model

A few extensions are proposed by Hegyi et al. [22] to model some parts of the traffic flow
behavior in a more accurate way. The first extension is related to the control input variable
speed limits. The original model was only built to describe the effect of ramp metering, and
did not explicitly include the effect of variable speed limits. To describe the effect that this
measure has on the traffic, the desired speed Equation 2-4 has been extended

V [ρm,i(k)] = min

[

vfree,m · exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

, (1 + α)uvsl,m,i(k)

]

(2-14)

In this equation, the desired speed a vehicle wants to maintain depends on the minimum
of two quantities. The first term describes the desired or equilibrium speed as a function
of the density of that segment, whereas the second term (uvsl,m,i(k)) gives the maximum
allowed speed for vehicles at that segment displayed on the variable message signs. This term
is multiplied by the non-compliance factor (1 + α) that expresses the fact that drivers do
not fully comply to the displayed maximum speed. From data of the Dutch freeways it is
observed that when the speed limits are not enforced the average speed is higher than allowed
(α = 0.1), but when it is enforced the average speed is lower (α = −0.1).
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2-1 Traffic flow models 13

The second adaption made in the model is the expression for the different types of origin
links. The behavior of traffic flow coming from an on-ramp is different compared to traffic
coming from a mainstream origin. The mainstream origin can be affected by an active speed
limit or by the actual speed on the first segment, whichever is smaller. So, for the inflow of
the mainstream origin, Equation 2-8 is replaced by

qo(k) = min

[

do(k) +
wo(k)

Ts
, qlim,σ,1(k)

]

(2-15)

where the maximum flow qlim,σ,1 is defined as

qlim,σ,1(k) =







λσ · vlim,σ,1(k) · ρcrit,σ

[

−aσ ln
(

vlim,σ,1(k)
vfree,m

)]1/aσ

, if vlim,σ,1(k) < V [ρcrit,σ]

qcap,σ, if vlim,σ,1(k) ≥ V [ρcrit,σ]

(2-16)

where the speed limit vlim,σ,1(k) is defined as the minimum of the actual speed on that segment
and the maximum allowed speed displayed on the variable message signs

vlim,σ,1(k) = min [uvsl,σ,1(k), vσ,1(k)] (2-17)

and the capacity flow qcap,σ is defined by

qcap,σ = λσV [ρcrit,σ]ρcrit,σ (2-18)

Another modification of the model is made with respect to the boundary conditions for the
upstream speed and downstream density, used to model the speed of the first and last segment
of the traffic network in Equation 2-3. At a mainstream origin, the boundary condition for
the speed of the virtual entering link will be set equal to the speed on the first segment

vσ,0(k) = vσ,1(k). (2-19)

The boundary condition for the downstream density at the mainstream destination links, will
be equal to the density of the last segment Nµ when traffic is in free flow and equal to the
critical density when traffic is in congested flow:

ρµ,Nµ+1(k) =

{

ρµ,Nµ
(k) if ρµ,Nµ

(k) < ρcrit,µ

ρcrit,µ if ρµ,Nµ
(k) ≥ ρcrit,µ

(2-20)

The last modification is made with respect to the anticipation term used in Equation 2-3, to
incorporate the different behavior of drivers when facing a positive or negative density differ-
ence downstream their segment. Drivers tend to anticipate more when a higher downstream
density is present at the next segment with respect to their segment, than when a lower
downstream density is present. To incorporate this anticipation difference, the anticipation
constant ν is replaced by the anticipation constant η, where η takes the form

ηm,i(k) =

{

ηhigh, if ρm,i+1(k) ≥ ρm,i(k)

ηlow, if ρm,i+1(k) < ρm,i(k)
(2-21)

where ηhigh and ηlow are, respectively, the anticipation constants for positive or negative
difference with the downstream density.
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2-2 Traffic emissions and fuel consumption models

In Section 2-1-2 the METANET model is described to estimate and predict the traffic flow
on a macroscopic level. With this model the total time spent in the traffic network can be
computed. However, to compute the traffic emissions and fuel consumption a second model
is required. In this section some emissions and fuel consumption models are presented. Over
the years a lot of models have been proposed to model the emissions and fuel consumption
[48]. Due to the fact that emissions and fuel consumption depend on a lot of parameters a
trade-off is often made in developing these models between the accuracy on the one hand and
the required computation time on the other hand.

2-2-1 Overview of traffic emissions and fuel consumption models

Just as for traffic flow models the traffic emissions and fuel consumption models can be
grouped according to their level of detail, where microscopic models are very detailed models
and macroscopic models are coarse [27], [56], [58]. Basically, six groups of traffic emissions and
fuel consumption models can be distinguished. In decreasing order of detail these groups are:
modal models, cycle-variable based models, regression-based models, traffic-variable based
models, traffic-situation based models, and average-speed based models [48]. These six types
of models will be explained next.

• Modal models. In modal models the emission factors are computed via engine or vehi-
cle operating models. The models are based on a simple parameterized physical and
chemical process of a general vehicle system using functional modules. Therefore, these
models require knowhow of detailed vehicle specifications and have relatively complex
processes in different modules [12], [27]. Examples of modal models or power based
models are CMEM [3], PHEM [19], four-mode elemental model [12], and CSIRO [12].

• Cycle-variable models. The emission in cycle-variable models depends on the driving
cycle variables of vehicles at high time resolution (seconds to minutes) [48]. This type of
models compute emission factors for different vehicle categories. Data is gathered from
a large sample of vehicles that reflects the actual fleet composition [50]. A modal class
is defined in terms of a unique combination of vehicle category and air pollutant. A
vehicle category is defined e.g., in type of vehicle, fuel type, or fuel injection technology.
The input needed for these type of models is the speed-time profile and vehicle specific
parameters. Examples of cycle-variable models are MEASURE [18] and VERSIT+ [50].

• Regression-based models. In regression-based models the emission is computed via an
empirical relationship between the emission and the product of speed and acceleration.
Via regression the model is fitted to the data. The basic idea is that speed and accel-
eration can somehow represent the engine speed and power as independent variables.
Examples of regression based emission models are VT-Micro [46], POLY [51], and VSP
[16].

• Traffic-variable models. Traffic-variable emission models compute the emission factors
based on a correction factor for the use of average speed. This type of models generate
driving pattern data as a function of a number of macroscopic traffic variables, such
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2-2 Traffic emissions and fuel consumption models 15

as traffic characteristics (flow, density, and speed) and road characteristics [41]. The
core of the model is based on the reconstruction of the speed profile along a link where
macroscopic traffic variables are provided. This approach considers traffic density as
the fundamental physical reason of the variability of the speed of the vehicles, from
which the time spent in acceleration, cruising, and idling, is calculated. Examples of
traffic-variable models are TEE [41] and Matzoros model [38].

• Traffic-situations based models. In traffic-situations based models composite emission
factors are determined for specific traffic situations, which are defined in terms of speed
class, speed limit, and volume-to-capacity ratio (V/C ratio) to compute the emission
levels. The amount of vehicle kilometers traveled per traffic situation is then multiplied
by the corresponding emission factors. By integrating all the traffic situations the total
emission of the traffic network can be computed. Examples of this type of models are
HBEFA [20], ARTEMIS [28] and VERSIT+macro [49].

• Average-speed based models. The most simple type of emissions models is the average-
speed based emissions models. These models are macroscopic models that use the
average speed to compute the total vehiclular exhaust emissions. Typically, the input
is the trip-based average speed but also local speeds can be used on a second-by-second
basis [56]. Examples of macroscopic emission models are COPERT [34], MOBILE [15],
and EMFAC [14].

In order to select the most appropriate model from this list of traffic emissions and fuel
consumption models an assessment has been made, based on three criteria on which the
models have to comply. First of all, the model has to be reasonably accurate. Change in
acceleration and speed of vehicles should be incorporated in the model to efficiently control
the emissions and fuel consumption. Secondly, the required computation time should not
be too large, as the model needs to be applied in an on-line control approach. Thirdly, the
emissions and fuel consumption model should be able to use the output of the traffic flow
model METANET described in the previous section. From these requirements the class of
regression-based models has been chosen, as these models take dynamic changes of speed and
acceleration into account and as they are computationally less intensive than other microscopic
emissions and fuel consumption models. From the regression-based models the VT-Micro
model is selected. However, to integrate the VT-Micro model with the METANET model,
the model is transformed from a microscopic into a macroscopic model. This new model is
therefore called VT-Macro.

2-2-2 VT-Macro

VT-Macro [55] is a regression-based macroscopic emissions and fuel consumption model. It
originates from the microscopic model VT-Micro [46], but has been altered in order to combine
it with the traffic flow model METANET and to improve the computation speed. Therefore,
first the concept of the VT-Micro model will be explained, after which the VT-Macro model
will be derived.
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VT-Micro

The Virginia Tech Microscopic (VT-Micro) model is a dynamic model that uses second-by-
second speed and acceleration of a vehicle to compute its emissions and fuel consumption
[46]. The basic idea is that speed and acceleration can somehow represent the engine speed
and power as independent variables. The relationship of emissions and fuel consumption on
the one hand and speed and acceleration on the other hand, is obtained by regression of the
available data gathered from 9 vehicle categories that is assumed to represent the average
vehicle on the road. This resulted in a third-order empirical relationship, which fits the data
reasonably well. The emissions and fuel consumption cost Jα,y can now be computed via the
equation

Jα,y(l) = exp(ṽT
α (l)Pyãα(l)) (2-22)

where the subscript α stands for the vehicle under consideration, the subscript y stands for
the type of emission or fuel consumption: y ∈ {CO, NOx, HC, fuel consumption}, ṽα(l) =
[

1 vα(l) v2
α(l) v3

α(l)
]T

, and ãα(l) =
[

1 aα(l) a2
α(l) a3

α(l)
]T

. Finally, Py denotes the

model parameter matrix for the variable y. The matrix is given in Appendix A-2. In
this model the step counter l differs from the step counter used in the traffic flow model
METANET, due to the difference in level of detail (microscopic versus macroscopic). There-
fore, the time step Tm (microscopic) is introduced, such that Tm ≪ Ts, where Ts is the
macroscopic time step defined in Section 2-1-2. Typically, the time step Tm is around 1 s.

Note that the VT-Micro model does not describe the emission model for CO2. However,
it was found that the relationship between fuel consumption and CO2 is almost affine and
can be approximated by the equation

Jα,CO2
(l) = δ1vα(l) + δ2Jα,fuel(l) (2-23)

In this equation, δ1 and δ2 are model parameters. For a diesel car the parameters take the
values 1.17 · 10−6kg/m and 2.65kg/L respectively, and for a gasoline car 3.5 · 10−8kg/m and
2.39kg/L [55].

VT-Macro

The emissions and fuel consumption model VT-Micro is a microscopic model. This im-
poses some problems in the integration of VT-Micro and METANET. The output created
by METANET is not rich enough to be used as input for the VT-Micro model. Recall that
the macroscopic traffic flow model only uses aggregate variables, so only the average space-
mean speed, flow, and density are computed per segment of the traffic network. However,
the microscopic emissions and fuel consumption model needs the speed and acceleration of
individual vehicles in a finer time grid. To overcome these problems the microscopic model
VT-Micro has been rewritten into the macroscopic model VT-Macro [55]. The error intro-
duced is qualified in the paper of Zegeye et al. [55].

In order to use the output of METANET to compute the corresponding emissions and
fuel consumption, a transformation of these variables to the correct inputs for the VT-Macro
model must be made. The flow, density, and speed of each segment must be transformed to
the speed and acceleration of vehicles in that segment during that time step. Graphically,
this transformation is represented in Figure 2-2. The METANET model is discrete both in
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Figure 2-2: Interface block diagram

space and time, so there are two acceleration components involved in the model: temporal
and spatiol-temporal acceleration. The first is the acceleration of the vehicles moving within
a given segment. The second is the acceleration of the vehicles going from one segment to an-
other from time step k to k+ 1. The average acceleration is computed for a group of vehicles.
In Figure 2-3 the group of vehicles that enter or leave the segment is graphically represented.
The emissions and fuel consumption computed by VT-Macro is equal to the emissions and
fuel consumption computed by VT-Micro per vehicle for the average speed and acceleration
multiplied by the number of vehicles that contributes to this emissions and fuel consumption.

Temporal acceleration

Temporal acceleration is described by the difference in speed in a segment during one time
step. This acceleration is only computed for vehicles that stay in the segment for this time
period. The temporal acceleration (atemp) can be formulated as

atemp
m,i (k) =

vm,i(k + 1) − vm,i(k)

Ts
(2-24)

The number of vehicles that stay in the segment can be determined as the number of vehicles
present in the segment at time step k minus the amount of vehicles leaving the segment during
the time period k till k + 1. Mathematically, this is described by the formula

ntemp
m,i (k) = Lmλmρm,i(k) − Tsqm,i(k) (2-25)

Spatio-temporal acceleration

Spatio-temporal acceleration can be described as the change in average speed experienced by
going from one segment into another segment. If vehicles stay on the same link, then the
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at k
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Tsqi−1(k)
Lmλmρi(k) − Tsqi(k)
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segment i− 1 segment i segment i+ 1

Figure 2-3: Graphical representation of the temporal and spatio-temporal displacement of vehicles
from time step k to k + 1

acceleration and number of vehicles can be described as

aspat
m,i,i+1(k) =

vm,i+1(k + 1) − vm,i(k)

Ts
(2-26)

nspat
m,i,i+1(k) = Tsqm,i(k) (2-27)

When the vehicles crosses a node during the considered time step, the spatio-temporal ac-
celeration has to be computed in a different way. In general, the spatio-temporal acceleration
of vehicles from the last segment Nµ of incoming link µ to the first segment of outgoing link
σ can be computed by

aspat
µ,σ (k) =

vσ,1(k + 1) − vµ,Nµ
(k)

Ts
(2-28)

The number of vehicles that enter link σ from link µ is determined by the turning rate βµ,σ(k)

nspat
µ,σ (k) = βµ,σ(k)qµ,σ(k) (2-29)

This general form can be made case specific: vehicles coming from an on-ramp or going to an
off-ramp or when a lane changes. These special cases are considered next.

• On-ramp. For on-ramps, the speed of the vehicles is not computed by METANET.
Therefore, the formula of the general case cannot be used directly. The speed von,o(k)
must be assigned to the vehicles, based on historical data when on-line measurements
are not available. The formula of the general case then results in

aspat
on,o(k) =

vm,i(k + 1) − von,o(k)

Ts
(2-30)

nspat
on,o(k) = Tsqon,o(k) (2-31)

where qon,o(k) is the flow at the on-ramp at time step k, given by the METANET model.
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• Off-ramp. In the same way as the on-ramp, the off-ramp can be described. However,
now the outflow qoff,o(k) is described as the fraction of vehicles that leave the freeway

qoff,o(k) = βm,o(k)qm,Nm
(k) (2-32)

aspat
off,o(k) =

voff,o(k + 1) − vm,Nm
(k)

Ts
(2-33)

nspat
off,o(k) = Tsqoff,o(k) (2-34)

in these equations voff,o(k) is the speed of the vehicles leaving the network at the off-
ramp at time step k. This speed is based on historical data or on-line measurements.

• Lane drop/increase. In case there is a lane drop or increase, the acceleration and number
of vehicles can be determined by

aspat
m,m+1(k) =

vm+1,1(k + 1) − vm,Nm
(k)

Ts
(2-35)

nspat
m,m+1(k) = Tsqm,Nm

(k). (2-36)

The VT-Micro model can now be modified into a macroscopic emission model, VT-Macro,
by using the temporal and spatio-temporal acceleration equations described above

J temp
y,m,i(k) = ntemp

m,i (k) exp[ṽT
m,i(k)Pyã

temp
m,i (k)] (2-37)

J spat
y,m,i,i+1(k) = nspat

m,i,i+1(k) exp[ṽm,i(k)TPyã
spat
m,i,i+1(k)] (2-38)

J spat
y,µ,σ(k) = nspat

µ,σ (k) exp[ṽµ,σ(k)TPyã
spat
µ,σ (k)] (2-39)

where J temp
y,m,i(k) denotes the temporal emission and fuel consumption of vehicles of type y of

segment i of link m at time step k, J spat
y,m,i,i+1(k) denotes the spatio-temporal emission and

fuel consumption of vehicles of type y that remain on the same link m at time step k, and
J spat

y,µ,σ(k) denotes the spatio-temporal emission and fuel consumption of vehicles of type y that
cross a node from link µ to link σ at time step k.

Together, VT-Macro is described by Equations 2-37, 2-38 and 2-39:

JEFC
y (k) =

∑

m∈M

Nm∑

i=1

J temp
y,m,i(k) +

∑

m∈M

Nm−1∑

i=1

J spat
y,m,i,i+1(k)

+
∑

n∈N

∑

µ∈In

∑

σ∈On

J spat
y,µ,σ(k) (2-40)

where JEFC
y (k) is the emission and fuel consumption at time step k, M is the set of links m

in the network, N is the set of nodes n in the network, In is the set of links that enter node
n, and On is the set of links that leave node n.

The new VT-Macro model could be less accurate than the VT-Micro model, due to the
approximation of the speed and acceleration of the individual vehicles. It is important to
have an idea of how accurate the model has become. For that reason, Zegeye et al. [58]
also included some analysis of VT-Macro, to compute the maximum error caused by the
approximation of the speed and acceleration (for Ts = Tm). They found that a deviation
of the acceleration and speed profile only introduces a minor error. In the scenario they
conducted the maximal error was less than 10% compared to the VT-Micro model.
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2-3 Summary and conclusions

This chapter has described the models that will be used to estimate and predict the traffic
flow behavior as well as the corresponding emissions and fuel consumption. For the traffic flow
behavior an extended version of METANET is selected. This is a second-order macroscopic
traffic flow model. First it discretizes the traffic network in time and space. After that, it
computes for each space segmentation the average flow, density, and space-mean speed for
each time step. The model will be calibrated for the traffic network considered in the case
study in Chapter 5.

The second model introduced in this chapter is the emissions and fuel consumption model
VT-Macro. This model is a modification of the microscopic model VT-Micro, in order to
use the output of the METANET model as input of the VT-Macro model and to reduce
the computation time. Emissions and fuel consumption rates are hard to model, due to
the dependency on a lot of parameters. Therefore, a trade-off has been made between the
accuracy of the model and the computational effort. VT-Macro is selected, because it includes
the dynamics of the vehicles (speed and acceleration) and still computes the emissions and
fuel consumption on a macroscopic level. The error introduced by modifying the model from
microscopic to macroscopic is relatively small compared to other macroscopic emissions and
fuel consumption models. However, when more accurate models are available that require
less computation time, these models could be used instead, to increase the efficiency of the
dynamic controller.

Johan ’t Hart Master of Science Thesis



Chapter 3

Model predictive control

In the previous chapter the models to estimate the traffic flow and the traffic emissions and
fuel consumption based on a given traffic network and demand profile have been presented.
This chapter will explain how these models can be used in an MPC framework to compute
the control inputs (variable speed limits and ramp metering rates) that will steer the traffic
flow into the desired direction. The structure of this chapter is as follows. First, a short
introduction to the MPC control approach is presented in Section 3-1. Next, the concept
of MPC and the methodology used in the case study are explained in Section 3-2 and 3-3
respectively. The chapter then provides an overview of the advantages and disadvantages of
the approach in Section 3-4 and it concludes with a summary in Section 3-5.

3-1 Introduction

Model Predictive Control (MPC) is a control approach that computes the optimal control
inputs that minimize a user-defined cost function over a prediction horizon without violat-
ing the constraints of the system. By optimizing the system over a predicted horizon, the
controller is able to find an optimum over a long-term horizon, as the controller takes in
advance into consideration the future (known) disturbances or changes of the states. It can
also compute the effect of the measures it proposes to take over the predicted horizon. The
MPC control approach was first successfully used in the process industry in the 1970s [47]
and is a commonly used method for the control of slow dynamical systems such as chemical
process control in the petrochemical, pulp, and paper industries [17], [29]. Nowadays MPC
is used in all kind of different fields, ranging from robots to clinical anaesthesia [8]. In the
recent years, research is conducted to see whether MPC is also applicable to (large-scale)
traffic networks for on-line control of the travel time, emissions, and fuel consumption (see
e.g., [22], [56], [55]). The study conducted in this thesis contributes to this research.
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Figure 3-1: Block diagram of the concept of MPC

3-2 Concept of MPC

MPC is a model-based control approach that models the current and future states to find
the optimal sequence of control inputs over time. The concept of the approach, as applied to
traffic systems, can be explained by the block diagram depicted in Figure 3-1. Basically, the
concept can be captured by the following five parts:

1. Traffic model

2. Objective of control approach

3. Constraints active on the system

4. Optimization of control inputs

5. Receding horizon principle

Part 1: Traffic model

The first part is to obtain an accurate description of the system. The models that will be
used for this purpose are METANET and VT-Macro, as has been discussed in Chapter 2.
Using these models, MPC is able to make an estimation of the traffic states based on the
measurement data obtained by loop detectors in the road. When a demand profile of vehicles
entering the network over some time horizon is available, MPC is able to make a prediction
of the traffic states in the near future. The demand profile can be obtained by real data of
previous days and/or estimated using data from upstream detectors. It is observed that the
traffic demand profile is more or less the same for each weekday. For example, the morning
rush hour of most days is around 7 till 9 A.M. [26]. Using this knowledge, a demand profile can
be established that represents to some extent the actual demand. Another approach could be
to use measurement data obtained from segments upstream of the considered traffic network.
When the average speed and density upstream the traffic network is known, one can compute
when these vehicles enter the traffic network. From this demand profile a prediction of the
traffic states in the near future can be made, by applying the equations from the METANET
and VT-Macro models.
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Part 2: Objective of control approach

The next part is to determine the objective of the control approach and to transform it into
a mathematical cost function. This objective could be anything related to the system, e.g.,
to prevent the formation of congestion, to increase the throughput of the traffic flow, or to
reduce the amount of emissions produced by the vehicles over a period of time. When the
objective is determined it has to be transformed to a cost function. This cost function relates
the current and future traffic states to the objective by expressing the outcomes as a cost. By
applying dynamic control inputs this cost function can be minimized, as the control inputs
influence the predicted outcome of the traffic states. The transformation from the objective
into a cost function will be explained in Section 3-3, where two different methodologies will
be presented.

Part 3: Constraints active on the system

The third part is to include constraints that are active on the system. This could be all kinds
of nonlinear time-varying constraints. Some obvious constraints are the upper and lower
bounds of the control inputs. For example, variable speed limits could vary between 40 km/h
and 120 km/h. The upper bound resembles the maximum allowed speed on freeways in The
Netherlands, the lower bound resembles the lowest speed limits drivers still would comply
to. For ramp metering rates the upper and lower bounds could be set between 1 and 0, as
values beyond these bounds are simply not possible. Also other constraints could be set, for
example a maximum queue length at on-ramps to prevent vehicles from spilling back to the
local roads, a maximum allowed emission peak level, or a maximum variation of the control
inputs over time and space.

The given constraints are so-called ‘hard constraints’. The control approach is not allowed
to violate these constraints. This will affect the degree of freedom of the controller, as not all
possible control inputs are allowed anymore. Therefore, these constraints should be carefully
placed, to avoid overconservatism of the control approach or even feasibility issues. To over-
come the feasibility issues, some constraints could also be implemented in the cost function
by using a penalty function. In this way, the constraints could be violated at the expense of
some cost, emphasized by the weight in front of the criterion.

Part 4: Optimization of control inputs

Now that the cost function is defined and the constraints on the system are determined, the
next part of the control approach is to find the optimal control inputs that minimize the cost
function over the prediction horizon without violating the constraints. This is done using an
optimization algorithm. For nonlinear local optimization algorithms, the minimum of a cost
function is found iteratively by applying different sets of control inputs. Starting from an
initial set of control inputs, the algorithm tries to find a new set of control inputs that results
in a lower cost. This procedure is carried out until the algorithm cannot find a lower value
for the cost function, i.e., when it reaches a minimum. However, when a system is nonlinear,
this minimum could only be a local minimum instead of the global minimum. To increase
the possibility of finding the global minimum, a multi-start optimization is used. The whole
optimization needs to be solved again using a different set of initial control inputs. The lowest
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Figure 3-2: Receding horizon principle of the MPC approach. The approach computes the
optimal path of the control inputs to steer the traffic flow in the desired direction, but only feeds
the first set of control inputs to the real traffic system. The next time step, the optimization
is carried out again. In this scheme also a control horizon is included. The approach varies the
control inputs up to the control horizon, after which the control inputs remain constant.

minimum is then chosen from the set of minima. The optimization algorithms differs in the
technique they use to derive a new set of control inputs.

Part 5: Receding horizon

When the optimal control inputs are determined, the set of control inputs that belongs to
the current time step are fed to the real system. In the next control time step some new
measurement data are available and the optimization of the control inputs is carried out
again, using a shifted prediction horizon. This is called the receding horizon principle. This
enables the MPC approach to counteract the model uncertainties and unknown disturbances
that are present.

Because of the receding horizon principle, the MPC approach needs to be applied on-line,
as it requires new measurement data at each control time step. Therefore, it is important
that the required computation time for the controller is less than the duration of the control
time step. Otherwise, the controller is not capable of sending the new set of control inputs
to the real system at the next control time step.

Parameters of MPC

These five parts summarize the concept of the MPC approach. From this concept it has
become evident that the approach depends on some parameters that can be tuned. First
of all, the prediction horizon should be determined. A long prediction horizon enables the
controller to optimize the traffic flow more efficiently, as this enables the controller to model
the effect of its own measures on the traffic flow more completely [22]. However, the longer the
prediction horizon, the more complex the optimization problem will be, resulting in higher
computation times. Therefore, a balanced trade-off must be made for the choice of the length
of the prediction horizon between the efficiency and the complexity of the approach. A
guideline for the minimum length of the prediction horizon is the minimum time required for
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vehicles to travel through the network [22].
To reduce the complexity of the optimization problem, a control horizon can be introduced

in the MPC framework such that the control horizon is less than or equal to the prediction
horizon. When a control horizon is present in the MPC framework, the approach may vary
the control inputs up to the control horizon, after which the control inputs are kept constant
till the prediction horizon. In this way, the algorithm only has to optimize the control inputs
up to the control horizon, while the approach is still able to model the effects of the measures
till the prediction horizon. This approach is shown in Figure 3-2.

Furthermore, the control time step, the type of optimization algorithm, and the number
of multi-start points (if applicable), need to be determined. The control time step is the
time between two consecutive steps where the controller can feed new control inputs to the
system. As the loop detectors only provide measurement data once a minute, the control
time step cannot be smaller than 1 minute. For higher values of the control time step the
number of control inputs that needs to be optimized is reduced, but also the degree of freedom
of the control approach. Again, a balanced trade-off must be made between efficiency and
complexity. The control time step will be one of the tuning parameters in the case study.

The choice of the optimization algorithm depends on the optimization problem. Given the
nature of the system (highly nonlinear and non-convex) there are a number of well-known
optimization algorithms that can be applied, i.e., pattern search [4], genetic algorithms [11],
simulated annealing [13], or sequential quadratic programming (SQP) [43]. For nonlinear
local optimization algorithms a multi-start technique is required to increase the chance of
finding the global minimum, instead of getting stuck in a local minimum. The number of
required multi-start points depends on the complexity of the system, as the chance of finding
the global minimum is lower for more complex systems than for simpler systems.

3-3 Methodology

As has been discussed in the concept of MPC, a user-defined objective must be given to
the controller in the form of a cost function. The objective of the dynamic traffic controller
could include all kinds of performance measures, such as the reduction of emissions, fuel
consumption, or travel time. Another performance measure could be the inclusion of a penalty
term on the variation of the control inputs to suppress chaotic behavior of the control inputs
over time and space. Combining multiple performance measures leads to a multi-criteria cost
function.

There are several ways to combine these performance measures into a cost function. In this
section two ways are proposed. First, the weighted-sum method will be discussed, secondly,
the ε-constraint method.

3-3-1 The weighted-sum method

In the weighted-sum method the different criteria of the objective are weighted by some user-
defined weights. The sum of these weighted criteria is the cost function. The control approach
aims to minimize this cost function by optimizing the control inputs that influences the cost
function. To illustrate how the weighted-sum method handles multi-criteria cost functions,
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Figure 3-3: The weighted-sum method (a) and the ε-constraint method (b) for a non-convex
solution boundary Λ.

an example with two criteria F1 and F2 will be considered. The cost function takes the form

J(k) = α1 ·
F1(k)

F1,n
+ α2 ·

F2(k)

F2,n
(3-1)

where J(k) denotes the cost of the combined criteria at time step k, αi are the user-defined
weights for i = 1, 2, and F1,n and F2,n are the normalization values for F1 and F2, respectively.
The functions are normalized to some value, so that the weights of the criteria are more easily
tuned.

The choice for αi determines the importance of each criterion in the cost function. For
high values of α1 compared to the value of α2 the focus will lie more on that corresponding
criterion. The choice for αi can actually be seen as a policy decision. It is up to the policy
makers to determine the importance of the criteria. Therefore, in this study a range of
scenarios is explored to examine the effect of different weighting of the criteria. This can,
e.g., be achieved by relating the weights as

α2 = 1 − α1 (3-2)

with α1 ∈ [0, 1].
This weighted-sum method seems to be a logical way of handling multiple criteria. How-

ever, this method also has some drawbacks. Applying the weighted-sum method does not give
direct insight into the relationship between α1 and the effect it has on the traffic flow. Only
when a balanced trade-off curve is made, a sound choice for the weights can be made for that
particular scenario. Another drawback is related to the non-convexity of the optimal trade-off
curve. The optimal curve is the lower bound of the feasible region where the control inputs
can vary in (solution boundary Λ). When this curve is non-convex (such as the curve depicted
in Figure 3-3(a)) the weighted-sum method is not able to track all the possible optimal solu-
tions by altering the weights. In this example, the region of the optimal curve between F (P )
and F (Q) cannot be reached with the weighted-sum method. Therefore, another method is
proposed that is able to deal with these issues. This method will be discussed in the next
subsection.
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3-3-2 The ε-constraint method

A second method to handle a multi-criteria cost function is the ε-constraint method. This
method does not focus on the reduction of all the criteria at once, but focuses only on one
criterion. In short, the method works as follows. Minimize one criterion such that the other
criteria do not exceed some upper bound (see Figure 3-3(b)). In fact, this method considers
the other criteria as hard constraints that may not be violated, while minimizing the primary
criterion. To illustrate how this cost function would look like, the same example as for the
weighted-sum method will be used. In this example the primary criterion will be set to F1

and the secondary criterion to F2.

J(k) = F1(k) (3-3)

such that F2(k) ≤ ε(k)

Just as for the weighted-sum method the optimal control inputs depend on the choice for ε.
The smaller ε is chosen, the more emphasis is placed on the constraints and the less freedom
is left to reduce the primary criterion.

By expressing the cost function by the ε-constraint method the policy makers can directly
see the effect of their decision for ε, because the constraint is a hard constraint that cannot
be violated. Moreover, the issue of non-convexity is dealt with. However, this method also
has a drawback. Whereas for the weighted-sum method it did not matter what value was
chosen for α, it matters for the ε-constraint method. Too small values of ε could lead to
feasibility issues where the control approach is not able to find any control inputs that satisfy
the given constraints. In the case study presented in Chapter 5 the applied method will be
the weighted-sum method to avoid this feasibility issue.

3-4 Advantages and disadvantages of MPC

The MPC approach discussed in Section 3-2 is well-suited for dynamic traffic control of
freeways. There are a number of advantages of this control scheme [7], [23] compared to other
control approaches such as iterative-learning based control [26], traditional optimal control
[2], [33], or local control (demand capacity strategy, occupancy strategy, or ALINEA) [42].
The advantages are listed next.

• Handle traffic systems. MPC is able to deal with highly nonlinear time-varying systems.
The behavior of the traffic flow, emissions, and fuel consumption fits this profile. By
taking into account several future states the control approach is able to find an optimum
that is suitable for a long-term horizon, instead of finding only a short-term optimum.
Also, by combing several control measures over a whole network, a coordinated optimum
can be found.

• Handle a multi-criteria objective. MPC can handle a multi-criteria objective, as has
been shown in Section 3-3.

• Handling constraints. A major advantage of MPC that distinguishes MPC from other
control approaches is its ability to handle constraints. The controller minimizes the
objective function in an optimal way, such that it does not violate the constraints on
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the model. Constraints could, for example, be the maximum queue length allowed on
on-ramps.

• Closed-loop structure. MPC has a closed-loop structure as it uses a receding horizon
principle. In this structure the traffic state and the current demands are fed back to
the controller, so that the controller can handle disturbances in the demand or model
errors. Traditional optimal controllers [33], however, have an open-loop structure. To
be able to control the traffic flow in an optimal way, the disturbances must be known
beforehand. Additionally, the traffic flow model must be very precise to ensure sufficient
accuracy for the whole simulation.

• Adaptivity. It is easy to adapt the model during operation. This can be an advantage
when major changes in the network have taken place. For example, when an accident
occurs and a lane must be shut down, this can be easily adapted in the model during
operation. Additional, the model itself can be updated once in a while.

• Lower computation time. MPC usually can suffice with a shorter prediction horizon,
compared to traditional optimal controllers, which reduces the computation time, in
general. This enlarges the feasibility of MPC controllers for on-line application.

The major drawback of the control approach MPC is the required computation time due to
the complexity of the optimization problem. Although MPC is in general faster than other
optimal control approaches due to the smaller prediction horizon and the control horizon [22],
in many large-scale traffic networks it still is not fast enough to find the optimal control inputs
to minimize the cost function. This drawback prevents the implementation of MPC in real
large-scale traffic systems. Therefore, an alternative method needs to be developed to reduce
the complexity of the problem. In this thesis such a method is developed by slightly altering
the concept of the MPC approach. This will be explained in Chapter 4. Another drawback
is the fact that the performance of MPC depends on the ability to predict the future demand
accurately. The control inputs are optimized based on this prediction.

3-5 Summary

In this chapter, the control approach Model Predictive Control (MPC) is presented. In traffic
systems, MPC makes an estimation and prediction of the current and future states of the
system using models of the traffic flow, emissions, and fuel consumption. The approach op-
timizes the control inputs that influence the traffic states according to a user-defined cost
function without violating the constraints that are active on the system. This optimization
is achieved over a prediction horizon to find the optimal control sequence that minimizes
the cost function. However, only the first set of control inputs corresponding to the current
control time step are fed to the real system. At the next control time step, the whole opti-
mization is carried out again with new received measurement data to counteract the presence
of disturbances and model uncertainties.

Since the MPC control approach requires the description of a cost function, this chapter
has presented a multi-criteria cost function. Two ways to define this cost function are pre-
sented, namely the weighted-sum method and the ε-constraint method. In the case study the
weighted-sum method will be used as the method to define the cost function.
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The advantages of an MPC control approach for dynamic traffic control are diverse. MPC
can deal with the nonlinear time-varying traffic system, can handle the different operational
and physical traffic constraints, multi-criteria cost functions, and disturbances, can be easily
adapted to new traffic situations on-line, and optimizes the control inputs over a long-term
horizon. However, the main issue for implementing this control scheme in the real traffic
network is the limitation of the computation speed. To overcome this issue, an adaption is
made to the concept of MPC, which will be explained in the next chapter.
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Chapter 4

Parameterized MPC for traffic control

This chapter presents a variant of MPC, so-called parameterized MPC, that has lower com-
putational requirements than conventional MPC. The chapter first provides a motivation for
the parameterized MPC approach in Section 4-1, after which the general framework of the
approach will be explained in Section 4-2. An example of the control laws used in the general
framework in a traffic control context is given in Section 4-3. The chapter will conclude with
a summary in Section 4-4.

4-1 Motivation

Conventional MPC, as described in Chapter 3, has many advantages that make it suitable
for dynamic traffic control. However, for large-scale traffic networks the main limitation for
on-line control is the required computation time due to the complexity of the optimization
problem. This drawback prevents the control approach from being implemented in real-time
applications of large-scale traffic networks. Therefore, a solution must be found to reduce the
computational complexity of the optimization problem.

The required computation time largely depends on the optimization process of the control
inputs over the prediction horizon. A nonlinear multi-start local optimization algorithm needs
to find the optimal control values, in an iterative fashion, at each control time step over the
prediction horizon. This procedure needs to be carried out multiple times to increase the
chance of finding the global optimal set of control inputs, as the MPC optimization problem
for traffic is nonlinear and nonconvex.

As have been discussed in Chapter 3, a common approach to reduce the complexity of
the optimization problem is to use a control horizon Nc, such that the control horizon is less
than the prediction horizon, i.e., Nc < Np. The control inputs uci are allowed to vary only
till the control horizon Nc, after which they remain constant till the prediction horizon Np

(see also Figure 3-2)

uci(k +Nc + j) = uci(k +Nc − 1) (4-1)
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Figure 4-1: Block diagram of parameterized MPC

for j = 0, · · · , Np − Nc − 1. Thus the total number of control variables nopt that has to be
optimized is given by

nopt = ni · (nci ·Nc) (4-2)

where ni is the number of multi-start points, nci is the number of control inputs, and Nc is
the control horizon. The number of control inputs nci is defined as the sum of the number
of independent variable speed limits nvsl and the number of installed ramp meters at the
on-ramps nro

nci = nvsl + nro. (4-3)

By changing the number of multi-start points ni, number of control inputs nci, or the con-
trol horizon Nc, the required computation time can be influenced. However, lowering these
variables could also lead to a decrease in the performance of the controller to minimize a cost
function. To maintain enough degree of freedom for the controller to steer the traffic flow
these variables cannot be taken too small.

This chapter focuses on lowering the number of control inputs nci in the optimization
problem. This can be achieved in several ways. One way is by splitting the traffic network
into sub-networks, where for each sub-network a separate MPC controller is designed. The
overall traffic network can be controlled by hierarchical control or agent-based control [22].
Another way is to group several variable speed limits over space (e.g., over a distance of 2
km the speed limits display the same value). However, this largely reduces the degree of
freedom of the controller. Yet another way is to parameterize the control inputs [1], [57].
Instead of optimizing the control inputs directly, the optimization algorithm then optimizes
the parameters of some user-defined control laws that are used to compute the control inputs.
This approach will be studied in the remainder of this chapter.

4-2 General approach of parameterized MPC

In Figure 4-1 the concept of the parameterized MPC approach is given. Compared to the
concept of conventional MPC as shown in Figure 3-1, the only difference of parameterized
MPC with respect to conventional MPC is the way the optimization algorithm computes
the optimal control inputs. Instead of directly optimizing the control inputs in the control
approach, the optimization algorithm in parameterized MPC optimizes the parameters used
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in the control laws. These control laws determine the corresponding control inputs. The
whole strategy, as discussed in Chapter 3, remains the same. So, the control approach still
optimizes the control inputs (indirectly, using control laws) that minimize a user-defined cost
function under certain constraints, using an estimation and prediction of the real traffic flow,
emissions, and fuel consumption computed by e.g. the METANET and VT-Macro models.

The control laws used in this block diagram relate the control inputs uci (variable speed
limits and ramp metering rates) to the predicted traffic states x̂ (density and speed) and
predicted traffic outputs ŷ (flow, travel time, emissions, and fuel consumption). The general
form of such a control law is given by

uci(kc + 1 + j′|kc) = F
(
x̂(kc + j′|kc), ŷ(kc + j′|kc), θ(kc + j′|kc)

)
(4-4)

where j′ = 0, 1 · · · , Np − 1 and kc denotes the control time step counter such that uci(kc) is
the time step where the new values of the control inputs are fed to the real system (k = Mkc

for M = Tc/Ts). In the time between two control time steps the control inputs are kept
constant. The function F (·) is a user-defined mapping that maps the predicted traffic states
x̂(kc +j′|kc), traffic outputs ŷ(kc +j′|kc), and parameter set θ(kc +j′|kc) from the current time
step up to the prediction horizon to the control inputs uci(kc + 1 + j′|kc), using information
available at time step kc.

The use of control laws to compute the control inputs introduces a new decision tool, the
control policy. The control policy dictates the way the parameters of the control laws are
allowed to vary over the prediction horizon. Basically, three control policies could be defined:

1. Constant parameters. The parameters of the control laws are kept constant throughout
the entire prediction horizon (θ(kc + j′) = θ(kc),∀j

′). This does not mean that the
control inputs are constant over the prediction horizon, as they also depend on the
traffic states and traffic outputs defined in the control laws.

2. Variable parameters. The parameters used in the control laws are time-varying over the
prediction horizon. The control laws are, therefore, optimized every control time step
to optimize the relation of control inputs and traffic states and traffic outputs.

3. Combination of constant and variable parameters. The parameters of the control laws
are limited allowed to vary over the prediction horizon. This could be done by blocking
the parameters over a predefined horizon, e.g., by using a control horizon, where the
parameters are allowed to vary over the control horizon, but are kept constant from the
control horizon till the prediction horizon.

The choice of the control policies influences the mapping of the function F (·) to the control
inputs. The flexibility of the control laws to map the optimal sequence of control inputs is
the largest for a variable control policy and the smallest for a constant control policy. The
performance of the controller could therefore be less for a constant control policy than for a
variable control policy. However, the number of control variables nopt to be optimized is less
for a constant control policy, which reduces the complexity of the optimization problem.

At every control time step the parameterized MPC approach optimizes the set of param-
eters used in the control laws described by the function F (·) to minimize the optimization
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problem

min
θ
J(kc) ≡ V (x,y, θ,d) (4-5)

subject to: g(x,y, θ,d) ≤ 0,

h(x,y, θ,d) = 0, and

system model

where J(kc) denotes the cost of applying the control inputs to the real system at time step kc,
V (x,y, θ,d) the user-defined cost function as a function of the traffic states x, traffic outputs
y, parameter set θ, and the external inputs d, all vectorized over the prediction horizon,
and g(x,y, θ,d) and h(x,y, θ,d) are the inequality and equality constraint functions of the
system.

Once the optimization algorithm is finished, the parameter set belonging to the current
control time step θ(kc|kc) is used to compute the control inputs that needs to be fed to the
real system. At the next control time step kc + 1 the optimization algorithm is executed
again, using the receding horizon principle, as discussed in Chapter 3.

4-3 Example of control laws

From the general framework presented in the previous section a range of control laws could
be defined. In this section, two examples of the parameterization of the control inputs will be
shown, one for each type of control inputs considered in this MSc thesis. In these examples
the control laws are defined based on knowledge of traffic theory regarding the relation of the
control inputs to the traffic states and traffic outputs.

4-3-1 Control law for variable speed limits

One of the primary objective of variable speed limits, as it is used in dynamic traffic control, is
to prevent the formation of congestion [23]. Congestion occurs when the density of a segment
exceeds the critical density. During congestion vehicles cannot drive at the maximum allowed
speed without compromising the ability of vehicles to avoid collision. As a consequence, in
case of a high demand upstream the congestion, more vehicles enter the dense segment than
are able to leave. This increases the density and reduces the speed even more until the vehicles
come to a complete stop at the maximum density. Variable speed limits are able to control
to some extent the inflow of vehicles upstream to a dense segment, which leaves room for the
dense segment to resolve the speed drop. Furthermore, variable speed limits can smoothen
the speed variance between segments to prevent the creation of dense segments.

From this perspective, the variable speed limits can be linked to the current and predicted
speed and density profiles of segments with respect to their neighboring segments. The
following control law establishes this relation:

uvsl,m,i(kc + j + 1) = θ0(kc + j) · uvsl,max + θ1(kc + j) ·
vm,i+1(kc + j) − vm,i(kc + j)

vm,i+1(kc + j) + κv
+ (4-6)

θ2(kc + j) ·
ρm,i+1(kc + j) − ρm,i(kc + j)

ρm,i+1(kc + j) + κρ
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where uvsl,m,i(kc + j) is the variable speed limit of segment i of link m at time step kc for
j = 0, · · · , Np − 1, uvsl,max is the maximum allowed speed of the traffic network, κv and κρ

are respectively the minimum non-zero speed and density model parameters, and θi(kc + j)
are the parameters to optimize for i = 0, 1, 2 at time step kc.

When the parameters θj(kc) are allowed to vary over the prediction horizon (variable con-
trol policy) the number of control variables nopt that has to be optimized by the optimization
algorithm from Equation 4-2 will be

nopt = ni · (3 ·Nc) (4-7)

regardless of the number of the variable speed limits compared to conventional MPC. The
computational complexity is therefore reduced by this control law when the number of inde-
pendent variable speed limits nvsl is larger than 3.

When the parameters θj(kc) are kept constant over the prediction horizon (constant con-
trol policy) the number of control variables nopt to be optimized is reduced even more to 3ni.
In this scenario the computation complexity is already reduced if nvsl ·Nc > 3.

4-3-2 Control law for ramp metering rates

Ramp metering is used to prevent the density of the freeways from exceeding a critical value
ρcrit, due to the merging behavior of vehicles from the on-ramp to the freeway. When the
critical density is exceeded the throughput of the freeway and the average speed of the vehicles
will drop. Therefore, the control law is defined such that the ramp metering rates are related
to the density of the freeway near to the on-ramp and the critical density, which is here given
by:

ur,o(kc + j + 1) = ur,max + θ3(kc) ·
ρcrit,m,1 − ρm,1(kc)

ρcrit,m,1
(4-8)

where ur,o(kc) is the ramp metering rate at the on-ramp origin o at time step kc, ur,max is the
maximum ramp metering rate, and θ3(kc) is the parameter at time step kc.

When the parameter θ3(kc) is allowed to vary over the prediction horizon (variable control
policy) the number of control variables nopt that has to be optimized by the optimization
algorithm from Equation 4-2 will be

nopt = ni ·Nc. (4-9)

The computation complexity is therefore reduced by this control law when the number of
metered on-ramps nro is larger than 1.

When the parameter θ3(kc) is kept constant over the prediction horizon the number of
control variables nopt to be optimized is equal to the number of multi-start points ni, where
the computation complexity is already reduced for nro ·Nc > 1.

4-3-3 General remarks concerning control laws

The control laws map the parameters to the control inputs. This mapping can reduce the
flexibility of the control inputs to steer the traffic flow in the desired direction with respect
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to the conventional MPC approach. Therefore, the control laws should be defined such that
the remaining operational space of control inputs is close to the optimal values for the control
inputs, to maintain a high level of performance compared to the conventional MPC approach.

The control laws presented are just one way to formulate the relationship of control inputs
to the traffic states and traffic outputs. The given control laws can easily be altered to obtain
other control laws. Also totally different control laws could be defined, based on the general
formulation of control laws of Equation 4-4.

4-4 Summary

Parameterized MPC is introduced in order to reduce the computational complexity of the
optimization problem of conventional MPC for large-scale traffic networks for on-line dynamic
traffic control. To reduce the complexity of the optimization problem the number of control
variables that have to be optimized, should be reduced. In parameterized MPC the control
inputs are determined indirectly by user-defined control laws. The reduction of complexity
can be realized when the number of parameters used in the control laws is less than the
number of control inputs in parameterized MPC. A control law relates the control inputs to
the traffic states and traffic outputs over the prediction horizon.

A general framework has been presented that can be used to define the control laws. From
this general framework, a control law is defined for both types of control inputs considered in
this MSc thesis, based on knowledge from traffic theory. The complexity of the optimization
problem for traffic networks is reduced when more than three independent variable speed
limits and more than one metered on-ramp are present for a variable control policy of the
parameters. The complexity of the optimization problem is even much less when the constant
control policy is chosen because the parameters do not change over the control horizon. Note,
however, that the efficiency of the controller depends on the chosen control laws. Therefore,
it is advisable to examine variations of these control laws or even completely different control
laws.
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Chapter 5

Case study

To test the MPC approach, and in particular the parameterized MPC approach, a case
study is conducted. In Section 5-1 the set-up of the case study will be presented. Section
5-2 will describe the scenarios that are studied in this case study. In the remainder of the
chapter the results of these scenarios will be presented for conventional MPC in Section 5-3
and parameterized MPC in Section 5-4, after which a comparison will be made between
conventional and parameterized MPC in Section 5-5. The chapter concludes with a summary
in Section 5-6.

5-1 Set-up of the case study

Prior to this thesis project, other case studies have been conducted on the Dutch A12 freeway
between Bodegraven and Woerden (see e.g., [57]). For these studies, a calibrated METANET
model was established of this particular part of the freeway. For that reason, the case study
performed in this project is on the same site. The considered part of the A12 freeway is
stretched between Bodegraven and Woerden (see Figure 5-1(a)). The total length of the
freeway is approximately 15 km. The traffic network is divided into 3 links and 24 segments,
as can be seen in Figure 5-1(b). The locations of the segments are chosen such that they
match the place where a loop detector is located in the road. This slightly deviates from the
METANET model presented in Chapter 2, where all segments within one link are of equal
length. However, as long as the length of a segment is larger than the maximal length a
vehicle travels within one time step, this does not matter for the model [31]. Furthermore, in
the model the flow on the off-ramp is always considered to be at free-flow speed so that it does
not affect the speed upstream the off-ramp, as was suggested in Section 2-1. The parameters
of the extended METANET model and other case specific values are given in Appendix A.

A demand profile of one hour is defined (see Figure 5-2) to simulate a typical traffic flow
on this part of the freeway at the end of the morning rush hour, using data of the traffic
flow from January 23, 2006. As the traffic network has three entrances, the origin of the
traffic network d1 and the two on-ramps (d2 at Waarder after approximately 3.3 km of the
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(a) Site freeway between Bodegraven and Woerden (obtained from Google Maps)
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(b) Schematic representation of the location of the case study

Figure 5-1: Part of the Dutch A12 freeway (between Bodegraven and Woerden) of approximately
15 km length. The traffic network is discretized into 24 segments. It has two metered on-ramps
and off-ramps (at Waarder and Linschoten). The variable speed limits are grouped per three
segments.
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Figure 5-2: Demand profile for the origins used in the simulations based on real data obtained
from the freeway. Demand d1 is for the origin of the traffic freeway, demand d2 for the first
on-ramp, and demand d3 for the second on-ramp.

traffic network and d3 at Linschoten after approximately 9.2 km of the traffic network), the
demand is split up into three demands corresponding to the location where the vehicles enter
the traffic network. As can be seen in Figure 5-2 the main demand of vehicles comes from the
origin of the traffic network, while a smaller portion of the demand comes from the on-ramps.

When the traffic network is not controlled by variable speed limits and ramp metering,
the traffic flow would result in a congestion that spills back from the second on-ramp to the
origin of the traffic network over time, for the given demand profile. This phenomenon can
be observed in Figure 5-3. The congestion occurs directly after the start of the simulation
in the vicinity of the second on-ramp and slowly spills back in a shock wave to the origin
of the traffic network in a timespan of 40 minutes. As can be seen, from that moment on a
queue starts to form at the origin of the traffic network, which is not yet resolved at the end
of the simulation. The total time spent (TTS) of the vehicles in the traffic network during
the simulation horizon is computed at 1136 vehicle hours. During this time, the total CO
emission is estimated to be 190 kg and the total fuel consumption is estimated to be 7476 l.
These values are set to be the normalization values for the controlled scenarios in order to see
what the performance of the controlled scenario is compared to the uncontrolled scenario.

The control inputs considered in the controlled scenarios are the variable speed limits and
the ramp metering rates (see Figure 5-1(b)). The variable speed limits are grouped per three
segments to reduce the computation complexity of the controller and to prevent variations
of the speed limits within a short distance. This means that, in the traffic network under
consideration, there are eight independent variable speed limits that can be controlled. There
are also two on-ramps located at this part of the A12 freeway. These on-ramps are metered
by independent on-ramp metering installations. In total, the number of control inputs comes
to nci = 10.
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(a) Speed profile over time and space
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(c) Queue length at origin of the traffic network

Figure 5-3: Speed and density profiles of the uncontrolled scenario over time t in min and space
x in km. Congestion sets in immediately in the vicinity of the second on-ramp (approx. at 11 km)
and spills back over time in a shock wave to the origin of the traffic network, after which a queue
starts to form at that origin. During the simulation horizon of one hour, the congestion remains
unsolved.
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5-2 Scenario description

Based on the set-up of the case study presented in the previous section, the MPC controller
can be used to compute the optimal control inputs to steer the traffic flow towards the desired
direction. In this section, the scenario for the MPC approach will be described. First of all,
the tuning parameters of the control approach are determined, after which the cost function
and constraints are defined and the optimization algorithm is chosen.

5-2-1 Tuning parameters of MPC

The MPC approach has a few parameters for which appropriate values have to be selected.
These tuning parameters influence the computational complexity and efficiency of the con-
troller. The parameters for conventional MPC are the prediction horizon Np, the control
horizon Nc, the control time step Tc, and the number of multi-start points ni, as presented in
Chapter 3. For parameterized MPC two extra tuning parameters are introduced, the control
policy and the bounds of the parameters θ used in the control laws, as discussed in Chapter
4.

• Prediction and control horizon. The prediction and control horizon are set to 15 min
and 10 min, respectively. These values are used in previous studies [57] and have not
been altered in this project.

• Control time step. The control time step is selected to be 5 min. At each control time
step the controller can feed new optimal control inputs to the traffic network. The lower
bound for Tc is 1 minute as this is the sample time interval at when new measurement
data become available from the loop detectors. By increasing the control time step
(e.g. from 1 to 5 min) the prediction horizon is reached within less steps, which reduces
the complexity of the optimization problem. Furthermore, the variation of the control
inputs over time is reduced, as it varies only once per 5 minutes. However, this comes
at the expense of some performance loss of the controller, as the degree of freedom of
the controller is lower.

• Number of multi-start points. The number of multi-start points for the optimization
algorithm depends on the chosen optimization algorithm, the other tuning parameters,
and on the selected control laws (for parameterized MPC). Since the considered opti-
mization problem is highly nonlinear and nonconvex, in order to increase the chance
of finding the global minimum the number of multi-start points is made larger. The
number of multi-start points is varied in the range 5 to 150. This means that the op-
timization algorithm needs to be carried out at least 5 times in one control time step,
to find the global minimum of the cost function. The set of initial values of the control
inputs corresponding to the nth optimization are set to

uinitial =







shifted 1st

lower bounds 2nd

upper bounds 3rd

average of lower and upper bounds 4th

random 5th and above

(5-1)

Master of Science Thesis Johan ’t Hart



42 Case study

where ‘shifted’ is the shifted optimal set of control inputs of the previous optimization.
The lower and upper bounds are the lower and upper boundary values of the control
inputs for conventional MPC and the lower and upper bounds of the parameters θi for
parameterized MPC. To verify whether or not the number of multi-starts have been
chosen correctly, a rule of thumb is that the global minimum should be found several
times compared to the number of multi-start points. This is verified per controlled
scenario and adapted were necessary. For conventional MPC the number of multi-start
points is restricted to maximal 15, to limit the simulation time of the approach.

• Control policy. The control policy for parameterized MPC in this project differs between
variable and constant values of the parameters θ of the control laws over the control
horizon. At first, a variable control policy of the parameters of the control laws was
chosen. Later on, the control policy was switched from variable to constant. Note that
for a constant control policy the control inputs can still differ over the control horizon,
due to the variation of the traffic states per segment.

• Bounds of the parameters. The upper and lower bounds of the parameters for param-
eterized MPC are less trivial to select. With conventional MPC the upper and lower
bounds were defined as the physical bounds of the control inputs (see Equation 5-6).
These bounds are, of course, still valid for the control inputs. However, theoretically
the parameters of the control laws has no explicit bounds. This imposes a problem for
the optimization algorithms to numerically find the optimal parameter values. Based
on trial-and-error some bounds are selected in the simulations.

5-2-2 Cost function and constraints

Cost function

The objective of the dynamic traffic controller is to reduce the total time spent in the traffic
network (TTS) and the total emissions and fuel consumption (TEFC). The corresponding
multi-criteria cost function using the weighted-sum method is given by

J(kc) = α1 ·
TTS(kc)

TTSn
+ α2 ·

TEFC(kc)

TEFCn
(5-2)

where TTSn and TEFCn are the normalization values for TTS and TEFC, respectively, and
they are given by the values obtained previously for the uncontrolled scenario (see page 39),
and α1 and α2 are the weight factors of the corresponding criteria. To determine the optimal
weights for α1 and α2, a trade-off function is defined such that

α2 = 1 − α1 for α1 ∈ [0, 1] (5-3)

When α1 = 0 the focus lies completely on the reduction of emissions and fuel consumption;
when α1 = 1 the focus lies completely on the reduction of the travel time. It is up to policy
makers to decide which values for the weights are chosen, i.e. how much emphasis is placed
on which criterion. With this trade-off function it is easy to implement different strategies
over time.

The total time spent in the traffic network can be expressed as the total time vehicles
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spent in the traffic network over the prediction horizon plus the total time vehicles spent in
the queue at the origins during the prediction horizon. This is given by

TTS(kc) = Ts ·
M(kc+Np)−1

∑

k=Mkc




∑

m∈M

Nm∑

i=1

λmLm,iρm,i(k) +
∑

o∈Io

wo(k)



 (5-4)

where Lm,i is the length of segment i of link m, λm is the number of lanes of link m, wo is
the queue length of origin o, M is the set of links of the traffic network, and Io is the set of
origins of the traffic network.

The total emissions and fuel consumption can be expressed as

TEFC(kc) =

M(kc+Np)−1
∑

k=Mkc

∑

y∈Y

γyJ
EFC
y (k) (5-5)

where γy is the weight for emissions or fuel consumption y, Y is the set of emissions and fuel
consumption Y = {CO,HC,NOx,FC}, and JEFC

y (k) is the emissions or fuel consumption y at
simulation time step k as defined in Equation 2-40. To reduce the complexity of the system,
the case study will focus on the reduction of carbon monoxide CO emissions.

Constraints

The constraints that are active on the system in the case study are the upper and lower
bounds on the control inputs. The range for variable speed limits and ramp metering rates
are, respectively, given by

40 km/h ≤ uvsl,m,i(k) ≤ 120 km/h ∀(m, i)
rmin ≤ ur,o(k) ≤ 1 ∀o ∈ Io.

(5-6)

The lower bound of uvsl is set to 40 km/h, because at this speed the freeway is considered
to be congested, and congestion speed does not need to be displayed. Moreover, the legal
minimum allowed speed of vehicles at freeways is 60 km/h when the freeway is not congested.
Only during congestion vehicles may drive below this speed. The upper bound is set equal to
the maximum allowed speed. In real applications this means that the variable message signs
do not display a speed limit.

In the model the optimal variable speed limits can be every value between the upper and
lower bound. However, the displayed message signs above the road only provide rounded
values of the maximum allowed speed to the drivers (multiples of 10 km/h, for example
50 km/h or 70 km/h). The computed optimal speed limits should be rounded to a multiple of
10 km/h first, before they can be used by the displayed message signs. There are several ways
to transform a continuous value to a discrete value, e.g., by ceiling, rounding, or flooring. In
a study conducted in [23], the discretization of the continuous variable speed limits with the
use of the commands ‘ceil’ and ‘round’ shows nearly the same performance as the continuous
variable speed limits, but the command ‘floor’ shows poor performance. This is explained by
the fact that the use of flooring results in overconservatism. It reduces the speed of vehicles
too much, which leads to a lower throughput than would be the case in the scenario using
the optimal control inputs. In this case study the command ‘round’ will be used to discretize
the continuous speed limits computed by the optimization algorithm.
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The bounds on the ramp metering rates resemble the physical range the rates can be in.
The minimum rmin for the ramp metering rates is set to zero (rmin = 0). When the ramp
metering rate is zero, the traffic lights on the on-ramp display a red light during the entire
cycle. When the ramp metering rate is one, the traffic lights on the on-ramp display a green
light during the entire cycle. This is equal to an unmetered on-ramp. Values between zero
and one allow a percentage of the vehicles to enter the freeway from the on-ramp.

5-2-3 Optimization algorithm

In the case study, the optimization toolbox of MATLAB R© is used to minimize the multi-
criteria cost function. More specifically, the command ‘fmincon’ is used for the optimization
of the control inputs. This command can handle nonlinear and nonconvex optimization prob-
lems and can easily handle nonlinear time-varying constraints.

The built-in function ‘fmincon’ accepts three different algorithms, namely active-set, se-
quential quadratic programming (SQP), or interior-point. The algorithms differ in the way
they compute the new set of control inputs. It is recommended to initially use the interior-
point algorithm for large-scale problems. This results in more optimal control inputs than
for the other two algorithms. However, it takes long computation time to converge to the
optimal control inputs. Since the considered optimization problem is not a large-scale prob-
lem, the SQP algorithm can be selected, which is faster in convergence time. To reduce the
computation time even more the active-set algorithm can be used. The interior-point and
SQP algorithms satisfy the constraints at all time, while the active-set could violate the con-
straints in intermediary iterations. The active-set algorithm is faster, as it can take larger
steps of the control inputs to converge to the optimal values.

For a more detailed overview of the differences in the algorithms, the website of The Math-
Works Inc can be consulted [52], [53]. In the case study, both SQP algortihm and active-set
algorithm of ‘fmincon’ has been used.

5-3 Conventional MPC

In the conventional MPC approach the traffic behavior is controlled by optimizing the set of
control inputs over the prediction horizon to minimize the multi-criteria cost function without
violating the constraints. For the scenario described in the previous sections, the results of
the controller are presented in Figure 5-4 for α1 = 1 (focus on TTS reduction) and in Figure
5-5 for α1 = 0 (focus on CO reduction). The control time step Tc in these simulations is
5 minutes, the number of multi-start points ni is 10 for α1 = 1 and 5 for α1 = 0, and the
optimization algorithm is active-set.

As can be observed in Figure 5-4 the congestion that was initially formed at the second on-
ramp is resolved within 10 minutes. During the remainder of the simulation the vehicles can
drive (close to) the maximum allowed speed over the whole traffic network. The congestion
was resolved by reducing the inflow to the traffic network at the second on-ramp. The ramp
metering rate at that origin is kept low in the beginning, restricting vehicles from entering the
already dense freeway. Obviously, this increases the queue length at that origin. However,
this queue length is immediately reduced when the traffic density on the freeway allows more
vehicles to enter the freeway without crossing the critical density. The TTS in the traffic
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(d) Variable speed limits over time and space

 

 

o3

o2

t [min]

u
r
,o

0 20 40 60
0

0.2

0.4

0.6

0.8

1

(e) Ramp metering rates over time

Figure 5-4: The evolution of the controlled freeway network over time and space for α1 = 1
(focus on TTS reduction) for conventional MPC. The congestion is resolved within 10 min, after
which the average speed profile is above 90 km/h. However, a queue starts to form at the second
on-ramp w3 of over 150 vehicles.
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TTS TCO TFC Computation time
[veh · h] [kg] [l] [min]

Uncontrolled 1136 190 7476 0

α1 = 1.0 902 215 7410 17.8
0.8 946 167 7013 8.2
0.6 1175 122 6830 10.3
0.4 2107 79 7322 13.7
0.2 2345 72 7478 6.7
0.0 2350 72 7485 4.4

Table 5-1: Effect of different weighting of the criteria for TTS, TCO, and TFC compared to
the uncontrolled scenario for conventional MPC. The last column displays the maximum required
computation time per control time step (Tc = 5 min) of the whole simulation. Note that for
α1 = 1.0 the number of multi-start points ni is increased from 5 to 10 to obtain more optimal
results.

network is reduced as a consequence of the optimal control inputs, however, at the cost of
increased emissions and fuel consumption, as can be seen in Table 5-1.

When the focus of the controller is on the reduction of the carbon monoxide, as is shown
in Figure 5-5, the controller tries to reduce the average speed of vehicles to approximately
50 km/h, as this is the optimal speed of vehicles with respect to the carbon monoxide emission.
When vehicles drive faster or slower, the carbon monoxide emissions would rise. Logically,
this increases the travel time dramatically. Due to the low allowed speed of vehicles imposed
by the variable speed limits, the throughput is reduced and a queue will form at the origin of
the traffic network. Obviously, this is not a proper solution for the reduction or prevention
of congestion. Although the emissions are largely reduced in this scenario compared to the
uncontrolled scenario, the travel time and fuel consumption are increased. In Table 5-1 the
results for different weights of α1 are shown for the total travel time (TTS), total carbon
monoxide emissions (TCO), and total fuel consumption (TFC). Also, the maximum required
computation time per control time step over the simulation horizon is given.

To show the relative improvement of the criteria with respect to the uncontrolled scenario,
a trade-off curve is made in Figure 5-6 for the different weights of α1. In this graph the
relative improvement is computed as

%TTS =
TTSn − TTS

TTSn
· 100% (5-7)

%TEFC =
TEFCn − TEFC

TEFCn
· 100% (5-8)

where TTS denotes the travel time and TEFC denotes the total emissions and fuel consump-
tion. From this curve, it can be observed that it is possible to reduce both the TTS and
the TEFC at the same time for α1 ∈ [0.65, 0.93], using the conventional MPC approach. In
order to compute the optimal control inputs over the prediction horizon to minimize these
criteria, the maximum computation time varied between 8 to 18 minutes per control time
step (depending on the weights of α1 and the number of multi-start points taken). Although
the control time step has been increased in these simulation to 5 min, the conventional MPC
approach still requires too much computation time. Therefore, the control approach cannot
be implemented in real-life applications to control the traffic flow.
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(c) Queue length at the origins over time
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(d) Variable speed limits over time and space
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(e) Ramp metering rates over time

Figure 5-5: The evolution of the controlled freeway network over time and space for α1 = 0
(focus on CO emission reduction) for conventional MPC. The average speed of vehicles is reduced
to 50 km/h to reduce the CO emission. At the origin of the traffic network a queue starts to
form, due to the low allowed speed imposed by the speed limits.
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Figure 5-6: Relative improvement of the TTS and TEFC for different weights of α1 for conven-
tional MPC. For high values of α1 the focus lies on the reduction of the TTS, which leads to an
improvement of the TTS; for low values of α1 the focus lies on the reduction of the TEFC, which
leads to a reduction of the TTS.

5-4 Parameterized MPC

In the parameterized MPC approach, the variable speed limits and ramp metering rates are
computed according to some user-defined control laws. These control laws relate the traffic
states and traffic outputs to the control inputs. Basically, any kind of control law could be
defined to parameterize the control inputs, as long as it satisfies Equation 4-4. In this case
study, some control laws have been defined based on knowledge of the traffic behavior from
traffic theory for each control measure; a few control laws that determine the variable speed
limits and a few control laws that determine the ramp metering rates.

5-4-1 Control laws for variable speed limits

The control law for variable speed limits relates the variable speed limits to the traffic states
speed and density. From traffic theory it is known that vehicles tend to reduce their speed
when they encounter a high density downstream of their segment. Also, when the average
speed of vehicles in the next segment is lower, drivers reduce their speed. One way to express
this relation is given by the control law

uvsl,m,i(kc + j + 1) =

A
︷ ︸︸ ︷

θ0(kc + j) · uvsl,max +

B
︷ ︸︸ ︷

θ1(kc + j) ·
vm,i+1(kc + j) − vm,i(kc + j)

vm,i+1(kc + j) + κv
+ (5-9)

C
︷ ︸︸ ︷

θ2(kc + j) ·
ρm,i+1(kc + j) − ρm,i(kc + j)

ρm,i+1(kc + j) + κρ

where j = 0, · · · , Np − 1 and uvsl,max is the maximum allowed speed of the traffic network.
Because of the difference in traffic speed and traffic density along the freeway, the variable
speed limits can still vary over space while using this control law. In this way, all the inde-
pendent variable speed limits are computed using the same equation. Instead of optimizing
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every independent variable speed limit separately the optimization algorithm only has to op-
timize the parameters used in the control law. Note that the control policy in this equation
is defined for variable parameters. For a constant control policy the parameters are given by
θi(kc + j) = θi(kc) ∀j.

For this particular control law the variable speed limits depend on three terms. The first
term A resembles the upper bound of the variable speed limits. The second term B consists
of the relative speed difference between two consecutive segments i and i+ 1. The third term
C consists of the relative density difference of two consecutive segments i and i+1. Of course,
the defined control law is just one way to express the relation of the variable speed limits with
the traffic states. Other control laws for variable speed limits can be obtained, for example,
by varying the terms A, B, and C. In this case study, the following variations are examined:

Ap = θ0(kc + j) ·

{

uvsl,max p = 1

uvsl,m,i(kc + j) p = 2

Bp = θ1(kc + j) ·







vm,i+1(kc + j) − vm,i(kc + j)

vm,i+1(kc + j) + κv
p = 1

vm,i+1(kc + j) − vm,i(kc + j) p = 2

1
2(vm,i+2(kc + j) + vm,i+1(kc + j)) − vm,i(kc + j)

1
2(vm,i+2(kc + j) + vm,i+1(kc + j)) + κv

p = 3

V [ρm,i(kc + j)] − vm,i(kc + j)

V [ρm,i(kc + j)] + κv
p = 4

vm,i+1(kc + j) · ρm,i+1(kc + j) − vm,i(kc + j) · ρm,i(kc + j)

vm,i+1(kc + j) · ρm,i+1(kc + j) + κv · κρ
p = 5

Cp = θ2(kc + j) ·







ρm,i+1(kc + j) − ρm,i(kc + j)

ρm,i+1(kc + j) + κρ
p = 1

ρm,i+1(kc + j) − ρm,i(kc + j) p = 2

1
2(ρm,i+2(kc + j) + ρm,i+1(kc + j)) − ρm,i(kc + j)

1
2(ρm,i+2(kc + j) + ρm,i+1(kc + j)) + κρ

p = 3

Option A2 is the variable speed limits of the previous control time step. By replacing the
maximum allowed speed by the previous variable speed limits, the variation between variable
speed limits over time is limited. Option B2 and C2 are a simplification of the primary
control law (no division of the differences). Option B3 and C3 are an extension of the speed
and density differences with an additional downstream segment. Option B4 considers the
speed differences with the desired speed and the current speed of that segment. Finally,
option B5 is the difference of the product of the speed and density between two consecutive
segments.

In total, this case study considers seven control laws for variable speed limits by combining
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some of the possible variations described above:

uvsl,m,i(kc + j + 1) = A1 +B1 + C1

uvsl,m,i(kc + j + 1) = A2 +B1 + C1

uvsl,m,i(kc + j + 1) = A1 +B2 + C2

uvsl,m,i(kc + j + 1) = A1 +B3 + C3

uvsl,m,i(kc + j + 1) = A1 +B4 + C1

uvsl,m,i(kc + j + 1) = A1 +B4

uvsl,m,i(kc + j + 1) = A1 +B5

In the first five combinations the number of parameters used in the control law in reduced
to three, in the last two combinations even to two. Recall that in the conventional MPC
approach, the number of independent variable speed limits was set to eight. So, the number
of control variables is reduced with a factor of 2.7 − 4 for the considered speed limits for
the variable control policy and even more for the constant control policy (extra factor 2 for
Tc = 5 min and Nc = 10 min).

5-4-2 Control laws for ramp metering rates

The control law for ramp metering rates is defined based on congestion prevention in the
vicinity of on-ramps. From traffic theory it is known that the maximal capacity qmax on a
freeway is reached at the critical density ρcrit. When a higher traffic density is formed, the
speed of vehicles will drop and less vehicles can flow through the traffic network. To prevent
congestion the density of vehicles in the vicinity of on-ramps should be kept below the critical
density. This is translated in the control law

ur,o(kc + j + 1) =

D
︷ ︸︸ ︷

ur,o(kc + j) +

E
︷ ︸︸ ︷

θ3(kc + j) ·
ρcrit − ρm,1(kc + j)

ρcrit
(5-10)

where ur,o(kc + j) denotes the previous ramp metering rate at on-ramp o and ρm,1 is the
density of the first segment of the link m connected to on-ramp o. To reduce the number
of parameters compared to the conventional MPC approach, only one parameter is used to
parameterize the control law for ramp metering rates. For this reason, there is no parameter
in front of term D as was the case in the control law for variable speed limits (term A). Just
as for the control law for variable speed limits, several variations are made of the control law
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for ramp metering rates:

Dp =

{

ur,o(kc + j) p = 1

ur,max p = 2

Ep = θ3(kc + j)·







ρcrit − ρm,1(kc + j)

ρcrit
p = 1

ρcrit − 1
2(ρm,2(kc + j) + ρm,1(kc + j))

ρcrit
p = 2

ρcrit − 1
2(ρµ,Nm

(kc + j) + ρm,1(kc + j))

ρcrit
p = 3

where link m is connected to the on-ramp o and link µ is the link upstream link m. Option
D2 is the upper bound of the ramp metering rate. Option E2 includes an extra segment
upstream of the on-ramp in the density differences. Option E3 includes an extra segment
downstream of the on-ramp in the density differences. In this case study four combinations
of D and E are considered:

ur,o(kc + j + 1) = D1 + E1

ur,o(kc + j + 1) = D2 + E1

ur,o(kc + j + 1) = D1 + E2

ur,o(kc + j + 1) = D1 + E3

.

The simulations are carried out in two stages. In the first stage, the variable speed limits
are parameterized using one of the seven variations of the control law described before. In
this stage, the ramp metering rates are not parameterized, but are still optimized using
the conventional MPC approach. This is mainly done in order to test the control laws of
each control measure separately. The second stage includes the parameterization of both the
control measures in the parameterized MPC approach. As it is the goal in this stage to test
the effect of the variation of the control law for ramp metering rates, one and the same control
law for variable speed limits is used, namely uvsl,m,i(kc + j + 1) = A1 +B1 + C1.

5-4-3 Results of parameterized MPC

Using the control laws described above, the parameterized MPC approach is able to resolve
the formation of congestion for the scenario described in Section 5-1. This can be observed
in Figures 5-7, 5-8, and 5-9, where the speed, density, and queue profiles are shown, together
with the corresponding optimized values of the parameters θi and the resulting control inputs
for two variations of the control laws.

In the first simulation, only the variable speed limits are parameterized using the control
law uvsl,m,i(kc + j+ 1) = A1 +B4, while the ramp metering rates are still optimized using the
conventional MPC approach. The optimization algorithm is SQP, the number of multi-start
points is 20, the control time step is 5 min, the control policy is constant parameters, and
the bounds of the parameters are ±1 for θ0 and ±200 for θ1. The result is shown for α1 = 1
(focus on TTS reduction) in Figure 5-7.
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(f) Ramp metering rates over time

Figure 5-7: The evolution of the controlled freeway network over time and space for α1 = 1
(focus on TTS reduction) for parameterized MPC for variable speed limits and conventional MPC
for ramp metering rates. The congestion at the second on-ramp is resolved within a few minutes,
however, the density remains somewhat high in that region compared to the solution with the
conventional approach. The congestion is resolved at the expense of a queue of over 150 vehicles
at the second on-ramp.
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Figure 5-8: The evolution of the controlled freeway network over time and space for α1 = 0.6
(focus partly on TTS reduction and partly on CO reduction) for parameterized MPC for both
control measures. The congestion in the vicinity of the second on-ramp is resolved, but the
average speed does not rise to the maximum allowed speed due to the inclusion of the CO
emission in the cost function. Only a minor queue is formed at the first on-ramp.

The speed and density profiles show that the control approach is able to resolve the con-
gestion that was initiated at the second on-ramp. The use of ramp metering for the control
of the traffic network is sufficient to resolve the congestion, resulting in a queue at the second
on-ramp. The values of the parameters are chosen such that the variable speed limits are
constant at 120 km/h.

The second simulation shown here is the result of the parameterized MPC approach for
the control laws uvsl,m,i(kc +j+1) = A1 +B1 +C1 and ur,o(kc +j+1) = D1 +E1. In this sim-
ulation, both control measures are parameterized. The optimization algorithm is active-set,
the number of multi-starts is 10, the control time step is 5 min, the control policy is constant
parameters, and the bounds of the parameters are ±1 for θ0, ±200 for θ1 and θ2, and ±50
for θ3. The result is shown for α1 = 0.6 (focus partly on TTS reduction and partly on CO
reduction) in Figure 5-8 and Figure 5-9.

From the speed, density, and queue plots in Figure 5-8 it can be seen that the congestion
at the second on-ramp is resolved at the beginning of the simulation. The average speed does
not go to the maximum allowed speed, as the controller also takes into account the effects of
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(e) Ramp metering rates over time

Figure 5-9: Evolution of the parameters of the control law uvsl,m,i(kc + j + 1) = A1 +B1 +C1

and the control law ur,o(kc + j + 1) = D1 +E1 over time, with the corresponding variable speed
limits and ramp metering rates.
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uvsl,m,i(kc + j + 1) TTS TCO TFC Computation time
[veh · h] [kg] [l] [min]

Uncontrolled 1136 190 7476 0
Conventional α1 = 1 902 215 7410 17.8
A1 +B1 + C1 903 216 7422 1.1
A2 +B1 + C1 911 217 7448 2.8
A1 +B2 + C2 903 215 7413 1.0
A1 +B3 + C3 911 217 7449 1.3
A1 +B4 + C1 911 217 7449 3.1
A1 +B4 911 216 7446 3.4
A1 +B5 911 217 7449 3.4
Conventional α1 = 0.6 1175 122 6830 10.3
A1 +B1 + C1 1141 123 6846 2.3
A2 +B1 + C1 1158 122 6912 3.9
A1 +B2 + C2 1157 125 6928 2.1
A1 +B3 + C3 1125 124 6869 1.5
A1 +B4 + C1 1143 122 6878 3.1
A1 +B4 1171 122 6939 3.9
A1 +B5 1445 139 7459 3.2

Table 5-2: Results of the parameterized MPC approach for different control laws for variable
speed limits for Tc = 5 min. The ramp metering rates are still optimized using conventional
MPC. The last column displays the maximum computation time per control time step over the
simulation horizon.

the carbon monoxide emissions. So, a trade-off is made between the travel time and the car-
bon monoxide emissions. This is also visible in the displayed variable speed limits in Figure
5-9, where the maximum allowed speed is almost everywhere below 70km/h over time and
space.

The parameterized MPC approach is studied thoroughly, resulting in a lot of simulations
of the traffic flow, using the variations of the control laws for different weights of the criteria of
the cost function. For each simulation the number of multi-start points ni, the bounds of θi,
the choice of the control policy for the parameters of the control laws, and the optimization
algorithm have been altered to obtain the best performance compared to the conventional
MPC approach, based on trial-and-error. In Appendix B these values are listed per combina-
tion of the control laws. However, due to time limitations, the last two combinations of the
control laws (ur,o(kc + j + 1) = D1 +E2 and ur,o(kc + j + 1) = D1 +E3) have not been tuned
extensively.

In Table 5-2 the results of parameterized MPC using different control laws for vari-
able speed limits are listed for two weight factors α1 = 1 and α1 = 0.6. Recall that in
these simulations the ramp metering rates are still optimized using conventional MPC. In
Table 5-3 the results of the parameterized MPC approach using different control laws for
ramp metering rates are listed. In these simulations the control law for variable speed limits
uvsl,m,i(kc + j + 1) = A1 +B1 + C1 is also included in the parameterized MPC approach.

To get a better overview of the performance of the parameterized MPC approach using
the different sets of control laws, in Figure 5-10 the improvement of the criteria is plotted for
all the scenarios for α1 ∈ [0.5, 1.0], according to Equation 5-7. The value of α1 is restricted
to 0.5, because it was observed in Section 5-3 that lower values did not improve the TTS
anymore. Also, to reduce the timespan of the simulations for parameterize MPC for all vari-
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ur,o(kc + j + 1) TTS TCO TFC Computation time
[veh · h] [kg] [l] [min]

Uncontrolled 1136 190 7476 0
Conventional α1 = 1 902 215 7410 17.8
D1 +E1 935 211 7473 0.4
D2 +E1 946 202 7395 0.5
D1 +E2 976 206 7509 0.4
D1 +E3 924 216 7486 1.2
Conventional α1 = 0.6 1175 122 6830 10.3
D1 +E1 1161 122 6929 0.7
D2 +E1 1168 120 6860 1.3
D1 +E2 1152 128 6868 1.2
D1 +E3 1334 122 7089 1.0

Table 5-3: Results of the parameterized MPC approach for different control laws for ramp
metering rates, combined with the control law for variable speed limits uvsl,m,i(kc + j + 1) =
A1 +B1 +C1 for Tc = 5 min. The last column displays the maximum required computation time
per control time step over the simulation horizon.

ations of control laws this choice was made.
The performance of the control laws for variable speed limits that uses three parameters

in the control laws (the first five variations of the control law) are more or less the same for
all the values of α1. However, when the number of parameters in the control law for variable
speed limits is reduced to two, the approach cannot maintain a high performance for all the
weights of α1. The maximum required computation time lies within 3.9 min per control time
step. The best control law for variable speed limit is uvsl,m,i(kc + j + 1) = A1 + B2 + C2

with a required computation time of less than 2.1 min per control time step and the best
performance.

In Figure 5-10(c) the difference in performance between control laws for ramp metering
rates is shown. In this figure it is clearly visible that the performance of the parameterized
MPC approach is less than when only the variable speed limits are parameterized. This can
partly be explained by the fact that the controller has less degree of freedom to find the opti-
mal control inputs, but also partly due to the fact that the bounds of the parameters θi were
not selected correctly (see Appendix B). Due to time limitations, the control laws for ramp
metering rates have not been studied in detail. Therefore, only for ur,o(kc + j+ 1) = D1 +E1

and ur,o(kc + j + 1) = D2 + E1 the performance is close to the performance of the first five
variations of control laws, while ur,o(kc +j+1) = D1 +E2 and ur,o(kc +j+1) = D1 +E3 show
poor performance. Note that the maximum computation time of ur,o(kc + j + 1) = D1 + E1

and ur,o(kc + j + 1) = D2 + E1 combined with the control law of the variable speed limits
uvsl,m,i(kc +j+1) = A1 +B1 +C1 is considerably less than when only the variable speed limits
are parameterized. The maximum required computation time lies in the range of 0.4 - 1.3 min.
From these two combinations of control laws, the control laws uvsl,m,i(kc+j+1) = A1+B1+C1

and ur,o(kc + j + 1) = D1 + E1 is tested to be the best.
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Figure 5-10: Trade-off curve for different control laws and different weights of α1. The value
of α1 increases from left to right, starting from 0.5 to 1.0. A lot of control laws show similar
performance with respect to the conventional MPC approach.
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5-5 Comparison of conventional and parameterized MPC

In Table 5-2, Table 5-3, and Figure 5-10 the parameterized MPC approach is also compared
to the conventional MPC approach. From these tables and the figure, it can be observed that
the parameterized MPC can maintain a high performance compared to conventional MPC.
The first 5 variations of the control law for the variable speed limits (Figure 5-10(a) and
5-10(b)) show a low performance loss compared to conventional MPC. For α1 = 1, the perfor-
mance loss lies within 1% and for α1 = 0.6 within 5% compared to conventional MPC. The
computation time required for parameterized MPC to compute the optimal control inputs is
improved from 17.8 min to less than 3.1 min for α1 = 1 and from 10.3 min to less than 3.9 min
for α1 = 0.6.

The performance loss for parameterized MPC when both the control measures are param-
eterized lies within 6% for α1 = 1 and within 2% for α1 = 0.6 for the first two combinations
of the control laws. The required computation time reduces even more compared with con-
ventional MPC to less than 1.3 min.

The following conclusions can be drawn from the parameterized MPC results:

1. The studied control laws do not appear to differ much in the performance among them-
selves, after tuning of the parameters (number of initial multi-start points ni, the choice
of the control policy of the parameters of the control laws, and the bounds of the pa-
rameters θi). Most of the control laws show similar performance for the reduction of
the cost function for different weights of α1. Only four sets of control laws deviate from
the trade-off curve of conventional MPC: A1 +B4, A1 +B5, D1 +E2, and D1 +E3. The
performance loss of the first two (i.e. A1 + B4 and A1 + B5) can be explained by the
fact that the number of parameters in the control law is reduced from three to two with
respect to the other control laws for variable speed limits. The control approach does
not seem to have enough degree of freedom to compute the optimal control inputs with
these control laws. The performance loss of the latter two (i.e. D1 + E2 and D1 + E3,
in combination with A1 +B1 +C1 for variable speed limits) is mainly caused due to the
poor selection of the bounds of theta0. Due to time limitations these control laws have
not been studied extensively.

2. Since seven of the eleven combinations of control laws have shown good results, it is hard
to select the best combination. However, when the assessment of the best control laws
is mainly on the reduction of the performance loss compared to conventional MPC and
less on the reduction of the computation time, only the control measure variable speed
limits should be parameterized, using the control law uvsl,m,i(kc + j+1) = A1 +B2 +C2

while the ramp metering rates are still optimized using conventional MPC. This results
in a performance loss of less than 3% and a computation time of less than 2.1 min
per control time step. When the focus lies less on the performance loss compared to
conventional MPC and more on the reduction of the computation time, both control
measures should be parameterized using the control laws uvsl,m,i(kc+j+1) = A1+B1+C1

and ur,o(kc + j + 1) = D1 +E1. This results in a performance loss of less than 6% and
a computation time of less than 0.7 min per control time step.

3. The performance loss of parameterized MPC is small compared with the conventional
MPC approach (within 6%), whereas the computation time is significantly reduced
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(from 10 - 17 min per control time step to 0.4 - 3.9 min per control time step). This
enables the use of control laws in the parameterized MPC approach for on-line control
of the traffic flow to reduce the travel time, emissions, and fuel consumption.

5-6 Summary

In order to test the MPC approach described in the previous chapters, a case study is con-
ducted. First, a simulation is performed without any control. This results in the formation
of congestion at the beginning of the simulation in the vicinity of the second on-ramp, due
to the merging of vehicles from that on-ramp to the freeway. The congestion then spills back
from the second on-ramp to the origin of the traffic network in a timespan of 40 minutes,
after which a queue starts to form at the origin of the traffic network.

With the conventional MPC approach the congestion was resolved only after 5 minutes
depending on the weights of the criteria TTS, TCO, and TFC. A balanced trade-off between
the criteria is obtained, by adjusting the weights appropriately. For some choice of the weights
it is possible to reduce both the travel time and the total emissions and fuel consumption.
However, the required computation time of the conventional MPC approach is 2 to 4 times
too slow to compute the optimal control inputs.

The results of parameterized MPC show a similar performance (in the range of 1 - 6%
performance loss) of the criteria as conventional MPC for different sets of control laws. More-
over, the required computation time is significantly reduced, from 10 - 17 min per control
time step with conventional MPC to 0.4 - 3.1 min per control time step with parameterized
MPC.

For variable speed limits, the control law can suffice with three parameters to determine
the optimal values. When the control law for variable speed limits has only two parameters,
the approach fails to maintain a similar performance as conventional MPC. For the control
law of ramp metering rates one parameter suffices.

The overall conclusion can be drawn that parameterized MPC is able to yield a similar
performance of the reduction of the criteria defined in the cost function as for conventional
MPC, however in far less time. In this particular scenario, the computation time limitations of
the conventional MPC approach is solved by applying parameterized MPC, so parameterized
MPC is shown to be a good alternative for on-line dynamic traffic control.
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Chapter 6

Conclusions and future work

6-1 Summary of the thesis

The intensity of vehicles on the road is getting higher each year, resulting in an increase in
the occurrence and duration of congestion. The negative impact of congestion is diverse,
ranging from extra time spent in the traffic network to an increase in health problems due to
the increasing emissions and fuel consumption. Dynamic traffic controllers could be used to
reduce the travel time, emissions, and fuel consumption by steering the traffic flows on the
traffic network in a desired direction by dynamically adjusting the traffic control inputs, like
ramp metering rates or variable speed limits. To compute the optimal control inputs, in this
thesis the parameterized Model Predictive Control (MPC) approach is proposed.

Parameterized MPC computes the optimal control inputs based on a prediction of the
future traffic states. In this study, two models have been used to simulate the traffic flow
(METANET model) and the emissions and fuel consumption of vehicles (VT-Macro model)
over a prediction horizon. To determine the optimal control inputs, parameterized MPC re-
lates by some user-defined control laws the control inputs to the traffic states, traffic outputs,
and some parameters. The parameters used in the control laws are then optimized via a
nonlinear local optimization algorithm in such a way that the objective of the controller is
minimized, without violating the constraints active on the system. In this perspective the
parameterized MPC differs from conventional MPC, since in conventional MPC the control
inputs are optimized directly, without the use of control laws. By applying the control laws,
parameterized MPC can reduce the computational complexity of the MPC optimization prob-
lem.

The goal of this thesis is to assess the ability of parameterized MPC to reduce the travel
time, emissions, and fuel consumption for on-line applications. The controller must be able
to compute the optimal control inputs within one control time step, so that it can send these
values of the control inputs to the real system. To verify whether the considered approach
is able to perform this task, a case study is conducted simulating the Dutch A12 freeway
between Bodegraven and Woerden Oost. The parameterized MPC approach is studied for
eleven control laws and the performance is compared to the performance of the conventional
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MPC approach.
In the uncontrolled scenario congestion occurs in the vicinity of the second on-ramp, due

to the high density and the merging behavior of vehicles in the vicinity of the on-ramp. Dur-
ing the simulation, the congestion spills back to the origin of the traffic network and remains
unsolved over the simulation horizon of one hour. However, using the parameterized MPC
approach the congestion is resolved within ten minutes. Compared to the conventional MPC
approach, a similar performance can be realized for most of the sets of control laws (within
6%). In the mean time, the required computation time is reduced significantly, from 10 -
17 min per control time step with conventional MPC to 0.4 - 3.9 min per control time step for
parameterized MPC, so since the control time step is 5 min conventional MPC is not feasible
in real-time, whereas parameterized MPC is.

The conclusions that can be drawn from the results of the case study are:

• For some values of the weights of TTS (total time spent) and CO emissions in the
weighted-sum method the conventional MPC approach is able to reduce both the TTS
and the CO emissions at the same time. However, the maximum required computation
time is 2 - 3 times too high per control time step, which prevents the use of this approach
for on-line applications.

• Seven of the eleven studied variations of control laws of parameterized MPC show
similar performance (within 6%) compared to conventional MPC, after fine-tuning of
the tuning parameters. However, the reduction of the required computation time is
significant, allowing the use of even more complex models. From these seven variations,
the control laws uvsl,m,i(kc + j+ 1) = A1 +B1 +C1 and ur,o(kc + j+ 1) = D1 +E1 have
been tested the best in performance and computation time.

• Parameterized MPC is able to reduce the travel time, emissions, and fuel consumption
for on-line control and is shown to be a good alternative for conventional MPC in this
particular scenario.

6-2 Recommendations

The parameterized MPC approach seems to be able to control on-line the variable speed limits
and ramp metering rates such that a user-defined cost function is minimized. To this end,
a few recommendations are suggested for future research. First of all, the control approach
should be validated for other scenarios. Next, to increase the user-friendliness, the use of the
ε-constraint method should be investigated. Thirdly, a study can be conducted to see whether
or not it is possible to develop a tool that determines the control laws. Finally, other (more
complex) applications can be studied using parameterized MPC. These recommendations are
elaborated next:

1. Validation of the control approach. For the studied scenario, the parameterized MPC
approach has shown promising results. However, before this approach can be used in real
applications, the performance of the controller needs to be validated for other scenarios
as well to guarantee a more general performance assessment of the approach. This can
be achieved by altering the demand profile, the case site, or by including disturbances.
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Note that the models used in the approach (e.g., METANET and VT-Macro) should
be made up-to-date to ensure the accuracy of the control approach.

2. Study of the feasibility issues of the ǫ-constraint method. In the case study parameterized
MPC aims at the reduction of a multi-criteria cost function, namely the reduction of
travel time, emissions, and fuel consumption. The method applied in this project to
handle this multi-criteria objective is the weighted-sum method. However, this method
does not provide direct insight in the relation between the chosen weights of the criteria
and the actual improvement of those criteria. From a user perspective, it is hard to select
beforehand the appropriate weights of the criteria that correspond to the requirements
of the user. To increase the transparency of the handling of a multi-criteria objective
and the actual improvement of the criteria, it is recommended to use the ε-constraint
method. This method minimizes one of the criteria, while the other criteria are bounded
by some threshold ε. In this method, the user can easily determine the threshold ε, as
this resembles the upper bound of the criteria. When the controller is able to find a
solution to this problem, it is guaranteed that the constraints are met. In this project,
the ε-constraint method resulted in feasibility issues. It is therefore recommended that
a study is conducted to find a way to overcome the feasibility issues, so that this method
can be used instead of the weighted-sum method.

3. Study for the development of control laws. The parameterized MPC approach deter-
mines the optimal control inputs by some user-defined control laws. In this thesis, these
control laws are based on knowledge of the traffic flow behavior. However, for applica-
tions of parameterized MPC where such knowledge is not available, it is hard to design
appropriate control laws. Therefore, an alternative approach could be investigated. A
study can be performed to develop control laws based on system identification of the
available data to estimate the relation of the control inputs and the traffic states and
traffic outputs.

4. Parameterized MPC in other (more complex) applications. The traffic network con-
sidered in this case study is still rather simple. Although the computation time for
conventional MPC is already too large for this case study, for parameterized MPC this
is not so. Since the number of control variables nopt to be optimized does not depend on
the number of control inputs in parameterized MPC, the computation time is also less
dependent on the size of the traffic network. It is interesting to research in detail the
relation between the computation time (and performance loss) of parameterized MPC
on the one hand and the size of the traffic network on the other hand.
The parameterized MPC approach can also be applied to other more complex appli-
cations. In general, whenever conventional MPC is too slow to compute the optimal
control inputs, the parameterized MPC framework can be used to reduce the compu-
tational complexity of the optimization problem. Such application could for instance
be the area-wide reduction of emissions in traffic networks with the control measure
route guidance. Thus this also include the dispersion of the emissions to areas near the
freeways in the model. This could be interesting e.g., when the production of emissions
in a certain area exceeds a safety level. Also other, non-traffic related problems can be
addressed with parameterized MPC.
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Appendix A

Model parameters

A-1 Parameters of METANET

Table A-1 presents the values of the model parameters used in the simulation to model the
traffic flow using the METANET model.

Symbol Value Unit Description

Ts 10 s Time discretization of the METANET model
i 1, 2, · · ·Nm - Segment of traffic network
Nm 24 - Last segment of traffic network
λm 3 - Number of lanes
τ 0.0041 h Time constant
ηlow 64.2 km2/h Anticipation constant
ηhigh 26.3 km2/h Anticipation constant
δ -0.89 - Model parameter
κ 32.9 veh/lane/km Model parameter
κv 7 km/h Model parameter
am 2.8 - Parameter of the fundamental diagram
α -0.1 - Non-compliance factor
Qo,1 ∞ veh/h/lane Capacity of the road at the origin of the traffic

network
Qo,2 1750 veh/h/lane Capacity of the road at the first on-ramp
Qo,3 1980 veh/h/lane Capacity of the road at the second on-ramp
vfree 117.7 km/h Free-flow speed
ρcrit 24.2 veh/lane/km Critical density of the freeway network
ρmax 187.6 veh/lane/km Maximum density (or jam density)

Table A-1: Model parameters used in the METANTET model
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A-2 Values of the parameter matrix Py of the VT-Macro model

The regression-based emission and fuel consumption model VT-Macro computes the emissions
and fuel consumption factors based on a nonlinear relationship with the space-mean speed
and acceleration of vehicles, as defined in Equation 2-22. In this equation Py is a constant
matrix for each type of emission or fuel consumption y and is given by:

PCO = 10−2








88.7447 48.8324 32.8837 −4.7675
23.2920 4.1656 −3.2843 0
−0.8503 0.3291 0.5700 −0.0532

0.0163 −0.0082 −0.0118 0








(A-1)

PHC = 10−2








−72.8040 0 25.1563 −0.3284
8.1857 10.9200 −1.9423 −1.2745

−0.2260 −0.3531 0.4356 0.1258
0.0069 0.0072 −0.0080 −0.0021








(A-2)

PNOx
= 10−2








−106.7680 83.4524 9.5433 −3.3549
15.2306 16.6647 10.1565 −3.7076
−0.1830 −0.4591 −0.6836 0.0737

0.0020 0.0038 0.0091 −0.0016








(A-3)

PFC = 10−2








−67.9940 44.3809 17.1641 −4.2024
9.7326 5.1753 0.2942 −0.7068

−0.3014 −0.0742 0.0109 0.0116
0.0053 0.0006 −0.0010 −0.0006








(A-4)

when the inputs of the model are in SI-units and the outputs in kg/s for the emission factors
and in l/s for fuel consumption rates [46], [58].
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Appendix B

Tuning parameters per control law

In the tables below, the final selection of the tuning parameters ni, the bounds of θi, the
control policy, and the optimization algorithm, per control law are given.

ni ±θ0 ±θ1 ±θ2 control policy algorithm

A1 +B1 + C1 20 1 200 200 variable active-set
A2 +B1 + C1 100 5 50 50 constant active-set
A1 +B2 + C2 5 1 20 20 constant SQP
A1 +B3 + C3 50 5 50 50 constant active-set
A1 +B4 + C1 100 5 50 50 constant active-set
A1 +B4 50 5 50 - constant SQP
A1 +B5 150 5 50 - constant active-set

Table B-1: List of tuning parameters per control law for variable speed limits. For all scenarios
the control time step is equal to 5 minutes.

ni ±θ0 ±θ1 ±θ2 ±θ3 control policy

D1 + E1 10 01 200 200 50 constant active-set
D2 + E1 20 01 200 200 100 constant active-set
D1 + E2 50 20 200 200 200 variable active-set
D1 + E3 50 20 200 200 200 variable active-set

Table B-2: List of tuning parameters per control law for ramp metering rates. Bounds of the
control law for variable speed limit A1 +B1 +C1 are also included. For all scenarios the control
time step is equal to 5 minutes.
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Glossary

List of symbols

Greek symbols

α Non-compliance factor

αi Weights of criteria in the cost function

β Turning rate

δ Model parameter

δ1 Model parameter for relation CO2 and fuel consumption

δ2 Model parameter for relation CO2 and fuel consumption

η Anticipation constant

κ Model parameter

κρ Model parameter, same as κ

κv Minimum non-zero speed

Λ Solution boundary

λm Number of lanes of link m

ν Anticipation constant

ψ Model parameter

ρ Traffic density

ρcrit Critical density

ρmax Maximum density

τ Time constant

θ Parameter used in the control laws

ε Threshold of criterion in ε-constraint method

Latin symbols

x̂ Predicted traffic states

ŷ Predicted traffic outputs

aα Acceleration of vehicle α
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am Parameter of the fundamental diagram of link m

do Demand of traffic network at origin o

F (·) Function of (·) used to map the control inputs

g Inequality constraints

h Equality constraints

J Cost function

k Time step counter

kc Control time step counter

l Time step counter for microscopic models

Lm Length of each segment of link m

nci Number of control inputs

Nc Control horizon

ni Number of required multi-starts

nopt Number of parameters to optimize

npar Number of parameters in the control laws

Np Prediction horizon

nro Number of metered on-ramps

nvsl Number of independent variable speed limits

Nm Number of segments of link m

Py Model parameter matrix for type y

Q Capacity of road

q Traffic flow

qcap Operational capacity

qlim Maximum flow

rmin Minimum ramp metering rate

t Time

Tc Control time step for macroscopic models

Tm Time step of microscopic models

Ts Time step of macroscopic models

uro Value of ramp metering rates

uvsl Value of variable speed limit

v Traffic speed

V [ρ] Desired or equilibrium speed

vfree Free flow speed

vlim Speed limit

wo Queue length at origin o

CO Carbon monoxide

FC Fuel consumption

HC Hydrocarbon

NOx Nitrogen oxide

Johan ’t Hart Master of Science Thesis
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TEFC Total emissions and fuel consumption of vehicles in the traffic network

TTS Total time spent in the traffic network

Subscripts

α Vehicle of emissions and fuel consumption model

n Normalization value

off Off-ramp

on On-ramp

µ Link entering node n

σ Link leaving node n

i Segment of link m

m Link of traffic network

n Node of traffic network

o Origin of traffic network

y Type of emissions or fuel consumption

Superscripts

EFC Emissions and fuel consumption

spat Spatial-temporal acceleration

temp Temporal acceleration

Other

I Set of links entering node

M Set of links of traffic network

N Set of nodes of traffic network

O Set of links leaving node
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