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Abstract A phase map can be obtained from the real

and imaginary components of a complex valued mag-

netic resonance (MR) image. Many applications, such

as MR phase velocity mapping and susceptibility map-

ping, make use of the information contained in the MR

phase maps. Unfortunately, noise in the complex MR

signal affects the measurement of parameters related to

phase (e.g, the phase velocity). In this paper, we pro-

pose a nonlocal maximum likelihood (NLML) estima-

tion method for enhancing phase maps. The proposed

method estimates the true underlying phase map from
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a noisy MR phase map and it also works if the mag-

nitude MR image and the noise standard deviation are

not given. Experiments on both simulated and real data

sets indicate that the proposed NLML method has a

better performance in terms of qualitative and quan-

titative evaluations when compared to state-of-the-art

methods.

Keywords Denoising · magnetic resonance image ·
maximum likelihood estimation · noise · phase map

1 Introduction

The magnetic resonance (MR) magnitude and phase

images are produced from the raw k-space data (after

Fourier transform) acquired using the quadrature re-

ceivers of the magnetic resonance imaging (MRI) scan-

ner. The magnitude image provides information on the

structure and function of the soft tissue structures such

as heart, liver, brain and other organs. The phase im-

ages (or phase maps), on the other hand, provide infor-

mation such as field inhomogeneity or velocity of blood

flow and this information is used in many MR appli-

cations such as phase contrast angiography, blood oxy-

genation level dependent (BOLD) MR venography, the

computation of field maps for the geometric correction

of echo planar images, or MR thermometry [21]. Sus-

ceptibility weighted imaging (SWI) also relies on phase

and magnitude MR data to visualize venous structures

and iron content in the brain [22]. Unfortunately, both

magnitude and phase images are corrupted with noise,

which is mainly thermal in origin.

The noise present in the k-space data can substan-

tially deteriorate the quality and brings down the over-

all SNR of the phase map [5]. Denoising is one way to

improve the SNR of MR phase images. Nevertheless,
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Fig. 1 Distribution of phase as a function of phase error for several values of A and σg = 1.

only a few approaches have been proposed in the liter-

ature to denoise MR phase maps.

Lorenzo-Ginori et al. [13] proposed a nonlinear vec-

tor filter to reduce the noise in the phase map. This

nonlinear vector filter, which uses similarity measures

based on angular distances, was adapted to phasor pro-

cessing and used to filter the complex image from which

the phase is obtained. Cruz-Enriquez et al. [6] extended

this work by combining the nonlinear filter with wavelet

techniques. They decomposed the real and imaginary

components of the noisy complex signal using the Dis-

crete Wavelet Transform (DWT) and the nonlinear vec-

tor is applied to each part, and finally, the filtered im-

age is recovered by inverse DWT-2D transformation.

However, the aforementioned methods require both ob-

served magnitude and phase data to denoise the phase

map and will not be useful when only the noisy phase

map is available. The adaptive local denoising method

(also referred to as PEARLS) in [2] is another phase es-

timation method proposed in the literature based on lo-

cal polynomial approximations. This method was orig-

inally introduced for synthetic aperture radar (SAR)

images.

Many methods have been proposed in the literature

to denoise MR magnitude images (e.g.,[1, 15, 24, 10,

23, 9, 17, 19, 20, 14, 12]). Among them, the NLML

methods proposed recently in the literature for denois-

ing MR magnitude images are promising and that mo-

tivated us to extend the NLML method to denoise MR

phase images in this paper. One advantage of the pro-

posed phase NLML (P-NLML) method is its ability to

denoise phase maps even if magnitude images are not

available. (e.g., in certain flow imaging studies like cere-

brospinal fluid and blood flow studies, the information

from phase images alone is used and in such cases mag-

nitude images may not be stored.) The rest of the paper

is organized as follows: the relevant background on the

noise in MR phase maps and the ML estimation theory

are provided in section 2. Section 3 explains the pro-

posed approach for noise removal in MR phase maps.

Experimental results are reported in Section 4 and the

paper is concluded in Section 5.

2 Theory

The acquired MR data are generally corrupted with

noise. The noise in the real and imaginary components

of the complex MR signal are assumed to be indepen-

dent and identically distributed (i.i.d.) zero mean Gaus-

sian with equal variance σ2
g . Let A and φ be the true

amplitude and the true phase in a given pixel, respec-

tively. After the polar transform, the calculated magni-

tude M and the phase ψ are given by [3, 7]:

M =

√
(A cosφ+ nre)

2
+ (A sinφ+ nim)

2
(1)

ψ = arctan

(
A sinφ+ nim
A cosφ+ nre

)
(2)

where nre and nim are the noise components in the real

and imaginary images respectively.

The joint density of M and ψ can be expressed as

[3, 7]:

P (M,ψ|A, σg, φ) =
M

2πσ2
g

e
− 1

2σ2g
[M2+A2−2AM cos(ψ−φ)]

(3)
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The integration of Eq. (3) over M yields the marginal

probability density of the MR phase data and is given

by [7]:

P (ψ|A, σg, φ) =
1

2π
e

−A2

2σ2g

[
1 + κ

√
πeκ

2

(1 + erf(κ))
]

(4)

where

κ =
1√
2

A

σg
cos (ψ − φ) (5)

The phase probability density function (PDF)

P (ψ|A, σg, φ) is plotted as a function of phase error

at different SNRs, defined as the ratio A/σg, in Fig. 1.

The phase error represents the deviation of the noisy

phase ψ from its true value φ. This figure demonstrates

that the phase PDF at low SNR is uniform and rapidly

converges towards a Gaussian distribution as SNR in-

creases.

3 Methods

3.1 The non-local maximum likelihood method for

phase estimation (P-NLML1)

Nonlocal (NL) versions of the ML estimation method

have been proposed in the literature for the enhance-
ment of Rician distributed magnitude MR images [9,

17, 19, 20]. Motivated by those approaches, a new NLML

estimation method for enhancing MR phase maps de-

scribed by Eq. (4) is proposed in this paper. The non-

local principle exploits the redundancy of patches in an

image. Here the assumption is that, if two neighbor-

hoods are similar, then their center pixels should have

similar phase values. They can be considered as two

noisy measurements of the same noise-free pixel.

Let ψ = [ψ1, ψ2, · · · , ψN ] be N statistically inde-

pendent observations from a region of constant phase

φ. Assume that σg be the standard deviation of the

noise and A = [A1, A2, · · · , AN ] be the corresponding

true magnitude intensity values. Then, the ML estima-

tor of φ can be derived from the marginal density given

by Eq. (4).

The ML estimate of φ can be computed by maxi-

mizing the likelihood function L(ψ|A, σg, φ) or equiva-

lently by maximizing the log-likelihood function

logL(ψ|A, σg, φ) with respect to φ , which is given be-

low :

logL(ψ|A, σg, φ) =

N∑
j=1

logP (ψj |Aj , σg, φ)

= −N log 2π −
∑N
j=1A

2
j

2σ2
g

(6)

+

N∑
j=1

log[1 + κj

√
κ2j (1 + erf (κj))].

Furthermore, the ML estimator of the unknown true

phase φ is given by,

φ̂ML = arg max
φ

(logL(ψ|A, σg, φ)) . (7)

The ML estimator described by Eq. (7) requires the

noiseless or denoised magnitude values of A. The mag-

nitude MR data in the presence of noise follows a Rician

distribution and the PDF is given by [25]:

p (M |A, σg) =
M

σ2
g

e
− (M2+A2)

2σ2g I0

(
AM

σ2
g

)
H (M) , (8)

where I0 is the zeroth order modified Bessel function of

the first kind. Here, M denotes the Rician distributed

random variable, A is the noise free MR signal and H (·)
represents the Heaviside step function. The shape of the

Rice PDF also depends on the SNR. At high SNR, i.e.

when A/σg →∞, the Rician distribution approaches a

Gaussian distribution and when the SNR is zero (e.g, in

the background), the data will follow a Rayleigh distri-

bution. In our experiments, we computed the denoised

magnitude values of A with the method described in

[19].
When both magnitude and phase data are available,

we used Eq. (7) to implement the P-NLML1 filter as

explained in Algorithm 1. In the proposed method, we

measured the similarity using the Euclidean distance

dx,y between the phase value vector θ of neighborhoods

Bx and By around the locations (i.e., pixels) x and y

(excluding the phase values at x, y), respectively. It is

defined as [9, 20]:

dx,y = ‖θ(Bx)− θ(By)‖ (9)

For each phase location x in the phase map, the in-

tensity distance dx,y between x and all other nonlocal

locations y, as defined by Eq. (9), in the search window

are measured. After sorting the non local pixels (ob-

served phase values) in the increasing order of dx,y, the

first k pixels are selected for ML estimation. In our im-

plementation we fix k to 25 as recommended in [9].

With P-NLML1, we have to estimate the noise stan-

dard deviation σg and we estimated this parameter

from the magnitude image prior to applying Eq. (7). In
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Algorithm 1 P-NLML1 Filter for single parameter estimation
1: Input: Θ ⇐ Noisy MR phase data

σg ⇐ noise standard deviation
A ⇐ Magnitude data

2: for each pixel θ(x) of Θ do
3: Select a T × T Search Window around the pixel
4: Bx ⇐ Similarity window of size t× t around the pixel
5: By ⇐ Non local neighbourhood windows in the Search Window other than Bx
6: Compute the distance ‖θ(Bx)− θ(By)‖ and create a list d
7: D = sort(d) i.e., rank d in ascending order.
8: Choose the first k elements of D.
9: Compute φ̂ML ← ML estimation of the samples using Eq. (7).

10: end for
11: Output: Φ̂ ⇐ Denoised MR phase data

Algorithm 2 P-NLML2 Filter for three parameter estimation
1: Input: Θ ⇐ Noisy MR phase data
2: for each pixel θ(x) of Θ do
3: Select a T × T Search Window around the pixel
4: Bx ⇐ Similarity window of size t× t around the pixel
5: By ⇐ Non local neighbourhood windows in the Search Window other than Bx
6: Compute the distance ‖θ(Bx)− θ(By)‖ and create a list d
7: D = sort(d) i.e., rank d in ascending order.
8: Choose the first k elements of D.
9: Compute φ̂ML, ÂML, σ̂gML ← ML estimation of the samples using Eq. (10).

10: end for
11: Output: Φ̂ ⇐ Denoised MR phase data

σg ⇐ Matrix of standard deviations
A ⇐ Estimate of magnitude data

the past, many robust methods have been proposed in

the literature for the estimation of the noise level from

a single magnitude MR image and a survey of these

methods is given by Aja-Fernández et al.[1]. In this pa-

per, we followed the ML based method proposed in [16]

for the estimation of σg to work with the P-NLML1

filter.

3.2 P-NLML method for three parameter estimation

(P-NLML2)

Even though the ML scheme for single parameter esti-

mation (φ̂ML) in Eq. (7) is useful to estimate the true

underlying phase value, this approach fails in situations

when both A and σg are not provided. In that case we

estimated all the three unknown parameters by maxi-

mizing the likelihood function L or equivalently logL,

with respect to A, σg and φ as given below:{
φ̂ML, ÂML, σ̂gML

}
= arg max

φ,A,σg
(logL(ψ|A, σg, φ)) .

(10)

We referred the P-NLML filter for three parame-

ter estimation, which uses Eq. (10) in the presence of

phase data alone, as P-NLML2 filter. In Eq. (10), we

conveniently assumed that the values of A, σg and φ

are constant for all the k selected nonlocal pixels. The

validity of this assumption may be questioned, since

pixels that have similar phase values do not necessarily

have the same magnitude values. Nevertheless, the ex-

perimental results show that the results of P-NLML2

are comparable with P-NLML1.

The aforementioned ML scheme for three parame-

ter estimation can be considered as a multidimensional

unconstrained nonlinear maximization problem and the

ML estimates of the parameters can be found numeri-

cally using nonlinear optimization algorithms.

4 Experiments and Results

4.1 Visual quality comparison with simulated

phasemap

For simulations, we used the data set given in [11] (data

sets are from the 2010 ISMRM Recon Challenge). The

Ground Truth (GT) (complex data) is corrupted with

Gaussian noise to create the noisy phase maps. For

a comparative analysis, we also did experiments with

two different versions of the nonlocal means (NLM)

[4] method (denoted as NLM1 and NLM2 respectively)

and the local ML filter. The NLM1 filter is the conven-

tional NLM filter directly applied to the phase maps.
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Table 1 Technical details of different denoising methods

Method Input Output Filter Parameters

NLM1 ψ and σg only φ̂ search window size = 11× 11, similarity
window size = 3× 3NLM2 A and ψ; or, com-

plex data
φ̂

P-LML φ̂ window size= 3× 3

P-NLML2 ψ only φ̂,Â,σ̂g search window size = 11× 11, similarity
window size = 3 × 3 and sample size k
= 25

P-NLML1
A and ψ; or, com-
plex data

φ̂

Table 2 Comparison of experimental results based on PSNR

Method PSNR
σ = 5 σ = 10 σ = 15 σ = 20 σ = 25 σ = 30 σ = 35 σ = 40

Noisy 5.7049 3.8857 3.0921 2.6916 2.4411 2.2317 2.0633 1.9341
NLM1 11.0101 8.4138 7.1003 6.3709 5.9316 5.5494 5.2677 5.0437
NLM2 9.9339 8.4790 7.3319 6.6582 5.9997 5.5850 4.9709 4.8572
P-LML 10.0642 7.1830 5.6215 4.8211 4.3160 4.0989 3.8531 3.6406
P-NLML2 11.6206 8.8789 7.1714 6.6230 6.0254 5.6733 5.3308 5.3163
P-NLML1 12.7820 10.0891 8.3250 7.4086 6.7117 6.0395 5.5005 5.3056

The NLM2 filter works on the complex data to achieve

an enhanced phase map.

The denoising methods were carried out with the

following parameters: (i) NLM1 and NLM2 filters: search

window size = 11× 11 similarity window size = 3× 3.

The noise variance σ2
g used in both methods was esti-

mated using the local ML method mentioned in [16].

(ii) local ML method for single parameter estimation

(P-LML): window size= 3× 3 (iv) proposed P-NLML1

and P-NLML2 filters : search window size = 11 × 11,

neighborhood size = 3 × 3 and sample size k = 25.

The input and output variables as well as the filter pa-

rameters of all methods considered are summarized in
Table 1.

For the experimental results shown in Fig. 2, we cor-

rupted the Ground Truth (complex image) with Gaus-

sian noise of σg = 15. It can be observed from the re-

sults that the noisy phase map denoised with the pro-

posed P-NLML1 filter is much closer to the original

phase map than the phase map produced by the NLM1

Filter, the NLM2 filter and the P-LML method. Even

though the performance of the P-NLML2 filter is in-

ferior to the P-NLML1 filter due to the simultaneous

estimation of three parameters which reduces the pre-

cision of ML estimation, it does improve the quality of

the phase map. Qualitatively, the proposed P-NLML fil-

ters provide fewer oscillations over homogeneous areas

and better noise removal than the other methods under

consideration. For quantitative analysis, the GT was

degraded with Gaussian noise for a wide range of noise

levels (σg varying from 5 to 40) and the correspond-

ing phase maps are created. The denoising efficiency

of NLM1, NLM2, P-LML, P-NLML1 and P-NLML2

were evaluated based on the Peak Signal to Noise Ra-

tio (PSNR) [8]. The PSNR is the simplest and most

widely used quality measure for 2D signals evaluated

in decibels (dB) which is given by:

PSNR = 20log10
MAX

RMSE
, (11)

where MAX is the maximum intensity value in the

original phase map and RMSE denotes the root mean

square error estimated between the ground truth and

the denoised phase map. In Table 2, we can observe that

the P-NLML methods outperform over other filters in

terms of the objective measure PSNR.

4.2 Visual quality comparison with real phasemap

In order to validate the performance of the proposed

method on real data, we conducted experiments on kiwi

fruit phase maps of size 256 × 256 acquired with a 9T

MR scanner using a slice thickness of 0.4 mm. Our

proposed methods provide better results in terms of

noise removal than other aforementioned filters when

the same noisy MR phase maps are provided as input

(see Fig. 3). For P-NLML1, the noise standard devia-

tion was estimated from the corresponding magnitude

image and the unknown true underlying intensity A

was estimated using the conventional NLML method.

In this experiment the sample size k was fixed as 25 for

both P-NLML1 and P-NLML2.

We also carried out an experiment on a single 2D

phase image reconstructed from a fully sampled sin-

gle coil MR image. This MR angiography image was
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(a) magnitude
(GT)

(b) phasemap
(GT)

(c) magnitude
(noisy)

(d) phasemap
(noisy)

(e) NLM1 (f) NLM2 (g) P-LML (h) P-NLML1 (i) P-NLML2

(j) NLM1 (k) NLM2 (l) P-LML (m) P-NLML1 (n) P-NLML2

Fig. 2 Denoising of simulated phase map with various methods (a) Original simulated magnitude image (b) Original simulated
phase map (c) Noisy magnitude image (σg = 15) (d) Noisy phase map (σg = 15) (e) Denoised phase map using the NLM1
filter (f) Denoised phase map using the NLM2 filter (g) Denoised phase map using P-LML filter for single parameter estimation
(h) Denoised phase map using the P-NLML1 filter (i) Denoised phase map using the P-NLML2 filter and (j)-(n) the residuals
of images in (e)- (i) respectively. (residuals in the range 0− 2π).

(a) magnitude (b) phasemap

(c) NLM1 (d) NLM2 (e) P-NLML1 (f) P-NLML2

Fig. 3 Denoising of real kiwi fruit MR phase map with various methods (a) Noisy kiwi fruit magnitude image (b) Noisy kiwi
fruit phase map (c) Denoised phase map using the NLM1 filter (d) Denoised phase map using the NLM2 filter (e) Denoised
phase map using the P-NLML1 filter (f) Denoised phase map using the P-NLML2 filter.
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(a) magnitude (b) phasemap

(c) NLM1 (d) NLM2 (e) P-NLML1 (f) P-NLML2
(#samples=25)

(g) P-NLML2
(#samples=55)

Fig. 4 Denoising of real brain MR phase map with various methods (a) Noisy magnitude image (b) phase map (c) Denoised
phase map using the NLM1 filter (d) Denoised phase map using the NLM2 filter (e) Denoised phase map using the P-NLML1
filter with 25 samples for ML estimation (f) Denoised phase map using the P-NLML2 filter with 25 samples for ML estimation
(g) Denoised phase map using the P-NLML2 filter with 55 samples for ML estimation.

acquired with the following parameters: matrix size of

256× 256, number of slices 120, both fat and flow sat-

uration “on”. In Fig. 4 (e) and Fig. 4 (f), we compared

the denoising results of P-NLML1 and P-NLML2 filters

by fixing the number of samples for ML estimation to

25. Fig. 4 (g) shows the result of P-NLML2 with sample

size 55. When we compare Fig. 4 (f) and Fig. 4 (g), it

can be noticed that in homogeneous regions Fig. 4 (g)

is superior to Fig. 4 (f). However over smoothing can

be observed along the edges in Fig. 4 (g). The results

of other filters such as NLM1 and NLM2 are also dis-

played. It can be observed from Fig. 4 that the results

obtained with P-NLML2 are comparable with those ob-

tained with the methods that require magnitude data

for denoising the phase map. The performance of the

proposed NLML methods can be significantly improved

by adaptively selecting the number of samples k (for

each and every pixel) for the ML estimation. A too low

or high value of k can cause under or over smoothing

[18].

5 Conclusion

In this paper, we present NLML filters to reduce noise

in MR phase data. These nonlocal maximum likelihood

filters achieved significant enhancement in the phase

map both visually as well as quantitatively (in terms of

PSNR). The performance of these filters has been ana-

lyzed

through experiments conducted on both simulated and

real phase maps. The performance of the proposed

method can further improve through adaptive selection

of sample sizes for ML estimation. Further research is

required in this direction.
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