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Abstract: Future electrical power systems will be dominated by power electronic converters, which
are deployed for the integration of renewable power plants, responsive demand, and different types
of storage systems. The stability of such systems will strongly depend on the control strategies
attached to the converters. In this context, laboratory-scale setups are becoming the key tools for
prototyping and evaluating the performance and robustness of different converter technologies and
control strategies. The performance evaluation of control strategies for dynamic frequency support
using fast active power regulation (FAPR) requires the urgent development of a suitable power
hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are
selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous
power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies
is proposed. The setup combines the advanced modeling and simulation functions of a real-time
digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR
control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid
emulator to recreate the dynamic response as seen from the interface bus of the grid side converter
of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source
converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage
bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system,
which has been modified to consider an operating condition with 52% of the total supply provided by
wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with
the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-
based EMT representation performed in real time. Particularly, the time-varying response of the
active power injection by each FAPR control strategy and the impact on the instantaneous frequency
excursions occurring in the frequency containment periods are analyzed. The performed tests show
the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum
frequency excursion (e.g., nadir).

Keywords: fast active power-frequency control; PHIL; decoupled renewable power generation;
frequency stability assessment

1. Motivation behind the Proposed PHIL Setup

Due to the societal ambition regarding an accelerated energy transition in several
electrical power systems worldwide, a progressive technological upgrade (i.e., massive
deployment of different types of power electronic converters) is taking place, occurring
more prominently in the generation mix. To date, several studies have envisioned or are
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currently investigating futuristic topologies and operating conditions with shares from
decoupled renewable power generation (e.g., type-IV wind turbines) equal to or higher
than 50% [1–3]. One expected issue of high concern that is an intensive research focus of
this upgrading is the degradation of the time-varying frequency excursions occurring in
the frequency containment period, especially when large active power imbalances occur [4].
Specifically, undesirable values of RoCoF and the nadir occur within a few ms from the
time of occurrence of an active power imbalance without the incorporation and action of
FAPR on sources that can eventually provide dynamic frequency support [4–7].

An FAPR control strategy is theoretically expected to adjust the active power output
in less time than the typical timeframe of reaction by governor systems attached to conven-
tional power plants. This feature has been acknowledged in several recent publications as
a preferred means for quickly bound dynamic frequency deviations. This is motivating a
very broad and ongoing open discussion in the power engineering scientific community to-
wards the definition of proper schemes and performance requirements for testing different
types of FAPR strategies [8,9]. Interested readers are referred to [10] for comprehensive
review of the feasible boundaries for FAPR, taking into account the dilemma concerning
the energy needed to perform FAPR vs. the time for recovery after the action of FAPR. The
FAPR control strategies selected for study in this paper can use one of the following three
options: (i) droop-based (proportional) strategies depending on measured instantaneous
frequency deviations [11–14]; (ii) frequency derivative-based strategies [15–17]; and (iii)
virtual synchronous power (VSP) strategies. Each strategy can be customized to perform
based on measured instantaneous frequency deviations or measured instantaneous varia-
tions of active power imbalances [18–22]. The VSP controller is much versatile compared to
the droop and derivative controllers. The objective of the VSP controller remains the same
as that of the droop and derivative controller, which is to improve the nadir frequency and
RoCoF. However, this controller provides a single solution, simultaneously influencing
both the nadir and RoCoF. In this approach, the input signal of the FAPI controller is the
power deviation instead of frequency in other methods. The active power loop control on
VSP has a second-order characteristic, which has the simultaneous influence of damping
and inertia emulation of the system [23,24].

Current efforts are directed towards the use of advanced simulation and co-simulation
techniques for the offline study and design of the above-indicated FAPR strategies for
power electronic energy-based generation. A common drawback of simulation-based
studies is that they may not completely capture the intrinsic dynamic features of real (e.g.,
vendor-specific) converters. Hence, the focus of this paper is on the implementation and
use of a power hardware-in-the-loop (PHIL) setup for the evaluation of FAPR control
strategies for fast and effective dynamic frequency support in future low-inertia sustainable
electrical power systems. The proposed PHIL setup combines a real-time simulation
platform (RTDS) with a mockup converter. This enables the proposed PHIL setup to select
and focus on the most relevant aspects for efficient and confident testing of different FAPR
control strategies. The urgent need for this versatility has been pointed out in several
publications, and is related to the need to extensively use PHIL in the research of power
electronic converter-dominated electrical power systems [25–27]. The detailed modeling
and simulation of the studied system is done based on the advanced functionalities of
RTDS. Any power electronic-interfaced device (e.g., a type-IV wind turbine (WT)) can be
partly modeled within RTDS, whereas the power electronic converter to be investigated
(e.g., the grid side converter) is a physical device that interfaces to the RTDS through a
special communication scheme based on the Aurora protocol. Unlike existing PHIL setups
for the study of other control functions (e.g., voltage regulation), the proposed scheme
enables a versatile and stable PHIL setup, and also allows for an easy implementation of
any user-defined FAPR in a so-called a real-time target processor [28–32]. This allows for
the evaluation of the feasibility and effectiveness of FAPR when acting on a real/mockup
converter. In addition to the useful information that the proposed PHIL setup provides
regarding the performance of FAPR strategies, it also decreases the period of simulation
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development (i.e., low latency, in the order of a few ms), prevents simulation inaccuracy,
and decreases the risk of practical implementation (e.g., there is no need for interfacing
through analogue/digital cards). These are among the major research challenges in the
development of PHIL, as acknowledged in [27–29,33–35].

The subsequent parts of the story shown in this paper are structured as follows. The
proposed PHIL test setup for the testing of FAPR strategies is presented and discussed in
Section 2. A concise overview of the selected FAPR strategies under study are presented in
Section 3. Section 4 provides information about the implementation and testing of FAPR
controllers. A summary of the findings and an outline for subsequent research are given in
Section 5.

2. The Developed PHIL Test Setup for the Testing of FAPR Control Strategies
2.1. Conceptual Overview of the Proposed PHIL Setup

The proposed PHIL setup is illustratively represented in Figure 1. The setup involves
the following components:
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NovaCor chassis of the RTDS [20]: This is a high-performance multicore processor
used for the modeling and real-time simulations of power electronic converted dominated
power systems. Additionally, the Aurora protocol is applied to provide a communication
interface between the chassis and the RTT, which are linked through a dedicated optical
fiber.

Real-time target (RTT): This element constitutes a PC-based (multi-core) module
working with a real-time operating system (e.g., Linux/Xenomai). It is used to enable the
exchange of signals between the NovaCor chassis and the actual hardware used (i.e., for
grid emulation and DUT). The studied FAPR control strategies are programmed in the RTT.

Grid Emulator: This component has a back-to-back layout, comprising a so-called
front-end converter unit (to regulate the DC voltage) and a VSC unit that is used to
create dynamic signals (i.e., time-varying waveforms of smaller amplitude) that resemble
the simulated instantaneous waveforms (e.g., voltage, currents) obtained by using the
NovaCor chassis.

DUT: This is a small-sized (15 kW) VSC which can represent the grid side converter
of a decoupled (type-IV) WT. The FAPR is programmed in the RTT and acts on the DUT
in real time. The inner and outer controllers of this DUT can be modified and tuned to
resemble the generic models used in the NovaCor chassis. Therefore, this component is
used in this paper to quantitatively corroborate the findings from pure software-based
(RSCAD) simulation studies.



Energies 2021, 14, 3274 4 of 15

2.2. Working Principle of the PHIL Setup

Figure 2 depicts a descriptive figure of various terms and components involved
in the proposed PHIL setup. The stepwise illustration of PHIL-based control strategy
implementation and testing is performed as follows:

1. The real-time EMT representation of the studied system is performed in RSCAD [22]
and runs in NovaCor, which can be interfaced with external physical devices (e.g., DUT).

2. The control strategies to subordinate the grid emulator and the DUT are implemented
using the RTT. The implementation is done through a combined environment of
Triphase (Triphase Technologies, Bangalore, India) and Matlab/Simulink (MathWorks,
Natick, MA, USA). The RTT and NovaCor exchange signals (e.g., waveforms of
voltages and currents) through an optical fiber.

3. The RTDS sends setpoints to RTT. These setpoints govern the instantaneous voltage
of the grid emulator as well as the setpoints for the output current of the DUT.

4. The Aurora protocol is applied for the bidirectional transfer of information between
RTDS and the RTT. The RTT has a circular inter-process communication (CIPC)
buffer. The CIPC constitutes a distributed strategy for the sharing of memory through
ring buffers. This facilitates the exchange of information of simulations from Mat-
lab/Simulink control and signal processing models that are compiled in the RTT. Each
buffer has a writer block that writes data into the buffer, from which multiple readers
can read out the data. The Simulink model has blocks to perform write/read bus
definitions. The bus definitions contain the names and sizes of the signals extracted
from the read block. It should be ensured that the same bus name previously defined
as the input/output bus name is used in the write/read blocks. In this way, 256
signals can be exchanged between the RTT and the RTDS.

5. The simulated instantaneous voltage from the system model running in RSCAD-
RTDS is given to the RTT to reproduce the desired voltage waveform (with the same
frequency but with smaller amplitude) at the AC side (i.e., the point of interconnection
of the DUT) of the VSC of the grid emulator.

6. Since the RTDS and the RTT run simultaneously in real time, there exists the freedom
to choose RSCAD or Simulink to implement each of the selected FAPR strategies. The
current reference signals are affected by the implemented FAPR strategies. The VSC
(DUT), which is connected to grid emulator with virtual PCC conditions injects active
power based on the modulated active current reference (Id_ref).
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3. Description of FAPR Control Strategies under Study

The selected FAPR control strategies are briefly presented in this section. Among the
selected strategies are the:

• Droop-based FAPR strategy
• Droop-derivative-based FAPR strategy
• VSP-based FAPR strategy

3.1. Droop-Based FAPR Strategy

Figure 3 shows the droop-based FAPR’s scheme. The input f constitutes the measured
signal of time-varying frequency at a point of interface between the power plant and the
system. Figure 1 illustrates that this signal can be obtained through a phasor measurement
unit (PMU). The PMU is used to measure the frequency; it is taken from the RSCAD library.
The PMU block is composed of a low-pass filter, sampling circuit, time-synchronized
signal, and processing unit. Before processing the input signal for the estimation of its
phasor value, it is filtered and sampled to overcome the problem of aliasing. It uses
the FFT algorithm for its phasor estimation. The estimated phasor value consists of the
magnitude, phase, frequency, and rate of change of frequency of its input signal. The
instantaneous value of f is continuously contrasted with a fixed setpoint (e.g., with 50 Hz
taken as the reference frequency fref). Next, the resulting error (∆f) is fed to a control
loop that comprises a dead band and a gain (Kp). Both elements are tuned based on
system-dependent dynamic properties.
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Figure 3. The droop-based FAPR controller block diagram.

The signal ∆f is amplified by Kp. The output signal ∆Pref of FAPR is a supplementary
signal attached to the other active power control loop of a grid side converter. ∆Pre performs
exclusively when an active power imbalance occurs in the system. The drawback of the
droop-based FAPR strategy resides in the slow initial response, which could be attributed
to low frequency error values.

3.2. The Droop-Derivative Based FAPR Strategy

Figure 4 overviews the FAPR based on a droop-derivative hybrid control approach.
The setpoint fref and the signals f and ∆f are obtained as indicated in Section 3.1. ∆f is
passed through 2 parallel control loops: The first is a droop controller, which is described in
the previous section. The actuation of the droop controller is active for the entire frequency
curtailment period. The second loop is a derivative control, whose output is a derivative
gain of the frequency error signal. The derivative controller is active only for the initial
few seconds and lasts until the frequency signal reaches the maximum allowed frequency
deviation. The combined effect of the outputs of the droop-based loop and derivative-based
loop produces ∆Pref, which modulates the active power response of the WT to improve
both the RoCoF and maximum frequency deviation (e.g., the nadir).

The droop derivative FAPR strategy should be tuned (taking into account system-
dependent dynamic properties) to cause a prominent ramping of the active power output
at the AC side of a grid side converter whenever an over/under-frequency event occurs.
The parameters of the droop control loop are described in Section 3.1. The parameters of
the derivative control loop are shown in Figure 2, and involve the sequential reaction of a
LPF (low-pass filter), a washout filter, and another gain factor (Kd).
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3.3. The Virtual Synchronous Power (VSP)-Based FAPR Control Strategy

Figure 5 depicts the VSP controller, which measures the power required at the PCC to
the reference power available at the bus. In this control scheme ζ is a damping coefficient,
andωn constitutes the natural frequency for implementing this second-order function.
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As shown in Figure 6, the power going out from the node bus (P_bus) reacts to the
grid when there is a load disturbance, whereas P_wt will not be instantaneously altered.
This difference will be taken as error, ∆P, in the VSP control block (cf., Figure 5), which
is further passed through a dead-band block, and later through a second-order transfer
function. The output of this block defines the duty cycle of a PWM controller. Hence, the
limits of this block are between 0 and 0.9.

Energies 2021, 14, x FOR PEER REVIEW 7 of 16 
 

 

P_bus ∆P Deadband
2

2 22
n

n ns
ω
ζω ω+ + Kv

PWM_DC-DC converter

P_wt
 

Figure 5. Block diagram of a VSP-based FAPR control strategy. 

As shown in Figure 6, the power going out from the node bus (ܲ_bus) reacts to the grid 
when there is a load disturbance, whereas ܲ_wt will not be instantaneously altered. This 
difference will be taken as error, ΔP, in the VSP control block (cf., Figure 5), which is 
further passed through a dead-band block, and later through a second-order transfer 
function. The output of this block defines the duty cycle of a PWM controller. Hence, the 
limits of this block are between 0 and 0.9. 

 

 
Figure 6. Connection of a decoupled WT to the system, indicating the inputs for VSP-based FAPR. 

Figure 7 describes the connection diagram of a battery power management system 
(BPMS), which has a battery energy storage system (BESS), and a DC-DC converter that 
operates bi-directionally. The BESS is integrated to the DC link of VSC converter through 
the DC-DC converter. The main function of the BPMS is to appropriately discharge the 
battery as per the pulse generated from the VSP control block. The state of the battery 
charge is not relevant to this study, and will be addressed in a future publication. The 
storage is used to inject active power to emulate the inertia. It has been assumed that 
during the activation of FAPR control, the battery is fully charged. The function of 
machine side converter is to convert the variable AC power generated by the wind turbine 
into the DC power. It also tracks the maximum power point of wind-generated power. 

 
Figure 7. Circuit diagram of a VSP-based BPMS. 
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Figure 7 describes the connection diagram of a battery power management system
(BPMS), which has a battery energy storage system (BESS), and a DC-DC converter that
operates bi-directionally. The BESS is integrated to the DC link of VSC converter through
the DC-DC converter. The main function of the BPMS is to appropriately discharge the
battery as per the pulse generated from the VSP control block. The state of the battery
charge is not relevant to this study, and will be addressed in a future publication. The
storage is used to inject active power to emulate the inertia. It has been assumed that
during the activation of FAPR control, the battery is fully charged. The function of machine
side converter is to convert the variable AC power generated by the wind turbine into the
DC power. It also tracks the maximum power point of wind-generated power.
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4. Experimental Testing of FAPR Control Strategies through PHIL

The widely used IEEE 9-bus system is modified by reducing the share of synchronous
generation and increasing the wind power share. A total of 52% generation is contributed
by renewable energy sources (RES), as depicted in Figure 8. Further, full-scale Type-4
WT models with functional switching converters are used. The type-IV wind generators
interfaced with the back-to- back voltage source converters (VSCs) are the most commonly
employed configuration of the wind power plant. The type-IV model is taken as a represen-
tative form of generation technology due to the advantages that this technology introduces,
e.g., better low voltage ride-through (LVRT) capabilities, full-speed ratio control, absence of
gear box, etc. Additionally, as to be presented, control modifications are performed in the
grid-side voltage source converter (VSC). The developed test setup is generic for the testing
of other converter control strategies reported in the literature. It is also applicable to other
types of power electronic-interfaced wind turbines. This aids in understanding the impact
of additional active power extraction in the frequency containment stage. Please note that
the emulation of the mechanical part and most of the electrical parts of the WT model is
developed in RSCAD, whereas the DUT converter emulates the electrical characteristics
of the gird side converter of the full-scale type-IV WT. Table 1 presents the steady-state
profile before the occurrence of an active power imbalance in the developed and simulated
variant of the IEEE 9 bus system with 52% wind share. The total level of inertia is reduced
because of the decommissioning of conventional plants with synchronous generators.

To test the FAPR control strategies, a generation–load imbalance had to be created.
More specifically, an under-frequency event was created. To this aim, a sudden load was
created at bus 8. After testing the impact of load frequency variations at various busses,
it was found that the load generation imbalance at bus 8 had a greater impact on buses 2
and 3, where the type-IV wind power plant was connected. A 5% increase in load can be
considered to present a large load generation imbalance for the study of frequency stability
in the selected test system. Besides, it is assumed that the FAPR strategy performs within
10 s [7].

The parameters of the FAPR controllers were tuned by performing the sensitivity
analysis illustrated in Figure 9. The value of these parameters depends on the level of
renewable power penetration, the amount of active power to be injected, and the dynamic
(time) evolution of RoCoF and the nadir of the measured frequency response(s). The follow-
ing parameters were obtained: the dead-band of frequency was 2% for all FAPR strategies;
Kp = 1.5 for droop-based FAPR (cf. Figure 3); Kp = 1.9, Kd = 0.4, G = 8 × 105, Fcut-off = 0.5 Hz
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(lead-lag filter), and Tw = 1 × 10−5 s (washout filter) for the droop-derivative-based FAPR
(cf. Figure 4); and Kv = 1.25, ζ = 0.35, andωn = 70.71Hz for VSP-based FAPR (cf. Figure 5).
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Table 1. Steady-state profile before the occurrence of an active power imbalance.

Component G1 G2 WG1 WG2 L5 L6 L8

MW 73.4 78.2 82.6 84 125 90 100

MVAr 33.8 −1.8 0 0 50 30 35

Figure 10 shows the response the system’s generators and the resulting frequency
dynamics. Note in Figure 10 that the injection of active power by the wind generators
remains constant because of the absence of the FAPR strategy. In order to test the FAPR
control strategies, the following steps were performed using the proposed PHIL setup
(cf. Figure 11):

1. The RTDS Nova Core was used to compile and run the system under study (cf. Figure 8).
2. The time-varying samples of voltage and frequency (e.g., measured at bus 7 in Figure 8)

were transferred from RTDS to the RTT by using the Aurora protocol. These voltage
and frequency values were taken as a reference to create the voltage waveform of the
grid emulator, which is connected to the AC side of the DUT.

3. The active power and reactive power at the AC side of the DUT were controlled by
Id_ref and Iq_ref.

Figure 12a—shows the active power injections influenced by the FAPR strategies (i.e.,
droop, droop-derivative, or VSP). The active output power of the mockup VSC (i.e., DUT)
highly resembles the pure EMT simulation-based study (through RTDS simulations). The
obtained PHIL results validate the simulation results and the RTDS EMT model.
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The time-varying injections of active power by the selected FAPR control strategies
and their implications for dynamic frequency performance are plotted in Figures 13 and 14,
respectively. The degree of improvement in frequency dynamics depends on the speed of
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adjustment and the amount of power injected into the grid. The droop derivative-based
FAPR’s power injection rise time was less than that of the only droop-based control strategy.
Hence, the former was more effective in improving both the nadir and frequency slope
before the nadir than the latter. Unlike the droop and droop derivative-based FAPR control
strategies, the VSP-based FAPR-based control strategy was independent of frequency
measurement. Hence, the response of VSP-based FAPR was faster and exhibited lower rise
time of the WT’s time-varying active power injection (cf., Figure 13). Therefore, the impact
of the VSP-based FAPR on frequency dynamics improvement was noticeably better than
the impact of droop-based FAPR and derivative-based FAPR, as shown in Figure 14.
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Figure 14. Dynamics of frequency due to FAPR controllers.

Figures 15 and 16 illustrate the response of WG1 equipped with droop-derivative-
based FAPR, taking into account the condition of wind energy extraction above the nominal
power during an under-frequency event. Figure 15 corresponds to the variation of the
electrical power output due the activation and deactivation of the droop derivative-based
FAPR. The small figure inside Figure 15 illustrates the variation of the output signal of the
droop derivative-based FAPR. Figure 16 corresponds to the variation of mechanical power
over time (considered as an indication of the variation of the stored mechanical energy).
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It is worth pointing out that the duration of droop derivative-based FAPR was as-
sumed to be 10 s. From Figures 15 and 16 it can be seen that droop-derivative-based FAPR
caused a temporary increase (lasting around 2 s) in the output power of WG1 of up to
30% above its nominal output power (needed for effective frequency support). Next, the
threshold for active power adjustment by droop derivative-based FAPR was reduced (cf.,
small figure inside Figure 15) such that the frequency support can last for 8–10 s, during
which synchronous generation should be able to perform primary frequency control. Note
also that the mechanical power (and also the kinetic energy) decreased at a constant rate
after the activation of droop-derivative-based FAPR, causing a continuous reduction in the
output power of WG1. Once the droop derivative-based FAPR was deactivated (around
t = 16 s) the mechanical power started to recover, in line with the load-generation curve
of WG1.
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5. Conclusions

This paper presents a study based on EMT real-time simulations and a proposed PHIL
test setup for the testing of mitigation measures for frequency stability. The emphasis was
on FAPR control strategies attached to the VSC unit that interfaced a type-IV WT with
a power system. The use of local storage (i.e., taking electrical batteries as an example)
was one assumption motivated by several studies from the current state of the art. Other
alternatives (e.g., those more convenient from a techno-economic point of view) are cur-
rently being explored and will be reported in a subsequent article. For the studied system
(with a variant of the IEEE 9 bus system with 52% supply from wind power plants), by
performing EMT simulations and PHIL testing of FAPR with RSCAD, it was observed that
fast active power injection (lower rise time) and the amount of available energy were the
two key factors influencing the effectiveness of a FAPR controllers. The rise time of the
droop derivative-based FAPR’s power injection was less than that observed in the case of
the droop-based FAPR control strategy. Hence, the former was more effective in improving
both the nadir and frequency slope before nadir than the latter. Unlike the droop and the
droop derivative-based FAPR controller, the VSP-based controller was independent of the
frequency measurement. Besides, its response was faster and exhibited a lower rise time of
active power injection. As a result, its impact on frequency dynamics improvement was
better than that of the droop controller and the droop derivative control strategies. The
main merits of the VSP-based FAPR control strategy are its simple practical implementation
and frequency measurement-independent characteristics. Hence, it can be considered as
the most suitable candidate for fast active power frequency control. Future research will
be devoted to the extension of the setup to consider other possible sources for fast active
power frequency control (e.g., electrolyzers, solar photovoltaic systems). Furthermore,
the development and testing of other controllers that can be attached to power electronic-
interfaced devices to support other primary control functions (e.g., oscillation damping)
will be carried out.
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