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Abstract
Over the past decade, consumer shopping habits have increasingly shifted towards online grocery
purchases, creating a growing demand for efficient and scalable warehouse operations. As order vol-
umes and complexity rise, the optimization of warehouse processes has become essential to meet
requirements while controlling operational costs. This study addresses the Joint Order Batching Picker
Routing Problem (JOBPRP) by developing an exact optimization approach and examining the inter-
dependencies among key warehouse processes, such as batching, routing, and product allocation.
Using a case study of Crisp B.V., an online grocery retailer, the proposed algorithm was implemented
to optimize configurations across multiple temperature-controlled zones with varying operational char-
acteristics, such as differing pick densities and operational constraints. The research shows that all
warehouse processes are interconnected and the best performing configuration is depending on the
operational characteristics of the warehouse. The optimization approach achieved a 39.14% reduction
in weekly travel distance compared to Crisp’s current benchmark, highlighting its potential to signif-
icantly enhance travel distances. These findings highlight the significant impact of integrating order
batching and picker routing on warehouse efficiency. The study not only demonstrates the critical
correlation between warehouse processes but also provides actionable insights for optimizing order
picking in high-density, large-scale warehouses.
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Abbreviations

Abbreviation Definition

ACO Ant Colony Optimization
ALNS Adaptive Large Neighborhood Search
BPP Bin-Packing Problem
COI Cube-per-Order Index
C&TBSA Correlated and Traffic Balanced Storage
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DCP Demand Correlation Pattern
DEPSO Discrete Evolutionary Particle Swarm
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tered Storage
TS Tabu Search
TSP Travelling Salesman Problem
VRP Vehicle Routing Problem
WMS Warehouse Management System

Table 1: List of Abbreviations

iii



List of Figures

1.1 Structure of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Simple supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Warehouse process flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Orders in September 2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Order structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Process flow Crisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Floor map Warehouse Amsterdam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Specification of the ambient zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Specification of the chilled zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 Specification of the frozen zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.10 Black box model of the order picking process . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Classification of order picker systems [17] . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Conventional layouts with a single P/D point (adapted from: [26]) . . . . . . . . . . . . . 16
3.3 non conventional layouts (adapted from: [6]) . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 class-based storage assignment configurations; Black boxes are class A, Dark grey

boxes are class B, Light boxes are class C (taken from: [14]) . . . . . . . . . . . . . . . 19
3.5 Diagram of storage location policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 S-shape heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Heuristics for a multi-block layout (taken from: [43]) . . . . . . . . . . . . . . . . . . . . 22

4.1 Blackbox representation of the JOBPRP model . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Node representation of the locations in the warehouse . . . . . . . . . . . . . . . . . . . 29
4.4 Simplified node representation of the locations in the warehouse . . . . . . . . . . . . . 29
4.5 Constructed routes without applying the JOBPRP model . . . . . . . . . . . . . . . . . . 33
4.6 Constructed routes with applying the JOBPRP model . . . . . . . . . . . . . . . . . . . 33

5.1 Travel distance versus computation time for different full batches . . . . . . . . . . . . . 36
5.2 Validation of weekly travel distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Layout for different zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Simplified node representation of the locations in the warehouse . . . . . . . . . . . . . 43
6.3 Distance matrices for the ambient zone, with M representing a very large value. . . . . . 43
6.4 Distance matrices for the chilled zone, with M representing a very large value. . . . . . 44
6.5 Simplified node representation of the locations in the frozen zone . . . . . . . . . . . . . 44
6.6 Distance matrices for the frozen zone, with M representing a very large value. . . . . . . 45

7.1 Benchmark visualization of the routes on 16-10 for each zone . . . . . . . . . . . . . . . 46
7.2 Travel distance for the ambient zone on 16-10 for different layouts . . . . . . . . . . . . 47
7.3 Travel distance for the chilled zone on 16-10 for different layouts . . . . . . . . . . . . . 48
7.4 Product distribution of SKU’s for all zones . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.5 Visualization of the within-aisle policy for each zone (full resolution in Appendix G) . . . 49
7.6 Visualization of the across-aisle policy for each zone (full resolution in Appendix G) . . . 50
7.7 Travel distance with the JOBPRP on 16-10 in the ambient zone . . . . . . . . . . . . . . 52
7.8 Travel distance for a layout with 1 midaisle and an allocation policy on 16-10 in the

ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.9 Travel distance for a layout with 2 midaisles and an allocation policy on 16-10 in the

ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



List of Figures v

7.10 Travel distance for a layout with 1 midaisle and an allocation policy on 16-10 in the chilled
zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.11 Travel distance for a layout with 2 midaisles and an allocation policy on 16-10 in the
chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.12 Travel distance for the ambient zone on 16-10 for different layouts and the JOBPRP
model with a chunk size of 3 full batches . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.13 Travel distance for the ambient zone on 16-10 for different layouts and the JOBPRP
model with a chunk size of 4 full batches . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.14 Travel distance for a layout with 1 midaisle, the JOBPRP with a chunk size of 3 full
batches and an allocation policy on 16-10 in the ambient zone . . . . . . . . . . . . . . 63

7.15 Travel distance for a layout with 2 midaisles and an allocation policy and the JOBPRP
model with a chunk size of 3 full batches on 16-10 in the ambient zone . . . . . . . . . . 63

7.16 Travel distance for a layout with 1 midaisle, the JOBPRP with a chunk size of 4 full
batches and an allocation policy on 16-10 in the chilled zone . . . . . . . . . . . . . . . 64

7.17 Travel distance for a layout with 2 midaisles and an allocation policy and the JOBPRP
model with a chunk size of 4 full batches on 16-10 in the chilled zone . . . . . . . . . . . 64

7.18 Visualization of the routes on 16-10 for the best performing configuration for each zone 69

C.1 Routing ambient section 50 orders with 4 SKU/parcel . . . . . . . . . . . . . . . . . . . 93
C.2 full routes in ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
C.3 ambient routes with only picks in one aisle . . . . . . . . . . . . . . . . . . . . . . . . . . 94
C.4 Routing ambient section 50 orders with 4 SKU/order and a midaisle between 9 and 10 . 94
C.5 Routing ambient section 50 orders with 4 SKU/order and a midaisle between 17 and 18 95
C.6 ambient routes with a midaisle with only picks in one aisle . . . . . . . . . . . . . . . . . 95
C.7 Routes for 3*18 the same parcel, located in different aisles . . . . . . . . . . . . . . . . 96
C.8 Routes for 18 of the same parcel, the other parcels have only picks in different aisles . . 96
C.9 Routes for datasets with only picks at the top or the bottom and the combination . . . . 96
C.10Routes for parcels with 1 pick/parcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
C.11 Routes for parcels with 4 picks/parcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
C.12Routes for parcels with 8 picks/parcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
C.13Routes for parcels with 12 picks/parcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
C.14Routes for parcels with 16 picks/parcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D.1 Travel distance for the ambient zone with 2 midaisles on 16-10 . . . . . . . . . . . . . . 99
D.2 Travel distance for the chilled zone with 2 midaisles on 16-10 . . . . . . . . . . . . . . . 100
D.3 Distribution per stackability in the ambient zone . . . . . . . . . . . . . . . . . . . . . . . 101
D.4 Distribution per stackability in the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . 102
D.5 Travel distance for a layout with 2 midaisles and an Across-aisle policy on 16-10 in the

ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
D.6 Travel distance for a layout with 2 midaisles and an Within-aisle policy on 16-10 in the

ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
D.7 Travel distance for a layout with 2 midaisles and an Across-aisle policy on 16-10 in the

chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
D.8 Travel distance for a layout with 2 midaisles and an Within-aisle policy on 16-10 in the

chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
D.9 Travel distance for a layout with 2 midaisles and the JOBPRP with a chunk size of 4 full

batches on 16-10 in the ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
D.10 Travel distance for a layout with 2 midaisles and the JOBPRP with a chunk size of 4 full

batches on 16-10 in the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
D.11 Travel distance for a layout with 2 midaisles with an across-aisle policy combined with

the JOBPRP for a chunk size of 3 full batches on 16-10 in the ambient zone . . . . . . . 109
D.12 Travel distance for a layout with 2 midaisles with an within-aisle policy combined with the

JOBPRP for a chunk size of 3 full batches on 16-10 in the ambient zone . . . . . . . . . 110
D.13 Travel distance for a layout with 2 midaisles with an across-aisle policy combined with

the JOBPRP for a chunk size of 4 full batches on 16-10 in the chilled zone . . . . . . . . 111



List of Figures vi

D.14 Travel distance for a layout with 2 midaisles with an within-aisle policy combined with the
JOBPRP for a chunk size of 4 full batches on 16-10 in the chilled zone . . . . . . . . . . 112

F.1 Visualization of the routes on 16-10 with changes to the layout for each zone . . . . . . 126
F.2 Visualization of the routes on 16-10 with an allocation policy for each zone . . . . . . . 127
F.3 Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes

for the ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
F.4 Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes

for the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
F.5 Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes

for the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
F.6 Visualization of the routes on 16-10 with an allocation policy for different layouts for the

ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
F.7 Visualization of the routes on 16-10 with an allocation policy for different layouts for the

chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
F.8 Visualization of the routes on 16-10 with an allocation policy for different layouts for the

frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
F.9 Visualization of the routes on 16-10 with the JOBPRP model for different layouts for the

ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
F.10 Visualization of the routes on 16-10 with the JOBPRP model for different layouts for the

chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
F.11 Visualization of the routes on 16-10 with the JOBPRP model for different layouts for the

frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
F.12 Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes

and an allocation policy for the ambient zone . . . . . . . . . . . . . . . . . . . . . . . . 136
F.13 Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes

and an allocation policy for the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . 137
F.14 Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes

and an allocation policy for the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . 138
F.15 Visualization of the routes on 16-10 by integrating all three warehouse processes for the

ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
F.16 Visualization of the routes on 16-10 by integrating all three warehouse processes with

an within-aisle policy for the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
F.17 Visualization of the routes on 16-10 by integrating all three warehouse processes with

an across-aisle policy for the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . 141
F.18 Visualization of the routes on 16-10 by integrating all three warehouse processes with

an within-aisle policy for the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
F.19 Visualization of the routes on 16-10 by integrating all three warehouse processes with

an across-aisle policy for the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . 143

G.1 Product allocation policies for the ambient zone . . . . . . . . . . . . . . . . . . . . . . . 144
G.2 Product allocation policies for the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . 145
G.3 Product allocation policies for the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . 146



List of Tables
1 List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1.1 Important papers on solving the JOBPRP . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Definitions of Warehouse Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Specifications per picking zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Relations regarding the warehouse layout . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Evaluation of different policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 An overview of the literature reviewed on the optimizing the travel distance by integrating

multiple warehouse processes processes . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Input data for the JOBPRP model on 16-10-2024 . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Verification of simplification distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Computation time of the simplified and non-simplified distance matrix, with a maximum

of 2 hours (7200s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Computation time for 70 parcels for a simplified distancematrix with amidaisle at location

25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Verification of the applied constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Verification of the applied constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Different configurations as found in chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Weekly number of orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Specifications per picking zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1 Benchmark travel distance for a full week in meters . . . . . . . . . . . . . . . . . . . . . 46
7.2 Performance of different layouts for the ambient zone for a whole week (full in E.4) . . 47
7.3 Performance of different layouts for the chilled zone for a whole week (full in E.5) . . . . 48
7.4 Performance of different layouts in the frozen zone for a whole week . . . . . . . . . . . 48
7.5 Travel distance for different allocation polices for a whole week in the ambient zone . . 50
7.6 Travel distance for different allocation polices for a whole week in the chilled zone . . . 51
7.7 Travel distance for different allocation polices for a whole week in the frozen zone . . . 51
7.8 Travel distance by integrating the JOBPRP model for a whole week in ambient . . . . . 52
7.9 Travel distance by integrating the JOBPRP model for a whole week in chilled . . . . . . 52
7.10 Travel distance by integrating the JOBPRP model for a whole week in frozen . . . . . . 53
7.11 Best performing configurations for a single process relative to the benchmark result . . 53
7.12 Performance of different layouts combined with an allocation policy for a whole week in

the ambient zone (full in E.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.13 Performance of different layouts combined with an allocation policy for a whole week in

the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.14 Performance of different layouts combined with an allocation policy for a whole week in

the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.15 Travel distance by integrating the JOBPRP model for different layouts for a whole week

for different chunk sizes in the ambient zone . . . . . . . . . . . . . . . . . . . . . . . . 57
7.16 Travel distance by integrating the JOBPRP model for different layouts for a whole week

for different chunk sizes in the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.17 Travel distance by integrating the JOBPRP model for all possible layouts for a whole

week with a chunk size of 5 full batches in the frozen zone . . . . . . . . . . . . . . . . . 59
7.18 Travel distance by integrating the JOBPRP model for different layouts for a whole week

for different chunk sizes in the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



List of Tables viii

7.19 Travel distance by integrating the JOBPRP model and an allocation policy for a whole
week in the ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.20 Travel distance by integrating the JOBPRP model and an allocation policy for a whole
week in the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.21 Travel distance by integrating the JOBPRP model and an allocation policy for a whole
week in the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.22 Best performing configurations for a combination between two processes relative to the
benchmark result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.23 Travel distance by integrating all three warehouse processes for different chunk sizes
for a whole week in the ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.24 Travel distance by integrating all three warehouse processes for different chunk sizes
for a whole week in the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.25 Performance of different layouts combined with an allocation policy and the JOBPRP
with a chunk size of 5 full batches for a whole week in the frozen zone . . . . . . . . . . 65

7.26 Travel distance by integrating all three warehouse processes for different chunk sizes
for a whole week in the frozen zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.27 Best performing configurations for a combination between two processes relative to the
benchmark result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.28 Benchmark travel distance for a full week in meters . . . . . . . . . . . . . . . . . . . . . 67
7.29 Results for all possible combinations of warehouse processes relative to the new bench-

mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.30 Results for all possible combinations of warehouse processes relative to the benchmark

of Crisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1 Pickdata from Crisp on 16-10-2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.2 Input data for the JOBPRP model on 16-10-2024 . . . . . . . . . . . . . . . . . . . . . . 92

E.1 Reasoning for Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
E.2 Reasoning for Table 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
E.3 Dataset containing locations per parcel for the ambient zone. . . . . . . . . . . . . . . . 119
E.4 Performance of different layouts for the ambient zone for a whole week . . . . . . . . . 120
E.5 Performance of different layouts for the chilled zone for a whole week . . . . . . . . . . 120
E.6 Performance of different layouts combined with an allocation policy for a whole week in

the ambient zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
E.7 Performance of different layouts combined with an allocation policy for a whole week in

the chilled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
E.8 Performance of different layouts combined with the JOBPRP model with a chunk size of

3 full batches for a whole week in the ambient zone . . . . . . . . . . . . . . . . . . . . 123
E.9 Performance of different layouts combined with the JOBPRP model with a chunk size of

4 full batches for a whole week in the chilled zone . . . . . . . . . . . . . . . . . . . . . 123
E.10 Performance of different layouts with an within-aisle policy combined with the JOBPRP

for a chunk size of 3 full batches for a whole week in the ambient zone . . . . . . . . . . 124
E.11 Performance of different layouts with an within-aisle policy combined with the JOBPRP

for a chunk size of 3 full batches for a whole week in the chilled zone . . . . . . . . . . . 125



Contents

Nomenclature iii

1 Introduction 1
1.1 Introduction Crisp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Current state and gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objective and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 System Description 5
2.1 General warehouse processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Crisp specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Process flow for Crisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Current batching method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Current routing and product allocation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Black box analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 CATWOE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Literature review 14
3.1 Strategical level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Level of automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Equipment selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Picking policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Tactical level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Dimensions of the resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Product allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Operational level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Job assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Batch formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Model development 27
4.1 Model objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Performance indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Layout and distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Parcel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Assumptions and simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



Contents x

5 Verification and validation 34
5.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Simplified distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2 Computational limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.3 Scenario testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Experimental set up 40
6.1 Experimental plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Different scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Adjustments to Crisp warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Results 46
7.1 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Single warehouse process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Product allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.3 Batching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Combination between two warehouse processes. . . . . . . . . . . . . . . . . . . . . . . 54
7.3.1 Layout & Product allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.2 Layout & Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.3 Product allocation & Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4 Combination between all three warehouse processes . . . . . . . . . . . . . . . . . . . . 62
7.5 Relation warehouse processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Conclusion 70

9 Discussion and recommendations 73
9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.2.1 Scientific recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2.2 Recommendations for Crisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Scientific paper 81

B Data processing 91

C Routes for verification 93
C.1 Verification distance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
C.2 Verification scenario testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

D Figures 98

E Tables 113

F Visualization constructed batches 126

G Visualization allocation policies 144

H Cost calculation 147



1
Introduction

Over the past ten years, consumer shopping habits have transitioned from in-store to online purchases.
The rapid expansion of internet capabilities has significantly contributed to this trend, resulting in a shift
towards online shopping not only for typical parcels, like clothing and electronics, but also impacting
the fast-moving consumer goods (FMCG) sector. Numerous supermarkets now operate online plat-
forms with next-day delivery options for groceries. This new behavior in online shopping has increased
the need to improve warehouse efficiency. As a vital component of the supply chain, warehousing
plays a crucial role in supply chain effectiveness. Notably, the process of order picking accounts for
approximately 55% of warehouse operating expenses. This process is particularly critical for FMCG
warehouses tasked with handling larger orders for delivery. This thesis examines ways to improve
the order picking process, which is performed in collaboration with Crisp, a Dutch online supermarket
specializing in daily fresh products.

1.1. Introduction Crisp
This thesis will be carried out in collaboration with Crisp, an online grocery store that emphasizes
sustainable and locally sourced products. As a result of this product focus, their assortment is smaller
compared to that of larger supermarkets offering home delivery. Crisp carefully selects its assortment
and usually does not stock the same product of different brands, a practice often seen in larger retail
chains. Their logistics framework includes two warehouses designated for order picking and three
hubs dedicated to cross-docking operations. The warehouses located in Breda and Amsterdam handle
the order picking process. The daily order volume varies from 1500 to 3500. Approximately 70% of
the orders are processed by the Amsterdam warehouse, while the Breda warehouse manages the
remaining 30%. This graduation project will focus on the picking processes within their facilities. The
Crisp warehouse is characterized as a low-level picker-to-parts warehouse. ’Low-level’ indicates that
all storage racks are accessible to pickers without any mechanical aid, while ’picker-to-parts’ means
that pickers physically retrieve products from their storage locations. The warehouses are divided into
three zones, each with different storage temperature requirements: ambient, chilled, and frozen. Order
picking is executed similarly across all zones; pickers navigate through a zone using a specialized
picking cart. The number of parcels each cart handles and the picks per parcel vary between the
different zones. In general, orders in the ambient zone contain the highest number of picks per order,
followed by those in the chilled zone, and finally, the frozen zone has the least. Concerning the number
of orders per picking cart, the frozen zone accommodates the most due to its typically smaller order
sizes. The ambient zone compensates for the order size with larger carts and comes second. The
chilled zone comes last with the fewest orders per batch. These operational differences between zones
lead to slight variations in their operating strategies. Once the orders are picked from their respective
zones, they are sorted and prepared for shipment. Since it is essential to maintain the temperature
constraints of each zone’s orders during delivery, orders that include products of multiple zones are
managed separately by zone rather than combined. The orders are either loaded on large trucks
outgoing to the hubs or directly loaded on delivery vans ready for delivery. This is an ongoing process
that is active during the whole day, resulting in different due times for the orders.

1
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1.2. Problem description
Due to the rapid growth in online shopping and at home delivery, extensive research has been con-
ducted on warehousing as this is considered as a key component in the logistics chain. To meet
increasing demand and rising competition in the industry, warehouse operations must perform all their
processes with maximum efficiency [2].The warehouse processes; receiving, storing, order picking,
and shipping are critical to each supply chain [3, 4]. Among these operations, order picking is the most
expensive operation as it represents 55% of the total operating costs of a typical warehouse [5, 6], mak-
ing it the central focus point of this thesis. Warehouses vary widely because they are tailored to specific
performance needs and dimensions. Selecting the optimal configuration is complex and different per
warehouse as many decisions regarding the configuration are interfering with each other. Key issues
that influence the warehouse performance are: The layout, the routing policy, the product allocation
plan, and the order batching. Due to the interactivity between these problems, it is challenging to find
the optimal warehouse configuration. The layout sets the outline for the other processes and is gener-
ally the first decision to be made. The next three problems are all Non-Polynomial (NP) hard problems
if formulated as a MIP model. Recently, there has been increasing interest in integrating these issues
to enhance warehouse efficiency. Most approaches aim to minimize the total travel distance by solving
the routing problem while considering other factors. The routing problem is a variant of the travelers
salesman problem and can be solved with exact algorithms, meta heuristics or heuristics. The chal-
lenge for an efficient order picking process is the interplay among all decisions aimed at optimizing
the order picking process. Each process or decision is interconnected, complicating the search for the
ideal setup. The current order picking process at the Crisp warehouses remains quite simplistic and
can potentially be improved to decrease operational expenses.

1.2.1. Current state and gap
The literature on the optimization of order picking has increased rapidly in the last decade. The tendency
is that most research is focused on one specific problem, however the integration and solving two
problems jointly has gained more attention the last years. Especially the integration of the batching
and routing problem, known as the Joint Order Batching and Picker Routing Problem (JOBPRP), has
been receiving more academical attention. There are multiple solutions proposed in the literature to
solve this problem. Themost commonway to address the JOBPRP is to write the problem as a amixed-
integer programming model, where the batching and routing are then solved sequentially and iterative.
To reduce the computation time both problems are often solved with a meta-heuristics. The batching
is often solved with a Genetic Algorithm (GA) or a Particle Swarm Optimization (PSO), whereas the
routing is often solved with a 2-opt heuristic or a Ant Colony Optimization (ACO). However, multiple
other combinations of (meta-)heuristics have been used in the literature. Important papers that solve
the JOBPRP are mentioned with their specifications in Table 1.1.

Papers Batching Routing #
Orders

# SKU’s Items/
order

orders/
batch

computation
time

Tsai et al. [7] GA GA 250 400 10 kg
based

600 s

Kulak et al. [8] TS Nearest
neighbour+Or-
opt heuristic
Savings+2-
opt heuristic

250 500 2 vehicle
capacity

110 s

Chen et al. [9] GA ACO 8 12 10 5 N/A
Cheng et al. [10] PSO ACO 200 12 10 5 N/A
Kübler et al. [11] DEPSO Nearest

neighbour+2-
opt heuristic

200 7200 10 vehicle
capacity

140 s

Table 1.1: Important papers on solving the JOBPRP
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The work of Kulak et al. [8] presented a mixed-integer programming (MIP) formulation and then solved
it with 2 different combination of heuristics. Their MIP formulation is used by other authors as a starting
point, so did Chen et al. [9] and Cheng et al. [10] modify the model to address extra requirements.
Chen et al. [9] added the due date of orders, which resulted in the total tardiness being the objective
function. This model focuses on the minimizing this tardiness and not specifically on minimizing the
travel distance. However minimizing the travel distance in the composed batches will have a positive
effect on the total tardiness, as the composed batches are then picked more efficient and therefore
faster. Cheng et al. [10] focus again on minimizing the total travel distance. They compare their model
with the approach of Tsai et al. [7] and conclude that their model handles both small as large instances
well. They conclude that their approach has a lower computation time and can handle larger instances
better. However they do not include the due date in their model and suggest that adding this in a multi-
objective model could be relevant for further research. The above mentioned researches only consider
a random product allocation and do not study the effect of the product allocation.

Kübler et al. [11] differs in this as it uses a class-based storage in their work. Their approach is
comparable with Cheng et al. [10] but in addition they calculate the relocation effort of a product and
the gained reduction in travel distance by relocating. With a relocation they mean that a product is
changed of class and therefore placed in a different location. This paper comes the closest to solving
all three problems jointly. This paper does not take the due date of the orders in account or account for
congestion.

Research on the relation between product allocation and solving the joint order batching and picker
routing problem is still underrepresented. van Gils et al. [12] and van Gils et al. [13] did analyze the
relation between the order picking problems and indicate that with solving the problems jointly significant
benefits can be achieved. They do this with a full factorial ANOVA. They show that the product allocation
has a clear relation with the routing and batching, however they do not propose any kind of optimization.
Roodbergen [14] show different possible layouts for a class-based product allocation, such as the
across-aisle or within-aisle storage. However, the effect of this allocation policy in combination with
solving JOBPRP has not yet been researched.

In terms of an existing gap, there are a few possibilities. The first and foremost most clear gap is
the size of the problem. Most research is applied to limited size warehouses. As can be seen from
Table 1.1 the number of orders is around 250, which is roughly a factor 10 lower than for the case
study of Crisp. It would be valuable to see if the model can be used for larger instances and keep the
computation time to a minimum. Most of the available papers also assume that the products in the
warehouse are distributed randomly. The effect of different storage policies in combination with the
JOBPRP has not yet been researched. The effect of different storage policies on the travel distance
is most likely to be enhanced by different layouts, however research that integrates the JOBPRP with
design choices on the layout and the integration of a suiting storage policy is not presented.

1.3. Objective and research questions
Before defining the objective and the research questions, it is important to define the scope of the
project. Because the project is conducted in cooperation with Crisp, the scope is related to their ware-
house. This means the project will be specified to a low-level picker-to-parts warehouse with a single
pickup and single delivery point. The objective of this research is to determine the effect of combining
warehouse processes to find the best performing warehouse configuration. To integrate these pro-
cesses, a model is developed that minimizes the total travel distance and is able to incorporate all
warehouse processes. The model should be applicable to the warehouse of Crisp and thus able to
handle large instances. This objective leads to the following research question:

How can the order picking process in a large scale low-level picker-to-parts warehouse be optimized
by incorporating different due times, and what is the effect of the integration of multiple warehouse

processes on the travel distance?

To answer this research question, it is supported by the following subquestions:

1. How is the current order picking process organized?
2. Which warehouse processes influence the order picking performance and which approaches can

be used to enhance the order picking performance?
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3. How can a model be designed to minimize travel distance while simultaneously meeting the due
times of orders?

4. How can the developed model be applied to the Crisp warehouse using real-world data?
5. How do different warehouse processes affect the performance of order picking operations in a

picker-to-parts warehouse?
6. For the low-level picker-to-part warehouse of Crisp, what are the optimal configurations for the

different operational characteristics?

1.4. Thesis outline
The proposed approach of this thesis is visualized in Figure 1.1. It shows which subquestion is an-
swered in each chapter and what the method per subquestion will be. Chapter 2 will contain the system
analysis. In chapter 3 the relevant literature will be discussed. Chapter 4 will propose a mathematical
model. Chapter 5 will give the validation of the proposed modal. Chapter 6 will propose the experimen-
tal plan and chapter 7 will display the obtained results. The thesis will conclude with the conclusion,
discussion and recommendations.

Figure 1.1: Structure of the research



2
System Description

This chapter provides a system analysis of Crisp’s warehouse alongside its ongoing processes. It
begins with a broad overview of warehouse procedures, followed by a detailed depiction of the present
operation within Crisp’s warehouse. It gives an answer to the first subquestion as it describes in dept
how the current order picking process at Crisp is organized.

2.1. General warehouse processes
This subsection provides a general overview of the product flow and the processes within a ware-
house. Warehousing is a critical step in the supply chain. The simplest supply chain is depicted in
Figure 2.1. This supply chain can be enlarged by incorporating more hubs in the process. These hubs
can be located between the manufacturer and the warehouse but also between the warehouse and the
customer. In both scenarios, the extra hubs are used for cross docking to realize a more efficient or
sustainable delivery schedule.

Figure 2.1: Simple supply chain

Within the warehouse, there are multiple sequential steps to go from the incoming products to the
packed orders. The warehouse processes are quite straightforward and can be categorized into the
following steps: receiving, storing, order picking, and shipping. [3, 4] This process flow is visualized
in Figure 2.2. The process begins with the manufacturer who delivers the products to the warehouse.
Upon the arrival the delivery is unloaded, identified and checked. The frequency of these deliveries
varies depending on the product type. For instance, fresh products with short expiration dates are
delivered more frequently than non-food items with longer expiration dates. Upon arrival, store keeping
units (SKUs) are either stored in the back stock or placed directly in the front stock, depending on their
specifications and circulation time. Depending on the characteristics of the warehouse the picking
locations could be divided into multiple zones. Dividing the picking area in zones could be a hard or
a soft decision. It is a hard decision if it leads to zone-specific storage technology (e.g. a refrigerated
section). It is a soft decision if the decision is simply organizing similar storage locations [4]. In the case
of a warehouse used in the FMCG sector there are most likely 3 ’hard’ zones with their own storage
temperature. This is due to the different storage temperatures that are required for different products,
resulting in a ambient, chilled and frozen zone. The order picking process consists of order pickers
walking through the warehouse to pick the respective SKUs of each order. This picking can be done by
picking single orders or picking multiple orders simultaneously. The preferred way of picking depends
on the characteristics of the warehouse. For example a palletised warehouse will most likely use single
pick tours, whereas warehouses used for single products will most likely pick multiple orders together.

5
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The picked orders are then brought to the sorting area, here the orders are sorted and prepared for
delivery. After which the orders are loaded onto the vans/truck and delivered to the customer or brought
to cross docking hub.

Figure 2.2: Warehouse process flow

2.2. Crisp specification
Where in the previous subsection the warehouse process is described for a general warehouse, this
subsection will describe the current process at Crisp in detail. Crisp has two warehouses used for
order picking, located in Amsterdam and in Breda. To ensure an efficient delivery schedule, they have
3 hubs used for cross docking. These are located in Delft, Utrecht and Aartselaar (Belgium). The way
of operating in the order picking warehouses is identical, however the warehouses differ in size and
layout. The number of orders fluctuates throughout the week as can be seen in Figure 2.3. Sunday and
Monday are typical busy and Wednesdays have less activity. This is explainable as customers have
preferences on which day they want their groceries delivered. The low peak for the Breda warehouse
on Wednesday is also affected by the fact that Crisp does not deliver on Wednesdays in Flanders. This
thesis will focus on the warehouse in Amsterdam as this warehouses handles the most capacity of the
two. However due to the similarities between the two warehouses, this thesis will most likely also be
applicable to the warehouse in Breda.

Figure 2.3: Orders in September 2024
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2.2.1. Terminology
The orders visualized in Figure 2.3 represent the total customer orders in the month September. How-
ever, an order from a customer can consist of multiple containers. A container is the packaging that is
used to pack multiple SKUs of the order. Per zone this is different; in the ambient zone this are card-
board boxes, in chilled zone this are cardboard boxes or paper bags and in the frozen zones this are
plastic bags. In the ambient zone each cardboard box is considered to be a parcel, however in chilled
and frozen, multiple paper or plastic bags can be placed in one parcel (an EPP box), Figure 2.8b and
Figure 2.9b illustrate this. The total order structure can be seen in Figure 2.4 and the definitions in
Table 2.1

Figure 2.4: Order structure

Term Definition

(Customer) Order Full order of the customer
Container Package used to pack SKUs out of the order.

Can be a cardboard box, paperbag or plastic
bag.

Parcel In ambient this represents the cardboard
box, in chilled and frozen this is the EPP box
in which containers are placed.

Batch All parcels that are placed together on a
single picking cart

Table 2.1: Definitions of Warehouse Terms

2.2.2. Process flow for Crisp
As already described in section 2.1, the general warehouse process flow can be found in Figure 2.2.
However in the process flow of Crisp there are some additional active processes. The total process
flow can be seen in Figure 2.5. Crisp receives quite different products, which are delivered by different
suppliers in different ways. Resulting that some SKUswill have to undergo an extra step, the prepicking.
A simple example of such products are vegetables that are sold per weight instead of per piece. These
vegetables are first weighed and then packed together, adding an extra step to the warehouse flow.
For the replenishment of the front stock with SKUs from the back stock, Crisp does not only take the
emptiness of the shelves in the front stock into account, but also uses a forecast to determine a potential
increase in demand. The prep process that comes before the picking process is preparing the picking
carts. This preparation consist of placing the parcels on the carts and labelling and linking them with
the Warehouse Management System (WMS). After labeling each box, the picking carts get transported
to the pickup point of the corresponding picking zone. So all carts, regardless their zone, are prepared
at the same place and then moved to the P&D points of the corresponding zone. For the order picking,
electronic scanners are used. Each location for a SKU is labelled with their own QR code. The picker
must scan the corresponding QR code, before it can proceed to pick the products. As a check the
picker must thereafter scan the box he’s putting the SKU in to prevent mistakes. The order picker
follows a S-shape heuristic through the warehouse, traversing all the storage places. The picked carts
are then brought to the delivery point, where the boxes are prepared for delivery. With prepared for
delivery is meant ensuring all products in the box are packed properly and closing the boxes. After this
preperation process, the boxes are transported to the sorting area where the parcels are sorted per
route. After the sorting, the parcels are brought to the loading area and loaded on the corresponding
van out for delivery.

2.2.3. Layout
This subsection presents a detailed overview and illustration of the warehouse configuration. Crisp
currently operates two warehouses involved in order picking activities. However, this thesis focuses
on the Amsterdam location, hence only the Amsterdam warehouse layout will be addressed here.
The general floor plan of the warehouse is shown in Figure 2.6. Several processes are carried out
within designated areas in the warehouse. The left section is predominantly allocated for inbound
logistics and backstock storage. However, there are specific sections allocated for pre-picking, cart
preparation, a sorting area and last-mile operations. The pre-pick area is tasked with repackaging
single-item deliveries into larger (or smaller) marketable units. For example, apples arriving in crates
are re-packaged in quantities of four. The cart preparation area is where empty boxes are loaded
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Figure 2.5: Process flow Crisp

onto carts and labeled. The loaded carts are then transported to the pickup point of the corresponding
zones. After the picking process, the picked carts are transported to a sorting area. A customer order
can consist of items from multiple zones. Due to the required temperature at delivery these distinct
parcels are handled separately. So in the sorting process they are not combined, only placed together.
In this area the parcels are sorted on the correct route, after completion they are transported to the last
mile area. The last mile area is a small loading area where vans are loaded inside, although during
peak times the loading extends to outside. This last mile area is also used as the storage ground
for all organized orders. The order picking is carried out in the top right section, divided into three
distinct zones, each varying in size and layout. The ambient zone, which is the largest, accommodates
3500 SKUs and includes the majority of the SKUs. The chilled area holds 2000 SKUs, while the
smallest zone, the frozen section, has 500 SKUs. Each of the three zones has unique specifications
and operational methods and are described below. Their specifications can be found in Table 2.2

Zone Storage locations # SKU’s Parcels per batch Range picks/parcel Average parcel size Average picks/batch

Ambient 4800 3500 18 [1-25] 10 180
Chilled 3500 2000 6 [1-20] 15 90
Frozen 800 500 4 [1-35] 18 75

Table 2.2: Specifications per picking zone

Ambient
The Ambient zone is the largest area and hosts the highest number of SKUs. The layout of this picking
zone is illustrated in Figure 2.7a. This area is a rectangular warehouse configuration with 8 aisles and
34 storage shelves. These racks can be designed to suit the size of various SKUs, each shelf thus
holds different SKUs. Additionally, some spaces are occupied by pallets. Pallets and storage racks are
similar in size; the key difference is the number of distinct SKUs they can hold. Both types of storage
locations can be seen in Figure 2.7c and Figure 2.7d. Parcels in the ambient zone are packaged in
either a small or large cardboard box, with the box size determined by the quantity and dimensions of
the SKUs per parcel. Each picking cart can hold 18 parcels, regardless of the size of the box. The
number of SKUs per parcel can vary greatly, typically ranging from 4 to 25 SKUs, with some exceptions
with more or less products. The average SKUs per parcel in the ambient zone is 10 SKUs per parcel.
A standard picking cart generally includes approximately 180 picks per route.
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Figure 2.6: Floor map Warehouse Amsterdam

(a) Layout (b) Picking cart (c) Storage locations (d) Storage locations

Figure 2.7: Specification of the ambient zone.

Chilled
The primary distinction between the chilled and ambient zones is the batch size. In the ambient zone,
carts can hold 18 parcels, whereas in the chilled section, each cart is restricted to 6 EPP (Exanded
Polypropylene) boxes. Each box is capable of holding a single cardboard container box, whether small
or large. Additionally, the chilled zone allows for very small orders, typically in the range of 1 to 3 prod-
ucts, to be picked using a paper bag. One EPP box is able to accommodate 3 paper bag containers.
In theory, if each EPP box holds 3 small containers, a cart could carry 18 containers, but this scenario
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is uncommon. A single EPP box is in the chilled section considered as one parcel. The storage areas
in the chilled section are similar to those in the ambient section. Most SKUs are kept in storage racks,
although there are some palletised storage locations in the chilled section as well. The number of SKUs
per parcel is higher compared to the ambient section. Due to the fact that the chilled zone holds less
SKUs than the ambient zone, the layout is also smaller. It has only 4 aisles instead of 8 and has a
comparable length. The chilled section can thus be considered a scaled-down version of the ambient
zone, mainly differing in the number of parcels per batch. Due to the small batch sizes, and thus more
batches, the chilled section is more sensitive for congestion than the other zones.

(a) Layout (b) Picking cart (c) Storage locations (d) Storage locations

Figure 2.8: Specification of the chilled zone.

Frozen
The layout and storage locations of the frozen section in the Crisp warehouse are the most unique.
SKUs in this section are selected from a freezer that contains multiple SKUs. The design and routing
within this area are distinct as well. Unlike the rectangular configuration seen in the ambient and chilled
sections, this section is designed to the available warehouse space. Resulting in a longer first aisle
compared to the second and third aisle. Also, in contrary to other areas where pickers pick on both
sides of the aisle, in the frozen section the picker only picks from the right-hand side. Parcels in the
frozen zone consists of a maximum of 6 containers per parcel. The picks per container are smaller in
comparison with the containers in the other zones. On average each container consists of three picks,
resulting in an average parcel size of 18. This allows carts to carry many containers at once, resulting
in a lower number number of constructed batches in comparison with for example the chilled section.
The containers in the frozen zone are plastic bags instead of the cardboard boxes used in the ambient
and chilled section. The frozen zone is also the smallest zone, has the least storage locations and
holds the least amount of SKUs.
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(a) Layout (b) Picking cart (c) Storage locations (d) Storage locations

Figure 2.9: Specification of the frozen zone.

2.2.4. Current batching method
The order picking process at Crisp starts with assembling the picking carts. This process is done in a
centralized place, where all the carts used for the different zones are prepared. A picking cart is loaded
with multiple parcels, depending on the zone this number fluctuates. An ambient cart is loaded with
maximum 18 parcels, a chilled cart is loaded with maximum 6 parcels and a frozen cart is loaded with
maximum 4 parcels. The parcels are assigned to these carts following predefined rules. The carts are
prepared based on the pick deadline. Meaning the parcels with the fastest pick deadline are placed on
the first outgoing picking cart. If there are more orders with the same pick deadline, orders are assigned
based on the following order:

1. Lowest hub building ID
2. Lowest route number (code)
3. Stop number/order ID
4. Parcel ID

Each hub used for cross docking has an ID number. The farthest hub will have priority over the nearest
hubs. Within the parcels assigned to a specific hub, the lowest route numbers are assigned first. The
orders of this route are then sorted by stop number/their order ID. This is implemented because this
makes the loading process on the busses easier. The busses should namely be loaded in an order
that is logic when unloading the bus. So the first stop should be easily accessible instead of being
stored in the bottom. The last step in the order, the Parcel ID, is something that is almost never the
deciding factor. This is the case when the last assigned order to the cart consists of 2 parcels. Then
the first parcel will be placed on the first picking cart and the second parcel on the second picking cart.
However the chances of this being the case are very low. These guidelines when assigning parcels to
the picking carts thus do not take the resulting travel distance in account and are not batched based
on characteristics of the parcels but based on these regulations. Because the due time of the orders
is the main criteria to form batches, the batching strategy of Crisp can be compared with the FCFS
(first comes, first served principle). These due times are related to the selected delivery time by the
customer. When ordering, customers can select a specific time slot for their order to be delivered. They
have the choice between a 1 hour, 2 hour and 4 hour time slot. These time slots result in a custom
made delivery schedule to deliver all orders on time. Delivery vans therefore will have a strict departure
time, resulting in the orders assigned to a specific van all have the same pick deadline.
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2.2.5. Current routing and product allocation
After the parcels are batched on the carts, the actual order picking starts. The order pickers follow
the S-shape heuristic trough the warehouse. Traversing the whole aisle and thus visiting each pick
location per picking batch. The layout and walking directions per zone can be seen in the layout picture
depicted in Figure 2.7a, Figure 2.8a and Figure 2.9a for the respective zones. As can be seen, all
zones do not contain a middle cross aisle; the only way to traverse to the next aisle is by using the top
or bottom cross aisle. In the ambient and chilled section the picker is able to pick SKUs from both sides
of the aisle as in the frozen section the picker will only pick items at one side. The picker is guided by
a electronic scanner which provides the picker with the next pick location. To reduce picking time, this
scanner will tell the picker if the next pick location is the same as the previous, is nearby, farther away
or in the next aisle. This reduces the search time of the picker.

At the Crisp warehouse, the allocation of products is determined by their stackability. Stackability
refers to the rigidity of an SKU when putting products in an order box. Ensuring that products are not
crushed during the picking process is crucial with respect to customer satisfaction. Products with a high
stackability will therefore be picked first. These are therefore located in the first aisles of the picking
area, this are for example canned products. The products with a low stackability are located in the last
traversed aisles, this are products like strawberries or bread. This way of product placement ensures
that the heavier products are picked first and the more fragile products are placed on top. Within these
stackability classes, the SKUs are randomly assigned to fitting storage locations. So SKUs on pallets
will be kept to pallet places. This only holds for the chilled and ambient zones; in the frozen zone
all products have the same rigidity due to the fact that they are frozen. Because products come in
different sizes, the shelves in the warehouse are adjustable. The non uniformity of the shelves makes
the product allocation plan complicated as not all products can be stored anywhere. The fast moving
products of Crisp are placed mostly at eye height to reduce the picking effort for the pickers. Because
Crisp sells products with an expiry date and want to ensure no expired products are sold, they sort
products in the warehouse on expiry date. This means that the same SKU, with a different expiry date,
can have 2 distinct locations in the warehouse.

2.3. System Analysis
This section provides the system analysis. The system is both explored with a black box analysis as a
CATWOE analysis. It highlights the key elements of the system and their relations.

2.3.1. Black box analysis
A black box model outlines the inputs, outputs, requirements and the KPI’s of the process. This frame-
work helps in understanding the order picking process and gives the relation between the inputs and
output while taking the requirements and KPI’s into account. The black box analysis can be seen in
Figure 2.10. The system’s inputs and outputs resolve around picking multiple SKUs into orders ready
for delivery. Workers pick single SKUs and put them in boxes that will be delivered to the customer.
The generated waste of the process will consist of products with an expired delivery date and bulk
packaging material used to pack multiple SKUs in one tray. With respect to the requirements it is im-
portant that the picking process can be executed safely. To ensure the safety of everybody on the
work floor, multiple rules are implemented. Besides the safety, it is important that the picking is accu-
rate. Customer satisfaction is very important for Crisp, so orders should be complete and not miss any
products.

The order picking can be measured on different Key Performance Indicators (KPI’s). The accuracy
rate and the packing quality are related to the customer satisfaction. The orders should be complete
and the products should be neatly packed. The pick rate represents the speed of the pickers. Due
to the fact they pick multiple orders at once, defining a time per order is challenging. The pick rate is
measured in the average time it takes to perform a single pick. The pick rate is highly correlated with
the travel distance. An as low as possible travel distance will namely improve the pick rate. The travel
distance is in this thesis the most important KPI. As the order picking process represents 55% of the
total operating costs [5, 6], the costs are also an important KPI. The order picking costs are related to
the performance of the order picking process and thus are related to the travel distance KPI.
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Figure 2.10: Black box model of the order picking process

2.3.2. CATWOE
CATWOE is an acronym that stands for Customers, Actors, Transformation, Worldview, Owners and
Environment. A CATWOE analysis helps to identify the key elements of a process and is a simple
checklist that helps to find solutions to problems. For a order picking process, the CATWOE analysis
can be found below.

• Customers: The customers are the customers of Crisp, the people who order groceries at Crisp.

• Actors: The actors are the employees that are working in the warehouse. This include the order
pickers but also the managers, planners and inbound/outbound managers.

• Transformation: The core process of the order picking process is converting the input stock
into outgoing orders. Orders specify the items and quantity, which is subsequently picked and
prepared for delivery.

• Worldview: The worldview on the order picking process involves efficiency, accuracy, supply
chain continuity and cost reduction. Effective and accurate order picking is crucial to maintaining
customer satisfaction and operational efficiency. Having an efficient as possible order picking
process will reduce costs and ensure a smooth continuity in the supply chain.

• Owners: The owners are the warehouse management team that is responsible for the process
and has the authority to make changes regarding the process. The end ownership will lie with
the board of Crisp.

• Environment: The environmental constraints include picker speed, suppliers, fluctuations in or-
der volume, regulations regarding Fast Moving Consumer Goods (FMCG). The punctuality of
suppliers and the picker speed will affect the efficiency. The fluctuations will put pressure on the
picking process. The regulations are to be incorporated in the picking process.

2.4. Conclusion
This chapter provides a comprehensive analysis of the Crisp warehouse operation, outlining the differ-
ent stages from receipt to delivery. It explains the existing operational methods in the warehouse and
provides an overview of the processes. Within the Crisp warehouse, multiple processes are employed
between the receiving of product until the delivery. Products are received, occasionally pre-picked,
stored, picked, and prepared for delivery. Orders are picked in three distinct zones, categorized by
picking temperature. The picking process in each zone varies by parcel size and batch size, yet all
are picking following to the S-shape heuristic. This chapter answers subquestion 1 as it explains the
current order picking process.



3
Literature review

The literature review chapter examines the key concepts regarding optimizing a picker-to-part ware-
house. This aims to provide a comprehensive understanding on all the relevant aspects of warehouse
optimization. Not all warehouses are the same, as they are specified to their required performances
and dimensions. Among the warehouse processes (receiving, storing, order picking and shipping),
order picking is the most costly operation as it takes 55% of the total operating costs for a typical
warehouse [5, 6]. This literature chapter will only evaluate the performance of the order picking, how-
ever warehouses could also improve its performance by better alignment of the processes or improve
the performance of other warehouse processes. The decisions regarding the order picking process
can be categorized on a strategic, tactical and operational level. [15, 16], which will be examined in
respectively section 3.1, section 3.2 and section 3.3.

3.1. Strategical level
At the strategic level, we consider decisions that have a long term impact and are mostly associated
with high investments [16]. The decisions refer to policies and plans for using the resources in order to
fulfill the long term competitive strategy [15]. This encloses the level of automation, equipment selection
and the picking policy [16].

3.1.1. Level of automation
The level of automation, is as the name already implies, the level of automation in the warehouse.
It refers to the extent to which manual processes within the warehouse are replaced by automated
systems. This can range from no automation, where all tasks are performed manually to a fully auto-
mated process where all tasks are performed by machines. Automating a warehouse requires large
investments as these machines are expensive. With today’s digitization, a certain level of automation is
quickly achieved. For example using a Warehouse Management System (WMS), which almost every
warehouse uses, is a form of automation.

3.1.2. Equipment selection
The selection of the equipment is quite depending on the level of automation. If the warehouse is fully
automated, the selected material will be quite different than a manually operated warehouse. However
assuming a manual picker-to-part warehouse, the most important equipment is the picking cart. Pick-
ing carts can be customized on size, amount of places for an order, weight, drivetrain etc. Besides the
picking cart, the picking device that guide the order pickers are also of importance. Having a device
that is able to scan products will enhance the efficiency compared to checking off products of a list
with pen and paper. Choosing suitable racks is also part of the equipment selection and requires large
investments. It is important to determine to decide between low-level and high-level shelves. Low-level
means that the picker can reach all the items himself without needing additional equipment, whereas
high-level means the SKUs can be stored in higher racks not reachable without additional equipment.
Selecting a low-level or high-level will result in needing different equipment for the order picking process.

14
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3.1.3. Picking policy
The picking policy refers to the way orders are picked. When designing a warehouse, decisions on how
to pick orders have to be made. Dallari et al. [17] presented five different picking policies, which are
shown in Figure 3.1. These different picking policies are scaled on their level of automation. The applied
picking policy has a direct link with the level of automation and the selected equipment. Nonetheless,
applying different picking policies require different equipment or levels of automation.

Figure 3.1: Classification of order picker systems [17]

3.2. Tactical level
At the tactical level, decisions are made that impact themedium term [15], based on the outcomes of the
strategic decisions [16]. Tactical decisions typically concern the dimensions of resources (e.g. storage
size, storage capacity, number of employees), the determination of the layout and storage assignment
[16].

3.2.1. Dimensions of the resources
The dimensions of the warehouse are bound by the physical walls of the warehouse, as these will
determine the total size of the warehouse. However the warehouse is divided in multiple zones with
specific tasks. Decisions on how large each zone should be are typical tactical level decisions. This
include the dimensions of the picking zones, outbound, inbound, backstock etc. Opting for a specific
size of the picking zone will directly influence the storage capacity, after all a larger picking zone will
result in more storage space. In addition to the division of the warehouse space for each zone, the
number of equipment and personnel is also divided under dimensions. The number of pickers and the
number of material handling equipment should be decided to ensure an efficient process. Having a
surplus on any of these two will not specifically improve the process, as too many carts will have to be
stored somewhere and working with too many workers will lead to a crowded warehouse and potential
congestion during picking.

3.2.2. Layout
The layout of the warehouse is a key component of warehouse operations and has a significant impact
on order picking and traveling distances in the warehouse [6]. The warehouse layout design is one
of the most important parts of warehousing as it is a crucial component of increasing the productivity
of warehouses [18]. It demarcates the dimensions for the other warehouse operations. Warehouse
design is a highly complex task with many trade-offs between conflicting objectives and a large number
of feasible designs [19]. Because of these trade-offs it is favorable to start with a defined layout. There
are two types of layout decision problems that can be distinguished [20]. The first problem is called
the facility layout problem. This concerns the decisions about where to locate various departments (re-
ceiving, picking, storing, sorting, shipping, etc.) inside the warehouse. Using the activity relationship
between the departments, a warehouse block layout is derived. The common objective is to minimize
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(a) Conventional warehouse layout, single block (b) Warehouse layout with middle cross aisle, multi-block

Figure 3.2: Conventional layouts with a single P/D point (adapted from: [26])

the handling cost (travel distances) between the different departments. The second problem is usu-
ally called the internal layout design or aisle configuration problem [20]. It concerns the placement of
equipment and storage space (number, width and length of aisles) within the departments [20, 19].

The aisle configuration can have a significant effect on order picking and the travel distances [6].
A conventional layout is shown in Figure 3.2a. Defining the optimal layout is hard as it is affected by
the strategic and operational decisions [21]. Adding cross aisles to the warehouse is a commonly used
method to reduce the travel distance. Cross aisles are perpendicular to the picking aisles as can be
seen in Figure 3.2b. Creating a warehouse with (multiple) cross aisles is called a multi-block layout
[19]. Adding cross aisles in a warehouse layout has been researched in various studies. Roodber-
gen et al. [22] concluded that, apart from special cases with a very high picking density, it is always
favorable to have a multiple block layout. The research done by Ertek et al. [23] presented a detailed
discussion of the impact of cross aisles on a rectangular warehouse. They defined the optimal amount
of cross aisles with respect to the amount of aisles and the length of the aisles. They also analyzed
both equally and unequally spaced blocks. They concluded that establishing cross aisles can bring sig-
nificant travel-time savings and that it is more desirable to establish only equally spaced cross blocks
than unequally spaced cross blocks. This is in contrary to the research by Küçük [24], which concluded
that a lower number of unequally spaced cross aisles provide the same travel distance reductions due
to a higher number of equally spaced cross aisles. Therefore less number of unequally spaced cross
aisle provide savings on warehouse size and achieve the same travel distance reduction. Additionally,
this research found an interesting pattern of storage block lengths with respect to pick densities. If
the pick density increases, the middle storage block gets longer to provide maximum travel distance
reduction. Berglund and Batta [25] presented a method for calculating the maximal efficient cross aisle
positions for a picker-to-parts warehouse. The proposed method is suitable for multiple warehouse
sizes, different storing policies and can vary the amount of cross aisles.

Besides the conventional rectangular warehouse designs, some authors study the effects of non-
conventional layouts. Gue and Meller [26] proposed two new different designs; the flying-V layout and
the Fishbone layout as can be seen in Figure 3.3a and Figure 3.3b. Where Gue and Meller [26] only
considers one pickup and delivery (P&D) point, Gue et al. [27] presented amodified version of the flying-
V layout for multiple P&D points In their work they also proposed another layout, the inverted-V layout
(visualized in Figure 3.3c), nevertheless they also concluded that the modified flying-V layout always
outperforms the inverted-V layout. Pohl et al. [28] compare the flying-V layout with the conventional
layouts of Figure 3.2 under turnover-based storage assignment. They concluded that a flying-V layout
will always outperform conventional layouts under random storage assignment. These researches
only focus on unit load warehouses. Here pickers only perform a single or dual pick per route, the
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effect of an order picking process with multiple picks is still underrepresented. Dukic and Opetuk [19]
analyzed and compared the fishbone layout with a random storage policy to a conventional layout.
They concluded that the fishbone layout results in a longer travel distance compared to a traditional
layout with a middle cross aisle for an order size between 10 and 30 picks. However, the fishbone
layout does perform slightly better than a conventional layout without a middle cross aisle. Çelik et al.
[29] compared the fishbone layout with a conventional layout with two middle cross aisles. Their study
finds that the conventional layout will outperform the fishbone layout for all orders with 3 or more picks.
Çelik and Süral [30] continue on the research of Çelik et al. [29] by changing the storage policy to a
turnover-based storage. They concluded that if the demand is very skewed (e.g. 20/80) the fishbone
layout will outperform the conventional layout for orders with up to at least 30 picks.

(a) Flying V layout [26] (b) Fishbone layout [26] (c) Inverted V layout [27]

Figure 3.3: non conventional layouts (adapted from: [6])

Besides the configuration of the racks, the dimensions such as the length andwidth of the aisles are also
important parameters. Hwang and Cho [31] developed an algorithm to find these optimal parameters.
They first solve for the minimum number of aisles and then find the optimal size of the aisle. Derhami et
al. [32] presented a simulation-based optimization algorithm to optimize the utilization of storage space
and the transportation costs in the layout. It is important to design the width of the aisles in such a way
that workers are able to surpass each other, otherwise this will lead to congestion in the warehouse.
Choosing for an aisle width where the aisles are wide enough for pickers to surpass each other easily
could lead to a two way warehouse. Pickers are able to enter and leave the aisle from both sides, the
downside of a two way aisle is that the pickers will have more interactions with other pickers and it will
be more chaotic. If the aisle is too narrow to turn, the routing will also be limited as the picker is then
forced to enter the aisle and leave the aisle on the other side. Increasing the width of the aisles too
much will affect the travel distance as well. The picker has to cross the aisle to pick from both sides
which will increase the travel distance. Table 3.1 displays the advantages and disadvantages of each
warehouse configurations. In Table E.1 the reasoning behind the table is given. The table indicates
that there is a relation between the space utilization and the congestion. The most important one is if
the space utilization increases, the congestion will decrease. However using more space, will increase
the warehouse size and therefore be more expensive.

A different decision that affects the order picking process is the amount of P&D points. Multiple
papers investigate the effect of multiple P&D points in a warehouse. Many of these papers focus on
multiple P&D points in non-conventional warehouses. Examples are the studies of Gue et al. [27] and
Mesa and Masel [33] that evaluate the effects of multiple P&D points on non-conventional warehouses.
Having multiple P&D points will avoid congestion and facilitate flow through receiving and shipping
docks [34]. Nevertheless every P&D point will use additional space and will complicate the warehouse
logistics in comparison to warehouses with only one sorting or loading location. The location of the
P&D point is often in the left bottom corner or in the bottom middle. The location of the P&D point is of
importance as it will affect the routing policy by its location; a P&D point in the middle will already have
different routing results than a P&D point in the bottom corner.
1The fishbone layout is the only non conventional layout that is evaluated as the flying-V and inverted-V layouts are comparable
with a multi-block layout
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Layout Aisle width Space utilization Congestion Routing Allocation impact

Single block Narrow + + - - - - -
Double - + - -

Multi-block Narrow + - + +
Double - - + + + +

Fishbone 1 N/A - - + - +

Table 3.1: Relations regarding the warehouse layout

3.2.3. Product allocation
There are numerous ways to store products within the warehouse. The effect of the product allocation
policy is related to the routing policy. Some combinations of strategies reinforce each other, whereas
other combinations have little effect. The simplest storage method is the random storage policy. In this
policy the Storage Keeping Units (SKUs) are assigned to a location in the warehouse that is selected
randomly from all eligible empty locations with equal probability [20]. The random storage policy makes
high use of the space since one storage location may be shared by different items, but leads to a lower
performance in the order-picking operation [35]. The random storage policy only works in a computer-
controlled warehouse that randomly assigns the location per product. If the order pickers can choose
the location themselves, the order picker will probably pick the first encountered empty location which
is known as the closest open location policy. This policy is thus in most aspects similar to the random
storage policy, the only difference is which empty location is selected. Selecting the closest open
location will result in a more concentrated distribution around the P&D point in comparison with the
random storage policy [20].

Unlike the random- and closest open location policy, dedicated storage policies store SKUs at their
dedicated place. The disadvantage of this is that a location is also reserved for products that are out of
stock, which leads to the lowest space utilisation among all policies [20]. Advantages of this policy are
that pickers get familiar with the layout, products can be easily grouped and the dedicated storage can
be useful if products have different weights. Heavier products can be stored in the lower racks and in
locations that are visited first in the sequence, preventing damage to lighter products by crushing them.
Within the dedicated storage, choices can be made on which location stores specific SKUs, leading to
different configurations. Based on these choices, specific SKUs are located at the easiest accessible
locations, usually near the depot at eye high. Choices can be made on popularity, turnover, volume,
pick density, Cube-per-Order Index (COI), correlation or by specific algorithms used to determine the
optimal place [36].

The class-based storage policy combines the random and dedicated storage policies. It first divides
all SKUs in several classes, often the number of used classes is three [20]. A classical way for dividing
items into classes is Pareto’s method, where the idea is that the fastest moving class contains 15%
of the products that contributes 85% to the turnover [20]. Each class is dedicated to a specific area
of the warehouse where the storage of SKUs is done randomly. The classes can be defined on the
same criteria as the dedicated storage. The difference between both policies is that in the class-based
policies all SKUs are classified and then randomly stored in their section, whereas in the dedicated
storage policy each SKU is assigned to a specific location. The fastest moving class is often called
class A, the next fastest class is called B, etc. In assigning the classes to an area in the warehouse
multiple configurations are possible as shown in Figure 3.4. The across-aisle storage policy stores the
A-items in the front locations of the warehouse. The within-aisle policy places same class items in the
same aisle, with class A closest to the depot. In the nearest-sub aisle storage policy it is assumed that
a sub aisle contains only one class and the distance between the center of the sub aisle and the depot
determines the class. This policy is only suitable for multi-block layouts, as for a single-block layout the
configuration is exactly the within-aisle storage. The nearest-location storage determines the distance
between each location and the depot and places the A-items in the closest single locations.

The previous discussed ways of storing products all consider one place per SKU, however storing
SKUs in multiple locations could be advantageous. This storing policy is called the scattered storage
assignment (SSA) policy, here individual items are intentionally distributed to multiple positions in the
picking area to increase the probability that items belonging to the same order are located at nearby
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positions [37]. A scattered storage is shown to reduce unproductive picker travel because there is
always some item close by irrespective of the current picker position [38]. A scattered storage is es-
pecially suited if each order demands just a few items. Scattered storage also heavily influences the
picker routing as SKUs are available at multiple storage locations. The downside is that opting for a
SSA policy increases the space utilization and can complicate the storing process.

(a) Across-aisle storage (b) Within-aisle storage (c) Nearest-subaisle storage (d) Nearest-location storage

Figure 3.4: class-based storage assignment configurations; Black boxes are class A, Dark grey boxes are class B, Light boxes
are class C (taken from: [14])

Figure 3.5 presents an overview of the different storage policies. Which storage policy is preferable
differs per warehouse and is dependent on the other active warehouse processes such as the routing,
order size and batching. In terms of space utilization, the random storage policy has the lowest space
requirement, so could be useful for warehouses with a space shortage. Dedicated storage has the
highest requested space as it has to reserve storage locations for possible obsolete SKUs. The class-
based policy is somewhere between the dedicated and random policy. The dedicated storage policies
have the advantage that the picker will get familiar with the location of the SKU. The main disadvantage
of the dedicated storage is that it reserves a spot for a SKU even if the SKU is out of order. This could
turn out disadvantageous with high seasonal products. The class-based and the dedicated storage are
in essence very comparable. The best classified products are in the easiest accessible locations, the
difference is the final determination of the location. The dedicated storage has to evaluate and place
each specific item, whereas the class-based randomly locates the SKUs per class. These similarities
result in comparable results for both policies. As the implementation of a dedicated storage is harder
than a class-based storage [39], the class-based storage policy is preferable.

Figure 3.5: Diagram of storage location policies
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Table 3.2 illustrates the differences between the different storage policies. The full reasoning of the
scores in Table 3.2 can be found in Table E.2. It evaluates the difference between a single and scattered
storage and evaluates the four storage policies. While random storage is the most space-efficient,
dedicated and class-based storage policies generally improve picker performance and travel distances.
Dedicated storage returns the highest picker performance, but suffers from low space utilization. Class-
based storage strikes a balance between the two, offering a compromise in both space efficiency and
travel distance reduction.

Space
utilization

Picker
familiarity

Routing Difficulty to
implement

Congestion Precedence
constraints

Single + + - + - +
Scattered - - + - + +

Random + + - - - - + + + - -
Closest open
location

+ + - - - + + + - -

Dedicated - - + + + + - - - - + +
Class-based + + + - - +

Table 3.2: Evaluation of different policies

For multi-picker warehouses with a class-based or dedicated storage policy it is important to consider
congestion. Where the random storage assignment generates a uniformly distributed activity over the
picking area, the other storage assignment policies tend to concentrate picking operations. Therefore,
traffic may become congested. The level of congestion depends on which class-based storage policy
is used and how the skewness of the classes is determined.

3.3. Operational level
At the operational level, processes have to be carried out within the boundaries set at the strategic and
tactical level. The decisions typically concern daily operations such as job assignment, batch formation
and the routing.

3.3.1. Job assignment
Job assignment is quite straightforward, it means which order/batch is assigned to which worker. If
the workers are all performing the same task, the assigned job will most likely the one with the earliest
due time. However for specific reasons there could be decided to deviate from this policy and assign
specific orders to a specific picker.

3.3.2. Batch formation
When orders are large, in relation to the capacity of the picking cart, the orders are picked separately.
This way of order picking is referred to as single order picking policy. However, if orders are smaller,
multiple orders can be picked in the same tour and thereby reducing the total travel distance. Order
batching is the method of grouping a set of orders to be retrieved in a single picker tour. According
to Choe and Sharp [40] there are two criteria for batching: the proximity of pick locations and time
window batching. Proximity batching assigns each order to a batch based on the proximity of its storage
locations to those of other orders. Under the time window batching, all orders arriving during the same
time interval (a time window) are grouped as a batch. If all the information about the orders is available
when the batching and picking process starts, the problem is considered offline and can be considered
a static problem. With an online batching problem, the problem is considered dynamic. Orders can be
added throughout the process, needing the batching method to reevaluate constantly.

The Order Batching Problem (OBP) is the grouping of a given set of customer orders into feasible
picking orders such that the objective function is minimized. This objective function is often to reduce
travel distance, but could also focus on different parameters such as picking time, costs, tardiness or
completion time [41]. Each batch is restricted to contain a maximum capacity that might be measured
in: weight, volume, number of items, or number of orders [41].
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When solving the order batching problem exact, it can be considered as a NP-hard problem and
many studies focus on developing algorithms or (meta-)heuristics for solving it. In these approaches two
different types can be distinguished; a seed algorithm and a saving algorithm. A seed algorithm selects
an initial single seed order in the batch and then adds more orders according to a route closeness
criterion until no more orders can be added due to a capacity constraint [20]. A savings algorithm starts
by assigning each order to a separate batch. The algorithm then iteratively selects a pair of batches to
be combined based on the saving of combining them until no more batches can be combined due to
the capacity constraint [4]. The batching can also be done based on a priority rule. This means orders
are prioritized and assigned to pick lists based on their priority (e.g. first-come-first-served) [12]. By
following the priority rule, the results will turn out less than optimal but can be useful if specific orders
are time bound.

3.3.3. Routing
In every picker-to-part warehouse, an order picker must follow a route to visit all pick up locations.
Routing will impact the order picking performance as it directly impacts the travel distance. The rout-
ing plays a role in almost every study related to warehouse optimization as most of the objectives are
directly linked with the travel distance. Some researchers estimated that travel time accounts for 50%
of the total order picking time [20, 42]. The picker routing problem (PRP) is a variant of the vehicle
routing problem (VRP) [2]. It uses an origin-destination (O/D) matrix that results from the structure of
the warehouse, which means the solution is bound to the specific layout. In a warehouse all storage
locations and P&D points are considered as a node. The O/D matrix includes the shortest distances
between all nodes and is necessary to solve the PRP. The algorithm used to solve the routing problem
can be classified in three general types; an exact algorithm, heuristics, and meta-heuristics [43]. Exact
algorithms will find an optimal solution to a PRP. Heuristics are problem dependent algorithms built
according to the specifications, with the result often not being optimal. Meta-heuristics are high-level
problem-independent algorithms that provide a set of guidelines or strategies to find an approximate
solution for the problem [43].

Heuristics
Where exact algorithms find the shortest possible route for the picker routing problem, heuristic algo-
rithms tend to find solutions less than optimal but are easy to apply. For a single-block warehouse
with narrow aisles there are 5 basic heuristics defined in literature. Hall [44] proposed the traversal (S-
shape), the midpoint and the largest gap heuristic. Petersen [45] added the return and the composite
heuristic. An general description is given below. Because this thesis will use the S-shape heuristics,
the S-shape heuristic is also visualized in Figure 3.6

• Traversal (S-shape): In the traversal policy the picker follows a S-shape throughout the ware-
house. If the aisle has at least 1 pick, the picker will traverse the aisle entirely. If the aisle has no
pick, the picker will skip the aisle and continue with the next one [2].

• Mid-point:. The warehouse is divided into two equal halves. Picks located at the top- or bottom
part of the warehouse are picked from their respective top or bottom cross aisle. The picker
leaves the aisle on the side where the picker entered the aisle

• Largest gap: In the largest gap policy, the picker avoids the largest gap. There are three possible
gaps: (1) the distance between the top cross aisle and the first pick location in the aisle, (2) the
distance between two middle pick locations, and (3) the distance between the bottom cross aisle
and the last pick location[2, 20]. If the largest gap is between two pick locations, a return route to
either the top- or bottom cross aisle is used.

• Return: The picker will enter and leave the aisle from the same (most often the front) aisle. Once
the picker have picked all the picks in the aisle, the picker will return to the front end and continues
to the next aisle with picks. This heuristic is mostly effective if most of the pick locations are on
one end of the aisle [2].

• Composite (combined): This strategy combines the S-shape and the return policy. The entered
aisles are either traversed entirely or a return method to were the picker entered the aisle is used,
depending on which heuristic gives the shortest travel distance to the next pick. For each aisle,
the choice is made by using dynamic programming[2].
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Figure 3.6: S-shape heuristic

The basic heuristics were originally developed for a single block layout, nevertheless multiple studies
extended these heuristics to a multiple block layout and defined new heuristics. Roodbergen and De
Koster [46] extended the largest gap and S-shape heuristic to a multi-block layout. They also proposed
two new routing heuristics which they called combined and combined+. The proposed routing heuristics
have a strong correlation with the heuristics for a single block warehouse, but do come with some
additional conditions. Roodbergen and De Koster [46] located the pickup/delivery point in the bottom
left corner. The S-shape, largest gap and combined heuristic all travel all the way up to the farthest
block by using the first encountered aisle that contains requested items. Then it solves each block
separately, starting with the farthest block and each iteration moving a block (with picks) back to the
pickup/delivery point. The combined+ heuristic improves on this condition as it able to access the
furthest block by not using specifically the first aisle that contains picks, but can use the first sub aisle
per block that contains a pick to travel upwards. The proposed heuristics and their routes are visualized
in Figure 3.7.

Vaughan and Petersen [47] developed the aisle-by-aisle heuristic. This heuristic starts in the left
bottom of the warehouse and ends in the right bottom of the warehouse. The heuristic proceeds from
left to right under the condition that each aisle containing picks has to be visited only once. A dynamic
programming approach is used to determine the best cross aisle to use for moving from one picking
aisle to the next to minimize the travel distance. Shouman et al. [48] proposed two new heuristics. the
block-aisle 1 and block-aisle 2 heuristic. Both heuristics split each block in the middle into an upper and
lower part. The upper and lower part are then picked using the return policy. The difference between
the two heuristics is that in the block-aisle 2 heuristic the upper part also contains the next adjacent
storage location of the lower part if that specific location contains a pick.

(a) S-shape (b) Largest gap (c) Combined (d) Combined+ (e) Block-aisle 1 (f) Block-aisle 2

Figure 3.7: Heuristics for a multi-block layout (taken from: [43])
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The previously mentioned heuristics for multi-block layout can be classified as simple heuristics, the
second category is called the improvement heuristics. These heuristics try to improve an initial solution
generated by a heuristic. Often used improvement heuristics are the 2-opt and the 3-opt local searches
as well as the Lin-Kernighan-Helsguan (LKH) TSP heuristic. The 2-opt and 3-opt local search algo-
rithms iterative improve an initial solution by swapping respectively 2 or 3 edges to reduce the travel
distance. In each iteration, the algorithm evaluates in the current route whether swapping the edges
would result in a shorter route. The LKH is a local optimization algorithm that takes an initial tour and
then repeatedly exchanges some edges in the tour with other edges that are not in the tour (based on
the λ-opt algorithm presented in Lin [49]) to reduce the distance of the current tour [43]. Where the
2-opt and 3-opt algorithms are fixed to swapping 2 or 3 edges, the LKH can dynamically change the
number of swapped edges up to 5 edges [50].

Exact algorithms
Exact algorithms tend to find an optimal solution to the PRP. The work of Ratliff and Rosenthal [51] is
seen as a seminar work. The warehouse in the work of Ratliff and Rosenthal [51], is a narrow, single
block low-level picker-to-parts warehouse with a single depot in the front cross aisle. Ratliff and Rosen-
thal [51] proposed an algorithm to pick orders in minimum time, with a time complexity that is linear in
the number of aisles. The algorithm of Ratlif and Rosenthal has been extended in multiple researches.
The downside of their algorithm is that it lacks flexibility and is fixed to the warehouse configuration.
Therefore multiple researches extended their research to different warehouse configurations.

Ratliff and Rosenthal [51] is specified to a single block warehouse, so multiple authors extended the
algorithm to a multiple block warehouse. Roodbergen and De Koster [52] were the first to extend the
research to a conventional warehouse with a middle cross aisle. They assumed that the cross aisles
do not contain any storage locations. Goeke and Schneider [53] proposed a compact formulation of
the PRP based on the work of Ratliff and Rosenthal [51] and is able to solve large problem instances
within short runtime. Their work is also able to address scattered storage, decoupling of the picker and
cart and includes multiple depots.

Besides extensions on the work of Ratliff and Rosenthal [51], there are also multiple studies that
are self contained and no extension on their work. Chabot et al. [54] used a branch-and-cut algo-
rithm to solve the order picking problem with precedence constraints. They proposed two algorithms,
a capacity-indexed algorithm and a two-indexed flow formulation. They concluded that both the ex-
act algorithms are performing better than heuristics, but have longer computational times. The study
of Theys et al. [55] is in essence quite similar. The study applied an exact algorithm and compared
the results to heuristics. The exact results are obtained by using the exact Concorde TSP algorithm
[56], which uses a branch-and-cut algorithm to find the shortest route. Matusiak et al. [57] used the A*
algorithm, which is based on dynamic programming, to solve the combined precedence-constrained
order picker routing and order batching problem. The A* algorithm is first introduced by Hart et al. [58]
and is in the work of Matusiak et al. [57] used for the routing, where the batching is solved by a sim-
ulated annealing algorithm. The mentioned studies concluded that solving the order picking problem
with (meta-)heuristics have a lower computation time and for that reason could be preferable. Su et al.
[59] proposed two mathematical optimization formulations for the multi-block layout with Mixed Integer
Linear Programming (MILP). For which the scale and solution time are independent of the number of
cross aisles. For a single block warehouse Su et al. [59] evaluated their algorithm to the algorithm of
Scholz et al. [60] and for the multi-block layout to the two algorithms of Pansart et al. [61]. The algo-
rithm of Scholz et al. [60] models the PRP as a classic TSP, but takes into account that pickers can
only change the aisle by using the cross aisles.

Meta-heuristics
Meta-heuristics are mostly used to solve a combination of multiple order picking problems at once. The
most commonly used meta-heuristics are[43]: Genetic Algorithms (GA), Simulated Annealing (SA), a
Tabu Search (TS), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Adaptive
Large Neighborhood Search (ALNS). Meta-heuristics typically return results comparable to results pro-
vided by exact algorithms, but in general use less computation time and find near optimal solutions
instead of the optimal solution.

Tsai et al. [7] proposed a multiple-GA method consisting of two separate GA’s, one for the batch-
ing and one for the TSP. The GA for the batching finds the optimal batch plan by minimizing the sum
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of the travel costs and considering the earliness and tardiness penalties. The GA is inspired by the
natural selection mechanism where stronger individuals are more likely to survive. It defines potential
solutions in the form of chromosomes and starts by creating an initial population by randomly gener-
ating feasible solutions. Offspring solutions are then produced through crossover and mutation. The
fitness of each solution can be related to the objective function value. In the GA for the TSP, each gene
denotes a picking location that has to be visited, the order of the genes is the visiting sequence in the
batch. By reflecting back to the objective function it finds the most effective travel path in a batch by
minimizing the travel distance. Kordos et al. [62] also uses two GA’s in their study. Where Tsai et al.
[7] used it for the routing and the batching, they applied it to the product placement and routing. They
concluded that using the GA’s simultaneously reduces the travel costs to 26% in comparison with only
using the routing GA. Lin et al. [63] studied a comparable problem as in the study of Tsai et al. [7],
but used a PSO approach. They modify the PSO proposed by Selvakumar and Thanushkodi [64] to
solve the routing problem for a batch. PSO imitates the movement of a population of particles seeking
the optimal solution. In each iteration of the PSO, each particle moves towards the optimal solution
by updating its own velocity and position on the basis of the past good experience of the particle and
the global good experience of all particles [63]. Ho and Tseng [65] studied the order picking routing by
updating the results of the largest gap heuristic by a SA approach. SA is an optimization technique that
allows non-improving moves in its local search process to ensure the solution does not get stuck in a
local optimum. Chen et al. [66] applied an ACO approach for two order pickers to a multi-block layout
while taking congestion into account. Later they modified their previous work to multiple order pickers
in Chen et al. [67]. An ACO is a meta-heuristic algorithm which simulates the behavior of ant colonies
in nature as they forage for food and find the most efficient routes from their nests to food sources and
is commonly used to solve the TSP [66]. Chabot et al. [54] used an ALNS to solve the order picking
problem with respect to precedence constraints. The ALNS uses destroy and repair operations to im-
prove the solution in each iteration. A destroy operation removes nodes from the pick sequence, while
the repair operation inserts them at potentially better positions [43]. Cortés et al. [68] studied the order
picker routing problem with constraints of the inventory availability and considering an order is not al-
lowed to be split. The problem is solved by using a generic TS and using two hybrid variants of the TS,
called TS 2-Opt Insertion and 2-Opt Exchange. They evaluated the results of these 3 meta-heuristics
and compared the results with a SA and GA approach. A generic tabu search implements a tabu list,
which records the movements applied in previous solutions. This tabu list prevents returning to the
most recent visited solutions in order to avoid cycling and promotes searching in other zones of the
solution space that have not yet been explored [68]. Swap and shift movements are implemented to
obtain new routes. In a swap movement, two storage locations are interchanged, whereas in a shift
movement, one location is selected and inserted into a new position in the route [68].

The Joint Order Batching Picker Routing Problem
The Joint Order Batching and Picker Routing Problem (JOBPRP) means as the name already suggest,
integrating order batching and picker routing problems to enhance the performance. The PRP and OBP
are strongly linked, since the OBP needs to be solved to provide an input for the PRP while the PRP has
to be solved to evaluate the performance of the OBP. The JOBPRP can be addressed using two main
approaches: integrating both into one optimization problem or solving them sequentially and iteratively.

Ene and Öztürk [69] represent the JOBPRP with an integer programming formulation. Due to the
need for short computation time, they solve this problem by using a genetic algorithm to approximate
the results. They first determine the location of the products and then apply their GA to solve the joint
batching and routing problem. They integrated both problems in the integer programming formulation.
Lin et al. [70] simultaneously determines the optimal order batching and the shortest picker routing.
The work used the Manhattan distance between picks to obtain an ’order center’, which can be seen
as the location with the lowest average distance to all the picking locations in that order. These order
centers are then linked to the nearest ’batch center’ and used to solve the routing problem. By changing
the location of these ’batch centers’ in the algorithm, different batches are formed and different results
for the routing are found. This is done with an improved PSO (ImPSO). Which improves the PSO by
updating on basis of the previous best and worst experiences of particles.

Won and Olafsson [71] proposed two different heuristics to solve the JOBPRP. Their solution is
based on combining a Bin-Packing Problem (BPP) with a TSP. The first heuristic is the Sequential
Order Batching and Picking (SBP) algorithm. It is sequential in the sense that it first solves the batching
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problem and then solves the picking problem for these batches. The second heuristic, the Joint Order
Batching and Picking (JBP) algorithm, simultaneously constructs batches and tours. In contrary to
the SBP, this heuristic also relaxes the constraint that each picker should always pick the maximum
capacity of the cart. In both cases, the routing is solved by a 2-opt heuristic. Their numerical results
show that considerable improvements can be achieved by solving the problem jointly.

Tsai et al. [7] proposed amulti-GAmethod to solve the JOBPRP. It consists of two genetic algorithms,
one for the batching and one for the routing. In the first stage of the GA, the order batches that are
required for picking are identified. The second GA searches for the most effective travel path for the
batch by minimizing the travel distance. These results are then used again as starting point of the first
GA, until the maximum iteration number is reached.

Scholz and Wäscher [72] integrated multiple routing heuristics into an iterated local search ap-
proach to solve the batching problem. They combined the iterated local search with the following
routing heuristics: S-shape, largest gap, aisle-by-aisle, combined+ and the heuristically modified ex-
act algorithm (HMEA). They showed it is possible to solve the JOBPRP with multiple heuristics, and
showed the potential of the JOBPRP instead of solving the problems separately.

3.4. Conclusion
This chapter answers subquestion 2. It showed all aspects that influence the warehouse performance.
There are four main aspects found that have a significant influence of the warehouse operations; The
layout, the product allocation, order batching and the routing. The configuration of the racks will set
the physical outline for the rest of the warehouse processes and therefore has a high influence on the
order picking performance. Adding cross aisles to a single block warehouse is a trade-off between the
reduction of travel distance and the required space for a cross aisle. The layout will affect all other
processes in the warehouse and is therefore of high influence.

How and where products are placed can influence the performance by placing specific products
in the most easily accessible locations. Each policy has its own strengths and weaknesses. While
random storage is the most space-efficient, dedicated and class-based storage policies generally im-
prove picker efficiency and travel distances. Dedicated storage returns the highest picker efficiency,
but suffers from low space utilization. Class-based storage strikes a balance between the two, offering
a compromise in both space efficiency and travel distance reduction.

With order batching, a given set of customer orders is batched into a feasible batch such that the
objective function is minimized. Which orders are batched together depends on the storage allocation
and the routing method. The batching method groups orders in a batch, functioning as the input for the
routing problem. The batching problem thus directly affects the routing problem and is therefore most
relevant to be solved in combination with the routing problem.

When improving the warehouse efficiency, reducing the total travel distance is often the objective.
The routing can be solved in three different ways, with heuristics, an exact algorithm or by using meta-
heuristics. Heuristics are rules of thumb that aim to find good solutions to the routing problem. The
exact algorithm gives the optimal solutions to the routing problem but is a NP-hard problem, so for
large instances the computing time exponentially increases. Meta-heuristics are mostly used in a high
order problem and used to solve multiple order picking problems at once. The results obtained from
a meta-heuristic approach are comparable with exact algorithms, but in general use less computation
time. With the use of meta-heuristics, larger instance can be solved in a feasible time. Different meta-
heuristics have proven to be applicable to solve the JOBPRP. There is no research conducted in which
meta-heuristic is the best performing, howevermany authors propose aGenetic Algorithm. An overview
of the relevant literature that integrates multipe warehouse processes can be found in Table 3.3, it also
shows this work.
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Layout Allocation Routing Batching Characteristics
Reference Objective Si Mu R D C E H MH B JB O S P

[22] A statistical estimate for average travel distance for different
layouts

X X X X - - -

[23] Finding optimal multi-block layouts X X X - - -
[25] Finding optimal placements of cross-aisles X X X - - -
[35] Assign SKUs to locations based on order pairs X X X - - -
[51] Solving the picker routing problem with an exact algorithm X X X - - -
[46] Developing new heuristics for the routing problem X X X - - -
[2] Finding optimal routing policies and comparing to heuristics X X X X 14 450 30
[73] Solving a combined precedence-constrained routing and

order-batching problem.
X X X X 100 3000 3

[55] Comparing the LKH-heuristic to TSP heuristics and evaluating
the effect of midaisles.

X X X X X X X 100 500 80

[7] Proposes a batch picking model that considers not only travel
cost but also an earliness and tardiness penalty

X X X X 250 400 60

[63] Investigates the JOBPRP by using a PSO X X X X 100 16 4
[67] Proposes a hybrid algorithm for the JOBPRP X X X X 200 10 4
[69] Designing a storage alocation plan and order picking system for

the automotive industry
X X X X 45 400 3

[70] Solving the JOBPRP with a ’batch center’ X X X X 100 16 4
[72] Solving the Order Batching and the Picker Routing Problem in a

more integrated way for different heuristics
X X X X X 80 3000 80

[8] Solving the JOBPRP for multiple-cross-aisle warehouse systems X X X X 250 500 20
[11] Solving the JOBPRP combined with the allocation policy X X X X X X 200 7200 100
[74] Uses a grouped genetic algorithm to solve the JOBPRP X X X X X 50 2000 50
This research Examine the relation between warehouse processes and find

the optimal configuration
X X X X X X 12000 64000 200

Abbreviations: Si: Single-block, Mu: Multi-block, R: Random policy, D: Dedicated policy, C: Class-based policy, E: Exact algorithm, H: Heuristics
MH: Meta-Heuristics, B: Batching only, JB: Joint Batching with routing, O: number of Orders, S: Number of SKUs, P: Pick density (picks per batch)

Table 3.3: An overview of the literature reviewed on the optimizing the travel distance by integrating multiple warehouse processes processes



4
Model development

This chapter will discuss the JOBPRPmodel. The JOBPRPmodel described in this chapter is specified
to the system in chapter 2. The chapter will explain the model objective, input and output and the
assumptions and simplifications made to accurately represent the system of chapter 2. Finally, the
mathematical model is presented and explained. The mathematical model is based on the works of
Kulak et al. [8] and Cano et al. [74]. This chapter will provide an answer to the third subquestion.

4.1. Model objective
The goal of this thesis is to define the best performing orderpicking operation in the Crisp warehouse.
The literature review in chapter 3 outlined four main aspects of warehouse optimization; the layout, the
product allocation, the batching method and the routing. The effect of each process will be evaluated
and the best performing configuration will tried to be found. The layout and the product allocation are
considered as input for the JOBPRPmodel, which combines the other two aspects. The objective of the
model is to minimize the total travel distance of the picking carts. With the total distance is meant not the
routes per picker, but all routes combined. The model will find the optimal batching strategy to minimize
this travel distance. The outcome of the model will be in the form of the constructed batched and the to
be walked routes by these batches. Figure 4.1 gives a black box representation of the JOBPRP model.
The blackbox depicted in Figure 4.1 can be seen as a sub process in the total order picking blackbox
that is depicted in Figure 2.10. Where Figure 2.10 depicts the whole system, Figure 4.1 depicts only
the JOBPRP model.

Figure 4.1: Blackbox representation of the JOBPRP model

27
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4.2. Performance indicators
The main performance indicator of the JOBPRP model is the computation time. Due to the NP-hard
complexity of the JOBPRP, the computation time quickly rises as the number of parcels increases. To
ensure the model’s practical applicability, extended computation times, spanning several hours, are
undesirable. This makes the computation time a key performance indicator.

4.3. Requirements
The model should be a valid representation of reality as presented in chapter 2, giving it a few require-
ments is should meet. The requirements are the following:

• A parcel should be picked entirely in a single batch, it can not be splitsed.
• Each picking zone has an unique maximum capacity of parcels per batch.
• Each order should be picked before their pick deadline.
• The route visits the locations only one time, so no detours are allowed.
• The aisles have directional traffic and follow the S-shape heuristic.
• In a batch, the maximum time difference between the pick deadline of 2 parcels is 2 hours.
• To reduce the complexity in the rest of the supply chain, parcels on the same delivery route are
batched as much as possible together

These requirements are either addressed by the constraints within themathematical model or managed
through the relevant input data. The subsequent subsections will elaborate on this.

4.4. Input
The input for the JOBPRP model can be divided in two main categories, the actual data of the parcels
and the locations and layout of the warehouse. The layout of the warehouse is depicted in the distance
matrix, which maps the distance between different locations in the warehouse. The locations used in
the input data are the locations of the distance matrix.

4.4.1. Layout and distance matrix
The distance matrix, denoted as 𝑑𝑖,𝑗, quantifies the travel distance between nodes 𝑖 and 𝑗. A node
displays a location in the warehouse related to a shelf. The distance matrix displays the layout of the
warehouse. The node representation of a rectangular single-block warehouse layout is visualized in
Figure 4.3a. 𝑚 represents the number of aisles and 𝑛 represents the number of locations per aisle. It
is assumed that the distance between two adjacent nodes in the same aisle is 1 meter. The distance
to cross to the next aisle is assumed to be 3 meters. The picker is only able to cross to the next aisle
using the physical cross aisles. The layout and the one-directional aisles have their influence on the
distance matrix. To compensate for the one directional aisles, the distance between location 𝑖 and 𝑗 for
𝑗 < 𝑖 is modeled as 𝑀, with 𝑀 a large value. This large value implies that traversing back in an aisle is
impossible. The picking tour starts and ends in the P&D point. In the distance matrix, the pickup and
delivery points are represented as a single node. Despite being distinct in reality, this simplification is
possible because they serve as the start and end points. By adjusting the distances of all nodes to
the delivery location, assuming it is positioned at its actual location, the matrix maintains its validity. To
create a cross aisle, the distance between two shelves is increased to create a cross aisle. Creating this
cross aisle, will increase the distance between the nodes located next to the midaisle to a distance of 2
meters instead of 1. The distance matrix is of size 𝑛𝑚+1×𝑛𝑚+1 and is in the form of Figure 4.2. Due
to the one-directional aisles, if an aisle is entered, the entire aisle is traversed. This makes it possible
to model all the nodes in one aisle as 1 node, nevertheless, all nodes in that aisle are visited. This
simplification reduces the size of the distance matrix, meaning the JOBPRP model has less locations
to reconsider which will improve the computation time. The simplified node representation can be found
in Figure 4.4. The verification of this simplification is provided in subsection 5.1.1
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𝑑𝑖𝑗 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑑𝑃𝐷,𝑃𝐷 𝑑𝑃𝐷,1 𝑑𝑃𝐷,2 𝑑𝑃𝐷,3 ⋯ 𝑑𝑃𝐷,𝑛𝑚
𝑑1,𝑃𝐷 𝑑1,1 𝑑1,2 𝑑1,3 ⋯ 𝑑1,𝑛𝑚
𝑑2,𝑃𝐷 𝑑2,1 𝑑2,2 𝑑2,3 ⋯ 𝑑2,𝑛𝑚
𝑑3,𝑃𝐷 𝑑3,1 𝑑3,2 𝑑3,3 ⋯ 𝑑3,𝑛𝑚
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑑1,𝑃𝐷 𝑑𝑛𝑚,1 𝑑𝑛𝑚,2 𝑑𝑛𝑚,3 ⋯ 𝑑𝑛𝑚,𝑛𝑚

⎤
⎥
⎥
⎥
⎥
⎦

∼

⎡
⎢
⎢
⎢
⎢
⎣

0 𝑑𝑃𝐷,1 𝑑𝑃𝐷,2 𝑑𝑃𝐷,3 ⋯ 𝑑𝑃𝐷,𝑛𝑚
𝑑1,𝑃𝐷 0 𝑑1,2 𝑑1,3 ⋯ 𝑑1,𝑛𝑚
𝑑2,𝑃𝐷 𝑀 0 𝑑2,2 ⋯ 𝑑2,𝑛𝑚
𝑑3,𝑃𝐷 𝑀 𝑀 0 ⋯ 𝑑3,𝑛𝑚
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑑1,𝑃𝐷 𝑀 𝑀 𝑀 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

Figure 4.2: Distance matrix

(a) no midaisle (b) with midaisle

Figure 4.3: Node representation of the locations in the warehouse

(a) no midaisle (b) with midaisle

Figure 4.4: Simplified node representation of the locations in the warehouse
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4.4.2. Parcel data
The JOBPRP model is applied to the warehouse of Crisp and therefore will use their actual picking
data. For this data to be useful in the JOBPRP model, some data processing steps have to followed.
The data processing steps are described in Appendix B. The input data for the JOBPRP model will
be in the form of Table 4.1. The data is sorted per ’parcel_ID’, with each ’Stock_Location’ indicating a
stock location the parcel must visit. These ’Stock_Locations’ are represented by a ’Location_Number’.
This transformation associates each stock location with a position in the distance matrix, which makes
it suitable as input for the JOBPRP model. The data necessary for JOBPRP can be found in the
final three columns of Table 4.1. An important step in the data processing steps, is sorting the data
by ’Delivery_Time’ and ’Delivery_route’. This ensures that the data is sorted per route on ascending
delivery time.

Order_id Parcel_ID Zone Delivery_Time route_id Stock_Locations Location_Numbers Order_number W_o

nl-212473086 nl-33824995 chilled 10-15-2024 22:00:00 nl-201273 A-936-1, D-360-2, B-711-1, D-531-1, B-420-1, C... 1, 2, 3, 4 1 4
nl-212473086 nl-33825071 ambient 10-15-2024 22:00:00 nl-201273 Y-711-2, S-379-1, V-815-1, Z-822-2, X-795-1, V... 1, 4, 5, 6, 7, 8 2 4
nl-212473086 nl-33825083 frozen 10-15-2024 22:00:00 nl-201273 G-464-1, L-386-1, L-512-2 1, 3 3 4
nl-212492445 nl-33825074 ambient 10-15-2024 22:00:00 nl-201273 W-760-2, U-740-4, V-287-4, U-707-2 3, 4, 5 4 4
nl-212492445 nl-33825081 chilled 10-15-2024 22:00:00 nl-201273 A-350-1 1 5 4
nl-212492445 nl-33825084 frozen 10-15-2024 22:00:00 nl-201273 G-480-1, G-310-1, G-368-4 1 6 4
nl-212500356 nl-33825001 chilled 10-15-2024 22:00:00 nl-201273 D-236-2, D-240-2, B-406-2, B-745-1, C-885-3, D... 1, 2, 3, 4 7 4
nl-212500356 nl-33825057 ambient 10-15-2024 22:00:00 nl-201273 V-207-1, Y-736-4, Y-400-1, V-236-4, S-355-1, X... 1, 3, 4, 6, 7 8 4
nl-212500356 nl-33825082 frozen 10-15-2024 22:00:00 nl-201273 H-444-2, L-512-2 2, 3 9 4
nl-212549874 nl-33825004 chilled 10-15-2024 22:00:00 nl-201273 C-866-2, C-291-1, B-420-1, C-340-1, D-781-1, C... 2, 3, 4 10 4
… … … … … … … … …
nl-212749269 nl-33834484 frozen 10-16-2024 18:20:00 nl-201288 G-310-1, H-436-2, H-278-1 1, 2 3529 4
nl-212750376 nl-33834444 chilled 10-16-2024 18:20:00 nl-201288 C-846-2, D-305-3, A-915-3, D-737-4, C-737-3, D... 1, 2, 3, 4 3530 4
nl-212750376 nl-33834474 ambient 10-16-2024 18:20:00 nl-201288 Y-750-4, V-205-3, W-754-3, S-539-1, W-309-1, V... 1, 4, 5, 7 3531 4
nl-212750376 nl-33834484 frozen 10-16-2024 18:20:00 nl-201288 G-416-1, H-334-1 1, 2 3532 4
nl-212763309 nl-33834450 chilled 10-16-2024 18:20:00 nl-201288 C-260-1, A-906-4, C-500-1, B-730-1 1, 2, 3 3533 4
nl-212763309 nl-33834461 ambient 10-16-2024 18:20:00 nl-201288 W-389-1, S-439-1, W-323-4, W-439-4, U-745-3, Z... 1, 3, 5, 7, 8 3534 4
nl-212763309 nl-33834479 frozen 10-16-2024 18:20:00 nl-201288 L-366-1, L-478-1 3 3535 4
nl-212770896 nl-33834453 chilled 10-16-2024 18:20:00 nl-201288 D-325-3, C-790-1, C-707-4, C-820-4, C-711-1 3, 4 3536 4
nl-212770896 nl-33834466 ambient 10-16-2024 18:20:00 nl-201288 Y-710-2, W-309-1 5, 7 3537 4
nl-212770896 nl-33834482 frozen 10-16-2024 18:20:00 nl-201288 L-368-1, L-270-1 3 3538 4

Table 4.1: Input data for the JOBPRP model on 16-10-2024

4.5. Assumptions and simplifications
The requirements presented in section 4.3, set the boundaries for the JOBPRP model. The JOBPRP
model should be as close to the real system described in chapter 2 as possible, however to model
the real situation some assumptions are made. This is because modeling the actual situation is too
complex and can be simplified with a few assumptions. The first assumptions are related to the product
allocation. The Crisp warehouse consists of shelves that contain multiple SKUs. In theory each SKU
can be modeled with their own product location. However, this would unnecessary complicate the
model and, therefore, is chosen to model each shelf as a separate location, as visualized in Figure 4.3.
This means that a location can hold multiple different SKUs. This is not far away from reality as the
picker will most likely park their picking cart in front of the shelf and pick all products in that shelf before
moving to the next location. The picker is also able to pick from both sides of the aisle, the extra travel
distance these movements create is not taken into account in this model. When reallocating SKUs in
a new storage policy, it is assumed that the SKUs are uniform. This means we do not incorporate the
size differences between SKUs in the new defined storage policies. In Figure 2.7-2.9 the difference
between multiple locations is clearly visible. It is thus assumed that each shelf/location is is uniform
and is able to hold multiple SKUs. The different storage sizes are neglected in this model.

The next assumption is related to the parcels. The composition of which containers are assigned to
which parcel is considered fixed. It could be beneficial to interchange specific containers to a different
parcel in the chilled and frozen zone. However it is assumed that the parcels are fixed as changing
container between parcels is undesired for the rest of the supply chain.

chapter 3 showed there are multiple possible ways to solve the routing problem; With heuristics,
exact algorithms or with meta-heuristics. Due to the operational complexity to change away from the
S-shape heuristic, it is assumed the S-shape heuristic is used for the routing.

The last assumption is has to do with the due time of the parcels, because parcels with a time
difference more than 2 hours are not allowed to be batched together. The input data sheet is sorted on
the delivery time. To decrease the computation time, the JOBPRP model takes small chunks as input
based on the maximum parcels per batch. Because the data is sorted on delivery time, the first parcel
will always have the earliest delivery time. If a subsequent parcel within the chunk size has a delivery
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time with a difference of more than two hours, the chunk is considered full and a new chunk is started.
In bullet-points this are the made assumptions and simplifications:

• The routing considered is the S-shape (traversal) heuristic
• Product locations are considered per shelf instead of single locations
• Travel distances between the picking cart and the shelves are neglected
• For the reallocation of SKUs, the SKUs are assumed to be uniform
• We consider parcels as they are, containers are not interchanged
• The chunks of inputdata do not contain parcels with a delivery time with a difference of more than
2 hours.

4.6. Model formulation
The mathematical model is based on the works of Kulak et al. [8] and Cano et al. [74]. Which provide
the basis of this mathematical model and provided the first 5 constraints. The last two constraints are
designed to fit the configuration for Crisp.

Sets and Indices

• 𝑏 ∈ 𝐵 : Set of Batches
• 𝑝 ∈ 𝑃 : Set of Parcels
• 𝑖, 𝑗 ∈ 𝐿 : Set of storage locations
• 𝐼𝑝 ⊂ 𝐿 : Set of storage locations per parcel ∀𝑝 ∈ 𝑃

Parameters

• 𝑄 : Max batch capacity
• 𝑊𝑝 : Weight per parcel ∀𝑝 ∈ 𝑃
• 𝑑𝑖,𝑗 : Distance matrix between 𝑖 and 𝑗

Binary decision variables

𝑥𝑖,𝑗,𝑏 = {
1 if the route for batch 𝑏 goes from the location to perform pick operation

𝑖 to the location to perform pick operation 𝑗
0 otherwise

𝑦𝑝,𝑏 = {
1 if parcel 𝑝 is performed by batch 𝑏
0 otherwise

The objective function is:

Min∑
𝑏∈𝐵

∑
(𝑖,𝑗)∈𝐿

𝑑𝑖𝑗𝑥𝑖,𝑗,𝑏 (4.1)

The objective function minimizes the total travel distance for all batches. The function calculates the
total distance traveled by all batches by multiplying the distance 𝑑𝑖,𝑗 between each constructed route
between location 𝑖 and 𝑗 constructed in this batch.

s.t.

1. Each parcel is assigned to one batch only:

∑
𝑏∈𝐵

𝑦𝑝,𝑏 = 1 ∀𝑝 ∈ 𝑃 (4.2)

This constraint ensures that for each parcel 𝑝, there is only one value of 𝑦𝑝,𝑏 equal to 1. Assigning
a parcel 𝑝 to only one batch 𝑏.
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2. Each route starts and ends in the P&D point:

∑
𝑗∈𝐿
𝑥0,𝑗,𝑏 = 1 ∀𝑏 ∈ 𝐵 (4.3)

∑
𝑖∈𝐿
𝑥𝑖,0,𝑏 = 1 ∀𝑏 ∈ 𝐵 (4.4)

These two constraints ensure the routes of each batch starts and ends in the P&D point. Equa-
tion 4.3 ensures that for each batch 𝑏 the route between node 0 (P&D point) and a single location
is equal to 1. Meaning the picking route starts at the P&D point. Equation 4.3 ensures that for
each batch 𝑏 the route between a single location and node 0 is equal to 1. Meaning the picking
route will end at the P&D point.

3. A visited pick location in batch 𝑏 should also be left by batch 𝑏:

∑
𝑗∈𝐿
𝑥𝑖,𝑗,𝑏 =∑

𝑗∈𝐿
𝑥𝑗,𝑖,𝑏 ∀𝑖 ∈ 𝐼, ∀𝑏 ∈ 𝐵 (4.5)

Constraint 4.5 ensures that a visited location by a batch is also left by the same batch. The left
hand side of the equation represents the number of times batch 𝑏 leaves location 𝑖 and travels to
any location 𝑗 ∈ 𝐿. This is equal to the right hand side which represent the number of times batch
𝑏 arrives at location 𝑖 from any location 𝑗 ∈ 𝐿.

4. Each batch has a maximum capacity:

∑
𝑝∈𝑃

𝑊𝑝 ⋅ 𝑦𝑝,𝑏 ≤ 𝑄 ∀𝑏 ∈ 𝐵 (4.6)

This constraint ensures that the constructed batches not do exceed the maximum capacity of the
pick carts. For each batch 𝑏 it must hold that the assigned parcels 𝑝 do not exceed the maximum
batch capacity 𝑄. The left hand side of the equation calculates the total weight of all parcels
assigned to a batch which cannot exceed the batch capacity.

5. Subtour elimination:

𝑥𝑖,𝑗,𝑏 = 0 ∀𝑏 ∈ 𝐵, ∀𝑖 ∈ 𝐿, ∀𝑗 ∈ 𝐿 ∖ {0} and 𝑗 ≤ 𝑖 (4.7)

Equation 4.7 ensures the one directional flow in the warehouse, the picker is due to this constraint
not allowed to move back to previous locations or visits itself. For each batch 𝑏 the route 𝑥𝑖,𝑗,𝑏
from a location 𝑖 ∈ 𝐿 to a location 𝑗 ∈ 𝐿 ∖ {0} for 𝑗 ≤ 𝑖 is 0. Due to the constraint of Equation 4.4
the value 0 (the P&D point) is excluded from the set of locations for this constraint, as this would
make the model infeasible. Besides that the route should always end in the P&D point, this also
allows to construct empty batches. The condition 𝑗 ≤ 𝑖 makes traversing back to previous aisles
impossible. This constraint is also handled in the distance matrix with the large M value, however
adding the constraint in this way, improves computation time.

6. If parcel 𝑝 is assigned to batch 𝑏, all pick locations of parcel 𝑝 are visited by batch 𝑏:

𝑦𝑝,𝑏 ≤∑
𝑗∈𝐿
𝑥𝑖,𝑗,𝑏 ∀𝑝 ∈ 𝑃, ∀𝑏 ∈ 𝐵, ∀𝑖 ∈ 𝐼𝑝 (4.8)

This constraint ensures that if a parcel 𝑝 is assigned to a batch 𝑏, so 𝑦𝑝,𝑏 = 1, the right hand side
of the equation should also be 1. Resulting that for all locations that must be visited by this parcel
𝑖 ∈ 𝐼𝑝 the value of 𝑥𝑖,𝑗,𝑏 is equal to 1, assuring the route visits all necessary locations. If parcel 𝑝
is not assigned to batch 𝑏, 𝑦𝑝,𝑏 will be 0 and there is no requirement to visit the locations of this
parcel. However if another parcels assigned to this batch does have to visit this location, the ≤
sign allows for this to be possible.
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4.7. Output
The output of the JOBPRP model can be split into two main important outputs; the travel distance and
the formed batches. Tominimize the total travel distance is the objective function of the JOBPRPmodel,
so this value represents the performance of the model. The JOBPRP model will reduce the travel
distance by making batches with a lower travel distance. To implement these constructed batches
it necessary to know which parcel is assigned to which batch. This is therefore the other important
output. To obtain a clear understanding of the JOBPRP model, it should also be possible to visualize
the constructed batches. Nonetheless, this is not necessarily the primary output of the JOBPRPmodel.

As the visualization of the constructed routes for each batch is one of the desired outputs, this will be
used to create a clear understanding of the JOBPRP model. To visualize the working of the JOBPRP
model a straightforward example will be used dedicated to the ambient zone described in chapter 2. For
this example it is assumed that each batch can contain 8 parcels which all consist of 1 single location.
For the batches constructed without the JOBPRP model it is assumed they will all traverse a full route
through the warehouse. These routes are depicted in Figure 4.5 and have a total travel distance of
1156 meter (equal to four full routes of 289 meter). If the JOBPRP model is applied to this example,
the routes of Figure 4.6 are constructed which have a total travel distance of 364 meters (91 meter per
route). The blue dots in these figures imply that this location is to be visited for one parcel, the red dots
imply that this location is to be visited for multiple parcels. As can be seen in Figure 4.5 and Figure 4.6
the JOBPRP model batches all parcels that must visit the same location together to obtain the lowest
travel distance. This example is quite straightforward, but underlines the working of the JOBPRPmodel.
Simply put, the JOBPRP model evaluates all possible batches and their corresponding travel distance.
The JOBPRP model then will find the solution that minimize the total travel distance by finding batches
that are able to take a shortcut.

(a) Batch 1 (b) Batch 2 (c) Batch 3 (d) Batch 4

Figure 4.5: Constructed routes without applying the JOBPRP model

(a) Batch 1 (b) Batch 2 (c) Batch 3 (d) Batch 4

Figure 4.6: Constructed routes with applying the JOBPRP model

4.8. Conclusion
This chapter discusses the JOBPRP model, whose objective is to minimize the total distance traveled
by the picking carts. First, the model objective, KPI’s and requirements are stated. After which the input
to the JOBPRPmodel is described. The assumptions and simplifications that are made to represent the
system described in chapter 2 are explained. After all necessary inputs are decribed, the mathematical
model is provided and is explained. It ends with a description of the outputs of the JOBPRPmodel. The
chapter explains the development of the model and how the due time of the orders are incorporated in
the model, thereby providing an answer to subquestion 3



5
Verification and validation

The JOBPRP model presented in section 4.6 must be verified and validated before experiments can
be carried out. A series of tests will be conducted to determine whether the model implementation is
correct and is generating the expected results. The JOBPRP model is solved with the solver Gurobi,
version 9.1.2. on a computer with a 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHZ with 4 cores
CPU and 16 GB of RAM. Solving the JOBPRP model on a computer with more cores will most likely
improve the computation time of the JOBPRP model, as this provides the calculating power of the
computer.This chapter will provide the validation and verification of the JOBPRP model.

5.1. Verification
Verification is determining that a simulation computer program performs as intended [75]. To verify
the JOBPRP model, multiple tests are performed to check if the outcomes are as expected. First,
the simplification of the distance matrix is verified. Subsequently, the computational limitations are
considered. Finally, several scenarios are evaluated to validate the outcomes alongside their related
hypotheses. The JOBPRP model is verified using the characteristic of the ambient zone, described in
chapter 2, as input, however the verification also holds for the chilled and frozen zone.

5.1.1. Simplified distance matrix
The first check of the JOBPRP model is related to the distance matrix. As explained in section 4.5 the
layout of the warehouse is simplified. It is important to check if this simplification is rigid and returns
the same results as the non-simplified version. This has to be verified for both the situation with and
without a midaisle. This is done by verifying if both matrices return the same result with the same input
data and by comparing the distances of single (predefined) routes. The visualization of all the tests
can be found in section C.1 The used input data for the full set are 90 parcels with all 4 picks/parcel.
The data file can be found in Table E.3. For this experiment, the warehouse configuration depicted in
Figure 6.1a, which is a rectangular layout with 8 aisles and 34 shelves per aisle, is used.

Test Midaisle Travel distance
non-simplified

Travel distance
simplified

Verified

Full data set (C.1) no 735 735 !

Full route (C.2b) no 289 289 !

One aisle (C.3) no 91 91 !

Full data set (C.4) between 9-10 727 727 !

Full data set (C.5) between 17-18 747 747 !

Full route (C.2c) between 17-18 297 297 !

One full aisle (C.6a) between 17-18 93 93 !

One half aisle (C.6c) between 17-18 57 57 !

Table 5.1: Verification of simplification distance matrix

34
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Table 5.1 confirms the simplification of the distance matrix. It evaluates for different scenarios if the
simplified distance matrix and returns the same results as the non-simplified distance matrix. The
verification is applied to a full data set, a single full route and a route that only visits a single aisle.
For the route that visits only a single aisle and has a midaisle, both the situation with a pick below and
above the midaisle are verified. Implementing this simplification is expected to reduce computation time
positively and will be taken as standard. Further details related to the computation time are provided
in subsection 5.1.2.

5.1.2. Computational limits
Due to the NP-hard complexity of the JOBPRP, the computation time becomes a crucial factor. First,
the influence of reducing the number of nodes in the the distance matrix on the computation time will
be demonstrated. Also the effect of the number of picks per parcels is evaluated. Subsequently, the
impact of varying input size of number of parcels and thus constructed batches on both computation
time and objective value will be discussed.

Effect simplification warehouse nodes
Simplifying the distance matrix decreases the number of possible locations in the model, leading to a
reduction in computation time. Table 5.2 shows the contrast in computation times between the simpli-
fied and non-simplified matrices. These results are obtained with the first four columns of the dataset
provided in Table E.3, resulting in 4 SKUs/parcel. The results align with expectations. Due to the
simplification, the number of locations are reduced from 273 to either 9,17 or 25, depending on the
presence of one or two midaisles. This reduction reduces the computation time because the model
has fewer calculations to perform. In the non-simplified matrix, the number of locations remains con-
sistent regardless of a midaisle, resulting in similar computation times. However, when a midaisle is
added in the simplified matrix, additional locations emerge, consequently increasing computation time.
For instances with up to 60 parcels, the computation time between a single and double midaisle are
comparable, however increasing the number more, will result in divergent computation times.

# Parcels Non-simplified Simplified
No midaisle midaisle

location 25
midaisle
location 25&32

No midaisle midaisle
location 25

midaisle
location 25&32

10 0.7 s 0.9 s 1.0 s 0.01 s 0.02 s 0.01 s
20 16 s 18 s 19 s 0.1 s 0.3 s 0.2 s
30 25 s 28 s 32 s 0.3 s 0.4 s 0.5 s
40 1260 s 1480 s 1700 s 0.5 s 2 s 3 s
50 2800 s 3610 s 4425 s 0.6 s 5 s 5 s
60 – – – 3 s 224 s 238 s
70 – – – 4 s 201 s 432 s
80 – – – 16 s 632 s 6545 s
90 – – – 23 s 1045 s –
100 – – – 181 s – –
110 – – – 1160 s – –
120 – – – 950 s – –

Table 5.2: Computation time of the simplified and non-simplified distance matrix, with a maximum of 2 hours (7200s)

Effect number of SKUs per parcel
The values shown in Table 5.2 are derived from parcels containing 4 SKU per parcel. The computation
time is also influenced by parcel size due to the number of viable solutions and the behavior of the
Gurobi solver. For parcels with approximately 4 SKUs, multiple solutions offer optimal performance,
which all must be analyzed by Gurobi. However,when the number of SKUs per parcel increases, the
chances of discovering shortcuts diminish, and consequently, the number of well performing solutions
decreases. This implies that the computation time is influenced not just by the number of parcels and
locations, but also by the composition of the parcels.
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# SKUs/parcel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Computation time [s] 1 51 111 201 166 95 105 60 68 45 25 30 10 15 6 8

Table 5.3: Computation time for 70 parcels for a simplified distance matrix with a midaisle at location 25

Relation objective value
As shown in Table 5.2, increasing the number of parcels, and subsequently the number of formed
batches, will increase the computation time. It is crucial to assess whether an increased number of
parcels within the JOBPRP model also impacts the objective value. The hypothesis for this is that for
larger instances, the model can identify superior solutions. With the increase in number of parcels, the
search space enlarges, and more potential routes with shortcuts are likely to be discovered. This ver-
ification uses Crisp’s pick data from 16-10-2024. By alternating the chunk size of the JOBPRP model
to multiples of full batches, the model returns various objective values, as illustrated in Figure 5.1. The
chunk sizes are multiples of 18 parcels (full batches) because a single (full) batch will always outper-
form multiple (half full) batches. The results confirm the hypothesis; for larger instances, the JOBPRP
model finds better solutions, applicable to layouts both with and without a midaisle. Figure 5.1 also
depicts the link between computation time and larger instances, which is consistent with the obser-
vations in Table 5.2. This serves to verify that improving the size of the chunk size of the JOBPRP
improves the outcome but comes with a higher computation time. Furthermore, it demonstrates that
smaller instances, which require less computation time, can also lead to improved solutions. Allow-
ing the JOBPRP model to operate with smaller instances to decrease computation time for specific
experiments.

Figure 5.1: Travel distance versus computation time for different full batches

5.1.3. Scenario testing
Verifying the model involves assessing whether it accurately represents the intended system and pro-
duces the output as intended, this is achieved by scenario testing. Predefined data sets are used as
input for the JOBPRP model to determine whether the outcomes align with the hypotheses. This can
be divided into two categories, instances that should return an anticipated outcome and instances that
specifically test the constraints of the model.

Boundary scenarios
To test the JOBPRP model, various scenarios with distinct hypotheses are examined. The model
should return the expected routes, as outlined by the hypotheses. The description of the performed
experiments and results of the experiments focusing on these scenarios are described in Table 5.4.
The visualization of the routes are depicted in section C.2. These visualizations are a clear way of
understanding the output of the JOBPRP model. The returned values and outcomes of the JOBPRP
model all met their hypothesis, verifying these boundary scenarios.
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Input data Hypothesis Result Verified Visualization

3*18 times the same parcel,
with picks only in one specific
aisle

The model should only pick the same
parcel in each separate batch, as this
will return the lowest travel distance

The model returns 3
batches that only pick the
same parcels

! (C.7)

18 parcels that are located in a
specific aisle, the rest of the
parces are not located in that
aisle.

1 of the formed batches should handle
all the parcels that are located in the
specific aisle, the rest of the parcels
should be picked by the other batches

The model returns one
full batch in the specific
aisle and the other
parcels are placed in
another batch

! (C.8)

All parcels have only picks in
the bottom part of the
warehouse

The route should only visit the bottom
part of the warehouse

The route only visits the
bottom part of the
warehouse

! (C.9a)

All parcels have only picks in
the top part of the warehouse

The route should only visit the top part
of the warehouse

The route only visits the
top part of the warehouse

! (C.9b)

The data from the above two
are used as input together

Instinctively we would say nothing
changes and the output will be the
same as the two above, however the
hypothesis is that one batch will pick
the stops in the first 4 aisles and the
second batch will pick the stops in the
last 4 aisles.

One batch picks all items
in the first aisles, the
other batch picks all
items in the last aisles

! (C.9c)

The number of picks per
parcel are fluctuated, the used
values are 1,4,8,12 and 16
picks/parcel

The lower the number of picks per
parcel, how more freedom the model
has to define optimal routes. So
increasing the number of picks will
result in a larger travel distance

For increased
picks/parcel the travel
distance increases

! (C.10-C.14)

Table 5.4: Verification of the applied constraints

Constraint verification
To verify if the JOBPRP model meets the applied constraints, experiments with specific input data are
performed to verify the performance of the model. The performed experiments that focus on check-
ing the applied constraints, are described in Table 5.5. The experiments confirmed their hypotheses,
indicating that the constraints were applied correctly.

Input data Which
constraint

Hypothesis Result Verified

The maximum number of
parcels for the number of
batches

Capacity The model should return
only full batches

The model returns only
full batches

!

A single parcel has an
weight higher than then
the capacity

Capacity The model should
become infeasible

Infeasible model !

The total weight of all the
parcels is higher than
then the total capacity

Capacity The model should
become infeasible

Infeasible model !

Each parcel has an
weight of 0

Capacity The model should be
able to batch all parcels
in one single batch

Only one batch is
returned

!

Various data files A parcel can
only be in
one batch

The model should place
parcels in one batch only

Parcels are assigned to a
single batch

!

Preformed batches with a
few locations

A batch
must visit all
the locations
of the
batched
parcels

The route should visit all
the locations of the
batched parcels

The formed routes visit
all the locations

!

Table 5.5: Verification of the applied constraints
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5.2. Validation
After the verification of the model, the next step is to validate the model. Validation is the task of
demonstrating that the model is a reasonable representation of the actual system: that it reproduces
system behavior with enough fidelity to satisfy analysis objectives [75]. The validation is applied to the
Crisp orderpicking process. Because there is no real-world data that incorporate the JOBPRP model
it is not possible to compare the results to other models. However, the output of the JOBPRP model
can be compared to the current travel distance, derived from the real world data of Crisp. For the
actual constructed batches, the real travel distance is compared to the calculated travel distance for
each zone. For the real travel distance, the special picking carts for parcels with missings are not
considered. Traversing a full route in the ambient, chilled and frozen zone in the actual warehouse is
equal to respectively 340, 180 and 160 meters, whereas a full route composed by the distance matrix
for the JOBPRP model are respectively 289, 161 and 156 meter. This difference in the length of a
full travel route result in the differences in daily travel distances depicted in Figure 5.2. The travel
distance correlates with the distance matrix. The modeled distance between consecutive shelves is
set at 1 meter. In the actual Crisp warehouse, shelf widths can vary between 1 meter and 1.30 meters,
resulting in a difference in travel distance per full route. For simplicity the distance between each shelf
in the JOBPRP is considered to be 1 meter. As the benchmark of the model is also calculated with the
same distance matrix, this simplification is still rigid. Although there are some differences between a full
modeled route and a actual full route, the essence of the model is the same and therefore a validated
representation of reality. A similar approach is applied to the distance involved in applying a cross
aisle, moving to the next aisle, and the distance to and from the P&D point. Skipping a cross aisle has
a modeled distance of 1 meter, implying a cross aisle width of 1 meter. Although this could be larger in
the actual setting, the model remains an accurate reflection of the real-world scenario. The assumed
distances for moving to the next aisle and reaching the depot in the model are set at respectively 3
meters and 2 meters, aligning well with reality. The picker will travel also from the shelf to the pick
cart and vice versa. These extra travel meters are not incorporated in the model; it models the travel
distance of the picking cart and ignores these extra travel movements.

Figure 5.2: Validation of weekly travel distances

For the storage allocation policy, the SKU’s are all considered to be uniform. Meaning that each product
is modeled to have the same dimensions. However in reality, this is not the case as some SKU’s are
stored in pallets and some in the shelves. Also some SKUs will need a larger shelf space than others.
In the modeled situation, this distinction between SKUS is not incorporated. This makes the applied
storage policy for some shelves not realizable in reality, as the size of the assigned SKU exceeds the
shelf size. For both the defined storage policies, this could return slightly different results but in essence
the modeled storage policies are a sufficient representation of reality. Although the modeled situation
differs on two aspects slightly from reality, the model is still a very good representation of reality and
therefore can be validated.
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5.3. Conclusion
In this chapter, the JOBPRP model has been verified and validated. The verification process ensures
that the simplification of the distance matrix is rigid. Various hypotheses and scenario tests were em-
ployed to verify the model’s behavior. Additionally, the model proves capable of finding improved
solutions even for smaller cases. Which reduces the computation time and could be advantageous if
many experiments are needed.

For validation, the model’s outcomes are compared with the actual travel distances observed at the
Crisp warehouse. Assumptions in the distance matrix and the SKU uniformity reflect minor deviations
from reality, yet the model remains an accurate representation.



6
Experimental set up

This chapter will provide an experimental plan that answers subquestion 4. Because all warehouse
processes highlighted in chapter 3 are interconnected, it is important to define a clear experimental
plan. The changes made to adjust the model to the specific zones are also described.

6.1. Experimental plan
Because all warehouse processes are interconnected, it is challenging to find the best performing
warehouse configuration with respect to the travel distance. The first importance step, is to define a
benchmark result. This is the total travel distance of the current situation andwill be used to compare the
different warehouse configurations. To objectively compare the results between the different processes,
all should be tested individually. After which specific combinations can be tested. Due to the differences
per zone, the experiment plan is performed to all three zones separately. In chapter 3 the choices
regarding warehouse optimization are evaluated. The choices per process are summarized in Table 6.1
and also shows which configurations are considered in this thesis.

For the layout, 3 configurations are considered; a single-block layout (no midaisle), a 2-block layout
(1 midaisle) and a 3-block layout (2 midaisle). Other layouts are not considered due to the scares
warehouse space and overhauling costs. Adding 3 or more midaisle will use to many space in the
already dense warehouse. Overhauling Crisp’s entire warehouse to a non-conventional layout is costly,
making such changes impractical and therefore not considered. For the product allocation policy three
configurations are considered; the actual storage policy (random policy), an within-aisle policy and
an across-aisle policy. Both policies are independent of the location of the midaisles in a layout and
thus suitable to be evaluated for multiple layouts. The nearest-subaisle and nearest-location policy
are specified to the layout, meaning that with a change in layout the allocation policy is also changed.
Making the evaluation impractical. The routing is assumed to be the S-shape heuristics and is in
each configuration the same. For the batching, configurations with optimal batches and the current
batches are considered. Combining the layout, the allocation and the batching in all possible ways will
result in seventeen distinct configurations. To reduce computation time, some experiments will first be
performed for a specific scenario with a small data set, after which the most promising instances will be
explored in dept. This be mostly useful for determining the best performing layout, as with 2 midaisles
this leads to many configurations. The used scenarios will be explained in section 6.2. The performed
experimental plan to find the optimal warehouse configuration can be summarized as found below:

1. Determine benchmark results
2. Determine results of the single warehouse process

• Layout
• Product allocation
• Batching

3. Determine results of a combination between two warehouse process
• Layout & Product allocation
• Layout & Batching
• Product allocation & Batching

4. Determine results of the combination of all warehouse processes
• Layout, Product allocation & Batching

40
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Warehouse process Configuration Design choice Considered?

Layout Single-block no midaisle X
Multi-block 1 midaisle X

2 midaisles X
n midaisles

Non-conventional Fishbone
Flying V
Inverted V

Allocation Dedicated Multiple classifications
Random Random X

Closest open location
Class-based Across-aisle X

Within-aisle X
Neareset-subaisle
Neareset-location

Routing Heuristics S-shape X
Mid-point
Largest gap
Return
Composite
Combined+

Exact algorithm Linear programming
Meta-heuristics GA

SA
TS
PSO
ACO
ALNS

Batching Unit load Single orders
OBP Seed algorithm

Savings algorithm
JOBPRP Exact X

Meta-heuristic

Table 6.1: Different configurations as found in chapter 3

6.2. Different scenarios
As input for the JOBPRPmodel, a full week of data is considered. The used data is from the actual pick-
ing data from Crisp in the week of 14 October 2024-20 October 2024. This is an average week, without
any promotional actions that may influence costumer behavior. Special action promotion weeks gener-
ate a distorted picture of reality, as it highly affects customer behavior. In a week typically Monday and
Sunday are the busiest days and handle the most orders. This is caused by the costumer preference
for their groceries to be delivered on this day. Wednesdays are typically the days with the lowest num-
ber of orders. Each day can be seen as a different scenario used as input in the JOBPRP model. The
scenarios vary on their size and probably also the ordered products. Orders on a Monday and Sunday
will most likely consist groceries for a whole week, whereas orders for a Friday typically consist of more
luxurious products. Table 6.2 gives a summary of the input for each scenarios. It shows the number of
total orders and the number of handled parcels per zone for that day. A given configuration might be
ideal for one particular day, but be less performing on other days. Finding a configuration that reduces
the weekly travel distance is preferable over identifying a configuration suitable for just a single day.
Weekly datasets suggest consistent patterns, which indicate that the optimal configuration will yield the
best outcomes on a monthly scale as well. Daily orders provide a reasonable representation of weekly
orders, enabling the identification of optimal configurations while reducing computation time.
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Scenario # Orders # Parcels Ambient # Parcels Chilled # Parcels Frozen

14-Oct (M) 2253 2518 2064 398
15-Oct (T) 1414 1570 1272 282
16-Oct (W) 1117 1256 1085 251
17-Oct (T) 1304 1488 1198 261
18-Oct (F) 1647 1974 1634 363
19-Oct (S) 1409 1670 1428 300
20-Oct (S) 2056 2316 1921 364
Full week 11200 12792 10602 2219

Table 6.2: Weekly number of orders

6.3. Adjustments to Crisp warehouse
Each zone in the Crisp warehouse has different specifications, demanding slight adjustments for each
zone to be a representation of reality. The different specification are already explained in chapter 2. The
summary is given below in Table 6.3 and the layouts are shown in Figure 6.1. The biggest differences
are the number of parcels per batch and the layout. The number of parcels per batch is an easily
changeable parameter in the JOBPRP model, however for the different layouts a specific distance
matrix is used. Due to the similarities between the ambient zone and chilled zone with respect to the
layout they are explained together. The frozen zone is explained separately.

Zone Storage locations # SKU’s Parcels per batch Range picks/parcel Average parel size average picks/batch

Ambient 4800 3500 18 [1-25] 10 180
Chilled 3500 2000 6 [1-20] 15 90
Frozen 800 500 4 [1-35] 18 75

Table 6.3: Specifications per picking zone

(a) Ambient (b) Chilled (c) Frozen

Figure 6.1: Layout for different zones
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Ambient and chilled
The ambient and chilled zone can both be approached as an rectangular warehouse. The simplified
node representation presented in Figure 4.4 is therefore applicable. The difference between the zones
is in the number of aisles and pick locations per aisle. The ambient zone has 8 aisles with 34 pick
locations and the chilled zone has 4 aisles with 38 locations. The number of (simplified) nodes are
related to the number of aisle and the number of applied midaisles. The number of nodes in the layout
and thus in the distance matrix are calculated by Equation 6.1. The plus 1 at the end represents the
P&D point.

𝑁𝑛𝑜𝑑𝑒𝑠 = 𝑁𝑎𝑖𝑠𝑙𝑒𝑠 ∗ (1 + 𝑁𝑚𝑖𝑑𝑎𝑖𝑠𝑙𝑒𝑠) + 1 (6.1)

The resulting matrices for the ambient zone with respectively zero, one and two midaisles will thus be
9×9, 17×17 and 25×25. For the chilled zone the distance matrix will be respectively; 5×5, 9×9, 13×13.
The location of the midaisle determines which shelves correspond to a node in the warehouse layout.
Changing the location of the midaisle will thus not only have change the distance between the nodes,
but also realize changes in which shelf is represented by which node. The distance matrices for the
ambient zone are depicted in Figure 6.3 and the chilled zone is depicted in Figure 6.4. The ambient
distance matrix also takes the wall between pick aisle 2 and 3 into account by changing the distance
between the points in aisle 1 and 2 and the rest of the aisles.

(a) no midaisle (b) with midaisle (c) with 2 midaisles

Figure 6.2: Simplified node representation of the locations in the warehouse
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(c) Midaisles at loc 17 and 25

Figure 6.3: Distance matrices for the ambient zone, with M representing a very large value.
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(c) Midaisles at loc 17 and 25

Figure 6.4: Distance matrices for the chilled zone, with M representing a very large value.

Frozen
The frozen zone is in terms of layout quite different than the ambient and chilled zone. This is because
the frozen zone is not a standard rectangular warehouse. It is built using the available space and
therefore differs with respect to the other two zones. The picking strategy is also quite different, where
in the ambient and chilled zone the picker picks on both sides of the aisle, the picker in the frozen zone
only picks at the right hand side. This means that when moving from the first to the second aisle, the
picker will not be bound by midaisles, they can just cross anywhere they like. Moving from the second
to the third aisle however, is again bound by the physical midaisle. The simplified representations are
shown in Figure 6.5. If there is no midaisle, the locations in the first and second aisle are modeled at
one node. This can be seen with the hatching in Figure 6.5a. Figure 6.5b shows all possible locations of
the midaisle, however only 1 or 2 at the time are evaluated. Instead of the used shelves as in the other
zones, now freezer units are used. The length of these freezers is 2 meters, resulting in a difference
of 2 meters to an adjacent location. The resulting distance matrices are found in Figure 6.6. By the
addition of a midaisle, the nodes representation changes from 9 to 13 nodes, however in contrary to
the other zones, the distance matrices for 1 or 2 midaisles have the same size as by the addition of a
second midaisle, no extra nodes arise.

(a) no midaisle (b) with midaisle at any location

Figure 6.5: Simplified node representation of the locations in the frozen zone
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(b) Midaisle at second location
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(c) Midaisles at the first and second location

Figure 6.6: Distance matrices for the frozen zone, with M representing a very large value.

6.4. Conclusion
This chapter introduces the experimental plan to evaluate the correlation between the warehouse pro-
cesses. It shows how the JOBPRP model can be applied to the Crisp warehouse and which adjust-
ments should be made and thus answers subquestion 4. This experimental plan will be used to provide
an answer to subquestion 5 and 6, which are described in chapter 7.
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Results

With the model validated and verified and the experimental plan outlined in chapter 6, this chapter
presents the results. It will address subquestions 5 and 6. The findings are presented for each stage
of the experimental plan for all separate zones. For each combination of warehouse processes, for the
best performing configurations, the visualization of the scenario of 16-10 are depicted in Appendix F to
visualize the effect of different configurations

7.1. Benchmark results
The benchmark results are constructed from the actual formed batches. The total distance traveled
by these batches is the benchmark. The warehouse of Crisp and their order picking process can be
compared to a single block low-level picker-to-parts warehouse with a First-Come-First-Served (FCFS)
batching policy, S-shape routing heuristic, and random product allocation policy. In daily operations,
Crisp encounters what is called ’missings’, which occur when a SKU is out of stock at the time a batch
reaches the SKU’s location. The parcel with a missing SKU is then placed on a new special ”missing
pick cart’, which solely retrieves the missing SKU once it is restocked. This leads to additional travel
distance. However, when computing benchmark results, these ’missings’ are not considered. The
benchmark assumes a scenario in which there are no missing SKUs, as this aspect is also excluded
from the JOBPRP model. Both the real traveled distance as the distance without these ’missings’ are
given in Table 7.1. For the scenario of 16-10-2024, the visualization is depicted in Figure 7.1. The
numbers on each aisle represent the number of times these aisles are traversed during the day.

Zone 14-Oct 15-Oct 16-Oct 17-Oct 18-Oct 19-Oct 20-Oct Total

Ambient (real) 53107 33428 26021 30777 41133 34320 47086 265872
Ambient (no missing) 48784 30668 23723 28545 38330 32129 43673 245852
Chilled (real) 60679 38248 31621 38456 49422 42830 56554 317810
Chilled (no missing) 56376 34715 29785 36124 45354 39149 52586 294089
Frozen (real) 17744 12196 10414 10890 15312 12808 15476 94840
Frozen (no missing) 15944 11222 10154 10532 14446 12208 14756 89262
Total (real) 131530 83872 68056 80123 105867 89958 119116 678522
Total (no missing) 121104 76605 63662 72330 98130 83486 111015 626332

Table 7.1: Benchmark travel distance for a full week in meters

(a) Ambient (b) Chilled (c) Frozen

Figure 7.1: Benchmark visualization of the routes on 16-10 for each zone
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7.2. Single warehouse process
In this subsection, the results of step 2 of the experimental plan are presented. A single warehouse
process is assessed per zone to distinctly observe its impact. Each zone is independently analyzed for
this step.

7.2.1. Layout
Modifying the warehouse layout can enhance travel efficiency by enabling order pickers to use short-
cuts. To evaluate the influence of the layout, two configurations are examined: a rectangular warehouse
with one or two midaisles. These results are compared with the standard, a rectangular single block
layout, which is applicable to both the ambient and chilled zones. For the frozen zone, layout adjust-
ments differ, as they are specified to the layout of the frozen zone. As discussed in subsection 3.2.2,
non conventional warehouse layouts exist; however, the study of Çelik et al. [29] indicates that a rect-
angular multi-block warehouse will outperform non conventional layouts for orders with 3 or more picks.
Additionally, overhauling Crisp’s entire warehouse is costly, making such changes impractical.

Ambient zone
The results for a single midaisle are shown in Figure 7.2a, while those for two midaisles are depicted
in Figure 7.2b. These figures demonstrate that introducing a midaisle, without taking other warehouse
processes into account, does not improve the travel distance. There is only one instance, with a single
midaisle on location 32, that improves the travel distance. However, the improvement is only 60 meters,
which is considered negligible. The results pictured in Figure 7.2 are derived from the data from 16-
10-20244. Subsequently, only the best performing layouts are evaluated with the dataset of the whole
week to verify if the found results also hold for a larger dataset. The best performing layouts for a whole
week are given in Table 7.2, the full table can be found in Table E.4. This suggests that incorporating
a midaisle, without considering other warehouse operations, does not enhance travel distance for the
ambient zone. In Figure F.1 it can be seen that with 1 or 2 midaisles some shortcuts are possible,
however due to the extra distance created by adding a midaisle, the total travel will still increase.

Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

31 - 246214 +0.15%
29 33 248672 +1.15%

Table 7.2: Performance of different layouts for the ambient zone for a whole week (full in E.4)

(a) 1 midaisle (b) 2 midaisles (full resolution in D.1)

Figure 7.2: Travel distance for the ambient zone on 16-10 for different layouts
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Chilled zone
For the chilled zone the same strategy as for the ambient zone holds. The effect of adding a single
and two midaisles are first evaluated on the single day 16-10, where after the most promising layouts
are evaluated with the data of the whole week. The results for the addition of a single midaisle on
16-10 can be seen in Figure 7.3a and for a double midaisle in Figure 7.3b. For each configuration,
the best performing midaisle locations are then evaluated on the data of the whole week. These best
performing configurations for a week are given in Table 7.3, with the full table presented in Table E.5. It
is evident that, as the same as for the ambient zone, adding a midaisle without taking other warehouse
processes into account does not improve the travel distance. Out of the visualization, in Figure F.1, the
same conclusion can be drawn. With 1 or 2 midaisles some shortcuts are possible, however due to
the extra distance created by adding a midaisle, the total travel will still increase.

Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

37 - 291518 +0.10%
33 37 297004 +1.99%

Table 7.3: Performance of different layouts for the chilled zone for a whole week (full in E.5)

(a) 1 midaisle (b) 2 midaisles (full resolution in D.2)

Figure 7.3: Travel distance for the chilled zone on 16-10 for different layouts

Frozen zone
The layout of the frozen zone is quite different than the layouts in the ambient zone. The layout and
its complications are described in section 6.3. Due to this layout only 3 possible midaisle locations are
considered. This makes the step of evaluating for the scenario of 16-10 unnecessary as there are only
6 instances to evaluate the weekly travel distance on. Adding one or two midaisles to the frozen section
will result in the travel distances depicted in Table 7.4. From this results it can be seen that adding a
midaisle to the frozen zone, without considering other warehouse operations, will increase the travel
distance. Due to the layout of the frozen zone, as depicted in Figure 6.5b, the first aisle is split into 2
aisles as can be seen in Figure F.1. From this visualization it can be seen that only 1 route uses the
midaisle, which does not outweigh the extra travel distance caused by the midaisles.

Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

2 - 93684 +4.95%
3 - 93776 +5.06%
4 - 93674 +4.97%
2 4 98220 +10.04%
2 4 98136 +9.94%
3 4 98244 +10.06%

Table 7.4: Performance of different layouts in the frozen zone for a whole week
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7.2.2. Product allocation
With respect to the product allocation, it is important to take the stackability of the SKU’s into ac-
count.There are three stackability levels, and products must be picked in the correct sequence to
avoid damaging fragile SKUs with heavier ones. This complicates the product allocation strategy since
precedence constraints must be accounted for.Figure 3.4 illustrates four different allocation strategies.
Among these, the across-aisle storage and within-aisle storage strategies will be assessed, as they
are likely to align well with the stackability precedence constraints. Both strategies employ a class-
based storage system. In the case of Crisp, SKUs are categorized by their popularity, i.e., their order
frequency per week. The distribution is shown in Figure 7.4, where it’s evident that each stackability
almost follows the same distribution as the total distribution of the respective zone. The implementa-
tion to the Crisp warehouse of both the allocation policies are depicted in Figure 7.5 and Figure 7.6 for
respectively the within- and across-aisle policy.

(a) All SKUs ambient (b) All SKUs chilled (c) All SKUs frozen

(d) Distribution per stackability in ambient (full resolution in D.3) (e) Distribution per stackability in chilled (full resolution in D.4)

Figure 7.4: Product distribution of SKU’s for all zones

(a) Ambient (b) Chilled (c) Frozen

Figure 7.5: Visualization of the within-aisle policy for each zone (full resolution in Appendix G)
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(a) Ambient (b) Chilled (c) Frozen

Figure 7.6: Visualization of the across-aisle policy for each zone (full resolution in Appendix G)

Ambient zone
In Figure 7.5a and Figure 7.6a, the allocation strategies implemented in the ambient zone are illustrated.
As depicted in Figure 7.6a, the across-aisle policy is relatively straightforward, with the most popular
items placed at the begin of the aisle. However, the within-aisle policy shown in Figure 7.5a may initially
seem somewhat counterintuitive. It prioritizes themost popular SKUs by stackability at the first aisle and
continues with the less popular SKUS. Per aisle, themost popular products are stacked at the beginning
of the aisle, ensuring the most possible shortcuts. When going from stackability 5 to 3 the aisles with
the least popular SKUs are placed next to each other to ensure the most possible shortcuts. The travel
distances for the different allocation policies are presented in Table 7.5. The findings indicate that a
within-aisle allocation policy can reduce travel distance by 1.93% in a single block warehouse layout,
as some routes can take a shortcut and skip an aisle. In contrast, the across-aisle policy has negligible
impact compared to the current random storage policy, with any differences in travel distance likely
being due to accidental route advantages rather than the allocation strategy. From the visualization
in Figure F.2 the difference between the zones is clearly depicted. Due to the within-aisle policy, the
routes can skip the third and fourth aisle a few times, reducing the travel distance. The routes for an
across-aisle policy are comparable to the benchmark.

Allocation policy Travel distance [m] Gap to benchmark

Within-aisle 241100 -1.93%
Across-aisle 245786 -0.03%

Table 7.5: Travel distance for different allocation polices for a whole week in the ambient zone

Chilled zone
In Figure 7.5b and Figure 7.6b, the allocation polices are visualized. The difference between the across-
aisle and within-aisle policy in the chilled zone are less significant than in the ambient zone. This is due
to the stackability and the number of aisles. Only the middle two aisles have the same stackability. The
outside aisles of the chilled zone are allocated the same in both policies. The difference between the
policies is located in the middle two aisles. The across-aisle policy is here again quite straightforward;
the within-aisle policy needs a bit more explanation. The most popular SKU’s with stackability 3 are
placed in aisle 3 according to the route up. The least popular SKU’s with stackability are placed at the
top at aisle two and increasing by popularity when traversing the aisle down. This policy will return the
most options for the picker to take a shortcut. The travel distances for the different allocation policies
are presented in Table 7.6. The findings indicate that in a multi-block warehouse with a small number
of aisles and high pick density, the storage policy has zero to none influence compared to a random
storage policy. The visualization in Figure F.2 shows that for each allocation policy, the constructed
routes are not able to take a shortcut.
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Allocation policy Travel distance [m] Gap to benchmark

Within- aisle 291218 0.00%
Across-aisle 291366 +0.05%

Table 7.6: Travel distance for different allocation polices for a whole week in the chilled zone

Frozen zone
In the frozen zone, there is no difference in stackability for the SKU’s. This makes the allocation plan
somewhat simpler because stackability is not required to be taken into account. The implemented
product allocation policies are visualized in Figure 7.5c and Figure 7.6c. The results of implementing
an allocation policy to the frozen zone are given in Table 7.7. Implementing an within-aisle policy is
the best performing policy and will reduce the travel distance with 26.76%. Implementing an allocation
policy in the frozen zone leads to notable improvements compared to the other zones. This is because
the frozen zone is more prone to potential shortcuts when applying only an allocation policy. From the
visualization in Figure F.2 the difference between the two allocation policies is clearly visible. The within
aisle concentrates the picking in the first aisle and thereby reducing the number of visits in the second
aisle. The across-aisle policy concentrates the picking to the bottom of the layout and thus minimizes
the number of visits in the farther away locations.

Allocation policy Travel distance [m] Gap to benchmark

Within-aisle 72882 -26.76%
Across-aisle 65372 -18.35%

Table 7.7: Travel distance for different allocation polices for a whole week in the frozen zone

7.2.3. Batching
The JOBPRP model outlined in section 4.6 is employed for order batching. According to section 4.4,
the input data is processed by the model in chunks. These chunks correspond to the maximum number
of parcels for a certain number of batches. Generally, while a greater number of batches can further
decrease travel distance, it also demands more computational time.

Ambient zone
The results of applying the JOBPRP model for a specific day (16-10) are illustrated in Figure 7.7.
Notably, with an input size of one complete batch, there is a notable improvement in travel distance
over the benchmark results. This is caused by the current constructed batches not being fully loaded.
Although efforts are made to maximize the number of parcels per batch, batches with fewer parcels
than the maximum are still created in the current operation. Figure 7.7 also shows the correlation
between the batch size, the travel distance, and the computation time. As in line with Figure 5.1; for
a larger chunk size, the computation time will increase exponentially. To evaluate the effect of the
JOBPRP model on the whole week, the maximum number of batches within reasonable computation
time is 6 full batches. Electing a chunk size of 7 batches might yield slightly enhanced results, but
solving these instances would require significantly more time. The results for a week are shown in
Table 7.8, revealing not only the gap with the benchmark but also the gap relative to the solution for a
full batch. This explicitly shows how increasing the chunk size affects the model. In general, solemnly
implementing the JOBPRP model will reduce the travel distance. Larger chunk sizes provide better
outcomes than smaller ones but also result in longer computation times. Determining the balance
between results and computation time is based on the operational requirements. The visualization in
Figure F.3 clearly shows the improvements on the constructed routes by increasing the chunk size of
the JOBPRP model. The larger the number of parcels considered together, the more shortcuts the
JOBPRP model is able to find.
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Figure 7.7: Travel distance with the JOBPRP on 16-10 in the ambient zone

Chunk size Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 209748 -14.69% 0% 7
2 full batches 208890 -15.03% -0.41% 18
3 full batches 203808 -17.10% -2.83% 290
4 full batches 195624 -20.43% -6.73% 750
5 full batches 190871 -22.36% -9.00% 2900
6 full batches 187415 -23.77% -10.65% 12000

Table 7.8: Travel distance by integrating the JOBPRP model for a whole week in ambient

Chilled zone
The results of applying the JOBPRP model to the chilled zone are illustrated in Table 7.9. Due to the
small batch size compared to the ambient zone (6 compared to 18), the model is able to use larger
chunk sizes. By comparing the results of the chilled zone to the ambient zone, one things stand out. In
the chilled zone the travel distance not necessary decreases by increasing the chunk size. Solving for
larger chunk sizes will eventually return better results, but the differences are negligible. This is probably
caused by the high pick density of the chilled section and the difficulty of finding a shortcut. Because
the absence of cross aisle the route must skip 50% of the layout to find a single shortcut. Increasing
the chunk size does give the model more possibilities regarding finding these shortcuts, however the
chance of occurring is low. Due to this low occurrence of possible shortcuts, the chunk size can be
enlarged and simultaneously keeping the computation time to a minimum. This is because the model
has less possibilities and therefore reaches the final solution quicker. So solemnly implementing the
JOBPRP model for a single block warehouse with a high pick density and only a few aisles does not
effect the travel distance. From the visualization in Figure F.4 it can be clearly seen that for increasing
chunk sizes, the routes are (almost) all the same.

Chunk size Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 286580 -1,59 0,00 30
2 full batches 286432 -1,64% -0,05% 28
3 full batches 286432 -1,64% -0,05% 48
4 full batches 286432 -1,64% -0,05% 58
5 full batches 286432 -1,64% -0,05% 88
6 full batches 286358 -1,67% -0,08% 108
7 full batches 286519 -1,61% -0,02% 166
8 full batches 286297 -1,69% -0,10% 286
9 full batches 286210 -1,72% -0,13% 402
10 full batches 286358 -1,67% -0,08% 612
11 full batches 286519 -1,61% -0,02% 820
12 full batches 286371 -1,66% -0,07% 980
13 full batches 286297 -1,69% -0,10% 1276
14 full batches 286297 -1,69% -0,10% 2279
15 full batches 286075 -1,77% -0,18% 3505

Table 7.9: Travel distance by integrating the JOBPRP model for a whole week in chilled
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Frozen zone
The results of applying the JOBPRP model to the frozen zone are illustrated in Table 7.10. The frozen
zone can be best compared to the chilled zone, due to the high pick density and the low number of
aisles. For the frozen zone, the JOBPRP model will find better results for an increased chunk size.
This is because the route in the frozen zone is not bound by a physical midaisle between aisle 1 and
2. Increasing the chunk size will thus provide the JOBPRP model with more possible solutions to skip
parts of this aisle, which makes it able to provide better performing results. With a chunk size of 11
full batches, the JOBPRP model is able to reduce the travel distance with 8.48%. This percentage can
even be enlarged by increasing the chunk size, however this will increase the computation time. The
visualization in Figure F.5 clearly shows the improvements on the constructed routes by increasing the
chunk size of the JOBPRP model. The larger the number of parcels considered together, the more
shortcuts the JOBPRP model is able to find.

Chunk size Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 87544 -1.92% 0.00% 7
2 full batches 86064 -3.58% -1.69% 9
3 full batches 84808 -4.99% -3.13% 30
4 full batches 83944 -5.96% -4.11% 48
5 full batches 83212 -6.78% -4.95% 79
6 full batches 82920 -7.10% -5.28% 154
7 full batches 82716 -7.33% -5.51% 260
8 full batches 82572 -7.49% -5.68% 738
9 full batches 82268 -7.84% -6.03% 1412
10 full batches 81924 -8.22% -6.42% 1666
11 full batches 81696 -8.48% -6.68% 3475

Table 7.10: Travel distance by integrating the JOBPRP model for a whole week in frozen

7.2.4. Conclusion
The results of the best performing configurations for optimizing a single warehouse process are given in
Table 7.11. From these results it can be concluded that in general improving the order picking process
by concentrating on a single aspect is not very effective. There are some exceptions that actually do
decrease the travel distance, however these are very depending on the other aspects of the warehouse.
Only adding a cross aisle without taking other processes into account is proven to increase the travel
distance for all zones. This holds for batches with multiple picks, for batches with only a few picks
adding a cross aisle could still be advantageous. An suitable allocation policy will have a positive effect
on the travel distance if the layout corresponds well with the chosen policy. Due to the different layout
in the frozen zone, and thus the picker not being bound by physical cross aisles, the allocation policy
returns enhanced results. The influence of the JOBPRP model depends on the pick density, possible
shortcuts, and the number of parcels per batch. Because the ambient zone has a relatively low pick
density, many parcels per batch, and sufficient possible shortcuts, the JOBPRP is able to find good
performing batches and reduce the travel distance. For the chilled zone, the opposite hold; It has a
high pick density, possible shortcuts are scarce, and the number of parcels per batch is low. Therefore,
applying the JOBPRP model to the chilled zone does not improve the travel distance. In the frozen
zone, the number of parcels per batch and the pick density limit the JOBPRP model. However, due to
the ability to cross from aisle 1 to 2, the JOBPRP model is able to reduce the travel distance.

Process Layout Allocation Batching1 Ambient Chilled Frozen

Layout Single X X +0.15% +0.1% +4.95%
Double X X +1.15% +1.99% +9.94%

Allocation X Within-aisle X -1.93% 0.00% -26.76%
X Across-aisle X -0.03% +0.05% -18.35%

Batching X X (6,15,11) -23.77% -1.77% -8.48%

Table 7.11: Best performing configurations for a single process relative to the benchmark result

1The numbers represent the number of full chunks for the respective zones.
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7.3. Combination between two warehouse processes
In contrast to section 7.2, where only a single warehouse process is optimized, this section evaluates
combinations of two warehouse processes. For each combination, the correlation between these two
processes is demonstrated, aligning with Step 3 of the experimental plan.

7.3.1. Layout & Product allocation
Compared to the outcomes presented in subsection 7.2.1 and subsection 7.2.2, adding a midaisle
and combining this with an allocation policy is likely to enhance the travel distance. The presence of
one or two midaisles, coupled with the allocation policies, grants the picker greater flexibility for taking
shortcuts as opposed to a single block warehouse. To assess the impact of merging the layout with
the allocation policy, four configurations are evaluated: a 2-block layout with an across-aisle policy,
a 2-block layout with a within-aisle policy, a 3-block layout with an across-aisle policy, and a 3-block
layout with a within-aisle policy. The allocation policies are the same as described in subsection 7.2.2

Ambient zone
The results for the 2-block warehouse and the two different allocation policies are shown in Figure 7.8,
whereas the results for the 3 block warehouse with an across-aisle policy are shown in Figure 7.9a.
For the 3-block warehouse utilizing a within-aisle policy, the results are shown in Figure 7.9b. These
figures indicate that, contrary to the findings in subsection 7.2.1, the travel distance can be reduced
by selecting a suitable allocation policy in combination with an improved layout. The results illustrated
in Figure 7.8-7.9b contain only a single day (16-10-2024). The best performing combinations for each
assessed situation are then evaluated with the dataset of the entire week to verify whether the found
results also hold for larger datasets. The best performing configuration for each of the combinations
are shown in Table 7.12, with the full table given in Table E.6. From this table, it can be concluded that
introducing one or two midaisles while also adopting an allocation policy enhances travel distance. It
is observable that an across-aisle strategy, combined with a multi block layout, reduces travel distance
more effectively than a within-aisle strategy. Selecting more midaisle also has an positive effect on the
travel distance, which is contrary to the results for a double midaisle without allocation policy. Adding
an extra midaisle can thus be advantageous, however it depends on the allocation policy if, and how
much, the travel distance decreases. The constructed routes for 16-10 are visualized in Figure F.6
and show the difference between each configuration. Due to the allocation policy and the presence of
one or two midaisles, the picker is able to sometimes skip the top part of the aisle, reducing the travel
distance.

Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

26 - Within 227584 -7.43%
26 - Across 215552 -12.32%
20 30 Within 223790 -8.97%
23 29 Across 206448 -16.03%

Table 7.12: Performance of different layouts combined with an allocation policy for a whole week in the ambient zone (full in E.6)

Figure 7.8: Travel distance for a layout with 1 midaisle and an allocation policy on 16-10 in the ambient zone
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(a) Across-aisle policy (full resolution in D.5) (b) Within-aisle policy (full resolution in D.6)

Figure 7.9: Travel distance for a layout with 2 midaisles and an allocation policy on 16-10 in the ambient zone

Chilled zone
For a layout with a single midaisle, the results for both allocation policies are shown in Figure 7.10. The
results for a layout with 2 midaisle are shown in Figure 7.11 for both an across- and within-aisle policy.
The results depicted in these figures are similar to the ambient zone, based on data from a single day
(16-10). This approach highlights the most promising configurations, which are then evaluated on a
weekly basis. For each configuration, the best performing instances for an entire week are presented
in Table 7.13. while the full table of the evaluated instances can be found in Table E.7. Comparing
the results for the chilled zone with the results for the ambient zone shows that the found results are
comparable. The across-aisle policy yields the highest improvement and adding a second cross aisle
will also benefit the travel distance. For a single mid aisle location it holds for both zones that the cross
aisle is placed at roughly 75% of the picking aisle to return the best results. The constructed routes for
16-10 are visualized in Figure F.7 and show the difference between each configuration. The effect of
the combination between changes in the layout and allocation policy for the chilled zone is comparable
to the ambient zone. Due to the allocation policy and the presence of one or two midaisles, the picker
is able to sometimes skip the top part of the aisle, reducing the travel distance. The across-aisle policy
enhances this effect by placing the most popular SKUs at the beginning of each aisle, increasing the
change to skip the top part.

Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

29 - Within 272150 -6.55%
30 - Across 260978 -10.38%
27 34 Within 266382 -8.53%
27 33 Across 252671 -13.24%

Table 7.13: Performance of different layouts combined with an allocation policy for a whole week in the chilled zone

Figure 7.10: Travel distance for a layout with 1 midaisle and an allocation policy on 16-10 in the chilled zone
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(a) Across-aisle policy (full resolution in D.7) (b) Within-aisle policy (full resolution in D.8)

Figure 7.11: Travel distance for a layout with 2 midaisles and an allocation policy on 16-10 in the chilled zone

Frozen zone
Obtaining the results for the frozen zone for the combination between layout and allocation is somewhat
simpler than the other zones. This is because the frozen zone only has 6 possible layouts that must
be evaluated. The configurations can thus directly be evaluated with the dataset of a week and do not
require to find the most promising layouts based on the data of a single day. The results for the frozen
zone are depicted in Table 7.14. For the frozen zone, the within policy is the most favorable and adding
an extra cross aisle will have a negative effect on the total travel distance. This is the opposite to the
ambient and chilled zone, where the across-aisle policy is preferred and adding an extra cross aisle
will reduce the travel distance. The difference between these zones is caused by the layout differences
and the freedom to cross to the next aisle in the frozen zone. Comparing these results to the results in
Table 7.7 concludes that adding a midaisle, when selecting an allocation policy, will only increase the
travel distance for the frozen zone. This is also clearly visible in the visualization in Figure F.8. The
midaisles are present, however are almost never used. This means that the addition of a midaisle will
only increase the length of a full route and thus increases the total travel distance.

Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

2 - Within 68804 -22.92%
3 - Within 68324 -23.46%
4 - Within 67668 -24.19%
2 - Across 77316 -13.38%
3 - Across 76668 -14.11%
4 - Across 74876 -16.12%
2 3 Within 71760 -19.61%
2 4 Within 71108 -20.34%
3 4 Within 70628 -20.88%
2 3 Across 81104 -9.14%
2 4 Across 79300 -11.16%
3 4 Across 78652 -11.89%

Table 7.14: Performance of different layouts combined with an allocation policy for a whole week in the frozen zone

7.3.2. Layout & Batching
Incorporating one or two midaisles into the layout provides the JOBPRP model with greater flexibility in
identifying batches that take advantage of shortcuts, consequently reducing travel distance. Nonethe-
less, introducing a cross aisle has drawbacks, particularly the impact it has on the computation time
for the JOBPRP model. As discussed in subsection 4.4.1 and illustrated in section 6.3, the addition of
a cross aisle leads to an enlarged distance matrix. Due to the presence of a midaisle, more locations
are needed in the model, which has a negative effect on the computation time. The larger the chunk
size used as input, the larger the computation time will be.
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Ambient zone
To minimize computation time, the correlation between the layout and the JOBPRP model is initially
assessed using a chunk size of 3 full batches for the 16-10 scenario. The most promising solutions
are subsequently evaluated with a larger chunk size. For a 2-block layout, the results are presented
in Figure 7.12a, while those for a 3-block layout are depicted in Figure 7.12b. Each combination of
a change in layout and the JOBPRP model lies below the benchmark result. Given that computation
time grows exponentially by increasing the chunk size, the best performing layouts are first evaluated
using one week’s data for a small chunk size. The best performing configurations for both the 2-
block and 3-block layouts are then solved by using a chunk size of up to 4 full batches. The results
of the best performing layouts for different chunk sizes are detailed in Table 7.15. The complete table
evaluating all promising layouts is shown in Table E.8. The results reveal that incorporating the JOBPRP
model and selecting an appropriate layout can potentially reduce the travel distance by up to 25.32%.
This reduction might be even greater by increasing the JOBPRP model’s chunk size. Additionally, the
table indicates that a 2-block warehouse layout yields marginally better results than a 3-block layout.
The constructed routes for 16-10 are visualized in Figure F.9 and show the difference between each
configuration for different chunk sizes of the JOBPRP model. It can be seen that for increasing chunk
sizes the model is able to find routes that can take more shortcuts. Opting for one or two midaisles
both return comparable results as most of the shortcuts are made by using the first midaisle.

Chunk size Midaisle locations Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 25 214614 -12.71% 0% 17
2 full batches 25 198126 -19.41% -7.68% 119
3 full batches 25 189830 -22.79% -11.55% 1024
4 full batches 25 183594 -25.32% -14.45% 10500
1 full batch 25 & 32 216378 -11.99% 0% 17
2 full batches 25 & 32 199034 -19.04% -8.02% 233
3 full batches 25 & 32 190674 -22.24% -11.88% 1762
4 full batches 25 & 32 184358 -25.01% -14.80% 20764

Table 7.15: Travel distance by integrating the JOBPRP model for different layouts for a whole week for different chunk sizes in
the ambient zone

(a) 1 midaisle (b) 2 midaisles (full resolution in D.9)

Figure 7.12: Travel distance for the ambient zone on 16-10 for different layouts and the JOBPRP model with a chunk size of 3
full batches
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Chilled zone
The chilled zone uses the same strategy as for the ambient: The combination between batching and
layout is initially assessed on a single day, after which the most promising layouts are further explored.
To keep the computation time to a minimum, a chunk size of 4 full batches is used. The results for a
single midaisle are shown in Figure 7.13a and the results for two midaisles are shown in Figure 7.13b.
To find the best performing layout in combination with the JOBPRP model, the most promising results
for the single day are evaluated on a weekly basis. The full results for this analysis can be found
in Table E.9. For the best configurations, the chunk size is also varied. These results can be seen in
Table 7.16. For a low chunk size, the JOBPRP model applied to a single midaisle outperforms a double
midaisle layout. For a chunk size of 4 full batches or more, a layout with two midaisles outperforms
a single midaisle layout. This can be explained by the fact that with small chunk size, the possibility
of using the second midaisle decreases and thus increasing the travel distance. The larger the chunk
size, the more options are available, which improves the use of a second midaisle to reduce the travel
distance. This is clearly illustrated in the visualization in Figure F.10, where the larger the chunk size
is, the better the constructed routes are.

Chunk size Midaisle locations Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 31 292788 +0.54% 0% 41
2 full batches 31 282572 -2.97% -3.94% 42
3 full batches 31 277660 -4.66% -5.17% 103
4 full batches 31 275212 -5.50% -6.00% 216
5 full batches 31 273644 -6.03% -6.54% 450
6 full batches 31 272672 -6.37% -6.87% 812
7 full batches 31 272181 -6.54% -7.04% 1825
8 full batches 31 271649 -6.72% -7.22% 3550
1 full batch 27 & 34 298460 +2.49% 0% 40
2 full batches 27 & 34 284502 -2.31% -4.68% 64
3 full batches 27 & 34 277960 -4.55% -6.87% 207
4 full batches 27 & 34 273660 -6.03% -8.31% 464
5 full batches 27 & 34 271136 -6.90% -9.15% 1220
6 full batches 27 & 34 269450 -7.47% -9.72% 2539
7 full batches 27 & 34 268513 -7.80% -10.03% 15720
8 full batches 27 & 34 267395 -8.18% -10.41% 34235

Table 7.16: Travel distance by integrating the JOBPRP model for different layouts for a whole week for different chunk sizes in
the chilled zone

(a) 1 midaisle (b) 2 midaisles (full resolution in D.10)

Figure 7.13: Travel distance for the ambient zone on 16-10 for different layouts and the JOBPRP model with a chunk size of 4
full batches
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Frozen zone
To find the best performing layout in combination with the JOBPRP model a chunk size of 5 full batches
is used to evaluate all layout possibilities. The results for this evaluating are shown in Table 7.17. For
both a single- and double midaisle the best layouts are solved with an increasing chunk size, these
results are shown in Table 7.18. Compared to the results depicted in Table 7.10, it can be concluded
that adding a single or double midaisle to the frozen zone when including the JOBPRP model returns
less favorable results than using the JOBPRPmodel on a layout without a midaisle. The visualization in
Figure F.11 clearly shows the reason for this. The constructed midaisles are used, however only a very
limited times. The extra travel distance created by this midaisle does not outweigh the formed shortcuts
and thus will only increase the travel distance. The second midaisle is never used, so only increases
the distance between locations and thus increase the travel distance. It also shows that for increasing
chunk sizes, the constructed routes are performing better. Increasing the chunk size, which correlates
to an increased computation time, will also in the frozen zone decrease the found travel distance.

Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

2 - 86848 -2.70%
3 - 87420 -2.06%
4 - 86936 -2.61%
2 3 91128 +2.09%
2 4 90588 +1.49%
3 4 91180 +2.15%

Table 7.17: Travel distance by integrating the JOBPRP model for all possible layouts for a whole week with a chunk size of 5
full batches in the frozen zone

Chunk size Midaisle locations Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 2 91952 +3.01% 0% 12
2 full batches 2 90204 +1.06% -1.90% 18
3 full batches 2 88736 -0.59% -3.50% 56
4 full batches 2 87756 -1.69% -4.56% 100
5 full batches 2 86848 -2.70% -5.55% 280
6 full batches 2 86400 -3.21% -6.04% 741
7 full batches 2 86124 -3.52% -6.34% 1858
8 full batches 2 85788 -3.89% -6.70% 4099
9 full batches 2 85134 -4.62% -7.41% 15494
1 full batch 2 & 4 96336 +7.92% 0% 12
2 full batches 2 & 4 94336 +5.68% -2.08% 18
3 full batches 2 & 4 92676 +3.82% -3.80% 60
4 full batches 2 & 4 91580 +2.60% -4.94% 126
5 full batches 2 & 4 90588 +1.49% -5.97% 345
6 full batches 2 & 4 90092 +0.93% -6.48% 988
7 full batches 2 & 4 89752 +0.55% -6.83% 2444
8 full batches 2 & 4 89444 +0.20% -7.15% 3030
9 full batches 2 & 4 89180 -0.09% -7.43% 19495

Table 7.18: Travel distance by integrating the JOBPRP model for different layouts for a whole week for different chunk sizes in
the frozen zone

7.3.3. Product allocation & Batching
To assess the impact of the allocation policy combined with the JOBPRP model, the two different
allocation policies, as defined in subsection 7.2.2, are applied to the single block warehouse and solved
using the JOBPRPmodel. Because in the across-aisle policy the fast moving SKU’s are spread out over
all aisles, finding shortcuts by using the JOBPRP will most likely be challenging. With the within-aisle
policy the JOBPRP should be better capable to find possible shortcuts with the batching strategy.

Ambient zone
For the ambient zone the allocation policies are depicted in Figure 7.5a and Figure 7.6a. The JOBPRP
model is applied for both the allocation policies. The chunk size of the JOBPRP variates between 1 to
6 full batches. As subsection 7.2.3 showed this is the largest chunk size that has a computation time
that is within reasonable time. The results can be found in Table 7.19. This table shows that combining
the JOBPRP with an allocation policy will decrease the travel distance with up to 33.88%. It shows that
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integrating the JOBPRP model with an within-aisle policy will result in more reduced travel distances
compared to an across-aisle policy. The across-aisle policy successfully decreases travel distance;
however, its outcomes are similar to those of a random storage policy, as shown in Table 7.8. The
difference between the two policies is due to the absence of midaisles. The across-aisle policy stored
popular SKU’s over all the aisle, where the within-aisle policy concentrates the most popular SKU’s in
a single aisle. This is clearly visible in the visualization in Figure F.12. Routes in the within-aisle policy
mostly skip the third and fourth aisle, whereas in the across-aisle the shortcuts are more distributed
over the other aisles.

Chunk size Allocation policy Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch Within 207570 -15.57% 0% 4
2 full batches Within 185328 -24.62% -10.72% 26
3 full batches Within 177511 -27.80% -14.48% 80
4 full batches Within 171798 -30.12% -17.23% 360
5 full batches Within 167376 -31.92% -19.36% 1600
6 full batches Within 162558 -33.88% -21.69% 11600
1 full batch Across 209682 -14.71% 0% 8
2 full batches Across 208890 -15.03% -0.38% 20
3 full batches Across 204270 -16.91% -2.58% 170
4 full batches Across 195665 -20.41% -6.68% 680
5 full batches Across 191994 -21.91% -8.44% 3200
6 full batches Across 188232 -23.44% -10.23% 20000

Table 7.19: Travel distance by integrating the JOBPRP model and an allocation policy for a whole week in the ambient zone

Chilled zone
The applied storage policies are visualized in Figure 7.5b and Figure 7.6b. These policies are combined
with the JOBPRP model, for which the results are given in Table 7.20. It can be seen that the JOBPRP
model applied to a single block layout with an across-aisle policy, has a minimal effect. By increasing
the chunk size the improvement in the found solution is only 0.10%. This is comparable with the
results of applying the JOBPRP model without an allocation policy, as can be seen in Table 7.9. This is
because in both cases, the popular items are distributed over all the aisles, which gives the JOBPRP
less opportunities to finding shorter routes. The within-aisle policy concentrates the high demanded
SKU’s in a single aisle, allowing the JOBPRP model to find some shortcuts. However due to the low
number of aisles in the chilled zone and thus the possibilities of taking a shortcut, the improvement in
travel distance is kept to a relative low percentage. This is visualized in Figure F.13, where it can be
seen that for the within-aisle policy the routes slightly improve for increasing chunk sizes.

Chunk size Allocation policy Travel distance [m] Gap to benchmark Gap to Gap to 1 full batch [%] Computation time [s]

1 full batch Within 286580 -1.59% 0% 28
2 full batches Within 286506 -1.62% -0.03% 34
3 full batches Within 285396 -2.00% -0.41% 52
4 full batches Within 284064 -2.46% -0.88% 80
5 full batches Within 281030 -3.50% -1.94% 135
6 full batches Within 278440 -4.39% -2.84% 162
7 full batches Within 277269 -4.79% -3.25% 278
8 full batches Within 275789 -5.30% -3.77% 646
9 full batches Within 275258 -5.48% -3.95% 892
10 full batches Within 274666 -5.68% -4.16% 1025
11 full batches Within 274235 -5.83% -4.31% 1487
12 full batches Within 273717 -6.01% -4.49% 1577
1 full batch Across 286580 -1.59% 0% 26
2 full batches Across 286506 -1.62% -0.03% 25
3 full batches Across 286506 -1.62% -0.03% 27
4 full batches Across 286432 -1.64% -0.05% 42
5 full batches Across 286358 -1.67% -0.08% 70
6 full batches Across 286358 -1.67% -0.08% 88
7 full batches Across 286297 -1.69% -0.10% 136
8 full batches Across 286297 -1.69% -0.10% 230
9 full batches Across 286210 -1.72% -0.13% 330
10 full batches Across 286210 -1.72% -0.13% 507
11 full batches Across 286297 -1.69% -0.10% 750
12 full batches Across 286297 -1.69% -0.10% 890

Table 7.20: Travel distance by integrating the JOBPRP model and an allocation policy for a whole week in the chilled zone
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Frozen zone
The applied storage policies for the frozen zone are visualized in Figure 7.5c and Figure 7.6c. These
policies are combined with the JOBPRP model, for which the results are given in Table 7.21. Applying
the JOBPRP model to the frozen zone with an allocation policy is able to significantly reduce the travel
distance. Compared to the results of the frozen zone without an allocation policy, which are shown in
Table 7.10, the reduction in travel distance is almost five times higher when a suitable allocation policy
is applied. The within-aisle policy outperforms the across-aisle policy in this zone. This is because this
allocation policy is very well suited for the layout of the frozen zone. With this policy the changes of
visiting the third aisle are reduced, which benefits the travel distance significantly. This is visualized in
Figure F.14. The larger the chunk size of the JOBPRP model, the lower the number of routes that visit
the third aisle.

Chunk size Allocation policy Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch Within 64636 -27.59% 0.00% 13
2 full batches Within 59080 -33.81% -8.60% 14
3 full batches Within 56192 -37.05% -13.06% 21
4 full batches Within 54812 -38.59% -15.20% 48
5 full batches Within 53772 -39.76% -16.81% 87
6 full batches Within 52992 -40.63% -18.01% 196
7 full batches Within 52388 -41.31% -18.95% 494
8 full batches Within 51968 -41.78% -19.60% 1069
9 full batches Within 51572 -42.22% -20.21% 2105
10 full batches Within 51276 -42.56% -20.67% 3225
1 full batch Across 72340 -18.96% 0.00% 12
2 full batches Across 65140 -27.02% -9.95% 13
3 full batches Across 61712 -30.86% -14.69% 34
4 full batches Across 60004 -32.78% -17.05% 59
5 full batches Across 58316 -34.67% -19.39% 107
6 full batches Across 57464 -35.62% -20.56% 299
7 full batches Across 56832 -36.33% -21.44% 906
8 full batches Across 56056 -37.20% -22.51% 2432
9 full batches Across 55752 -37.54% -22.93% 6649
10 full batches Across 55220 -38.14% -23.67% 22000

Table 7.21: Travel distance by integrating the JOBPRP model and an allocation policy for a whole week in the frozen zone

7.3.4. Conclusion
Improving the order picking process by combining 2 warehouse processes to find the best performing
configuration is able to reduce the total travel distance for each combination. However depending
on the zone, the effects can differ. The best performing instances for each combination of warehouse
processes are given in Table 7.22. From this table some things can be concluded. First of all, the frozen
zone is most affected by it’s allocation policy. This is caused by the used routing and the freedom of
crossing from the first to the second aisle. Also adding an extra cross aisle in the frozen zone, will
only increase the travel distance. Selecting a suitable allocation policy for the frozen zone and using
the JOBPRP model will return the highest percentage of improvement of 42.56%, which can be even
larger for a larger chunk size. The results for changing the layout and selecting an allocation policy for
the ambient and frozen zone are comparable. For both zones, the across-aisle policy returns the best
results and for both zones adding two midaisles is preferred over adding a single midaisle. However, in
the other combinations there are some differences between the ambient and chilled zone. By changing
the layout and using the JOBPRP model, the travel distance in the ambient zone can be reduced with
±25%, where in the chilled zone this only ±7%. This is caused by the difference in pick density per
parcel in the zone. In the chilled zone, parcels typically have more picks and thus must visit more
locations. This has a negative influence on the JOBPRP model to formulate improved batches. Using
the JOBPRP model and selecting an allocation policy also returns better results in the ambient zone
than in the chilled zone. This is caused by the number of aisles per zone, whereas the ambient zone has
8 and the chilled zone only has 4. For the JOBPRP model being able to find a shortcut, in the ambient
zone it should construct a batch that does not have to visit 25% of the aisles, where in the chilled zone
this is 50%. The within-aisle policy returns in this case the best results because it concentrates high
demanded SKU’s in a single aisle, instead of spreading them over all the aisles. In general, focusing
on the combination of 2 warehouse processes will return improved results compared to focusing on a
single process. However this is depending on characteristics of the warehouse.
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Process Layout Allocation Batching2 Ambient Chilled Frozen

Layout & Allocation Single Within-aisle X -7.43% -6.55% -24.19%
Single Across-aisle X -12.32% -10.38% -16.12%
Double Within-aisle X -8.97% -8.53% -20.88%
Double Across-aisle X -16.03% -13.24% -11.89%

Layout & Batching Single X (4,8,9) -25.32% -6.72% -4.62%
Double X (4,8,9) -25.01% -8.18% -0.09%

Allocation & Batching X Within-aisle (6,12,10) -33.88% -6.01% -42.56%
X Across-aisle (6,12,10) -23.44% -1.69% -38.14%

Table 7.22: Best performing configurations for a combination between two processes relative to the benchmark result

7.4. Combination between all three warehouse processes
Where in section 7.2 and section 7.3 a single and two integrated warehouse processes are described,
this section will evaluate the integration of all three warehouse processes. To assess the impact of com-
bining the three warehouse processes, the JOBPRP model is applied to four different configurations:
a 2-block layout with an across-aisle policy, a 2-block layout with a within-aisle policy, a 3-block layout
with an across-aisle policy, and a 3-block layout with a within-aisle policy. This are the same configu-
rations as in subsection 7.3.1. First the optimal layout is found, where after this layout is evaluated for
different chunk sizes in the JOBPRP model.

Ambient zone
The results for the 2-block warehouse and the two different allocation policies are shown in Figure 7.14,
whereas the results for the 3-block warehouse with an across- and within-aisle policy are shown in re-
spectively Figure 7.15a and Figure 7.15b. The results illustrated in Figure 7.14-7.15 are again based on
a single day (16-0). The best performing combinations for each assessed situation are then evaluated
with the dataset of the entire week to verify whether the found results also hold for larger datasets. The
complete evaluation of the best performing layouts can be found in Table E.10. The best performing
configurations are then evaluated for different chunk sizes of the JOBPRP model and are shown in
Table 7.23. From this table, it can be concluded that integrating all three warehouse processes can
reduce the travel distance in the ambient zone with 48.19%. Increasing the chunk size of the JOBPRP
will benefit the found solution, however has a rise of computation time as negative downside. For the
ambient zone it is more favorable to add 2 midaisles compared to adding 1 or none. However, adding
an extra midaisle adds more locations to the distance matrix and thereby increases the computation
time of the JOBPPR model. From this table it can be seen that the across-aisle policy returns the best
performing results, however it also need more time to find these solution. This can be caused because
due to the across-aisle policy there are multiple solutions close to the optimal value, making it more
challenging for the JOBPRP model to find the optimal solution. The visualization of the integration of
all three warehouse processes can be found Figure F.15. This shows the differences in constructed
routes for the different allocation policies. Shortcuts for the across-aisle policy are quite straightfor-
ward; they skip the upper part of the aisle. For the within-aisle policy the shortcuts also are able to skip
whole aisles and are less focused on skipping the top part of the aisle. The final routes however return
comparable travel distances.

2The numbers represent the number of full chunks for the respective zones.
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Figure 7.14: Travel distance for a layout with 1 midaisle, the JOBPRP with a chunk size of 3 full batches and an allocation
policy on 16-10 in the ambient zone

(a) Across-aisle policy (full resolution in D.11) (b) Within-aisle policy (full resolution in D.12)

Figure 7.15: Travel distance for a layout with 2 midaisles and an allocation policy and the JOBPRP model with a chunk size of
3 full batches on 16-10 in the ambient zone

Chunk size Location midaisles Allocation policy Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 15 Within 205118 -16.57% 0.00% 8
2 full batches 15 Within 167842 -31.73% -18.17% 58
3 full batches 15 Within 150619 -38.74% -26.57% 283
4 full batches 15 Within 143048 -41.82% -30.26% 1855
5 full batches 15 Within 137846 -43.93% -32.80% 6340
1 full batch 12 Across 211898 -13.81% 0.00% 6
2 full batches 12 Across 163030 -33.69% -23.06% 51
3 full batches 12 Across 149593 -39.15% -29.40% 387
4 full batches 12 Across 141517 -42.44% -33.21% 3350
5 full batches 12 Across 135840 -44.75% -35.89% 24950
1 full batch 13 & 17 Within 200030 -18.64% 0.00% 17
2 full batches 13 & 17 Within 163096 -33.66% -18.46% 99
3 full batches 13 & 17 Within 147858 -39.86% -26.08% 402
4 full batches 13 & 17 Within 139538 -43.24% -30.24% 2201
5 full batches 13 & 17 Within 134358 -45.35% -32.83% 13454
1 full batch 9 & 20 Across 203884 -17.07% 0.00% 21
2 full batches 9 & 20 Across 158064 -35.71% -22.47% 106
3 full batches 9 & 20 Across 141048 -42.63% -30.82% 494
4 full batches 9 & 20 Across 135216 -45.00% -33.68% 10368
5 full batches 9 & 20 Across 127366 -48.19% -37.53% 180423

Table 7.23: Travel distance by integrating all three warehouse processes for different chunk sizes for a whole week in the
ambient zone
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Chilled zone
To evaluate the chilled zone, the first step is done by using a chunk size of 4 full batches to keep
the computation time to a minimum. The results of a single day for a single midaisle are shown in
Figure 7.16 and for a double midaisle in Figure 7.17a and Figure 7.17b for respectively an across and
within-aisle policy. The best performing layouts per allocation policy are then evaluated with the data
for the whole week. The results of this can be found in Table E.11. The best performing layouts per
allocation policy are then solved for different chunk sizes, to see the effect of the JOBPRPmodel. These
results are shown in Table 7.24. From this table some things can be concluded. First of all, the across-
aisle policy outperforms the within-aisle policy for both a single and a double midaisle. Opting for 2
midaisles instead of 1 also improves the travel distance, however results in a larger computation time.
The computation time for the across-aisle policy is in general larger than the computation time for the
within-aisle policy. Compared to a layout without a midaisle as shown in Table 7.20, adding a midaisle
returns a significant improvement. This is caused because the chilled zone has only 4 aisles, adding
a cross aisle gives the JOBPRP more possible solutions, which favor the outcome. The constructed
routes for an within-aisle policy are shown in Figure F.16 and for the across-aisle policy in Figure F.17.
From these visualizations it is clear the routes for an within-aisle policy must visit the third and fourth
aisle more than the first and second aisle, which aligns with the allocation policy. The across-aisle
policy finds the shortcuts at the end of each aisle. Concentrating the picking at the front of each aisle.
The downside of this concentration of picking at the front of each aisle, is the sensitivity to congestion.

Figure 7.16: Travel distance for a layout with 1 midaisle, the JOBPRP with a chunk size of 4 full batches and an allocation
policy on 16-10 in the chilled zone

(a) Across-aisle policy (full resolution in D.13) (b) Within-aisle policy (full resolution in D.14)

Figure 7.17: Travel distance for a layout with 2 midaisles and an allocation policy and the JOBPRP model with a chunk size of
4 full batches on 16-10 in the chilled zone
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Chunk size Location midaisles Allocation policy Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 21 Within 279696 -3.96% 0.00% 40
2 full batches 21 Within 254996 -12.44% -8.83% 40
3 full batches 21 Within 241112 -17.21% -13.79% 79
4 full batches 21 Within 235100 -19.27% -15.94% 227
5 full batches 21 Within 230976 -20.69% -17.42% 428
6 full batches 21 Within 228496 -21.54% -18.31% 923
7 full batches 21 Within 225673 -22.51% -19.31% 1950
8 full batches 21 Within 224441 -22.93% -19.76% 3892
1 full batch 21 Across 281856 -3.21% 0.00% 40
2 full batches 21 Across 243764 -16.30% -13.51% 40
3 full batches 21 Across 232964 -20.00% -17.35% 107
4 full batches 21 Across 226196 -22.33% -19.75% 200
5 full batches 21 Across 222124 -23.73% -21.19% 398
6 full batches 21 Across 219856 -24.50% -22.00% 640
7 full batches 21 Across 218649 -24.92% -22.43% 1113
8 full batches 21 Across 217749 -25.23% -22.74% 2528
1 full batch 18 & 30 Within 270936 -6.96% 0.00% 40
2 full batches 18 & 30 Within 243718 -16.31% -10.05% 61
3 full batches 18 & 30 Within 232112 -20.30% -14.33% 192
4 full batches 18 & 30 Within 224638 -22.86% -17.09% 415
5 full batches 18 & 30 Within 219851 -24.51% -18.86% 1238
6 full batches 18 & 30 Within 216787 -25.56% -19.99% 3467
7 full batches 18 & 30 Within 214233 -26.44% -20.93% 4986
8 full batches 18 & 30 Within 212071 -27.18% 24.76% 19500
1 full batch 18 & 29 Across 263580 -9.49% 0.00% 39
2 full batches 18 & 29 Across 233426 -19.84% -11.44% 57
3 full batches 18 & 29 Across 200672 -31.09% -23.87% 190
4 full batches 18 & 29 Across 213642 -26.64% -18.95% 330
5 full batches 18 & 29 Across 209136 -28.19% -20.66% 716
6 full batches 18 & 29 Across 206808 -28.99% -21.54% 1170
7 full batches 18 & 29 Across 204335 -29.83% -22.48% 2660
8 full batches 18 & 29 Across 202538 -30.45% -28.14% 9124

Table 7.24: Travel distance by integrating all three warehouse processes for different chunk sizes for a whole week in the
chilled zone

Frozen zone
For the frozen zone it is not necessary to find the best performing layout for a daily scenario due to the
low number of possible layouts. All possible layouts are evaluated with a chunk size of 5 full batches
with the data of a whole week. The results can be seen in Table 7.25. For both allocation policies
with a single midaisle, the best performing location of this midaisle is location 2. For a layout with
two midaisle, for both policies a midaisle at location 3 and 4 is the best performing. These layouts are
evaluated with an increasing chunk size, which is depicted in Table 7.26. These results show that for the
frozen zone, an within-aisle policy is preferred. Also adding extra midaisles to the frozen zone will only
increase the travel distance. This is mainly caused by the characteristics of the zone and the routing
policy. By implementing an within-aisle policy, the change of visiting the third aisle is reduced, which
decreases the travel distance significantly. The constructed routes for an within-aisle policy are shown
in Figure F.18 and for the across-aisle policy in Figure F.19. This shows that for both the allocation
policies, zero routes use the midaisles. Adding midaisle is thus unnecessary and only increases the
travel distance. Where the within-aisle policy tries to skip the third aisle in the routes, the across-aisle
policy tries to skip the last part of each aisle. Both leading to the reduction in travel distance.

Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

2 - Within 56500 -36.70%
3 - Within 56152 -37.09%
4 - Within 55212 -38.15%
2 - Across 61864 -30.69%
3 - Across 60668 -32.03%
4 - Across 59336 -35.53%
3 4 Within 58876 -34.04%
3 4 Within 57972 -35.05%
3 4 Within 57628 -35.44%
3 4 Across 64300 -27.96%
3 4 Across 62948 -29.48%
3 4 Across 61752 -30.82%

Table 7.25: Performance of different layouts combined with an allocation policy and the JOBPRP with a chunk size of 5 full
batches for a whole week in the frozen zone
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Chunk size Location midaisles Allocation policy Travel distance [m] Gap to benchmark Gap to 1 full batch Computation time [s]

1 full batch 2 Within 66930 -25.02% 0.00% 8
2 full batches 2 Within 60862 -31.82% -9.07% 10
3 full batches 2 Within 57782 -35.27% -13.67% 31
4 full batches 2 Within 56336 -36.89% -15.83% 61
5 full batches 2 Within 55212 -38.15% -17.51% 149
6 full batches 2 Within 54396 -39.06% -18.73% 411
7 full batches 2 Within 53736 -39.80% -19.71% 1363
8 full batches 2 Within 53290 -40.30% -20.38% 3910
9 full batches 2 Within 52898 -40.74% -20.97% 15563
1 full batch 2 Across 74394 -16.66% 0.00% 7
2 full batches 2 Across 66662 -25.32% -10.39% 10
3 full batches 2 Across 62982 -29.44% -15.34% 34
4 full batches 2 Across 61152 -31.49% -17.80% 68
5 full batches 2 Across 59336 -33.53% -20.24% 175
6 full batches 2 Across 58454 -34.51% -21.43% 529
7 full batches 2 Across 57782 -35.27% -22.33% 1855
8 full batches 2 Across 56978 -36.17% -23.41% 6094
9 full batches 2 Across 56608 -36.58% -23.91% 21833
1 full batch 3 & 4 Within 69872 -21.72% 0.00% 13
2 full batches 3 & 4 Within 63632 -28.71% -8.93% 16
3 full batches 3 & 4 Within 60348 -32.39% -13.63% 46
4 full batches 3 & 4 Within 58808 -34.12% -15.83% 82
5 full batches 3 & 4 Within 57628 -35.44% -17.52% 202
6 full batches 3 & 4 Within 56720 -36.46% -18.82% 620
7 full batches 3 & 4 Within 56020 -37.24% -19.82% 1866
8 full batches 3 & 4 Within 55512 -37.81% -20.55% 5715
9 full batches 3 & 4 Within 55088 -38.29% -21.16% 12452
1 full batch 3 & 4 Across 78224 -12.37% 0.00% 14
2 full batches 3 & 4 Across 69644 -21.98% -10.97% 17
3 full batches 3 & 4 Across 65656 -26.45% -16.07% 53
4 full batches 3 & 4 Across 63692 -28.65% -18.58% 110
5 full batches 3 & 4 Across 61752 -30.82% -21.06% 273
6 full batches 3 & 4 Across 60776 -31.91% -22.31% 912
7 full batches 3 & 4 Across 60052 -32.72% -23.23% 3269
8 full batches 3 & 4 Across 59180 -33.70% -24.35% 7583
9 full batches 3 & 4 Across 58832 -34.09% -24.79% 26717

Table 7.26: Travel distance by integrating all three warehouse processes for different chunk sizes for a whole week in the
frozen zone

Conclusion
Table 7.27 shows for each zone the best performing configuration when integrating the three ware-
house processes together. This table shows that, for selecting the optimal configuration, the layout
and allocation policy can differ per zone. The characteristics of the warehouse play an important role
in finding the optimal configuration. The results for the ambient and chilled zone are quite compara-
ble, which is caused by the similarities between both zones. Both zones are a rectangular warehouse
layout that follow the S shape heuristic. For those warehouses it can be concluded that two midaisles
will return better results than none or one midaisle. Also the across-aisle policy is better suitable for
these warehouse layouts and will outperform the within-aisle policy. For the frozen zone exactly the
opposite holds. The within-aisle policy returns the best results and a layout without midaisle is the op-
timal configuration. The frozen zone is most effective by its allocation policy. Combining the allocation
policy with the JOBPRP model will enhance this effect, as routes can optimally profit from the allocation
policy.

Process Layout Allocation Batching3 Ambient Chilled Frozen

All three processes Single Within-aisle (5,8,8) -43.93% -22.93% -40.74%
Single Across-aisle (5,8,9) -44.75% -25.23% -36.58%
Double Within-aisle (5,8,9) -45.35% -27.18% -38.29%
Double Across-aisle (5,8,9) -48.19% -30.45% -34.09%

Table 7.27: Best performing configurations for a combination between two processes relative to the benchmark result

3The numbers represent the number of full chunks for the respective zones.
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7.5. Relation warehouse processes
This chapter’s evaluation assesses the impact of various combinations of warehouse processes in
relation to Crisp’s benchmark results. However, some picking carts are not loaded with their maximum
capacity, distorting the JOBPRP model’s performance. With a chunk size of one full batch, there is an
improvement over the benchmark. It is essential to account for this to make a fair comparison between
each warehouse process. In the chilled and frozen zones, there’s a discrepancy of 2 picking carts on
16-10, whereas in the ambient section, there is a 11-cart difference on 16-10. The weekly effect of
this difference is even larger. To find the relative impact of warehouse processes, a new benchmark
is established. The new standard uses the JOBPRP model with a chunk size of 1 full batch applied to
the single-block warehouse without an allocation policy. The actual formed batches are thus replaced
by this fully loaded batches, this new benchmark is shown in Table 7.28. For the chilled and frozen
zones, this benchmark is quite similar compared to the real formed batched. However in the ambient
zone, it differs significantly. By selecting the best performing configurations outlined in this chapter and
then comparing their outcomes to this benchmark, the true impact of the warehouse processes can
be evaluated. This comparison is illustrated in Table 7.29. As the number of batches formed remains
consistent in each scenario, we can draw clear conclusions about the effect of each configuration.

Due to the uniform chunk size per zone, the effect of all warehouse processes can be compared
to each other and we can identify the effect of the (combination of) processes on the order picking
efficiency. The impact of the optimization of a single or multiple warehouse processes is depending
on the characteristics of the warehouse. Each warehouse is unique, resulting in a different optimal
configuration. However for a rectangular layout, the ambient and chilled zone, some general remarks
can be made. First of all focusing on a single warehouse process does in most cases not improve
the efficiency. Adding midaisles or opting for a different allocation policy does not improve the travel
distance on its own. Batching the parcels by using the JOBPRP model can improve the travel distance,
but the percentage is depending on the number of aisles and the pick density of the warehouse. When
combining two warehouse processes the influence for a combination between layout and allocation
is in both zones comparable. However when applying the JOBPRP model the two zones differ from
each other. Due to the high pick density and low number of aisles in the chilled zone, finding optimal
routes with the JOBPRP model is challenging. Therefore, these results are lower than the ambient
zone, where there is more freedom in finding these optimal routes. Combining two processes proves
beneficial over altering only one of those two processes. An integration of all three warehouse pro-
cesses returns in both zones the best performing operation. For both zones, it holds that a layout with
2 midaisles outperforms none or 1 midaisle. The within-aisle or across-aisle preference depends on
the layout, although for standard multi-block configurations, the across-aisle option is typically favored
for minimizing travel distance. However, the order pikcig concentration at the aisle entrances can lead
to potential congestion. Using the JOBPRP model will always improve the outcomes of an FCFS ap-
proach. Compared to the most common warehouse, a single-block warehouse with a FCFS batching-
and random storage policy, integrating all three processes results in an improvement ranging from
30-40%, depending on the warehouse characteristics. These results are based on chunk sizes with
reasonable computation times, however the actual percentage could be larger if the model is solved for
larger chunk sizes. The frozen zone is due to its layout and routing self-contained. The allocation policy
has the biggest influence on this zone. Where in the ambient and chilled zone it has been effective
to incorporate an extra midaisle in the layout, in the frozen zone this only leads to an increased travel
distance as the midaisles are almost never used. For the frozen zone integrating an within-aisle policy
and the JOBPRP model on a layout without midaisle will return the best performing configuration and
improve the operation with 41.09%.

Zone 14-Oct 15-Oct 16-Oct 17-Oct 18-Oct 19-Oct 20-Oct Total

Ambient (actual) 48784 30668 23723 28545 38330 32129 43673 245852
Ambient (new) 41327 26010 20808 24276 32368 27166 37793 209748
Chilled (actual)) 56376 34715 29785 36124 45354 39149 52586 294089
Chilled (new) 55706 34454 29463 32522 44114 38479 51842 286580
Frozen (actual) 15944 11222 10154 10532 14446 12208 14756 89262
Frozen (new) 15684 10980 9936 10412 14300 11916 14316 87544
Total (actual) 121104 76605 63662 72330 98130 83486 111015 626332
Total (new) 112717 71444 60207 67210 90782 77561 103951 583872

Table 7.28: Benchmark travel distance for a full week in meters
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Process Layout Allocation Batching4 Ambient Chilled Frozen

Layout Single X X +2.19% +0.21% +5.05%
Double X X +0.84% +2.28% +10.05%

Allocation X Within-aisle X -1.04% 0.00% -26.17%
X Across-aisle X -0.03% 0.00% -17.37%

Batching X X (4,8,9) -10.65% -0.10% -6.03%

Layout & Allocation Single Within-aisle X -5.23% -5.86% -22.24%
Single Across-aisle X -10.70% -9.79% -15.02%
Double Within-aisle X -6.28% -7.68% -20.19%
Double Across-aisle X -13.84% -12.41% -10.65%

Layout & Batching Single X (4,8,9) -12.47% -5.21% -2.75%
Double X (4,8,9) -12.11% -6.69% +1.87%

Allocation & Batching X Within-aisle (4,8,9) -18.09% -3.95% -41.09%
X Across-aisle (4,8,9) -6.71% -0.13% -36.32%

All three processes Single Within-aisle (4,8,9) -31.80% -21.68% -39.58%
Single Across-aisle (4,8,9) -32.53% -24.02% -35.34%
Double Within-aisle (4,8,9) -34.28% -26.00% -37.07%
Double Across-aisle (4,8,9) -35.53% -29.33% -32.80%

Table 7.29: Results for all possible combinations of warehouse processes relative to the new benchmark

7.6. Conclusion
This chapter presents the results of the conducted experiments and thereby provides an answer to sub-
question 5 and 6. For all zones in the Crisp warehouse, the effect is evaluated of optimizing for a single
or combination of the warehouse processes. The best performing results are shown in Table 7.11,
Table 7.22 and Table 7.27 for respectively one, two and three combined warehouse processes and
summarized in Table 7.30. This are the best performing results all using different chunk sizes in the
JOBPRP model. Increasing this chunk size, is proven to enhance the results but increases the com-
putation time.

All combinations of warehouse processes are evaluated for the Crisp warehouse. The optimal
configuration for the ambient and chilled zone, both rectangular warehouse layouts, are a 3-block layout
with an across-aisle policy and the JOBPRP model applied. For the ambient zone, the midaisle are
located at location 9 and 20, dividing the aisle in almost 3 even large subaisles. For the chilled zone the
midaisles are located at location 18 and 29, resulting in a subaisle of 50% and two subaisles of 25%.
The optimal configuration for the ambient zone reduces the total travel distance with 48.19% and for
the chilled zone with 30.45%. For the frozen zone it is clear that the allocation policy has the biggest
influence on this zone. Where in the ambient and chilled zone it has been effective to incorporate an
extra midaisle in the layout, in the frozen zone this midaisles is not used only leads to an increased
travel distance. For the frozen zone integrating an within-aisle policy and the JOBPRP model on a
layout without midaisle will return the best performing configuration and improve the operation for Crisp
with 42.56%. If all zones are configured to their optimal configuration, this will reduce the weekly travel
distance with 39.14%. The routes for the optimal configurations for each zone for 16 October are
visualized in Figure 7.18, which clearly shows the made shortcuts and the improvement on the travel
distance. This improvement in travel distances leads to an decrease in time required for order picking.
As each working hour costs money, this reduction will favor the operational costs. The reduction of
39.14% on the travel distance will lead to a saving of €130.000,- on a yearly basis for the operational
costs of the order picking process. The calculation of these savings is provided in Appendix H.

Due to the current batching process of Crisp not loading pick carts to their maximum capacity,
evaluating the effect for different warehouse processes in based on a new benchmark that makes
only full pick carts. This evaluating is provided in section 7.5. Improving the order picking process by
altering one warehouse process has a limited effect on the travel distance. Incorporating two processes
will enhance the results of a single process as the changes of possible shortcuts increase. The best
performing warehouse configurations are however a combination between all three processes. The
effect of each processes is always depending on the characteristics of the warehouse. When optimizing
the warehouse, the first step is to find the best performing layout as this sets the boundaries for the
other processes. Compared to the most common warehouse, a single-block warehouse with a FCFS
batching- and random storage policy, integrating all three processes results in an improvement ranging
4The numbers represent the number of full chunks for the respective zones.
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from 30-40%, depending on the warehouse characteristics.

Process Layout Allocation Batching5 Ambient Chilled Frozen

Layout Single X X +0.15% +0.1% +4.95%
Double X X +1.15% +1.99% +9.94%

Allocation X Within-aisle X -1.93% 0.00% -26.76%
X Across-aisle X -0.03% +0.05% -18.35%

Batching X X (6,15,11) -23.77% -1.77% -8.48%

Layout & Allocation Single Within-aisle X -7.43% -6.55% -24.19%
Single Across-aisle X -12.32% -10.38% -16.12%
Double Within-aisle X -8.97% -8.53% -20.88%
Double Across-aisle X -16.03% -13.24% -11.89%

Layout & Batching Single X (4,8,9) -25.32% -6.72% -4.62%
Double X (4,8,9) -25.01% -8.18% -0.09%

Allocation & Batching X Within-aisle (6,12,10) -33.88% -6.01% -42.56%
X Across-aisle (6,12,10) -23.44% -1.69% -38.14%

All three processes Single Within-aisle (5,8,9) -43.93% -22.93% -40.74%
Single Across-aisle (5,8,9) -44.75% -25.23% -36.58%
Double Within-aisle (5,8,9) -45.35% -27.18% -38.29%
Double Across-aisle (5,8,9) -48.19% -30.45% -34.09%

Table 7.30: Results for all possible combinations of warehouse processes relative to the benchmark of Crisp

(a) Ambient (b) Chilled (c) Frozen

Figure 7.18: Visualization of the routes on 16-10 for the best performing configuration for each zone

5The numbers represent the number of full chunks for the respective zones.



8
Conclusion

In this chapter, the final conclusion of this thesis is presented. It will provide an answer to the main
research question: ”How can the order picking process in a large low-level picker-to-parts warehouse
be optimized by incorporating different due times and multiple pickers, and what is the effect of the
product allocation policy on the travel distance?”. This research question was supported by several
subquestions which will be answered separately before the conclusion of the main research question
will be drawn.

Subquestion 1: How is the current order picking process organized?

Within the Crisp warehouse, multiple processes are employed between the receiving of product until
the delivery. Products are received, occasionally pre-picked, stored, picked, and prepared for delivery.
Orders are picked in three distinct zones, categorized by picking temperature. The picking process in
each zone varies by parcel size, batch size and layout, yet all are picking following the S-shape heuris-
tic. A blackbox- and CATWOE analysis were performed to find the key elements of the order picking
system.

Subquestion 2: Which warehouse processes influence the order picking performance and which ap-
proaches can be used to enhance the order picking performance?

There are four main aspects found that have a significant influence of the warehouse operations; The
layout, the product allocation, order batching and the routing. The configuration of the racks will set the
physical outline for the rest of the warehouse processes and therefore influences the warehouse effi-
ciency. How and where products are placed can influence the efficiency by placing specific products
in the most easily accessible locations allowing for shortcuts in the routing. SKU’s can be allocated
with a random, dedicated and class-based policy. While random storage is the most space-efficient,
dedicated and class-based storage policies generally improve picker efficiency and travel distances.
Dedicated storage returns the highest picker efficiency, but suffers from low space utilization. Class-
based storage strikes a balance between the two, offering a compromise in both space efficiency and
travel distance reduction. With order batching, a given set of customer orders is batched into a feasi-
ble batch such that the objective function is minimized. Which orders are batched together depends
on the the storage allocation and the routing method. When solving the JOBPRP, reducing the total
travel distance is often the objective. Solving the batching and routing is found to be an effective com-
bination to optimize the travel distance. All warehouse processes are connected and finding the best
performing configuration will be a combination between all processes. This thesis applies an exact al-
gorithm to solve the JOBPRP and uses the layout and allocation as input. To overcome computational
challenges, the problem is divided into smaller parts, enabling an exact approximation approach. This
method ensures solutions that closely approximate the optimal value while maintaining feasibility within
the constraints of computational resources.
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Subquestion 3: How can a model be designed to minimize travel distance while simultaneously meet-
ing the due times of orders?

To create the model, the initial step involves defining the goal, key performance indicators, and model
requirements. A constrained optimization model is then constructed to simulate the order picking pro-
cess. This model’s aim is to reduce the total travel distance, bound by the operational constraints. To
ensure orders meet their due times, the data is sorted by delivery time. The data is structured so that
orders processed together by the JOBPRP model are allowed to be batched together considered time
limitations. The orders are processed in a first comes, first served principle.

Subquestion 4: How can the developed model be applied to the Crisp warehouse using real-world
data?

The developed model can be adapted for any warehouse with appropriate modifications. The key
aspect is the layout and how it’s integrated into the model. This layout is depicted through a distance
matrix, which details the distances between nodes within the warehouse. Each aisle’s shelves are con-
solidated into a single node. Modifying the distance matrix values allows for adjustments to changes
in the warehouse layout. In order to convert the data of Crisp into a format suitable for the JOBPRP
model, certain data processing steps are necessary. Parameters, like the maximum batching capacity,
can be conveniently modified to align with the real situation.

Subquestion 5: How do different warehouse processes affect the performance of order picking oper-
ations in a picker-to-parts warehouse?

The impact of the optimization of a single or multiple warehouse processes is depending on the char-
acteristics of the warehouse. Each warehouse is unique, resulting in a different effect of each process.
However for a rectangular layout, some general conclusions can be made. First of all focusing on a
single warehouse process does in most cases not improve the efficiency. Adding midaisles or opting
for a different allocation policy does not improve the travel distance on its own. Batching the parcels
by using the JOBPRP model can improve the travel distance, but the percentage is depending on the
number of aisles and the pick density of the warehouse. An combination between the warehouse pro-
cesses will return a lower travel distance, however which combination is preferable is depending on
the characteristics of the warehouse. The allocation policy can improve the travel distance by grouping
high demanded SKUs together. This means most of the picks are concentrated to a smaller area of the
warehouse, allowing to reduce the travel distance. This is only effective if possible shortcuts can be
found. Adding midaisles can enhance the travel distance by allowing the picker to skip parts of an aisle.
However adding a cross aisle has the downside that it uses space that was normally used as shelf.
So the improvements obtained by adding a cross aisle is depending on the warehouse. The JOBPRP
model improves the efficiency by batching similar parcels together, such that some batches can take
shortcuts. This calculates the optimal batch strategy and will most likely improve the travel distance.
The percentage of improvement is however depending on the other warehouse processes. Combining
all three processes will affect the travel distance the most. The first step is finding the best suitable
layout, as this demarcates the allocation and batching. Compared to the most common warehouse,
a single-block warehouse with a FCFS batching- and random storage policy, integrating all three pro-
cesses results in an improvement ranging from 30-40%, depending on the warehouse characteristics.

Subquestion 6: For the low-level picker-to-part warehouse of Crisp, what are the optimal configura-
tions for the different operational characteristics?

To find the optimal configuration for the different zones with each their own characteristics all possible
combinations of warehouse processes are evaluated. First the best performing layout for a single day
are found, where after the most promising layouts are explored with larger datasets. For the ambient
and chilled zone, both a rectangular warehouse layout, the optimal configuration is a 3-block layout with
an across-aisle policy and the JOBPRP model applied. This optimal configuration is able to reduce the
travel distance in the ambient zone with 48.19% for a chunk size of 5 full batches and in the chilled zone
a reduction of 30.45% is made by a chunk size of 8 full batches. The frozen zone has quite different
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characteristics, which results in a different optimal configuration. The optimal frozen zone consists of
a layout without added midaisles, an within-aisle policy and the JOBPRP model applied. This com-
bination leads to a improvement of 42.56% for a chunk size of 10 full batches. With all three zones
performing in their optimal configuration, the total weekly travel distance can be reduced with 39.14%
for the warehouse of Crisp, reducing the order picking costs with €130.000.

Research question: How can the order picking process in a large scale low-level picker-to-parts ware-
house be optimized by incorporating different due times, and what is the effect of the integration of
multiple warehouse processes on the travel distance?

The research question is supported by the previous answered subquestions, which provide an general
conclusion to the main research question: The order picking process in a large low-level picker-to-parts
warehouse can be optimized through a holistic approach. The four defined warehouse processes, rout-
ing, layout, allocation and batching are all interconnected. Finding the optimal configuration is thus de-
pending on all four processes. The effectiveness of these optimizations depends onwarehouse-specific
characteristics, requiring a detailed evaluation of the layout, pick density, and operational constraints.
This thesis provides a framework for such evaluations, ensuring optimal configurations for diverse
warehouse environments. The applied JOBPRP model uses an exact approximation approach. This
method ensures solutions that closely approximate the optimal value while maintaining feasibility within
the constraints of computational resources. This thesis evaluates a large order picking warehouse with
a high pick density per batch. Compared to the most common warehouse, a single-block warehouse
with a FCFS batching and random storage policy, integrating all three processes results in an improve-
ment ranging from 30-40%, depending on the warehouse characteristics. The presence of a suitable
allocation policy is proven to improve the outcomes of the order picking process as the locations of
the SKUs are an important parameter for the JOBPRP model. However the effectiveness of the allo-
cation policy is depending on the other warehouse processes and the possibilities to make short cuts
in the routing. For the single-block warehouse zones of Crisp, solely adding a allocation policy has a
negligible effect on the travel distance. Combing the allocation policy with other warehouse processes,
such as the layout or batching, can improve the travel distance compared to a random allocation pol-
icy with respectively 7-16% and 2-34%. For the frozen zone, with total different characteristics, the
allocation alone already yields an improvement of 26.75%. The allocation policy is thus of importance
when optimizing the order picking process, however the percentage of improvement is depending on
the warehouse and its characteristics.
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Discussion and recommendations

The previous chapter has drawn the final conclusions to this thesis, however it is important to mention
the gaps and limitations of this research and what could be the follow up steps in further research. This
is described in this chapter.

9.1. Discussion
The developed model aims to be a good as possible representation of the reality, however the are some
limititions and gaps compared to the reality that needs to be explained. This will be explained below
point by point.

• Product sizes
The model assumes each product has an uniform size. However in reality the SKUs all come
in different sizes and need different storage sizes. Due to the uniformity that is assumed, this
research places products at the same location that in reality exceed the available storage space.
In the real case scenario the needed space to store all SKUs assigned to a single warehouse node
by be larger or smaller. This will influence the found results as the travel distances of subaisles
may increase or decrease.

• Data processing
The data is processed in such a way that it is sorted per delivery route an in an ascending order
of the delivery due time. This data is then solved by the model in specified chunk sizes. However
which parcel is assigned to which batch affects the found travel distance reduction. Also due to
the constraint that no parcels with an exceeding delivery time of 2 hours can be batched together,
some chunks are cut off if this threshold is met. How many parcels are in the chunk that is cut
off, has an effect on the found value. If this are only 3 parcels, a new route must be constructed
for only 3 parcels. However if this is the 15th parcel, the effect is much less drastic.

9.2. Recommendations
The recommendations following from this thesis are divided into two categories; recommendations for
further research and recommendations for Crisp.

9.2.1. Scientific recommendations
This thesis suggest an approach to solve the JOBPRP for large warehouse layouts with an high pick
density. It is able to solve a large number of orders in a reasonable computation time. However there
are always recommendations for further research. Which are described below:

• Different routing policy
The proposed model uses the S-shape heuristic for the routing policy. However further research
could evaluate the effect of different routing policies and investigate how these interact with the
other warehouse processes. This can be incorporated into the model by changes to the distance
matrix and applying minor changes to the constraints of the mathematical model.
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• The nearest-subaisle policy
The proposed allocation policies are independent of the layout. By this independency, changes
to the layout do not require a new allocation policy. It would be interesting to see if dedicated
allocation policies for each layout, such as the nearest-subaisle policy, return improved results
compared to the across-aisle and within-aisle policy.

• Asses the effect of congestion
Applying an allocation policy can decrease the travel distance, however has the downside of
concentrating the picking process. It could be interesting to investigate the effect of the congestion
on the picking time and to see if incorporating this in the objective value returns different results.

• Dynamic picking times
The objective of this thesis is to reduce the total travel distance, however it could be interesting
to evaluate the picking process based on the total picking time. By optimizing for the total picking
time, a dynamic picking time can be implemented. With this is meant that picking multiple of the
same SKUs generally takes less time than picking different time. Further research could focus
on implementing this different picking time in the model.

9.2.2. Recommendations for Crisp
This thesis is performed in cooperation with Crisp, so this subsection will describe the recommenda-
tions concluded from this thesis for Crisp. The thesis concludes that the order picking process in the
Crisp warehouse can be improved. This subsection will discuss the recommendations per zone and
evaluates their possible improvements but also discussed the challenges with implementing these new
configurations.

• The ambient zone
Implementing a combination of all three processes in the ambient zone has shown to be able to
reduce the travel distance with 43.35% and 48.19% for respectively a single and double midaisle
layout. This uses and across-aisle policy which mean the SKU’s should be divided into 2 or 3
classes (depending on the number of midaisles). This distinction can be made on weekly sales
and be an variable parameter for each product. This configuration is proven to reduce the travel
distance the most, however there is one downside of this configuration. Due to the chunk size
of 4 full batches, 72 parcels are handled simultaneously by the JOBPRP model. In the current
situation, the batches are consists of parcels that mostly are assigned to the same route. Selecting
the a configuration that uses the JOBPRP model will distribute the order per route over different
picking carts. This distribution of parcels will increase the complexity of the sorting process, as
the parcels for a route are now distributed over more picking carts. The other possible option is
to only optimize the order picking process by selecting a suitable layout with an allocation policy.
The picking carts do now consist of parcels assigned to the same route, however this returns only
an improvement of 16.03% compared to the 48.19% which is possible by integrating the JOBPRP
model into the equation. The downside is with the across aisle policy the aisles become more
sensitive for possible congestion, however the products are distributed over 10 shelves and if the
pickers start as they do now, not all at once, this should be within the limitations.

• The chilled zone
Integrating all warehouse processes can return an improvement of 30.45% of the travel distance.
For the chilled zone, the recommendation is to integrate all three processes together. Where
in the ambient zone it could be beneficial to exclude the JOBPRP model to reduce the sorting
complexity, the chilled zone solves for 8 full batches with correspond to 48 parcels. In general
48 chilled parcels will be assigned to ±2 delivery route, making the complexity of the sorting less
drastic than for the ambient zone. If the distribution between of 2 routes over 8 picking carts
is considered to be undesired, the chunk size can also be reduced. With a chunk size of 4 full
batches, the model found travel distance will be 4% higher, but has the positive effect that parcels
of the same route are most likely to be placed in the same batch.

• The frozen zone
The frozen zone is most sensitive to optimization by applying a suitable allocation policy. The
recommendation is thus to relocate the SKUs in the frozen zone according to the within aisle
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policy. Only implementing the allocation policy in the frozen zone will already improve the travel
distance with 26.76%. Integrating the JOBPRP model returns an improvement of 42.56% for a
chunk size of 10 full batches, which correspond to 40 parcels. A delivery route consists of ±4
parcels, meaning the parcels per chunk represents ±10 delivery routes. Applying the JOBPRP
model will thus distribute the parcels of a delivery route over multiple picking carts. However due
the relative low number of parcels, the extra sorting step should be able to be handled.
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Abstract— Over the past decade, consumer shopping habits
have increasingly shifted toward online grocery purchases,
driving the need for efficient warehouse operations. This study
addresses the Joint Order Batching Picker Routing Problem
(JOBPRP) by developing an exact optimization approach and
examining the interdependencies among key warehouse pro-
cesses. Using a case study of Crisp B.V., an online grocery
retailer, the proposed algorithm was implemented to optimize
configurations across multiple temperature-controlled zones
with varying operational characteristics. The approach yielded
a 33.32% reduction in weekly travel distance compared to the
benchmark. These findings highlight the significant impact of
integrating order batching and picker routing on warehouse
efficiency. The study not only demonstrates the critical correla-
tion between warehouse processes but also provides actionable
insights for optimizing order picking in high-density, large-scale
warehouses.

I. INTRODUCTION
In recent years, consumer shopping habits have undergone

a significant transformation, shifting from in-store purchases
to online shopping. This trend has been driven by ad-
vancements in internet technology, which have made online
shopping more accessible and convenient. Although the
rise of e-Commerce initially focused on traditional parcels
such as clothing and electronics, it has now expanded to
include fast-moving consumer goods (FMCG). Supermarkets
increasingly offer online platforms with next-day grocery
delivery, reflecting this shift in consumer behavior.

This surge in online shopping has put greater demands
on warehouse operations, which serve as a crucial compo-
nent of the supply chain. Warehousing processes, including
receiving, storing, order picking, and shipping, must be ex-
ecuted with maximum efficiency to meet growing consumer
expectations and remain competitive. Among these, order
picking is the most resource-intensive operation, accounting
for approximately 55% of total warehouse operating costs
(Karásek, 2013). This makes it a critical focus for optimiza-
tion, particularly in FMCG warehouses, where large and
diverse orders must be processed efficiently to meet daily
demand.

The complexity of optimizing order picking stems from
its dependency on several interrelated factors, including
warehouse layout design, routing policies, product alloca-
tion strategies, and order batching. Each of these processes
influences performance, but their interdependencies make
it challenging to identify an optimal configuration. For
example, layout decisions determine the foundation for all

subsequent processes, while routing policies, product allo-
cation, and batching must be carefully coordinated to mini-
mize travel distances and operational costs. These problems
are often modeled as Mixed-Integer Programming (MIP)
problems, which are computationally complex (NP-hard).
Consequently, there is growing interest in integrated ap-
proaches that address these challenges holistically to improve
warehouse efficiency.

This research investigates the optimization of the or-
der picking process in collaboration with Crisp, a Dutch
online supermarket specializing in fresh, sustainable, and
locally sourced products. Unlike larger supermarkets, Crisp
maintains a curated product assortment, typically avoiding
duplicate brands for similar items. This allows for a stream-
lined logistics approach while meeting high standards of
sustainability and quality.

Crisp operates two warehouses, located in Amsterdam
and Breda, along with three cross-docking hubs. These
facilities handle a daily order volume of 1,500 to 3,500
orders, with approximately 70% processed in Amsterdam
and the remaining 30% in Breda. The warehouses employ
a low-level picker-to-parts system, where pickers retrieve
products directly from accessible racks without mechanical
assistance. The facilities are divided into three temperature-
specific zones —ambient, chilled, and frozen— to accom-
modate different storage requirements. Each zone has unique
operational characteristics, such as varying order sizes, cart
capacities, and layouts. Because its relatively simple current
setup, Crisp’s order picking process offers significant oppor-
tunities for improvement. By addressing key challenges such
as layout design, routing, and batching, this research aims to
optimize the process by reducing the travel distance.

With the increasing reliance on warehouses, research ded-
icated to warehouse optimization has grown significantly.
Most studies focus on either routing or batching opti-
mization, with limited efforts to integrate these processes
into a joint approach. Furthermore, existing research of-
ten examines scenarios with low pick density per batch
and small batch sizes, making their applicability to large-
scale operations limited. This study contributes to the field
by adapting the Joint Order Batching and Picker Routing
Problem (JOBPRP) to a large-scale warehouse environment
characterized by high pick density per batch. It seeks to
address the following research question:



How can the order picking process in a large scale
low-level picker-to-parts warehouse be optimized by

incorporating different due times, and what is the effect of
the integration of multiple warehouse processes on the

travel distance?

The rest of the paper is organized as follows: Section II
will review the related literature. Section III will formulate
the problem and formulate a mixed-integer programming
model. Section IV will provide a case study based on the
warehouse of Crisp. After which Section V will provide the
conclusion and recommendations.

II. LITERATURE REVIEW

The literature review chapter examines the key concepts
regarding optimizing a picker to part warehouse. This aims
to provide a comprehensive understanding on all the relevant
aspects of warehouse optimization. The decisions regarding
the order picking process can be categorized on a strategic,
tactical and operational level (Rouwenhorst et al., 2000; van
Gils et al., 2018).

A. Strategic level

Strategic-level decisions in warehouse design encompass
long-term considerations with significant investment implica-
tions, such as the level of automation, equipment selection,
and picking policies (Rouwenhorst et al., 2000; van Gils
et al., 2018). The level of automation reflects the extent to
which manual processes are replaced by automated systems,
ranging from fully manual to fully automated operations.
Equipment requirements vary based on automation levels. In
low-level picker-to-parts systems, critical equipment includes
picking carts, which can be customized for size, weight
capacity, and drivetrain, as well as devices for guiding
pickers, such as scanners. Additionally, low-level or high-
level shelves impact equipment needs and overall efficiency
(Rouwenhorst et al., 2000). The picking policy defines how
orders are retrieved and is closely linked to automation
and equipment choices. Dallari et al. (2009) identified five
picking strategies; Picker-to-parts, pick-to-box, pick-and-
sort, parts-to-picker and automated picking, which influence
operational efficiency and equipment requirements.

B. Tactical level

At the tactical level, decisions are made that impact the
medium term (van Gils et al., 2018), based on the outcomes
of the strategic decisions (Rouwenhorst et al., 2000). Tactical
decisions typically concern the dimensions of resources (e.g.
storage size, storage capacity, number of employees), the
determination of the layout and storage assignment (Rouwen-
horst et al., 2000). The dimensions of a warehouse are con-
strained by its physical structure, which dictates its total size.
Within these bounds, the warehouse is segmented into zones
dedicated to specific functions, such as picking, inbound,
outbound, and backstock operations. Determining the size
of each zone is a critical tactical decision. Warehouse layout
is a key component of operational performance, directly
affecting order picking and travel distances (Karásek, 2013;

(a) Conventional warehouse
layout, single block

(b) Warehouse layout with
middle cross aisle, multi-block

Fig. 1: Conventional layouts with a single P&D point
(adapted from: (Gue & Meller, 2008))

Mohamud et al., 2023). It demarcates the dimensions for
the other warehouse operations. The aisle configuration can
have a significant effect on order picking and the travel
distances (Karásek, 2013). A conventional layout is shown
in Figure 1a. Adding cross aisles in a warehouse layout has
been researched in various studies. Roodbergen et al. (2008)
concluded that, apart from special cases with a very high
picking density, it is always favorable to have a multiple
block layout. The research done by Ertek et al. (2007)
presented a detailed discussion of the impact of cross aisles
on a rectangular warehouse. They defined the optimal amount
of cross aisles with respect to the amount of aisles and the
length of the aisles. hey concluded that establishing cross
aisles can bring significant travel-time savings and that it is
more desirable to establish only equally spaced cross blocks
than unequally spaced cross blocks. This is in contrary to
the research by Küçük (2003), which concluded that a lower
number of unequally spaced cross aisles provide the same
travel distance reductions due to a higher number of equally
spaced cross aisles.Berglund and Batta (2012) presented a
method for calculating the maximal efficient cross aisle
positions for a picker-to-parts warehouse. The proposed
method is suitable for multiple warehouse sizes, different
storing policies and can vary the amount of cross aisles.
Besides the conventional rectangular warehouse designs, the
studies of Gue and Meller (2008), Gue et al. (2012), Pohl
et al. (2010),Dukic and Opetuk (2012), Çelik et al. (2012)
study the effects of non-conventional layouts. Çelik et al.
(2012) compared the fishbone layout with a conventional
layout with two middle cross aisles. Their study finds that
the conventional layout will outperform the fishbone layout
for all orders with 3 or more picks.

There are numerous ways to store products within the
warehouse. The effect of the product allocation policy is
related to the routing policy. The simplest storage method is
the random storage policy. In this policy the Storage Keeping
Units (SKU’s) are assigned to a randomly selected location
in the warehouse (De Koster et al., 2007). The closest open
location policy is in most aspects similar to the random
storage policy, however the SKU’s will be stocked in the
first encountered empty location, concentrating the SKU’s



(a) Across-aisle storage (b) Within-aisle storage (c) Nearest-subaisle storage (d) Nearest-location storage

Fig. 2: class-based storage assignment configurations; Black boxes are class A, Dark grey boxes are class B, Light boxes
are class C (taken from: (Roodbergen, 2012))

around the P&D point. Unlike the random- and closest open
location policy, dedicated storage policies store SKU’s at
their dedicated place. The disadvantage of this is that a
location is also reserved for products that are out of stock,
which leads to the lowest space utilization among all policies
(De Koster et al., 2007). The class-based storage policy
combines the random and dedicated storage policies. It first
divides all SKU’s in several classes. Each class is dedicated
to a specific area of the warehouse where the storage of
SKU’s is done randomly. In assigning the classes to an
area in the warehouse multiple configurations are possible
as shown in Figure 2.

C. Operational level
At the operational level, processes have to be carried out

within the boundaries set at the strategic and technical level.
The decisions typically concern daily operations such as job
assignment, batch formation and the routing. In every picker-
to-part warehouse, an order picker must follow a route to
visit all pick up locations. Routing will impact the order
picking efficiency as it directly impacts the travel distance.
The routing plays a role in almost every study related to
warehouse optimization as most of the objectives are directly
linked with the travel distance. The algorithm used to solve
the routing problem can be classified in three general types;
an exact algorithm, heuristics, and meta-heuristics (Masae
et al., 2020). For a single-block warehouse with narrow aisles
there are 5 basic heuristics defined in literature. The traversal
(S-shape), the midpoint, the largest gap heuristic, the return
and the composite heuristic. The S-shape heuristic is the
most common heuristic and also used in this research. The
heuristic is visualized in Figure 3

The basic heuristics were originally developed for a single
block layout, nevertheless the studies of Roodbergen and De
Koster (2001a), Vaughan and Petersen (1999) and Shouman
et al. (2007) extended these heuristics to a multiple block
layout and defined new heuristics. Exact algorithms tend to

Fig. 3: S-shape heuristic

find an optimal solution to the PRP. The work of Ratliff
and Rosenthal (1983) is seen as a seminar work. Ratliff and
Rosenthal (1983) is specified to a single block warehouse,
so multiple authors extended the algorithm to a multiple
block warehouse. Roodbergen and De Koster (2001b) were
the first to extend the research to a conventional warehouse
with a middle cross aisle. Chabot et al. (2017) used a
branch-and-cut algorithm to solve the order picking problem
with precedence constraints. They concluded that both the
exact algorithms are performing better than heuristics, but
have longer computational times. The study of Theys et al.
(2010) is in essence quite similar. The study applied an
exact algorithm and compared the results to heuristics. The
exact results are obtained by using the exact Concorde
TSP algorithm, which uses a branch-and-cut algorithm to
find the shortest route. Matusiak et al. (2014) used the A*
algorithm, which is based on dynamic programming, to solve
the combined precedence-constrained order picker routing
and order batching problem. Su et al. (2023) proposed two
mathematical optimization formulations for the multi-block
layout with Mixed Integer Linear Programming (MILP).
Meta-heuristics are mostly used to solve a combination of
multiple order picking problems at once. The most com-
monly used meta-heuristics are (Masae et al., 2020): Genetic
Algorithms (GA), Simulated Annealing (SA), a Tabu Search



(TS), Particle Swarm Optimization (PSO), Ant Colony Op-
timization (ACO) and Adaptive Large Neighborhood Search
(ALNS). Meta-heuristics typically return results comparable
to results provided by exact algorithms, but in general use
less computation time and find near optimal solutions instead
of the optimal solution. The studies of Tsai et al. (2008),
Kordos et al. (2020), Lin et al. (2016) and Chen et al. (2016)
all solve the PRP by using one of the mentioned meta-
heuristics. The different meta-heuristics are all capable of
solving the PRP and all approach the optimal solution.

The Order Batching Problem (OBP) is the grouping of a
given set of customer orders into feasible picking orders such
that the objective function is minimized. When solving the
order batching problem exact, it can be considered as a NP-
hard problem and many studies focus on developing algo-
rithms or (meta-)heuristics for solving it. It is most effective
when combined with the PRP, solving the Joint Order Batch-
ing Picker Routing Problem (JOBPRP). Ene and Öztürk
(2012) represent the JOBPRP with an integer programming
formulation. Due to the need for short computation time,
they solve this problem by using a genetic algorithm to
approximate the results. Won and Olafsson (2005) proposed
two different heuristics to solve the JOBPRP. Their solution
is based on combining a Bin-Packing Problem (BPP) with a
TSP. The first heuristic is the Sequential Order Batching and
Picking (SBP) algorithm. It is sequential in the sense that it
first solves the batching problem and then solves the picking
problem for these batches. The second heuristic, the Joint
Order Batching and Picking (JBP) algorithm, simultaneously
constructs batches and tours. Tsai et al. (2008) proposed
a multi-GA method to solve the JOBPRP. It consists of
two genetic algorithms, one for the batching and one for
the routing. Solving the JOBPRP can be divided in two
main solution approaches; integrating both problems in one
optimization problem, or iterative solving both problems
sequentially.

III. MODEL DEVELOPMENT

A. Modeled situation

The goal of this research is to define an optimal order pick-
ing operation in the Crisp warehouse. The literature review
outlined four main aspects of warehouse optimization; the
layout, the product allocation, the batching method and the
routing. The layout and the product allocation are considered
as input for the JOBPRP model, which combines the other
two aspects. The objective of the model is to minimize the
total travel distance of the picking carts. Figure 4 gives a
black box representation of the JOBPRP model.

The model should be a valid representation of reality, giv-
ing it a few requirements is should meet. The requirements
are the following:

• A parcel should be picked entirely in a single batch, it
can not be splitsed.

• Each picking zone has an unique maximum capacity of
parcels per batch.

• Each order should be picked before their pick deadline.

Fig. 4: Blackbox representation of the JOBPRP model

• The route visits the locations only one time, so no
detours are allowed.

• The aisles have directional traffic and follow the S-shape
heuristic.

• In a batch, the maximum time difference between the
pick deadline of 2 parcels is 2 hours.

• To reduce the complexity in the rest of the supply chain,
parcels on the same delivery route are batched as much
as possible together

These requirements are either addressed by the constraints
within the mathematical model or managed through the
relevant input data. The requirements set the boundaries
for the model. The model should be as close to reality as
possible, however to model a real situation some assumptions
are made. This is because modeling the actual situation is
too complex and can be simplified with a few assumptions.
The made assumptions and simplification are the following:

• The routing considered is the S-shape (traversal) heuris-
tic

• Product locations are considered per shelf instead of
single locations

• Travel distances between the picking cart and the
shelves are neglected

• For the reallocation of SKU’s, the SKU’s are assumed
to be uniform

• Parcels can consist of multiple containers, however
containers are not interchanged to other parcels

• The chunks of input data do not contain parcels with a
delivery time with a difference of more than 2 hours.

• The current batches are loaded to their maximum ca-
pacity

These simplifications and assumptions help to model the
warehouse in a manageable way, reducing its complexity.
Due to the one-directional aisles, if an aisle is entered, the
entire aisle is traversed. This allows for the consolidation
of all the locations within a given aisle into a single node,
while still capturing the fact that all locations within the
aisle are visited. By modeling entire aisles as single nodes,
the size of the distance matrix is reduced, leading to fewer
locations to consider in the optimization process. Through
these simplifications, the JOBPRP model remains computa-
tionally feasible, while still being a close approximation to
real-world conditions.

The distance matrix, denoted as di,j , represents the travel
distance between nodes i and j. Each node corresponds to



a (sub)aisle in the warehouse. This matrix encapsulates the
layout of the warehouse and serves as a crucial input. In a
rectangular warehouse layout, this node-based representation
is visualized in Figure 7a, where m represents the number
of aisles, and n represents the number of locations per aisle.
The general form of the distance matrix is given in Figure 5
and the matrix for a S-shape in Figure 6, with M being a
very large number.

dij =



dPD,PD dPD,1 dPD,2 dPD,3 · · · dPD,nm

d1,PD d1,1 d1,2 d1,3 · · · d1,nm
d2,PD d2,1 d2,2 d2,3 · · · d2,nm
d3,PD d3,1 d3,2 d3,3 · · · d3,nm

...
...

...
...

. . .
...

dnm,PD dnm,1 dnm,2 dnm,3 · · · dnm,nm


Fig. 5: Distance matrix

dij =



0 dPD,1 dPD,2 dPD,3 · · · dPD,nm

d1,PD 0 d1,2 d1,3 · · · d1,nm
d2,PD M 0 d2,2 · · · d2,nm
d3,PD M M 0 · · · d3,nm

...
...

...
...

. . .
...

d1,PD M M M · · · 0


Fig. 6: Distance matrix S-shape

B. Mathematical model

The mathematical model is based on the works of Kulak et
al. (2012) and Cano et al. (2021). Which provide the basis of
this mathematical model and provided the first 5 constraints.
The last two constraints are designed to fit the configuration
for Crisp.

Sets and Indices
• b ∈ B : Set of Batches
• p ∈ P : Set of Parcels
• i, j ∈ L : Set of storage locations
• Ip ⊂ L : Set of storage locations per parcel ∀p ∈ P

Parameters
• Q : Max batch capacity
• Wp : Weight per parcel ∀p ∈ P
• di,j : Distance matrix between i and j

Binary decision variables

xi,j,b =


1 If the route for batch b goes from the

location to perform pick operation i to the
location to perform pick operation j

,

0 otherwise.

yp,b =

{
1 if parcel p is performed by batch b

0 otherwise

The objective function is:

Min
∑
b∈B

∑
(i,j)∈L

dijxi,j,b (1)

s.t.

1) Each parcel is assigned to one batch only∑
b∈B

yp,b = 1 ∀p ∈ P (2)

2) Each route starts in the P&D point∑
j∈L

x0,j,b = 1 ∀b ∈ B (3)

3) Each route ends in the P&D point∑
i∈L

xi,0,b = 1 ∀b ∈ B (4)

4) A visited pick location in batch b should also be left
by batch b∑

j∈L

xi,j,b =
∑
j∈L

xj,i,b ∀i ∈ I, ∀b ∈ B (5)

5) Each batch has a maximum capacity∑
p∈P

Wo · yp,b ≤ Q ∀b ∈ B (6)

6) Subtour elimination

xi,j,b = 0 ∀b ∈ B, ∀i ∈ L, ∀j ∈ L \ {0} and j ≤ i
(7)

7) If parcel p is assigned to batch b, all pick locations of
parcel p are visited by batch b

yp,b ≤
∑
j∈L

xi,j,b ∀p ∈ P,∀i ∈ Ip,∀b ∈ B (8)

The objective function in 1 minimizes the total travel dis-
tance. The constraint in 2 ensures that all parcels are only
assigned to one batch only. The constraints in 3 and 4 ensure
that the picker starts and finishes their route in the P&D
point. Constraint 5 ensures that a visited location by a batch
is also left by the same batch. The constraint in 6 ensure that
the constructed batches not do exceed the maximum capacity
of the pick carts. 7 ensures the one directional flow, the picker
is due to this constraint not allowed to move back to previous
locations. Constraint 8 ensures that if a parcel is assigned
to a batch, that batch visits all locations of the parcel. The
JOBPRP model is solved for chunks of the full problem.
Each chunk has a maximum parcel capapcity, proposing an
exact approximation of the full problem. The JOBPRP model
is solved with the solver Gurobi, version 9.1.2. on a computer
with a 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHZ
with 4 cores CPU and 16 GB of RAM.

IV. CASE STUDY AND RESULTS

The JOBPRP model is applied to the different order
picking zones of Crisp. For the model to reflect each zone,
some slight adjustments to the model are made. The research
evaluates the influence of two distinct allocation policies,
which are elaborated as well. Each zone has their own
characteristics, which can be found in Table I. The ambient
and chilled zone can both be approached as an rectangular



(a) no midaisle (b) with midaisle (c) no midaisle simplified (d) with midaisle simplified

Fig. 7: Simplified node representation of the locations in the warehouse

warehouse. The simplified node representation presented in
Figure 7 is therefore applicable. The frozen zone is in terms
of layout quite different than the ambient and chilled zone.
This is because the frozen zone is not a standard rectangular
warehouse. It is built using the available space and therefore
differs with respect to the other two zones. The picking
strategy is also quite different, where in the ambient and
chilled zone the picker picks on both sides of the aisle, the
picker in the frozen zone only picks at the right hand side.
This means that when moving from the first to the second
aisle, the picker will not be bound by midaisles, they can
just cross anywhere they like. Moving from the second to the
third aisle however, is again bound by the physical midaisle.
The simplified representations are shown in Figure 8. If there
are no midaisle, the locations in the first and second aisle are
modeled at one node. This can be seen with the hatching in
Figure 8a.

(a) no midaisle (b) with midaisle at any
location

Fig. 8: Simplified node representation of the locations in
the frozen zone

A. Allocation policies

This research evaluates the benchmark (random allocation
policy) to the across-aisle and within-aisle policy. These
policies are class-based storage policies. Meaning the SKUs
are assinged to a class based on popularity. Each class has
assigned locations in the warehouse. The visualization of
these policies are depcited per zone are depicted in Figure 9-
11

(a) Across-aisle policy (b) Within-aisle policy

Fig. 9: Product allocation policies for the ambient zone

(a) Across-aisle policy (b) Within-aisle policy

Fig. 10: Product allocation policies for the chilled zone

B. Benchmark results

The benchmark results represent the travel distance for
full batches in the actual configuration. The warehouse of
Crisp and their order picking process can be compared to a
single block low-level picker-to-parts warehouse with a First-
Come-First-Served (FCFS) batching policy, S-shape routing



TABLE I: Specifications per picking zone

Zone Storage locations # SKU’s Parcels per batch Range picks/parcel Average parel size average picks/batch

Ambient 4800 3500 18 [1-25] 12 180
Chilled 3500 2000 6 [1-20] 15 90
Frozen 800 500 4 [1-35] 20 75

(a) Across-aisle policy (b) Within-aisle policy

Fig. 11: Product allocation policies for the frozen zone

heuristic, and random product allocation policy. In daily
operations, Crisp encounters what is called ’missings’, which
occur when a SKU is out of stock at the time a batch
reaches the SKU’s location. The parcel with a missing SKU
is then placed on a new special ”missing pick cart’, which
solely retrieves the missing SKU once it is restocked. This
leads to additional travel distance. However, when computing
benchmark results, these ’missings’ are not considered. The
benchmark assumes a scenario in which there are no missing
SKUs, as this aspect is also excluded from the JOBPRP
model.

Zone Travel distance [m]

Ambient 209748
Chilled 286580
Frozen 87544
Total 583872

TABLE II: Benchmark travel distance for a full week in
meters

C. Results

Table III shows the results for optimizing by adjusting
each (combination of) warehouse processes. For all the
combinations that optimize by changes to the layout, first
the best performing layout is found with the data of a
single day. This reduces the computation time as for the
ambient and chilled zone respectively 406 and 527 distinct
layouts are evaluated. The best performing instances are
then evaluated on the weekly data. The performance of the
JOBPRP model depends on the selected chunk size. Due to

computational limits, the model solves the problem in small
chunks. Increasing the number of parcels that are solved
per chunk, the model returns improved solutions, however
with a larger computation time as the result. The results in
Table III display the best performing configurations for each
of the combinations. The best performing combination all
integrate the JOBPRP model, with an allocation policy and
a suiting layout. Applying the JOBPRP model performs thus
the best if combined with the other processes incorporated.
This combination of processes makes the JOBPRP able to
construct more favorable batches and enhances its result. The
performance of altering warehouse processes is depending
on the possibility to find shortcuts in the routing. The
results depict the interplay between different processes and
which combinations are preferable for different warehouse
charesterictics.

V. CONCLUSION

This research investigated how the order picking process in
a large low-level picker-to-parts warehouse can be optimized
by assessing the impact of all different warehouse processes
on the travel distance. By examining the interplay between
key warehouse processes —layout, product allocation, or-
der batching, and routing— a comprehensive optimization
framework was developed and tested using real-world data.

The study revealed that warehouse efficiency is influenced
by the integration of these processes rather than by optimiz-
ing them in isolation. The warehouse layout sets the physical
boundaries for operations, with the configuration of aisles
and cross-aisles impacting picker movement. Product alloca-
tion policies, such as class-based storage, play a significant
role in reducing travel distances by strategically grouping
frequently picked items. Order batching and routing further
enhance efficiency by minimizing redundant travel through
careful grouping and sequencing of customer orders.

A constrained optimization model was developed to ad-
dress the Joint Order Batching and Picker Routing Problem
(JOBPRP), aiming to minimize travel distances. The model
employed an exact approximation approach to balance com-
putational feasibility and solution quality, enabling the ap-
plication of optimization techniques to large-scale instances.

For the Crisp warehouse, custom configurations were iden-
tified for each picking zone. The ambient and chilled zones
benefited from a 3-block layout with across-aisle policies,
achieving travel distance reductions of 35.53% and 29.33%,
respectively. The frozen zone required a different approach,
using a within-aisle policy without mid-aisles, which reduced

1The numbers represent the number of full chunks for the respective
zones.



TABLE III: Results for all possible combinations of warehouse processes relative to the benchmark result

Process Layout Allocation Batching1 Ambient Chilled Frozen

Layout Single X X +2.19% +0.21% +5.05%
Double X X +0.84% +2.28% +10.05%

Allocation X Within-aisle X -1.04% 0.00% -26.17%
X Across-aisle X -0.03% 0.00% -17.37%

Batching X X (4,8,9) -10.65% -0.10% -6.03%

Layout & Allocation Single Within-aisle X -5.23% -5.86% -22.24%
Single Across-aisle X -10.70% -9.79% -15.02%
Double Within-aisle X -6.28% -7.68% -20.19%
Double Across-aisle X -13.84% -12.41% -10.65%

Layout & Batching Single X (4,8,9) -12.47% -5.21% -2.75%
Double X (4,8,9) -12.11% -6.69% +1.87%

Allocation & Batching X Within-aisle (4,8,9) -18.09% -3.95% -41.09%
X Across-aisle (4,8,8) -6.71% -0.13% -36.32%

All three processes Single Within-aisle (4,8,9) -31.80% -21.68% -39.58%
Single Across-aisle (4,8,9) -32.53% -24.02% -35.34%
Double Within-aisle (4,8,9) -34.28% -26.00% -37.07%
Double Across-aisle (4,8,9) -35.53% -29.33% -32.80%

travel distance by 41.09%. Collectively, these optimizations
reduced total weekly travel distance by 33.32%.

This research underscores the importance of a holistic
approach to warehouse optimization. The interplay between
layout, allocation, batching, and routing processes must be
carefully tailored to the specific characteristics of the ware-
house. The developed framework provides a scalable and
adaptable solution for optimizing large-scale order picking
systems, offering practical insights to improve efficiency in
diverse warehouse environments.

This study highlights several gaps and limitations that
could be interesting for further research. This research as-
sumes uniform product sizes, which does not reflect the
reality of diverse SKU dimensions. Further research could
adjust the product allocation policies to incorporate the non-
uniformity. This research is limited to the S-shape heuristics
for the routing, further research could evaluate the effect of
different routing policies and investigate how these interact
with the other warehouse processes. The objective of this
thesis is to reduce the total travel distance, however it could
be interesting to evaluate the picking process based on the
total picking time. By optimizing for the total picking time,
a dynamic picking time can be implemented. With this is
meant that picking multiple of the same SKUs generally
takes less time than picking different time. Further research
could focus on implementing this different picking time in
the model. This could also be combined with research on the
effect of congestion, as this is also neglected in this study.
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B
Data processing

The picking data of Crisp can not be used as input for the JOBPRPmodel without any processing steps.
The data of Crisp is namely per scan hit. This means each scanned product will generate a data row.
A small part of the full data set can be found in Table B.1. This is transformed to a suitable data format,
shown in Table B.2, by the following steps:

1. Read data file
2. Process data

• Remove unnecessary data columns
• Convert ’stock_product_id’ to string
• Group data by parcel and concatenate ’stock_location’ as a string

3. Assign unique location numbers

• Split stock locations, assign numbers, remove duplicates, and sort

4. Sort by ’Delivery_Time’ and ’Delivery_route’
5. Add Unique order number and order weight
6. Save results

• Filter data by ’product_delivery_temp’ for 3 different data files (ambient, chilled, frozen)
• Pass orders and location data to batching model
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hit_id hit_time container_id parcel_id type order_id location_id product_id location delivery_on count zone warehouse_deadline route_id

17271543 10:20:09 nl-34095243 nl-33839089 bigBox nl-2111.. nl-120079 nl-18311 T-821-1 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17271649 10:32:10 nl-34095243 nl-33839089 bigBox nl-2111.. nl-114298 nl-9201 W-538-1 16-10-2024 3 ambient 10-16-2024 16:45:00 nl-201286
17271657 10:33:05 nl-34095243 nl-33839089 bigBox nl-2111.. nl-177622 nl-6406 W-826-1 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17271682 10:35:47 nl-34095243 nl-33839089 bigBox nl-2111.. nl-115576 nl-2797 Y-300-1 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17271633 10:30:08 nl-34095243 nl-33839089 bigBox nl-2111.. nl-113881 nl-1477 W-315-4 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17271667 10:34:14 nl-34095243 nl-33839089 bigBox nl-2111.. nl-115366 nl-8602 X-700-1 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17271511 10:16:51 nl-34095243 nl-33839089 bigBox nl-2111.. nl-116952 nl-17813 S-385-1 16-10-2024 2 ambient 10-16-2024 16:45:00 nl-201286
17271729 10:41:09 nl-34095243 nl-33839089 bigBox nl-2111.. nl-115854 nl-14172 Y-511-3 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17271664 10:33:47 nl-34095243 nl-33839089 bigBox nl-2111.. nl-151562 nl-3242 X-310-2 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17271726 10:40:45 nl-34095243 nl-33839089 bigBox nl-2111.. nl-115786 nl-7532 Y-500-1 16-10-2024 1 ambient 10-16-2024 16:45:00 nl-201286
17264634 17:44:35 nl-34081467 nl-33823883 smallBag nl-2125.. nl-146991 nl-5586 H-524-1 16-10-2024 1 frozen 10-15-2024 22:00:00 nl-201261
17264414 17:32:46 nl-34081459 nl-33823883 smallBag nl-2121.. nl-146986 nl-14535 G-588-1 16-10-2024 1 frozen 10-15-2024 22:00:00 nl-201261
17264566 17:40:50 nl-34081459 nl-33823883 smallBag nl-2121.. nl-144065 nl-10603 H-384-1 16-10-2024 1 frozen 10-15-2024 22:00:00 nl-201261
17264431 17:33:38 nl-34081459 nl-33823883 smallBag nl-2121.. nl-143969 nl-3469 G-648-1 16-10-2024 1 frozen 10-15-2024 22:00:00 nl-201261
17264281 17:24:50 nl-34081459 nl-33823883 smallBag nl-2121.. nl-177510 nl-15511 G-336-1 16-10-2024 1 frozen 10-15-2024 22:00:00 nl-201261
17264349 17:29:00 nl-34081525 nl-33823883 smallBag nl-2127.. nl-178289 nl-3258 G-401-1 16-10-2024 1 frozen 10-15-2024 22:00:00 nl-201261
17264722 17:49:29 nl-34081525 nl-33823883 smallBag nl-2127.. nl-144090 nl-7769 L-376-1 16-10-2024 1 frozen 10-15-2024 22:00:00 nl-201261
17261245 15:39:06 nl-34081903 nl-33824442 paperBag nl-2126.. nl-147075 nl-7438 D-224-3 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17261045 15:36:42 nl-34081903 nl-33824442 paperBag nl-2126.. nl-24029 nl-4605 C-754-3 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17261194 15:38:19 nl-34081903 nl-33824442 paperBag nl-2126.. nl-142829 nl-2730 C-885-3 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17261220 15:38:50 nl-34081903 nl-33824442 paperBag nl-2126.. nl-147064 nl-1760 D-210-4 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17261000 15:35:19 nl-34081903 nl-33824442 paperBag nl-2126.. nl-142239 nl-15457 C-310-1 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17261591 15:41:55 nl-34081903 nl-33824442 paperBag nl-2126.. nl-143482 nl-19819 D-741-1 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17260965 15:32:58 nl-34081903 nl-33824442 paperBag nl-2126.. nl-141620 nl-2627 B-536-4 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17261341 15:39:52 nl-34081932 nl-33824416 smallBox nl-2127.. nl-152969 nl-904 D-360-2 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17261008 15:35:56 nl-34081932 nl-33824416 smallBox nl-2127.. nl-23302 nl-15553 C-511-1 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268
17260929 15:30:38 nl-34081932 nl-33824416 smallBox nl-2127.. nl-152434 nl-908 B-240-2 16-10-2024 1 chilled 10-15-2024 22:00:00 nl-201268

Table B.1: Pickdata from Crisp on 16-10-2024

Order_id Parcel_ID Zone Delivery_Time route_id Stock_Locations Location_Numbers Order_number W_o

nl-212473086 nl-33824995 chilled 10-15-2024 22:00:00 nl-201273 A-936-1, D-360-2, B-711-1, D-531-1, B-420-1, C... 1, 2, 3, 4 1 4
nl-212473086 nl-33825071 ambient 10-15-2024 22:00:00 nl-201273 Y-711-2, S-379-1, V-815-1, Z-822-2, X-795-1, V... 1, 4, 5, 6, 7, 8 2 4
nl-212473086 nl-33825083 frozen 10-15-2024 22:00:00 nl-201273 G-464-1, L-386-1, L-512-2 1, 3 3 4
nl-212492445 nl-33825074 ambient 10-15-2024 22:00:00 nl-201273 W-760-2, U-740-4, V-287-4, U-707-2 3, 4, 5 4 4
nl-212492445 nl-33825081 chilled 10-15-2024 22:00:00 nl-201273 A-350-1 1 5 4
nl-212492445 nl-33825084 frozen 10-15-2024 22:00:00 nl-201273 G-480-1, G-310-1, G-368-4 1 6 4
nl-212500356 nl-33825001 chilled 10-15-2024 22:00:00 nl-201273 D-236-2, D-240-2, B-406-2, B-745-1, C-885-3, D... 1, 2, 3, 4 7 4
nl-212500356 nl-33825057 ambient 10-15-2024 22:00:00 nl-201273 V-207-1, Y-736-4, Y-400-1, V-236-4, S-355-1, X... 1, 3, 4, 6, 7 8 4
nl-212500356 nl-33825082 frozen 10-15-2024 22:00:00 nl-201273 H-444-2, L-512-2 2, 3 9 4
nl-212549874 nl-33825004 chilled 10-15-2024 22:00:00 nl-201273 C-866-2, C-291-1, B-420-1, C-340-1, D-781-1, C... 2, 3, 4 10 4
… … … … … … … … …
nl-212749269 nl-33834484 frozen 10-16-2024 18:20:00 nl-201288 G-310-1, H-436-2, H-278-1 1, 2 3529 4
nl-212750376 nl-33834444 chilled 10-16-2024 18:20:00 nl-201288 C-846-2, D-305-3, A-915-3, D-737-4, C-737-3, D... 1, 2, 3, 4 3530 4
nl-212750376 nl-33834474 ambient 10-16-2024 18:20:00 nl-201288 Y-750-4, V-205-3, W-754-3, S-539-1, W-309-1, V... 1, 4, 5, 7 3531 4
nl-212750376 nl-33834484 frozen 10-16-2024 18:20:00 nl-201288 G-416-1, H-334-1 1, 2 3532 4
nl-212763309 nl-33834450 chilled 10-16-2024 18:20:00 nl-201288 C-260-1, A-906-4, C-500-1, B-730-1 1, 2, 3 3533 4
nl-212763309 nl-33834461 ambient 10-16-2024 18:20:00 nl-201288 W-389-1, S-439-1, W-323-4, W-439-4, U-745-3, Z... 1, 3, 5, 7, 8 3534 4
nl-212763309 nl-33834479 frozen 10-16-2024 18:20:00 nl-201288 L-366-1, L-478-1 3 3535 4
nl-212770896 nl-33834453 chilled 10-16-2024 18:20:00 nl-201288 D-325-3, C-790-1, C-707-4, C-820-4, C-711-1 3, 4 3536 4
nl-212770896 nl-33834466 ambient 10-16-2024 18:20:00 nl-201288 Y-710-2, W-309-1 5, 7 3537 4
nl-212770896 nl-33834482 frozen 10-16-2024 18:20:00 nl-201288 L-368-1, L-270-1 3 3538 4

Table B.2: Input data for the JOBPRP model on 16-10-2024
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Routes for verification

C.1. Verification distance matrix

(a) non-simplified (b) non-simplified (c) non-simplified

(d) simplified (e) simplified (f) simplified

Figure C.1: Routing ambient section 50 orders with 4 SKU/parcel
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(a) non-simplified (b) simplified (c) simplified + midaisle

Figure C.2: full routes in ambient

(a) non-simplified (b) simplified

Figure C.3: ambient routes with only picks in one aisle

(a) non-simplified (b) non-simplified (c) non-simplified

(d) simplified (e) simplified (f) simplified

Figure C.4: Routing ambient section 50 orders with 4 SKU/order and a midaisle between 9 and 10
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(a) non-simplified (b) non-simplified (c) non-simplified

(d) simplified (e) simplified (f) simplified

Figure C.5: Routing ambient section 50 orders with 4 SKU/order and a midaisle between 17 and 18

(a) non-simplified (b) simplified (c) non-simplified (d) simplified

Figure C.6: ambient routes with a midaisle with only picks in one aisle
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C.2. Verification scenario testing

(a) (b) (c)

Figure C.7: Routes for 3*18 the same parcel, located in different aisles

(a) (b) (c)

Figure C.8: Routes for 18 of the same parcel, the other parcels have only picks in different aisles

(a) Picks only in the bottom part (b) Picks only in the top part (c) Combined data of C.9a and
C.9b batch 1

(d) Combined data of C.9a and
C.9b batch 2

Figure C.9: Routes for datasets with only picks at the top or the bottom and the combination
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(a) (b) (c) (d) (e)

Figure C.10: Routes for parcels with 1 pick/parcel

(a) (b) (c) (d) (e)

Figure C.11: Routes for parcels with 4 picks/parcel

(a) (b) (c) (d) (e)

Figure C.12: Routes for parcels with 8 picks/parcel

(a) (b) (c) (d) (e)

Figure C.13: Routes for parcels with 12 picks/parcel

(a) (b) (c) (d) (e)

Figure C.14: Routes for parcels with 16 picks/parcel
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Figure D.1: Travel distance for the ambient zone with 2 midaisles on 16-10
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Figure D.2: Travel distance for the chilled zone with 2 midaisles on 16-10
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Figure D.3: Distribution per stackability in the ambient zone
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Figure D.4: Distribution per stackability in the chilled zone
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Figure D.5: Travel distance for a layout with 2 midaisles and an Across-aisle policy on 16-10 in the ambient zone
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Figure D.6: Travel distance for a layout with 2 midaisles and an Within-aisle policy on 16-10 in the ambient zone
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Figure D.7: Travel distance for a layout with 2 midaisles and an Across-aisle policy on 16-10 in the chilled zone
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Figure D.8: Travel distance for a layout with 2 midaisles and an Within-aisle policy on 16-10 in the chilled zone
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Figure D.9: Travel distance for a layout with 2 midaisles and the JOBPRP with a chunk size of 4 full batches on 16-10 in the ambient zone
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Figure D.10: Travel distance for a layout with 2 midaisles and the JOBPRP with a chunk size of 4 full batches on 16-10 in the chilled zone
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Figure D.11: Travel distance for a layout with 2 midaisles with an across-aisle policy combined with the JOBPRP for a chunk size of 3 full batches on 16-10 in the ambient zone
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Figure D.12: Travel distance for a layout with 2 midaisles with an within-aisle policy combined with the JOBPRP for a chunk size of 3 full batches on 16-10 in the ambient zone
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Figure D.13: Travel distance for a layout with 2 midaisles with an across-aisle policy combined with the JOBPRP for a chunk size of 4 full batches on 16-10 in the chilled zone
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Figure D.14: Travel distance for a layout with 2 midaisles with an within-aisle policy combined with the JOBPRP for a chunk size of 4 full batches on 16-10 in the chilled zone
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Layout Aisle
width

Space utilization Congestion Routing Allocation impact Notes

Single Block Narrow + +
A narrow single
block warehouse is
the most space effi-
cient configuration
possible

- -
Because of the
narrow aisles, pick-
ers are not able
to (easily) surpass
each other

-
A single block
warehouse pro-
vides worse
solutions to the
routing problem
in comparison
with multi-block
warehouses

- -
Applying a storage loca-
tion policy will locate high
demanded SKU’s on the
easy accessible locations.
This will lead to extra con-
gestion as picks are con-
centrated in these small
areas

A narrow single block ware-
house is the most ’easy’ ware-
house configuration. It is the
most space efficient layout but
is also the least efficient. It is
very sensitive for congestion and
the routing policy is bound to the
simple layout

Wide -
By increasing the
aisle width, the
needed warehouse
space will drasti-
cally increase as
all aisles will use
more space

+
With wide aisles
the pickers can
surpass each other

-
The effect of the
aisle width on
the routing is the
possibility to turn,
by having a wide
enough aisle the
picker is able to
turn

-
This is the same for a
narrow single block ware-
house. Nevertheless be-
cause of the wide aisles,
pickers can surpass each
other, which could reduce
the congestion

Changing the aisle width to a
wide aisle will mostly affect the
congestion. Pickers are now
able to surpass each other more
easily. The biggest downside is
that the space utilization will de-
crease

Multi-Block Narrow +
Adding a cross
aisle to a ware-
house will reduce
the storing space,
as a storage rack
is replaced for a
cross aisle

-
Adding a cross
aisle will give
the picker more
options for the
routing and could
avoid occurring
congestion

+
Adding cross aisles
will have a posi-
tive effect on the
routing problem,
as there are more
possible routes
and picker could
take shortcuts

+
The storage policy for
a multi-block warehouse
has more possible advan-
tages than a single block
as parts of the warehouse
could be cut off. Never-
theless congestion is still
a downside

Amulti-block warehouse will out-
perform a single block ware-
house on the routing solution.
Because of the multi blocks,
the are more product alloca-
tion options available that could
increase efficiency even more.
The cross aisles also reduce
the congestion by giving possi-
ble shortcuts to the routing
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Wide - -
A wide multi block
warehouse is the
worst space config-
uration, as both the
wide aisle as the
addition of cross-
aisle has a nega-
tive effect on the
space utilization

+
A wide multi-block
warehouse is the
best solution for
minimizing the
congestion

+
The effect of the
aisle width on
the routing is the
possibility to turn,
by having a wide
enough aisle the
picker is able to
turn

+ +
This is the same for a
narrow multi-block ware-
house. Nevertheless be-
cause of the wide aisles,
pickers can surpass each
other, which could mini-
mize the congestion

Here the same goes for a wide
single block warehouse, the dif-
ference by changing the aisle
width will decrease the conges-
tion. Nevertheless this will have
a negative effect on the space
utilization

Fishbone1 N/A - -
A fishbone ware-
house has a higher
space utilization
then conventional
warehouses with
cross aisles due to
the configuration of
the racks

+
research on the
congestion in a
fishbone ware-
house is lacking
in literature so the
score is based on
reasoning. The
configuration is
best comparable
with a multi block
warehouse, it is
assumed that
the perpendicu-
lar aisles slightly
reduce congestion

-
literature shows
that the fishbone
layout is out-
performed by a
conventional multi-
block warehouse

Literature shows that the
product allocation in a
fishbone layout is crucial
for the performance. Dif-
ferent policies yield very
different results

A fishbone layout is proven to
be effective for unit-load ware-
houses but for multiple picks it
will be outperformed by a multi-
block layout. The product allo-
cation has a significant effect on
the performance of a fishbone
layout

Table E.1: Reasoning for Table 3.1

1The fishbone layout is the only non conventional layout that is evaluated as the flying-V and inverted-V layouts are comparable with a multi-block layout
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Space utilization Picker familiarity Routing Difficulty to
implement

Congestion Precedence
constraints

Single +
A single storage
will only store
a SKU in one
location

+
A SKU is only lo-
cated in one loca-
tion, pickers are not
confused by a sec-
ond location

-
In comparison
with a scattered
storage, the single
storage limits the
routing

+
Single storage is
the most common
and easymethod to
apply

-
The warehouse is
more concentrated
then a scattered
storage

+
Adaptability to
the precedence
constraints is more
depended on ran-
dom or dedicated

Scattered -
A scattered storage
will store SKU’s in
multiple location,
increasing the
needed warehouse
size

-
Scattering the
SKU’s can cause
confusion by the
pickers

+
storing SKU’s in
multiple location
could improve the
routing as there are
more possibilities

-
Storing SKU’s in
multiple places
increases the
complexity

+
Scattering the
SKU’s could be
able to ease the
congestion

storage. Both
single as scattered
storage could han-
dle the constraints

Random + +
A random storage
policy uses the
least space as
SKU’s are not
bound to a location

- -
Due to the random
policy, the location
of the SKU’s con-
stantly changes

- -
A random policy
will result in the
highest travel
distance

+
implementing a
random storage
is the most easy
policy to imple-
ment, for a full
random policy a
computer con-
trolled environment
is needed

+ +
A random policy
distributes the
SKU’s evenly
throughout the
warehouse, mini-
mizing congestion

- -
Not possible to
account for prece-
dence constraints

Closest open
location

+ +
The same as for
a random policy,
the used space will
convert more to the
P%D point

- -
The same as for
a random policy,
the location of the
SKU’s constantly
changes

-
A closest open lo-
cation is perform-
ing slightly better
than a random pol-
icy, but still result
in high travel dis-
tances

+ +
this is the most
simple policy, the
picker will simply
select the nearest
feasible location

+
The same as for a
random policy, the
only difference is
that the SKU’s will
be more clustered
to the P%D point

- -
Not possible to
account for prece-
dence constraints
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Dedicated - -
Each SKU has a
fixed place and
therefore the space
utilization is the
highest

+ +
Each SKU has their
own fixed location,
pickers will get fa-
miliar with the lay-
out

+ +
A dedicated stor-
age results in the
lowest travel dis-
tances

- -
Dedicated storage
is the hardest to
implement. Every
SKU needs a de-
fined location. Us-
ing a algorithm to
determine these lo-
cation is the hard-
est option

- -
The most de-
manded products
are placed on
the most easy
accessible loca-
tion resulting in
congestion

+ +
Product can be
placed at specific
places and thereby
take the prece-
dence constraints
in account

Class-based +
Class-based is in
between the ran-
dom and dedicated
policies

+
In the classes,
the SKU’s are
distributed ran-
dom. The pickers
will have an idea
where to find the
SKU, but know not
for sure

+
The class-based
policy gives com-
parable results with
the dedicated pol-
icy but gets slightly
outperformed

-
to determine which
SKU belongs to
which class, (his-
torical) data should
be known to do the
classification

-
the congestion is
comparable with a
dedicated storage,
but due to the ran-
dom distribution in
each class it per-
form slightly better
on congestion

+
Product with prece-
dence constraints
can be placed in
a specific class
and then located in
suitable locations

Table E.2: Reasoning for Table 3.2
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Number of picks per parcel
Parcel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 14 252 14 55 73 94 136 259 262 240 163 4 216 198 164 50
2 160 187 1 112 90 174 142 6 61 91 241 80 255 16 120 72
3 27 173 39 250 193 1 261 220 159 145 177 205 228 17 215 113
4 184 235 99 63 138 100 219 128 103 167 239 67 138 40 122 215
5 136 58 160 238 184 252 207 170 171 96 104 123 60 268 209 154
6 199 211 232 260 225 78 153 119 272 185 137 193 215 182 91 213
7 146 81 152 271 226 97 255 105 181 202 41 140 180 141 235 116
8 160 6 217 102 183 58 151 150 14 47 135 245 99 173 240 58
9 142 185 209 81 258 248 200 197 47 265 20 4 210 272 200 60
10 260 134 115 98 237 150 184 169 209 216 155 6 33 213 127 156
11 64 81 126 144 36 251 236 220 166 96 234 16 106 32 129 138
12 88 229 99 83 174 145 101 68 11 211 204 172 37 192 93 119
13 259 37 158 7 14 263 223 241 79 271 185 191 26 251 262 181
14 266 251 185 181 61 215 178 243 147 208 151 265 148 39 221 176
15 224 260 131 23 252 255 176 76 261 182 250 12 111 44 255 107
16 208 143 127 118 20 99 269 150 78 68 109 74 251 9 135 199
17 247 117 164 46 117 159 20 221 194 231 205 55 215 132 7 238
18 185 214 167 257 225 244 60 136 90 174 228 247 51 177 147 17
19 234 235 209 142 10 89 190 39 2 33 138 145 63 262 95 158
20 111 262 236 51 120 201 203 81 116 158 107 21 203 203 229 146
21 74 78 169 169 92 91 166 209 40 28 199 60 256 68 11 164
22 104 171 135 28 123 143 3 45 228 186 122 151 44 12 251 136
23 216 134 113 32 159 86 224 156 64 187 108 22 10 181 75 269
24 119 247 182 257 101 125 147 171 269 68 219 14 36 58 213 115
25 144 73 141 224 83 263 116 43 210 252 50 45 55 112 114 23
26 31 79 88 67 86 185 239 7 231 141 56 11 96 70 95 229
27 129 252 212 76 151 19 133 86 69 256 30 110 171 245 118 105
28 201 104 189 251 9 240 225 29 124 83 92 4 213 106 49 139
29 210 187 229 193 2 148 104 120 83 75 184 117 183 119 218 62
30 188 253 121 17 158 136 181 23 88 267 35 201 255 49 118 203
31 229 216 46 149 171 181 165 243 269 235 98 50 177 174 161 184
32 226 111 131 191 66 228 94 241 232 151 203 122 48 51 30 270
33 233 100 178 213 9 46 103 152 6 243 11 173 231 58 144 65
34 191 124 196 162 100 28 55 3 126 76 110 126 239 203 97 166
35 165 177 3 135 194 233 217 108 157 164 5 268 193 9 160 172
36 180 268 152 186 105 6 99 218 36 113 246 122 22 175 118 72
37 147 95 264 182 170 192 181 160 205 247 33 207 14 233 9 116
38 186 169 82 51 32 10 52 35 64 211 58 268 152 42 141 30
39 61 152 124 178 175 92 253 66 60 238 147 77 236 121 159 235
40 256 146 96 185 82 189 156 136 182 71 223 174 271 95 223 16
41 20 143 252 47 123 33 248 260 131 245 159 240 182 27 248 201
42 6 245 262 95 23 182 85 214 20 256 26 111 224 109 169 103
43 69 244 67 217 87 6 49 102 39 156 83 152 93 60 15 230
44 266 111 200 243 147 42 160 70 105 210 42 271 90 143 7 101
45 197 14 38 168 196 127 166 219 213 97 133 153 221 10 241 208
46 8 55 103 238 76 140 189 106 133 74 2 47 105 197 172 205
47 211 207 136 232 185 163 227 132 59 1 98 153 223 196 212 13
48 238 141 226 106 235 46 55 132 117 218 266 89 118 62 17 262
49 240 216 44 135 144 248 24 188 269 65 198 231 180 243 202 227
50 221 23 131 52 153 214 73 218 60 83 175 87 187 58 106 109
51 132 223 161 236 144 203 49 146 173 195 104 182 96 218 68 81
52 118 134 117 127 4 51 202 195 107 229 96 200 36 265 33 198
53 206 16 199 232 7 160 93 167 263 143 52 201 268 57 256 53
54 210 70 55 170 80 128 178 231 91 160 248 68 101 13 22 214
55 34 104 63 194 163 237 136 137 59 15 250 175 247 142 82 180
56 251 74 223 210 85 85 188 234 148 250 260 87 185 164 63 33
57 161 108 142 11 65 156 165 217 94 96 159 253 238 52 272 241
58 112 160 180 121 122 35 3 18 249 101 201 123 266 218 116 52
59 81 90 36 224 80 189 62 97 213 59 112 59 194 207 69 20
60 265 180 35 4 248 226 165 153 107 162 270 125 216 268 122 193
61 163 160 109 68 22 150 216 38 64 140 61 262 183 198 179 174
62 63 56 103 270 178 153 13 183 243 265 141 79 95 181 142 139
63 185 69 144 68 139 49 228 90 207 74 75 112 9 267 188 5
64 207 54 24 109 206 100 198 53 77 109 247 190 51 27 50 24
65 52 263 20 204 106 226 146 54 6 207 167 21 2 115 212 211
66 252 255 222 70 17 247 1 163 122 203 262 49 102 136 7 212
67 84 61 112 92 101 228 166 179 245 156 20 8 233 107 229 38
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

68 123 136 218 99 197 72 26 166 4 235 66 13 190 152 51 103
69 130 125 36 107 118 51 91 248 250 49 163 73 187 45 249 31
70 59 171 240 98 240 27 229 179 79 101 232 24 56 56 98 163
71 90 204 105 216 36 238 43 167 118 68 10 103 101 191 236 140
72 8 191 173 251 226 202 125 138 9 180 156 56 241 125 69 32
73 133 197 77 56 122 129 257 207 181 232 204 271 261 262 233 258
74 53 66 254 9 96 253 51 236 89 254 101 170 120 7 72 191
75 64 117 145 41 261 106 98 107 223 268 103 12 193 19 101 178
76 230 204 230 197 66 158 106 72 186 145 127 41 25 112 32 44
77 90 13 51 193 81 13 107 127 250 125 184 7 181 249 243 102
78 23 226 178 88 110 235 261 117 3 8 108 190 19 242 131 166
79 54 151 50 132 82 50 80 96 62 179 1 157 162 63 3 222
80 57 230 98 35 100 146 53 241 6 131 53 139 102 107 55 66
81 30 38 220 255 198 205 208 221 42 145 64 167 251 220 107 168
82 162 174 164 123 53 53 13 210 197 127 14 35 239 89 201 221
83 113 172 78 106 66 160 258 65 188 79 207 218 178 4 160 153
84 194 7 74 21 228 201 196 266 63 63 207 52 231 272 229 5
85 73 86 23 120 92 104 229 254 168 57 19 242 213 101 76 231
86 270 89 147 87 75 163 40 108 81 91 179 219 166 58 71 247
87 36 70 31 246 235 73 255 75 89 158 63 184 188 262 123 139
88 84 236 48 236 48 218 69 170 145 22 190 207 205 224 173 255
89 235 237 148 61 49 54 215 199 219 141 238 261 14 83 132 260
90 87 178 257 237 20 200 243 110 120 224 66 172 96 56 200 193
91 134 226 138 33 123 150 70 75 220 173 144 111 20 19 23 97
92 223 101 25 38 103 86 68 175 91 221 231 261 110 262 58 154
93 20 70 83 256 170 186 146 108 206 57 62 229 104 227 95 156
94 215 138 108 56 235 124 159 13 70 271 268 67 154 197 115 15
95 201 209 107 110 27 111 53 36 59 1 246 114 113 66 97 216
96 3 235 235 38 126 264 88 111 14 156 212 155 108 119 213 39
97 137 102 230 233 41 34 98 192 250 228 80 224 64 51 153 176
98 83 214 8 40 8 47 234 228 93 41 216 153 88 215 238 141
99 70 78 96 115 124 10 200 77 175 241 37 124 131 184 172 26
100 74 186 25 254 272 208 44 232 207 13 255 110 143 57 220 177
101 39 80 160 3 180 84 113 24 272 168 215 6 195 133 96 32
102 256 124 37 137 89 233 240 184 140 226 13 235 188 5 208 142
103 227 61 168 177 180 68 45 58 240 20 155 4 118 228 17 153
104 201 122 44 152 85 84 187 240 16 267 55 235 4 272 245 25
105 220 24 56 27 70 135 219 104 69 119 18 252 187 245 119 179
106 49 185 184 116 117 206 146 23 198 23 53 92 198 2 34 193
107 213 57 263 107 106 257 11 29 108 142 194 179 121 148 173 232
108 164 208 98 112 109 99 47 177 191 264 20 32 23 259 220 169
109 107 197 262 129 30 85 218 184 26 187 108 249 271 188 245 23
110 38 208 233 215 254 181 32 134 188 182 188 44 41 217 22 176
111 34 180 223 68 224 271 255 148 21 104 184 79 213 227 146 49
112 130 89 268 34 112 134 181 88 82 47 10 12 270 73 206 253
113 34 90 182 168 170 169 49 127 267 228 27 188 3 211 140 65
114 127 235 107 221 133 160 26 19 139 234 95 84 27 206 188 97
115 106 158 59 7 75 165 112 131 77 112 219 220 98 66 173 245
116 219 201 230 17 238 160 54 109 255 51 28 93 94 140 85 17
117 194 45 175 12 181 242 112 151 98 163 198 17 243 67 214 84
118 226 37 19 218 125 157 118 232 68 18 90 268 48 37 187 53
119 255 73 97 59 146 251 68 81 64 60 162 170 217 128 251 263
120 227 216 56 247 106 98 28 94 213 266 150 198 61 152 77 262

Table E.3: Dataset containing locations per parcel for the ambient zone.
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Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

30 - 246826 +0.40%
31 - 246214 +0.15%
32 - 246220 +0.15%
33 - 246618 +0.31%
22 32 252116 +2.55%
23 32 251586 +2.33%
24 32 251338 +2.23%
25 31 250944 +2.07%
25 32 250662 +1.96%
25 33 250772 +2.00%
26 32 250410 +1.85%
27 32 249654 +1.55%
27 33 249492 +1.48%
28 31 250304 +1.81%
28 32 249634 +1.54%
28 33 249356 +1.43%
29 32 249222 +1.37%
29 33 248672 +1.15%
30 33 248756 +1.18%

Table E.4: Performance of different layouts for the ambient zone for a whole week

Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

34 - 295500 +1.47%
35 - 294810 +1.23%
36 - 293248 +0.70%
37 - 291518 +0.10%
20 37 298036 +2.34%
21 37 298151 +2.38%
22 37 298086 +2.36%
23 37 298093 +2.36%
24 37 298098 +2.36%
25 37 298145 +2.38%
26 37 298024 +2.34%
27 37 297975 +2.32%
28 37 297966 +2.32%
29 37 297703 +2.23%
30 37 297596 +2.19%
31 37 297489 +2.15%
32 37 297202 +2.05%
33 36 299086 +2.70%
33 37 297004 +1.99%

Table E.5: Performance of different layouts for the chilled zone for a whole week
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Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

24 - Within 228136 -7.21%
25 - Within 227834 -7.33%
26 - Within 227584 -7.43%
27 - Within 228136 -7.21%
24 - Across 216694 -11.86%
25 - Across 216010 -12.14%
26 - Across 215552 -12.32%
27 - Across 216162 -12.08%
18 29 Within 224400 -8.73%
18 30 Within 224488 -8.69%
19 30 Within 224136 -8.83%
20 28 Within 224564 -8.66%
20 29 Within 223948 -8.91%
20 30 Within 223790 -8.97%
20 31 Within 223976 -8.90%
21 29 Within 224126 -8.84%
21 30 Within 223852 -8.95%
21 31 Within 223922 -8.92%
22 30 Within 223970 -8.90%
22 31 Within 223904 -8.93%
23 30 Within 224204 -8.81%
24 30 Within 224570 -8.66%
24 31 Within 224180 -8.82%
20 29 Across 207828 -15.47%
21 28 Across 207184 -15.73%
21 29 Across 207370 -15.65%
21 30 Across 208760 -15.09%
22 28 Across 206870 -15.86%
22 29 Across 206708 -15.92%
22 30 Across 207750 -15.50%
23 28 Across 207000 -15.80%
23 29 Across 206448 -16.03%
23 30 Across 207100 -15.76%
24 29 Across 206932 -15.83%
24 30 Across 207188 -15.73%
24 31 Across 208468 -15.21%
25 29 Across 208218 -15.31%
25 30 Across 208080 -15.36%

Table E.6: Performance of different layouts combined with an allocation policy for a whole week in the ambient zone
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Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

25 - Within 275798 -5.30%
26 - Within 274400 -5.78%
27 - Within 273250 -6.17%
28 - Within 272688 -6.36%
29 - Within 272150 -6.55%
30 - Within 272170 -6.54%
31 - Within 272386 -6.47%
32 - Within 273012 -6.25%
33 - Within 274282 -5.82%
34 - Within 275950 -5.24%
26 - Across 267378 -8.19%
27 - Across 265262 -8.91%
28 - Across 263436 -9.54%
29 - Across 261806 -10.10
30 - Across 260978 -10.38
31 - Across 261086 -10.35
32 - Across 262378 -9.90%
33 - Across 264842 -9.06%
34 - Across 268226 -7.90%
35 - Across 272678 -6.37%
24 32 Within 267590 -8.11%
25 34 Within 267002 -8.32%
25 35 Within 267588 -8.11%
26 35 Within 266886 -8.36%
27 33 Within 266814 -8.38%
27 34 Within 266382 -8.53%
27 35 Within 266486 -8.49%
27 36 Within 267540 -8.13%
28 35 Within 266650 -8.44%
29 35 Within 266976 -8.32%
27 32 Across 252981 -13.13%
27 33 Across 252671 -13.24%
27 34 Across 253281 -13.03%
28 33 Across 252936 -13.15%
28 34 Across 253128 -13.08%
29 33 Across 253717 -12.88%
29 34 Across 253427 -12.98%
29 35 Across 254205 -12.71%
30 34 Across 254600 -12.57%
30 35 Across 254880 -12.48%

Table E.7: Performance of different layouts combined with an allocation policy for a whole week in the chilled zone
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Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

16 - 193460 -21.31%
17 - 193654 -21.23%
20 - 192782 -21.59%
22 - 191644 -22.05%
23 - 190742 -22.42%
24 - 190444 -22.54%
25 - 189830 -22.79%
26 - 190620 -22.47%
27 - 190958 -22.33%
28 - 191894 -21.95%
16 25 191836 -21.97%
16 26 191868 -21.96%
16 27 191390 -22.15%
16 28 191498 -22.11%
16 29 191456 -22.13%
16 31 192208 -21.82%
16 32 192706 -21.62%
17 27 191544 -22.09%
17 28 191704 -22.02%
17 29 191652 -22.05%
18 28 191776 -22.00%
24 32 190944 -22.33%
25 31 190720 -22.42%
25 32 190674 -22.44%
25 33 190738 -22.42%

Table E.8: Performance of different layouts combined with the JOBPRP model with a chunk size of 3 full batches for a whole
week in the ambient zone

Location midaisle 1 Location midaisle 2 Travel distance [m] Gap to benchmark

25 – 278260 -4.45%
26 - 277012 -4.88%
27 - 276148 -5.17%
28 - 275684 -5.33%
29 - 275348 -5.45%
30 - 275242 -5.49%
31 - 275212 -5.50%
32 - 275320 -5.46%
33 - 276280 -5.13%
34 - 276318 -5.12%
20 34 276432 -5.08%
21 34 275974 -5.23%
22 34 274926 -5.59%
23 33 275474 -5.41%
23 34 274396 -5.78%
24 33 275356 -5.45%
24 34 274324 -5.80%
25 34 274344 -5.79%
26 34 273834 -5.97%
26 35 274008 -5.91%
27 34 273660 -6.03%
28 34 273720 -6.01%
28 35 273744 -6.00%
29 34 273906 -5.94%
29 35 273844 -5.97%

Table E.9: Performance of different layouts combined with the JOBPRP model with a chunk size of 4 full batches for a whole
week in the chilled zone
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Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

13 - Within 151343 -38.44%
14 - Within 150661 -38.72%
15 - Within 150619 -38.74%
16 - Within 150689 -38.71%
17 - Within 151007 -38.58%
11 - Across 150387 -38.83%
12 - Across 149593 -39.15%
13 - Across 149631 -39.14%
14 - Across 150377 -38.83%
15 - Across 150899 -38.62%
12 28 Within 148174 -39.73%
12 30 Within 148440 -39.62%
13 26 Within 147926 -39.83%
13 27 Within 147858 -39.86%
13 28 Within 147938 -39.83%
13 29 Within 148140 -39.74%
13 30 Within 148358 -39.66%
14 26 Within 148066 -39.77%
14 27 Within 147966 -39.82%
14 28 Within 147924 -39.83%
14 29 Within 148046 -39.78%
14 30 Within 148292 -39.68%
16 28 Within 148280 -39.69%
16 30 Within 148400 -39.64%
16 31 Within 148728 -39.51%
8 17 Across 142116 -42.19%
8 18 Across 141710 -42.36%
8 19 Across 141264 -42.54%
8 20 Across 141358 -42.50%
9 17 Across 142056 -42.22%
9 18 Across 141560 -42.42%
9 20 Across 141048 -42.63%
10 20 Across 141088 -42.61%
11 20 Across 141526 -42.43%
11 25 Across 141440 -42.47%
11 26 Across 141402 -42.48%
11 27 Across 141640 -42.39%
11 28 Across 141646 -42.39%
11 29 Across 141952 -42.26%
11 30 Across 142570 -42.01%

Table E.10: Performance of different layouts with an within-aisle policy combined with the JOBPRP for a chunk size of 3 full
batches for a whole week in the ambient zone
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Location midaisle 1 Location midaisle 2 Allocation policy Travel distance [m] Gap to benchmark

18 - Within 237738 -18.36%
19 - Within 236288 -18.86%
20 - Within 235408 -19.16%
21 - Within 235100 -19.27%
22 - Within 235764 -19.04%
23 - Within 236268 -18.87%
24 - Within 237326 -18.51%
25 - Within 238280 -18.18%
26 - Within 240130 -17.54%
27 - Within 242036 -16.89%
16 - Across 234162 -19.59%
17 - Across 231724 -20.43%
18 - Across 229532 -21.18%
19 - Across 227464 -21.89%
20 - Across 226478 -22.23%
21 - Across 226196 -22.33%
22 - Across 226202 -22.33%
23 - Across 227032 -22.04%
24 - Across 228554 -21.52%
25 - Across 229756 -21.11%
10 25 Within 226118 -22.35%
11 24 Within 226288 -22.30%
11 25 Within 225876 -22.44%
12 25 Within 225908 -22.43%
12 27 Within 226402 -22.26%
13 24 Within 225892 -22.43%
13 25 Within 225664 -22.51%
18 27 Within 225488 -22.57%
18 29 Within 225008 -22.74%
18 30 Within 224638 -22.86%
18 31 Within 225028 -22.73%
19 30 Within 225088 -22.71%
19 31 Within 225202 -22.67%
20 30 Within 225674 -22.51%
20 31 Within 225496 -22.57%
16 28 Across 213834 -26.57%
17 28 Across 213774 -26.59%
17 29 Across 213674 -26.63%
17 30 Across 214052 -26.50%
17 31 Across 214828 -26.23%
18 27 Across 213966 -26.53%
18 28 Across 213754 -26.60%
18 29 Across 213642 -26.64%
18 30 Across 213754 -26.60%
18 31 Across 214366 -26.39%
19 29 Across 214500 -26.34%
19 30 Across 214402 -26.38%
19 31 Across 214612 -26.31%
19 32 Across 215076 -26.15%
19 33 Across 216010 -25.83%

Table E.11: Performance of different layouts with an within-aisle policy combined with the JOBPRP for a chunk size of 3 full
batches for a whole week in the chilled zone
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Visualization constructed batches

This appendix depicts the constructed routes for each possible configuration. The routes are all visu-
alizations of the 16-10 scenario. For each different configuration, all conducted experiments are here
visualized. The results are sorted for each combination of warehouse processes

Layout

(a) Ambient, one midaisle (b) Chilled, one midaisle (c) Frozen, one midaisle

(d) Ambient, two midaisles (e) Chilled, two midaisles (f) Frozen, two midaisles

Figure F.1: Visualization of the routes on 16-10 with changes to the layout for each zone
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Allocation

(a) Ambient, within-aisle (b) Chilled, within-aisle (c) Frozen, within-aisle

(d) Ambient, across-aisle (e) Chilled, across-aisle (f) Frozen, across-aisle

Figure F.2: Visualization of the routes on 16-10 with an allocation policy for each zone
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Batching

(a) 1 full batch (b) 2 full batches

(c) 3 full batches (d) 4 full batches

(e) 5 full batches (f) 6 full batches

Figure F.3: Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes for the ambient zone
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(a) 1 full batch (b) 2 full batches (c) 3 full batches (d) 4 full batches

(e) 5 full batches (f) 6 full batches (g) 7 full batches (h) 8 full batches

(i) 9 full batches (j) 10 full batches (k) 11 full batches (l) 12 full batches

(m) 13 full batches (n) 14 full batches (o) 15 full batches

Figure F.4: Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes for the chilled zone
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(a) 1 full batch (b) 2 full batches (c) 3 full batches (d) 4 full batches

(e) 5 full batches (f) 6 full batches (g) 7 full batches (h) 8 full batches

(i) 9 full batches (j) 10 full batches (k) 11 full batches

Figure F.5: Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes for the frozen zone
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Layout & Product allocation

(a) 1 midaisle, Within (b) 1 midaisle, Across

(c) 2 midaisles, Within (d) 2 midaisles, Across

Figure F.6: Visualization of the routes on 16-10 with an allocation policy for different layouts for the ambient zone

(a) 1 midaisle, Within (b) 1 midaisle, Across (c) 2 midaisles, Within (d) 2 midaisle, Across

Figure F.7: Visualization of the routes on 16-10 with an allocation policy for different layouts for the chilled zone
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(a) Within, 1 midaisle (b) Across, 1 midaisle (c) Within, 2 midaisle (d) Across, 2 midaisle

Figure F.8: Visualization of the routes on 16-10 with an allocation policy for different layouts for the frozen zone
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Layout & Batching

(a) 1 midaisle, 1 full batch (b) 1 midaisle, 2 full batches

(c) 1 midaisle, 3 full batches (d) 1 midaisle, 4 full batches

(e) 2 midaisles, 1 full batch (f) 2 midaisles, 2 full batches

(g) 2 midaisles, 3 full batches (h) 2 midaisles, 4 full batches

Figure F.9: Visualization of the routes on 16-10 with the JOBPRP model for different layouts for the ambient zone
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(a) 1 midaisle, 1 full batch (b) 1 midaisle, 2 full batches (c) 1 midaisle, 3 full batches (d) 1 midaisle, 4 full batches

(e) 1 midaisle, 5 full batches (f) 1 midaisle, 6 full batches (g) 1 midaisle, 7 full batches (h) 1 midaisle, 8 full batches

(i) 2 midaisles, 1 full batch (j) 2 midaisles, 2 full batches (k) 2 midaisles, 3 full batches (l) 2 midaisles, 4 full batches

(m) 2 midaisles, 5 full batches (n) 2 midaisles, 6 full batches (o) 2 midaisles, 7 full batches (p) 2 midaisles, 8 full batches

Figure F.10: Visualization of the routes on 16-10 with the JOBPRP model for different layouts for the chilled zone
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(a) 1 midaisle, 1 full batch (b) 1 midaisle, 2 full batches (c) 1 midaisle, 3 full batches (d) 1 midaisle, 4 full batches (e) 1 midaisle, 5 full batches

(f) 1 midaisle, 6 full batches (g) 1 midaisle, 7 full batches (h) 1 midaisle, 8 full batches (i) 1 midaisle, 9 full batches

(j) 2 midaisles, 1 full batch (k) 2 midaisles, 2 full
batches

(l) 2 midaisles, 3 full
batches

(m) 2 midaisles, 4 full
batches

(n) 2 midaisles, 5 full
batches

(o) 2 midaisles, 6 full
batches

(p) 2 midaisles, 7 full
batches

(q) 2 midaisles, 8 full
batches

(r) 2 midaisles, 9 full
batches

Figure F.11: Visualization of the routes on 16-10 with the JOBPRP model for different layouts for the frozen zone
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Product allocation & batching

(a) Within, 1 full batch (b) Within, 2 full batches (c) Within, 3 full batches

(d) Within, 4 full batches (e) Within, 5 full batches (f) Within, 6 full batches

(g) Across, 1 full batch (h) Across, 2 full batches (i) Across, 3 full batches

(j) Across, 4 full batches (k) Across, 5 full batches (l) Across, 6 full batches

Figure F.12: Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes and an allocation policy for
the ambient zone
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(a) Within, 1 full batch (b) Within, 2 full batches (c) Within, 3 full batches (d) Within, 4 full batches (e) Within, 5 full batches

(f) Within, 6 full batches (g) Within, 7 full batches (h) Within, 8 full batches (i) Within, 9 full batches (j) Within, 10 full batches

(k) Within, 11 full batches (l) Within, 12 full batches (m) Across, 1 full batch (n) Across, 2 full batches (o) Across, 3 full batches

(p) Across, 4 full batches (q) Across, 5 full batches (r) Across, 6 full batches (s) Across, 7 full batches (t) Across, 8 full batches

(u) Across, 9 full batches (v) Across, 10 full batches (w) Across, 11 full batches (x) Across, 12 full batches

Figure F.13: Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes and an allocation policy for
the chilled zone
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(a) Within, 1 full batch (b) Within, 2 full batches (c) Within, 3 full batches (d) Within, 4 full batches (e) Within, 5 full batches

(f) Within, 6 full batches (g) Within, 7 full batches (h) Within, 8 full batches (i) Within, 9 full batches (j) Within, 10 full batches

(k) Across, 1 full batch (l) Across, 2 full batches (m) Across, 3 full batches (n) Across, 4 full batches (o) Across, 5 full batches

(p) Across, 6 full batches (q) Across, 7 full batches (r) Across, 8 full batches (s) Across, 9 full batches (t) Across, 10 full batches

Figure F.14: Visualization of the routes on 16-10 with the JOBPRP model with different chunk sizes and an allocation policy for
the frozen zone
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All three warehouse processes

(a) 1 midaisle, Within, 1 full batch (b) 2 midaisles, Within, 1 full batch (c) 1 midaisle, Across, 1 full batch (d) 2 midaisles, Across, 1 full batch

(e) 1 midaisle, Within, 2 full batches (f) 2 midaisles, Within, 2 full
batches

(g) 1 midaisle, Across, 2 full
batches

(h) 2 midaisles, Across, 2 full batch

(i) 1 midaisle, Within, 3 full batches (j) 2 midaisles, Within, 3 full
batches

(k) 1 midaisle, Across, 3 full
batches

(l) 2 midaisles, Across, 3 full
batches

(m) 1 midaisle, Within, 4 full
batches

(n) 2 midaisles, Within, 4 full
batches

(o) 1 midaisle, Across, 4 full
batches

(p) 2 midaisles, Across, 4 full batch

(q) 1 midaisle, Within, 5 full batches (r) 2 midaisles, Within, 5 full
batches

(s) 1 midaisle, Across, 5 full
batches

(t) 2 midaisles, Across, 5 full batch

Figure F.15: Visualization of the routes on 16-10 by integrating all three warehouse processes for the ambient zone
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(a) 1 midaisle, 1 full batch (b) 1 midaisle, 2 full batches (c) 1 midaisle, 3 full batches (d) 1 midaisle, 4 full batches

(e) 1 midaisle, 5 full batches (f) 1 midaisle, 6 full batches (g) 1 midaisle, 7 full batches (h) 1 midaisle, 8 full batches

(i) 2 midaisles, 1 full batch (j) 2 midaisles, 2 full batches (k) 2 midaisles, 3 full batches (l) 2 midaisles, 4 full batches

(m) 2 midaisles, 5 full batches (n) 2 midaisles, 6 full batches (o) 2 midaisles, 7 full batches (p) 2 midaisles, 8 full batches

Figure F.16: Visualization of the routes on 16-10 by integrating all three warehouse processes with an within-aisle policy for the
chilled zone
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(a) 1 midaisle, 1 full batch (b) 1 midaisle, 2 full batches (c) 1 midaisle, 3 full batches (d) 1 midaisle, 4 full batches

(e) 1 midaisle, 5 full batches (f) 1 midaisle, 6 full batches (g) 1 midaisle, 7 full batches (h) 1 midaisle, 8 full batches

(i) 2 midaisles, 1 full batch (j) 2 midaisles, 2 full batches (k) 2 midaisles, 3 full batches (l) 2 midaisles, 4 full batches

(m) 2 midaisles, 5 full batches (n) 2 midaisles, 6 full batches (o) 2 midaisles, 7 full batches (p) 2 midaisles, 8 full batches

Figure F.17: Visualization of the routes on 16-10 by integrating all three warehouse processes with an across-aisle policy for
the chilled zone
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(a) 1 midaisle, 1 full batch (b) 1 midaisle, 2 full batches (c) 1 midaisle, 3 full batches (d) 1 midaisle, 4 full batches (e) 1 midaisle, 5 full batches

(f) 1 midaisle, 6 full batches (g) 1 midaisle, 7 full batches (h) 1 midaisle, 8 full batches (i) 1 midaisle, 9 full batches

(j) 2 midaisles, 1 full batch (k) 2 midaisles, 2 full
batches

(l) 2 midaisles, 3 full
batches

(m) 2 midaisles, 4 full
batches

(n) 2 midaisles, 5 full
batches

(o) 2 midaisles, 6 full
batches

(p) 2 midaisles, 7 full
batches

(q) 2 midaisles, 8 full
batches

(r) 2 midaisles, 9 full
batches

Figure F.18: Visualization of the routes on 16-10 by integrating all three warehouse processes with an within-aisle policy for the
frozen zone
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(a) 1 midaisle, 1 full batch (b) 1 midaisle, 2 full batches (c) 1 midaisle, 3 full batches (d) 1 midaisle, 4 full batches (e) 1 midaisle, 5 full batches

(f) 1 midaisle, 6 full batches (g) 1 midaisle, 7 full batches (h) 1 midaisle, 8 full batches (i) 1 midaisle, 9 full batches

(j) 2 midaisles, 1 full batch (k) 2 midaisles, 2 full
batches

(l) 2 midaisles, 3 full
batches

(m) 2 midaisles, 4 full
batches

(n) 2 midaisles, 5 full
batches

(o) 2 midaisles, 6 full
batches

(p) 2 midaisles, 7 full
batches

(q) 2 midaisles, 8 full
batches

(r) 2 midaisles, 9 full
batches

Figure F.19: Visualization of the routes on 16-10 by integrating all three warehouse processes with an across-aisle policy for
the frozen zone
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Visualization allocation policies

(a) Across-aisle policy (b) Within-aisle policy

Figure G.1: Product allocation policies for the ambient zone
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(a) Across-aisle policy (b) Within-aisle policy

Figure G.2: Product allocation policies for the chilled zone
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(a) Across-aisle policy (b) Within-aisle policy

Figure G.3: Product allocation policies for the frozen zone
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Cost calculation

Constants

• 𝑡𝑝𝑖𝑐𝑘 = 12.5𝑠 : Average pick time per SKU
• 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 = 3.125𝑠 : Average travel time per SKU
• 𝑁𝑠𝑘𝑢 = 320752 : Number of picked SKUs per week
• 𝑁𝑜𝑟𝑑𝑒𝑟 = 17214 : Number of orders per week
• 𝐶ℎ𝑜𝑢𝑟 = €23/ℎ : Cost per hour
• %𝑖𝑚𝑝𝑟 = 39.14% : Improvement on travel distance

When assuming the reduction in travel distance, returns the same reduction in travel time the following
equation are used to calculate the cost reduction:

Time reduction per week (𝑡𝑟𝑒𝑑,𝑤𝑒𝑒𝑘) = %𝑖𝑚𝑝𝑟 ∗ 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 ∗ 𝑁𝑠𝑘𝑢/3600 = 108.98 hour (H.1)

Cost reduction per year = 𝑡𝑟𝑒𝑑,𝑤𝑒𝑒𝑘 ∗ 𝐶ℎ𝑜𝑢𝑟 ∗ 52 = €130337 (H.2)
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