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Chapter 1

Introduction

Modulation and demodulation are inseparably related to the notion of commu-
nication. Communication is the unifying term that refers to the collection of
actions required for the transport of information. Communication systems are
the mechanizations of these actions. The current epoch shows an unprecedented
infiltration of all kinds of such communication systems into daily life. From
postal mail, wired and wireless telephones, radio and television, to relatively
new means as Internet, electronic mail, video conferencing, and innumerable
others, they all provide us the means to communicate, i.e. to transmit and/or
receiwe information.

Despite its virtually unbounded diversity, communication of any kind essen-
tially consists of two actions; transmission and reception of information. The
corresponding mechanizations of these actions are generally referred to by the
terms “transmitters” and “receivers”.

The appearance of information, as produced by an information source, is
generally rather unsuited for direct transmission, but instead requires some ap-
propriate preprocessing. This is were modulation comes into play. For example,
direct radio transmission of a voice signal, without any preprocessing other than
recording by a microphone and subsequent amplification, would require an an-
tenna of several hundreds of kilometers long [1}! Another inconvenience of this
way of transmission is, that it does not allow simultaneous transmission of sev-
eral signals, inside the entire range of the transmitting antenna, without severe
interference between these signals. Since currently, daily life experience shows
the possibility of simultaneous reception of various radio broadcasting stations
by people that are (almost) the same place, using very handsome radio receivers,
there must be some means to overcome the aforementioned inconveniences. This
is exactly what modulation provides; it adapts the appearance of the informa-
tion, such that its transport allows efficient use of the communication channel,
i.e. the ‘medium’ that connects the transmitter and the receiver.
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Modulation is the action that maps information on a so called carrier wave,
which transports the information through the channel from the transmitter to
the receiver, by systematic alteration of one or more of the wave characteristics,
according to the original information signal. Demodulation is the inverse of the
modulation action, that is performed inside the receiver in order to recover the
original information signal. The corresponding systems are called “modulators”
and “demodulators”. For example, when we enjoy a film in the cinema the
retina in our eyes ‘demodulates’ the light received from the image on projection
screen, which is the ‘modulated carrier’, and transforms it into stimuli for the
brain. The image is established through light transmitted by film projector,
after modulation of its wave-length spectrum (color) and intensity (brightness)
in accordance to the information contained in the celluloid film strip.

The observation that information is inevitably corrupted by noise and dis-
turbances during transmission through the communication channel, has been
the motive for the development of a wide variety of modulation schemes and
communication systems. Besides efficient usage of the channel, modulation, and
frequently also additional coding, should generally also provide protection of the
message information against corruption by disturbances inside the channel. A
measure for the success of a scheme in fulfillment of both tasks is given by the
efficiency of its use of the so called channel capacity, defined by Shannon [2],
that relates the maximum possible flow of information through the channel to
its bandwidth and the relative strength of the information carrier and the dis-
turbances. Communication system design is therefore concerned with the search
for a maximally efficient modulation scheme, and, moreover, with the search for
transmitter and receiver architectures that maximally exploit the abilities of
such a scheme.

This thesis is concerned with the design of electronic demodulators, and re-
ceivers, for reception and demodulation of frequency modulated (FM) waves.
These waves are characterized by a repetition speed that is altered in accordance
to the information. Special attention is devoted to high-sensitivity demodula-
tors, capable to reconstruct information received in the presence of violent noise
and disturbances. In comparison to other modulation schemes, the efficiency of
analog and digital FM schemes, in their usage of the channel capacity, is quite
good. This is reflected by their since long recognized ability to establish con-
siderable improvement of the transmission performance, in comparison to other
schemes. However, full benefit of this ability is attained only by application of
a thereto properly designed FM demodulator.

Since the design of FM demodulators is an issue that has received scientific
attention already for almost a century, it seems appropriate first to place the
subject in its historic perspective, as described in Section 1.1. Subsequently, the
objective, scope and organization of the thesis are discussed in Section 1.2 and
Section 1.3.
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1.1 History of Frequency Modulation

Frequency modulation finds its origin somewhere in the last decade of the 19-
th century. To get a grasp of the ‘state of the art’ at that time; just before
this epoch, the experiments performed by the German physicist Heinrich Hertz
showed the existence of electromagnetic waves, that were predicted already by
Maxwell’s theory in 1864. Marconi was among the first ones, that put this new
discovered physical phenomenon into practical use. Based on the work of Hertz,
he developed the first completely wireless telegraph system, that was patented
in 1897. Meanwhile, Sir Oliver Lodge developed the theory of tuning circuits,
that, later on, appeared to be of substantial use in receiver design.

Until 1912, radio communication was merely confined to the transmission
of Morse codes, generated by so called ‘spark systems’. Some of these systems
transmitted the Morse codes as a ‘wave’ of alternating frequency, a primitive
kind of frequency modulation that resembles Frequency Shift Keying (FSK) [3].
However, this modulation was actually not yet recognized and intended as such,
but merely followed from the solution of a problem with the telegraph key. The
human ear served as ‘demodulator’. Since electric amplification was an unknown
phenomenon, the power observed at the receiver output was entirely due to the
energy captured from the electromagnetic wave by the antenna. Armstrong [4]
summarized the burden of of this way of reception as: “In order to hear weak
signals it was necessary to use painfully tight headphones, frequently with the
equally uncomfortable necessity of holding one’s breath for prolonged intervals”.

The same period showed the first experiments with transmission of audible
intelligence [5]. First, transmission was attempted by a kind of amplitude mod-
ulation (AM). However, due to the absence of amplification, the microphone
connected to the wave generator had to deliver the complete AM modulation
power, which soon appeared too small to be detectable by the insensitive re-
ceivers, that lacked any kind of amplification too. It was proposed to solve
this problem by means of frequency modulation. In that scheme, the micro-
phone only altered the frequency of the generated wave, and no longer needed
to generate the modulation power. The demodulation should be performed by
detuned selective circuits. Unfortunately, one failed to obtain satisfactory oper-
ating circuits. Therefore, this type of system was never brought into practical
use.

The invention of the regenerative circuit in 1912 solved the problems of AM
reception, and caused FM reception to fall into oblivion for almost a decade,
by providing amplification and heterodyne reception, using internally generated
stable oscillations. This circuit used a revolutionary new device called the “au-
dion”, currently know as the triode vacuum tube, invented by Lee de Forest
around 1906. However, at first, he didn’t recognize the amplifying capabilities
of the device, and simply considered it as a slightly more sensitive ‘detector’
than the “Fleming valve” (diode). An explanation of its operation as ampli-
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fier, detector and oscillator lasted until the correspondence of Edwin Howard
Armstrong with Lee de Forest [6}, and his publication in 1914 {7].

Frequency modulation reappeared at the scene only, when the radio spec-
trum became highly crowded. It was believed, that this type of modulation
could relief the high crowding, by application of a very small frequency de-
viation. This was thought to yield an FM wave with a considerably smaller
bandwidth, than the corresponding AM wave. However, the illusion of band-
width reduction was effectively dispelled by the mathematician John R. Carson
in 1922 [8]. He showed, that the bandwidth required for FM transmission at
least equals that required for AM. Further, the observation that, in compari-
son to AM, the ‘amplitude’ of a narrow-band FM wave contains an integrated
copy of the message lead him to the erroneous conclusion that “Consequently,
this type of modulation inherently distorts without any compensating advantages
whatsoever” , which nearly caused FM to be doomed forever.

The break-through of FM came in the second half of the 1930’s. The prob-
lems of “static”, i.e. {man made) noise, in the crowded radio spectrum kept
bothering AM reception, even with inventions as the regenerative, and the super-
regenerative circuit [9]. Again, Carson [10] placed the matter in a theoretical
framework, and showed that the output nocise level cannot be reduced below
that of the noise contained inside the bandwidth of the AM wave. This arti-
cle inspired Armstrong to attempt heavy clipping of the receiver input wave
in wideband FM transmission, instead of the previously proposed narrow-band
FM, as a means to reduce disturbances. He soon reached impressive results,
a performance that by far exceeded that of any known receiver at that time,
and filed a patent proposal in 1927, which was finally granted in 1933 [11].
The first results were received in the scientific society with disbelief, but the
effectiveness of the method was finally accredited after extensive field tests in
the period 1927-1935, reported in [12]. Even in 1937, apparently unaware or
incredulous, Terman wrote in his textbook {13], that “Frequency modulation is
not particularly satisfactory as a means of transmitting intelligence”.

The period 1937-1950 shows a steady increase in scientific activity on the
field of FM. In 1937, Crosby [14], and Carson and Fry [15], developed the cur-
rently well-know theory that explains the performance improvement achieved
with wideband FM. Chaffee [16, 17] invented the FM frequency feedback re-
ceiver, based on the new concept of “feedback”, invented by Black [18]. Subse-
quently, the drawback of FM transmission, the threshold effect, was subjected
to a closer investigation. Based on the thorough theoretical framework devel-
oped by Stephen O. Rice at AT&T Bell Labs. [19-21], Stumpers [22], Mid-
dleton (23, 24], and Blachman [25, 26] obtained a mathematical model for the
threshold effect in FM, and also for the output noise spectrum. The results,
however, where not directly suited for application in practice; some results con-
sisted of formulas of over a page in length, full of awkward functions.
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The famous ratio detector, an improved version of the Foster-Seeley detec-
tor [27] that remained in use until the 1980’s, was developed in 1947 [28]. This
circuit gave the occasion to a severe conflict between Armstrong and the Radio
Company of America (RCA). RCA claimed the invention of a new method of
disturbance reduction, that was completely disagreed upon by Armstrong [4],
and circumvented Armstrong’s patent.

Research in the period 1950-1970 was concerned with improvement of FM
reception in strong noise. Cohn [29] and Rice [30] finally succeeded indepen-
dently in formulating a suitable engineering description for the FM threshold
effect. Meanwhile, in the early 1960’s, it was discovered that application of
clipping/limiting to Chaffee’s frequency feedback receiver resulted in significant
threshold extension, that improved the performance in strong noise. Although
the modeling of this improvement has never been resolved completely, frequency
feedback receivers were soon encountered in satellite communication, and even
in the lunar orbiter [31]. Numerous attempts were made to model the improve-
ment, of which, among many others, the rather erroneous one of Enloe [32] is
the best known. The quite unknown work of Bax [33], seems to be the most
complete of all. In the same period, research on the threshold behavior of Phase-
Locked Loops (PLL) and Delay Locked Loops (DLL), with major contributions
of Tikhonov [34, 35], Viterbi [36] and Lindsey [37], did succeed, and resulted in,
although complicated, models for the threshold.

In the 1970’s and 1980’s, the attention was focused on the design of fully
integrated FM receivers [38-40]. At the same time, the interest gradually shifted
from analog FM to digital equivalents as FSK, (G)MSK, and, digital phase
modulation, PSK, where special attention was paid to the spectral efficiency of
these schemes [41-44].

In the first half of the 1990’s, efforts concentrated on all kinds of digital FM
transmission for mobile radio [45, 46]. Simultaneously, adaptive demodulator
architectures for interference suppression in car radio were developed [47, 48].
One of the current fields of research is the development of receivers for the
Digital Audio Broadcasting (DAB) standard, intended to replace analog FM
broadcasting in the future.

1.2 Objective and Scope of the Thesis

In the light of its long and rich history, determined by excellent contributions
of numerous honorable scientists and engineers, it might seem that hardly any
work in the field of FM reception is left. This is however not the case.

In the first place, much of the material, in particular the work on FM de-
modulator circuit design, has been developed in rather ‘scattered’ way. Many
cross-links between the various types of demodulators, and their characteris-
tics, are missing. No unifying framework seems to have been found yet, that
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surveys all principles available for the construction of FM demodulators, and
relates them to the characteristics and performance of the various demodulator
circuits. Such a frame-work would be of significant value in FM demodulator
design, since it allows a deliberate selection of the most suitable type at the very
beginning of a design trajectory. Moreover, the separation between demodula-
tion principles and their implementations, opens the way to improvements by
use of different implementations, possibly in different and/or new technologies.

Secondly, progress in FM demodulator design seems to have been impeded
by rather little communication between theoretical scientists, and electronic de-
signers. At one side, mathematicians and communication theorists treated and
solved numerous problems with astonishing accuracy. However, such treatments
often omitted a translation of the results to intuitively more appealing descrip-
tions, heuristic explanations for these results, and simplified estimations of the
various mechanisms, in such a way that these are accessible to electronic design-
ers. On the other hand, electronic designers simply seem to have ignored much
of this material. As a result, the implications of all these theories on circuit
design are often missing, while at the same time, the theoretical background of
problems encountered in circuit design are lacking.

These probl\,xxnu become espanranv apparonf in the Homo‘n of high-sensitivity
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demodulators, intended for applications were operation in the presence of strong
noise and interference is required. Examples of such applications are car radio,
and various types of wireless communication that generally employ some type
of digital FM. For example, at Philips Research Laboratories, it appeared that
replacement of the old ratio detector, mounted in car radios until deep in the
1980’s, by fully integratable PLLs did not in all respects yield completely satis-
factory results. Especially at high interference levels, the performance seemed to
have been degraded. Even after the development of an improved demodulator,
capable of adaptive interference suppression, there remained some concern on its
performance around the threshold. This furnished the idea for a project on the
threshold behavior of FM demodulators, and its implications on demodulator
design.

This thesis describes a structured approach towards the design of high-
performance FM demodulators and FM demodulation systems, that provides
insight into the principles available for the construction of such demodulators,
and into the various architectural measures that can be taken to improve their
performance, especially during reception in strong noise. In cases where it is
appropriate, implications on the design of the various electronic circuits are
discussed.

Although some implications on circuit design are considered, the thesis con-
centrates on the design at an architectural level, since is was felt, that insight
in this aspect of demodulator design is required first, before a deliberate inves-
tigation, and substantial contributions to the design of the various electronic
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sub-circuits can be realized.

Further, the thesis is mainly concerned with demodulation of sinusoidal,
analog FM waves. To a large extend, the characteristics of such waves, and
the corresponding principles available for their demodulation, also determine
the design of demodulators for digital FM schemes, that currently experience
a rapidly increasing interest. However, in addition, such schemes generally
allow some typically digital provisions in demodulator design, such as “Viterbi
decoding”, that are not considered here. Although sinusoidal carrier waves are
not essential in the discussion, they have been adopted in all expressions and
numerical examples in this thesis, unless stated otherwise. Such waves are by
far the most frequently encountered ones of all, due to their spectral efliciency.

1.3 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 reviews the main charac-
teristics of FM transmission and FM waves, that constitute the investigations
in the sequel of the thesis. This chapter also contains the definitions of the
symbols and signals that are used throughout the thesis.

Chapter 3 discusses a classification of the principles available for the con-
struction of FM demodulators. As an introduction to this classification, a brief
discussion is devoted to the principles of a structured design approach, applied
in this thesis, and the importance of a classification in FM demodulator design.
Subsequently, the various principles are considered, starting from the intrin-
sic characteristics of FM waves. Algorithms for the implementation of these
principles, and the various sub-functions contained in them, are derived. Fi-
nally, numerous types of demodulators encountered in literature are classified,
and their performance, as far as determined by the demodulation principles, is
briefly considered.

Chapter 4 considers the design of the sub-functions encountered in the vari-
ous demodulation principles and algorithms. Maximization of the demodulator
dynamic range is the key item in this chapter, which results in various rules for
the design of the demodulator architecture, the noise behavior and frequency
characteristic of important sub-functions.

Chapter 5 outlines qualitatively the possibilities to improve the demodu-
lator performance, by proper design of the FM receiver architecture that em-
beds it. The principles, capabilities and limitations of the various types of pre-
demodulation, post-demodulation and (adaptive) feedback, are outlined. Three
types of processing are investigated in detail in Chapter 6 through Chapter 8.

Chapter 6 analyzes the performance improvement achieved by (partial) elim-
ination of noise from the demodulator input carrier amplitude by limiting, or,
more general, compression of the amplitude. Literature on this subject is merely
confined to hard-limiting, i.e. infinite compression, but it is shown that finite
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compression may improve the performance in the presence of high noise. The
various design rules for the selection of the type and level of compression, and
the ‘optimal’ level of compression, as function of the input carrier-to-noise ratio
(CNR) are derived.

Chapter 7 investigates the threshold behavior of phase feedback demodu-
lators, like PLLs, and compares it to the performance of previously discussed
‘conventional’ demodulators. The essence of sophisticated nonlinear analyses
developed in the past for these demodulators is explained, and its implications
on demodulator design are discussed.

Chapter 8 investigates the threshold behavior of frequency feedback demod-
ulators. A completely unifying theory for these demodulators has never been
developed, but it is shown that combination of several important theories yields
a model that clearly describes the threshold behavior, and its implications on
demodulator design.

Chapter 9 closes the thesis with conclusions.
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Chapter 2

Characteristics of
Frequency Modulation

The characteristics of frequency modulated waves and the frequency modulation
scheme inevitably play a dominant role in FM demodulator design. Besides the
many differences among them, the correspondence between such demodulators
is, that they all account for the FM wave, and FM transmission characteris-
tics. The sequel of this thesis makes extensive use of these characteristics, and
assumes them to be known to the reader.

This chapter summarizes the main characteristics of FM waves, and describes
the conventions used throughout the sequel of this thesis. Most of this material
is contained in standard text books on communication and modulation theory.

Section 2.1 outlines the characteristics of modulated and unmodulated car-
rier waves in general, and, in particular, defines the FM carrier wave used
throughout the thesis. Section 2.2 considers the transmission bandwidth of
FM waves, and discusses a useful approximative description of their spectrum.
Section 2.3 discusses the main characteristics of FM transmission in the presence
of small noise, and compares them to other modulation schemes. Section 2.4
presents the conclusions.

2.1 Modulation Scheme

A modulation scheme is the shortest possible, usually mathematical, description
of the essential characteristics of a transmission system. It completely specifies
in which way the message information is included into the transmitted, modu-
lated carrier wave. Knowledge of the characteristics of these waves is essential in
transmitter and receiver design, since they determine the architecture of these
systems.
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This section briefly considers the main characteristics of carrier waves in
general, and subsequently outlines the FM modulation scheme and description
of FM waves, as used in the sequel of this thesis.

Section 2.1.1 outlines the main characteristics of, and conditions to be sat-
isfied by carrier waves in general. Section 2.1.2 discusses the basic formulation
of the FM scheme, and the corresponding description of FM waves.

2.1.1 Modulated and Unmodulated Carrier Waves

This section outlines the main characteristics of modulated and unmodulated
carrier waves, that follow from the various conditions posed on these waves by
the modulation scheme.

Deterministic Nature of Carrier Waves

As expressed by their speaking name, carrier waves ‘carry’ the message infor-
mation from the transmitter side to the receiver side of a communication link.
The main condition posed on carrier waves by any modulation scheme is, of
course, that they guarantee the reversibility of the modulation action, i.e. the
possibility of demodulation.

More precisely, it is required that the carrier wave allows error-free recovery
of the message information when external disturbances are absent. This implies,
that an unmodulated carrier wave is not allowed to contain any information,
at least as far as the carrier parameter used by the modulation scheme is con-

corned. Since. accordine to Shannon’s definition fﬂ information is uniauelv
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related to uncertainty, this means that unmodulated carrier waves have to be
deterministic, in the parameter of interest, in order to satisfy the conditions.

Periodic Nature of Carrier Waves

In order to demodulate the received, modulated carrier wave, receivers somehow
have to distinguish between fluctuations of the received carrier intensity due to
the carrier wave, and fluctuations due to the message information.

For this purpose, it very helpful if the unmodulated carrier wave is of periodic
nature, i.e. when their fluctuations are repeated in time. In that case, it is
far easier to recognize these fluctuations during transmission of the message
information. This is of interest e.g. when the reception is interrupted by some
kind of disturbance, or when the receiver is switched on half-way.

Sinusoidal Nature of Carrier Waves in FDM Transmission

In transmission systems that subdivide the available channel capacity in the
frequency-domain by Frequency Division Multiplezing (FDM), such as FM, it
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is generally profitable to use carrier waves that possess an as small as possible
bandwidth for a given message signal.

A sinusoidal carrier wave is therefore usually the most appropriate choice.
For this reason, the sequel of this thesis is essentially concerned with the recep-
tion of sinusoidal FM waves. In case of non-sinusoidal carriers, the appearance
of the various signals inside the FM receiver, and the corresponding expressions
that describe them, are slightly different, but the essential characteristics of the
modulation, and also of the transmitter and receiver, are the same as those in
case of sinusoidal carriers.

Modulation of Carrier Waves

Since a carrier wave is characterized by two parameters, the carrier amplitude
and the carrier argument, as discussed in detail in Chapter 3, two main classes
of modulation can be distinguished:

e amplitude or ‘linear’ modulation;
s argument, i.e. ‘exponential’ [2] or ‘nonlinear’ modulation.

The class of amplitude modulation contains, besides the well-known ‘analog’
AM scheme, schemes as DSB, SSB and PAM [2]. The characteristic property of
these schemes is, that the required transmission bandwidth is only determined
by the bandwidth of the unmodulated carrier wave, and the message, and not
by the modulation index.

The class of argument modulation contains, besides the FM scheme, schemes
as PM, FSK, (G)MSK (3], PSK, PPM, PFM [2]. These schemes are character-
ized by the property that the required transmission bandwidth is not only de-
termined by the bandwidth of the unmodulated carrier wave and the message,
but also by the modulation index.

2.1.2 FM Carrier Waves

This section describes the representation of the FM carrier wave, and the mean-
ing of its parameters, that is used throughout the sequel of this thesis.
Sinusoidal Carrier Wave

The input of the various FM demodulator and FM receiver configurations de-
scribed in the sequel of this thesis is, besides with noise and/or interference,
supplied with a noise-free sinusoidal FM wave, denoted by s(t). This wave is
expressed as

5(8) € A(2) cos [wot + (0)], (2.1)
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where A(t) denotes the carrier amplitude, w, the carrier frequency in (rad/s),
and ¢(t) the phase modulation contained in the wave. Notice the nonlinear
nature of this scheme; the message phase () is related to the intensity of the
carrier wave s(t) by means of a (co)sine, i.e. by complex exponential functions.

FM Message Signal

In most of the subsequent discussions, a constant carrier amplitude A(t) = A
is adopted. In a few cases, however, it is important to demonstrate the effect
of a time-dependent amplitude, e.g. caused by fading, on the FM demodulator
output signal.

According to the FM scheme, see e.g. [2, 4], the phase modulation (?)
contains an integrated copy of the message signal m(t), i.e.

p(t) = Aw/o m(r)dr. (2.2)

the frequency modulation contained in s(t) therefore equals ¢(t) = Awm(t).
For convenience, it is assumed that the message signal m(¢) possesses a power
contents of unity, such that Aw represents the RMS frequency deviation, i.e. the

RMS value of the frequency modulation ().

FM Modulation Index

The bandwidth of the message signal m(#), and the frequency modulation ¢(t),
is denoted by W, in (rad/s). The double-sided spectrum of these signals is
therefore located in the frequency interval w € [~W, W], which is usually called
the baseband. Finally, the FM modulation indez or frequency deviation ratio,
defined as

def Aw
Mo =

(2.3)
is an important parameter in FM transmission, that determines the upper bound
on the output SNR of the FM receiver, as discussed in Section 2.3.

2.2 FM Spectrum and Transmission Bandwidth

Knowledge of the spectrum and bandwidth of modulated carrier waves is par-
ticularly important in design of receivers for FDM transmission systems, such as
FM receivers. This spectrum, and the corresponding bandwidth is required for
the design of the various filters inside FM receivers, and is also of importance
in the determination of the FM demodulator response to noisy FM waves.
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This section discusses a model for the spectrum of FM waves, and some
well-known measures for the bandwidth of these waves.

As an introduction, Section 2.2.1 discusses the characteristics of the FM
spectrum for the case of sinusoidal modulation. Section 2.2.2 discusses the
quasi-stationary approximation of the FM spectrum for arbitrary types of mes-
sage signals. Finally, Section 2.2.3 discusses the well-known estimates for the
bandwidth of FM waves.

2.2.1 FM Spectrum for Sinusoidal Modulation

The spectrum of FM waves that are modulated by a sinusoidal message signal
m(t) is encountered in almost every introductory text on FM modulation. It is
one of the few FM spectra that can be determined exactly; due to the nonlinear
nature of the FM scheme, a general closed-form expression of the FM spectrum
for arbitrary message signals cannot be given. In the latter cases, an approxima-
tion should be used, as discussed in Section 2.2.2. The discussion in this section
serves as an introduction to this approximation. The exact results described
here may be used as an estimate for the accuracy of this approximation.

Assume that the signal ¢(t), that, for convenience, is called the FM message
signal, is given by

(t) = V2Aw cos Wt, (2.4)

where Aw and W are chosen in accordance with Section 2.1.2. Thus, Aw equals
the RMS frequency deviation, while the factor v/2, the crest-factor of a sine-
wave, relates this RMS value to the maximum value of the sine-wave. The FM
wave s(t) may then be expressed as

V2Aw
w

s(t) = Acos I:wot + sin Wtjl , (2.5)

where the carrier amplitude is assumed to be constant.

By definition, the FM spectrum is obtained by Fourier transformation of
(2.5). As derived originally by Carson [5], and outlined e.g. in [2], this spectrum
corresponds to the Fourier series expansion

n=-—oo

s(t)=A i Jn <—\/%> cos (w, + nW) t, (2.6)

where J,(.) denote the Bessel functions of the first kind and order n.

For small FM modulation indices, the impulse-spectrum corresponding to
(2.6) is similar to the spectrum of AM modulated waves. The FM spectrum for
this case is sketched in figure 2.1. It is observed that the spectrum basically
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Figure 2.1: FM Spectrum for sinusoidal (tone) modulation and small modulation
indices.

consists of a component at the fundamental frequency w,, equal to AJo(.) = A,
and the first harmonic components at w,£W, equal to AJ1;(.) ~ AAw/(vV2W).
The spectrum of an AM wave with the same modulation index as the FM wave
contains the same spectral components, of the same magnitude. However, in
the FM wave, both ‘side-bands’ at w, + W, are in anti-phase with each other,
and in quadrature with the carrier component at w,, while all components in
the AM wave are in-phase [2]. This is also reflected by (2.6): for odd n, the
Bessel functions satisfy the relation J_,(.) = —Jn(.)-

In FM waves, an increase of the modulation index, established by an increase
of the frequency deviation Aw, does not only change the magnitude of the spec-
tral components, but also increases the number of harmonic components that
possesses a significant power contents. Consequently, an increase of the modu-
lation index increases the bandwidth of the FM wave, which demonstrates the
nonlinear nature of FM. On the contrary, in AM waves, i.e. a linear modulation
scheme, an increase of the modulation index results only in an increased power
contents of the spectral components, but not in additional components.

2.2.2 FM Spectrum for Arbitrary Modulation

As mentioned in Section 2.2.1, a general and exact expression for the FM spec-
trum in case of arbitrary types of modulation does not exist, due to the rather
complicated nonlinear nature of the FM modulation scheme. However, for so
called wideband FM waves, characterized by a modulation index that is (much)
larger than unity, i.e. a frequency deviation Aw that exceeds the message band-
width, a so called ‘quasi-stationary’ approximation of the spectrum can be ob-
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tained.

This section outlines the basics of the quasi-stationary approximation, that
is used in the sequel for the calculation of the FM demodulator output noise
power density spectrum.

Time-Dependent Spectrum

The central idea of the quasi-stationary approximation is to assume that the
instantaneous frequency of the FM wave varies slow in comparison to the band-
width of the wave. This is equivalent to neglecting the time-dependency of the
instantaneous frequency of the FM wave in the calculation of its power density
spectrum; the time-dependent instantaneous frequency is treated as a constant.

In this way, a time-dependent representation of the FM power density spec-
trum is attained, that represents the FM wave as an impulse (a “finger”) of area
wA?, equal to 27 times the power contents of the FM-wave, that moves along
the frequency axis in the rhythm of the instantaneous frequency. The impul-
sive shape corresponds to the spectrum of an unmodulated carrier wave, with
a time-independent instantaneous frequency. This representation is depicted in
figure 2.2. At the instant ¢, the impulse is positioned at w = w, + ¢(t), i.e. the

A2y N approximated spectrum
2 | \——mAZPDF of w, + ¢()

= t
; ,
©oPrax ) o
O, +¢(2)

Figure 2.2: Representation of the FM spectrum by a moving Dirac-impulse.

instantaneous frequency of the FM wave, and moves along a frequency interval,
centered around the carrier frequency w,, that is bounded by the maximum
(and minimum) value of ¢(t), denoted by @max-

This representation clearly demonstrates the previously noticed relation be-
tween the frequency deviation Aw, or the modulation index %, and the FM
transmission bandwidth: when Aw, the RMS value of ¢(t), increases, the ex-
cursions of the impulse in figure 2.2 extend over a larger frequency range, cor-

responding to an increased FM transmission bandwidth.

Approximate FM Power Density Spectrum

A time-independent approximation of the FM power density spectrum is ob-
tained by time-averaging of the time-dependent representation of figure 2.2.
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By means of this time-average, the area underneath the spectrum in the fre-
quency interval w € [w1,ws] becomes proportional to the fraction of time that
w1 < wo + () < wa, as indicated by the shaded area in figure 2.2.

When the FM message signal (t) is an ergodic, stochastic signal, the time-
average may be replaced by the ensemble average. For such signals, the approx-
imated spectrum becomes equal to the probability density (PDF) of w, + ¢(t),
times the power contents of the FM wave. When p;(.) denotes the PDF of
the stochastic signal ¢(t), and Ss(w) denotes the double-sided power density
spectrum of the FM wave s(t), then [2]

5.0 2o [ (522 ) 0 (2522 @)

where the frequency deviation Aw, is proportional to the RMS deviation Aw,
and should be chosen such that the power contents of the spectrum equals A%/2,
the power contained in s(t).

The same approximation can be used in case of deterministic FM message
signals, when the deterministic signal is replaced with a stationary, ergodic
random signal that possesses the same amplitude distribution [2].

Validity of the Approximation

It is evident that the previously described approximation holds only when the
FM message signal behaves approximately as a ‘constant’ frequency offset, i.e.

+
when the impulse in figure 2.2 moves slowly through the spectrum.

A detailed analysis shows that this condition is satisfied when the bandwidth
of ¢(t), represented by W, is considerably smaller than the FM transmission
bandwidth. This means that the approximation holds for FM modulation in-
dices that are considerably larger than unity, which is the case only for wideband
FM waves.

2.2.3 FM Transmission Bandwidth

As a result of the nonlinear nature of FM, the bandwidth of FM waves is, in
theory, infinite. This was observed already from the spectrum of a sinusoidally
modulated FM wave, discussed in Section 2.2.1; the components in the Fourier
expansion (2.6) extend over the entire spectral frequency axis. However, it was
also observed in that section, that the largest fraction of of the carrier power is
concentrated in a finite bandwidth, centered around the carrier frequency; the
higher harmonics were negligible.

Consequently, any expression for the bandwidth of an FM wave should ac-
tually be accompanied by the fraction of the carrier power that is neglected, i.e.
located outside the bandwidth. As discussed in Chapter 4 and Chapter 5, this
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neglection results in distortion of the FM message signal. Therefore, an estimate
of the FM bandwidth is associated to a certain level of distortion, introduced
into the FM message when filtering of this bandwidth is applied.

A frequently encountered definition of the FM bandwidth, known as Carson’s
rule, defines the FM transmission bandwidth Wgy in terms of the mazimum fre-
quency deviation of a sinusoid, denoted by Awmax, and the message bandwidth
W as

Wir = 2 (Awmax + W). (2.8)

For non-sinusoidal message signals, however, Awnayx is usually replaced by the
RMS deviation Aw [4]. This approach is followed in the sequel of this thesis.

The distortion corresponding to the bandwidth given by (2.8) generally lies
somewhere between 1-10 % [2], which is somewhat too large for most practical
purposes. A more appropriate bandwidth estimate, corresponding to a distor-
tion of around 1%, is given by [2]

Wem = 2 (Awmax + 2W) . (2.9)

For convenience, however, the various examples considered in the sequel of this
thesis use Carson’s rule, with Awmayx replaced by Aw, despite the fact that a
slightly larger bandwidth is required in practice.

2.3 Performance at High Input CNRs

The wide-spread application of frequency modulation to a large variety of com-
munication systems, is mainly due to the ability of FM to improve the receiver
output SNR, i.e. the transmission performance, in comparison to AM and PM
transmission. This section briefly outlines the performance of FM transmission
systems in the presence of small noise, expressed in terms of the receiver output
SNR, and compares it to AM and PM transmission. As explained in Chapter 3,
the latter types of modulation are of considerable interest in FM demodulator
design.

The investigation of the output SNR requires an appropriate description of
the FM demodulator input signal and noise. This description, used throughout
the thesis, is discussed in Section 2.3.1. Subsequently, Section 2.3.2 considers
the demodulator output noise power spectral density, and the maximum FM
receiver output SNR. Finally, Section 2.3.3 compares the performance of AM,
PM and FM transmission systems.

2.3.1 Demodulator Input Signal and Noise

This section describes the model for the demodulator input signal and noise,
that is used throughout the thesis. Unless stated otherwise, it is assumed that
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the input signal consists of the FM wave s(t) from (2.1), and band-limited, zero-
mean Gaussian noise, denoted by n(t). This noise generally originates from the
communication channel, but may also represent the noise produced by various
electronic circuits inside the FM receiver.

A phasor representation of the input signal is depicted in figure 2.3. In

Im

*
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Figure 2.3: Phasor representation of the demodulator input signal.

this figure, the phasor & represents the FM wave s(t), 71 represents the input
noise n(t), and 7 represents the composite, noisy FM input wave r(t) = s(t) +
n(t). Further, all phasors are translated in frequency by the complex factor
exp (—jwot).

The meaning and properties of the other variables in this figure are discussed
below.

Characteristics of Band-Limited Gaussian Noise

The Gaussian input noise n(t) is assumed to possess an (approximately) rect-
angular power density spectrum of bandwidth W, (rad/s), centered around the
FM carrier frequency w,. This spectrum, denoted by Sy pp(w), is depicted in
figure 2.4a. The power contents of this noise, denoted by P, = o2, expressed in
terms of the spectral intensity N,, equals

NoWy

P,=0%= . (2.10)
27

This noise process can, according to figure 2.3, be expressed in terms of two
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Figure 2.4: Input noise power density spectrum. a) spectrum of n(t), b) spectrum
of n;(t) and nq(t).

low-pass noise processes n;(t) and ny(t) as [2, 4], as

n(t) = Re {[ni(t) + jnq(t)] exp (jwot) }

n;i(t) cosw,et — ng(t) sinw,t.

[l

(2.11)

Thus, n(t) equals the projection on the real axis of 7 - exp (jwot).

It can be shown [2], that when the RF/IF input noise n(t) is zero-mean
Gaussian noise with variance o2, both low pass equivalent processes n;(t) and
ng(t) are also zero-mean Gaussian noise processes with variance o2. Further-
more, n;(t) and ngy(t) are statistically independent. The intensity of their power
density spectrum, obtained by frequency translation of the spectrum of n(t), as
depicted in figure 2.4b, equals twice the intensity of the spectrum of n(t).

Characteristics of the In-Phase and Quadrature Noise

In order to obtain an expression for the demodulator output frequency noise,
i.e. the time-derivative of the phase noise 6(t) depicted in figure 2.3, the decom-
position of n(t) into components in-phase and in quadrature with s(t), denoted
by ns,:(t) and ng 4(f) respectively, is is more convenient than the decomposition
into n;(t) and ngy(t).

In terms of the former decomposition, n(t) can be expressed as

n(t) = ng ;i (t) cos [wot + @(t)] — s q(t) sin [wot + p(t)] . (2.12)
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The first term in this decomposition is in-phase with s(t), while the second term
is in quadrature with s(t).

The processes n; ;(t) and n, 4(t) are generally not Gaussian distributed, since
they depend on the modulation ¢(t). As considered in detail in Chapter 6 and
the corresponding appendices, both processes are not mutually independent, but
only uncorrelated, since the modulation (instantaneously) disturbs the symme-
try of their power density spectrum. The latter is a necessary condition for their
independence [2].

An expression for these components follows from the observation that they
equal n;(t) and n4(t), rotated over the angle ¢(t), as observed from figure 2.3.
Therefore,

ns,i(t) = n;(t) cos (t) + ng(t) sin p(t), (2.13)
Ns,q(t) = —ni(t) sin(t) + ng(t) cos p(t). (2.14)

Thus, n, ;(t) and n, 4(t) equal n;(t) and n4(t), modulated in phase by the mes-
sage phase —¢(t); in frame of reference corresponding to n,,i(t) and n, 4(t),
n;(t) and ny(t) seem to be modulated in phase by —~¢(t), while the FM wave
s(t) is considered as an ‘unmodulated’ carrier. The power contents of n ;(t)
and n, 4(t) also equals P, = o2, which easily follows from (2.13) and (2.14).
Since cos ¢(t) and sin ¢(t) are FM waves with a zero-valued carrier frequency,
it follows from the quasi-stationary approximation (see also Chapter 6), that
the power density spectrum of n, ;(t) and n; 4(t) equals the convolution of the
spectrum Sy, (w) of n;(t) and ny(t), and the power density spectrum of an FM
wave with a zero-vaiued carrier frequency; it seems that the center-frequency
of S,(w) moves around w = 0 in the rhythm of ¢(¢). This is illustrated by
figure 2.5. Due to the modulation, the bandwidth of the time-averaged (or
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Figure 2.5: Quasi-stationary approximation of the power density spectrum of ns,;(t)
and ng ¢(t).

ensemble averaged) spectrum, denoted by Sp s(w) is slightly larger than the
bandwidth of S,(w), but its area is the same. Further, inside the baseband,
Sn, s(w) essentially equals S, (w).
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Figure 2.6 depicts the quasi-stationary approximation of S, s(w) and the
exact spectrum for a sinusoidal message signal, equal to the convolution of
Sn(w) and the spectrum of the Bessel function expansion given by (2.6). The

T T T

approximation ——
N exact ----- i

Sns(@)

Figure 2.6: Exact and quasi-stationary approximated noise spectrum Sn,s(w).

agreement between the approximation and the exact spectrum is quite good.
Further, in the baseband, the spectrum is identical to the rectangular spectrum

Sn(w).

Composite Demodulator Input Signal

The composite demodulator input wave can easily be expressed in polar format,
i.e. as an amplitude and phase/frequency modulated wave, with the aid of the
previously discussed decomposition of the noise.

When R(t) denotes the amplitude of this wave, the length of 7, which is
modulated by the noise n(t), and 8(t) denotes the phase noise (see figure 2.3),
then

r(t) = s(t) +n(t)

2.15
= R(t) cos [wot + (t) + 6(t)]. (2.15)
With the aid of figure 2.3, R(¢) and 6(t) can be expressed as
R(t) = /14 + nei(®) + nag (02, (2.16)

f(t) = arctan [ﬁ%} . (2.17)
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2.3.2 Output Noise Spectrum and Maximum Output SNR

With the aid of the description of the demodulator input signal described in
the previous section, the demodulator output noise spectrum and output SNR
can be determined quite easily. In this section, we discuss the output noise
spectrum and output SNR of an ideal FM demodulator, for small input noise,
i.e. high input carrier-to-noise ratios (CNR). This SNR equals the maximum
possible SNR, that cannot be exceeded by any FM demodulator.

Response of the Ideal FM demodulator

The response of the ideal FM demodulator to the noisy FM wave r(t) from
(2.15) is proportional to the instantaneous frequency of r(t), without the carrier
component, i.e.

Yaem,ia(t) = @ (t) + 6(t), (2.18)
where the frequency noise 4(t), obtained from (2.17), equals

o(t) = A+ i O]70(8) = no g (Ws.i(8)
N [A+na:(OF +n2,(0)

)
N
—
©

p——

At high input CNRs, i.e. when A > n,;(¢), this expression reduces to é(t) ~
i q(t)/A. Thus, the frequency noise basically consists of the time-derivative of
the quadrature noise n, 4(t).

Output Noise Spectrum at High CNRs

At high input CNRs, the power density spectrum of é(t), denoted by S;(w), can
be expressed as

Sj(w) ~ (%)25,,(@, (2.20)

where A denotes the amplitude of s(t). The details of the calculation of this
spectrum are considered in Chapter 6. The spectrum S;(w) is sketched in
figure 2.7.

Comparison with the input noise spectrum of figure 2.4 shows that the dif-
ferentiation of the carrier phase performed by the demodulator applies quadratic
shaping to the input noise spectrum. By virtue of this shaping, the largest part
of the output noise power is shifted towards high frequencies, leaving only a
very low noise level at low frequencies, i.e. inside the base band region where
the message signal resides. This shaping mechanism is the essence of the SNR
improvement achieved with FM, in comparison to AM.




2.8. Performance at High Input CNRs 27

FI

>
baseband

Figure 2.7: Demodulator output frequency noise spectrum.

Output SNR at High CNRs

The maximum possible output SNR, assuming a rectangular low-pass baseband
filter of bandwidth W, is easily obtained by integration of S;(w) over the fre-
quency interval w € [-W,W]. A detailed analysis in Chapter 6 shows in which
way arbitrary baseband filter characteristics can be included into the output
SNR.

The resulting expression for a rectangular filter equals

W, [ Aw 2
SNRmax = 3pw (W) ; (221)

where p denotes the input CNR, given by

def A2
P=oor (2.22)
The factor pW,, /W represents the demodulator input CNR that includes only
the input noise located inside twice the message bandwidth, i.e. a bandwidth of
2W. This CNR, denoted by 7, is of interest in a comparison of FM with other
modulation schemes.

The most apparent property of FM reflected by (2.21) is, that the output
SNR can be increased by increment of the frequency deviation Aw. Thus, the
frequency deviation Aw allows an exzchange between the output SNR and the
required transmission bandwidth.

Of course, (2.21) holds only for high input CNRs. For low CNRs, typically
below 10 dB, a threshold in the output SNR versus input CNR curve is observed.
Above this threshold, the output SNR is properly described by (2.21). However,
below the threshold, the output SNR decreases much faster than predicted by
(2.21) (see Chapter 5).
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2.3.3 Transmission Performance of AM, PM and FM

As a final note on the characteristics of FM, it is interesting to compare the
transmission performance of FM systems with the performance of AM and PM
systems. As discussed in Chapter 3, both amplitude modulation (AM) and
phase modulation (PM) play an important role in FM demodulator design.

Transmission Efficiency

As implied by Shannon’s information theory [1], a suitable measure for the
performance of a modulation scheme is the maximum possible ‘distortion-free’
information rate, denoted by R in (bit/s), at the demodulator output for a
given channel capacity, denoted by C in (bit/s). The relation between R and
C essentially describes the efficiency of the modulation scheme; a scheme is
maximally efficient when R equals C, i.e. when it realizes an as large as possible
demodulator output SNR for a given channel bandwidth, and CNR inside the
channel.

The channel capacity of a channel with a rectangular spectrum of bandwidth
B = W, /(2r) Hz, that contains additive white Gaussian noise (AWGN) of a
single-sided spectral intensity IV, is given by the well-known expression

(. . S\ A?
C = Blog, \1+N} = Bloug, \1+—2N0B},

—~~
()
N)
(%8

&

where S/N denotes the CNR inside the channel, previously denoted by p.

Performance of the Theoretical Optimum Modulation Scheme

As derived in [2], the maximum possible output SNR that can ever be achieved
by communication through this channel with the aid of a theoretical, ‘optimum’
modulation scheme equals

b
SNRope = (1+7) —1=(1+p)" -1, (2.24)

where v = pW,, /W denotes the input CNR inside twice the message bandwidth,
and b = W, /W equals the ratio of the transmission bandwidth and the message
bandwidth.
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Performance of AM-DSB, PM and FM

For DSB, i.e. AM with suppressed carrier, PM and FM, the output SNR can
be expressed [2] as

SNRDSB =", (225)
SNRem = %(b —2)%y < 7y, (2.26)
SNReu = %(b —2)2y, (2.27)

where Carson’s rule, roughly valid for b > 6, is used as estimate for the FM
and PM transmission bandwidth. The upper bound on PM is due to the fact
that the phase deviation in PM is not allowed to exceed m for unambiguous
demodulation [2].

Comparison

Expression (2.25) demonstrates the known property of linear modulation schemes,
that the output SNR of an AM-DSB system cannot be improved by widening
of the transmission bandwidth, since it is independent of b.

Expression (2.26) and (2.27) show, that the output SNR of an FM system
is always at least 4.8 dB higher than the output SNR of a comparable PM
system, due to the noise shaping. Further, notice that FM is the only scheme of
the three that, theoretically, allows an unlimited ezchange between the required
transmission bandwidth and the output SNR.

Figure 2.8 depicts the output SNR versus input CNR curves of the optimal
scheme, AM-DSB, PM and FM for the maximum possible phase deviation for
PM, corresponding to b = 2(w + 1). This figure clearly shows that FM is the
most ‘efficient’ of the three practical modulation schemes. Further, it shows
that, since the FM output SNR described by (2.21) and (2.27) crosses through
the curve of the optimal scheme, which is impossible, a threshold must occur
somewhere. The position of this threshold, and the demodulator response ob-
served in that region of the SNR curve, is determined by the internal structure
of the demodulator, and is extensively studied in the sequel of this thesis.

2.4 Conclusions

The modulation scheme, that describes in which way the message information
is included into the carrier wave, determines to a large extent the structure of
the transmitter and the receiver in a communication system. Further, reliable
transmission generally requires a deterministic, periodic carrier wave.

In modulation schemes that divide the available channel capacity by means
of Frequency Division Multiplexing (FDM), such as FM, sinusoidal carriers are
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Figure 2.8: Output SNRs versus input CNR of the theoretical optimal modulation
scheme, AM-DSB, PM and FM modulation.

generally favorable, since they require the smallest possible transmission band-
width.

One of the most important properties of the FM scheme is its ability to ex-
change the required transmission bandwidth for an increase of the demodulator
output SNR. This exchange, due to the nonlinear nature of the FM scheme, is
controlled by the frequency deviation, or equivalently the FM modulation index.

The bandwidth of FM waves is theoretically infinite. However, in practice,
by far the largest portion of the carrier power is concentrated in finite band-
width. An estimate for this bandwidth, as used in FM receiver design, is always
associated to a certain level of distortion introduced into the message by filter-

ing.

For small modulation indices, the spectrum of FM waves closely resembles
the spectrum of an AM wave, and possesses roughly the same bandwidth. For
large indices, the spectrum resembles the probability density function of the FM
message signal.

The improvement of the signal-to-noise ratio (SNR) established by FM trans-
mission in comparison to AM and PM transmission is, besides the theoretical
unlimited possibility to exchange bandwidth for SNR improvement, due to the
quadratic shaping applied by the (ideal) FM demodulator to the input noise
spectrum. This shaping moves the largest part of the noise power to frequencies
located outside the message bandwidth.

Finally, on the basis of information theoretical considerations, it follows that
a threshold must occur in the FM demodulator output SNR at low input CNRs,
that results in a steep decay of the output SNR.
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Chapter 3

FM Demodulation
Principles

FM demodulation principles describe the essential operation of FM demodu-
lator circuits and systems. They allow understanding of the operation of the
demodulator at a high hierarchical level. Such high level models are extremely
valuable in FM demodulator design, since they show the potential capabilities
of the demodulator, long before an actual demodulator circuit has been devel-
oped. This gives the opportunity to test the demodulator capabilities against
the requirements and to include possibly required improvements in a, very early
design stage.

This chapter develops a classification of FM demodulation principles, that
groups FM demodulators operating according to the same or similar principles
together, resulting in an overview of the full range of possible FM demodulator
operating principles. Such a classification is a powerful instrument in demodu-
lator design, since it allows a deliberate selection of a suitable demodulator for
each application, on the basis of high level requirements and design aspects.

An overview of this chapter is as follows. Section 3.1 discusses the general
principles of the structured design strategy, applied to FM demodulator design
in this thesis. Based on the principles of this strategy, Section 3.2 outlines the
main hierarchical levels in the FM demodulator design procedure, and discusses
the important function of a classification. Section 3.3 starts the development
of the classification and identifies the basic FM demodulator functions. Sec-
tion 3.4, 3.5 and 3.6 study the characteristics of the classes of FM demodulators
that evolve from Section 3.3. The resulting FM demodulator classification is
summarized in Section 3.7.

33
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3.1 Structured Design

Circuit and system design may generally be represented as a very complex search
process, heading for the circuit/system that best meets the specifications. From
a theoretical point of view, such a search is situated in a large ‘design space’,
consisting of all possible system implementations.

Due to their complexity, satisfactorily solution of such design problems re-
quires the application of some design strategy. Without such a strategy, it is
very unlikely that the best possible system, or even a suitable system, is found
within a finite time.

In this thesis, a so called “structured design” strategy is applied to the design
of frequency demodulators. This section outlines the general principles of this
strategy. Section 3.2 considers its implications on demodulator design.

We first consider the general objective of the structured design strategy in
Section 3.1.1. Subsequently, a high-level view on the design problem and its
solution is discussed in Section 3.1.2 and Section 3.1.3 respectively.

3.1.1 Objective of Structured Design

Although many design strategies are able to find suitable system implementa-
tions for various applications, it is often uncertain whether the final solution is
indeed the best possible, or at least close to it.

In order to reduce this uncertainty, knowledge of, and insight into the fun-
damental limitations on the system performance is required. Eupiicit reiations
between the system performance and the performance bounds are often absent
in design strategies. However, despite their absence, designers are usually able
to apply implicit knowledge of them, contained in their experience. Although
this implicit knowledge often results in improved circuits/systems, it still cannot
guarantee that the best possible solution is attained.

It is the objective of the structured design strategy, which has been applied
to various types of electronic systems [1-5], to acquire the explicit relations
between the system performance and its fundamental limitations. In general,
knowledge of these bounds significantly increases the speed and efficiency of the
design procedure, and allows quick estimation of the feasibility and performance
of the design solution in advance, before it has ever been constructed.

3.1.2 Definition of Design Problem

Formulation of the relation between the system performance and its limitations,
requires a proper definition of the various notions involved in a design problem.
These definitions are outlined below.
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Ideal System Function The ideal system function describes the primary
function of the system under design. This function, represents the main design
objective, and describes the operation of the system at the highest possible
hierarchical level, free from errors of any possible cause. The final (physical)
design solution is an implementation of this function, that maps it on physical
relations. In this view, an electronic FM demodulator is an implementation
of the ideal FM demodulation function, that maps this function on relations
between electric currents and voltages.

Physical Limitations The mapping of the ideal function on physical rela-
tions is inevitably subjected to errors, introduced by the fundamental physical
mechanisms that are chosen to constitute the system’s operation. These “physi-
cal limitations” [5-7], such as noise, distortion and bandwidth limitations, define
a fundamental upper bound on the system performance, that cannot be over-
ruled by any means, except by selection of other physical mechanisms, materials,
or technologies.

Resource Limitations Resource Limitations are another cause of errors in
the physical system. They limit the types and amount of resources, as e.g. chip
area, power consumption and production costs, that may be used to implement
the ideal system function. In fact, resource limitations correspond to those
specifications that describe the maximum ‘costs’, of the system. As opposed to
physical limitations, performance bounds set forward by these limitations may
be overruled by increasing the available amount of resources.

Functional Requirements Due to the inevitability of errors in the physical
system, a part of the specifications has to specify the types and magnitude
of errors that can be tolerated, often by means of some cost-function. These
specifications will be called the “functional requirements”.

3.1.3 Solution of the Design Problem

The design strategy has to assure that a suitable design solution is obtained,
that implements the ideal system function, minimizes the cost-function, com-
prising the system requirements, and simultaneously complies with the physical
limitations and resource limitations. The design approach attempts to satisfy
these requirements in a structured way by introduction of hierarchy, simplifica-
tion and orthogonality.

Hierarchy Hierarchy reduces the complexity of the design problem, by sub-
division of the original problem into smaller, more readily solved sub-problems.
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This procedure encloses the best/optimal design solution, and step by step re-
duces the ‘radius’ of the enclosure by gradual inclusion of details, system re-
quirements and imperfections, until finally only the optimal solution is left. A
classification of the possible operating principles of the system, as developed
for FM demodulators in this chapter, is a valuable instrument to establish this
subdivision.

Simplification Simplification is a powerful instrument to maintain compre-
hensibility of the procedure, and allows controlled introduction of detail, limited
to the minimum required, in each design step. In this way, the first and most
important design steps can be covered by simple models that reveal only the
essential system characteristics.

Orthogonality Finally, the approach aims at an arrangement of the system
in such a way that orthogonality between the various design parameters is estab-
lished. When this is achieved, iterations in the design procedure are eliminated
and the various system characteristics can be optimized independently.

3.2 Design Hierarchy for FM demodulators

The previous section discussed that hierarchy is an efficient means to reduce the
complexity of the design problem.

In this section, we focus on the hierarchy in the design of FM demodula-
tors, as schematically depicted in figure 3.1, and show the importance of the
classification of FM demodulation principles developed in this chapter.

3.2.1 Ideal FM Demodulation Function

As discussed in Section 3.1.2, the main design objective is represented by the
ideal system function. This function describes the system operation at the
highest hierarchical level.

The ideal FM demodulation function depicted in figure 3.1 describes the
primary function of FM demodulators; retrieval of the instantaneous frequency
from FM waves. Suppose that the FM wave to be demodulated is represented
by s(t) from (2.1). In that case, the ideal FM demodulation function of the
demodulator that operates on s(t), fem,aem(. - . ), satisfies the equation

Serdem [S(8)] = Foraem {A(L) cos [wot + ()]} = @(t). (3.1)

Unfortunately, this expression is an implicit description of the ideal function
whereas an explicit one, that relates the demodulator input signal to its output
signal by means of known, (basic) operators and functions, e.q. a differential
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Figure 3.1: Hierarchy in FM demodulator design.

equation, is required for its implementation. Expression (3.1) seems however
not to be satisfied by any known basic mathematical function. FM demodula-
tion should therefore be the result of a sequence of such basic operations and
functions.

3.2.2 FM Demodulation Principles

The second level in the FM demodulator design hierarchy of figure 3.1 consists
of the FM demodulation principles. These principles explicitly describe the
algorithms that can be used to implement the ideal FM demodulation function
into a physical system. In fact, they ‘implement’ the ideal FM demodulation
function in a mathematical sense as a sequence of basic functions and operations.
Due to the complexity of the demodulation function, several valid sequences
exist, that describe different FM demodulation principles. The purpose of this
chapter is to classify all possible sequences.

The operating principles may thus be represented by e.g. a block schematic
or a graph, that connects basic mathematical operators and functions in a pre-
defined order. In many cases, these basic functions correspond to known sub-
systems that can be readily implemented into a physical system. For example,
in electronics, the following set of basic functions is commonly encountered:

e multiplication by a constant, implemented by amplifiers;
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¢ addition, e.g. two current sources that float into the same node;
e multiplication of time-variant signals, implemented e.g. by mixers;

e amplitude and frequency references, implemented by e.g. band-gap refer-
ences and oscillators respectively;

o differentiation and integration, implemented by capacitors or inductors.

Such basic electronic building blocks can be used to construct an electronic FM
demodulator.

Each FM demodulation principle is a high-level description of a particular
type of FM demodulator architecture. Demodulators that are based on the
same demodulation principle, behave similar for all characteristics, as far as
these are intrinsically described by this principle. Consequently, the behavior
corresponding to such characteristics is similar for all demodulators based on
the same architecture, irrespective of their implementation in e.g. analog elec-
tronics, digital electronics or, if appropriate, in pneumatics. An example of such
a characteristic is the response to external noise. This response can be found
directly from the demodulation algorithm and is therefore basically equal for all
demodulators based on the same algorithm.

3.2.3 Implementation of FM Demodulation Principles

The remaining design steps are concerned with the implementation of the FM
demodulaiion principle into a physical system. This starts with the mapping of
the various information carrying signals in the mathematical demodulation al-

gorithm on physical quantities. Subsequently, appropriate circuits are designed
to process these physical signals.

Mapping of Information on Physical signals

Two selections are required in order to map mathematical signals on physical
signals:

o selection of the signal domain used to represent the information;

e selection of the physical domain used to represent the information.

Signal Domain The selection in the signal domain determines the distribu-
tion of signal energy, and thus of information, over time/frequency and ampli-
tude. As illustrated in figure 3.2, four different domains can be distinguished:

e the continuous domain, consisting of signals that are continuously dis-
tributed in time and amplitude;
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Figure 3.2: The four different signal domains: a) continuous domain, b) sampled
domain, ¢) quantized domain, d) digital domain.

e the sampled domain, consisting of signals distributed discrete in time and
continuously in amplitude;

e the quantized domain, consisting of signals that are distributed continu-
ously in time, but discrete in amplitude;

e the digital domain, consisting of signals that are distributed discrete in
both time and amplitude.

It should be noted that although the selection of one or several of these domains
for representation of the mathematical information signals does strongly influ-
ence the appearance of the final FM demodulator system, it does however not
affect the demodulator characteristics intrinsically determined by the demod-
ulation principle. Differences observed in the behavior of demodulators based
on the same operating principle, but realized in different signal domains are
therefore exclusively caused by differences in the character of these domains.
In Section 3.4.6 is shown, for example, that a digital FM demodulator, of
which a patent proposal was recently filed, is basically equal to its much older
analog counterpart, invented already before 1920. The operating principles are
identical, only the signal domains, and the corresponding circuitry, are different.
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An illustration of the fact that signals from several domains may be present
within one and the same demodulator is described in [8, 9]. These FM de-
modulators operate as a kind of delta-sigma modulator on the instantaneous
frequency of the input FM wave. The input wave is part of the continuous
domain, while the output signal is a digital bit stream, and thus belongs to the
digital domain.

Physical Domain The selection in the Physical Domain determines the phys-
ical quantities used by the demodulator for the representation of information.
These quantities may be selected from six different physical domains:

¢ the radiant domain

¢ the mechanical domain
¢ the chemical domain

e the thermal domain

¢ the magnetic domain
e the electrical domain

Again, the selection of the physical domain(s) used to represent the information
does influence the appearance of the demodulator, but it does not affect the
demodulator characteristics described by the demodulation principle; the rep-
resentation of the information does not affeci the character of ihe information
processing prescribed by the demodulation principle.

Although the sequel of this thesis is mainly concerned with electronic de-
modulators, situated in the electrical domain, the various FM demodulation
principles can theoretically be implemented in other domains as well.

Illustrations of this fact can be found in literature. For example, up to 1912,
when the “regenerative circuit” was invented, magnetic detectors were a popular
type of receiver for radio communication [10]. Another example is found in [11],
where the so called “Leitungsdemodulator” is described. This FM demodulator
is partly realized in the mechanical domain — it uses the geometric wave-length
of the received FM wave to determine the frequency — and partly in the electrical
domain; the wave length information is converted to a differential voltage.

Circuit Design

Once the physical signals have been selected, the appropriate circuits have to be
designed in order to process these signals. In this design step, restrictions are
put on the information handling capacity of the demodulator system by physical
limitations and resource limitations. The physical limitations originate from the
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physical mechanisms that constitute the operation of the circuit building blocks,
such as transistors, electron tubes and resistors.

3.3 Direct and Indirect Demodulation

According to the previous section, FM demodulation principles describe the
algorithms that implement the demodulation function as combinations of basic
operators and functions. This section start the development of a classification
of FM demodulation principles, by an investigation of the two main classes that
can be distinguished: direct and indirect demodulation principles.

Direct demodulation principles straight-out read the message information
from the instantaneous frequency of FM waves, as suggested by the ideal FM
demodulation function described in Section 3.2.1, and produce an output signal
proportional to this frequency. No use is made of other carrier wave param-
eters, such as the instantaneous phase or amplitude. Consequently, an FM
demodulator that implements such a direct FM demodulation principle is able
to retrieve the message information from FM waves that are, besides modulated
in frequency, also modulated in amplitude and/or phase, e.g. due to noise, in-
terference and fading in the communication channel. Unfortunately, as shown
in Section 3.3.1, it appears that physical systems can impossibly read the in-
stantaneous frequency of a carrier wave directly. For this reason, physical FM
demodulators that are based on direct demodulation principles do not exist.

Indirect demodulation principles copy the FM message information to the
carrier amplitude or phase, and subsequently apply AM or PM demodulation.
In this way, they avoid straight-out reading of the instantaneous frequency.
These demodulation principles are available for the construction of physical
FM demodulators. Section 3.3.2 subdivides the class of indirect demodulation
principles into two subclasses, that are separately discussed in Section 3.3.3 and
Section 3.3.4.

From the discussion of both classes of FM demodulation principles, a number
of basic functions can be identified that necessarily need to be performed by any
FM demodulator. These basic functions are discussed in Section 3.3.5.

3.3.1 Direct Demodulation Principles

As stated in the introduction, physical FM demodulators based on direct de-
modulation principles do not exists, due to the fact that physical systems are
unable to read the instantaneous frequency of a carrier straight-out.

This section discusses the underlying mechanisms that hamper a straight-
out read of the instantaneous frequency. First, the boundary conditions on the
detection of information in general are considered. Subsequently, it is shown
that the instantaneous frequency does not comply with these conditions.
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Detection of Information

Measurement and detection systems, as FM demodulators, essentially detect
the energy supplied to their input. Therefore, detection of information by such
systems requires encoding of this information in the instantaneous energy of
the wave supplied to their input. Similarly, a human being is only able to read
the newspaper, i.e to gather information, when light (optical energy) that is
‘modulated’ by the newspaper reaches the eye.

Thus, information is detectable only when it ‘modulates’ the energy of some
signal. This statement follows from a fundamental property of information
transport in physical systems, described both by information theoretical and
physical laws. For example, Shannon’s theory [12] states that a nonzero chan-
nel capacity, i.e. the capability to transport a nonzero amount of information,
exists only when the information signal possesses a nonzero power/energy con-
tents. In quantum mechanics, a similar statement is formulated by Heisenberg’s
Uncertainty Principle [13, 14]. In essence, this principle states the impossibility
to measure the impulse, position, energy, etc. of a particle without interaction,
i.e. without exchanging energy with the particle.

Detectability of the Instantaneous Frequency

In the context of demodulators, the previous discussion shows that directly
detectable/readable message information necessarily modulates parameters as-
sociated with the carrier wave’s instantaneous energy. That the instantaneous
frequency is not such a parameter, and therefore cannot be detected directly,
may be observed with the aid of the phasor representation of the FM wave s(t),
depicted in figure 3.3. The instantaneous energy of the FM wave is directly

D=0 H+o(t)

—>
s(t) = si(t) Re

Figure 3.3: Phasor diagram of an FM wave.

associated with its instantaneous value s(t), i.e. the projection of the phasor
§ on the real axis. Together with the projection on the imaginary axis, s,(t),
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s(t) = si(t) describes the position of the phasor tip in the phasor plane as
function of time.

Thus, the instantaneous energy of the FM wave is associated to the Cartesian
position coordinates of the phasor tip, which correspond to s;(t) and s,(t).
Actually, sq(t) is associated to a copy of s(t) that is shifted instantaneously
over 909, since it refers to the imaginary axis. However, since such a shifted
wave is readily constructed from s(t), both s;(t) and s,(t) are, for convenience,
considered to be associated with the energy of s(t). These coordinates are
therefore directly detectable by physical systems.

An equivalent description of the phasor tip position is given by the polar
coordinate system consisting of the carrier amplitude A(t) and phase ®(t) =
wot + ¢(t). This coordinate system is related to the Cartesian system by means
of an invertible coordinate transform, and thus contains the same information;
no information is lost by changing from Cartesian to polar coordinates or vice
versa. Therefore, the mutually independent coordinates A(t) and ®(¢) and can
be expressed directly in terms of s;(t) and s,(t). For this reason, the amplitude
and phase of a carrier wave can be demodulated directly, without copying the
message information to other carrier parameters.

The instantaneous frequency of the FM wave s(t) does not correspond to
the position of the phasor tip, but to the angular velocity of the phasor § in
figure 3.3, i.e. the time derivative of ®(¢). This velocity is however not directly
associated with the energy of s(t), and cannot be detected directly. Therefore,
a physical FM demodulator is incapable to read the instantaneous frequency
directly. Instead, the message information should be derived from detected po-
sition coordinates, i.e. from A(t) and ®(¢), or copied to a position coordinate in
advance of its detection. Both these possibilities result in indirect demodulation
principles.

3.3.2 Indirect Demodulation Principles

From the previous section can be concluded that all physical FM demodulators
operate according to indirect demodulation principles. As opposed to direct
demodulation principles, they do not straight-out read the message information
from the FM wave’s instantaneous frequency, but copy the information to the
amplitude or phase, in advance of AM or PM demodulation.

Therefore, it is possible to distinguish two subclasses of indirect FM demod-
ulation principles, that differ in the conversion and demodulation operations
applied to the FM wave’s instantaneous frequency:

e conversion to amplitude, followed by AM demodulation;

e conversion to phase, followed by PM demodulation.
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Such conversions can be applied successfully in FM demodulators only when
respectively the amplitude and phase of the FM wave are unmodulated prior
to the conversion. Otherwise, when modulation is present in these parameters,
e.g. due to noise or interference, it will mix up with, and irrecoverably corrupt
the converted FM message information.

Since the instantaneous frequency represents a velocity in the phasor plane,
whereas the amplitude and phase represent the polar position coordinates, FM
demodulation may be considered as some special kind of velocity measurement.
Two different methods of velocity measurements exist. The two classes of in-
direct FM demodulation principles each implement one of these methods. Fig-
ure 3.4 schematically depicts these classes, and their subclasses. Both classes

indirect FM demodulation

|
I |

FM - AM conversion FM - PM conversion
direct AM indirecs AM direct PM indirect PM
demodulation demad ulatjon demodulation demodulation

b N
Figure 3.4: Classes of indirect FM demodulation principles.

and the corresponding subclasses are discussed in Section 3.3.3 and Section 3.3.4

respectively.

3.3.3 Indirect Demodulation by FM-AM Conversion

Demodulation through FM to AM conversion and subsequent AM demodulation
is equivalent to a velocity measurement, that converts the velocity information
to position information (FM-AM conversion), which is subsequently determined
by a position measurement (AM demodulation). Both the FM-AM conversion
and AM demodulation are briefly discussed below. A detailed discussion is
postponed to Section 3.4.

FM to AM Conversion

The conversion of frequency information to amplitude information transforms
the original FM wave into a mixed FM-AM wave. Although the frequency
modulation remains present, it is disregarded in the sequel of the demodulation
process. It is not possible to remove the FM modulation from the FM-AM wave,
since this would require an FM demodulator on its own. In fact, any strategy
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that attempts to remove the FM demodulation without using a separate FM
demodulator for this task bounces at the classical “chicken-egg” problem.

AM Demodulation

In succession to the FM-AM conversion, the information has to be detected by
means of an AM demodulator in order to obtain the baseband demodulator
output signal. As opposed to FM demodulators, necessarily implemented ac-
cording to indirect demodulation principles, direct and indirect demodulation
principles are available for the implementation of AM demodulators. As de-
picted in figure 3.4, both types of AM demodulation principles each result in a
separate subclass of FM demodulation principles.

Direct AM demodulation principles simply read the information contained
in the instantaneous amplitude of the wave at their input. According to Sec-
tion 3.3.1, it is possible to construct physical AM demodulators based on this
principle, since the instantaneous amplitude is directly associated with the in-
stantaneous energy of the FM wave.

Indirect AM demodulation principles convert the AM information to PM in-
formation, followed by PM demodulation. Although it is possible to implement
such a demodulation principle, it cannot be used to construct FM demodula-
tors. This is due to the fact that the phase of FM waves is modulated already,
by the integrated FM message, prior to the AM to PM conversion performed
by these AM demodulators. Since this conversion operations is principally non-
linear, it is likely to destroy both the converted amplitude information, and the
integrated message information in the carrier phase. The AM to PM conversion
is therefore not allowed in FM demodulators.

Consequently, FM demodulators based on FM to AM conversion necessarily
apply direct AM demodulation.

3.3.4 Indirect Demodulation by FM-PM Conversion

Demodulation through FM-PM conversion and subsequent PM demodulation
is equivalent to a velocity measurement, that derives the velocity information
(FM-PM conversion) from two consecutive position measurements (PM demod-
ulation) and the elapsed time between them. A detailed discussion of these
principles is postponed to Section 3.5.

FM to PM Conversion

The FM-PM conversion of the message information implements the definition
formula for the relation between “instantaneous frequency” and “instantaneous
phase” i.e. a differentiation to time. The same definition applies to the relation
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between speed to position. As discussed in Section 3.5, the implementation of
this differentiation differs among the various FM to PM conversion principles.

PM Demodulation

Similar to AM demodulation, PM demodulation may be performed according
to both direct and indirect demodulation principles, as sketched in figure 3.4.

Direct PM demodulation principles read the information contained in the
instantaneous phase of the wave at their input. According to Section 3.3.1,
such PM demodulation principle may be used to construct physical PM demod-
ulators, since the phase information can be attained directly from the Cartesian
coordinates s;(t) and s,(t), without use of other carrier parameters.

Indirect PM demodulation principles convert the PM information to AM in-
formation, followed by AM demodulation. As opposed to indirect AM demodu-
lation, indirect PM demodulation may be used to construct FM demodulators.
This is due to the fact that, in principle, the FM carrier amplitude is unmodu-
lated prior to the PM-AM conversion performed by these demodulators. This
class of demodulation principles is discussed in Section 3.6.

3.3.5 Basic FM Demodulator Functions

At this point in the development of the FM demodulator classification, the
three basic FM demodulator operations, to be performed by any physical FM
demodulator, can be identified.

The analysis in Section 3.3.1 and Section 3.3.2 showed that FM demodula-
tors are necessarily implemented according to indirect demodulation principles.
Therefore, every FM demodulator at least contains a conversion operation, that
in some way performs a differentiation to time, and an AM or PM demodula-
tion operation. The third operation, characteristic for any Frequency Division
Multiplexing (FDM) modulation scheme, such as FM, is frequency translation.
The FM modulator translates the message information from baseband, i.e. zero
center frequency, to a center frequency w,. The FM demodulator has to perform
the reverse translation.

Each FM demodulator therefore performs the following list of basic opera-
tions:

e conversion of frequency information to amplitude/phase information;
¢ amplitude/phase demodulation;

e frequency translation.
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3.4 Demodulation by Conversion to AM

This section investigates the principles of operation, and algorithms available
for the implementation of FM demodulators based on FM-AM conversion. As
discussed in Section 3.3, these demodulators constitute one of the two classes of
indirect demodulation principles.

Inspired by the structured design strategy, orthogonalization is applied wher-
ever possible, in order to simplify the design procedure, and to allow separate
optimization of the various demodulator sub-functions. The two sub-functions
of the FM demodulators considered in this section, FM-AM conversion and
AM demodulation, are therefore separately investigated. First, the ideal (sub-)
functions are identified. Subsequently, the algorithms available for their im-
plementation are discussed. Some major issues in the implementation of these
algorithms into demodulator circuits are addressed in Chapter 4.

An outline is as follows. The ideal FM-AM conversion function and FM-AM
conversion algorithm are discussed in Section 3.4.1 and Section 3.4.2 respec-
tively. The ideal AM demodulation function and the two AM-demodulation
algorithms obtained from it are considered in Section 3.4.3, Section 3.4.6 and
Section 3.4.7. The two subclasses of FM demodulators that evolve from these
sections are discussed in Section 3.4.6 and 3.4.7 respectively, and compared with
demodulators encountered in literature.

3.4.1 1Ideal FM-AM Conversion Function

The ideal FM to AM conversion function establishes a perfectly linear relation,
without noise of distortion, between the FM message contained in the instan-
taneous frequency of the input FM wave and the amplitude of the AM wave at
the output. The required transfer is depicted in figure 3.5. For example, the

output/input T
amplitude

Kem.am

|
|
I
I
i
t
:
0 1 —
FM message signal

Figure 3.5: Transfer of the ideal FM-AM conversion function.
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response to the FM wave s(t) from (2.1) should equal

Sa(t) = fFM—AM [S(t)]

= Ken-am@(t)A(2) cos [wot + @(t) + wo) , (3.2)

where ¢, is some fixed phase shift and Kgy_ v denotes the conversion gain.

In practice however, the amplitude of s,(t) will be proportional to w, +
¢(t), and thus contains an non-informative offset component. The impact of
this component on the demodulator output signal is considered in subsequent
sections, and in Chapter 4.

3.4.2 FM-AM Conversion Algorithm

This section determines the FM-AM conversion algorithm, required to construct
a physical FM-AM converter from basic functions and operators.

First, the algorithm is investigated with the aid of a quasi-stationary ap-
proach. Subsequently, FM-AM conversion is related to the phasor representa-
tion of the FM wave. Finally, the components of the FM-AM converter response
to the FM wave s(t) are analyzed.

Quasi-Stationary Approach

It is illustrative to investigate the FM-AM conversion operation with the aid
of the quasi-stationary approximation. As discussed in Section 2.2.2, such an
approach describes the FM wave s(t) as a single sinusoid with a frequency that
(very) slowly fluctuates in the rhythm of the message information {(“moving
finger”). In essence, it considers the instantaneous frequency and the spectral
frequency to be equivalent.

If this approach is applied to the ideal FM-AM transfer, the characteristic in
figure 3.5 may be considered to represent the spectral amplitude characteristic
of the system. Obviously, the linearly increasing transfer in this figure suggests
that differentiation to time is the required algorithm to implement the FM-AM
conversion.

Phasor Representation

By definition, the instantaneous frequency of the FM wave, denoted by w(t),
which contains the message information, equals the time derivative of the carrier
phase ®(t), i.e.

def d®(t)
Toodt

As noted in Section 3.3.1, the phase ®(t) equals the angular coordinate of the
tip of the FM phasor 3.

w(t) (3.3)
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Consequently, according to (3.3), w(t) corresponds to the angular velocity of
3. The vector that represents the velocity of §, denoted by ¥, may be written as

ger 9%
Todt (3.4)

= VUtanUtan T UradUrad,

where wva, denotes the tangential component of the velocity vector, directed
perpendicular to &, and vraq denotes the radial component, directed parallel to
3. Further, @y,, and i;,q denote the unit vectors in the tangential and radial
direction. This representation of ¥'is depicted in the phasor diagram of figure 3.6.

-
Im , Y
’ 4 ’ : : A N
- [ =
s ! Vrad
— 4 !
vlan )
l
i
=
' 8 |
P I !
z Vo
| |
i ]
0 L
—
s(8) 5,0 Re

Figure 3.6: Phasor representation of the FM-AM conversion.

The tangential component vi,, represents the angular motion of 3, and is
thus proportional to the instantaneous frequency w(t), that includes the mes-
sage. Therefore, the amplitude of the FM-AM converter output signal s,(t)
should be proportional to vay.

However, differentiation of § yields the vector @, that besides v, also in-
cludes the radial component v;,4. As shown subsequently, the latter component
does not contain the message information and should therefore be suppressed.
As observed from figure 3.6, the corresponding FM-AM converter output signal
s0(t), the projection of ¥ on the real axis, generally equals

so(t) % Re {57}
= Vgan (t)Re {@ian ()} + Vrad (t)Re {TZraa(t)} (3.5)
= —tan(t) sin B(¢) + vrad (2) cos ®(t).
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Besides the possibility to eliminate v;ag from s,(¢) by exploitation of the phase
quadrature between both components in (3.5), alternative possibilities should
follow through evaluation of both velocity components.

Tangential Component

By elaboration of (3.4) and (3.5), the tangential component of the velocity
VeCtor, vian(t), can be expressed as

Utan (1) = A(t) [wo + (1)) (3.6)

Thus, as stated before, this component is proportional to the instantaneous
frequency and contains the message signal ¢(t).

Further, expression (3.6) demonstrates the observation of Section 3.3.2 that
modulation contained in the carrier amplitude A(¢) prior to FM-AM conversion,
e.g. due to noise or fading, corrupts the message information by multiplicative
€Irors.

Finally, since w, is usually considerably larger than ¢(t), a significant part
of the converter output signal power is generally spoiled to a non-informative
carrier component w,, that, as shown in Section 4.2, may considerably reduce
the FM demodulator Dynamic Range (DR). Its elimination, addressed in Sec-
tion 4.2, is therefore usually desirable.

Radial Component
The radial velocity component. n,,4 may he expressed as
Uraa (t) = A(t). (3.7)

This component does obviously not contain the FM message information, but
represents the rate of change of the carrier envelope. Therefore, it should be
suppressed in the converter output signal s,(t).

As observed from (3.7) this is accomplished by suppression of all modulation
and noise in the FM carrier amplitude A(t), e.g. by means of an hard-limiter or
AGC with infinite compression, prior to FM-AM conversion. In that way, A(t)
becomes constant and its derivative vanishes.

3.4.3 Ideal AM Demodulation Function

The purpose of the AM demodulator is to retrieve the FM message information,
i.e. convert it to baseband, contained in the FM-AM converter output signal.

Thus, in general, the basic function of an AM demodulator is to generate a
baseband signal that is linearly dependent, i.e distortion-free, on the amplitude
of the AM wave supplied to its input. When the input AM wave equals

5o(t) = Ao(t) sin ®(t), (3.8)
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the AM demodulator output wave yan(t) should be proportional to A,(t):
Yam(t) = KamAo(t), (3.9)

where K\ denotes the AM demodulator conversion gain.

In most applications, the phase of the carrier wave ®(¢) contains only a
carrier component w,t. The AM wave at the FM-AM converter output however
also contains FM modulation. In the remainder of the demodulation process,
however, this modulation is neglected, except when synchronization to s,(t) is
required.

The requested linear transfer between the baseband demodulator output
signal y(¢) and the input AM wave A,(t) sin ®(¢) is depicted in figure 3.7.

baseband T
output y,,(f)

KAM

—— - —— =~

—
carrier amplitude A (1)

Figure 3.7: Ideal AM Demodulator Transfer Characteristic.

3.4.4 AM-Modulus Demodulation Algorithm

Amplitude demodulation of the FM-AM converter output wave s,(t) corre-
sponds to determination of the length of the phasor 5, in the phasor plane.
Two fundamentally different methods to accomplish this, resulting in two dif-
ferent AM demodulation principles, are distinguished.

This section discusses the algorithms that correspond to the first of the two
AM demodulation principles. The resulting demodulators will be called “AM-
Modulus Demodulators” (AMMD).

Demodulators based on this principle, usually called “full wave” or “half
wave rectifiers” [15-17], determine the modulus of §,. This principle is illus-
trated by figure 3.8. According to figure 3.8a, this length can be expressed in
terms of the projections of §, on the real and imaginary axis as

(Ao ()] = |5,

= 1/80,i(t)% + 82 (t). (3.10)
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Figure 3.8: AM-modulus detection a) phasor representation, b) demodulator transfer
characteristic.

The corresponding transfer characteristic from input amplitude A,(t) to the
demodulator output signal is depicted in figure 3.8b.

This figure shows that the transfer of the class of AM-modulus demodulators
contains a nonlinearity at A,(¢) = 0. A linear transfer is established only when
Ay(t) is unmipolar, i.e. when the modulation index of the AM wave, in this
respect defined as the ratio of the maximum message signal amplitude AA and
the amplitude offset Ao (see figure 3.8 and e.g. [18]), is smaller than unity.

Consequently, for proper operation, such demodulators require the carrier-
induced offset component in the FM-AM converter output signal to be at least as
large as the maximum value of the FM message ¢(¢), which is rather unfavorabie
for the DR. Although this offset is also present in the AM demodulator output,
it may be eliminated from the FM demodulator output signal, by application
of a balanced structure (see Section 3.4.6).

Expression (3.10) shows that generally the following four basic functions
are required to construct an AM demodulator according to this demodulation
principle:

e generation of a quadrature wave s, 4(t);
e squaring;

e addition;

e a square-root operation.

However, often considerable simplification of this demodulation algorithm is
possible by application of a priori knowledge of the AM wave s,(t). The al-
gorithm in (3.10) is general in the sense that it yields the correct result in all
possible circumstances. In practice, it is often known in advance that some
situations will never occur, which allows parts of the algorithm to be omitted.
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The most important AM demodulator architectures obtained by simplifica-
tion of (3.10), are depicted in figure 3.9, together with the general AM-modulus
demodulator architecture. These architectures are discussed below.
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Figure 3.9: AM modulus demodulator architectures obtained by algorithm simplifi-
cation. a) general FM-modulus demodulator, b) filtering rectifier, ¢) limiting rectifier,
d) sampling rectifier and implementation (peak detector).

Elimination of the Quadrature Generation and Addition

Generation of the quadrature wave s, 4(t) and the addition, can be replaced by
low-pass filtering when s,(t) is a narrow-band wave, i.e. when its bandwidth is
substantially smaller than its carrier frequency. This follows by examination of
the spectrum of the squared wave s2(t) = s2 ;(t). For s2(t), we may write

s2(t) = {Ao(t) cos [wot + p(t)]}?

3.11
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The first term in this expression is required to construct the baseband demodu-
lator output signal, while the second term represents an AM wave at the double
carrier frequency, that should be suppressed.

Figure 3.10 illustrates the filtering operation, and shows the necessity of the
narrow-band wave requirement.

spectrum s, (0
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Figure 3.10: Suppr
filtering.

Elimination of the Square-Root

The square-root operation is required due to the presence of the squaring oper-
ation, that is usually performed by suppling both inputs of a multiplier with the
same wave. When the AM modulation is removed from one of the mixer inputs,
e.g. by means of a limiter [19], or a variable-gain amplifier [20], or by application
of a switching mixer, the square-root operation may be omitted. Figure 3.9c de-
picts the version of this architecture that employs low pass filtering to eliminate
the double carrier frequency component.

Simplification by Sampling

Further simplification of the algorithm is possible by application of sampling.
When the AM wave is narrow-band, the AM message information hardly changes
during one cycle of the carrier. In that case, continuous monitoring of the car-
rier amplitude may be replaced by detection of the carrier top, when §, crosses
through the real axis. During these crossings, s,(t) equals the amplitude A,(t).
The instants of these crossings may be determined synchronously, resulting in
an AM projection detector, to be discussed hereafter, or asynchronously, as
depicted in figure 3.9d.
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Asynchronous detection of the crossing instants, illustrated in figure 3.11,
is possible when the AM modulation index is considerably smaller than unity.
This method replaces the detection of the crossing instant by a level detection

------ - 1
ImT Teal averaging
interval

-Re

-7 A

ref

. X conm'bul.es to
rejected +—— | > output signal

Figure 3.11: Asynchronous Sampled AM detection.

on s,(t) itself. When s,(t) exceeds some reference level Aref, as depicted in
figure 3.11, the phasor 5, must be close to a crossing through the real axis. In
that region, s,(t) =~ A,(t).

The output signal of the detector, usually implemented by the well-known
peak detector (inside ellipse in figure 3.9d) equals the average value of A,(¢),
over the time interval where s,(t) exceeds Arer. The major disadvantage of this
approach is the lack of orthogonality between the design parameters; apparently,
the architecture has become ‘over-simplified’. For example, the choice of the
reference level is based on a critical balance between the maximum allowed
AM modulation index, and the detector accuracy, determined by the length of
the averaging interval. A zero length of the averaging interval, obtained when
Arer = Ao(t), yields the exact crossing instant, but at the same time requires
a zero-valued modulation index. Oppositely, a large averaging interval allows
large modulation indices, but yields an inaccurate output signal.

3.4.5 AM-Projection Demodulation Algorithm

This section discusses the algorithms of the second AM demodulation principle.
The resulting AM demodulators will be called “AM-Projection Demodulators”
(AMPD).

This class of AM demodulators determines the length of §, by construction
of its projection on a reference phasor §,., as illustrated in figure 3.12. The
output signal equals the in-product of 3, and the reference 5,. Expressed in
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Figure 3.12: AM projection demodulation. a) phasor representation, b) demodulator
transfer characteristic.

terms of the projection along the real and imaginary axis, this becomes

o 5 sy i (£)8ri () + S0.()5r.g(t). (3.12)

The reference wave should be free of amplitude modulation, and synchronized
to the wave s,(t), i.e.

sy (t) = Acos®(t). (3.13)
With this reference wave, the demodulator output signal from (3.12) equals
Yam = 5o - 8
= A,(t) cos ®(t) A cos B(t) + Ao(t) sin ®(t) A sin ®(t) (3.14)
= AA,(1).

The transfer of this class of AM demodulators, depicted in figure 3.12b, is
completely linear, even for negative values of A,(t), as opposed to the transfer of
AM modulus demodulators (figure 3.8). Therefore, these demodulators allow a
zero-valued offset component in the FM-AM converter output carrier amplitude,
which is favorable for the DR.

From expression (3.14), it is observed that the demodulation algorithm con-
sists of the following basic functions:

e generation of a synchronous reference wave s, (¢);
e generation of waves in phase-quadrature with s,(t) and s,(t);

e multiplication;
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e addition.

Again, considerable simplification of the algorithm is possible with the aid of
a priori knowledge of the AM wave s,(t). The main simplifications are depicted
in figure 3.13, together with the general projection demodulator architecture.
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Figure 3.13: AM projection demodulator architectures obtained by algorithm sim-
plification. a) general projection demodulator, b) synchronous detector, c) sampled
detector.

Elimination of the Quadrature Generation and Addition

In the same way as in the AM-modulus demodulation algorithm, the quadrature
carrier generation and addition can be replaced by low pass filtering, to remove
double carrier frequency components of s,(t)s,(t), when s,(t) is a narrow-band
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wave. The result of this simplification is the familiar synchronous detector of
figure 3.13b.

Simplification by Sampling

Similar to the AM-modulus demodulation algorithm, the AM projection demod-
ulation algorithm may be considerably simplified by application of sampling. As
opposed to the asynchronous sampling AM-modulus demodulator, the sampling
AM-projection demodulator synchronously determines the instant of the cross-
ing of 5, through the real axis.

These crossing instant are obtained from the quadrature carrier s, 4(t), that
crosses through zero at the instant that s,(f) = s, () reaches its top. The
resulting sampled FM projection detector is depicted in figure 3.13c.

3.4.6 FM Demodulation by AM-Modulus Detection

At this point in the development of the FM demodulator classification, it is
possible to identify the complete class of FM-AM conversion FM demodulators,

with the aid of the FM-AM conversion and AM demodulation principles consid-
ered in Section 3.4.1 through Section 3.4.4. One FM-AM conversion algorithm
and two AM demodulation algorithms were found, resulting in two classes of
FM-AM conversion FM demodulators.

This section discusses the first (sub-) class of FM-AM conversion FM de-
modulators, consisting of the demodulators that employ AM-modulus detection
(linear rectification). First, their most important characteristics, partly derived
in Chapter 4, are outlined. Subsequently, as an illustration, various types of
demodulators encountered in literature are mapped on the classification.

Demodulator Characteristics

In the sequel, according to Shannon [12], the Information Handling Capacity
(IHC), determined by the bandwidth and dynamic range (DR), is used as a
criterion to judge the performance of the various types of demodulators. There-
fore, we focus on those (implementation-independent) characteristics that limit
the demodulator DR.

Amplitude Offset As explained in Section 3.4.4, distortion-free demodula-
tion by AM-modulus detection is theoretically possible only for unipolar AM
carrier amplitudes, corresponding to AM modulation indices smaller than unity.
Thus, the offset component in the amplitude should always exceed the message
signal. As discussed in Section 4.3, in general, this offset considerably reduces
the FM-AM converter and FM demodulator DR. For example, for a sinusoidal
message signal, the offset reduces the DR by at least 4.8 dB in comparison to
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the maximum DR, obtained for a zero-valued offset. Even worse, for Gaussian
AM modulation, the reduction equals at least 12 dB.

With the aid of a balanced demodulator structure, so called “stagger-tuned”
LC-tanks [21], it is possible to remove the offset component from the FM demod-
ulator output signal. However, since the offset remains present in the FM-AM
converter and AM demodulator, the same dynamic range reduction is observed.

Phase Selectivity Phase selectivity is a property that allows demodulators
to discriminate between different directions in the phasor plane. For example,
this property, enables detection of the tangential velocity component from the
FM-AM converter output signal s,(t), as described by (3.5), in the presence of
the undesired radial component.

AM-modulus demodulators are phase-inselective, and therefore unable to
discriminate between the tangential and radial component in s,(t). As discussed
in Section 4.3.1, the latter component may cause considerable distortion in the
demodulator output signal, and therewith reduces the DR.

Noise As considered in Section 4.2, when the amplitude noise is not eliminated
from the input FM wave, the amplitude offset introduces a considerable increase
of the demodulator output noise level. Since such an offset is inevitable in the
type of FM demodulators under consideration, a considerable reduction of the
DR due to this effect has to be expected when amplitude noise is not suppressed.

Conclusion Based on the various short-comings outlined above, we must con-
clude that the performance of this type of FM demodulator is generally moder-
ate. The main advantage of this oldest demodulator class, reported already in
1913 [22], is probably their simplicity.

Demodulators from Literature

In literature, a vast amount of this type of FM demodulators is known. Some
interesting examples of them are discussed below.

Slope Detector

The Slope Detector, depicted in figure 3.14, consists of a detuned LRC-tank that
is used as FM-AM converter (differentiator) and a peak detector, consisting of
a diode and an RC low pass filter [11, 21, 23]. The balanced version, depicted in
figure 3.14b, consists of two such structures, that eliminate the amplitude offset
from the demodulator output. The resonant frequencies of both LRC tanks in
this circuit are “stagger-tuned”, such that a maximum linear slope, in order
to minimize the distortion, is obtained in the region between both resonant
frequencies, as depicted in figure 3.14c.



60 Chapter 3. FM Demodulation Principles

-+
linear FM-AM conversion
©

Figure 3.14: Slope detector a) single-ended, b) differential, c) transfer of the differ-
ential FM-AM converter.

This circuit is probably the oldest type of FM demodulator and was fre-
quently used in FM radio receivers before world war II. Parasitic AM modula-
tion and amplitude noise in the demodulator input signal were not suppressed
by this circuit. Further, since the peak detector is incapable to suppress the
radial component of the FM-AM converter output, the circuit demodulates AM
waves as well [16].

Super Regenerative Detector

The super regenerative detector [24, 25], depicted in figure 3.15, is an improved
version of the slope detector. This type of detector was was originally invented
for the demodulation of AM waves. However, with some slight modifications, it
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appeared to be very suitable for FM demodulation as well. Its main advantages
with respect to the slope detector is that it amplifies the received FM wave,
which makes it far more sensitive than the slope detector. Its operation may

Figure 3.15: Super regenerative detector (biasing circuitry is omitted).

be explained as follows. The FM-AM conversion is performed by the RLC-
network in the input circuitry. Simultaneously, the positive feedback applied
around this network by the hexode part of the electron tube, which acts as a
negative resistor, introduces an oscillation, with an amplitude proportional to
the instantaneous frequency of the FM wave (the message information). This
amplitude is rectified by the hexode, i.e. AM-modulus detected, resulting in the
baseband output signal at the anode of the hexode. However, once the oscil-
lation is established, the RLC-hexode combination ceases ‘listening’ to the FM
wave; a characteristic property of harmonic oscillations. Therefore, in order to
continue demodulation of the FM wave, this oscillation has to be discontinued
periodically. For that purpose, the RLC-network inside the amplifier and the
triode part of the tube establish another, sustaining oscillation of at least twice
the highest message frequency. This oscillation modulates the gain of the hex-
ode, through the connection between a hexode grid and the triode grid, and
therewith periodically reduces the positive loop gain below unity, which stops
the oscillation.

Finally, it is interesting to note that recently, the strange startup behav-
ior of the hexode-oscillations, which result in an awkward kind of background
‘noise’, that could not be well explained by Armstrong [24], was identified to be
chaotic [26].

Digital Square-Root Demodulator

A modern example of this type of FM demodulator is depicted in figure 3.16 [27].
This circuit is a fully digital implementation of the FM demodulation princi-
ple. Although digitally implemented, the circuit operates similar to its much
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Figure 3.16: Digital Implementation of the FM-AM conversion demodulation prin-
ciple followed by AM-modulus detection.

older analog equivalents and is subject to similar imperfections, inherent to the
demodulation principle.

3.4.7 FM Demodulation by AM-Projection Detection

In this section we discuss the second subclass of FM-AM conversion demod-
ulators, those employing AM-projection detection. We first summarize their
characteristics, and subsequently discuss some example circuits from literature.

Demodulator Characteristics

The characteristics of this demodulator class, as far as their information han-
dling capacity, and DR, is concerned, are as follows.

Annpiliiude Gifset  As opposed to AM-moduius demodulators, AM-projection
demodulators allow a zero-valued offset in the FM-AM converter output carrier
amplitude, due to their completely linear transfer. This property is favorable
for the demodulator DR; it allows the upper bound on the DR to be reached.

Phase Selectivity The AM projection demodulator is obviously phase-selective.
Therefore, it is able to suppress the unwanted radial component in the FM to
AM converter output signal, which is favorable for the DR.

Noise Since the amplitude offset may be nullified, the output noise level is
theoretically able to reach the minimum possible level, set forward by the fre-

quency noise contained in the input FM wave. Again, this is obviously favorable
for the DR.

Conclusion The FM-AM demodulator, combined with AM-projection detec-
tion definitely outperforms the FM-AM demodulator with AM-modulus detec-
tion, and is able to reach the upper bound on the demodulator DR. This high-
performance is attained at the price of an increased circuit/system complexity.
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Demodulators from Literature

Since IC technology became widely available, this class of FM demodulators has
gradually replaced the FM demodulator architectures based on AM-modulus
detection discussed in Section 3.4.6, thanks to its performance, suitability for
integration, and digital implementation [28, 29]. The main types of FM demod-
ulators based on this demodulation principle are discussed below.

5,1 ~ cos[@yt + (D]

5,0

Figure 3.17: Mathematical demodulator a) balanced, b) single-ended.

Mathematical Demodulator

The mathematical or direct conversion demodulator, as depicted in figure 3.17a,
converts the input FM wave to zero frequency, by means of a zero-IF I-Q ar-
chitecture, subsequently converts it to an AM wave by means of differentiation,
and finally demodulates this wave by AM projection detection. Due to the
zero carrier frequency, the AM projection demodulator cannot be simplified to
a synchronous demodulator that applies low-pass filtering; the FM bandwidth
is much (infinitely) larger than the carrier frequency.

Single-ended Mathematical Demodulator

This type of FM demodulator, depicted in figure 3.17b, operates similarly as
the balanced math demodulator, except for the fact that the FM carrier fre-
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quency is not converted to zero. Consequently, it allows simplification of the
AM projection demodulator to the well-known synchronous demodulator.

It is obvious that, in this case, suppression of the offset in the FM-AM
converter output carrier amplitude requires special measures. As explained in
Section 4.2.1, a “band-pass differentiator” is needed for this purpose, instead of
the usual differentiator.

3.5 Demodulation by Conversion to PM

This section investigates the principles of operation, and algorithms available
for the implementation of FM demodulators based on FM-PM conversion, the
second of the two classes identified in Section 3.3.2.

Similar to the previous section, the two sub-functions identified in these
demodulators, FM-PM conversion and PM demodulation, are investigated sep-
arately. Considerations on the implementation of the resulting FM-PM demod-
ulation algorithms are given in Chapter 4.

An outline is as follows. Section 3.5.1 considers the ideal FM-PM conversion
function, while Section 3.5.2 through Section 3.5.5 explain the four different FM-
PM conversion algorithms. Section 3.5.6 considers the ideal PM demodulation
function, used in Section 3.5.7 to determine the PM demodulation algorithm.
Section 3.5.8 through Section 3.5.11 compare three of the four types of FM-PM
conversion FM demodulators with demodulators encountered in literature. The
fourth type is considered in detail in Chapter 7.

3.5.1 1Ideal FM-PM Conversion Function

The ideal FM-PM conversion function establishes a linear relation between the
FM message signal ¢(t), contained in the instantaneous frequency of the FM
input wave, and the PM message signal Ap(t), contained in the instantaneous
phase of the output wave, as depicted in figure 3.18. In this figure, Kpy_py

Toutpu( phase Agp(t)

Kempm

0 1 —
FM message ¢(t)

Figure 3.18: Transfer of the ideal FM-PM conversion function.
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denotes the conversion gain.

In practice, since the FM modulation contained in the input wave cannot be
eliminated, Ay(t) denotes the phase difference between the input FM wave and
the FM-PM converter output wave, denoted by s,(t), instead of the absolute
phase modulation level. Thus, the response of the ideal FM-PM converter to
the input FM wave s(t) from (2.1) may be expressed as

5o(t) = Ao cos[wot + @(t) + Ap(t)], (3.15)

where, according to figure 3.18, Ap(t) = Keu_pm@(t). Consequently, s,(t) is
simultaneously modulated in phase and frequency by the message ¢(t).

3.5.2 Algorithm based on a Fixed Time-Delay

This section investigates the first of the four different FM-PM conversion algo-
rithms, available for the construction of FM-PM conversion FM demodulators.

The basic algorithm is derived with the aid of the quasi-stationary approx-
imation. Subsequently, its phasor representation is considered. Finally, the
corresponding demodulator architecture is discussed.

Quasi-Stationary Approximation

According to the quasi-stationary approximation, suppose that figure 3.18 rep-
resents the transfer from the spectral input frequency w to the spectral phase
difference A®,(w) between the FM-PM converter input and output wave.

In that case, FM-PM conversion corresponds to ideal, linear prediction with
a prediction time 7,, given by [30]

_ 0A®,(w)
T dw

Obviously, an ideal linear, predictor is non-causal and cannot be realized; such
a system would generate a response to an input wave that arrives in the future.

Fortunately, when the slope of the linear phase characteristic is negative in-
stead of positive, FM-PM conversion corresponds to a fixed time-delay (negative
prediction time), which is causal and (approximately) realizable. The (group)
delay time 74 is therefore related to ®,(w) as [30]

: (3.16)

Tp

def AP, (w)

% - (3.17)

By comparison of (3.17) with figure 3.18 is observed that the conversion gain
for a linear delay equals Kgy_pp = —74.
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Phasor Representation

The phasor representation of this FM-PM conversion algorithm is depicted in
figure 3.19. In this figure ®(¢) denotes the instantaneous phase of the FM wave
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Figure 3.19: Phasor representation of FM-PM conversion by means of a fixed time-
delay.

s(t). The FM-PM converter output, represented by §,, tracks the input wave
§ at a fixed time-difference 75. However, due to the variable angular velocity
of 5, as a result of the FM modulation, the corresponding phase difference
Ap(t) is not constant, but, as shown below, approximately proportional to the
instantaneous frequency of s(t).

An expression for the phase difference Ap(t) in the time-delay FM-PM con-
verter output is obtained as follows. The response of the converter to the FM
wave s(t) equals

$o(t) = Ay cos(wo (8 — 7a) + @ (t— 74)] - (3.18)

This wave is identical to the one described by (3.15). Therefore, equating the
instantaneous phases of both waves yields

Ap(t) = —Taw, — (1) + @(t — 74). (3.19)

For small time delays, when ¢(t) and @(t — 74) differ only slightly, (3.19) may
be approximated as

Ap(t) % —Talwo + $(2)], (3.20)

which is the expected result. Note that the factor —7; equals the previously
obtained value for the conversion gain Kgy_py of this converter. Further, ob-
serve that, just as the ‘standard’ differentiator FM-AM converter, this FM-PM
converter is unable to eliminate the carrier-offset w,. The consequences of this
offset are, however, not as dramatic as in FM-AM conversion demodulators, for
reasons discussed below.
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Demodulator Architecture

The basic architecture of FM demodulators based on this FM-PM conversion
algorithm, incorporating an ideal PM demodulator, is depicted in figure 3.20. In

n PM

demodulator
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60

Figure 3.20: FM demodulator architecture based FM-PM conversion by a fixed time
delay.

this architecture, the input FM wave is subjected to a delay 74, and subsequently
supplied to the input of the (ideal) PM demodulator. Another copy of the input
wave is supplied directly to this demodulator, and serves as reference wave.
An important intrinsic property of this demodulator architecture is its ability
to eliminate the offset term w,74, observed in (3.20), with the aid of the peri-
odicity in the FM demodulator transfer. This ‘offset-cancellation’ mechanism
is illustrated by figure 3.21, which depicts the transfer characteristic of the PM
demodulator. As a result of the periodicity, a consequence of the observation
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/

—»
input
phase difference

AN
N

+
1
1
Ll

BN
N

Figure 3.21: Elimination of the offset w,74 with the aid of the periodic PM demod-
ulator transfer.

that PM demodulators cannot distinct phase differences larger than 27!, the
demodulator output becomes zero for some nonzero values of the input phase
difference. Therefore, when the phase offset w,74 is chosen such that the PM
demodulator response to it equals zero, as sketched in figure 3.21, the demod-
ulator output (approximately) equals the FM message signal —74¢(t), without
offset.

!This range can be extended by application of a memory, but the periodicity remains
present.
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3.5.3 Algorithm based on a Fixed Phase Difference

This section investigates the second of the four FM-PM conversion algorithms.

First, the principles of this conversion algorithm are explained. Subse-
quently, the FM-PM converter transfer is determined with the aid of a pha-
sor representation. Finally, the corresponding demodulator architecture is dis-
cussed.

Principles of the Algorithm

In essence, all FM-PM conversion algorithms somehow implement the definition
formula that relates the instantaneous frequency and instantaneous phase of a
carrier wave, i.e.

. &(t) — B(t -
b(t) 9l iy 2O =B —7) (3.21)
T—0 T

In essence, this expression shows that an FM-PM conversion is established by
differentiation of the carrier phase ().

The algorithm discussed in Section 3.5.2 implements an approximation of
(3.21), given by

Ta®(t) ~ B(t) — B(t — 74). (3.22)

Thus, the lim-operation is omitted, the phase difference ®(t) — ®(t — 74) is
detected by a PM demodulator, while a fized, finite time difference T = 74 is
realized by means of a delay line. The approximation holds when 74 is small,
such that ®(t) and ®(t — 7,) differ only slightly.

The algorithm considered in this section adopts exactly the opposite ap-
proach. Instead of a fixed time difference 74, a fized, finite phase difference
®(t) — ®(t — 1) = A®, is realized, while the time difference 7 is detected. Thus,
this algorithm approximates (3.21) as

b(t) ~ A%, (3.23)

T

The approximation holds as long as the message information contained in $(¢) =
wot + (), i.e. (t), differs only slightly when ®(t) covers a phase difference
A®, in a time interval 7. Thus, in other words, the carrier frequency w, should
be much larger than the maximum value of ¢(t).

Phasor Representation

The operation of the algorithm is illustrated by the the phasor diagram of
figure 3.22. In this figure, the ‘start’- and ‘stop’ phase ®s¢ar¢ and P define
the bounds on a phasor-plane segment of angle A®,, corresponding to the fixed
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Figure 3.22: FM-PM conversion by means of a fixed phase difference.

phase difference in equation (3.23). The FM phasor §, that rotates around
the origin, covers this segment once per cycle. The time difference 7 from
(3.23), required to cover the segment, is measured by an internal clock inside
the demodulator. This clock is started every time § enters the segment, i.e.
when it instantaneous phase equals ®(t) = Pstart, and stopped when it leaves
the segment, i.e. when ®(t + 7) = Pstop.

It is convenient to use a segment angle A®, that equals a multiple? of 7. In
that case, ®stary and Pgiop may both be chosen to coincide with the imaginary
axis, i.e. with the zero crossings of the wave s(t). A simple zero-crossing detector
(a “binary PM demodulator”) may be used to start and stop the clock.

An expression for the output signal of such a demodulator is obtained as
follows. Assume that the segment size equals A®, = 27. Then, according to
(3.15), the phase difference between the FM-PM converter input and output
signal equals Ap(t) = 27. The phase of the FM-PM converter output wave
at time t + 7, the response to the FM input wave at time ¢, therefore equals
®(t) + 2m. Since, by definition, the input FM wave covers the phase segment
A®, = 27 in a time interval of length 7, its phase at time t+ 7 equals ®(t+7) =
®(t) + 2w. By rewriting this expression, we obtain

2 = woT + (t + 7) — (t). (3.24)

If further 7 is assumed small, such that ¢(t) and ¢(t + 7) differ only slightly,
then we obtain

2

—;1 ~ wo + @(t). (3.25)

This expression shows that, just as the previously discussed algorithm, this
algorithm results in an offset at the FM-PM converter output.

2 A segment size larger than 2w means that the clock measures the duration of several cycles
of the input FM wave.
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Demodulator Architecture

The FM demodulator architecture corresponding to this FM-PM conversion
algorithm is depicted in figure 3.23. A simple phase-crossing detector (M-ary
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Figure 3.23: FM demodulator architecture based on FM-PM conversion by a fixed
phase difference.

PM demodulator), usually a zero-crossing detector, determines the instants that
the phase of the input FM wave enters and leaves the phase segment of size A®,,.
Its output signal controls a pulse-generator, that implements the clock-function.
Note that the FM-PM conversion operation is not concentrated in a small part
of the architecture, as in the previously discussed algorithm, but is distributed
over the entire system.

The pulse-generator generates a pulse of a fized duration at every edge of
the phase-crossing detector output signal. Since the time-interval T between
two such pulses is inversely proportional to the average frequency of the input
wave, the average value of the pulse-train, obtained by low-pass filtering, is
proportional to the ‘instantaneous’ frequency of the input FM wave, as long as
this frequency changes only slightly during the time-interval .

As opposed to the algorithm discussed in Section 3.5.2, the algorithm dis-
cussed in this section is unable to eliminate the carrier offset w,. The transfer
of a clock is non-periodic, which means that the offset cancellation technique
discussed in Section 3.5.2 cannot be applied; as observed from (3.24), a zero
offset is achieved only for 7 = 0. The only possibility is to subtract w, from the
demodulator output signal, or, as used in [31], the average period time T from
7. However, this still requires the clock to measure 7, and therefore does not
improve the demodulator DR significantly.

Finally, it should be remarked that the algorithm given by (3.25) is only the
simplest possible; a zero-th order interpolation that yields a constant output
signal between two zero-crossings of the input wave. More advanced schemes,
i.e. first- and higher order interpolation may considerably reduce the distortion
in the output signal [32, 33]. However, this becomes of interest only when the
carrier frequency w, is in the same order of magnitude as the FM message signal.
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3.5.4 Algorithm based on Phase Feedback

This section briefly outlines the third of the four FM-PM conversion algorithms.
A detailed discussion of demodulators based on this algorithm is given in Chap-
ter 7.

First, the principles of this algorithm are discussed subsequently, the corre-
sponding demodulator architecture is outlined.

Principles of the Algorithm

The algorithm discussed in the two previous sections implement an approxima-
tion of the definition formula that relates the instantaneous frequency to the
instantaneous phase of a carrier wave. The first employs a fixed time difference,
while the second one employs a fixed phase difference.

As opposed to these approximative algorithms, the algorithm considered in
this section implements the exact definition formula, i.e expression (3.21). The
phase difference ®(t) — ®(t — 7) is measured and controlled to zero by means of
a phase feedback loop.

In essence, this feedback performs the lim-operation in (3.21) and therewith
automatically reduces the time difference 7 to zero. The phase ®(t) of the input
FM wave s(t) is compared with the instantaneous phase ®(t — 7) of a second
FM wave, denoted by s,(t). This wave is reconstructed from the demodulator
output signal by means of an FM modulator (controlled oscillator). The feed-
back mechanism attempts to reduce the phase difference between both waves
to zero, such that in the ideal case, s(t) and s,(t) possess the same instanta-
neous frequency. If this is achieved, the input signal of the FM modulator in
the feedback path equals the demodulated FM message. An expression for this
algorithm is derived in Section 7.1.

Phasor Representation

A phasor representation of the algorithm is depicted in figure 3.24. The phasor
§ represents the input FM wave s(t), that possesses an instantaneous phase
®(t), while the phasor 3, represents the reconstructed FM wave s,(t), with
instantaneous phase ®(¢ — 7). The feedback loop measures the phase difference
®(t)—®(t—7), and advances/delays 3, with respect to §, such that the difference
approaches zero.

Demodulator Architecture

The FM demodulator architecture corresponding to this FM-PM conversion
algorithm is depicted in figure 3.25. The phase detector in this figure detects
the phase difference ®(t) — ®(¢t — 7) between the FM input wave s(t) and its
reconstruction s,(t), generated by the controlled oscillator in the feedback loop.
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Figure 3.24: Phasor representation of the phase feedback algorithm.
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Figure 3.25: FM demodulator architecture based on FM-PM conversion by means
of phase feedback.

When the loop ‘locks’ i.e. when s,(t) is a proper reconstruction of the input wave
s(t), the oscillator input wave corresponds to the demodulated FM message. The
loop filter is usually included to improve the tracking properties of the loop, as
discussed Chapter 7.

3.5.5 Algorithm based on Post-Detection Conversion

This section considers the last of the four FM-PM conversion algorithms. Op-
posed to the previously discussed algorithms, this algorithm is suited for narrow-
band FM waves only, as explained below.

The algorithm considered in this section is a straight-forward implementation
of the definition formula (3.21). It simply differentiates the phase of the FM
wave, after its detection by a PM demodulator, as depicted in figure 3.26. The
demodulator architecture therefore consists of a PM demodulator, followed by
a phase-frequency converter (P-F), that transforms the detected instantaneous
phase into a wave that is proportional to the instantaneous frequency of the
input FM wave.

Unfortunately, this strategy is suited for narrow-band FM waves only, since
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s(t)

Figure 3.26: FM demodulator architecture based on post-detection FM-PM conver-
sion.

the transfer of the PM demodulator possesses a limited domain, due to its
periodicity, i.e. in-capability to detect phase differences larger than 27. For
proper demodulation, the phase of the FM wave should not exceed the bounds of
this domain. Otherwise, as illustrated by figure 3.27, a type of distortion occurs
that is similar to “cycle-slip” noise in phase feedback demodulators, considered
in Chapter 7. When the PM demodulator runs out of its bounds, a phase step
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Figure 3.27: Generation of impulses in the FM demodulator output.

(of height 27) is observed in its output signal. Due to the differentiation by the
FM-PM converter, this results in an impulse (of area 27) at the FM demodulator
output.

Consequently, this algorithm requires that the integrated FM message ()
fits within the domain of the PM demodulator. For instance, for a sinusoidal
FM message signal and a PM demodulator with a domain of length 2, follows
that the maximum allowed FM modulation index equals 7. Larger modulation
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indices inevitably result in spikes at the demodulator output. Further, notice
that at low input CNR’s, phase noise contained in the input FM wave cause the
PM demodulator to run out of its bounds, resulting in spikes, even when the
FM message wave fits within its domain.

3.5.6 Ideal PM Demodulation Function

As discussed previously, all demodulator architectures considered in Section 3.5.2
through Section 3.5.5 establish besides FM-PM conversion also PM demodula-
tion, in order to recover the message information.

This section discusses the ideal PM demodulation function, the basis for the
derivation of the PM demodulation algorithms, considered in Section 3.5.7.

The ideal PM demodulation function differs from the various ideal functions
discussed previously, in the sense that it possesses two inputs, instead of one.
Besides the input wave subjected to the demodulation, a (phase) reference wave
is required. In the various phasor representations used in this chapter, we im-
plicitly assumed a zero-valued reference phase: the instantaneous phase of a
wave was defined as the angle between the phasor and the real axis.

The demodulator output signal is proportional to the phase difference be-
tween both inputs, as long as this difference is smaller than 27. Phase differences
larger than 27 cannot be detected instantaneously, but require a memory func-
tion. This is due to the fact that phase values separated by multiples of 27
possess exactly the same phasor representation. They correspond to the same

1t + £f+hn A +3 MThan 3d 1 DM dnvnndala £ua
pCSAuAuu coordinates of the FM Piiassor tip. 1nd idcal PM demodulation function

is therefore periodic with period 27. The resulting ideal transfer characteristic
is depicted in figure 3.28.
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Figure 3.28: Ideal PM demodulation function.

3.5.7 PM Demodulation Algorithm

This section considers the PM demodulation algorithm available for the imple-
mentation of FM and PM demodulators. We first derive the general algorithm,
valid in all possible circumstances, and subsequently consider its simplification.
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General Algorithm
A PM demodulator determines the phase difference that exists between the two
waves applied to its both inputs; the wave subjected to demodulation, denoted

by s(t), and a reference wave. The reference wave, denoted by sr(t), is defined
by

s-(t) = Ay cos @,.(2). (3.26)

The PM demodulation algorithm is illustrated by figure 3.29. This figure
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Figure 3.29: Phasor representation of PM demodulation. a) static frame of reference,
b) dynamic frame of reference.

depicts the phasor & of s(t) and the phasor 3, of the reference wave s,(t). The
PM demodulator output signal is proportional to the phase difference that exists
between both phasors. When this phase difference is denoted by A®oyt, then
the output signal equals

Yo (t) = KpuABour () = &(t) — ®,(t). (3.27)

First, consider the case where the reference wave equals zero, i.e. sA(t) =
0. In that case, the demodulator output equals Ad,u(t) = ®(t). From a
mathematical point of view, the phase ®(t) equals the argument of the phasor
5, i.e.

a(t) < arg {3} = arg {A(t) exp [jB(1)]} - (3.28)

Expressed in terms of the projections on the real and imaginary axis, $;(t) and
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34(t) respectively, as depicted in figure 3.29a, this becomes

] _
arctan 3q(t) s;(t) >0

®(t) = { arctan —q(—; +7 5:(t) <0,54(2) >0 . (3.29)

arctan s.(:) -7 5i(t) <0,5.(t) <0
\ L J

In general, for a nonzero reference wave, the reference phasor 3, and the one
orthogonal to it, §,, define the frame of reference used by the PM demodulator.
This frame of reference rotates around the origin with angular velocity ‘ir(t),
as opposed to the static frame of reference defined by the real and imaginary
axis, as depicted in figure 3.29b.

For this situation, the phase difference A®,,.(¢) should be expressed in terms
of the coordinates I(t) and Q(t), the coordinates of 5 with respect to the axis
through 8, and the axis through §, respectively, as depicted in figure 3.29b. By

spection, both components may be written as

)%z 3
= 8i(t)sr,i(t) + 54(t)sr4(2)
= A(t) cos ®(t) A, cos ®,(t) + A(t) sin ®(t) A, sin ®,(t) (3.30)
= A(t)A, cos [®(¢) — @,.(¢)],
O
= si(t)sr i(t) + sq(t)sr 4(t)
= A(t)sin ®(t) A, cos ®,.(t) — A(t) cos ®(t) A, sin ®,.(¢) (3.31)

= A(t)A, sin [B(t) — &,.(2)].

The phase difference between §, and the phasor of the reference wave supplied
to the demodulator, 3}, can therefore be expressed as.

[ 5:(t)sr,i(t) + 54(t)sr 4(t) ]
| 50005730 F 54 (D3 (1) | I(t) 2 0

(
arctan

_ [56(t)srri(t) + 59(£)5rg(0)]
Adyy(t) = < a,rCta-n. Si (t)s”( ) + SZ(t)Sr,q (t) | I O,Q(t)(;?)O?).

arctan Si(t)srf,i(t) + Sq(t)srl,q(t)

\ | 5050, (0) + 5¢(D)srg(t) | ~ " I(t) <0,Q(t) <0
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This expression describes the general PM demodulation algorithm, valid in all
circumstances. The following basic functions are identified from this expression:

1. quadrature wave generation for both s(t) and s.(t);
. arctan-function;

. multiplication;

2

3

4. addition;

5. division;

6. “quadrant detection”, that determines whether 0, 7 or —7 is added to the
arctan-function.

Algorithm Simplification

Direct implementation of this algorithm, depicted in figure 3.30a, may be very
well acceptable. However, implementations usually apply one or more of the
following simplifications.

Elimination of the Addition

When the bandwidth of s(t) and s,(t) is significantly smaller than their carrier
frequency, I(t) and Q(t) can be obtained by one multiplication followed by low
pass filtering, instead of two multiplications and a summation. The same type
of simplification was already discussed in Section 3.4.7 in conjunction with AM
demodulation. In AM demodulation, this simplification also eliminated the
quadrature generation. However, as observed from (3.30) and (3.31), in PM
demodulation, one of the two quadrature generation operations, the one for s(t)
or the one for s,(t) is eliminated, but not both. The resulting demodulator is
depicted in figure 3.30b.

Elimination of the Arctan, Division and Quadrature Generation

In many cases, the phase difference ®(t) — ®,(¢) is relatively small, i.e. consider-
ably smaller than one radian. In that case, I(t) and Q(t) may be approximated
as

I(t) = A(t)Ar, (3.33)
Qt) = A(t) A [2(t) — ©.(2)]. (3.34)
Under the same conditions, the arctan-function may be approximated by its

first-order Taylor term z. Therefore, the entire PM demodulation algorithm
can in this case be reduced to the determination of Q(t), optionally preceded by
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Figure 3.30: PM demodulation algorithm a) general algorithm, b) elimination of

addition in I and Q, c) simple PM demodulator, d) sampling PM demodulator.

elimination of fluctuations in the FM carrier amplitude A(t). A disadvantage of
this type of PM demodulator is that its domain is at most of length =, instead
of 2w, while its transfer is usually nonlinear for large phase differences. The
resulting demodulator is depicted in figure 3.30c.

Simplification by Means of Sampling

When the bandwidth of the FM message signal is much smaller than the carrier
frequency, the multiplication may be replaced by sampling, as shown in fig-
ure 3.30d. A clock is started at the time-instant that the reference wave crosses
through some level, usually zero, and stopped when the other input wave crosses
through zero. The phase difference is proportional to the measured time differ-
ence.
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3.5.8 FM Demodulation by a Fixed Time Delay

The discussions in Section 3.5.1 through Section 3.5.7 showed that four different
FM-PM conversion algorithms and one direct PM demodulation algorithm can
be distinguished. Together, this yields four classes of FM demodulators based
FM-PM conversion and direct PM demodulation.

This section discusses the first of the four sub-classes of FM-PM conversion
FM demodulators, based on FM-PM conversion by means of a fixed time delay.
First, their main characteristics, as obtained in Section 3.5.2 and Section 3.5.7
are outlined. Subsequently, examples found in literature are discussed.

Demodulator Characteristics

As far as the FM demodulator dynamic range is concerned, two main character-
istics are of importance: the ability to suppress/prevent a carrier-induced phase
offset, and the noise performance.

Phase Offset As explained in Section 3.5.2, the FM-PM conversion algorithm
based on a fixed time-delay is able to suppress the carrier offset component
observed in the instantaneous frequency of an FM wave. For this purpose, the
time delay 74 should be dimensioned such, that the PM demodulator response
to a nonzero phase offset w,74 equals zero. For a multiplier phase detector (PD),
for example, this is the case when w,7y = 7/2 (rad), while for a sampling PD,
this is the case when w,74 = 27 (rad).

Noise In Chapter 4 is shown that FM demodulators of the type discussed in
this section perform the required quadratic noise shaping. As long as the phase
offset is suppressed completely, no white noise floor is observed.

Conclusion Since FM demodulators based on FM-PM conversion by means
of a fixed time-delay possess the ability to suppress the offset, and perform
quadratic noise shaping, their DR is able to resemble the upper bound on the
DR. Therefore, high-performance is feasible with these demodulators. The main
problem in the design of these demodulators is the realization of a delay-element
with a sufficiently large DR, as discussed in Chapter 4.

Demodulators from Literature

Numerous implementations of this type of FM demodulators are found in liter-
ature. Some interesting examples are discussed below.
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Quadrature Demodulator

In this type of FM demodulator, which may be implemented by means of a
single-ended or balanced structure, as depicted in figure 3.31, the PM demodu-
lator is implemented by means of a multiplier, possibly preceded by limiters in
order to eliminate AM modulation, or linearize its transfer (see Section 7.5.1).
In the single-ended demodulator, this multiplier should be followed by a low
pass filter in order to eliminate the double frequency terms. The PM demodula-
tor in the balanced structure, which follows from figure 3.30a by application of
the simplifications for small phase values A®,(t), double frequency terms are
canceled. The balanced demodulator is therefore able to demodulate FM waves
with zero carrier frequency, while the single-ended one is not. In both variants,

s(6) T4 >< . \ —

(a)

- Ty >< |

s(t)

90° T4 » X

(b)

Figure 3.31: Quadrature demodulator. a) single-ended, b) balanced.

the phase offset in the output signal due to the carrier frequency is eliminated
when the input waves of the PM demodulator are phase in quadrature. This
means that the time delay 74 should be chosen such that

w
2w,

where k denotes some integer number.

The various systems described in literature mainly differ in the way the
delay-line is implemented. In [34] , a single tuned LC-circuit is used as delay
line, a well-known implementation, and tuned by digital circuitry. In [35] an
integrated delay line is realized by means of slow limiter stages, while in [36, 37]
all-pass filters are used.

Td = + km, (3'35)

The p-detector

This type of demodulator is similar to the quadrature demodulator, except for
the fact that the PM demodulator is implemented by means of sampling. The
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detector output level becomes high when one of the input waves crosses through
zero, and returns to zero again when the other wave crosses through zero. The
duty-cycle, in this case the mean value of the detector output during a single
period, is thus proportional to the phase difference between the input waves.
Electron-tube implementations of this type of detector are found in [25, 38].
Modern implementations of this type is for example an S-R latch or an EX-OR
port.

3.5.9 FM Demodulation by a Fixed Phase Difference

This section discusses the second sub-class of FM demodulators based on FM-
PM conversion: those that establish the conversion with the aid of a fixed
phase difference. First, the dynamic range capabilities of these demodulators
are discussed. Subsequently, the examples encountered in literature are briefly
discussed.

Demodulator Characteristics

With respect to the dynamic range and information handling capacity, the fol-
lowing can be remarked.

Phase Offset As discussed in Section 3.5.3, FM demodulators based on FM-
PM conversion with the aid of a fixed phase difference, widely known as zero-
crossing detectors, are unable to eliminate the carrier induced offset. This is due
to the fact, that a clock, i.e. a ‘time-detector’, possesses a non-periodic transfer,
as opposed to a phase-detector. Furthermore, the carrier frequency of the input
FM wave cannot be zero-valued, but has to be chosen such, that the Nyquist rate
for the samples of the instantaneous frequency is satisfied. A significant fraction
of the demodulator DR is therefore spoiled to the non-informative offset.

Noise Due to the presence of a large offset component, the output noise level
this type of FM demodulators is generally larger than the minimum possible
level. As discussed in Chapter 4, it is the cause of a profound influence of
internally generated noise on the output noise level.

Conclusion Based on the inevitable presence of a large phase offset, and
the corresponding relatively large noise level, it is concluded that this type
of FM demodulator cannot reach the upper bound on the demodulator DR,
and is therefore unable to establish high-performance demodulation. The main
advantages are its simplicity, suitability for integration, and quite good linearity.
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Demodulators from Literature

Many variants of this type of FM demodulator have been developed in the past,
see e.g. [32] for an overview. An more accurate clock-system was proposed
that interpolates between several zero crossings of the FM wave [33]. Another
example is used in [39], where the duty-cycle of the clock-system output wave
is proportional to the instantaneous frequency of the FM wave.

3.5.10 FM Demodulation by Phase Feedback

This section discusses the third subclass of FM demodulators based on FM-
PM conversion: phase feedback demodulators. A detailed discussion of this
demodulator sub-class is given in Chapter 7. This section outlines their main
characteristics.

Demodulator Characteristics

The dynamic range capabilities and information handling capacity of phase
feedback demodulators are as follows.

Phase Offset From the discussion in Section 3.5.4, it follows that the FM-PM
conversion algorithm is able to suppress the carrier-induced offset component.
The objective of the loop is to drive the phase difference between the input FM
wave, and the regenerated wave to zero. Consequently, when the oscillator in
the feedback path, or some memory (filter/integrator) in the loop, supplies the
offset component that is required for the carrier frequency of the regenerated
wave, the offset component in the phase detector output, i.e. the steady-state
phase error vanishes.

Noise In Chapter 7 is shown that phase feedback FM demodulators apply the
required quadratic shaping to the input noise spectrum. Moreover, it is shown
that these demodulators possess threshold extension capabilities.

Conclusion Phase feedback FM demodulators are capable to attain the upper
bound on the FM demodulator DR, when the steady-state phase error equals
zero. Therefore, high-performance demodulation can be established by these
demodulators. Another advantage of these demodulators is their suitability for
integration.

Demodulators from Literature

A vast amount of implementations of phase feedback demodulators have been
developed and reported in literature. Some interesting examples are reported
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in (8, 9, 40]. In [40], a fully integratable, analog phase feedback demodulator
for FM broadcast reception is described. The demodulators described in [8, 9]
are digital implementations, that effectively apply some kind of sigma-delta
modulation to the instantaneous frequency of the analog input FM wave. The
output signal is a digital bit-stream, suitable for processing by a DSP.

3.5.11 FM Demodulation by Post Detection Conversion

This section discusses the last of the four sub-classes of FM demodulators based
on FM-PM conversion: FM demodulators that employ post-detection conver-
sion.

Demodulator Characteristics

As opposed to the three previously discussed FM demodulator sub-classes, FM
demodulators based on post-detection conversion are unsuited for the demodula-
tion of wideband FM waves, due to the limited phase-domain PM demodulators,
in which demodulation without phase-jumps is possible. Therefore, the DR of
these FM demodulators is besides by the supply currents and voltages, also
limited by the range of the PM demodulator.

Phase Offset FM demodulators based on post-detection conversion are capa-
ble to suppress carrier induced phase offsets. In order to attain the upper bound
on the demodulator DR, the PM demodulator should suppress any phase offset
in its output signal. The frequency-offset in the FM demodulator output signal
is suppressed when the differentiator transfer contains a zero at zero frequency.

Noise Thanks to the differentiator at the PM demodulator output, this type
of FM demodulator applies quadratic shaping to the input noise spectrum. How-
ever, due to the limited range of PM demodulators, high modulation, and/or
high noise introduce phase-jumps in the PM demodulator output signal, that,
after differentiation, result in noise/distortion impulses at the FM demodulator
output. Similar to so called “click noise”, investigated in Chapter 5, this type
of noise/distortion results in a white noise floor at the FM demodulator output,
that may seriously deteriorate the demodulator DR.

Conclusion In theory, FM demodulators based on post-detection conversion
are capable to attain the upper bound on the demodulator DR, as long as the
phase noise and phase modulation in the input FM wave is small, compared to
the range of the PM demodulator. In the presence of strong noise and/or large
phase modulation, present in wideband FM waves, the performance rapidly de-
grades. True high-performance demodulation, in comparison to e.g. quadrature



84 Chapter 8. FM Demodulation Principles

and phase feedback demodulators, is therefore infeasible with these demodula-
tors.

Demodulators from Literature

As should be expected, the main concern in the implementation of post-detection
conversion FM demodulators is the limited range of the PM demodulator. An
attempt to increase this range is reported e.g. in [41]. The PM demodulator
used in that reference is a digital implementation of the architecture depicted in
figure 3.30b. The range extension is achieved by inclusion of a memory (counter)
into the implementation of the quadrant detector, also called “jump detector”.
With the aid of the memory, this detector becomes capable to recognize and
compensate for a large number of phase jumps; with n bits of memory, it is
possible to detect and compensate for 2" — 1 phase jumps.

3.6 Demodulation by FM-PM-AM Conversion

In demodulators based on FM-PM-AM conversion, the actual demodulation
operation is preceded by two conversion operations, that copy the message in-
formation from one carrier parameter to another. In Section 3.3 was discussed
already that at most two such conversions may be performed on one and the
same FM wave without loss of information. Moreover, it was discussed that the
only valid scheme with two conversions is the one that converts the FM message
information to phase information, subsequently converts this phase information
into amplitude information and finally applies AM demodulation.

To date, this algorithin seems to be very inefficient, since two conversions
are required, whereas the previous sections have shown that FM demodulation
is possible already with only one conversion. However, in the 1940’s and 1950’s,
this method of FM demodulation was an attractive alternative to FM demod-
ulators based on FM-AM conversion and subsequent AM modulus detection.
Tuned LC circuits instead of detuned ones could be used, that simultaneously
participate in the demodulation process and perform IF filtering on the FM
wave.

The only function performed in these FM demodulators that is not encoun-
tered in the other demodulator classes, studied in Section 3.4 and Section 3.5, is
the PM-AM conversion operation. Therefore, this section focuses on that oper-
ation. First, the ideal PM-AM conversion function is discussed in Section 3.6.1,
followed by a discussion of the PM-AM conversion algorithm in Section 3.6.2.
Finally, the two well-known demodulators of this type, the Foster-Seeley detec-
tor and the ratio-detector, are discussed in Section 3.6.3.
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3.6.1 Ideal PM-AM Conversion Function

The ideal PM-AM conversion function establishes a linear relation between the
amplitude of the output wave and the phase difference between both its in-
put waves. These input waves are derived from an FM input wave by means
of an FM-PM converter. Thus, for an FM-PM converter output wave equal
to so(t) = A(t) cosfw,t + @(t) + Ap(t)], where Ap(t) denotes the phase differ-
ence between the FM-PM converter input and output, the PM-AM converter
response becomes:

fom_anm {A(t) cos [wot + (t) + Ap(t)]} =
A Ap(t) cos [wot + @(t) + Ap(t)].  (3.36)

The ideal PM-AM conversion transfer is depicted in figure 3.32.

output-
amplitude

Kpm-am 7|

input phase
difference

Figure 3.32: Ideal PM-AM conversion function.

3.6.2 PM-AM Conversion Algorithms

This section discusses the PM-AM conversion algorithm present in FM-PM-AM
conversion FM demodulators. We first explain the principles of the algorithm
by means of a discussion of its similarities and dissimilarities with the FM-AM
and FM-PM conversion operations. Subsequently, it is shown that theoretically
three different PM-AM conversion algorithms exist. Only one of them has been
encountered in implementations of such FM demodulators. This algorithm is
therefore elaborated in more detail.

Principles of the Algorithms

As discussed in Section 3.4 and Section 3.5, FM-AM can FM-PM conversion op-
erations somehow implement a differentiation to time. The FM-AM conversion
algorithm implements this differentiation directly, while FM-PM conversion al-
gorithms implement time- differentiation of the carrier phase. As a result, most
of these algorithms contain special kinds of linear filtering. The required type of
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filtering followed from a quasi-stationary interpretation of the ideal conversion
functions.

The PM-AM conversion operation cannot be implemented by linear filter-
ing, since it is not based on some differentiation to time. This is also observed
from the fact that a quasi-stationary interpretation of the ideal PM-AM trans-
fer, depicted in figure 3.32 does not represent the spectral amplitude or phase
characteristic of a linear filter. Instead, it relates the spectral amplitude and
phase to each-other, with the frequency as implicit parameter. This relation is,
however, not very useful.

Insight into the principles of the PM-AM conversion algorithm is gained
by an investigation of the FM-AM conversion algorithm, that copies the mes-
sage information to the same carrier parameter: the carrier amplitude. From a
mathematical point of view, that algorithm is based on the chain-rule of differ-
entiation to time; the converter output equals the derivative of the FM wave to
its instantaneous phase, times the time-derivative of this phase.

The PM-AM conversion algorithm may be based on the chain-rule in a sim-
ilar way. In this case, however, differentiation should not be applied to time,
but to a parameter that satisfies the following conditions:

e it is an implicit parameter of the phase difference Ap(t);

e the derivative of Ap(t) to this parameter is proportional to Ap(t).

From these conditions follows that the conversion gain Kgy_py of the FM-
PM converter, positioned in front of the PM-AM converter, is the parameter that
satisfies these conditions. Since, according to the discussion in Section 3.5, the
phase difference Ayp(t) introduced by the FM-PM converter this proportional
to this parameter, and can be written as

Ap(t) = Kem-pmp(t), (3.37)

the PM-AM converter output signal s,(t), obtained by differentiation t0 Key_pu,
becomes

.fPM—AM [sf’(t)] = 3%:\%

_ O0A(t)cos P,(t) OB, (1) (3.38)
- 0®,(t) OKen-pm
= —A(t)p(t) sin [wot + p(t) + Ap(t)] .

A necessary requirement for proper PM-AM conversion, reflected by this
expression, is that the FM-PM conversion operation should be applied directly
to the input FM wave, prior to any demodulation operation. Otherwise, direct
PM demodulation instead of indirect PM demodulation is established. From
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Section 3.5 is noticed, that this requirement is satisfied only by FM-PM conver-
sion based on a fixed, finite time delay 74. Every FM-PM-AM conversion FM
demodulator therefore necessarily contains an implementation of that type of
FM-PM conversion.

Derivation of the Algorithms

Similar to the procedure followed in Section 3.5, the three different PM-AM
conversion algorithms follow by application of the definition formula for the
differentiation in (3.38). If the FM-PM converter output signal is denoted by
o (t, Kpm_pu), which explicitly states its dependence on Kegy_pm, the PM-AM
conversion algorithm may be expressed as

Ap(t)

— 5, (t, Kpn— =
KFM_PMS ( FM PM)

lim So (t)KFM—PM + AK) — So (t, KF‘M—PM) )

AKS0 AK (3.39)

Thus, this expression shows that PM-AM conversion basically consists of a sub-
traction of the output signals of two FM-PM converters with a slightly different
gain.

This algorithm can theoretically be implemented in three different ways:

e by a fixed, finite gain-difference AK;
e by a fixed, finite difference between both waves in the numerator;
e by application of adaptive feedback.

The first approach corresponds to subtraction of the outputs of two FM-PM
converters, with different conversion gains. This is similar to FM-PM conversion
by means of a fixed time-delay.

The second approach, similar to FM-PM conversion by means of a fixed
phase difference, corresponds to sweeping the conversion gain of one FM-PM
converter, until the difference between both FM-PM converter outputs reaches
a fixed “threshold level”. The PM-AM converter output is proportional to the
ratio of this difference and the gain-difference that establishes it.

The third approach, similar to phase feedback in FM-PM converters, estab-
lishes an adaptive feedback loop around two FM-PM converters, that controls
the gain-difference to zero. An essential part in this scheme, similar to the inte-
gration to time performed by the oscillator in phase feedback demodulators (see
Chapter 7), is the rather awkward integration of the PM-AM converter output
wave to the FM-PM conversion gain.

Only the first of these three algorithms has been applied in FM demodulator
implementations. Therefore, it is interesting to consider this algorithm in more
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detail. The latter two are merely theoretical possibilities, that are not elaborated
in detail in this section.

PM-AM Conversion by a Fixed Gain Difference

The architecture corresponding to this PM-AM conversion algorithm is depicted
in figure 3.33. Figure 3.33a depicts the general architecture, that is obtained

FM - PM converter 1
Kemom+

() s(t)

FM - PM converter 2
Kempm

(a)

Figure 3.33: Architecture of the PM-AM converter. a) general architecture, b)
simplified architecture.

from expression (3.39). However, since only the gain difference of both FM-PM
converters is of interest, it is allowed to simplify this architecture by setting one
of the two conversion gains to zero. Obviously, a zero-valued FM-PM conver-
sion gain corresponds to linear amplification of the input FM wave. Further,
as discussed at the beginning of this section, the FM-PM converter is necessar-
ily implemented by means of a delay-line. Figure 3.33b depicts the resulting
simplified architecture.

The demodulators discussed in Section 3.6.3 use a balanced version of this
architecture, that contains one PM-AM converter with a positive conversion
gain and one with a negative conversion gain, obtained by replacement of the
subtraction in figure 3.33 by an addition. This balanced double conversion
demodulator architecture is depicted in figure 3.34.

s(t)

Figure 3.34: Balanced double conversion demodulator architecture.

The operation of this demodulator is well explained by means of the phasor
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representation of the PM-AM converter output waves Sout,1(t) and Sout2(t),
depicted in figure 3.35. In this phasor representation, it is assumed that the

s,

out,2 >
Sout2

—

Sd

Sd
AQ f AQ
5

5, s,
“d A ~d
Aoul out|

b !
ol Sout,} Sout,1

oty =, (1) <0 o(t) > o,

(a) (b} ©)

Figure 3.35: Phasor representation of the PM-AM converter output waves, for three
different values of the instantaneous frequency w(f) = w, + ¢(t) of the FM wave. a)
w(t) = wo, b) w(t) < wo, ¢) w(t) > wo.

FM wave at the delay-line output, denoted by s4(t), is shifted with respect
to s(t) by —w,mq = /2, such that § and 5y are orthogonal in the absence of
modulation, as depicted in figure 3.35a. The phasors corresponding to the PM-
AM converter output waves, Sous,1 and Sous 2, €qual the vector subtraction and
addition of 5 and §; respectively. The balanced AM demodulator detects the
difference between the length of these phasors, denoted by Agut,1 and Aout,2-

We apply the quasi-stationary approximation in order to explain the three
situations in figure 3.35. In figure 3.35a, ¢(t) = 0, and consequently, the ‘instan-
taneous’ frequency of s(t) equals the carrier frequency w,. Consequently, 5 and
§; are in quadrature, i.e. the angle Ay = 7/2, resulting in a zero demodulator
output signal since Agut.1 = Aout,2- When ¢(t) < 0, as in figure 3.35b, the input
carrier frequency w(t) is smaller than w,, such that w(t) — w, < 0, resulting in
a phase angle Ay = w(t)1qy < /2, Aout,1 < Aout,2. Consequently, the demod-
ulator output signal is negative in this case. Oppositely, when w(t) > w, the
demodulator output signal becomes positive.

An expression of the demodulator output signal is obtained as follows. The
amplitudes |Aous,1| and [Aout 2| follow by elaboration of s(t) + s4(t) as

Aout1,2() = At)V/2 {1 £ cos[p(t) — (t — 74) + woTal}. (3.40)

This expression shows that the maximum PM-AM conversion gain is obtained
when w,74 = 7/2, as expected from figure 3.35. In that case, the cos-function
is replaced by a sin-function. Further, if 74 is such that ¢(t) and p(t — 74) differ
only slightly, then

Aoue1,2(t) = At)V?2 [1 . ;—dcp(t)] . (3.41)
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The AM modulation index of the output wave is usually much smaller than
unity, which allows the use of AM-modulus detection in the subsequent AM
demodulation.

3.6.3 Examples of FM-PM-AM Conversion Demodulators

In this section we discuss to well-known FM demodulator circuits that employ
the FM-PM-AM conversion FM demodulation principle outlined in the previous
section.

The Foster-Seeley Detector

The Foster-Seeley detector [21, 25, 42, 43], is depicted in figure 3.36. This
circuit consists of two inductively coupled LC circuits. The capacitor C; couples
both circuits in such a way that the voltages across them are in quadrature at
the resonant frequency, for both LC-tanks equal to the FM carrier frequency
w,. In figure 3.35, & corresponds to the voltage across the primary LC circuit,
while &4, the delayed FM wave, corresponds to the voltage across the secondary
LC-tank. The coil L; establishes the appropriate DC reference level. Finally,
the balanced peak detector determines the difference between the amplitudes
Aout,1(t) and Agye2(2). It is clear that this circuit is very sensitive to variations

vOl.Il

Figure 3.36: Foster-Seeley FM detector.

in the amplitude of the input FM wave; any fluctuations in this amplitude
result in multiplicative errors in the demodulator output signal. An important
advantage of this type of FM demodulators is the fact that the center frequency




8.6. Demodulation by FM-PM-AM Conversion 91

of the LC circuits coincides with the carrier frequency. Consequently, both LC
circuits operate as IF filter on the input FM wave.

The Ratio Detector

The ratio detector [10, 21, 25, 43, 44] has for a long time been one of the most
popular FM demodulators. The advantage of this demodulator in comparison
to the Foster-Seeley detector is its ability to suppresses fluctuations and noise
in the amplitude of the input FM wave. The Foster-Seeley detector lacks such a
function. Due to this function, the ratiodetector outperforms the Foster-Seeley
detector in the presence of noise.

A simplified schematic of the ratio detector is depicted in figure 3.37. The

Figure 3.37: Ratio-Detector.

amplitude limiting function is established by the resistors R,, that, as opposed
to the Foster-Seeley detector of figure 3.36, are not connected to the tap of
both capacitors C,, an additional capacitor C3, and a reversed diode D,. Due
to the reversal of D,, the voltage across C> corresponds to the addition of
the envelopes Agys,1 and Aoyt 2, instead of their difference, as in. the Foster-
Seeley detector. Both these envelopes are proportional to the fluctuating input
FM carrier amplitude. Their addition depends only on the fluctuations on
the input carrier amplitude, but not on the FM-PM-AM converted message
information. Therefore, if Cs is chosen sufficiently large, the filtering applied by
combination 2R,, Cy suppresses all fluctuations in the carrier amplitude, such
that the voltage across €3 becomes independent of these fluctuations.

The demodulator output signal equals the voltage difference between the
tap of the capacitors C,, and the tap of the resistors R,. The voltage across
each of the resistors R, equals half the voltage over the capacitor Cs, which
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corresponds to the average value of Agy; 1+ Aout,2 (see figure 3.35). The voltages
across the capacitors C, correspond to Aoy, and Agyt,2 respectively. They are
proportional to the FM-PM-AM converted message information, but do not
contain fluctuations due to the input carrier amplitude; these are eliminated by
Cs. The output voltage is therefore proportional to Agut,1 ~— Aout,2- Thus, in
fact, the output is determined by the ratio of the voltages across the capacitors
C,, which explains the name of the circuit.

3.7 Conclusions

A classification of FM demodulation principles is an indispensable instrument
in a structured approach towards FM demodulator design, that allows intro-
duction of hierarchy into the design procedure. Moreover, it allows deliberate
selection of the most suitable demodulator architecture in a very early stage of
this procedure.

The classification developed in this chapter is schematically depicted in fig-
ure 3.38.

Physical FM demodulators cannot detect the instantaneous frequency of FM
waves directly, since it is not associated to the energy of the wave. Instead, a
conversion of the FM message information to the carrier amplitude (FM-AM) or
the carrier phase (FM-PM) is required, followed by AM or PM demodulation.

Conversion to amplitude (FM-AM) is established by differentiation of the
FM wave to time. Subsequently, the modulus of the FM/AM wave or its pro-
jection on a reference should be detected. Demodulators equipped with AM
projection detection outperform those equipped with AM modulus detection,
since this method of AM demodulation allows suppression of the offset com-
ponent due to the carrier frequency. Since AM modulus detection does not
allow AM modulation indices larger than unity, at least half of the dynamic
range of FM demodulators equipped with such AM demodulators is spoiled to
a non-informative component.

Conversion to phase (FM-PM) corresponds to differentiation of the instan-
taneous FM carrier phase, which can be established in four different ways. The
PM demodulation can be established directly, by detection of the carrier phase,
or indirectly, by conversion of the information contained in the carrier phase to
the carrier amplitude, and subsequent AM demodulation.

Two of the four subclasses of FM demodulators based on FM-PM conversion
and subsequent direct PM demodulation, the one based on a fixed time-delay
and the one based on phase feedback, outperform the other two, based on a
fixed time difference and post-detection conversion respectively, since they allow
suppression of the carrier induced offset. With the FM-PM conversion principles
employed by these demodulators, the maximum possible demodulator DR can
be attained, i.e. the same DR as with FM demodulators based on FM-AM
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Figure 3.38: Classification of FM demodulation principles developed in this chapter.

conversion and subsequent AM projection detection.

Three subclasses of FM demodulation principles based on FM-PM conver-
sion, followed by indirect PM demodulation, i.e. FM-PM-AM conversion de-
modulators, exist. However, in practice, only one of them has been implemented
in demodulator circuits. Demodulators based on FM-PM-AM conversion neces-
sarily establish FM-PM conversion with the aid of a fixed time-delay, and AM
modulus demodulation. Therefore, their performance is moderate; the upper
bound on the demodulator DR cannot be attained with these demodulators.

All demodulators that were encountered in literature could be classified ac-
cording to this classification.
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Chapter 4

FM Demodulator Design

The investigation of FM demodulation principles and algorithms in Chapter 3
showed, that nearly all types of FM demodulators consist of combinations of
four classes of subsystems:

o FM-AM converters;
e AM demodulators;
e FM-PM converters;
e PM demodulators.

The various algorithms available for the implementation of each of these sub-
systems were derived.

This chapter discusses the design of these four classes of subsystems en-
countered in FM demodulators. Starting from the algorithms available for the
implementation of these subsystems, derived in Chapter 3, the influence of the
technology-independent design aspects on the performance of the FM demodu-
lator as a whole is evaluated. Design rules for the optimization of this perfor-
mance, expressed in terms of distortion, noise, and dynamic range are derived.

The design of PM-AM converters, contained in FM-PM-AM conversion de-
modulators, is disregarded in this chapter for two reasons. In the first place,
FM-PM-AM conversion demodulators have currently lost their attractiveness,
especially in IC technology, due to the presence of two conversion operations.
Secondly, since PM-AM conversion simply consist of an addition, there isn’t
much to say about its design.

Due to the nonlinear nature of FM demodulation, the formulation of a proper
definition of the FM demodulator dynamic range is a nontrivial problem. A com-
pletely satisfactory definition for nonlinear systems has not yet been obtained,
despite some preliminary attempts to find one [1, 2]. In the context of this
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chapter, a suitable measure for this dynamic range is given by the maximum
Signal-to-Noise-and-Distortion ratio (SNDR) that can exist at the demodula-
tor output, for a given input carrier level and input CNR. This measure is
used for the derivation of the various design rules. In order to clarify the dis-
cussion, the maximization of the FM demodulator SNDR is treated in detail
for analog, continuous-time systems, intended for processing of amplitude- and
time-continuous signals. Analogous discussions hold for the processing of signals
from the other three domains, discussed in Section 3.2.

An outline is as follows. Section 4.1 discusses the dependence of the FM de-
modulator dynamic range on the characteristics of the subsystems contained in
it. Subsequently, design rules for these subsystems, with the objective to maxi-
mize the FM demodulator DR, are derived in Section 4.2 through Section 4.5.
The conclusions are given in Section 4.6.

4.1 FM Demodulator Dynamic Range

Maximization of the FM demodulator performance, represented by the demodu-
lator dynamic range (DR), should be established by proper design of the subsys-
tems contained in the demodulator. This section identifies the various charac-
teristics of the subsystems that determine the FM demodulator DR. The design
of these subsystem characteristics is considered in subsequent sections.

As mentioned in the introduction, the maximum SNDR that can exist in
the demodulator is used as measure for the demodulator DR. The influence of
non-idealities in the subsystems on this SNDR is illustrated by fignre 4.1. The

output power
(dB)

maximum allowed power leve

Pmax
10 log (C)
max. SNDR
actual in ideal
demodulator
101og ()
P

noise floor for a given

Figure 4.1: Deterioration of the FM demodulator SNDR due to non-idealities in the
demodulator subsystems.

maximum SNDR that can exist in an ‘ideal’ FM demodulator, containing ideal
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subsystems, is represented by the distance between the maximum power level
P,..x, and the minimum power level Ppi,. The maximum power level represents
the fact that the signal swings in electronic demodulators are generally bounded
by the supply currents and voltages. The minimum power level represents the
noise power generated at the output of the ideal demodulator, in response to
amplitude and frequency noise contained in the input FM wave. For a fair
comparison between the ideal demodulator and a non-ideal demodulator, it
is assumed that the same level of compression is applied to the input carrier
amplitude of both FM demodulators, that, as will be explained in Section 5.4.2,
determines the contribution of the amplitude noise.

The parameters £ and &, represent the deterioration of the maximum power
level and minimum power level respectively due to non-idealities in the demod-
ulator subsystems. Their dependence on the characteristics of the FM-AM
converter, or FM-PM converter, and the AM demodulator, or PM demodula-
tor, contained in the FM demodulator architecture, is discussed in Section 4.1.1
and Section 4.1.2 respectively.

4.1.1 Dependence on the FM-AM/FM-PM Converter

This section considers the reduction of the FM demodulator SNDR due to non-
idealities in FM-AM converters and FM-PM converters. First, the reduction of
the maximum signal power level Ppyax, represented by &, is considered. Subse-
quently, the increment of the minimum required signal power level Py, repre-
sented by &,, is discussed.

Deterioration of the Maximum Signal Power Level

The maximum allowed demodulator output signal power is generally smaller
than Pn.x due to the presence of an ‘offset’ component. This offset, denoted
by woss, is the converter response to the carrier frequency w,, i.e. the DC-
component of the instantaneous frequency, of the FM wave. In FM-AM con-
verters, it results in an output carrier amplitude given by

Ao(t) = AKinm_am [UJoﬁs + QO(t)] ) (4'1)

while in FM-PM converters, it results in an instantaneous phase difference be-
tween the input and output carrier wave, equal to

A®,(t) = Kem_pm [worts + @(2)] - (4.2)

In a properly configured FM demodulator, the power contents of the con-
verter output signal, and the demodulator output signal should be as large as
possible, but is not allowed to exceed Ppax. Therefore, when Aw denotes the
RMS frequency deviation of the FM message signal ¢(t), and Kgem denotes
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the combination of the FM-AM/FM-PM converter and AM/PM demodulator
conversion gain, it follows from (4.1) and (4.2) that

Panax > K2, (Aw)? [1 + (“;—%)2]

= ngm (Aw)zfs-

(4.3)

From this expression, it follows that large offsets leave only a small fraction
of the demodulator DR to the power contents of the message ¢(t), while the
largest part of the DR is spoiled to the (non-informative) carrier-induced am-
plitude/phase offset.

As an illustration of the DR deterioration due to a carrier-induced offset,
consider an FM demodulator for FM broadcast reception, that expects input
waves with a center frequency of w, /27 = 10.7 MHz, and a maximum frequency
deviation of 75 kHz. Even when the RMS deviation, which in general is con-
siderably smaller than the maximum deviation, equals Aw = 75 kHz, the offset
would reduce the demodulator DR by 43 dB (!) when no offset reduction tech-
niques are applied, i.e. when wefs = w,. Of course, such a reduction is totally
unacceptable, and should be prevented by suppression of the amplitude/phase
offset, as will be discussed in Section 4.2.1.

Deterioration of the Minimum Signal Power Level

The minimum demodulator output signal power level that still results in an
inielligible output signal is generaily larger than the minimum level Ppi, in
the ideal demodulator. The following converter non-idealities contribute to this
increase, represented by the factor &,:

¢ distortion and interference due to the converter frequency transfer;
e generation of a carrier-induced offset wogs;

e non-ideal shaping of the input noise;

e internal noise generation.

The distortion and interference can be minimized by proper design of the
FM-AM and FM-PM converter frequency transfer function, as discussed in Sec-
tion 4.2.2 and Section 4.4.2.

Besides a reduction of the maximum power level, the carrier-induced ampli-
tude/phase offset wygs also increases the contribution of the noise contained in
the input carrier amplitude to the demodulator output, as will be explained in
Section 5.5. Consequently, when only part of the noise is eliminated from the
input carrier amplitude, i.e. when finite or no amplitude compression is applied,
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Wofs Should be minimized in order to avoid a (further) increase of the output
noise level.

The quadratic shaping applied by an ideal FM demodulator to the frequency
noise of the input FM wave constitutes the SNR improvement of FM transmis-
sion, in comparison to AM transmission, as explained in Section 2.3.2. The
shaping established by FM-AM and FM-PM converters should therefore also be
truly quadratic, as considered in Section 4.2.3 and Section 4.4.3.

The level of internally generated noise, by components inside the converters,
depends on the applied technology. However, as shown in Section 4.2.3 and
Section 4.4.3, its effect on the demodulator output noise is also highly dependent
on its position inside the demodulator architecture.

4.1.2 Dependence on the AM/PM Demodulator

This section considers the reduction of the FM demodulator SNDR due to non-
idealities in AM demodulators and PM demodulators. First, the reduction of
the maximum signal power level is discussed. Subsequently, the increase of the
minimum signal power level is considered.

Deterioration of the Maximum Signal Power Level

The AM and PM demodulators contained in the FM demodulator architecture
do not deteriorate the demodulator SNDR, by generation of offset components,
but define a lower bound on the offset level that is required for proper demodula-
tion. Thus, even when the converter possesses the ability, complete suppression
of the offset is not allowed when the AM or PM demodulator defines a nonzero
lower bound on the offset.

The minimum required amplitude/phase offsets for the various types of AM
and PM demodulators are considered in Section 4.3 and Section 4.5 respectively.

Deterioration of the Minimum Signal Power Level

The minimum required signal power level is generally increased by the following
non-idealities in AM and PM demodulators:

e the absence of phase selectivity;

o distortion;

e a nonzero lower bound on the carrier-induced offset;
e internal noise generation.

In essence, phase selectivity is the ability to distinguish different directions
in the phasor plane, and allows suppression of non-ideal components that point
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in directions different from the requested component, containing the required
message information. Obviously, this non-ideality, considered in Section 4.3, is
only encountered in AM demodulators; PM demodulators are phase selective
by definition.

The distortion introduced into the demodulator output signal is highly de-
pendent on the applied type of AM/PM demodulator. Further, also the pos-
sibilities to minimize the distortion differ considerably among the various AM
and PM demodulator types, as considered in Section 4.3 and Section 4.5.

As discussed previously, carrier induced offsets increase the contribution of
amplitude noise to the demodulator output noise level. A lower bound on this
offset, set forward by the AM or PM demodulator, is therefore also a lower
bound on the deterioration of the FM demodulator SNDR.

The contribution of internally generated noise to the FM demodulator out-
put noise level is highly dependent on the applied type of FM demodulator
architecture. In some architectures, the internal noise results in a deteriorative
white noise floor, while in others it results only in quadratic shaped noise.

4.2 FM-AM Converter Design

FM-AM converters constitute the operation of the class of FM demodulators

discussed in Section 3.4. It was shown there, that the FM-AM conversion algo-

rithm consists of differentiation to time, i.e. a special kind of linear filtering.
This section considers the design of FM-AM converters. Various design rules

ot thn AL Jdoe 3.
are "‘3"‘"‘-“’1 that aim at maximization of the FM demodulator SNDR.

As dlscussed in Section 4.1.1, the following FM-AM converter characteristics
have a major influence on the FM demodulator SNDR:

e generation of an offset in the output carrier amplitude;
o distortion and interference in the frequency transfer;

¢ non-ideal noise shaping;

e internal noise generation.

Design rules for minimization of the offset component are considered in Sec-
tion 4.2.1. Subsequently, design rules for the minimization of the distortion and
interference are discussed in Section 4.2.2. Finally, design rules for minimization
of the demodulator output noise level are considered in Section 4.2.3.

4.2.1 Offset Minimization

Section 3.4.2 noticed already, that a straight-forward implementation of the
FM-AM conversion algorithm, differentiation to time, generally results in a
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large carrier-induced offset component in the FM-AM converter output carrier
amplitude. As discussed in Section 4.1, such an offset considerably reduces the
FM demodulator DR, and should therefore be eliminated.

This section discusses the possibilities to minimize carrier-induced offset in
the FM demodulator output signal, by proper design of the FM-AM converter.

In essence, the offset in the amplitude of the converter output wave s,(t)
is the result of a nonzero converter response to spectral components located at
the carrier frequency w, of the input FM wave s(t). Since FM-AM conversion is
established by linear filtering of the FM wave, minimization, or even elimination,
of this offset is achieved when the zero in the Laplace-domain converter transfer,
a differentiator, coincides with the carrier frequency, i.e. when it is positioned
at s = +jw,. As illustrated by figure 4.2, this may be accomplished in two
fundamentally different ways:

e translation of the FM wave’s center-frequency to the differentiator-zero;

e translation of the differentiator-zero to the FM wave’s center-frequency.

differentiator transfer (lin} original differentiator transfer (lin)
\ ’ \ / ’
N ’ \ ’
\ ’
\ .
\ /
m
\ ’
\ ’
A ’
’ I
L, . ) \ .
-0, 0 o, —oin) -, 0 l o, ol
original converted FM spectrum converted
FM spectrum FM spectrum differenlia;or
(@) ® transfer

Figure 4.2: Offset elimination by a) translation of the FM center-frequency to the
differentiator-zero (“zero IF”), b) translation of the differentiator-zero to the FM
center-frequency (“band-pass differentiation”).

These possibilities are separately discussed below.

Zero-IF Architecture

The first approach results in a so called “zero-IF” architecture, depicted in
figure 4.3. This architecture converts the input FM wave to a zero center-
frequency by means of a down-conversion mixer, and subsequently performs the
FM-AM conversion by means of a differentiator, that contains a zero at s = 0.
According to Section 3.4.7, AM demodulation of a wave with a zero-valued
carrier frequency requires two such waves in phase quadrature, (I-Q), which
explains the configuration in figure 4.3.
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s() = A cos [0, (1) + ¢(n)]

Figure 4.3: Minimization of the offset by means of a zero-IF architecture.

Band-Pass FM-AM Conversion

The second approach transforms the ‘low-pass’ differentiation established by
the FM-AM converter into a “band-pass differentiation”. This transformation
is established by the so called ‘biquadratic’ transform [3], that replaces the
complex frequency s in the FM-AM converter Laplace-domain transfer function
with
2
s — %‘i (4.4)

where w, equals the carrier frequency of the input FM wave. An advanta-
geous property of this transformation is its orthogonality with respect to dis-
tortion minimization; if the ‘low-pass’ FM-AM converter transfer, denoted by
Hgig 1p(8), yields the lowest possible level of distortion in the demodulator out-
put signal of all ‘low-pass’ FM-AM converters, the corresponding ‘band-pass’
FM-AM converter, denoted by Haisr,bp(s), yields the lowest possible distortion
level of all band-pass FM-AM converters.

For example, if the low-pass FM-AM conversion is implemented by a ‘low-
pass’ differentiator transfer Haif 1p(s), given by

Haig 1p ()

w8

- 45
52 + G +w? (45)

where w, denotes the resonant frequency and @Q the quality factor, the corre-
sponding band-pass differentiator transfer, with zeros at s = +jw,, equals

w2
Haig bp(s) = Haifr 1p (8 + —SQ)
_ wrs (82 + w?)

s4+%s3+(w£+2w§)32+%‘2‘s+wg.

(4.6)




4.2. FM-AM Converter Design 105

In early FM demodulators, this bandpass converter transfer was approximated
by subtraction of the output signal of two slightly detuned, so called “stagger-
tuned” LC-tanks [4], in order to eliminate the offset from the demodulator out-
put and minimize the distortion, as mentioned in Section 3.4.6. The demodula-
tor DR is however not improved by stagger-tuning, since the offset cancellation
is positioned at the AM-demodulator output.

4.2.2 Distortion Minimization

This section discusses the minimization of the distortion and interference, caused
by undesired components in the output signal, in the FM demodulator output
signal, by proper design of the FM-AM converter frequency transfer. Since
offset minimization by means of ‘band-pass’ FM-AM conversion is orthogonal to
distortion minimization, as discussed in Section 4.2.1, it is sufficient to consider
only distortion and interference minimization in ‘low-pass’ FM-AM converters.

The Laplace-domain transfer of a non-ideal FM-AM converter generally dif-
fers from the ideal transfer, denoted by Hem_an,id(8), equal to

Henoam,id(8) = Kem-am$, (4.7
in the following aspects:
e the zero generally possess a non-zero real part;
e the transfer contains poles, and, possibly, additional zeros.

The types of distortion in the FM demodulator output signal due to each of
these imperfections, and the measures required to minimize this distortion, are
separately considered below.

Zero with a Non-zero Real Part

Unwanted components in the FM-AM converter output signal are basically due
to deviations of the zero in the FM-AM converter transfer from its theoretical,
ideal position. As illustrated by figure 4.4, two different types of deviations can
be distinguished, that result in different unwanted components:

e deviations in the imaginary part of the zero;
e deviations in the real part of the zero.

From the discussions in Section 3.4.2 and Section 4.2.1 follows that a deviation of
the imaginary part of the zero from the FM carrier frequency w, yields a carrier-
induced offset in the tangential component of the FM-AM converter output
wave s,(t), and, consequently also in the FM demodulator output signal. Thus,
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Figure 4.4: Deviations of the zero in the FM-AM converter transfer from its ideal
position.

in order to suppress this offset, the zero in the transfer of low-pass FM-AM
converters should possess a zero-valued imaginary part.

A deviation of the real part of the zero from the ideal value Re(s) = 0 yields
an amplitude offset component in the radial component of the converter output
wave, instead of in the tangential component. As shown below, this ‘offset’ com-
plicates the elimination of the radial component from the demodulator output
signal. A zero-valued real part is therefore favorable.

The cause of the amplitude offset in the radial component can be explained
as follows. Suppose that the FM-AM converter transfer is given by

H.,, AM(S) = Ken AM(S + Z‘ (4-8)

i.e. a parallel connection of an ideal differentiator, and an amplifier /attenuator
with transfer z, followed by an amplifier of gain Kry_aym- Then, its response to
the FM wave s(t) = A(t) cos [wot + ¢(t)] equals

ds(t)

so(t) = KFM—AM_ET + Keyvoamzs(t)

= RpMm-—am [wo + ‘P(t)] Utan(t) (4'9)
+ Kem—am [A(t) + ZA(t)] urad(t)'

The required tangential component remains unaffected, but the radial compo-
nent contains an additional term zA(t), as a result of the direct feed-through.
As a result of this component, the radial component can no longer be elimi-
nated by suppression of the fluctuations in the amplitude A(t) prior to FM-AM
conversion (see Section 3.4.2).

Consequently, when a nonzero real part cannot be avoided, the AM demod-
ulator itself should suppress the radial component in s,(t), in order to avoid
interference and/or distortion in the FM demodulator output signal. This topic
is considered in Section 4.3.
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Poles and Additional Zeros

Poles and additional zeros in the FM-AM converter transfer distort the message
signal at the FM demodulator output in two different ways. In the first place,
they limit the converter bandwidth, resulting in narrow-band filtering distortion.
Secondly, they introduce curvatures in the frequency transfer.

Distortion Modeling Qualitative understanding of these distortion mech-
anisms is conveniently obtained with the aid of the quasi-stationary approxi-
mation (see Chapter 2). As an illustration, figure 4.5 depicts the response of
a single-pole FM-AM converter to the FM message modulation. The spectral
frequency is replaced by the instantaneous frequency of the FM wave, while the
converter transfer is inverted for negative frequencies, where the time-domain
converter output becomes negative. For small values of the FM modulation,

. : 2
sgn (w)- | Hepp am(o) | distorted demodulator output
(N o
pole
frequency

v FM-message —»

|

Figure 4.5: Distortion of the FM message information due to curvature and a finite
bandwidth of the FM-AM converter transfer.

the transfer is essentially linear, and approaches the ideal differentiator. For
large values of the modulation, however, considerable distortion is introduced,
due to the curvature, and eventually the ‘saturation’ of the transfer beyond the
frequency of the pole.

Positions of the Poles and Zeros for Minimal Distortion Minimum
distortion is introduced into the FM demodulator output signal when the con-
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verter transfer Hey- am($) approaches the ideal converter transfer Hey_ am,id (8)
as close as possible over the entire bandwidth of the input FM wave. The
FM-AM converter transfer can generally be written as the product of the ideal
transfer Hey_am,id(8) from (4.7), and a low-pass filter (LPF) H,pr(s), that rep-
resents the non-idealities,

HFM—AM('S) = Kem-amSHipr (3) (4-10)

Distortion minimization corresponds to proper design of the LPF transfer func-
tion Hypr(s), such that:

¢ the bandwidth is sufficiently large;
e the transfer is as flat as possible in the pass band.

Generally, low-distortion FM-AM conversion requires a bandwidth that is some-
what larger than the Carson bandwidth (2.8), which is a slightly too optimistic
estimation of the FM transmission bandwidth. The required bandwidth de-
pends on the allowed level of distortion, and should be obtained e.g. by means
of simulations. A much larger bandwidth is generally unfavorable with respect
to noise, unwanted harmonics of multipliers, etc..

To fulfill the second requirement, H,px(s) should belong to the class of Max-
imum Flat Magnitude (MFM) filters [3]. The characteristic property of these
filters is that their derivative, a measure for the “flatness” of the transfer, at
the center frequency w = w, of the filter vanishes, i.e.

=0. (4.11)

W=We

Hence, Hypr(s) is an all-pole low-pass filter, with w, = 0, a Butterworth transfer,
which is the all-pole MFM transfer, with a sufficiently large bandwidth is the
best (‘optimal’) choice. In any case, minimum distortion is achieved when the
filter center frequency w, coincides with the position of the zero in the converter
transfer.

Distortion Simulations on a Second-Order FM-AM Converter The
latter conclusion is confirmed by a simulation results on a second-order FM-AM
converter, with a transfer-function given by (4.5). The numerator of this transfer
corresponds to the ideal converter transfer, while the denominator represents the
non-ideal LPF.

A Butterworth transfer is obtained when the quality factor equals Q =
1/4/2 ~ 0.7. Figure 4.6 depicts the time-domain transfer of this converter,
from instantaneous frequency of the input FM wave to the time-domain output
amplitude, for various values of (). This figure clearly shows that the best
linearity is indeed obtained for Q = 0.7, i.e. a Butterworth transfer.
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Figure 4.6: Time-domain FM-AM converter transfer for various values of Q.

4.2.3 Noise Minimization

This section considers the minimization of the FM demodulator output noise
power by proper design of the FM-AM converter transfer, and realization of
suitable trade-offs between sources of noise inside the converter.

As discussed in Section 4.1, the noise performance of FM-AM converters is
determined by two characteristics:

¢ the shaping applied to the frequency noise;
¢ internal noise generation.

Minimization of the output noise due to these characteristics is discussed below.

Noise Shaping

As discussed previously, the SNR improvement of FM transmission in com-
parison to AM transmission relies on quadratic shaping of the frequency noise
spectrum. In FM demodulators based on FM-AM conversion, this shaping is
performed by the FM-AM converter.

The shaping operation is illustrated by figure 4.7, that depicts the low-pass
equivalent model of the FM-AM converter, i.e. a ‘low-pass’ differentiator, and
the AM demodulator, represented by its conversion gain K,,.. The input of the
model consists of the message phase ¢(t) and the phase noise 8(t) & n, 4(t)/A,
as explained in Section 2.3.2. The power-density spectrum of the frequency
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Figure 4.7: Low-pass equivalent demodulator model.

noise observed at the demodulator output, denoted by S;(w), may therefore be
expressed as

2
Sé(w) = (KQM) |HFM—AM(jUJ)|2 Sn(w), (4.12)

where Sy, (w) denotes the spectrumn of n, 4(t). This expression shows that only
a true differentiator, with a transfer function Hpy_am(jw) = jw, yields the noise
shaping that is required to attain the FM transmission improvement, as dis-
cussed in Section 2.3.2.

From (4.12) is also observed, that an integrator, as used in combination with
a differentiator in [5], is a profoundly bad implementation of the FM-AM con-
verter, as far as the noise, and distortion, performance is concerned. Although
essentially correct FM demodulation is possible with such a converter, the noise
is shaped in an incorrect way. This conclusion is illustrated by figure 4.8. The

*A;F“nrnni;n'nr ;nh'.\nrﬁfnr?
differentiator  integrator
| output noise output noise I
spectrum spectrum
— —
0 m 0 ®
-+ -+
baseband baseband

(@) (b)

Figure 4.8: Shaping of the demodulator output noise spectrum. a) differentiator as
FM-AM converter, b) integrator as FM-AM converter.

differentiator in figure 4.8a suppresses the largest part of the input noise at low
frequencies, i.e. inside the baseband, at the expense of a noise enhancement at
high frequencies, above the highest message frequency, and therefore maximizes
the output SNR. The integrator however enhances the part of the noise located
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at low frequencies, i.e. inside the baseband, while it suppresses noise at high
frequencies. Therefore, it deteriorates the SNR.

Internal Noise Generation

The contribution of the internal noise, generated by the electronic components
inside the FM-AM converter, to the demodulator output noise spectrum can be
estimated with the aid of the demodulator model depicted in figure 4.9. The

AM demodulator

KAM

correlated

Figure 4.9: Contribution of the internal noise to the FM-demodulator output noise.

noise process 7n(t) represents the equivalent input noise, due to all internal
noise contributions that are shaped by the FM-AM converter transfer, and are
uncorrelated with any noise contributions that are not shaped. The noise process
n2(t) represents equivalent input noise, due to shaped noise contributions that
are correlated to contributions that are not shaped, while n3(t) represents all
uncorrelated contributions that are not shaped by the transfer.

The contribution of these sources, which are generally Gaussian, to the noise
power density spectrum at the demodulator output can be expressed as
Sn,out (w) = KP?M—AMw2& + KIEM«Aszwz:;—V?% + (1 - b)Q& + —]_V—S—

27 2T 27 (4.13)

where N; through N3 represent the spectral densities of nq, no and n3, while
the conversion-gain K,y equals unity. This expression contains some interesting
conclusions on FM-AM converter design.

In the first place, (4.13) shows that the conversion-gain Kry—am should be
realized at the converter input, and made as large as possible, in order to nullify
the relative noise contribution of the sources (1 — b)n, and nz. This follows
directly from Friis’ formula [6, 7]. An upper bound on Krm_awm is set forward
by the maximum allowed power-level at the converter output (see Section 4.1).

Secondly, it should be noted that n; and bns are transferred to the output
according to the FM transmission scheme, while (1 — b)ns and nz are trans-
ferred according to the AM transmission scheme. The latter two sources there-
fore result in a white noise floor, that deteriorates the output SNR. Therefore,
whenever Kpm—aMm cannot be made sufficiently large to nullify the relative con-
tribution of (1 — b)no and ns, a trade-off should be established that increases
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ny and bny in favor of a decrease of (1 — b)ny and ns. In this respect, the opti-
mal value of the parameter b, that minimizes the contribution of n, inside the
baseband (w € [-W, W]), equals

b 3
°Pt T K2 W2 +3

FM-AM

(4.14)

Finally, since n; and bns contribute to the frequency noise as well as to
the amplitude noise, it is extremely important that the carrier-induced offset
component wogs is minimized, in order to avoid a huge noise floor at the output
(see Section 5.5). This is due to the fact that the contribution to the amplitude
noise cannot be eliminated by means of amplitude compression; the compressor
is placed in front of the FM-AM converter (see Chapter 5).

4.3 AM Demodulator Design

The AM demodulator succeeds the FM-AM converter in FM demodulators
based on FM-AM conversion. According to Section 4.1, the two main char-
acteristics of AM demodulators, that are decisive for the FM demodulator DR
are phase selectivity, and the noise behavior. Therefore, these characteristics
are analyzed in further detail in this section.

Section 4.3.1 considers phase selectivity as means to suppress unwanted com-
ponents in the FM-AM converter output signal. Section 4.3.2 considers the noise
performance of AM demodulators. Both sections compare the performance of
the two AM demoduiation aigorithms discussed in Chapter 3: AM moduius
detection and AM projection detection.

4.3.1 Suppression of Non-idealities by Phase Selectivity

Phase selectivity is the ability to distinguish carrier waves on the basis of their
instantaneous phase. In a phasor-plane representation, phase selectivity repre-
sents the ability to discriminate between phasors that point in different direc-
tions.

In AM demodulators, phase selectivity is an important characteristic, due
to the observation in Section 3.4 and Section 4.2, that the FM-AM converter
output signal generally consists of two orthogonal components: a radial com-
ponent and a tangential component. Only the tangential component contains
the FM message information. In order to avoid interference/distortion in the
FM demodulator output signal, the AM demodulator should distinguish the
tangential component from the radial component.

As discussed in Section 3.4.2, suppression of fluctuations in the FM-AM
converter input carrier amplitude eliminates the radial component from the
converter output signal. However, Section 4.2.1 showed, that when the zero in
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its transfer is not exactly matched with the carrier frequency of the converter
input wave, a residual radial component remains, which can only be suppressed
by the AM demodulator.

The ability of both types of AM demodulators to suppress the radial com-
ponent of the FM-AM converter output wave is considered below.

AM Modulus Detection

The class of AM demodulators based on AM modulus detection, discussed in
Section 3.4.4, does not possess phase selectivity, and is therefore unable to dis-
tinguish between the radial and tangential component of the FM-AM converter
output wave. Consequently realization of a large FM demodulator dynamic
range with the aid of this type of AM demodulator puts severe requirements on
the FM-AM converter transfer.

The reason for the absence of phase selectivity in AM modulus detectors
is the absence of a reference wave, i.e. a phase reference, in the AM modulus
demodulation algorithm; the demodulator simply determines the length of the
phasor 3,. In the presence of a nonzero radial component in the converter output
wave $,(t), the FM demodulator output signal obtained with this type of AM
demodulator becomes

yAM,modulus(t) = |’U(t)l = Utzan(t) +v3ad(t)

: . (4.15)
- \/Am) [wo + $OF + [A@) +240)]

where vy, (t) is given by (3.6) and vraq(t), that includes the effect of a non-ideal
zero in the transfer, is adopted from (4.9).

This expression demonstrates that the radial component v,q(2) causes dis-
tortion in the FM demodulator output signal, and therewith reduces the FM
demodulator DR. Application of this type of AM demodulator therefore re-
quires suppression of fluctuations in the amplitude A(t), and an ideal zero in
the FM-AM converter transfer.

AM Projection Detection

The class of AM demodulators based on AM projection detection does possess
phase selectivity, and is therefore able to eliminate the radial component from
the FM-AM converter output wave. Consequently, application of this type of
AM demodulator alleviates the requirements on the FM-AM converter transfer.

The origin of the phase selective behavior of these demodulators is the pres-
ence of a (phase) reference wave in their demodulation algorithm; the output
signal equals the projection of §, on the phasor of the reference wave s,(t).
Thus, when the reference wave is synchronized to the tangential component
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of §,, the orthogonal, radial component is suppressed. This is also observed
from the following expression for the output signal in the presence of a radial
component:

8o - 8 =80,i(t)sr,i(t) + 80,4(t)Sr 4(t)
=vi()8,i(t) + vg(t)5r,q(t)

= {Vrad (t) cos ®(t) — vean(t) sin ®(¢)} Acos B(t) + (4.16)
{Vrad (t) sin ®(t) + vian(t) cos @(t)} Asin &(t)
=AUtan (t)

As expected, the radial component vr,q(t) is completely suppressed, as long
as perfect synchronization between the reference wave and the tangential com-
ponent of s,(t) exists. When the synchronization is not ideal, a small radial
component remains.

The filtering applied by the FM-AM converter generally distorts the instan-
taneous phase of $,(t), and introduces a finite delay. In order to attain proper
synchronization, the reference wave used by the AM projection demodulator
should generally be low-pass filtered, by Hypr(s) from (4.10), i.e. the FM-AM

P

converter transfer without the differentiator zero.

4.3.2 Noise Minimization

The AM demodulator has a decisive influence on the noise performance of the
TN Anwvma~Adnlaran

In the first place, the type of demodulator determines the minimum magni-
tude of the carrier-induced offset in the FM-AM converter output carrier am-
plitude, that still allows correct AM demodulation. As discussed in Section 4.1,
this offset severely limits the FM demodulator DR; it reduces the maximum
allowed output signal power, and, when noise in the input carrier amplitude is
only partially suppressed, also increases the noise floor.

Section 3.4.4 noticed already, that AM modulus detection requires an AM
modulation index smaller than unity, which means that the offset should exceed
the FM message signal. In some types of AM modulus detectors, e.g. the peak
detector, the requirements are even worse; these detectors are able to handle
AM modulation that are much smaller than unity only. Moreover, due to their
nonlinear transfer, i.e. the modulus operation, these demodulators generally
show a threshold in their output SNR characteristic [7, 8], which deteriorates
the demodulator DR even further. Consequently, AM modulus demodulators
are not suited for realization of FM demodulators with a large DR.

The performance achieved with of AM projection demodulators is consider-
ably better than the maximum possible performance attained with AM modulus
demodulators. These demodulators allow a zero-valued carrier-induced offset,
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i.e. an (approximately) infinite AM modulation index. Therefore, no reduction
of the maximum signal power, nor an increase of the noise level due to the offset
occurs in these demodulators. Consequently, these demodulators are able to
attain the maximum possible demodulator SNR and DR. If the most general
AM projection detection algorithm is used, a zero-valued input carrier frequency
is allowed, and zero-valued carrier offset can be achieved with a low-pass FM-
AM converter. If a simplified algorithm is used, e.g. synchronous detection, a
nonzero carrier frequency is required, and a zero-valued carrier offset should be
achieved with the aid of a band-pass FM-AM converter.

4.4 FM-PM Converter Design

FM-PM converters constitute the operation of the class of FM demodulators
discussed in Section 3.5. Four different FM-PM conversion algorithms were
obtained.

This section considers the design of FM-PM converters, resulting in design
rules for maximization of the converter DR, and FM demodulator DR. Similar
to Section 4.2 on FM-AM converter design, the discussion on FM-PM converter
design in this section concentrates on maximization of the FM demodulator
SNDR through minimization of the carrier-induced phase offset, minimization
of the distortion, and minimization of the output noise level.

Much of the material discussed in Section 4.2 in conjunction with FM-AM
converters is also applicable to FM-PM converter design. Therefore, this section
concentrates on the differences between FM-AM and FM-PM converter design,
and the differences among the various FM-PM conversion algorithms.

An outline is as follows. Section 4.4.1 considers the minimization of the
carrier-induced phase offset. Design rules for minimization of the distortion are
considered in Section 4.4.2. Finally, minimization of the demodulator output
noise is discussed in Section 4.4.3.

4.4.1 Offset Minimization

In Section 3.5 was shown, that similar to FM-AM conversion, FM-PM con-
version algorithms generally result in a carrier-induced phase offset in the de-
modulator output signal, that deteriorates the DR. Therefore, also in FM-PM
converter design, minimization of the offset is required.

This section discusses the possibilities to minimize the carrier-induced phase
offset in each of the four different FM demodulator architectures based on FM-
PM conversion, that were derived in Section 3.5.
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Conversion based on a Fixed Time-Delay

In FM demodulators based on FM-PM conversion by means of a fixed time-
delay, discussed in Section 3.5.2, both offset reduction techniques of Section 4.2.1,
i.e. a zero-IF architecture and bandpass FM-PM conversion, can be applied in
order to suppress the carrier-induced phase offset, introduced by the converter.

However, instead of the offset introduced by the FM-PM converter (time-
delay) alone, the total offset of the converter and the built-in phase shift of
the succeeding PM demodulator has to be nullified. When a nonzero built-in
phase shift is present in the PM demodulator, such as the 90° phase shift in a
multiplier phase detector with sinusoidal inputs (see Chapter 7), the techniques
of Section 4.2.1 do not suppress the phase offset in the demodulator output
signal completely: the built-in phase offset of the PM demodulator remains.

The built-in phase offset of the PM demodulator can be eliminated in two
different ways:

¢ application of an extra phase shifter that cancels the offset;
o cancellation of the PM demodulator offset by the converter offset w,74.

The disadvantage of the first approach is, that it is difficult to realize a phase
shift without introduction of a delay. This can generally be realized only for
particular phase shifts, such as 90°, e.g. by means of a zero-IF architecture.
Application of this approach to the balanced quadrature demodulator of fig-
ure 3.31b, preceded by a zero-IF architecture, can be used to eliminate the
built-in offset of the PM demmodulaior.

The disadvantage of the second approach is, that it generally yields an FM-
PM converter with a distortion that is larger than the minimum possible dis-
tortion, as discussed in Section 4.4.2.

Conversion based on a Fixed Phase Difference

In FM demodulators based on FM-PM conversion by means of a fixed phase
difference, discussed in Section 3.5.3, the carrier-induced phase offset cannot be
eliminated. This is due to the sampling of the carrier phase performed by these
demodulators. The sampling rate should at least equal twice the bandwidth
of the FM message signal. Therefore, when one sample per carrier cycle is ob-
tained, the carrier frequency should at least equal twice the message bandwidth

w.
Conversion based on Phase Feedback

In FM demodulators based on phase feedback, the carrier-induced phase offset,
usually called the steady-state phase error in these systems, should be eliminated
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by proper design of the phase detector and the loop filter. This subject is
considered in Chapter 7.

Post-Detection Conversion

In FM demodulators based on post-detection phase-frequency conversion, no
other means than application of an extra phase shifter in front of the PM de-
modulator is available to suppress the phase offset in the PM demodulator
output signal. Furthermore, in order to avoid excessive cycle-slipping, the ex-
tra phase shift should be dimensioned such, that on average, the instantaneous
phase of the input FM wave is positioned at the center of the PM demodu-
lator characteristic, i.e. removed as far as possible from the bounds, that are
represented in figure 3.27 by the dashed lines at +7.

4.4.2 Distortion Minimization

This section considers minimization of the distortion in the FM demodulator
output signal by proper design of the FM-PM converter.

In FM demodulators based on FM-PM conversion by means of a fixed time-
delay, this corresponds to proper design of the converter frequency transfer, as
will be discussed below. In FM demodulators based on FM-PM conversion by
means of a fixed phase difference, i.e. zero-crossing detection, the distortion
can be reduced, if necessary, by higher-order interpolation between the samples,
as mentioned already in Section 3.5.3. In phase feedback demodulators, the
distortion is generally minimized when the tuning range of the oscillator in
the feedback path is as linear as possible over the range of interest, and the the
loopgain is sufficiently large. Finally, the distortion in post-detection conversion
demodulators is essentially minimized by a maximally linear PM demodulator
characteristic.

The sequel of this section is confined to distortion minimization in FM de-
modulators based on FM-PM conversion by means of a fixed time delay. Distor-
tion minimization in other types of demodulators is relatively straight forward.

Section 3.5.2 showed already that FM-PM conversion on the basis of a fixed
time-delay is associated to the spectral phase characteristic of the FM-PM con-
verter transfer. Therefore, minimization of the distortion requires proper design
of this phase characteristic. However, in addition, proper design of the ampli-
tude characteristic of the FM-PM converter is generally required in order to
minimize undesired, i.e. “parasitic”, FM-AM conversion. This is especially im-
portant in FM receivers that do not apply amplitude compression, i.e. limiting,
to the input FM wave. The design of both characteristics is discussed below.
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Design of the Phase Characteristic

It follows from the the quasi-stationary approximation and the discussion in Sec-
tion 3.5.2, that the distortion in the FM demodulator output signal is minimized
when the spectral phase characteristic of the FM-PM converter is maximally lin-
ear. A maximally linear phase characteristic corresponds to a maximally flat
group delay (MFD) [3].

Implementation of a maximum flat group delay in electronic systems is a
difficult matter, especially when an IC realization is required. Generally, the
best linearity is obtained with distributed element filters such as transmission
lines. Integratable delay lines with a linear phase characteristic can be con-
structed with the aid of Surface Acoustic Wave (SAW) technology, as used
in [9]. However, SAW filters require special IC processing steps that are often
not acceptable.

When transmission lines or SAW filters cannot be used, one has to resort
to lumped element filters for realization of the time delay. A maximally flat
group delay is established with such filters, when the (all-pole) filter transfer
is of the Bessel/Thomson type [3]. A characteristic property of these filters is,
that the second-order derivative of their spectral phase characteristic vanishes
at the center-frequency w = w,

o? PBessel (W)

Ow? =0. (4.17)

w=we

Obviously, for low-pass filters w, = 0. Of course, the linearity improves with
increasing order of ihe filier. Furiher, if a band-pass converter is required, the
frequency w = 0 should be transformed to the FM carrier frequency w, (see
Section 4.2.1).

The of a Bessel filter as the optimal FM-PM converter transfer for a given
converter bandwidth is confirmed by simulations on the second-order low-pass
filter given by

w2

Hen-en(s) = 8_2_+-%T—S+_;§ (4.18)

This filter possesses a Bessel characteristic when the quality factor equals
1
Qbessel = ﬁ ~ 0.6. (419)

The group delay at w = 0, obtained by differentiation of the phase characteristic
of (4.18), equals

_ 1
Qwr ’

Td (420)
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Further, similar to FM-AM converters, the bandwidth of the FM-PM converter
should at least comply with Carson’s bandwidth formula.

Figure 4.10 shows the simulated transfer from instantaneous input frequency
of the input FM wave to the instantaneous phase difference between the FM-PM
converter input and output wave. Maximum linearity is indeed attained when
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Figure 4.10: Time-domain FM to PM converter transfer for various values of Q.

Q = 0.6, instead of Q = 0.7 found for FM-AM converters in Section 4.2.2.

Design of the Amplitude Characteristic

An ideal delay element is not subject to unwanted FM-AM conversion, since its
spectral amplitude characteristic is constant; the conversion gain Kgy_am = 0.
In practice however, delay lines, and, in particular those implemented by a Bessel
filter, are subject to FM-AM conversion, since their amplitude characteristic
shows some curvature.

A maximum flat magnitude (MFM) characteristic would minimize the FM-
AM conversion. However, in low-pass and bandpass filters, MFM and MFD
characteristics are conflicting requirements [3]. This is illustrated already by the
examples given for a second-order FM-AM and FM-PM converter; the optimum
value obtained for the quality factor  was different.

Besides application of limiting/compression of the FM-PM converter output
carrier amplitude, undesired FM-AM conversion can be avoided by application
of a Bessel all-pass filter, that, by convention, possesses a constant magnitude
characteristic. The spectral phase characteristic equals twice the phase char-
acteristic of the corresponding low pass/bandpass Bessel filter. When D(s)
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denotes the denominator polynomial of a Bessel low-pass filter, the transfer
function of the corresponding all-pass filter equals [10]

Hall—pass(s) déf KDD(;sj)

. (4.21)

Thus, the right-half plane zeros of this filter transfer are located at the same
frequency as the left-half plane poles.

4.4.3 Noise Minimization

This section considers the minimization of the FM demodulator output noise
level by proper design of the FM-PM converter transfer. The discussion is con-
fined to the noise behavior of FM demodulators based on FM-PM conversion
by means of a fixed time-delay, which are potentially able to establish high per-
formance demodulation. The noise performance of FM demodulators based on
FM-PM conversion by means of a fixed phase difference, and FM demodula-
tors based on post-detection conversion is not considered, since it follows in a
straight-forward fashion from the discussion in this section, Section 4.2.3, and
Section 5.5. A discussion of the noise performance of phase feedback demod-
ulators is postponed to Chapter 7, since it differs significantly from the noise
behavior of all other demodulator types.

First, the noise shaping by the FM-PM converter, implemented by a fixed
time-delay, is considered. Subsequently, the increase of the output noise level
due to internally generated noise is discussed.

Noise Shaping

Although established in a slightly different way, the FM-PM converter applies
the same type of quadratic noise shaping to the phase/frequency noise of the
input wave as the FM-AM converter. This is seen as follows.

If A®,(t) denotes the phase/frequency noise observed at the output of the
FM demodulator of figure 3.20, and 6(¢) & n, 4(t)/A represents the phase noise
in the input FM wave, then

A®,(t) = 6(t) — 8(t — Ta), (4.22)

where 74 denotes the time-delay realized by the FM-PM converter. The power
spectral density of A®,(t) may be expressed in terms of S¢(w), the spectral
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density of (t), as

Sas, (W) = |1 — exp(jwra)|® Se(w)
= 45sin® (w—;i) Se(w)
=2[1 — cos(wTq)] Se(w) (4.23)
) (wrd)QSg(w)

where the first approximation holds as long as wry < 1. Since 74 is related to
the carrier frequency, as discussed in Section 3.5.2, this is usually the case inside
the baseband.

Expression (4.23) demonstrates that the required quadratic noise shaping
is established as a result of the correlation between both FM waves (the wave
subjected to demodulation, and the reference wave) at the PM demodulator
input. At low frequencies, the correlation is almost unity, resulting in a very
small phase difference. At high frequencies, the correlation gradually decreases,
resulting in a larger phase difference.

Internal Noise Generation

The discussion on internal noise of FM-AM converters showed that part of
this noise is shaped by the converter transfer, i.e. transferred to the output
according to the FM transmission scheme, while the other part is not shaped,
and transferred according to the AM transmission scheme.

In FM-PM converters (a delay-line), the internally generated noise is not
shaped by the converter transfer, but transferred to the FM demodulator output
according to the PM transmission scheme. Therefore this noise inevitably results
in a deteriorative white noise floor at the demodulator output. This behavior
can be explained by the observation that the shaping is established on the basis
of the correlation between the input signal of the FM-PM converter and its
output signal, as discussed previously. The noise produced inside the converter
is uncorrelated with the input signal of the delay-line, and therefore cannot be
shaped with the aid of the correlation between the converter input and output
signal.

The only means to minimize the contribution of the internal noise to the
demodulator output noise, besides minimization of the intensity of the noise
sources, is to maximize the amplification applied to the FM wave prior to FM-
PM conversion.
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4.5 PM Demodulator Design

PM demodulators perform the actual demodulation of the FM wave in FM
demodulators based on FM-PM conversion. As discussed in Section 3.5, the
position and type of the PM demodulator included in the FM demodulator
architecture differs considerably among the four FM demodulation algorithms
based on FM-PM conversion.

This section briefly outlines the main characteristics of PM demodulators,
that affect the FM demodulator SNDR. A slightly more detailed discussion
of phase detector design is contained in Chapter 7, in conjunction with phase
feedback demodulators.

Section 4.5.1 considers minimization of the distortion in PM demodulators,
while Section 4.5.2 discusses the noise performance.

4.5.1 Distortion Minimization

At an architectural level of consideration, distortion in PM demodulators is
due to simplification of the rather complex general PM demodulator structure,
depicted in figure 3.30a. For example, distortion is introduced into the transfer
of the multiplicr PM demodulator of figure 3.30c, due to its sinusoidal transfer.

A frequently encountered technique to linearize the transfer of the PM de-
modulator depicted in figure 3.30c, is to change the shape of the waves that enter
the multiplier in this architecture from sinusoids to square waves, by insertion
of hard-limiters at both demodulator inputs (the signal input and the reference

1nnnf\ In that case, the demodulator “On;lx;Lbu;Au‘y yhanges from a sinusoid to

a trlangular wave, which is exactly linear in bounded intervals.
Another technique that linearizes the transfer is replacement of the multiplier
by a sampler, resulting in a sawtooth demodulator characteristic.

4.5.2 Noise Minimization

The influence of PM demodulators on the noise performance of FM demodula-
tors based on FM-PM conversion is similar to the influence of AM demodulators
in FM demodulators based on FM-AM conversion.

In the first place, in order to prevent a significant increase of the FM demod-
ulator output noise floor (and a decrease of the SNDR), the built-in phase offset
present in many types of PM demodulators has to be canceled by an opposite
phase shift realized by the FM-PM converter, or by an additional phase shifter.
As opposed to some types of AM demodulators, PM demodulators do generally
not require a non-zero offset component in order to operate properly.

Secondly, similar to AM demodulators, noise generated internally in PM
demodulators results in a white noise floor at the PM demodulator output.
Therefore, especially in FM demodulators based on FM-PM conversion with
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the aid of a fixed time-delay, where the PM demodulator output equals the FM
demodulator output, it is essential to minimize the internally generated noise,
in order to prevent deterioration of the output SNDR. In such demodulators, no
shaping is applied to this noise. Oppositely, in FM demodulators based on post-
detection conversion, the internal noise of the PM demodulator is shaped by the
phase-frequency converter, and in general does not significantly deteriorate the
SNDR.

4.6 Conclusions

This chapter considered the design of the four types of subsystems encountered
in FM demodulators.

It was shown that a carrier-induced offset in the instantaneous frequency of
the FM demodulator output, FM-AM converter output carrier amplitude, and
FM-PM converter output carrier phase may considerably reduce the demodula-
tor Dynamic Range (DR). It reduces the maximum allowed signal power, and,
when amplitude noise is not or only partly eliminated, also increases the noise
floor.

Minimization/ elimination of the carrier-induced offset is possible in two
fundamentally different ways; by application of a zero-IF architecture and a low-
pass FM-AM or FM-PM converter, or by application of a band-pass FM-AM
or FM-PM converter. When a nonzero built-in phase offset exists in the PM
demodulator, contained in an FM-PM conversion FM demodulator, an extra
phase shifter is generally required, or the periodicity of the PM demodulator
transfer has to be exploited in order to suppress the offset.

In FM-AM conversion demodulators, the minimum allowed level of the offset
is determined by the applied type of AM demodulator. AM modulus demodu-
lators do not allow a zero-valued offset, as opposed to AM projection demodu-
lators, and are therefore unsuited for realization of high-DR FM demodulators.

The distortion introduced by low-pass FM-AM converters is minimized when
their frequency characteristic equals an ideal differentiator, cascaded by a low-
pass filter of the Maximum Flat Magnitude (MFM) type. Further, the band-
width of this filter should be sufficiently large to accommodate the FM wave.
For band-pass FM-AM converters, related to low-pass converters by the “bi-
quadratic transformation”, the same conclusions hold.

The distortion introduced by FM-PM converters is minimized when their
transfer is of the Maximum Flat Delay type (MFD). Further, their amplitude
characteristic should be as flat as possible in order to avoid undesired FM-AM
conversion. This can be achieved by application of an all-pass MFD filter.

Noise generated internally in the input circuitry of FM-AM converters is
transferred to the demodulator output by means of the FM transmission scheme,
and therefore results in a slightly increased quadratic output noise spectrum.



124 Chapter 4. FM Demodulator Design

Noise generated in the output circuitry, however, is transferred by means of the
AM transmission scheme, and results in a white noise floor that considerably
deteriorates the output SNR. The influence of this noise should be minimized,
possibly at the expense of larger noise generation at the input. The FM-AM
conversion gain should therefore be realized at the input, and made as large as
possible.

Noise generated internally in FM-PM converters is always transferred to the
output by means of the PM transmission scheme, and therefore results in a
deteriorative white noise floor. The influence of this noise can be minimized
only by sufficient amplification of the input FM wave, and minimization of the
noise generation itself.

Finally, it was shown that the non-informative radial component of the FM-
AM converter output wave cannot be eliminated by limiting of the input FM
wave when the zero in the converter transfer does not match the carrier fre-
quency. In that case, the AM demodulator should suppress this component. It
was shown that only AM projection demodulators possess the ability to suppress
this component.
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Chapter 5

FM Receiver Design

The discussion on FM demodulation principles in Chapter 3, and their imple-
mentation in Chapter 4, implicitly assumed an FM demodulator input signal
that consists of a single noise-free FM wave.

The FM receiver however, which ‘embeds’ the demodulator, is usually con-
fronted with a crowded band of such FM carriers, with different intensities,
separated in frequency by Frequency Division Multiplexing (FDM) and muti-
lated with noise and interference. In order to establish reliable reconstruction
of the FM message signal, the receiver should therefore regenerate a demodula-
tor input signal from the received band of FM carriers, that closely resembles
a single-noise free FM wave. In fact, it should provide the embedding that
maximizes the demodulator performance.

Besides pre-processing of the demodulator input signal, FM receivers gener-
ally also perform some post-processing to improve the quality of the demodula-
tor output signal. The algorithms of these pre- and post-processing operations
necessarily require information of the requested FM wave’s characteristics, in
order to distinct and extract it from noise, interference and other carrier waves.
This information may be acquired in two different ways:

e by inclusion of a priori information in the receiver architecture;
¢ by extraction from the receiver input signal during reception.

Pre- and post-demodulation processing functions implemented according to the
first approach are entirely based on the ezpected characteristics of the FM wave.
The required processing is therefore established only when the actual character-
istics of the FM wave, observed during reception, resemble the expected ones.
Processing functions implemented according to the second approach intro-
duce (adaptive) control schemes into the FM receiver architecture, that adjust
its behavior at the basis of the detected signal characteristics. However, since
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these control schemes themselves generally need to be supplied with some a
priori information, the adjustments are mostly limited to fine-tuning of a coarse
receiver behavior, that is determined with the aid of a priori information. For ex-
ample, a phase locked loop contains a control scheme that adjusts the frequency
of the internal reference, i.e. the controlled oscillator, to the carrier frequency of
the received carrier wave. The free running frequency of the oscillator, a coarse
a priori estimation of the carrier frequency, is included into the PLL architecture
design, while the phase-lock mechanism performs the fine-tuning on the basis
of the detected signal.

The intended improvement of the demodulator input and output signal is
realized only as long as the a priori information, used by the various pre- and
post-demodulation processing functions, is reliable. When e.g. noise and inter-
ference introduce discrepancies between the actual and the expected character-
istics of the FM wave, the a priori information becomes invalid. In that case,
pre- and post-processing is likely to introduce performance degradation, instead
of improvement, since it is ‘deceived’ of the actual characteristics of the FM
wave. Therefore, performance improvement, by inclusion of (additional) a pri-
ori information, is usually obtained at the expense of performance degradation,
whenever this information becomes invalid.

A design strategy for FM demodulators and receivers should therefore be
aware of the trade-offs introduced by the various pre- and post-processing func-
tions.

'I'his chapter investigates the possibilities for inclusion of pre- and post-
processing into the FM receiver architecture, and qualitatively analyzes the per-
formance improvement/degradation it effectuates. A quantitative elaboration of
the most important types of processing is the subject of Chapter 6 to Chapter 8.

The generalized FM receiver architecture depicted in figure 5.1, visualizes
the pre- and post-processing functions considered in this chapter. Besides recep-
tion and initial amplification, these functions may be arranged in six different
classes, that are separately discussed throughout the chapter. Except for FM
demodulation, the main receiver function, all these functions are optional.

Section 5.1 outlines the three types of preprocessing that may be used to
extract the required FM wave. These types are separately considered in de-
tail in Section 5.2 through Section 5.4. The most important FM demodulator
characteristics that determine the output signal quality are summarized in Sec-
tion 5.5. Improvement of this signal by means of post-demodulation processing
is discussed in Section 5.6. Finally, improvement techniques based on adap-
tive feedback/feed forward control schemes, including frequency feedback, are
discussed in Section 5.7. Section 5.8 presents the conclusions.
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out

Figure 5.1: General FM receiver architecture.

5.1 Pre-Detection Processing

The introduction of this chapter discussed already that besides demodulation, an
FM receiver usually contains some pre- and post-processing in order to establish
reliable reconstruction of the transmitted intelligence.

This section gives an overview of the three distinguishable types of pre-
demodulation processing functions, and outlines their main characteristics. Each
of these functions is separately analyzed in Section 5.2 through Section 5.4.

Section 5.1.1 relates the three types of pre-processing to each other, while
Section 5.1.2 through 5.1.4 outline their main characteristics.

5.1.1 Extraction of the Requested FM Wave

Since frequency modulation belongs to the class of FDM transmission schemes,
as discussed in Chapter 2, the signal detected by an FM receiver usually consists
of a large number of carrier waves, (equally) spaced over the assigned frequency
band. Familiar examples of such systems are found in radio broadcasting, satel-
lite communications and (wireless) telephony.

Reconstruction of the requested intelligence requires extraction of the corre-
sponding FM carrier from the receiver input signal, prior to demodulation. This
extraction operation requires a priori knowledge of the FM wave’s characteris-
tics. Since such a wave is characterized by three parameters, frequency, phase
and amplitude, such an extraction may be accomplished by a combination of
the following three separations:
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e separation in spectral frequency (frequency domain);
e separation in phase (time domain);
e separation in amplitude (amplitude domain).

The principles of these separations are separately considered below.

5.1.2 Separation in Frequency

Separation in the frequency domain allows discrimination between signals that
occupy non-coincident frequency bands. It is usually implemented by means of
linear filtering.

The required a priori information consists of the edge-frequencies, or, alter-
natively, the center-frequency and bandwidth of the frequency range occupied
by the signal of interest. All signals located outside this range should be sup-
pressed, while the one(s) inside should remain unaffected by this operation.

Although linear filtering implements the requested separation, it is simul-
taneously one of the causes of distortion in the reconstructed FM intelligence,
observed at the demodulator output. Especially in case of narrow-band filter-
ing, considerable distortion is observed. This nerrow-band filtering distortion
is due to the nonlinear nature of frequency modulation. A filter that performs
linear operations on the FM carrier wave, simultaneously performs nonlinear
operations on the intelligence contained in the instantaneous frequency, as a
result of the FM scheme: linear distortion of an FM wave results in nonlinear
distortion of the FM message signal contained in that wave. Estimation of this
distortion and filter design for minimum distortion is considered in Section 5.2.

5.1.3 Separation in Phase

Separation of signals located in coincident frequency ranges, e.g. the requested
FM wave mutilated by co-channel interference, cannot be established by means
of frequency selectivity. Instead, separation in phase, established by phase se-
lectivity, should be established.

Especially in crowded frequency bands, such as those assigned to mobile
telephony and satellite communications, co-channel interference seriously de-
teriorates the demodulator output signal quality, by virtue of the well-known
capture effect. Due to this effect, see e.g. [1], the instantaneous frequency of
the composite wave, i.e. the addition of the requested FM wave and the co-
chaunnel interferer, essentially copies the intelligence contained in the instan-
taneous frequency of the strongest wave, while the intelligence of the other(s)
is suppressed. This yields especially annoying results when both waves are of
comparable strength. In that case, the demodulator output randomly switches
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between the requested intelligence and the intelligence contained in the inter-
ferer. The deterioration of the demodulator output signal due to this effect is,
among others, analyzed in [2, 3].

Separation in phase allows discrimination between carrier waves that occupy
the same frequency range, but possess different instantaneous phases. Applied
in combination with an FM demodulator that intrinsically contains phase se-
lectivity, such as phase feedback demodulators, this approach may be used to
suppress co-channel interference. A receiver architecture that establishes sup-
pression of co-channel interference is discussed in in Section 5.3.

5.1.4 Separation in Amplitude

Separation in amplitude, established by compression of the modulation con-
tained in the carrier amplitude, allows discrimination between weak and strong
signals with the same frequency and phase. In FM demodulators, amplitude
compression, usually implemented by means of a (hard-) limiter, has found
wide-spread application as means to suppress amplitude modulation introduced
by (weak) additive noise.

At high input CNRs, this operation establishes a considerable improvement
of the demodulator output SNR, by application of the a priori knowledge that
only the instantaneous phase/frequency of the FM wave, which is orthogo-
nal/independent of the carrier amplitude, contains the intelligence. Despite
this fact, it is observed from Chapter 3 that the output signal of many types
of FM demodulators depends on the demodulator input carrier amplitude as
well. Noise and interference contained in this amplitude therefore penetrates
the output signal, and reduces the output SNR. Eventually, this noise reduces
the performance of the entire FM transmission system to a level comparable
with, or even below that of AM.

At low CNRs however, amplitude compression deteriorates the demodulator
output signal by means of so called “click noise”, discussed in Section 5.4, as a
result of the fact that the applied a priori knowledge is no longer valid. At these
CNRs, the instantaneous frequency of the noisy FM wave is no longer a reliable
representative of the transmitted intelligence. Further, it is no longer true that
the carrier amplitude contains no information; it contains information about the
reliability of the intelligence in the instantaneous frequency. Amplitude com-
pression deprives the demodulator from the possibility to distinguish between
reliable and unreliable FM waves, required to prevent severe deterioration of
the output signal. Instead, it forces the demodulator to treat all FM waves in
the same way.

A trade-off between continuous noise and click noise, in order to reduce
the deterioration of the output signal, may be established by application of
finite compression to the demodulator input wave. The details of this trade-off
mechanism are considered in Section 5.4.



132 Chapter 5. FM Receiver Design

5.2 Pre-Detection Frequency Selectivity

Separation in the frequency domain by application of pre-detection, i.e. RF and
IF, frequency selectivity is essential for reliable reconstruction of the transmitted
intelligence in almost every FM receiver. Generally, there are three reasons for
the inclusion of RF and IF frequency selectivity into the receiver architecture:

o selection of the requested FM wave from the received frequency band;
o suppression of out-of-band noise;
¢ prevention of aliasing in subsequent nonlinear operations, e.g. limiting.

In all of these functions, an as small as possible bandwidth, and an as steep
as possible transfer function, of the filter(s) is required, in order to establish a
maximum suppression of interference, noise and aliasing noise/distortion respec-
tively. This maximum suppression results in an as large as possible demodulator
input CNR, and therewith establishes an as low as possible receiver threshold.

However, since narrow-band filtering distorts the intelligence contained in
FM waves, maximum suppression does generally not correspond to a maximum
DR of the demodulator output signal. Instead, the filter bandwidth and transfer
function should be a trade-off between a maximum demodulator input CNR and
minimum distortion of the intelligence.

This section is concerned with the modeling of this distortion, and its im-
plications on the design of RF and IF filters for minimum distortion of the FM
intelligence.

Accurate modeling of distortion introduced by narrow-band filtering is ex-
tremely difficult, and has been the subject of study from the 1930’s on. The
results encountered in literature seem to be confined to very wideband FM
waves, with large frequency deviation ratios, and narrow-band waves, with very
small deviation ratios. Both types of waves require different modeling, and are
therefore considered in separate sections. Section 5.2.1 considers the distortion
in wideband waves, while Section 5.2.2 considers the distortion in narrow-band
waves. Both sections focus on qualitative understanding of the distortion, and
its implications on RF and IF filter design.

5.2.1 Distortion in Wideband FM Waves

This section investigates the distortion introduced in wideband FM wave by
means of linear filtering. We first discuss the two distortion mechanisms and
their cause. Subsequently, their implications on the design of low-distortion FM
receivers are considered.
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Distortion Modeling

Linear-filtering distortion in wideband FM waves is conveniently modeled by
means of the quasi-stationary approximation. In such waves, the bandwidth of
the intelligence is much smaller than the transmission bandwidth, which allows
them to be modeled as sinusoid that slowly swings along the FM transmission
bandwidth. The same approach was applied already in Chapter 4, to the design
of low-distortion FM-AM and FM-PM converters.

The linear-filtering distortion observed in the demodulator output signal is
the resultant of two different distortion mechanisms:

e distortion due to a nonlinear spectral phase characteristic;
e ‘parasitic’ FM-AM conversion;

The first type of distortion is due to the effect that in practical RF/IF
filters, the various spectral frequencies in the FM wave are subjected to unequal
time-delay’s. This effect may be viewed as a kind of ‘dispersion’, similar to
wavelength dispersion in e.g. optical fibers. In bandpass-filters (BPF), this
type of distortion results in a kind of ‘clipping’ of the FM message wave, as
schematically depicted in figure 5.2.
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Figure 5.2: Phase distortion in band-pass filters.

The same type of distortion was considered already in Section 4.4, in con-
junction with low-distortion FM-PM converter design. It was concluded there,
that minimum distortion, corresponding to a maximally linear phase character-
istic, is attained with so called Maximum Flat Delay (MFD) filters. An all-pole
MFD transfer is (approximately) realized by Bessel-Thompson filters [4]. For
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such filters, the second derivative of the phase characteristic at the filter’s center
frequency equals zero.

The second distortion mechanism corrupts the intelligence when the demod-
ulator output signal depends on the input carrier envelope. As observed from
Chapter 3, in the absence of amplitude compression, this is the case for many
FM demodulator types. The FM-AM conversion is due to a nonzero slope of
the filter’s spectral magnitude characteristic, as depicted in figure 5.3.
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Figure 5.3: “Parasitic’” FM-AM conversion in band-pass filters.

Since the output signal of most types of FM-demodulators depends on the
FM receiver input carrier amplitude, when no or finite amplitude compression is
applied to their input signal, the amplitude fluctuations caused by this FM-AM
conversion generally penetrate the output signal.

Section 4.2 discussed this type of distortion already in conjunction with the
design of low-distortion FM-AM converters. It was concluded there that ‘par-
asitic’ FM-AM conversion is minimized by Maximum Flat Magnitude (MFM)
filters. An all-pole MFM transfer is realized by Butterworth filters.

Basically the same conclusions were obtained by Roder [5] in 1937, and
confirmed by his measurements on a single-tuned LRC-circuit and two coupled
RLC-circuits.

Low-Distortion Design

It is clear from the previous analysis, that simultaneous minimization of both
types of distortion results in conflicting requirements on the filter transfer; phase
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distortion and amplitude distortion cannot be minimized simultaneously by the
same band-pass filter transfer, since MFD and MFM band-pass transfers are
different.

In fact, this means that insufficient degrees of freedom are left by the filter
transfer for an optimal design. According to the orthogonalization principle (see
Section 3.1.3), distortion minimization should therefore be achieved by inclusion
of an additional function into the receiver architecture. One of both distortion
types should be minimized by this function, while the other one is minimized by
optimization of the filter transfer. This approach yields two possible solutions
of the distortion minimization problem, as discussed below.

MPFD Filter and Amplitude Compressor The first solution applies an
MFD filter in order to minimize the phase-distortion, and an “amplitude com-
pressor”, such as a limiter or a fast AGC, in order to remove the amplitude
modulation introduced by parasitic FM-AM conversion. High order MFD fil-
ters yield a very linear phase characteristic, resulting in low phase-distortion.
However, compared to e.g. MFM filters, the noise bandwidth of MFD filters is
relatively large, which is unfavorable for the demodulator input CNR, and the
threshold level. Further, the magnitude characteristic of high order MFD’s is
considerably steeper than the slope of low order MFD’s, resulting in consider-
able FM-AM conversion. At high CNRs, this AM modulation is eliminated by
the amplitude compressor. At low CNRs however, this modulation may some-
what decrease the average compressor input carrier power level (see figure 5.3),
which reduces the effective input CNR and thereby increases the threshold level.

Consequently, a trade-off between the demodulator DR at high CNRs (above
threshold) and the threshold level exists.

MFM Filter and Phase Equalizer The second solution applies an MFM
filter in order to minimize the FM-AM conversion, and a separate (all-pass)
equalizing filter in order to cancel the phase-distortion. Again, high order filters
result in negligible FM-AM conversion, but at the same time cause considerable
phase distortion. An equalizing all-pass filter may somewhat reduce this dis-
tortion, but exact cancellation is generally impossible. Therefore, the resulting
distortion in the demodulator output signal is generally larger than the distor-
tion level attained with the first solution. At the same time however, since the
noise bandwidth of MFM filters is smaller than the noise bandwidth of MFD
filters of the same order and the same bandwidth, the demodulator input CNR
is larger than in the first configuration, which means that the threshold level
will be smaller. Again, this shows the existence of a trade-off between the the
demodulator DR and its threshold level.
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5.2.2 Distortion in Narrow-Band FM Waves

This section considers the modeling of linear-filtering distortion in narrow-band
FM waves, and its implications on the design of low-distortion FM receivers.
Modeling of the distortion in these waves is of interest, e.g. in the design of
frequency feedback receivers, considered in Chapter 8.

Distortion Modeling

The distortion introduced by linear-filtering in narrow-band FM waves cannot
be modeled properly with the aid of the quasi-stationary approach, since the
transmission bandwidth and the bandwidth of the message signal are in the same
order of magnitude. In order to attain insight into the distortion mechanism,
one has to resort to approximate analytic models, that exploit the narrow-
band property. Such models have been obtained only for two specialized cases:
modulation that resembles Gaussian noise [6], and modulation that resembles a
sinusoid, described e.g. in [7, 8]. Further, all these models consider only phase-
distortion; AM modulation due to parasitic FM-AM conversion is assumed to be
eliminated by a hard-limiter. The sequel of this section is confined to the model
for Gaussian noise modulation, since that model is best suited to gain insight
into the distortion mechanism. The model for sinusoidal modulation is merely
a straight-forward elaboration of the well known Bessel-function expansion for
the FM spectrum, as described e.g. in [1].

A useful approximate model for linear-filtering distortion in narrow-band
waves with Gaussian modulation, that are passed throngh band-pass filter with
a symmetrical characteristic is developed in [6]. The advantage of this model
in comparison to other models, as discussed e.g. in [5], is that it separates
the phase/frequency of the filtered output wave into components with a clear
physical meaning. Measurements [9] indicate that the model is useful for small
and moderate modulation indices, corresponding to frequency deviations of at
most the same order of magnitude as the signal, but loses accuracy for large in-
dices. We briefly outline the model and consider its implications on FM receiver
design.

The model distinguishes three uncorrelated components in the power density
spectrum of the FM demodulator response to the filtered FM wave:

e a signal component;
e a cross-term between the signal and the distortion;
e a component that consists of distortion only.

For weak distortion the first two terms dominate, while the third one is relatively
small. Therefore, the latter component is neglected in the sequel.




5.2. Pre-Detection Frequency Selectivity 137

Signal Component The signal component represents the demodulator re-
sponse to the intelligence, in the absence of distortion. This component may be
expressed as follows.

Let S;(w) denote the power density spectrum of the FM message, Sy (w)
the power density spectrum of the FM message in the filtered FM wave, and
Hrp(jw) the transfer of the bandpass filter with center frequency w,. The
normalized low pass equivalent of this filter transfer is formally defined as

.\ def Hrr(jw + jwo)
Te(jw) = Har (y) u(w + wo), (5.1)
where u(z) denotes the Heaviside step function (u(z) = 1 for z > 0, u(0) =
1/2, and u(z) = 0 for < 0). In practice, however, it is more convenient
to approximate I'x(jw) by the low pass filter that is related to the band-pass
filter Hrr (jw) by means of the biquadratic transformation [10], as explained in
Section 4.2.1.

It follows [6], that the signal component contained in the power density
spectrum Sj(w) equals the linearly filtered message spectrum Sp(w). Thus,
when this component is denoted by Sé’ (w), we may write

SE(w) = [Twe(jw)|* S5 ). (5.2)

Thus apparently, the spectrum of the message contained in the instantaneous
phase/frequency of the FM wave s filtered by the low-pass equivalent of the spec-
tral magnitude characteristic. This rather remarkable result may be explained
as follows. For narrow-band FM waves, the instantaneous message phase ((t)
is generally much smaller than one radian. Consequently, such waves may be
approximated as

s(t) = Acos[wot + ¢(t)]
= Acosp(t) cos [wot + p(t)] — Asinp(t) sin [wet + (t)] (5.3)
~ Acosw,t — Ap(t) sinw,t.

Since this is essentially the same expression as for an AM wave, except for the
fact that the modulation is in quadrature with the carrier instead of in-phase,!
linear filtering of such a wave has essentially the same effect as filtering of an
AM wave.

1The behavior expressed by (5.2) and (5.3) is also the explanation for the fact that the
phase noise spectrum in harmonic oscillators decreases with 20 dB per decade {11, 12); in
that case, white noise is filtered by the second-order frequency selectivity (resonator) in the
oscillator.
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Cross Term It follows [6], that the cross-term between signal and distortion,
Sg (w), is given by

S§w) =255)z [ U ReLu ()T ()T iy — e dy
S‘P

‘;};”’ TColiy) P dy.  (5.4)

) 1 [
— 25, (w) |rm(Jw)|22—7; /

Note that the integral in the second terms equals the power contents of the
linearly filtered instantaneous phase, denoted by ®(t), of which the power
density spectrum is given by (5.2). This indicates that the cross-term is roughly
proportional to the output signal power.

Implications on Low-Distortion Design

Two important conclusions for the design of frequency selectivity in receivers
for narrow-band FM can be drawn from the previously discussed model.

In the first place, since the message signal is filtered by the magnitude charac-
teristic of the RF/IF filter, the high-frequency spectral contents of the message,
and also of the output noise, is usually somewhat suppressed due to the finite
roll-off of the filter. Since this suppression is known from the filter transfer, com-
pensation by means of an equalizing filter at the demodulator output can be
applied, when necessary. However, usually, such compensation is not required.

The second conclusion follows from figure 5.4, that depicts Signal-to-Distor-
tion Ratio (SDR), i.e. the ratio of the power contained in (5.2) and (5.4), for a
fourth-order band-pass filter (represented by its second-order low-pass equiva~
lent), as function of the quality factor Q of the low pass equivalent filter. The
bandwidth of the filter was selected according to Carson’s rule, which is usually
a slightly too small estimation of the actual bandwidth of the FM wave [1, 8].
This is also reflected by the relatively low SDR values in figure 5.4. The FM
message signal was assigned a rectangular spectrum, and a frequency deviation
ratio Aw/W = 0.5, where W denotes the message bandwidth, corresponding to
a narrow-band wave.

The SDR shows a steep optimum for @ = 0.57, corresponding to a Bessel
filter, with a maximally linear phase characteristic. This observation agrees
with the conclusions obtained for wideband waves with the aid of the quasi-
stationary approximation, discussed in Section 5.2.1. Apparently, although that
approximation is formally invalid in this case, it still seems to yield valuable
information, as far as distortion minimization is concerned.

The maximum in the SDR around @ = 1.3 is probably due to the ‘peaking’
of the transfer, that increases the spectral contents of the message at the band
edge, while it does not (yet) result in excessive distortion. The optimum around
@ = 0.6 is theoretically the most proper choice, since it does not result in
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Figure 5.4: Signal-to-Distortion Ratio as function of the quality-factor @ of the
low-pass equivalent.

a ‘peaked’ message (and noise ) spectrum. In practice, the optimum around
Q = 1.3 has the advantage to be relatively shallow, and therefore far more
insensitive to tolerances in the filter transfer than the optimum around @ = 0.6.

5.3 Pre-Detection Phase Selectivity

Frequency selectivity is able to suppress the main portion of noise and inter-
ference in the receiver input signal, as far as it is located outside the channel
occupied by the requested FM wave. Interference located in the same channel
as the requested wave, so called co-channel interference, cannot be eliminated
in this way. This requires the use of ‘phase selectivity’, i.e. the capability to
distinguish between the instantaneous phase of signals with the same frequency.

This section considers a type of receiver architectures intended for suppres-
sion of co-channel interference, by application of phase selectivity. First, the
principles of these architectures are outlined. Subsequently, some implementa-
tions encountered in literature are considered.

5.3.1 Principles of Operation

The architectures capable of co-channel interference suppression reported in
literature are based on the cancellation scheme depicted in figure 5.5. It is
assumed that the signal at the IF filter output equals the addition of two FM
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Figure 5.5: Suppression of co-channel interference by application of phase selectivity.

waves, denoted by s;1(t) and s2(t) respectively, with approximately the same
carrier frequency.

The input signal of the demodulators I and II in this figure equals the sub-
traction of the IF filter output signal, and a reconstruction, symbolized by
the -sign, of one of the two FM waves. The reconstruction is obtained by
re-modulation of the output signal of the other demodulator. When both re-
constructions resemble the original FM waves, this subtraction yields the other
FM wave, which can subsequently be demodulated.

Proper operation of this scheme requires phase selectivity, since the demod-
ulators I and II should keep track of the instantaneous phase of the input FM
wave, and produce a wave that is exactly in anti-phase with it. Further, it is also
required that the amplitude of the reconstruction closely matches the original
amplitude, in order to establish effective cancellation.

5.3.2 Implementations

In [13], an architecture of the type depicted in figure 5.5 was obtained by appli-
cation of estimation theory. In short, such theories, see e.g. [14, 15], consider the
received FM wave, mutilated by noise and interference, as a stochastic process,
of which a certain parameter, the message information, has to be obtained. With
the aid of the probability density of the message, the noise and interference, an
estimator is developed that reconstructs the message information and thereby
minimizes the reconstruction errors due to noise and interference with respect
to a predefined criterion. A Maximum A Posteriori (MAP) estimate, which in
most cases equals the Minimum Mean Squared Error (MMSE) estimate, results
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in a recursive estimation scheme that obtains the new estimate from the pre-
vious estimate and the input signal. Phase Lock Loop (PLL) structures are
considered as the (approximate) physical realizations of such estimators.

The cross-coupled PLL architecture realized (and measured) according to
this estimation algorithm is depicted in figure 5.5. One of both PLL’s, i.e. phase

o0

5,00 + 5,() —
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Figure 5.6: Cross-coupled PLL FM demodulator reported in [13], capable of co-
channel interference suppression.

selective FM demodulators, in this figure locks on the strongest FM wave, which
is possible due to the fact that the capture effect suppresses the weakest. The
controlled oscillator in this PLL produces a reconstruction that has a predefined
phase relation, determined by the nature of the phase detector, with the original
FM wave. With the aid of a phase shifter, this wave is subtracted from the input
of the second PLL, which thereby becomes able to demodulate the weakest FM
wave of the two.

The disadvantages of this structure are that in the first place, it cannot be
predicted in advance which of the two PLL’s locks on the strongest carrier wave,
unless both PLL’s possess different closed-loop transfers. Further, it is usually
unclear which of the two waves, the requested one or the interferer, is actually
the the strongest one. In order to solve this problem, the received FM waves
should contain a unique identifier, that describes its origin. Secondly, in order to
establish cancellation of the interference with the aid of a reconstructed carrier,
their amplitudes should match very accurately. The architecture in figure 5.6
does not provide means to establish this automatically. In [16], amplitude detec-
tors are added to the architecture for this purpose, while in [17], the subtraction
at the PLL inputs is replaced by a controllable notch filter, that suppresses the
interferer. Finally, since all schemes are based on the phase lock principle, they
inherently suffer from the disadvantages of a PLL architecture (see Chapter 7),
such as cycle-slipping and loss of lock phenomena.
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5.4 Pre-Detection Amplitude Selectivity

Section 5.4 mentioned already that considerable improvement of the FM demod-
ulator output SNR may be achieved by application of infinite compression to
the input carrier amplitude, i.e. by pre-detection amplitude selectivity. Further,
it was mentioned that this improvement is established at the expense of the gen-
eration of click noise, that deteriorates the output signal quality at low CNRs.
Especially in FM receivers intended for the reception of audible intelligence, this
type of noise yields extremely annoying results.

This section qualitatively investigates the mechanisms that constitute the
SNR improvement at high input CNRs, and the deteriorative click noise at low
CNRs. It is shown that, in order to improve the intelligibility of the output
signal at low CNRs, a trade-off between click noise and continuous noise may be
established by application of finite compression to the demodulator input wave,
instead of the usually applied infinite compression. This improvement technique
is particularly suited for applications where operation above threshold cannot
be guaranteed, such as car radio. Other improvement techniques, elaborated
in Section 5.7, Chapter 7 and Chapter 8 are less suited for such applications.
They shift the threshold to a lower input CNR, but at the same time increase
the steepness of the threshold curve, resulting in increased “aggressiveness” of
the threshold.

An outline of this section is as follows. Section 5.4.1 introduces the gen-
eral model, used to describe arbitrary types of amplitude compression systems.
Section 5.4.2 considers the SNR improvement mechanism observed for high in-
put CNRs. Section 5.4.3 explains the click noise generation mechanism in FM
receivers with infinite compression, Subsequently, Section 5.4.4 considers the ex-
tension to click noise in receivers with finite compression. Finally, Section 5.4.5
considers a type of noise that is encountered in the output signal of FM receivers
with finite compression. The quantitative modeling of all mechanisms described
in this section is considered in Chapter 6.

5.4.1 General Amplitude Compressor Model

The models developed in the sequel of this thesis for the FM demodulator out-
put noise require a description of the amplitude compression operation, applied
to the demodulator input carrier envelope. This section describes the general
model, valid for arbitrary, instantaneously reacting amplitude compressors, such
as limiters and fast AGC’s.

We first consider the representation of the compressor output wave, and
subsequently discuss the corresponding description of the demodulator output
signal.
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Amplitude Compressor Transfer

The general model for the amplitude compressor is illustrated by figure 5.7.
The compressor input signal equals the addition of the noise free FM wave s(t)

noise-free
FM wave amplitude
s(t) compressor compressed
+ output wave

GIR(D] [—* y 0 =G[R(D]-cos()

+
n(t) noisy FM wave
additive noise

r(t) = R(1)-cos(-)

Figure 5.7: General model of an amplitude compressor.

from (2.1), and additive Gaussian noise n(t), described in Section 2.3. According
to Chapter 2, the composite noisy FM wave r(t) may be written in polar format
as

s(t) +n(t) © r(t) = R(t) cos [wot + o(t) + 6(2)], (5.5)

where the noisy amplitude R(t) and phase noise 8(t) are described by (2.16)
and (2.17) respectively.

The ideal amplitude compressor transforms the input carrier amplitude R(%)
into the output amplitude G [R(t)], while it passes the carrier phase. The output
signal thus becomes

ye(t) = G [R(t)] cos [wot + () + 8(1)]. (5.6)

In practice, amplitude compressors, as e.g. limiters and AGC’s, do affect
the phase of the output wave by parasitic AM to PM conversion of noise, that
corrupts the FM message signal, as a result of their finite response time [18].
At this level of consideration however, such effects are ignored. In (5.6), G|...]
denotes the transfer function of the compressor, or, as e.g. in case of limiters,
its first harmonic response?.

Demodulator Output Signal

A generalized expression of the demodulator output signal, contains the transfer
functions G1 and G5 of two mutually independent amplitude compressors:

yaem (t) = G1 [R(0)] G2 [R()] [2(6) + 6(1)] (5.7)

2In Chapter 6 is shown that it’s often advantageous to use only the first harmonic of the
output, since this yields the highest output SNR.
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This expression covers the various types of demodulators discussed in Chapter 3
in the following way. With respect to their dependence on R(t), three classes of
FM demodulator responses are distinguished:

e the response is independent of R(t);
¢ the response is proportional to R(t);
e the response is proportional to R%(t).

The first response is exhibited by demodulators based on zero-crossing detection
(FM-PM conversion with a fixed phase difference). They intrinsically contain
an amplitude compression mechanism that removes all amplitude noise. Ad-
ditional compression by means of a separate amplitude compressor in front of
such demodulators therefore makes no sense. Their response is represented
by (5.7) when the compressor transfers Gy and G2 equal a proportionality con-
stant. Consequently, this type of demodulators leaves no degrees of freedom
to optimize their sensitivity and response by proper design of the amplitude
compressor transfer

The second response is exhibited by FM demodulators that employ an AM
modulus demodulator, which does not require a reference wave for demodula-
tion. For these demodulators, the transfer G2 (or G1) equals a constant, while
G1 (or G32) corresponds to an optional compressor that precedes the demodula-
tor. The demodulator transfer may therefore be optimized by proper design of
this transfer.

The third response is exhibited by all FM demodulators that employ a refer-
ence wave, e.g. those equipped with an AM projection detector or a quadrature
phase detector. In such demodulators, G; represents the compressor that pro-
cesses the FM wave subjected to the demodulation, while G2 processes the
reference wave required by the AM/PM detector, that is eventually derived
from the input FM wave. Thus, in these demodulators, both G; and G2 may
be used to optimize the demodulator performance.

5.4.2 SNR Improvement Above Threshold

It was mentioned previously that amplitude compression provides an improve-
ment of the demodulator output SNR at high input CNRs. This section in-
vestigates the mechanism of this improvement, as function of the amplitude
compressor ‘transfer function’ G(R).

First, a time-domain representation of the improvement mechanism is dis-
cussed. Subsequently, the corresponding demodulator output noise spectrum
and output SNR are considered.
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Improvement Mechanism

The SNR improvement mechanism established by compression of the noisy de-
modulator input carrier amplitude is based on the compressor behavior depicted
in figure 5.8. The noisy input wave 7(t), corresponding to the phasor 7, is the
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Figure 5.8: Amplitude compressor operation on a noisy input wave. a) compressor
input signal, b) compressor output signal.

resultant of the noise-free FM wave s(t), corresponding to the phasor §, and
the noise n(t), represented by 7. At high CNRs, i.e. when |7| « |5], the noise
components in-phase with s(t), represented by n,;(t), represents the ampli-
tude noise in the input carrier, while the component in quadrature with s(z),
represented by n, ,(t), represents the phase noise (see Chapter 2).

In the phasor representation of the compressor input wave, depicted in fig-
ure 5.8a, the noise components n, ;(t) and n,(t), in-phase and in quadrature
with s(t) respectively, are of the same magnitude (on average), which means
that the tip of the noise phasor 7 describes a circular path around the tip of 5.

In the phasor representation of the compressor output wave, depicted in
figure 5.8b, the tip of the noise phasor 7. describes an elliptic path around
the tip of &, instead of the circular path described by the input noise. Due
to the amplitude compression, the in-phase noise component, representing the
amplitude noise, is (partly) suppressed, while the quadrature noise, representing
the phase noise, remains essentially unaffected. Thus, small signals (and noise)
in-phase with the large FM wave § are compressed, while those in-quadrature
with § remain unaffected.

A mathematical description of the compressor action can be obtained by
means of a small-signal approximation, which exploits the property that the
noise is small compared to the FM wave at high input CNR's. This approxima-
tion, elaborated in Section 6.3, considers the input noise n(¢) as a small ‘signal’,
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that is superimposed on a time-dependent ‘bias’, the wave s(t). With the aid
of expression (5.7), which describes the demodulator output signal in terms of
the amplitude R(t) and the frequency noise 6(t), expression (2.16) and (2.19),
which express R(t) and 6(t) in terms of the noise components ns ;(t), ng 4(t),
and their derivatives, the demodulator output signal can be expanded into a
Taylor series to the noise components. This series expansion yields two inter-
esting conclusions, concerning the transfer of small noise from the amplitude
compressor input, to the FM demodulator output signal (see Section 6.3). It
is shown that, in terms of the compressor transfer G(R) = G1(R)G2(R) (see
equation (5.7)),

e the amplitude noise is transferred by the small-signal transfer,
e the phase/frequency noise is transferred by the large signal transfer.

This follows also directly from expression (5.7). The amplitude noise repre-
sents (small) deviations of the actual carrier amplitude R(t) from the noise free
amplitude A, and is therefore transferred by the small signal transfer. The
instantaneous frequency is multiplied by the input carrier amplitude, and is
therefore transferred by the compressor large signal transfer.

Consequently, amplitude compression, and (partial) suppression of the noise
is established by the fact that the amplitude noise n, ;(t) is transferred by a
different transfer than the phase noise n, 4(t). The achieved level of compression
may therefore be expressed in terms of a compression factor, equal to the ratio
of both transfers. In the sequel, however, it appears to be more convenient to
use the inverse compression factor, instead of the compression factor itself. This
factor is defined as follows.

Definition 1 The inverse, first-order amplitude compression factor, denoted
by Cpn1(A), equals the ratio of the amplitude compressor small-signal transfer

Q%—(Rﬂll and the compressor large signal transfer G(R)/R|g_ 4,

def R OG(R)
Cna(4)= G®) OR |py’ (5.8)

where A denotes the amplitude of the FM wave s(t).

This definition is consistent with the strict definition of the compression factor,
i.e. 1/Ch1(A), used for AGC’s (see e.g. [19]).

Thus, according to definition 1, compression is established when C, ;(A) <
1. Furthermore, infinite compression is established when the inverse compres-
sion factor equals zero, i.e. Cp 1(A4) = 0. In that case, the in-phase component
of the compressor output noise vanishes completely.
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Output Noise Spectrum

The effect of amplitude compression on the power spectral density of the demod-
ulator output noise is as follows. Generally, if the spectrum of the input noise
n(t) is flat over the entire FM bandwidth, the demodulator output noise power
spectral density (PSD) consists of two mutually uncorrelated components:

e a parabolic shaped component, representing the frequency noise é(t);
¢ a white component, representing the contribution of the amplitude noise.

Both components are sketched in figure 5.9. The parabolic shape of the first

Toutput noise spectrum

frequency noise
parabolic

I
|
1
|
|
1
|

)
)
)
)
P
'
'
!
[

______ , amplitude
! , noise floor
: @
! ]
-W,l W 0 w W" T

Figure 5.9: Demodulator output noise spectrum above threshold.

component, a result of the differentiation to time from phase noise to frequency
noise, is responsible for the improved transmission capabilities of FM, in com-
parison to AM. The parabolic shaping moves the largest portion of the input
noise power from low frequencies, where the message signal resides, to high
frequencies, where it is easily eliminated by a low-pass filter.

The white component, which is proportional to the squared inverse com-
pression factor C2 | (A), introduces a considerable amount of noise at baseband
frequencies, and therefore deteriorates the output SNR. This component should
thus be minimized by choosing Cp, 1(A) as small as possible, which is effectuated
by application of a maximum level of compression (in the ideal case infinite) to
the input carrier amplitude.

Output SNR

The demodulator output SNR corresponding to the noise spectrum of figure 5.9
may be calculated as (see Chapter 6)

3
SNRoy = — 2 W (5.9)
1
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where W, denotes the FM transmission bandwidth, W the message bandwidth,
Aw the RMS frequency deviation and p the input CNR. As discussed below,
this expression hides some interesting conclusions concerning the output SNR
of the three demodulator classes distinguished in Section 5.4.1.

Output Signal Independent of Carrier Amplitude When G(R) is a
proportionality constant independent of R(t), the inverse compression factor
Chr,1{A) equals zero, and consequently infinite compression is established. In
that case, all amplitude noise is suppressed, the white noise floor vanishes, and
the output SNR (5.9) attains the maximum value given by (2.21).

Output Signal Proportional to Carrier Amplitude When G(R) is pro-
portional to R(t), the inverse compression factor C,, 1(A) = 1. In these systems,
the amplitude noise deteriorates the performance of the FM system to the level
of an AM transmission system. As observed from (5.9), the output SNR ap-
proaches the SNR of a Double Side Band (DSB) demodulator with transmission
bandwidth W,,, and message bandwidth W [1].

Output Signal Proportional to Squared Carrier Amplitude When
G(R) is proportional to R%(t), it follows from (5.8), that the inverse compression
factor Cp 1(A) = 2. The output SNR of the FM demodulator is at least 6 dB
below the level achieved with a comparable DSB system, due to the fact that
both the demodulated wave and the reference wave used during demodulation
contribute (mutually correlated) amplitude noise to the output signal.

5.4.3 Click Noise Generated by Infinite Compression

It is well known that the threshold effect in FM demodulators, i.e. the phe-
nomenon that the demodulator output SNR decreases faster than predicted
by (5.9) at low CNRs, is a direct consequence of the generation of impulsive
noise, usually called “click noise” [20]. This noise consists of discrete pulses of
high energy, with a rate that rapidly increases when the input CNR decreases.

The first attempts to model the FM threshold effect [21-26], based on Rice’s
work concerning the statistical properties of random noise [27-29], resulted in
rather complicated mathematical descriptions. Despite their scientific relevance,
their value in engineering practice is limited, due to the mathematical complex-
ity, and the absence of the perceptive notion of click noise. Further, these models
consider some special types of amplitude compressors only, and do not hold for
arbitrary amplitude compressor transfers.

The first suitable engineering models of the threshold effect, that explicitly
include the notion of click noise, were independently developed by Cohn [30]
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and Rice [20]. These models consider demodulators with infinite amplitude
compression only, i.e. elimination of all amplitude noise.

This section discusses the principles of the click noise model, and the mecha-
nism that constitutes the generation of this noise, for FM receivers with infinite
compression. Section 5.4.4 considers the extension of this model to arbitrary
types of compression.

First, the click noise generation mechanism is outlined. Subsequently, the
basics of the click noise model are discussed. Finally, expressions for the de-
modulator output click rate and power spectral density are given for important
types of FM message signals.

Click Noise Mechanism

Click noise is basically due to the introduction of zero-crossings by the input
noise n(t) into the composite amplitude compressor input wave r(t).

The effect of the noise-induced zero crossings on the output signal of the
amplitude compressor, which, without loss of generality, will be modeled by
an ideal hard-limiter, and the output signal of the demodulator is illustrated
by figure 5.10. Figure 5.10a depicts minus the input wave s(t), the noise n(t),
and the corresponding composite compressor input wave r(t). Besides shifting
the zero-crossings introduced by s(t), resulting in continuous phase/frequency
noise at the demodulator output, the noise introduces additional zero crossings,
or cancels crossings introduced by s(t), when its intensity temporarily exceeds
—s(t). Each time this occurs, two zero crossings are introduced into r(t), or,
alternatively, one is canceled. Around the threshold, it is on average, still very
unlikely that n(t) exceeds —s(t) for a long time. Therefore, both induced zero-
crossings follow shortly after each other.

The compressor response, depicted in figure 5.10b, equals the polarity of
the composite input wave r(¢). Therefore, each time the noise introduces intro-
duces/cancels zero-crossings in r(t), this response rapidly gains/losses one cycle
with respect to the noise free FM wave s(t). During such an event, the phase
difference between r(t) and s(t), i.e. the phase noise 6(t), increases/decreases
nearly stepwise by an amount 27. Consequently, its derivative, the frequency
noise #(t), shows an impulse of area 27, i.e. a click. In FM receivers with infinite
compression, the noise observed at the demodulator output is proportional to
é(t), and therefore shows the same impulse, as depicted in figure 5.10c.

A phasor representation of the click noise mechanism is depicted in fig-
ure 5.11. In this figure, generation of a click corresponds to an encirclement of
the noise phasor n(t) around the origin. During such an event, the phase noise
6(t) increases/decreases by 2, resulting in an impulse of area 27 in 6(t).
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Figure 5.10: Origin of click noise. a) compressor (limiter) input signal, b) output
signal, ¢) demodulator output signal.

Click Noise Model

The approximate models developed in {20, 30] start from the description of the
FM demodulator output signal in the presence of infinite compression. In that
case, G; and G- in (5.7) are proportionality constants, resulting in an output
signal that is directly proportional to the instantaneous frequency of the input
FM wave r(t), i.e.

yaem(t) = G, [0(8) + 6(8)] (5.10)

Based on this expression, the following approximations are applied.
In the first place, the frequency noise 8(t) is decomposed into two components
that are considered mutually independent:

e continuous frequency noise, that behaves as described in Section 5.4.2;
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Figure 5.11: Phasor representation of the click noise mechanism.

e impulsive noise, consisting of a stochastic train of pulses.

According to a theoretical study in [31], the assumption on the approximate
independence of both components is justified, at least in the threshold region, i.e.
input CNRs typically around 10 dB. This can be explained by the observation
that click noise completely dominates the demodulator output during a noise
impulse, and therewith temporarily suppresses the FM message signal and the
continuous noise. In this view, clicks and the continuous demodulator output
components do not coexist on the same instant, and are therefore uncorrelated.

Secondly, the click pulses are not described instantaneously, i.e. by the pulse
intensity as function of time, but by two stochastic averages:

e the area of a single click pulse;
e their average rate of occurrence.

The shape of the click pulses is approximated by a Dirac-impulse, due to their
short duration. This averaged description is the main strength of the click noise
model that, in comparison with previous threshold models, yields a significant
simplification.

In a receiver with infinite compression, the average click pulse area is a rather
trivial parameter, since the area of all such pulses in G(t) equals, by definition,
exactly 27. In receivers with finite compression however, considered in the next
section, this is no longer the case.

The average rate of clicks is entirely determined by the properties of the
compressor input signal 7(t) = s(t) + n(t), and is therefore, at least in a first
approximation, independent of the amplitude compressor transfer G(R). In
order to calculate these rates, it is assumed in [20, 30] that clicks are mutually
independent, which means that they can be modeled as Poisson processes. This
is allowed, since the click rate around the threshold is still very low; in FM
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receivers for audio broadcasting, the click rate at the threshold is in the order
of one per second [20]. Further, the encirclement performed by 7 during a click
is modeled as a crossing event. It is assumed that the encirclement is completed
(with a probability of unity) when 7 crosses through —3 (see figure 5.11), i.e.
when the phase noise 6(¢) mod 27 exceeds w. The rate of these crossings is
subsequently determined exactly.

Power Spectral Density and Click Rates

The double-sided power spectral density of click noise écuck(t), is essentially
white within the baseband, due to the impulsive, and consequently wideband,
nature of the click pulses. As discussed in Section 5.4.2, a white noise floor
results in considerable deterioration of the demodulator output SNR. When N,
and N_ denote the rates of anti-clockwise and clockwise origin encirclements
performed by 7 respectively, it can be shown, that the double-sided click noise
spectral density, denoted by S;_  (w), equals the total click rate times the
squared frequency spectrum of a single click pulse [20], i.e.

Siuie (@) = 4% (N4 + N-), (5.11)

were the factor 4w2 represents the squared click pulse area.

The click rates N, N_ have been calculated in literature for a large number
of different situations, including the presence of oscillator phase noise in 7(t) [32],
and co-channel interference [2]. The results derived in [20] for the cases of
interest in the sequel of this thesis are briefly outiined below.

Unmodulated Carrier The case when the FM wave s(t) is an unmodulated
carrier is of considerable theoretical interest, since it allows comparisons be-
tween the performance of various types of FM demodulators, with minimum
complexity of the models. For this case, it can be shown, that N, and N_ can
be obtained exactly, i.e. without approximation, as

Ny =N_= 2[1 — erf (/)] (5.12)

where r denotes the so called radius of gyration, defined as

pder 1| oo w?Sn(w)do (5.13)
2w ffooo Sp(w)dw ’ '
where S,(w) denotes the power density spectrum of n,;(t) and n,4(t). This
parameter represents the total, average number of zero-crossings that occurs in
ns,i(t) and ns 4(t) per unit time, which follows from (5.12) by setting p = 0.
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Gaussian Modulation For additive Gaussian noise and Gaussian message
signal ¢(t) with an RMS frequency deviation equal to Aw, N} and N. can be
shown to satisfy [20]

1+p ()’
Ny =N_=x - ——amrs | .14
+ r exp(—p) Inp (5.14)
Sinusoidal Modulation For sinusoidal modulation with maximum frequency
deviation Aw, the click rates can be shown to be

N+=N_%

Aw rexp(—p) Aw\? p [ Aw\®

— - —_— -= |z | — .1

2m2 exp(~p) + Varp exp 2rr 12 \ 2nr (5.15)
is obtained. Here Iy(.) denotes the zero-th order modified Bessel function of the
first kind. Although the appearance of the expressions (5.12), (5.14), and (5.15)
is quite different, it follows in all three the cases that the click rates increase
approximately exponential for decreasing input CNRs. Therefore, when the

click noise dominates, the relation between the demodulator output SNR and
the input CNR becomes approximately exponential.

5.4.4 Click Noise Generated by Finite Compression

It was previously mentioned in this chapter that application of finite compres-
sion instead of the usual infinite compression to the input carrier amplitude
establishes a trade-off between click noise and continuous noise. This section
explains the mechanism of this trade-off.

A problem that arises in the discussion on receivers with finite compression
is that the click noise models encountered in literature are confined to receivers
with infinite compression. A click noise model for the case of finite compression
has, as far as known, not been developed. Therefore, such a model is developed
in this thesis. This section outlines the principles of the newly developed model,
while Section 6.5 develops the mathematical formulation.

First, the mechanism of the trade-off between click noise and continuous
noise is discussed. Subsequently, the requirements on the compressor transfer in
order to establish click noise suppression are considered. Finally, the principles
of the extended click noise model are discussed.

Trade-off Mechanism

According to (5.7), the output noise of FM receivers with finite amplitude com-
pression is besides by the frequency noise 6(t), also determined by the noise in
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the carrier amplitude R(t). This differs from receivers with infinite compression,
where the latter contribution is completely suppressed.

The level of click noise observed at the demodulator output in such receivers
is therefore the resultant of two processes:

e generation of click pulses in the frequency noise é(t);
o correlation between §(t) and the amplitude R(t).

The level of click noise that is generated in (¢) is not affected by the ampli-
tude compressor or the demodulator, as long as no phase- or frequency feedback
is applied. As discussed in Section 5.4.3, this process is entirely determined by
the input waves s(t) and n(t). This is also reflected by expression (5.7); the com-
pressor does not affect 6(t) itself, but only its contribution to the demodulator
output signal. )

The correlation between 8(t) and R(t) provides a means to suppress click
noise in the demodulator output signal, and is the basis of the trade-off be-
tween click noise and continuous noise. A click in the frequency noise 8(t) is
accompanied by a fade in the carrier amplitude R(t), as discussed below. A
strong dependence on the input carrier amplitude, determined by the compres-
sor transfer G [R(t)], causes the output signal (partly) to fade during the click,
resulting in click noise reduction. However, at the same time, it also enables
amplitude noise to penetrate the output signal, which considerably increases
the level of continuous output noise, as was discussed in Section 5.4.2.

Figure 5.12, that visualizes the demodulator response described by (5.7),
iliustrates the ciick suppression mechanism. The frequency noise t’1\t) represents

Tipsmn@neous frequency

Tdemodulator
o0 +0()
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(partly) suppressed clicks
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Figure 5.12: Partial suppression of click noise in the presence of finite compression,
as a result of correlation between 8(t) and R(t).

the output noise of a receiver with infinite compression. When the amplitude
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compressor transfer passes the fades in R(¢), which is possible only with finite
compression, the click and the fade are ‘multiplied’, resulting in partial click
noise suppression. Thus, in fact, finite amplitude compression partly prohibits
propagation of clicks, generated in 8(t), to the demodulator output.

Noise Fades in the Carrier Amplitude

The origin of the fading mechanism in R(t) follows from the phasor diagram
depicted in figure 5.13, representing the input signal r(t) = s(t) + n(t) during a
click in §(t). For CNRs above and around the threshold, clicks are very rare and

ImT o ,/”— X

Figure 5.13: Fading in the envelope R(t). Click trajectory at high input CNR a),
low input CNR b).

of very short duration. The corresponding excursions of 7, depicted by curve
(a) in figure 5.13, therefore posses an as small as possible length, and closely
encircle the origin. The length of the phasor 7, the amplitude R(t), thereby
temporarily becomes very small, resulting in a fade at the time instant of the
click. At low CNRs, i.e. below the threshold, the duration of the clicks gradually
increases, as a result of the increased probability that the noise n(t) will exceed
the FM wave s(t). As shown by curve (b) in figure 5.13, the increased click
duration corresponds to a larger radius of the origin encirclements of 7. As a
result, the fades in the carrier amplitude R(t) become shallower, but of longer
duration [33-35].

Requirements on the Compressor Transfer

The shape of the amplitude compressor transfer G [R(t)] required to suppress
the click noise in the demodulator output signal follows from the expression for



156 Chapter 5. FM Receiver Design

6(t), obtained by combination of (2.19) and (2.16):

Ms,q(t) [A + ng,i(t)] — 1,i(t)n5,4(2)
R2(t) '

6(t) = (5.16)

The numerator in this expression equals the product of Gaussian noise processes,
and is therefore of a continuous nature. The impulsive nature of click noise in
8(t) is therefore mainly due to the fades in R(t) during the origin encirclements
of 71; when R(t) becomes very small for a short time, a steep pulse is observed
in (5.16).

Thus, as observed from (5.7) and (5.16), in order to eliminate all clicks from
the demodulator output the amplitude compressor transfer G [R(t)] should be
proportional to R%(t), at least at low CNRs. This is realized e.g. when no
amplitude compression is applied at all; in that case, both G; and G2 in (5.7)
are proportional to R(t).

Extension of the Click Noise Model for Infinite Compression

The click noise models [20, 30] described in the previous section, may be ex-
tended to arbitrary types of compression in the following way.

As discussed before, these models describe click noise in terms of the average
click rate, and the click pulse area. The average click rate is not affected by
amplitude compression, since it is entirely determined by the input wave s(t)
and noise n(t).

The click puise area however does depend on the compressor irausfer G {R{t)],
due to the correlation between R(t) and (t). When finite compression is ap-
plied, this area no longer equals 27, as in the case of full normalization, but
becomes dependent on R(t), i.e. on the shape of the encirclement produced by
7.

As shown in Section 6.5, the known click models can therefore be extended
to include finite amplitude compression by replacement of the fixed pulse area
27 in case of infinite compression, with the average area of the pulses observed
at the demodulator output in case of an arbitrary type of compression.

5.4.5 Second-Order Noise

This section considers a type of noise, called “second-order noise” in this thesis,
which is characteristic for FM receivers with finite compression. In fact, in such
receivers, this continuous noise component is part of the trade-off between click
noise and continuous noise.

We first explain the impact of second-order noise on the demodulator output
SNR. Subsequently, an heuristic explanation for its origin is given on the hand
of an example. Finally, its relation with the amplitude compressor transfer is
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considered. A detailed quantitative analysis of second-order noise is given in
Section 6.4.

Impact on the Receiver Output SNR

The impact of second-order noise on the output SNR is illustrated by figure 5.14,
that sketches a typical threshold curve, i.e. output SNR versus input CNR,
of an FM receiver with finite compression. The threshold curve of a receiver
with infinite compression is included as reference. At high input CNRs, the
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Figure 5.14: Typical threshold curve of an FM demodulator with finite amplitude
compression.

dominant noise contribution is due to the first-order continuous noise, discussed
in Section 5.4.2, resulting in an output SNR that increases proportional (10 dB
per decade) to the input CNR, as described by (5.9).

At very low input CNRs, a very steep curve is observed, as a result of
click noise. There, the output SNR decreases exponentially for decreasing input
CNRs, as a result of the exponential increase of the click rate (see Section 5.4.3).

The second-order noise dominates the intermediate region of the threshold
curve, between the click noise and the first-order noise. This noise depends
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on the squared input noise n(t), and therefore (asymptotically) increases the
output SNR by 20 dB per decade. In receivers with infinite compression, or
those without any kind of compression at all (zero compression), second-order
noise becomes noticeable only below input CNRs of about 0 dB. In case of finite
compression however, it is already noticeable at CNRs of 10 — 15 dB. Thus,
at the expense of a decreased output SNR, at high and intermediate input
CNRs, in comparison to infinite compression, finite compression establishes a
‘smoothed’ threshold and a reduced level of click noise, instead of the rather
abrupt threshold and high click noise level obtained with infinite compression.

Origin of Second-Order Noise

The increased level of second-order noise in receivers with finite compression may
be explained in an heuristic way by the presence of “noise-induced modulation”
in the transfer of amplitude noise to the demodulator output.

A clear example of this effect is observed in receivers that establish finite
compression by means of a soft-limiter [36-38], as illustrated by figure 5.15.
Figure 5.15a depicts the compressor (soft-limiter) response to the sinusoidal,

A
compressor output signal

(@

Tamplitude noise transfer

noise modulation (second-order noise)

—e D el e S e

®)

Figure 5.15: Second-order noise in soft-limiting FM receivers. a) compressor (soft-
limiter) output signal, b) corresponding small-signal amplitude noise transfer.

noisy input FM wave r(t). Figure 5.15b depicts the corresponding small-signal
transfer as a function of time. When the input wave is clipped, and the limiter
saturates, this transfer equals zero, while it equals the limiter gain during linear
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operation. The Fourier coefficient corresponding to the fundamental frequency
of this transfer equals the transfer G(A)Cy,1(A) of the amplitude (in-phase)
noise from compressor input to the demodulator output (see Chapter 6).

The modulation effect observed in figure 5.15b, the cause of the significant
amount of second-order noise, is explained as follows. The calculation of the
first-order demodulator output noise, discussed in Section 5.4.2 and Section 6.3,
assumes that the input noise n(t) is very small compared with the FM wave
s(t), such that s(t) determines the value of the compressor transfer G(.), and
the inverse compression factor Cp 1(.). In figure 5.15b, the small-signal transfer
corresponding to the soft-limiter response in the absence of noise, i.e. s(t) alone,
is represented by the drawn curve. In reality, however, the combination of s(t)
and n(t) determines the value of both transfers, since the compressor input
signal equals r(t) = s(t) + n(t) instead of the noise-free wave s(t). Therefore,
the actual positions of the gain pulse edges in figure 5.15, represented by the
dashed curves, that correspond to the value of the input wave s(t) + n(t) where
the limiter is just driven into saturation, slightly differ from the positions in the
absence of noise.

Consequently, the pulse-edge positions are modulated by the noise. The in-
fluence of this modulation is especially significant for low limiter gains, since in
that case the boundary between saturation and linear operation is positioned
close to the top of the input wave, where its slope is small. This illustrates
the fact that the level of second order noise generated at the demodulator out-
put, as a result of the influence of the input noise n(t), highly depends on the
characteristics of the compressor transfer, as discussed below.

Dependence on the Compressor Transfer

Expressed in a mathematically formal way, second-order noise equals the second-
order derivative to the input noise, of the demodulator response to the noisy FM
wave r(t). Equivalently, it equals the first-order derivative of the amplitude noise
transfer, and therefore represents the variations in this transfer (“modulation”)
as a result of the input noise.

An advanced analysis in Section 6.4 shows that the level of second-order noise
observed at the demodulator output is determined by the first-order inverse
compression factor C, 1(A), that also determines the level of first-order noise,
and the second-order inverse compression factor Cp2(A4), that is defined as
follows.

Definition 2 The inverse second-order compression factor, denoted by Cp 2(A),
corresponding to the amplitude compressor transfer G(R), is defined as
def R® 9°G(R)

Cn,2(A) = m——aR—z ha . (517)
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Further, the analysis shows that a minimum amount of second-order noise
is observed when Cj ;(A) = Cp2(A4), i.e. when both compression factors are
equal. This condition is satisfied by receivers with infinite compression, where
Cn,1(A) = Cp2(A) = 0, and receivers without compression, where G(A4) = A2
and Cp 1(A) = Cr2(A) = 2. In receivers with finite compression, however,
the condition is generally not satisfied, which explains the increased level of
second-order noise.

5.5 FM Demodulation

Since the main task of the FM receiver is to provide a suitable embedding for
the FM demodulator, it should not be a surprise that decisions made during the
design of the FM demodulator, i.e. the implementation of the FM demodulation
function, will generally have a profound influence on the receiver architecture.
Besides the FM receiver performance the FM demodulator also determines the
degrees of freedom left to the receiver to adjust/improve this performance.

Implementation of the demodulation function was considered in detail al-
ready in Chapter 3 and Chapter 4. In this section, we summarize the impact of
two main FM demodulator characteristics on the performance, and degrees of
freedom left in the design of the receiver architecture:

e the presence of intrinsic amplitude compression;
e the presence of a frequency offset in the demodulator output signal.

Both these demodulator characteristics are conveniently described by the
following general expression for the demodulator output signal:

Yaem(t) = G1 [R(®) G2 [R(D)] [9(8) + 6(8) + wors] (5.18)
which differs from expression (5.7) only by the frequency offset wogs. This ex-
pression will be used in the sequel to demonstrate the impact of both properties.
5.5.1 Intrinsic Amplitude Compression

As concluded in Section 5.4.1, the amount of freedom in the design of the am-
plitude compressor transfers G; and G- is severely limited by certain types of
FM demodulators. In this respect, three classes of demodulators where distin-
guished:

¢ demodulators that allow free design of both G; and Go;
¢ demodulators that allow free design of G; or G2;

e demodulators that fix both transfers.
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The first transfer-type can be established by the following classes of FM
demodulators:

e FM-AM conversion demodulators with AM projection detection;
e FM-PM conversion demodulators, based on a fixed time-delay;
e post-detection conversion demodulators.

These demodulators somehow employ a reference wave, besides the FM wave
subjected to the demodulation. As an example, figure 5.16 depicts a demod-
ulator based on FM to AM conversion that establishes different transfers G;
and G,. It consists of two cross-coupled balanced math-demodulators, of the
type depicted in figure 3.17. The cross coupling is required in this case in or-

Figure 5.16: FM demodulator with different transfers G1 and Ga.

der to eliminate undesired cross-terms, corresponding to the time-derivative of
G12 [R(1)].

The second transfer-type can, besides by the previously mentioned demodu-
lators, be established by the following demodulator classes, that do not employ
a reference wave:

e FM-AM conversion demodulators with AM modulus detection;
o FM-PM-AM conversion demodulators.

The third transfer-type, essentially uses only the information contained in
the zero crossings of the FM wave, and is realized e.g. by a zero-crossings
detector (FM-PM conversion based on a fixed phase-difference).
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5.5.2 Frequency Offsets

It was noticed already throughout Chapter 3 and Chapterc:FMdesign that an
offset term in the demodulator output signal adversely influences the demodu-
lator dynamic range.

At the upper side of the dynamic range, the offset limits the maximum
(distortion free) swing of the output signal, while it simultaneously increases
the output noise level at the bottom side when no or only finite amplitude
compression is performed. The latter statement follows by application of the
theory discussed in Section 5.4.2, and the analysis to be discussed in Section 6.3,
with the message signal ¢(t) replaced by ¢(t) + wosts. Inspection of (5.18) shows
already that any residual amplitude noise in the output signal of the compressors
G and G2 multiplies the offset woss, and thus increases the highly undesirable
white noise floor at the demodulator output.

The demodulator output SNR above threshold in the presence of wogs, may
be shown to equal

SNRous = % (5) (52)° (5.19)
)

It is clearly shown by this expression that the offset should be kept small com-
pared to the RMS frequency deviation Aw of the message. Otherwise, it sig-
nificantly increases the level of the white noise floor, which deteriorates the
demodulator output SNR.

5.6 Post Detection Processing

Apart from pre-demodulation signal processing, the performance of the demod-
ulator output signal may be significantly improved by application of post de-
modulation processing. In general, post demodulation processing establishes a
reduction of the demodulator output noise, and possibly of distortion. In this
respect, two classes of post processing can be distinguished, that realize different
types of noise reductions:

e reduction of continuous demodulator output noise and interference;
e reduction of click noise.

The continuous demodulator output noise and interference is usually re-
duced by application of linear filtering, including de-emphasis, as discussed in
Section 5.6.1.

Reduction of click noise has been attempted by means of click detection,
i.e. recognition of clicks from the demodulator output signal, and subsequent
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elimination. It is an alternative to application of finite compression to the de-
modulator input wave. As discussed in Section 5.4, finite compression reduces
the level of click noise at the expense of increased level of continuous demodu-
lator output noise. Click elimination on the other hand attempts to reduce the
level of click noise without such a noise increased, i.e. without establishing a
trade-off. This may heuristically explain the limited success of click elimination
in practice, which so far has been able to reduce the FM demodulator threshold
by a few dB’s only. The subject of click detection is considered in Section 5.6.2,
while the associated problem of click elimination is considered in Section 5.6.3.

5.6.1 Baseband Frequency Selectivity

Frequency selectivity may be used to improve the demodulator output signal in
two different ways:

e prevention of aliasing by high-frequency noise in subsequent systems;

e de-emphasis.

Prevention of Aliasing

For reduction of out of band noise and interference, the baseband (low-pass)
filter should possess an asymptotic decay of at least second-order, as illustrated
in figure 5.17. Due to the intrinsic differentiation of FM demodulation, the
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Figure 5.17: Reduction of out of band noise and interference by means of baseband
filtering.

frequency noise at the demodulator output increases with 20 dB per decade,
assuming the spectrum of the demodulator input noise is flat. A first order filter
would stop this increment outside the message bandwidth, by transforming the
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‘triangular’ out of band frequency noise into white noise, but does not eliminate
it. Second and higher order filters cause a decay of the noise spectral density
outside the message bandwidth, and thus eliminate the main portion of the out
of band noise and interference.

De-emphasis

De-emphasis techniques suppress the asymptotic 20 dB per decade increase
of the frequency noise at the top of the baseband, by application of a priori
information on the shape of the pre-distorted message spectrum, as depicted
in figure 5.18. A (standardized) pre-emphasis filter in the FM transmitter pre-
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pre-distorted dB)

message
spectrum noise
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restored message

original
message spectrum
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——

—_—
@ (log) noise frequency de-emphasized
floor noise  frequency noise
Figure 5.18: Principle of noisc reduction by pre- and de-emphasis

distorts the message signal by enhancing its high frequency spectral contents,
before it is modulated on a carrier wave. Basically, the differentiating character
of this filter causes the high frequency contents of the message to modulate
the carrier phase (PM), while the low frequency contents modulates the carrier
frequency (FM). The de-emphasis filter at the output of the demodulator in
the FM receiver restores the original message spectrum and transforms the
triangular noise into white noise by suppression of the high frequency contents,
using the knowledge of the pre-emphasis filter transfer.

The penalty paid for the application of pre-emphasis is an increased FM
demodulator threshold. The pre-emphasis filter enhances the high frequency
contents of the message and thereby increases the RMS frequency deviation of
the corresponding FM wave. According to Carson’s bandwidth formula, expres-
sion (2.8), this causes an increase of the FM wave’s bandwidth (1]. Consequently,
in the presence of noise, the FM receiver input CNR is decreased, and the re-
ceiver threshold is shifted towards a lower intensity of the input noise spectral
density, corresponding to a higher input CNR with respect to the original band-
width of the wave in the absence of pre-emphasis.
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5.6.2 Click Detection

The concept of click detection is based on the idea that the distinctive, impulsive
shape of click pulses should allow their recognition, and subsequent elimination,
from the demodulator output signal. The feasibility of this idea is intuitively
enhanced by the fact that humans are annoyed by click noise, and thus able to
distinct clicks from the message signal and continuous noise. By automation
of click recognition and subsequent elimination, it might therefore be possible
to shift the threshold towards a lower input CNR, and therewith achieve a
significant improvement of the receiver output signal quality.

Automated detection of clicks should at least use information about the
shape of click pulses. Several studies have been devised to obtain detailed
information about this click pulse shape [39-41]. Their results basically confirm
Rice’s very simple click model, at least around the demodulator threshold.

A serious problem in click detection, that limits the attainable performance
improvement, is the fact that clicks are not the only cause of impulses in the
demodulator output signal [42—44]. So called “doublets” produce sharp peaks in
the demodulator output signal as well, but do not contribute to the click noise
or the FM threshold effect initiated by clicks. The difference between clicks
and doublets may be understood from figure 5.19. A click in the instantaneous
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Figure 5.19: Causes of impulses in the demodulator output signal a) a click, b) a
doublet, c) false click.

frequency noise 6(t) corresponds to a trajectory of the noise phasor 7 that
encircles the origin, i.e. curve (a) in figure 5.19, and thereby increases the phase
noise 6(t) by an amount 2w. The impulsive shape such a click observed at
input CNRs around the threshold, is due to the fact that the carrier amplitude
R(t) temporarily becomes very small during the encirclement: the impulse is
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inversely proportional to the squared envelope R?(t). Since the net area of a
click pulse, i.e. the ‘DC-component’ of its spectrum, equals 2w, the spectral
density of click noise contains a significant amount of energy at low frequencies,
i.e. inside the message bandwidth. This low frequency spectral contents causes
serious deterioration of the demodulator output signal.

A doublet corresponds to a trajectory of 7 that closely approaches the origin
of the phasor plane, curve (b) in figure 5.19, resulting in a small value of R(t)
and thus a peak in 8(t), but does not encircle it. The net increment of the
phase noise 8(t) during a doublet, the net area of the corresponding doublet-
impulse in the instantaneous frequency noise 6(t), therefore equals zero. In fact,
a doublet pulse consists of two pulses of equal area and opposite sign, that
follow immediately one after each other. The low frequency spectral contents
of doublet pulses is therefore insignificant and does hardly affect the message
information. The main portion of the doublet-pulse energy is concentrated at
relatively high frequencies, outside the message bandwidth, and may easily be
removed by means of low-pass filtering.

A special type of doublets, so called “false clicks”, correspond to the noise
trajectory described by curve (c) in figure 5.19. Although this curve doesn’t
encircle the origin, and therefore does not contribute to the click noisc, it does
cross the vector —5 used by the Rician click model. Consequently, the Rician
click model considers this type of doublets as clicks! Fortunately, false clicks do
hardly violate the validity of the click model, since they are very rare around
the threshold, as a result of the fact that the length of the noise trajectory
required for them is relatively large (and thus unlikely to occur). Deep below
the threshold however, the probability of false clicks rapidly increases, which
causes the Rician click noise model slightly to overestimate the click rate. This
inaccuracy of the click model and the limited validity of the Poisson model for
the click instants has been used by some authors as explanation for the limited
success of click elimination [31, 45]. In [43], however, it was shown that this
inaccuracy is not essential in the click detection problem, and hardly limits
the attainable threshold extension, i.e. decrement of the input CNR where the
threshold occurs; click detectors do not use these properties.

The fundamental problem that complicates the discrimination between clicks
and doublets is the fact that the noise free FM wave s(t) is not known by the FM
receiver. Only the noisy FM wave r(t) is observed. Therefore, the trajectories
(a), (b) and (c) depicted in figure 5.19 cannot be observed directly by the
receiver, but have to be derived, as far as possible, from information supplied by
the carrier envelope R(t) and the instantaneous frequency ¢(¢)+6(t). In [43, 44],
it is shown that reliable click detection, and elimination without introduction
of distortion, based on the information contained in the instantaneous values of
R(t) and ¢(t) + 8(t) is impossible; it follows, that the optimum click detector,
supplied with a distortion-free click eliminator that cancels click pulses with
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pulses of the same area and opposite sign, supplied only with this information
should decide to consider any impulse in the demodulator output signal as a
doublet, and pass it to the receiver output. Reliable click detection therefore
requires memory, in order to use knowledge about the behavior of the envelope
and frequency in the (near) past. For example, one might think of a scheme that
investigates the spectrum of the peaks in ¢(t) + (t), in order to find out if a
significant low frequency spectral contents is present (this property distinguishes
clicks from doublets).

Due to its complexity, click detection is currently mainly of theoretical inter-
est and not of significant practical interest. Threshold extensions achieved by
practical click detectors and theoretical predictions of the attainable threshold
extension reported so far have not exceeded 6 dB.

5.6.3 Click Elimination

Click elimination is the operation that removes pulses from the demodulator
output signal, once the click detector has decided to consider a particular pulse
as a click.

Click elimination algorithms can be divided into two classes [43, 44}:

e elimination by means of cancellation;

e climination by means of interpolation.

Elimination by Cancellation

Click eliminators based on cancellation exploit the fact that the area of a click
pulse equals 27. These systems add a pulse of 27 and sign opposite to the click
pulse to the demodulator output signal shortly after the occurrence of a click.
In this way, the click is transformed into some kind of a doublet, with zero net
area and a correspondingly insignificant low frequency spectral contents. The
advantage of this type of click elimination is that it does not introduce any
distortion into the demodulator output signal.

On the other hand however, an extremely reliable click detector, which is
has not been found yet, is required, since the compensation pulse produced by
the eliminator generates an artificial click at the demodulator output for every
“false alarm”, i.e. every doublet that is erroneously considered as a click.

Elimination by Interpolation

Click eliminators based on interpolation suppress the demodulator output signal
during a click, similar to the muting mechanism in FM demodulators equipped
with partial amplitude normalization. Between the start and end of the click
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pulse, a zero-th order, first-order or even higher order interpolation of the mes-
sage signal is constructed. Obviously, this type of click eliminator does introduce
distortion into the demodulator output, since not only the click, but also the
message signal is suppressed during the click. Higher order interpolation may
reduce the distortion to an acceptable level.

On the other hand, this scheme is far less susceptible to unreliable click de-
tection. Any false alarm of the click detector causes muting of the demodulator
output signal, but does not cause the generation of an artificial click. The se-
lection of a suitable click eliminator is thus associated to a trade-off between
requirements on the reliability of the click detector and the amount of distortion
introduced by the eliminator into the demodulator output signal.

Further it should be noted that application of finite amplitude compression
to the demodulator input wave complicates click elimination by means of can-
cellation, due to the fact that the area of click pulses in the demodulator output
become dependent on the value of the carrier envelope R(t) in that case. Finite
compression does not affect click elimination by means of the interpolation, as
long as its influence on the reliability of the click detector is negligible, since
this approach does not use information about the area of click pulses.

5.7 Adaptive Signal Processing

The performance of FM receivers may be improved significantly by application
of adaptive control, possibly by means of feedback, to the various sub-systems.
These types of processing use additional a priori information, obtained from
the expected properties of the FM wave, and a posteriori information, obtained
from the demodulator output signal (adaptive feedback), or the receiver input
signal (feed-forward). Obviously, performance improvement is achieved as long
as the information is reliable. Unreliable information will somehow result in
performance deterioration instead of improvement.

This section outlines the principles of the main types adaptive processing
that facilitate improvement of the demodulator performance. Section 5.7.1 con-
siders the improvement facilitated by frequency feedback, i.e. adaptive con-
trol of the local oscillator frequency. Section 5.7.2 considers adaption of the
RF frequency selectivity, while Section 5.7.3 considers adaptive amplitude com-
pression. Phase feedback is not considered in this section, since it cannot be
considered as a performance improvement technique that is applicable to arbi-
trary types of FM demodulators; it constitutes a particular FM demodulation
algorithm.
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5.7.1 Frequency Feedback

Frequency feedback is a means to reduce the threshold CNR of an FM demodu-
lator, which exploits the property of (wideband) FM waves that the transmission
bandwidth is (considerably) larger than the bandwidth of the intelligence. Al-
ternatively, it may be used to reduce the distortion in the demodulator output
signal. Thus, in fact, it provides a trade-off between the demodulator threshold
CNR and the distortion in the output signal above the threshold. As explained
below, this is essentially the same trade-off as the one encountered in the design
of the RF/IF selectivity, considered in Section 5.2.

Principle of Operation

The principle of FM frequency feedback is depicted in figure 5.20. An FM de-
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Figure 5.20: Basic FM frequency feedback receiver architecture.

modulator is enclosed by a feedback loop that reconstructs the (wideband) FM
wave at the receiver input from the demodulated FM message at the receiver
output by means of an FM modulator. The instantaneous frequency of this
regenerated wave r,.(t) is subtracted from that of the received wave r(t). When
the demodulator output signal is a reliable copy of the original message infor-
mation, which is the case above threshold, this subtraction results in an FM
wave, denoted by r;(t), with a considerably reduced RMS frequency deviation.

According to Carson’s bandwidth formula (2.8), this means that the band-
width of r(t) is significantly smaller than the bandwidth of r(t). Thus, the
feedback loop transforms the wideband FM wave r(t) into a narrow-band FM
wave r;(t). This feature is the basis for the threshold/distortion reduction ca-
pabilities of frequency feedback receivers.

Threshold Reduction

Reduction of the threshold CNR, i.e. “threshold extension”, is achieved by
application of narrow band filtering to the compressed wave ry(t).

Assumed that the receiver input noise is relatively wideband, i.e. of roughly
the same bandwidth as the received wideband FM wave r(t), narrow band
filtering considerably reduces the noise power level at the input of the FM
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demodulator. The signal power level is not affected by this filtering, since the
narrow-band wave r;(t) fits entirely within the filter bandwidth. This means that
the FM demodulator experiences a larger input CNR than the CNR observed
at the receiver input, i.e. in front of the feedback loop.

Notice that this type of threshold reduction reduces the amount of click noise
generated in the frequency noise 6(t) itself, instead of affecting the propagation
of clicks from the frequency noise to the demodulator output, which is the
approach followed by finite compression and click detection/elimination.

At a first glance, one should expect that the FM receiver threshold level is
reduced by a factor equal to the ratio of the noise bandwidth of the receiver
input noise power, and the noise bandwidth of the IF-filter inside the feedback
loop. The actual threshold extension however is smaller than this estimation,
due to noise that is fed back from the FM demodulator output to the input, as
discussed in detail in Chapter 8.

Further, it should be noted that frequency feedback does not improve the
demodulator output SNR above threshold. The same SNR is attained without
feedback; only the threshold is reduced. This is a consequence of the fact that
feedback reduces the FM message signal and the frequency noise contained in
the input FM wave in equal proportions.

The penalty paid for the extension is a steeper, and consequently more “ag-
gressive” threshold behavior, as discussed in Chapter 8.

Distortion Reduction

Instead of threshold reduction, distortion reduction is achieved when the narrow-
band FM wave r;(t) is filtered by a relatively wideband IF filter, and the FM
modulator in the feedback path provides a better linear transfer than the FM
demodulator.

As a result of the feedback mechanism, the linearity of the feedback demod-
ulator approaches that of the FM modulator in the feedback path if the loop
gain is sufficiently large. The wide bandwidth of the IF filter reduces the level
of filtering distortion, at the expense of a smaller threshold reduction. This is
exactly the same trade-off as discussed in Section 5.2.

5.7.2 Adaption of the RF/IF Frequency Selectivity

Adaption of the RF/IF frequency selectivity, usually implemented by one or
several filters, possibly interconnected by mixers, may be employed to improve
the rejection of (out-band) noise and interference in the FM demodulator input
signal.

As far as this rejection is concerned, basically two different types of selectivity
parameters may be controlled adaptively:
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e parameters that determine the center frequency;
e parameters that affect the bandwidth of the selectivity.

For convenience, we assume in the sequel of this section that the RF/IF se-
lectivity is realized by a single bandpass filter, although this is never-since a
fundamental restriction to the adaption schemes.

Adaption of the Center Frequency

The center-frequency is adaptively controlled in so called dynamic tracking fil-
ters. The basic architecture of such FM receivers is depicted in figure 5.21.
In these receivers, adaptive tuning of the (usually symmetrical) bandpass fil-
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Figure 5.21: Dynamic tracking filter FM receiver.

ter’s center-frequency to the instantaneous frequency of the received FM wave,
by means of the feedback loop, allows a filter bandwidth that is considerably
smaller than the bandwidth of the FM wave itself, without introduction of ex-
cessive distortion. This smaller bandwidth increases the FM demodulator input
CNR over the FM receiver input CNR and thus reduces the threshold of the
FM receiver as a whole. This is the same threshold reduction mechanism, as
the one established by means of frequency feedback, discussed in Section 5.7.1.

Its operation may be heuristically understood from figure 5.22, where the
quasi-stationary approximation, that represents the FM wave as an impulse that
moves along the transmission bandwidth, is applied to model the received FM
wave. If the center-frequency of the bandpass filter is fixed to a certain value
(no adaption), its bandwidth should be sufficiently large to accommodate all
possible positions of the impulse in the spectrum, as depicted in figure 5.22a.

However, when the center-frequency tracks the instantaneous frequency of
the FM wave (adaption), as in figure 5.22b, a considerably smaller bandwidth
is allowed; only the moving impulse in the FM wave’s spectrum should be po-
sitioned within the filter bandwidth. It has been recognized that, despite their
different implementation, the threshold extension mechanism and the thresh-
old behavior of dynamic tracking filters is basically equal to those exhibited by
frequency feedback receivers [46-48].
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Figure 5.22: Filtering of the FM demodulator input wave a) filter with fixed center-
frequency, b) filter with adaptively tuned center-frequency.

The tracking filter basically compresses the received FM wave into a smaller
bandwidth by reducing its frequency deviation, like the frequency feedback re-
ceiver. This is also observed from figure 5.22b. Here, the spectrum of the
compressed FM demodulator input wave r;(t) is represented by the perturba-
tions of the FM-impulse relative to the center-frequency of the moving IF filter.
Due to the tracking mechanism, the average magnitude of these perturbations,
i.c. the average frequency deviation, is considerably less than those observed in
the input wave, represented by the perturbations of the impulse relative to the
center-frequency w,.

Adaption of the Bandwidth

Adaption of the filter bandwidth may be used to improve adjacent channel
rejection, at the expense of an increased level of narrow-band filtering distortion
observed at the demodulator output.

Such schemes reduce the bandwidth of the IF filter when an interfering
signal, located at an adjacent channel, exceeds a certain level. In [48, 49] such
a scheme is included into a dynamic tracking filter FM receiver by clipping the
tuning signal of the tracking filter when it exceeds a certain level. This clipping
level is adjusted as function of the interference level in the adjacent channel. As
a result, the IF filter tracks the FM wave only in some fraction of FM bandwidth
around the center-frequency w,, which is basically equivalent, probably except
for the threshold behavior, to reducing the bandwidth of a non-adaptive IF
filter.

In principle, the information contained in both the demodulator input and
output signal can be used to establish the adaptive control scheme. Each of the
two inputs to the “adaptive IF filter control” block in figure 5.1 represents one
of these possibilities.
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5.7.3 Adaptive Amplitude Compression

The trade-off between click noise and continuous noise in the demodulator out-
put signal is besides its dependency on the amplitude compressor characteris-
tic/gain also a function of the receiver input CNR. Optimization of this trade-off
to some predefined criterion, over a certain range of input CNRs, can therefore
generally not be achieved with an invariant compressor transfer characteristic.
Instead, adaption of this characteristic to the receiver input CNR is required.

At high CNRs a high level of compression of is favorable, as a result of the
very small amount of click noise observed here, whereas at low CNRs a smaller
level of compression is generally favorable, due to the dominance of click noise
here.

The information required to control the amplitude compressor, i.e. the de-
modulator output SNR and input CNR, may be attained in two fundamentally
different ways, that are both sketched in figure 5.1:

e by detection of the noise level at the receiver input;
e by detection of the amount of clicks at the demodulator output.

The input noise may be determined e.g. from an adjacent channel.

The click detection approach requires regular transmission of a deterministic
test signal, since reliable click detection is impossible if the message signal is
unknown (see Section 5.6.2). In existing transmission schemes, such as FM
radio broadcasting, this approach is not an option. In newly defined systems
however, it may probably be applicable.

5.8 Conclusions

This chapter considered the design of FM receivers, analyzed the various types
of processing that can be included into the receiver architecture, and discussed
the trade-offs involved with each type of processing.

The main objective of FM receiver design is to maximize the performance of
the FM demodulator included in the receiver architecture, by means of various
types of pre- and post-demodulation processing. These pre- and post-processing
necessarily use a priori or a posteriori information of the characteristics of the
FM wave to be demodulated. The processing generally results in an improved
performance as long as the applied information is valid. When the information
becomes invalid, however, e.g. due to noise, pre- and post processing may
eventually degrade the receiver performance; every improvement is somehow
paid by deterioration when the improvement mechanism fails.

The general objective of pre-demodulation processing is extraction of the
required FM wave from the receiver input signal. Three types of separation
operations are available: separation in frequency, phase and amplitude.
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Separation in frequency, by means of linear RF/IF filtering, allows discrimi-
nation between signals that occupy non-coincident frequency bands. The linear
filtering applied to the FM wave was shown to result in nonlinear distortion
of the FM message signal. Minimal distortion is attained with Maximum Flat
Delay filters, e.g. Bessel filters. The trade-off involved in the design of linear
filtering in FM receivers is the one between the demodulator threshold, output
SNR at one side, and the distortion in the output signal at the other side.

Separation in phase, by means of cross-coupled PLL structures, allows dis-
crimination between signals with coincident frequency bands, but different in-
stantaneous phases, e.g. co-channel interference. A phase selective FM demod-
ulator, i.e. a phase feedback demodulator, is indispensable for this separation.
The disadvantages of phase feedback demodulators, such as the potential danger
of loss of lock, are thus inevitable in such structures.

Separation in amplitude, by means of amplitude compression, allows dis-
crimination between signals with the same frequency and phase, but different
intensities, e.g. the FM wave and additive noise. Amplitude compression es-
tablishes a trade-off between the output SNR observed above threshold, and
the “steepness” or “aggressiveness” of the FM threshold at low input CNRs,
caused by the generation of impulsive click noise. Infinite compression achieves
the highest output SNR above threshold, but yields a maximum level of click
noise at low input CNRs. Finite compression establishes a trade-off between
both types of noise.

Two characteristics of the FM demodulator architecture are decisive for the
performance of the entire FM receiver. In the first place, the degrees of free-
dom left by the demodulator architecture for optimization of the performance
through amplitude compression differ considerably among the various demodu-
lator classes. Secondly, frequency offset components in the demodulator output
signal, that cannot be avoided in all architectures, deteriorate the performance.

The general objective of post-demodulation processing is reduction of the FM
demodulator output noise. Base-band filtering, including de-emphasis, reduces
the continuous demodulator output noise, while click detection and elimination
reduces the click noise. Since reliable click detection often requires knowledge of
the message signal that is not available, this type of processing should (currently)
be considered to be of marginal practical interest.

Frequency feedback and adaptive control of the IF center-frequency, as in
dynamic tracking filters, establish a trade-off between reduction of the demod-
ulator threshold, and reduction of the distortion at the demodulator output.
Adaption of the IF filter bandwidth establishes a trade-off between distortion
and suppression of interference in adjacent channels. Finally, adaption of the
amplitude compressor transfer allows optimization of the trade-off between click
noise and continuous noise to the input CNR/output SNR.
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Chapter 6

Amplitude Compression

Section 5.4 showed that compression of the demodulator input carrier amplitude
generally improves the output SNR by several tens of dBs at high input CNRs.
This improvement is not free. It is paid for at low input CNRs by the generation
of click noise that introduces the threshold effect. Due to the concentration of
its energy in separate short time slots, this type of noise causes great perceptive
annoyance to humans.

The amplitude compressor should be designed such that it realizes a suit-
able trade-off between the SNR improvement at high CNRs, and click noise
generation at low CNRs. Obviously, the choice of this trade-off is entirely de-
pendent on the application. For instance, in wired FM transmission systems,
the CNR of the input wave is generally sufficiently large to guarantee demod-
ulator operation above threshold. Such systems should therefore apply infinite
amplitude compression in order to establish a maximum SNR improvement. In
many types of wireless transmission systems however, such as mobile telephony
and car radio, demodulator operation above threshold cannot be guaranteed in
many circumstances, even when “threshold extending” demodulators such as
PLLs and frequency feedback receivers, discussed in Chapter 7 and 8, are ap-
plied. In such applications, some kind of finite compression is generally a better
alternative. '

Although intuitively obvious, the trade-off associated with finite amplitude
compression has never been fully explored in literature. Very little is known
other than a few theoretical studies in the late 1940s [1-4]. These investiga-
tions did not address the aforementioned trade-off at all due to the fact that
suitable mathematical descriptions for click noise were not known until Cohn’s
publication in 1956 [5], and became widely known only after Rice’s publication
in 1963 [6].

This chapter develops a general model for the output signal and noise of
FM demodulators with an arbitrary type of amplitude compression applied to
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their input signal. The model is valid above and around the threshold, and
incorporates a description of the trade-off between the SNR improvement at
high CNRs and the generation of click noise at low CNRs.

An overview of the chapter is as follows. Section 6.1 shows how the various
types of amplitude compressors are included in the general model. Section 6.2
outlines the principles of the model and its elaboration. Sections 6.3, 6.4 and 6.5
develop the descriptions for the first and second-order noise, and the click noise
respectively. An expression for the demodulator output SNR, and its depen-
dence on the applied type of amplitude compression is considered in Section 6.6.
With the aid of the previously developed theory, this section also derives an ex-
pression for the optimum amplitude compressor transfer, that maximizes the
output SNR. Verification of the model by simulation and measurement is dis-
cussed in Section 6.7. The conclusions are given in Section 6.8.

6.1 Amplitude Compressor Modeling

Throughout this chapter and the previous chapter, the amplitude compressor
is modeled by its ‘transfer’ G(A4) that describes the relation between the com-
pressor input and output carrier amplitude.

This section considers the derivation of this transfer and the most important
properties of amplitude compressor behavior in the presence of noise.

Section 6.1.1 describes the two distinguishable types of amplitude compres-
sors. The quite remarkable behavior of one of both types in the presence of
noise, of which the hard-limiter is an important example, arc considered in sec-
tions 6.1.2 and 6.1.3 respectively. Finally, Section 6.1.4 derives the transfer G(A)
of a soft-limiter that is used in the simulations and measurements described in
Section 6.7.

6.1.1 Amplitude Compressor Types

Generally, two different classes of amplitude compressors can be distinguished
that differ in their use of a priori knowledge of the FM wave characteristics, and
in the carrier parameters used to establish the compression. In this respect, we
distinguish between application of compression:

e directly to the RF/IF FM wave r(t) = R(t) cos [wot + (t) + 6(1)];
e to the (LF) carrier amplitude R(t), obtained by AM demodulation.

For both types, separately discussed below, the discussion is limited to the case
where the response of the compressor is approximately instantaneous. Only in
such cases is it possible to model the compressor by means of an instantaneous
transfer G [R(t)]. The transfer of non-instantaneous compressors is described
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by means of a (generally nonlinear) differential/difference equation, resulting in
additional cross correlations between the amplitude and frequency noise in the
demodulator output.

Compression of the RF/IF Carrier Wave

This class of amplitude compressors directly applies a (nonlinear) compression
operation to the FM input carrier intensity r(t), as depicted in figure 6.1, without
explicit detection of the carrier amplitude. Amplitude compression is therefore

R(r) cos [, + @(1) + 6(1)] GIR(1)] - cos [w,t + @) +6(1)]

- + harmonics
non-linear
compression function

Figure 6.1: Amplitude compression by nonlinear processing of FM wave intensity.

established implicitly, through the relation between the carrier intensity r(t)
and the carrier amplitude R(t).

This simple type of amplitude compressor architecture has two significant
disadvantages. In the first place, the output signal of such compressors contains
also components at the harmonics, besides a component at the input carrier
frequency itself. As discussed in Section 6.1.3, these harmonics basically result in
a waste of signal power since it is unfavorable for the output CNR to incorporate
them into the compressor output signal. Secondly, instantaneous operation is
established only when the compressor bandwidth is at least as large as the
input carrier frequency. This is a severe requirement, since the bandwidth of
the FM wave and carrier amplitude that should actually be processed is usually
considerably smaller than the carrier frequency.

The transfer G [R(t)] for this type of compressor corresponds to the Fourier
coefficient of the fundamental frequency, or one of the harmonics. The other
harmonics should generally be suppressed, usually by means of a filter, since
they merely reduce the compressor output CNR, as considered in Section 6.1.3.

Computation of G [R(t)] requires some additional provisions in comparison
with the standard Fourier series expansion. Due to the presence of FM modu-
lation, the input carrier wave r(¢) from (2.15) is not generally periodic in time,
while a Fourier series exists only for periodic signals. However, by rewriting r(t)
as

7(t) = R(t) cos [wot + p(t) + 8(t)] = R(t) cos O(t), (6.1)

it is seen that it is periodic in ©(¢). The time ¢ is included here as an im-
plicit parameter. Thus, when the nonlinear compressor operation is denoted by
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feomp(.), the Fourier series of its response to r(t) may be written as

Seomp [R(2) cos ©(t)] = i ay [R(t)] cos kO(t), (6.2)

k=0
where the coefficients ay [R(t)] are given by

ax [R(t)) & ;—fr Feomp [R(t) cos ©] cos kOO. (6.3)

The so called “Neumann factor” e in this expression is defined as [7]

1 k=0,
Ek:{2 k#o. (6.4)

The amplitude compressor transfer G [R(t)] used by the demodulator model
of equation (5.7) equals one of the coefficients ay [R(?)].

Compression of the Carrier Amplitude

This class of amplitude compressor, usually implemented by AGCs, explicitly
detects the carrier amplitude R(t) by means of an AM demodulator, prior to
the nonlinear compression operation, and re-modulates the input carrier wave
with the compressed amplitude by means of an AM modulator.

As depicted in figure §.2, a feed-forward and a feedback variant can be dis-
tinguished that differ by the position of the AM detector (positioned at the
input and output respectively). The feed-forward architecture in figure 6.2a
detects the input carrier amplitude, applies the required compression operation
and re-modulates the input wave such that the output amplitude equals the
output of the compression function. For this purpose, the output of the com-
pression function should be divided by the original amplitude R(t), prior to
re-modulation.

The feed-back architecture in figure 6.2b detects the output carrier ampli-
tude, and compares it with a reference amplitude. This reference is derived
from the input carrier amplitude by a separate AM demodulator and the non-
linear compression operation. The error between the output amplitude and the
reference approaches zero for large loop gains.

At the cost of an increased complexity, true carrier amplitude compression
has two main advantages over intensity compression, discussed previously. In the
first place, no signal power is wasted in harmonics since the processing applied to
the carrier wave is essentially linear. Secondly, the compressor bandwidth should
only exceed the bandwidth of the FM wave, instead of its carrier frequency.
This property has been exploited in [8] to reduce the AM-PM conversion in
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R(1) cos [0, + @(r) + B(N]

o

AM non-lincar
demodulator compression
function

GIR(D] cos [wyt + (D) + 6]

(a)

R(1) cos [0, + ¢(n) + B(1)] G[R(N] cos [t + o) + 6(1)]

demodulator

G[R(]
demodulator

non-linear
compression function

(b)

Figure 6.2: Amplitude compressor architectures a) feed-forward, b) feedback.

amplitude compressors that results from bandwidth limitations. Usually, AGCs
are used to suppress relatively slow variations in the carrier amplitude, while
rapid variations are passed unaltered [9, 10]. In an FM demodulator however,
both slow and rapid variations should be suppressed, which means that the
compressor bandwidth should at least equal the bandwidth of the FM wave.

The discussion in sections 6.1.2 through 6.1.4 is concerned with the non-
idealities in the behavior of amplitude compressors based on RF/IF intensity
compression only. Since such non-idealities are not, or at least far less impor-
tant in compressors based on true carrier amplitude compression, this type of
compressor is not considered in further detail.

6.1.2 Carrier Suppression in RF /IF Carrier Compressors

Carrier suppression, or signal suppression, is the effect that the compressor out-
put carrier/signal component decreases disproportionately at low input CNRs,
such that the compressor output CNR decreases faster than the input CNR.
This effect is, in essence, noticeable only in compressors based on RF/IF carrier
intensity compression with a discontinuous transfer, such as hard-limiters. In
such systems, it reduces the demodulator output SNR [11], and is also responsi-
ble for transfer degeneration at low CNRs in hard-limiter based phase detectors,
as discussed in Section 7.5.1.

This section explains the cause of the carrier suppression effect in hard-
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limiters that constitute the operation of many amplitude compressors based on
RF /IF carrier intensity compression. An expression for the limiter output signal,
subjected to the suppression, is determined and compared with measurement
results.

Cause of Carrier Suppression

Carrier suppression is basically due to the effect that noise at the input of
discontinuous nonlinearities as hard-limiters linearizes the nonlinear transfer.
This linearization causes the harmonics in the output signal to decrease faster
than the fundamental frequency, which reduces the gain and the compressor
transfer G(A4). In A-D converters, this linearization effect is intentionally used
to increase the resolution by a technique called “dithering” [12-16).

The origin of the linearization effect can be explained from the behavior
of the harmonics cos k {wot + ¢(t) + 0(t)] in the Fourier series expansion of the
compressor output signal, given by (6.2). These harmonics are visualized by the
phasor representation of figure 6.3. Due to the phase noise (t), generated in

Tsin [0, + ®(0)] Fsin ko + o00]
i | -
™ Sk
N N
\ ! ]
Ay A : \\
i \
LY {
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Figure 6.3: Phasor representation of the components in the compressor output signal.
a) fundamental harmonic, b) k-th harmonic.

response to the input noise n(t), the phasors 8% in the output signal deviate from
the noise free phase kw,t+ ky(t), represented by the horizontal axis in figure 6.3.
From a statistical point of view, the compressor output noise therefore represents
the uncertainty introduced into the direction of the phasors 3} by the input noise
n(t). The output carrier/signal component corresponds to the components of 8}
that point in their average direction, which usually corresponds to the noise-free
phase kw,t+kp(t). When the noise induced deviation increases, this component,
equal to the average value of cosk6(t), rapidly decreases resulting in carrier
suppression.

As observed from figure 6.3, for a certain value of the phase noise 6(¢), the
phase deviation of k-th harmonic is k times as large as the phase deviation of




6.1. Amplitude Compressor Modeling 185

the fundamental frequency component. Therefore, the carrier/signal compo-
nent around the k-th harmonic decreases considerably faster than the carrier
component located at the fundamental frequency.

Calculation of the Carrier Suppression

An expression for the limiter output carrier/signal component as a function of
the input CNR p, which includes a description of the signal suppression effect,
is obtained as follows.

According to [17], the previously discussed definition of the output signal
component, denoted by s,(¢), corresponds to the expected value of the limiter
output for a given input wave s(t). For the Gaussian input noise n(t), with
variance o2, this component equals

s0(t) & E {sgn[s(t) + n(t)]|s(t)} = erf [%s(t)} , (6.5)
where sgn(.) denotes the hard-limiter transfer and A denotes the amplitude of

s(t). This transfer is plotted in figure 6.4 for various limiter input CNRs as a
function of the normalized input signal s(¢)/A = cos ®(t). This figure shows

2 T 1 T T 1 T T T
| p=50dB — i
L3T p=204B -
p=14dB -----
1+ p=3dB
p= 0dB
05
5,0
0 b
05 F
Ry
15 L ] 1 1 1 1 1 J
1 0.8 0.6 0.4 0.2 0.2 04 0.6 0.8 1

0
cos O(r)

Figure 6.4: Transfer of the normalized limiter input signal s(t)/A = cos ®(t) to
output carrier/signal component s,(t), as a function of the input CNR p.

that the transfer is considerably linearized at low CNRs, as a result of the fast
decay of the harmonics.

As elaborated in Appendix A, the Fourier coefficients azx+y of (6.5), that
represent the carrier component located at the (2k + 1)-th harmonic (the even
harmonics equal zero), can be expressed as

o= 0 gy P (D (@) v (B, 00




186 Chapter 6. Amplitude Compression

where I1(.) denotes the k-th order Modified Bessel Function of the first kind. At
high input CNRs these coefficients approach the coefficients of a square wave,
azk+1 = 4/[m(2k+1)], due to the fact that the output noise component becomes
negligible, and the total limiter output power is contained in the output car-
rier /signal component. At low input CNRs, the carrier component around the
k-th harmonic becomes proportional to p*. Therefore, the harmonics decrease
considerably faster than the fundamental frequency component for decreasing
input CNRs.

Measurements

The Fourier coefficients (6.6) were measured as function of the input CNR with
the aid of the limiter circuit depicted in figure 6.5. The limiter input was sup-
plied with a sinusoid and additive Gaussian noise. The power contained in car-
rier component of the limiter output, a3, +1/2, was determined for various input
CNRs according to (6.5) by time-averaging of the output spectrum with the aid
of a spectrum analyzer. The measurement results for the fundamental frequency,

V2 Vo V2

)09

Vaa

Figure 6.5: Limiter circuit used for the measurement of the coefficients ay.

the third, fifth and seventh harmonic are depicted in figures 6.6 through 6.9,
together with the computed curves obtained from (6.6). The measurements and
computations match satisfactorily. The discrepancies in the higher harmonics
are due to the finite transition gain of the circuit in figure 6.5, whereas the
calculations assume an infinite transition gain. Another source of inaccuracies
is the very low level of the high order coefficients, which is in the same order of
magnitude as the noise floor.

As far as the fundamental frequency is concerned, figure 6.6 shows that the
carrier suppression is only about 2 dB for CNRs down to 0 dB, and is therefore
of minor importance. The harmonics however decay considerably faster, which
confirms the linearization of the transfer by the noise. This indicates that it is
advantageous to use only the fundamental frequency for demodulation, while
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the harmonics are suppressed.

6.1.3 Output CNR of RF/IF Carrier Compressors

The compressor output CNR, which equals the FM demodulator input CNR,
is an important parameter in FM demodulator design since it determines the
demodulator output SNR. Therefore, it is desirable to establish a compressor
output CNR that is as large as possible for a given receiver input CNR p.
Section 6.1.1 stated that amplitude compressors based on RF/IF carrier in-
tensity compression should suppress the harmonics in the output signal in order
to attain an output CNR that is as large as possible. This section shows the va-
lidity of that statement by an investigation of the output CNR of a hard-limiter.
The output signal of compressors based on true carrier amplitude compression
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automatically complies with this statement since it (ideally) does not contain
harmonics.

First, an intuitive explanation for the improvement of the output CNR by
suppression of harmonics in the output signal is given. Subsequently, a quanti-
tative measure for the CNR improvement is derived. Finally, the limitations on
the validity of the analysis are considered.

Output CNR Improvement by Suppression of Harmonics

The possibility of improving the compressor output CNR by suppression of
the harmonics stems from the redundancy in the compressor output signal,
described by (6.2). Each harmonic contains the same message information, but
they are of different qualities.

The CNRs around the harmonics, i.e. the ratio of the carrier component
and the noise power located at the individual harmonics, is considerably smaller
than the CNR around the fundamental frequency. Inclusion of harmonics in the
output signal therefore results in a faster increase of the total noise level than
of the total signal level.

These conclusions can be easily derived from the Fourier series (6.2) when
the limiter input CNR is assumed to be high, say 10 dB or more, and the phase
noise of the k-th harmonic, k6, is assumed to be considerably smaller than one
radian. In that case, the factor cos k®(t), contained in the k-th harmonic of the
limiter output, can be written as

cos k®(t) = cos k [w,t + p(t) + 8(1)]
= cos kB(t) cos k [wot + p(t)] — sin kO(t) sin k [wot + o(2)]
~ cos k [wot + p(t)] — kO(t) sink [w,t + ©(t)] . (6.7)

The first term in the final approximation, cos k [wot + ¢(t)], represents the noise-
free FM carrier at the k-th harmonic of the amplitude compressor output. The
second term, k@(t)sin k [w,t + (t)], represents the noise observed at the k-th
harmonic of the compressor output, as long as k6(t) < 1 (rad).

Thus, this expression shows that the (phase) noise power level in cos k®(¢)
increases proportionally to the square of the index k, while the carrier power
level is equal for all k. Consequently, the CNR around the k-th harmonic of the
compressor output decreases proportionally to k2. This agrees with the obser-
vation in Section 6.1.2 that the uncertainty introduced into the k-th harmonic
component by the phase noise 8(t) increases with k. For very large values of k,
however, the uncertainty increase slows down and (6.7) becomes invalid.

According to (6.2), the k-th harmonic component of the square-wave limiter
output signal equals the product of cosk®(t) and the Fourier-coefficient ay.
Since the coefficients a; of a square-wave are inversely proportional to k, the
signal power and the noise power contained in cos k®(t) are both multiplied by
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1/k%. Consequently, the (noise-free) carrier power located at the k-th harmonic
of the limiter output signal decreases inversely proportionally to k%, while the
noise level is independent of k. This is schematically depicted in figure 6.10. This
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power-density spectrumT
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1 carrier
-5 components
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Figure 6.10: Limiter output carrier and noise components.

figure clearly shows that the fundamental frequency possesses the largest CNR.
Including harmonics into the output signal decreases the output CNR, since the
total noise power increases faster than the total signal power. The precise input
CNR experienced by the FM demodulator depends on the type of processing
applied to the limiter output wave prior to demodulation, as discussed below.

Calculation of the CNR Improvement

Determination of the CNR improvement established by suppression of the har-
monics in the limiter output signal, requires a proper definition of this CNR. In
turn, such a definition requires

e identification of ‘signal’ and ‘noise’ components at the harmonics;
¢ determination of the correlation between the harmonics.

The signal components were already identified in Section 6.1.2. The noise
power located around each harmonic follows from the property of hard-limiters
that the limiter output square-wave, expressed as a function of the instanta-
neous phase of the input wave ®(t) with the time included as an implicit pa-
rameter, remains unchanged for all limiter input CNRs. Consequently, the
Fourier-coefficients of this square-wave, and the corresponding distribution of
the total demodulator output power contained in its harmonic components
4/[r(2k + 1)] cos(2k + 1)@, remains unchanged for all CNRs. The noise power
located around the k-th harmonic therefore equals the difference between the
total power around the k-th harmonic, i.e. 8/[r(k)]?, and the power contained
in the signal-component around the k-th harmonic, which equals a}/2 in terms
of the Fourier coefficients aj from (6.6).

The correlation between the contributions of the harmonics to the demodu-
lator input signal is determined by the type of processing applied to the limiter
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output prior to demodulation. As an upper- and lower bound, we consider the
compressor output CNR for the case when no correlation is present and the
case when full correlation is present. In other cases, when there is partial cor-
relation, the compressor output CNR will generally attain a value between the
CNRs obtained for both these limiting cases.

Uncorrelated Addition An uncorrelated addition of the harmonic compo-
nents, i.e. an addition of signal and noise power components, is established for
example by a quadrature demodulator consisting of an ‘ideal’ all-pass filter of
an infinite bandwidth, realizing the time-delay, and a multiplier phase-detector.
The response of such a demodulator to a hard-limited, noisy FM square wave
equals the addition of the carrier power and the noise power located at all har-
monics. This is an uncorrelated addition, since it applies to signal and noise
power components.

Mathematically, the effective compressor output CNR, or, equivalently, de-
modulator input CNR that results from uncorrelated addition, denoted by
CNRyc, equals the total compressor output signal power divided by the total
compressor output noise power, i.e.

ZZ”;O a§k+1

CNRye = == T 5
2 k=0 TEEFDT @E1Z — %2841

(6.8)

where asx4, is given by (6.6).

Fully Correlated Addition The other, merely theoretical possibility of a
fully correlated addition, occurs when the compressor output signal component
equals the sum of the Fourier coefficients as, and the noise equals the correlated
addition of the noise located around all harmonics. The corresponding effective
input CNR, denoted by CNRg., equals

o0
ONRpe = | ——Zazoltenl ) (6.9)
2 k=0 \/ TEEFD? ~ O3k41

Notice that this expression is equivalent to (6.8) when only the fundamental
frequency is used and all other components are suppressed.

Comparison Figure 6.11 depicts the ratio of the compressor output CNR
and the compressor/receiver input CNR for a compressor that uses only the
fundamental frequency component, and compressors that additionally use the
third harmonic in a fully correlated and an uncorrelated fashion. Figure 6.12
depicts the same ratio for compressors that use all harmonics in a fully correlated
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Figure 6.11: CNR improvement for in- Figure 6.12: CNR improvement for in-
clusion of the third harmonic. clusion of all harmonics.

and an uncorrelated fashion. These figures show that correlated addition of
the harmonics yields the worst possible output CNR, and should therefore be
avoided. Uncorrelated addition yields a higher output CNR, but is still worse
than the output CNR obtained by suppression of all harmonics. The curve for
the latter case, identical to the one obtained in [18], yields an output CNR that
is 3 dB higher than the input CNR at low noise levels due to the fact that the
amplitude noise (in-phase noise) is suppressed completely. Finally, it is observed
that the deterioration of the output CNR increases when more harmonics are
included.

The conclusion is, therefore, that only the fundamental frequency component
should be used for demodulation. In many types of quadrature demodulators,
for example, this is established automatically when the time delay is realized by
a high-Q bandpass filter [19].

Validity of the Analysis

The result obtained in this section should be interpreted with caution. This is
due to the fact that the analysis accounts only for noise located at the input of
the limiter and not for noise produced by the limiter and demodulator circuits
themselves. When the circuit noise becomes dominant, it might be more conve-
nient to include (some of) the harmonics in the output signal. This maximizes
the slope of the output wave at the zero crossings and in this way decreases the
contribution of circuit noise to the carrier phase noise.

Further, the signal and noise components around the various harmonics can
be combined in a variety of different ways, besides addition, that yield somewhat
different results. An example is the transfer degradation in phase detectors,
considered in Section 7.5.1.
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6.1.4 Soft-Limiter Transfer

As an example of the computation of the amplitude compressor transfer G(R),
this section determines the first harmonic response of the soft-limiter depicted
in figure 6.13a. This limiter, an extremely simplified model of an electronic
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Figure 6.13: Soft-limiter transfer characteristic.

soft-limiter, is frequently used in subsequent sections of this chapter to supply
the theory with numerical results.

Figure 6.13b depicts the soft-limiter response to the sinusoidal wave R cos ®,
where the time ¢ is included in R(t) and ®(t) as an implicit parameter. Five
different regions can be identified in the output signal when the phase increases
through the interval [—, 7]; three saturation regions and two linear transition
regions of width A®. Inspection of (6.3) for the coefficient of the first harmonic
shows that the contributions of the saturation regions cancel each other out.
This was to be expected due to the anti-symmetry of the limiter transfer and
the zero-mean of the input wave. Integration over the two linear transition
regions then yields for the amplitude transfer G(R)

G [R®)] ¥ a1 [R(t)] =

).
T J=

2

L -4
5+42

R _ RA9® sin Ad
K Cos ®dP = e (1+ Ad ) (6.10)
K

By inspection it is found that the phase interval A® = 2arcsin (). Substitu-
tion into (6.10) then yields the following “amplitude compression” transfer for
the soft-limiter

_A%
pl

Gsl [R(t)] =
L IR(t)| < K

) 2 6.11
z{%{amm[%p 1_[%]}, LOTEY S
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This transfer is plotted in figure 6.14 as a function of the normalized ampli-
tude R(t)/K. The transfer is linear for small values of the amplitude, while it
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Figure 6.14: First harmonic response of the soft limiter as a function of the normal-
ized input amplitude R(t)/K.

saturates and suppresses amplitude noise for large values.

The the discussion of the simulation and measurement results given in Sec-
tion 6.7, frequently uses the inverse first-order compression factor Cy 1(A) of an
FM demodulator that applies soft-limiting to both the input FM wave s(t), and
to a reference wave derived from s(t) that is used during demodulation. Thus,
according to (5.7), both the compressor transfers G; [R(t)] and G2 [R(t)] equal
the soft-limiter transfer Gg [R(t)], such that G [R(t)] = G1[R(t)] G2 [R(t)] =
G2 [R(t)]. The inverse first-order compression transfer corresponding to this
transfer equals

27 T Z 1,
Cn10(z) = arcsin®(z)+2% (22 —1) 1 (6.12)
arcsin?(z)+2zv/1—z? arcsin(z)—z2(z2-1)’ <l

where z = K/A denotes the inverse of the so called limiter over-drive factor [20].

6.2 Approach to Output Noise Calculation

This section outlines the principles and the approach that is followed in sec-
tions 6.3 and 6.4 in order to calculate the first-order and second-order continu-
ous demodulator output noise power spectral density and SNR. A slightly more
comprehensive approach is required for the calculation of the click noise, as
discussed in Section 6.5.
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The general block schematic of the FM receiver architecture that is consid-
ered throughout this chapter, including the various signals inside the receiver, is
depicted in figure 6.15. The amplitude compressor and FM demodulator in this

Ydem(?)
1(t) = R(t) cos [@t + @(f) + 6(r)] —> GIR(1)] —N— dem Hb(jm) — 3, (1)
amplitude FM- baseband
compressor  demodulator filter

Figure 6.15: Position of the various signals in the FM receiver.

figure are arranged in such a way that the FM demodulator response ygem(t) to
the noisy compressor input FM wave 7(¢) becomes

Yaem (2) = G [R(®)] [0(t) +6(2)] - (6.13)

The compressor transfer G(.) in this expression equals the product of two com-
pression functions, G;(.)G2(.), in expression (5.7), that correspond to the com-
pression applied to the FM wave subjected to demodulation, and the reference
wave respectively. The transfer H,(jw) represents the baseband (low pass) filter
at the FM demodulator output.

In order to obtain the FM receiver output SNR as a function of the receiver
input CNR, the statistical properties of the receiver output signal have to be
expressed in terms of the (known) statistical properties of the receiver input sig-
nal, i.e. the statistics of the message ¢(¢) and the noise n(t). As schematically
depicted in figure 6.16, this calculation basically requires four steps. The proce-
dure starts from expression (6.13). In the first step of the calculation, discussed
in Section 6.2.1, the demodulator output signal ygem(t) from (6.13) is expressed
in terms of the message signal ¢(¢) and the in-phase and quadrature components
ns,i(t) and n, ¢(t) of the input noise n(t). Further, the first and second-order
noise components, corresponding to the first and second-order terms of a Taylor
series of the output signal are identified.

In the second step, discussed in Section 6.2.2, the autocorrelation function
of the output signal is expressed in terms of known correlation functions of the
input signals @(t), ns,i(t) and n, 4(t).

Subsequently, in the third step, the autocorrelation function of ygem(t) is
used to obtain the power spectral density, as discussed in Section 6.2.3.

Finally, this spectral density is used to obtain the power contents of the
receiver output signal y,(t) and the output SNR, as described in Section 6.2.4.

6.2.1 Time-Domain Expression for the Output Signal

This section discusses the first step in the calculation of the receiver output
SNR: determination of an expression for the demodulator output signal ygem(t)
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Figure 6.16: Outline of the procedure required to calculate the receiver output SNR
as a function of the input CNR.

that is suitable for calculation of the autocorrelation function. As outlined in
figure 6.17, the derivation of such an expression for ygem(t) consists of two steps.
First the general expression for ygem(t) in terms of the FM message signal ¢(t),
the noise components n ;(t), ns,4(t), and derivatives has to be determined. Sub-
sequently, since this general expression is too complex for direct use, (general)
expressions for the first-order and second-order demodulator output noise com-
ponents have to be derived by means of a Taylor series. The detailed calculation
of the first-order and second-order terms is considered in sections 6.3.1 and 6.4.1
respectively.

General Expression

A general expression for ygem(t) in terms of ¢(¢) and the components of n(t) is
obtained by substitution of expression (2.16) and (2.19), that express R(t) and
6(t) in terms of ny ;(t) and n, ¢(t), into (6.13). The result of this substitution is
a rather complicated nonlinear expression. In [1-4, 21] the demodulator output
noise power spectral density was calculated exactly from this expression by
means of the so called “transform method” [22, 23] for a few special cases of
G(R). However, the result is an extremely complicated expression that includes
a badly converging series.

The approach followed in this chapter is in a way similar to the transform
method, but circumvents badly converging series expansions. Further reduction
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Figure 6.17: Outline of the derivation of a suitable expression for ydem ().

of the complexity is possible due to the fact that the main interest is in CNRs
of 0 dB and above, which allows all but a few dominant noise contributions to
be ignored: the first-order and second-order noise components.

Taylor Series

For input CNRs of 0 dB and larger, the input noise and its components can be
considered to be small compared to the FM wave s(t). A proper approximation
of the continuous demodulator output noise is then obtained by expansion of
Ydem(t) into a Taylor series to the four noise components ny = n,;(t), na =
Ns,q(t), n3 = i, i(t) and ng = n, 4(t). By writing these four components as a
noise vector n, given by

n= (nlan27 ns, n4) = (ns,iv Ns.qy hs,iy hs,q) . (614)

the four dimensional Taylor series of ygem(t) to n becomes
em(l) = em |2(2)] = 71 : em \U y 6.1
Ydem(t) = Ydem [2(2)] kz:(:) 1 (@ V)" gaem (u) o (6.15)

where V is the vectorial differentiation operator

v=(a 6 9 6). (6.16)

duy’ Buy’ Buy’ Buy

The first-order output noise terms, denoted by Ydem,1(t), follow from (6.15)
for k=1,ie.

Ydem,1(t) = 1- Vydem (u)yp - (6.17)
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The second-order output noise terms, denoted by ygem 2(t), follow from (6.15)
for k =2, i.e.

Ydem,2(t) = (n- V)21,/dem (u) |g=9 ’ (6.18)

Both expressions are expanded in further detail in sections 6.3.1 and 6.4.1 re-
spectively.

The noise power contained in the k-th order terms of (6.15) decreases in-
versely proportional, to the k-th power of the input CNR p. Therefore, terms
of the third order and higher are hardly of interest above p = 0 dB and are
consequently ignored. The series expansion is therefore terminated after the
terms for k = 2.

6.2.2 Autocorrelation Function

The second, and computationally most comprehensive step is the determination

of the autocorrelation function of the demodulator output signal expressed in

terms of the correlation of the message signal (t), and the input noise compo-

nents n;(t) and n, 4(t). The general derivation of such expressions is outlined

in this section. The actual computation of the first-order and second-order

correlation functions is considered in sections 6.3.2 and 6.4.2 respectively.
According to the definition, this correlation equals

def
Raem (1) Z E [Ydem (t + T)dem ()], naimgns - (6.19)

where the expectations over n; through n4 are denoted explicitly as a subscript.

As illustrated by figure 6.18, the calculation of the autocorrelation function
Rgem(7) of the demodulator output signal consists of three steps. First, the
noise components ng ;(t) and n, 4(t) have to be substituted according to (2.13)
and (2.14) with their truly Gaussian counterparts n;(t) and ny(t). Subsequently,
this substitution allows the use of some very useful theorems for Gaussian noise,
discussed below, in order to determine the correlation functions of the Gaus-
sian components in the output signal. Finally, the correlation functions of the
remaining components of the output, those corresponding to the FM message
(t), are determined.

Simplification by Theorems for Gaussian Noise

The auto correlation Rgem(7) contains many products of Gaussian noise pro-
cesses. The following two theorems, adopted from [7], therefore allow consider-
able simplification of the calculations.

Theorem 1 If ni,... ,n2ry1 denote an odd number of zero-mean Gaussian
random variables, not necessarily independent, then

E (n1 ‘e 77,2k+1) =0. (620)
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Figure 6.18: Calculation of the autocorrelation function of the demodulator output
signal.

Theorem 2 Ifn,,... ,ng denote an even number of zero-mean Gaussian ran-
dom variables, not necessarily uncorrelated, then

k
E(mi...na)= >, [ E(uny). (6.21)

all pairs i#j
1<4,j<2k

Thus, for instance, when k& = 2 theorem 2 states that

E (n1n2n3n4) =FE (nlnz) E (n3n4)
+E (n1n3) E (n2n4) (622)
+E (n1n4) E (n2n3) .

The difference between the results for products of odd numbers and even num-
bers of Gaussian random variables can be explained by the fact that expansion
of a product of an odd number of variables yields terms that consist of (several)
factors E (n;n;), and one factor E (n;). The latter expectation equals zero since
all variables n; are assumed to be zero-mean. Consequently, for an odd number
of variables, all terms in the expansion of their product equal zero. Expression
(6.21) shows that the expectation of products of Gaussian random variables can
be expressed in terms of the (cross-)correlations of all possible permutations of
pairs of these variables.
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Application to the FM Demodulator Qutput Signal

The two theorems save a lot of dull and elaborate calculus, with an inherently
high probability of mistakes. However, it should be stated explicitly that they
are only valid for true Gaussian random variables. In the presence of modu-
lation, the noise components n; i(t), ns,4(t) and their derivatives are not truly
Gaussian since they depend on ¢(t). Therefore, in order to be allowed to use
theorem 1 and theorem 2, we first rewrite the demodulator output signal in
terms of truly Gaussian components. Subsequently, the correlation functions of
the remaining components are determined.

In order to attain an expression for y4em(t) that allows application of theo-
rem 1 and 2, the noise components 71, i(t), ns,q(t) and their derivatives have to
be expressed in terms of the noise components n;(t), nq(t), the components of 7
on the real and imaginary axis, ¢(t), and their derivatives, according to expres-
sion (2.13) and (2.14). The noise processes n;(t), ny(t), and their derivatives
are truly Gaussian whenever n(t) is, since they are independent of ().

Further, the calculation of the autocorrelation function Rgem(7) should be
split into two consecutive phases, as expressed by

def
Riem(7) = E [yaem ()Yaem (¢ + )l g g 0.6

. (6.23)
=E {E [ydem(t)ydem(t + T)! ¥, (p]n,-,nq,hi,ﬁq}

0.

The inner expectation in this expression can be determined with the aforemen-
tioned theorems. This expectation represents correlation functions of the noise
n(t), in which ¢(t) and ¢(t) are considered as ‘deterministic signals’. In that
case, the argument of the expectation contains only Gaussian random variables,
and no other random variables, for which the theorems hold. The result con-
sists of correlation functions of the Gaussian noise components, multiplied by
functions of v(t) and ¢(¢).

Subsequently, the outer expectation is calculated over the generally non-
Gaussian random variables ¢ and ¢. Due to the Taylor series expansion of
ydem(t), the resulting expression will consist of products of correlation func-
tions that solely depend on n(t) (determined in the first step), and correlation
functions that solely depend on ¢(t) and ¢(t).

In Section 6.3.2 and Section 6.4.2, this approach is applied to determine the
autocorrelation functions of the first and second-order noise respectively, and
their cross-correlation. The autocorrelation of ygem(t) equals the addition of
these correlation functions.

6.2.3 Power Spectral Density

The third step is the determination of the power spectral density. According
to the Wiener-Khintchine theorem [24, 25], the power spectral density of the



200 Chapter 6. Amplitude Compression

demodulator output signal, denoted by Sgem(w), equals the Fourier transform
of the autocorrelation function,

1 o0
Sdem(w) = or / Riem(7) exp(—jwr)dT, (6.24)

where w represents the radial frequency in (rad/s). The autocorrelation function
Ryem(T) generally consists of products of one correlation function that depends
only on the input noise n(t), and another correlation function that depends only
on the modulation (t). The demodulator output spectral density therefore
consists of convolutions of the spectra of these components.

The calculation of Sgem(w) therefore generally consists of two steps, as il-
lustrated by figure 6.19. First, the products of autocorrelation functions are

Autocorrelation function of ydem(t)

Fourier transformation of the correlation functions
into the corresponding power spectral densities

Evaluation of the frequency-domain convolutions
between these spectral densities

Power spectral density of y;. (1)

Figure 6.19: Calculation of the demodulator output power density spectrum.

transformed into convolutions of the corresponding spectra. Subsequently, these
convolutions are calculated.

The spectra corresponding to the autocorrelation functions of the compo-
nents that depend only on ¢(t) and ¢(t) may generally be obtained with the aid
the quasi-stationary approximation, explained in Section 2.2.2. In addition, for
wideband FM waves, the effect of the modulation on the demodulator output
noise is usually negligible, which allows further simplification.

6.2.4 Baseband Filter Output Signal and Noise Power

The final step in the calculation of the output SNR is the determination of
the signal and noise power observed at the output of the baseband filter. This
section outlines the general derivation of an expression for the output noise
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power that is valid for arbitrary transfer characteristics of the RF/IF filter, the
baseband output filter, and the amplitude compressor.

Formally, the total receiver output signal and noise power, denoted by P;,
is obtained by integration of the demodulator output spectral density, weighted
by the baseband filter curve Hy(jw), as

1 [ .
Pi=- [ Seem(e) o)l do. (6.25)

The contribution of the noise to this output power depends on the shape of
the IF/RF filter transfer and the baseband filter transfer. The dependency on
the baseband filter transfer is demonstrated by (6.25), while the dependency
on the IF filter transfer is contained in the spectral density Sdem(w). Thus,
in order to obtain a generally valid, explicit expression for the receiver output
noise power, the shape of the various filter transfers has to be included explicitly
by means of some ‘shape parameters’. In this way, the entire expression for the
receiver output noise power and output SNR can be expressed in terms of a set
of shaping parameters, the input CNR, and the parameters of the input FM
wave.

Thus, as illustrated by figure 6.20, the calculation of the output noise power
generally consists of two steps. First, the various shaping parameters are de-

Power spectral density of yg...(f)

FM receiver output signal- and noise power

Figure 6.20: Calculation of the receiver output noise power.

termined. Subsequently, the noise power is expressed in terms of these shaping
parameters.

In subsequent sections it is shown that, with respect to the shaping intro-
duced by the IF/RF filter, the baseband filter and the FM demodulator, six
different components can generally be distinguished in the demodulator output
noise power spectral density:

e first-order amplitude noise;
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first-order frequency noise;
e second-order amplitude noise;

e second-order frequency noise;

a second-order noise X noise component;

click noise.

The first and second component represent the first-order signal xnoise intermod-
ulation, the third and fourth represent the second-order signal xnoise intermod-
ulation, and the fifth represents the second-order demodulator response to the
noise alone.

The contribution of each of these components to the receiver output noise,
observed at the baseband filter output, is described by separate shaping param-
eter(s), as schematically represented by figure 6.21. Expressions for the various

L} 4! ival
IF filter transfer baseband filter wansfer

first-order
amplitude noise

first-order
signalxnoisc

first-order
frequency noise

second-order
amplitude noise

second-order
signalx noise

white noise

second-order
frequency noise

second-order
noise X noise component

click noise

Figure 6.21: Schematic representation of the various noise components and their
shaping parameters.
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shaping parameters, in terms of the IF filter, baseband filter and demodulator
transfer are derived below.

First-Order Noise

The first-order output noise, characterized by a power content that is inversely
proportional to the receiver input CNR, generally consists of two contributions:
continuous amplitude noise and continuous frequency noise. The amplitude
noise is subjected to ‘white’ shaping, i.e. transferred by a frequency-independent
gain, while the frequency noise is subjected to quadratic shaping by the demod-
ulator.

Amplitude Noise The amplitude noise spectrum observed at the demodula-
tor output is proportional to the spectral density S, (w) of the low-pass equiva-
lent input noise processes n;(t) and ng4(t), defined in Section 2.3. As illustrated
by figure 6.21, this power density spectrum is obtained when zero-mean white
Gaussian noise is filtered by the low-pass equivalent of the IF/RF filter, denoted
by e (jw).

The contribution of this noise component to the receiver output noise power
is therefore proportional to the double-sided noise bandwidth of I'(jw)H,(jw),
which denotes the cascade of the low-pass equivalent IF filter and the baseband
filter. This bandwidth, denoted by By o, is defined as

def 1 * .2 w
Bro ¥ / () () d

_ 1 o0 ‘ .
= 2 |I‘IF(0)Hb(0)|2 /_oo |FIF(JUJ)HI,(J )|F dw,

(6.26)

with unit (Hz). The first-order amplitude noise power at the receiver output,
denoted by P, ampl,1, is therefore proportional to

1 [ .
Pn,ampl,l x 2_ / Sﬂ(w) |Hb(.]w)|2 dw
T J-xo

= By 05n(0) | Hy(0)[”.

(6.27)

Frequency Noise The first-order frequency noise is shaped by the quadratic
frequency transfer w? of differentiation with respect to time. The demodulator
emphasizes the high frequency spectral contents of this noise, while it reduces
the low-frequency contents.

According to figure 6.21, the contribution of the frequency noise to the re-
ceiver output noise power is proportional to the double-sided ‘noise bandwidth’
of the cascade jwI's(jw)Hp(jw). The effect of the quadratic shaping applied by
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the demodulator on the frequency noise power at the receiver output is conve-
niently described by the radius of gyration of the FM receiver. This parameter,
denoted by pp, is defined in analogy with the radius of gyration of the IF/RF
filter output noise r, defined by (5.13), as

dger 1| J2o w?Sn(w) | i (jw)|” dw
2\ [0, Sn(w) [ Hy(w)l* dw

Po (6.28)

with unit (Hz). The first-order frequency noise power at the receiver output,
denoted by P, freq,1, is therefore proportional to

1 e .
Pn,freq,l X '2"‘;/ W2Sn(w) |Hb(.]w)|2 dw

= (27po)* Bn,05x(0) |Hy(0)|” .

(6.29)

Thus, according to this expression, (2mpp)? denotes the ratio of the frequency
noise power and the amplitude noise power at the receiver output.

Second-Order Noise

The second-order demodulator output noise, characterized by a power contents
that increases inversely proportional, to the square of the input CNR, consists of
three components: a ‘white’ shaped amplitude noise component, a ‘quadratic’
shaped frequency noise component that together represent the second-order
signalxnoise intermoduiation, and a ‘white’ shaped noisexnoise component,
which is the demodulator response to the input noise alone.

Amplitude Noise Similar to the first-order amplitude noise, the second-
order amplitude noise is transferred to the demodulator output by means of
a frequency-independent ‘gain’.

The contribution of this noise component to the output noise power is there-
fore also described by a noise bandwidth By 2, which is defined as

def L
27 Spn2(0) | Hy(0)[?

By

/ " 80 () [ Hy () ? . (6.30)

As explained in Section 6.4, the spectrum S,2(w) in this expression equals the
convolution of the low-pass equivalent input noise spectrum S,(w) with itself,
ie.

Spz2(w) = Sp(w) * S, (w). (6.31)

In essence, this spectrum corresponds to the squared low-pass equivalent de-
modulator input noise components n?(t) and n2(t).
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The second-order amplitude noise power at the receiver output, denoted by
P, ampl,2, is therefore proportional to

1 [ .
Poamptz o [ $a(0) IHy)f” do
T — 00

= BN 2S,2(0) |Hy(0)]* .

(6.32)

Frequency Noise Similar to the first-order frequency noise, the second-order
frequency noise is subjected to quadratic shaping by the FM demodulator.
Therefore, its contribution to the receiver output noise power is described by
two parameters: the noise bandwidth By ; from (6.32), and a radius of gyration
p2, that is defined as

def 1 | Jo00 w2Sp2(W) |Hy(jw)|* dw
21\ [ Spe(w) [Hy () dw

p2 = (6.33)

with unit (Hz).
Consequently, the second-order receiver output frequency noise power, de-
noted by P, freq,2, is proportional to

oo

1
Py freq, oc—/ w282 (w) |Hp (jw 2 dw
reaz % o [ PS,a(0) |Hu(ie) 630

= (27p3)% B 25n2(0) | Hp(0))? .

Thus, according to this expression, (2mp,)? denotes the ratio of second-order fre-
quency noise power and the second-order amplitude noise power at the receiver
output.

NoisexNoise Component The last second-order noise component repre-
sents the response of the FM demodulator to the input noise alone. In essence,
it is the response to a mixture of amplitude noise and frequency noise.

As explained in Section 6.4.3, the power density spectrum of this component,
denoted by S, ,,(w), can be expressed in terms of the input noise spectrum S, (w)
as

Snn@) = 5= [ 32y =)Sulo — Sy, (6.33

Its contribution to the receiver output noise power is therefore described by the
noise bandwidth By 3, defined as

def 1
B =
M3 9 Snn(0)

T / " Sn(w) [Ha ()] dw. (6.36)
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Therefore, the resulting noisexnoise receiver output noise power, denoted
by P, n.2, is proportional to

1 [ .
Pan % 5 [ 02Sun(w) [Ho(o)]” dw

= BN,35n,(0) |Hs(0)".

(6.37)

Click Noise

Click noise is not transferred from the receiver input to the output, but gener-
ated at the FM demodulator output. Its contribution to the output noise power
is therefore shaped only by the baseband filter, and not by the RF/IF filter
transfer, as depicted in figure 6.21. However, the click rate does depend on the
IF/RF filter transfer shape, by means of the radius of gyration, as discussed in
Section 5.4.3.

Due to its approximately white spectrum, the contribution of click noise to
the output noise power is represented by the double-sided noise bandwidth of
the baseband filter, given by

s 1 £00
By, € ————; / |Hy (jw)|” dw, (6.38)
27 |Hy(0) /-0
with unit (Hz).
The click noise power observed at the receiver output, Pejc, is therefore

nranartinnal +n
preporiicnal 1o

27
= BN,I 59

1 > L2
Paccoc g [ St G0 (6.39)

(0) |Hs (0))* .

click

Total Output Noise Power

The total receiver output noise power is a linear combination of the previously
described contributions, where the amplitude compressor transfer, represented
by Cr,1(A) and C; 2(A), serves as a weighting factor. Further, the receiver
output noise power is, of course, dependent on the input CNR p. In terms of
the double-sided noise bandwidth of the input noise, denoted by B, which is
determined by the IF filter, i.e.

1 o0
B = 5 [ Suw)dw

% (6.40)
1
= m/_oo FIF(w)dw,
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shaping rectangular CCIR 468 baseband
parameter baseband filter filter (kHz)
Bno w 6.43
Bn 1 w 6.43
Bn ¥ (1- %) 17.58
2 3
By % [1 - (23&,) + (V‘{/VI) - ( %n) ] 1058
w
Po vy 6.99
[1-(3W/4Wa)
P2 e 3= (3W/2W,) 12.61

Table 6.1: Noise shaping parameters for a rectangular IF filter, and a rectangu-
lar/CCIR 468 baseband filter.

this CNR can be expressed as

p:

where A denotes the receiver input carrier amplitude.

A2
25,(0)By,1r’

(6.41)

Table 6.1 lists the values of the parameters By o through p, for two different
types of baseband output filters: a rectangular filter with bandwidth W, and
a filter that complies with the CCIR 468 standard. The frequency transfer of
the latter filter is depicted in figure 6.22. The IF filter is assumed to possess a
rectangular frequency transfer, and a bandwidth W,, that is considerably larger
than the bandwidth of the baseband filters.
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Figure 6.22: Frequency transfer of a CCIR 468 baseband filter.

6.3 First-Order Continuous Noise

The first-order continuous components dominate the demodulator output signal
at high CNRs, as discussed in Section 5.4.2.

This section considers the derivation of these noise components, with the
amplitude compressor transfer as parameter. Section 6.3.1 discusses their iden-
tification from the demodulator output signal. Section 6.3.2 discusses their
autocorrelation function, required for the power density spectrum considered in
Section 6.2.3. Section 6.3.4 derives an expression of the first-order naise power
located at baseband frequencies, while Section 6.3.5 discusses the implications
of this expression on the design of the amplitude compressor.

6.3.1 Time Domain First-Order Noise

As outlined in Section 6.2.1, a time domain expression for the first-order output
noise components is obtained by a four-dimensional first-order Taylor expan-
sion of yqem(t), given by (6.15). From that expression, the first-order noise
components, denoted by ygem,1(t), are obtained for k =1 as

8:’;/dem aydem . a:Udem . aydem

ydem,l(t) =TMNgq + ng, + N, . N, - .
an,i 1 (97137(1 ! an,i 1 ans,q

(6.42)

Evaluation of the four partial derivatives shows that only n,;(t) and n,4(t)
yield a nonzero contribution to the output signal. The reason for this is that
ns.i(t) represents the first-order term of the amplitude R(t), i.e. the amount of
amplitude noise that penetrates the output, while 7, 4(t) represents the first-
order frequency noise, as discussed in Section 2.3.2.
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By substitution of the first-order inverse suppression factor Cp, 1(A), defined

by (5.8), the final expression for the first-order output noise becomes

aem () = S (01 (A0 0mas(0) + s (0] (6.43)

This expression demonstrates the observation in Section 5.4.2 that the amplitude
noise is transferred to the output by the compressor small-signal transfer, while
the phase/frequency noise is transferred by the large signal transfer.

6.3.2 Autocorrelation Function of the First-Order Noise

The contribution of the first-order noise Ygem,1(t) to the demodulator output
noise spectrum and the receiver output noise power can be obtained from its
auto correlation, as discussed in Section 6.2. The cross correlation of the first-
order noise with the FM message signal, which is a product of one Gaussian noise
component with the FM message, and the cross-correlation with the second-
order noise, which is a product of three Gaussian noise components, do not
contribute to the noise spectrum and the output noise power. This follows
directly from theorem 1: both cross correlations consist of products of an odd
number of zero-mean Gaussian random variables of which, according to the
theorem, the expectation equals zero.

From expression (6.43) it follows that the autocorrelation function of the
first-order noise generally consists of three contributions:

e autocorrelation of the frequency noise 72 4;
e autocorrelation of the amplitude noise contribution ¢n, ;;
e cross-correlation between both components.

As shown in Appendix B, application of theorem 2 to the definition formula
(6.19), with yqem(t) replaced by ydem,1(t), yields the following expression for
the autocorrelation of the output signal ygem,1(%):

Faema(®) = [ED) L RanirrBleos 1 = o)

+[1 = Cn1(A)] Ran(T)E [(¢1 + ¢2) sin (p1 — ¢2)]
+ 11~ Coa (A Ran(DE [z cos (i — )] | (6:40)
where R,,(7) denotes the autocorrelation of the noise components n;(t) and

n,(t) (see Section 2.3.1), Ran(7) the cross-correlation between n;(t), or ny(t),
and its time-derivative, and R;(7) the autocorrelation of the time-derivative.



210 Chapter 6. Amplitude Compression

Further, the expectations of ¢(¢) and ¢(t), where ¢, denotes p(t) at t = ¢, and
@2 on t = ta, represent the modulation of the noise spectrum by the message.

It is important to notice that the autocorrelation function of the first order
noise consists of the same components for all types of amplitude compressors.
The compression factor Cp 1(A) serves as a weighting factor that determines
only the contribution of these components to the demodulator output noise.
The first term in (6.44) basically represents the frequency noise, while the
last term is mainly due to the amplitude noise. The middle term represents
their cross-correlation. This can be observed from their weighting factors. The
contribution of the amplitude noise to ygem,1(t) is proportional to the inverse
first-order compression factor Cjp, 1 (A), while the frequency noise contribution
is independent of this factor. Consequently, the autocorrelation function of
the frequency noise contribution is independent of C), ; (A), the autocorrelation
function of the amplitude noise contribution is proportional to C2 ;(A), while
their cross correlation is proportional to C,, 1 (A).

Expression (6.44) agrees with the output noise autocorrelation functions that
were derived in [26] for three specific types of amplitude compression:

o infinite compression, where C,, ;(A) = 0;
o finite compression, where G(R) = R and C,1(4) = 1;
¢ no compression, where G(R) = R? and C,,1(4) = 2.

In all these cases, (6.44) matches the results obtained in [26].

6.3.3 Power Spectral Density of the First-Order Noise

The power spectral density of the first-order output noise is obtained by Fourier
transformation of the autocorrelation function Rgem, (7). We first consider
the general expression for this spectrum, and subsequently discuss a simplified
expression for wideband FM.

General Expression

Expression (6.44) for the autocorrelation function consists of three terms, that
are each a product of two autocorrelation functions. One correlation function
depends entirely on the input noise n(t), while the other one depends entirely
on the message signals ¢(¢) and $(t).

In the corresponding spectrum, these products of correlation functions trans-
form into a convolution of the corresponding spectra. The spectrum of the cor-
relation function that depends on the noise is a function of the spectral density
Sn(w), of the low-pass equivalent noise processes n;(t) and n,(t). The spectrum
of the correlation function that depends on ¢(t) and ¢(t) can be expressed in
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terms of the probability density of the instantaneous message frequency ¢(t),
denoted by py(w) with the aidof the quasi-stationary approximation.

As shown in Appendix C, the final result for the first order output noise spec-
trum, obtained by a proper rearrangement of the various spectral components,
equals

Saom1 (@) = [G(A)H [ Suw - wmatidy

2wChi(A) / ySu(w - 1)Po(y)dy

Loz [ " 12Su(w - psw)dy|. (6.45)

— 00

This expression clearly shows the effect of (finite) compression on the demod-
ulator output noise. The first term, a parabolic shaped spectrum, corresponds
to the frequency noise. Its contribution to the output spectrum is therefore
independent of the inverse compression factor Cp, 1(A4). The last term repre-
sents a noise floor that is due to the amplitude noise n, ;(¢). Therefore this
term is weighted by C2 | (A). The second term represents a cross-term between
the frequency noise and the amplitude noise, and is therefore proportional to
Cni(A). This term mainly affects the spectrum at the top of the FM band-
width, i.e. usually far above the highest message frequency, and is therefore
often negligible.

As an illustration, figure 6.23 depicts the spectrum Sgem,1(w) on a loga-
rithmic scale for an FM demodulator that employs a soft-limiter as amplitude
compressor, for various values of the limiter gain. The compressor transfer
G(A) = G%(A) is chosen according to (6.11), the message signal consists of
Gaussian noise with frequency deviation ratio Aw/W = 5. The input noise n(t)
is assumed to be white over the entire FM transmission bandwidth. The pa-
rameter z = K/A denotes the ratio of the limiter’s linear region and the carrier
amplitude, i.e. the inverse of the “over-drive factor” [20]. Further, the spectral
frequency is normalized to the RMS frequency deviation.

For high limiter gain values, i.e. z close to zero, the output basically consists
of the parabolic spectrum, represented by an asymptote that increases by 20 dB
per decade. For decreasing limiter gain values, i.e. z in the vicinity of unity, the
white component due to the amplitude noise gradually increases the noise level
inside the baseband, located around zero frequency. The decay of the spectral
density at w/Aw = 1 for low limiter gain values is due to the second term in
(6.45).
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Figure 6.23: First-order output noise spectrum of a soft-limiting FM demodulator
for various values of the limiter overdrive ¢ = K/A.

Spectrum for Wideband FM

For wideband FM waves, and in many cases also for narrow-band waves, ex-
pression (6.45) can be simplified significantly by application of the knowledge
that the bandwidth of the message signal ¢(t) is considerably smaller than the
FM transmission bandwidth.

The modulation of the noise spectrum introduced by ¢(t) and ¢(t) mainly
affects the demodulator output noise spectrum around its cut-off frequency (see
figure 2.5). As shown in Appendix C, Sgem,1(w) can therefore be approximated
as

Suema@) ~ | SR 2 4 (AP 2 ()] 5,00), (6.46)

where Aw denotes the RMS frequency deviation. This expression basically ig-
nores the correlation between the frequency noise and the amplitude noise, the
second term in (6.45); it roughly equals the addition of the frequency noise spec-
trum and the amplitude noise spectrum. The term w? represents the quadratic
shaping that is applied to the frequency noise, while (Aw)?C3 ; (A) represents
the white noise floor due to the amplitude noise. The factor (Aw)? represents
the power contents of the FM message signal ¢(¢) contained in the amplitude
noise contribution ¢(t)n, ;(t).

6.3.4 Output Power due to First-Order Noise

This section determines the first-order noise power observed at the FM receiver
output, i.e. at the output of the baseband filter in terms of the parameters de-
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fined in Section 6.2.4. The resulting expression is used as basis of the discussion
on amplitude compressor design in Section 6.3.5.

In order to gain insight into the various mechanisms involved in the gener-
ation of the output noise power, it is assumed throughout this section that the
simplified expression (6.46) for the demodulator output noise spectrum is valid.

The first-order receiver output noise power, consisting of an amplitude noise
and a frequency noise contribution, denoted by Pgem,1, can be obtained by
application of the Wiener-Khintchine theorem to the demodulator output noise
spectrum Sgem,1(w). By substitution of the receiver noise bandwidth By o, the
corresponding radius of gyration po, and (6.41) for the input CNR, this yields

Aw \? 2
o (F”O) C"’l(A)]' (6.47)

The second term inside the brackets in this expression represents the contribu-
tion the amplitude noise; it is proportional to C2 ,(A). Further, observe that
the noise power is proportional to the ratio of the baseband filter and IF fil-
ter noise bandwidths; this represents the trade-off realized by the FM scheme
between the receiver output SNR and the transmission bandwidth.

2 G2(4) Bnp

H 2
2BN,IF I 0)

Pdem,l = (27790)

6.3.5 Implications on Amplitude Compressor Design

Expression (6.47) for the first-order receiver output noise power hides a design
rule for the minimum level of compression, required for a receiver output SNR
that is close to the theoretical maximum obtained for infinite compression. This
design rule is discussed in this section. First, the general case is considered.
Subsequently, as an example, it is applied to an FM receiver that contains a
soft-limiter.

General Expression for the Critical Amplitude Compression Level

The reduction of the first-order FM receiver output noise power established by
amplitude compression is schematically visualized in figure 6.24. This figure
depicts the output noise power described by expression (6.47), normalized to
the output noise power observed in case of infinite compression (Cr,1(A) = 0),
as function of the inverse first-order compression factor Cp,1(A4).

In the case of infinite compression, all amplitude noise is eliminated and
the output noise power reaches the minimum possible level, determined by the
quadratic frequency noise.

In the absence of any compression, i.e. when G(R) = R? and Cp1(A) =2,
the amplitude noise and frequency noise are passed in equal proportions. In
practice, this is the maximum amplitude noise level encountered in FM demod-
ulators. Larger values of Cp 1(A), corresponding to G(R) = R* with a > 2, do
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Figure 6.24: Reduction of the first-order output noise power as function of the applied
level of amplitude compression.

not make sense since click noise is already completely suppressed for G(R) = R?;
a further increase of the exponent a results only in a disproportionate increase
in the continuous noise. The deterioration of the output SNR introduced by
amplitude noise, in comparison to the maximum possible SNR attained with in-
finite compression is illustrated by the following example. Consider the case of a
rectangular IF and baseband filter with, according to table 6.1, pg = W/(27v/3),
and the RMS frequency deviation ratio Aw/W = 5. In that case, it follows from
(6.47) that the noise level in the absence of compression (Cp, 1(4) = 2) exceeds
the level obtained with infinite compression (C,, :(A) = 0) by 25 dB.

According to (6.47), the minimum attainable noise level is approached within
3 dB, and further significant reduction by incrementing the amplitude com-
pression level becomes impossible once Cp, 1(A) has been decreased below the
‘critical’ value

Cna(4) = Cory & 20, (6.48)
This level of compression corresponds to the intersection of the asymptotes in
figure 6.24, where the amplitude noise power and frequency noise power are
equal. The total output noise is thus only 3 dB higher than the theoretical
minimum. Thus, a value of Cp;(A) that is much smaller than Ce 1, ie. a
compression level that is much larger than the ‘critical level’, makes no sense.

Example: Critical Compression Level of a Soft-Limiter

As an illustration of the previously discussed theory, we determine the critical
compression level, 1/C., ;(A) for an amplitude compressor implemented by a
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soft-limiter.

Consider an FM demodulator that is preceded by a soft-limiter which pro-
cesses the input wave subjected to demodulation and the reference wave, such
that the compressor transfer G(R) = G4(R). The transfer G5 (R) was deter-
mined in Section 6.1.4. The inverse first-order compression factor corresponding
to G(R) is given by (6.12).

For a rectangular IF and baseband filter, with po = W/(27v/3), and a devi-
ation ration Aw/W =5, the critical level of compression is about

1 Aw
> V33—
Ccr,l - w

~ 8.7. (6.49)

By substitution of (6.12) for C¢ 1, and numerical (or graphical) solution, it
follows from this expression that this level of compression requires a limiter over-
drive 1/z = A/K of at least A/K =~ 2.5. For larger overdrives, the optimum
output SNR is approached within 3 dB.

6.4 Second-Order Continuous Noise

This section determines the contribution of the second-order noise to the de-
modulator and receiver output signal. As explained in Section 5.4.5, this noise
represents the “modulation” of the compressor small signal transfer Cp, 1 (A).
Section 6.4.1 derives a time-domain expression for the second-order output
noise. Section 6.4.2 and Section 6.4.3 determine its autocorrelation and spectral
density respectively. Section 6.4.4 determines the receiver output noise power,
while Section 6.4.5 considers its implications on amplitude compressor design.

6.4.1 Time Domain Second-Order Noise

A time domain expression for the second-order noise is obtained from the second-
order terms of the four-dimensional Taylor series of the demodulator output
signal, given by (6.15). The second-order terms of that expression, yqem,2(t),
are given by:

2 2 -2
L 82ydem Ns.q azydem Mg 82ydem

Ydem 2(t) = + -
2 on?; 2 on2, 2 onl;
52 2 2 2
N5.q 0 Ydem 0 Ydem . 0 Ydem
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2 2
. 0*Ydem . 0*Ydem (650)
+ Ns,iNs q P) a‘— g qMs,i ) a‘?“‘
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Fortunately, five of the ten partial derivatives of y4em(?) in this expression equal
zero. Elaboration of the five nonzero derivatives finally results in the following
expression:

G(4 i ,
vaema(®) = S Coa(A)0 T + Cra (a1

s’q
2 +

(6.51)
[Cn,l (A) - 1] ns,ihs,q - hs,ins,q }1

where Cp, 2(A) denotes the inverse second-order compression factor, defined by
definition 2, given in Section 5.4.5. This factor basically represents the modu-
lation of Cy, 1(A) by the input noise.

The first two noise terms in (6.51) are due to the second-order amplitude
noise, since they contain the factor »(¢). This follows by investigation of the
general expression for the demodulator output signal, given by 6.13: the contri-
butions of the amplitude noise to the demodulator output noise are all multiplied
by the message ¢(t). The last two terms in (6.51) basically represent the second-
order amplitude noise. Further, the last two terms in (6.51) also contain the
second-order noise xnoise component.

Finally, it should be noticed from expression (6.51) that the second-order
noise is determined by both the inverse first-order and inverse second-order
compression factors of the amplitude compressor transfer G(A).

6.4.2

6.4, Anutocorrelation Function of the Second-Order Noise

The autocorrelation function of the second-order noise components is deter-
mined in a way similar to the autocorrelation function of the first order noise,
described in Section 6.3.2.

As discussed in Section 6.3.2, the cross-correlation between the second-order
noise Yaem,2(t) and the first-order noise ydem,1(t) equals zero, as a consequence
of theorem 1.

On the basis of theorem 2, however, it is observed that the cross-correlation
between the second-order noise and the message signal is generally nonzero,
due to the fact that it consist of expectations of an even number of Gaussian
random variables. These terms basically represent a second-order approximation
of the signal suppression effect, discussed in Section 6.1.2. It was shown there
that signal suppression is negligible in hard-limiters, which can be viewed as a
practical ‘worst-case’ situation. With finite compression, signal suppression is
usually even less important, and is therefore ignored in the conclusion.

According to the procedure outlined in Section 6.2.2, the autocorrelation of
the second-order noise, denoted by Rgem, 2(7), can be expressed as a product of
conditional expectations of n;, nsq and derivatives, followed by an expecta-
tion over ¢ and ¢. An example of such a calculation is made in Appendix B
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for the first-order noise components. Appendix D gives the expressions for all
second-order correlation functions, required for the calculation of Rgem,2(7). By
application of the appropriate weighting factors to these correlation functions,
which follow directly from (6.51), the final result becomes

Rdem,2(T) = G2(A){

A4
(1= A [Ran(7) + 0p] Ry (7)
+ (1= 3X +2)°R2% (T)E [¢12 cos 2 (1 — 2)]
+2(p = 3A + 2)(1 = A) R (1) Ran (T)E (01 + 02) sin 2 (01 — ¢2)]
+2(1 = \)? [Ran(T)Ran(7) — Rin(7)] Efcos2 (o1 — ¢2)]

+ 2)X% [Run(7) Riin(7) + RE, (7)) } (6.52)

where, for convenience, the factors p and A are defined as

H d:e‘f %Cn,2(A)) A dzef %Cn,l(A) (653)

Expression (6.52) is in accordance with the results obtained in [26] for p =
A =0,0.5,2 (the same cases as mentioned in Section 6.3.2), and the absence of
modulation, i.e. ¢ = 0. Note the similarity between this expression and (6.44)
for the first-order noise. Both autocorrelations consist of the same terms for
all types of amplitude compression. The compressor transfer affects only the
scaling factors of these components.

6.4.3 Power Spectral Density of the Second-Order Noise

This section considers the power spectral density of the second-order demod-
ulator output noise. First, a general expression is derived. Subsequently, a
simplified expression for wideband FM is discussed.

General Expression

The spectral density of the second-order noise is obtained by Fourier transfor-
mation of Rdem2(7). Although somewhat more elaborate, the calculation of
this spectrum, outlined in Appendix E, proceeds along the same lines as the
calculation of Sgem,1(w)-

Expressed in terms of the probability density of twice the message signal,
i.e. 2¢(t), that is denoted by p2,(.), and the spectrum S,2(w) = Sn(w) * Sn(w),
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Sdem,2(w) follows as

2
Suematw) = T2 s - 220850)

_ 2 e
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+ %(ﬂ -2 /oo Y2 Sp2(w — ¥)p2 (y)dy

- 2 =]
" /\7 /_ Y(2y = w)Snlw — y)Sn(y)dy}. (6.54)

This spectrum has a similar appearance as the first-order spectrum Sdem,1{(w)
given in (6.45). That spectrum consisted of convolutions between the noise
spectrum Sy,,(w) and the probability density of . The spectrum of the second-
order noise mainly consists of convolutions between the noise spectrum S, (w) =
Sn(w) * Sp(w) and the probability density of 2¢.

Second-Order Spectrum for Wideband FM

For wideband FM waves, considerable simplification of (6.54) is possible by

application of the knowledge that the bandwidth of the message signal o(t)

is much smaller than the FM transmission bandwidth. This knowledge was

already used in Section 6.3.3 to simplify the first-order output noise spectrum.
In Appendix E it is shown that for wideband FM, (6.54) reduces to

G*(4)
A4

Sdem,Z (w) ~

{[2(,; ~ 2)2(Aw)? + (1 — A)2w?] Sp2(w)

In this expression, the first term in (6.54) is ignored since it contributes only to
the, usually negligible, signal suppression effect. Further, similar to the noise
spectrum Sy (w) in the first-order demodulator output noise, the second-order
noise Sp2(w) is subjected to quadratic shaping, and white shaping proportional
to the FM message power contents (Aw)?. The quadratic shaped component
represents the second-order frequency noise, which is shaped by the differentia-
tion inside the FM demodulator, while the ‘white’ shaped represents the second-
order amplitude noise, that is not subjected to differentiation. The proportion-
ality of the latter component to the message power contents (Aw)? indicates the
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presence of a factor ¢(t) in the noise terms in (6.51) that corresponds to this
spectral component, which is the factor that distinguishes the contributions of
the amplitude noise from those of the frequency noise and the noisexnoise com-
ponents. The spectral density of these noisexnoise components is represented
by the convolution integral in (6.55), which is denoted by S, »(w).

Further, it is shown in Appendix E that with the aid of the central limit
theorem [25], S,2(w) and S, »(w) may generally be approximated by

S0) o [ Su)Sul - n)y
o *© 2 (6.56)
¥ orym P [_ 4(27r7‘)2] ’
Sen@) & o [ 4oy - 0500 - 9Sa Wy
T e S % | (6.57)
aEENETE O

where r denotes the radius of gyration, defined by (5.13), and p, equals the
radius of gyration of the time-derivative of the input noise, i.e.

ot L | [t Snl)d (6.58)
o= 20\ TP w?Sp(w)dw '

Thus, the entire second-order output noise spectrum can be expressed in
terms of the RMS frequency deviation Aw, the parameters r and p, that de-
scribe the demodulator input noise spectrum, and the amplitude compressor
parameters u and A.

6.4.4 Output Power due to Second-Order Noise

This section derives an expression for the second-order receiver output noise
power observed at the output of the baseband filter in terms of the parameters
of the input noise, the baseband filter and the amplitude compressor. The result
is used in the discussion on amplitude compressor design in Section 6.4.5.

The second-order output noise power, denoted by Pyem,2, is obtained from
the definition formula

1
Piom & o / Suem.2(w) | Hy ()| doo. (6.59)
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In order to gain insight into the dependence of the second-order noise on the
compressor transfer, we assume that the simplified expression (6.55) is valid. In
that case, Pyem,2 can be expressed as

G2(4) |
Pdem,2 = T(‘;)‘ IHb(0)|2 {

[2(1 = N)*(Aw)® + (1 = X)*(27p2)*] BN,25,2(0) +
2A2BN,3Sn,n(O)}. (6.60)

The spectral intensities S,2(0) and .S,, ,(0) can be determined exactly from the
input noise spectrum, but can also be approximated from (6.56) and (6.57)
with an error of usually less than 1 dB. If necessary, further refinement of these
approximations is possible with the aid of Hermite polynomials [25].

When (6.56) and (6.57) are used, Pgem 2 can be expressed as

C1D 1o 222

4p? 2r=w
2
(27 ps)? [(1 — A2 +2(n— 22 (ﬂ\ ]
L \27p2/ |
2
+axz—_217) B N’s} (6.61)

el -7

As expected, this expression shows that the second-order noise power is inversely
proportional to the squared input CNR; it decreases by 20 dB per decade of p.

6.4.5 Implications on Amplitude Compressor Design

Expression (6.61) contains very useful information for the synthesis of the am-
plitude compressor transfer: it allows derivation of the compressor transfer that
minimizes the continuous demodulator output noise in terms of the FM wave
characteristics and the parameters defined in Section 6.2.4. The derivation of
this compressor transfer is the subject of this section.

In order to minimize the level of second-order noise, or even the total level
of continuous noise observed at the demodulator output, two conditions on the
parameters g and A that represent the amplitude compressor transfer have to
be satisfied. These conditions, that follow from expression (6.47) and expres-
sion (6.60), are discussed below. As may be expected, it will be shown that
the second-order noise is minimized by demodulators that apply infinite ampli-
tude compression and those that apply no compression at all. In both cases,
modulation of the amplitude compressor transfer by the noise, an important
contribution to second-order noise, is absent.
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Condition I: Minimization of the Second-Order Noise

It is clear from (6.61) that any amplitude compressor that minimizes the level
of second-order noise has to satisfy the condition that

p—A=0&
d?G(4) dG(A) (6.62)
2 — =
A=z g =%

where the latter equation is obtained by substitution of the definition equations
(5.8) and (5.17) for C1(A) = 2X and Cp2(A) = 2p. This second-order differ-
ential equation for G(A) is an example of an Euler equation, and has the general
solution [27]

G(A) = coA® + c2 A%, (6.63)

where ¢y and ¢» are independent constants, that allow optimization of G(A)
to, for example, the input CNR and the various demodulator/filter parameters.
However, it should be noticed that the absolute magnitude of the transfer G(A)
is not of interest in amplitude compressor design since it only represents an
amplification of the entire receiver output signal. Therefore, the two indepen-
dent parameters co and ¢ result only in one degree of freedom in amplitude
compressor design: the ratio C3/co.

Thus, according to (6.63), any amplitude compressor transfer that estab-
lishes a linear combination of infinite compression (A°) and no compression at
all (A2) satisfies the condition that p = A, where

C2 A2

2[.& = Cn’z(A) =2\ = Cn,l(A) = QM

(6.64)

The only true degree of freedom left in this expression is the ratio cz/co-

The presence of a degree of freedom in (6.63) explains the fact, that both
demodulators that apply infinite compression, where ¢z /co = 0, and demodula-
tors that apply no compression at all, where c3 /co — oo, minimize the level of
second-order noise and therefore satisfy (6.62). A general model for a demodula-
tor that employs the amplitude compressor transfer from (6.63), and establishes
an arbitrary level of compression, is depicted in figure 6.25. Notice the differ-
ence between this type of amplitude compression and compression established
by a soft-limiter. The compressor in figure 6.25 simultaneously applies infinite
compression, proportional to ¢y, and no compression, proportional to c;. The
compressor output equals the linear combination of both components. No mod-
ulation of the amplitude compressor transfer occurs in this case, resulting in a
low second-order noise level. A soft-limiter, however, establishes a certain finite
level of compression by alternation of infinite compression and no compression,
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R(1) cos [@ ¢ + @) + &(N]

Figure 6.25: Demodulator configuration that minimizes the level of second-order
noise.

under control of the limiter gain. Consequently, due to the frequent switching
between both types of compression, considerable modulation noise has to be
expected, resulting in a high second-order noise level.

Condition II: Minimization of the First-Order Noise

Once the second-order output noise has been minimized by application of the
compressor transfer (6.63), the first-order output noise can be minimized by
proper selection of the remaining degree of freedom: the ration c;/co.

By proper design of the ratio c2/co, the inverse first-order compression fac-
tor, represented by A, can be selected such that it minimizes the total level of
continuous noise Pyem,1 + Pgem,2. As observed from (6.47) and (6.61), this is

achieved when A minimizes an expression of the form

Pdem = Pdem,l + Pdem,2

6.65)
=0 +771)\2+772(1—/\)2, (

where 1o, 71, and 7, are coefficients that follow from (6.47) and (6.60), or (6.61).
The ‘optimal’ value of X obtained from (6.65) equals

72
m+n

Acapt, =

(27I'p2) BN2_n2_(Ol (6.66)

2 Bno (A2 +2BN3_n,LQ (21p2)* BNz_n_a(_)

?» Bnp
which corresponds to an optimal ratio ¢z /co equal to

C2
co

/\opt,
opt A (1 - Opt)
(27p2)° Bn, 2—"40—) (6.67)
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For example, when the IF filter and baseband filter are rectangular and have
a bandwidth W,, and W respectively, (6.66) yields the optimal compression level
obtained with the aid of (6.47) and (6.60),
w
4— 3W_,.

8 -4 +4 (%)~ 6%a 4 96p (42)°

(6.68)

/\opt =

When e.g. W,, = 12W, and Aw = 5W, it follows that the optimal level of com-
pression approaches infinity, i.e. Aqpt = 0, as should be expected; compression
reduces the amplitude noise and therefore also the total continuous noise level.

In the presence of click noise, the optimal value of A becomes a function
of the input CNR, that may differ significantly from zero, as will be shown in
Section 6.6.

6.5 Generalized Click Noise Model

In Section 5.4.3, it was shown that the click noise model provides a very compact
description of the FM threshold effect, useful for engineering purposes. Further,
finite compression of the demodulator input carrier amplitude, instead of the
usually applied infinite compression, was proposed as a means to establish a
trade-off between continuous noise and the perceptively very unpleasant click
noise, in cases where operation above threshold cannot be guaranteed.

In order to judge this trade-off on its merits, a quantitative description for
the amount of click noise observed at the demodulator output during finite
amplitude compression is required. Since such a description is not provided
by literature, this section will extend the ‘Rician’ click model [6] to include
arbitrary types of amplitude compression.

An outline is as follows. Section 6.5.1 briefly reviews Rice’s click model
and shows that the required extension can be achieved by a modification of the
click pulse area. Section 6.5.2 outlines the procedure followed in Sections 6.5.3
through 6.5.5 to obtain an expression for the click pulse area. The resulting
model is subsequently applied to three FM demodulators with different types
of amplitude compression, in sections 6.5.6 through 6.5.8.

6.5.1 Outline of the Model

As discussed in Section 5.4.3, the click model proposed in [5, 6] is a simplified
description of a particular kind of noise excursions that result in a pulse in
the frequency noise with significant low frequency contents. In this section, we
focus on its mathematical formulation and the extension to arbitrary types of
amplitude compression.
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Click Noise Model for Infinite Compression

The original model, valid for infinite compression only, approximates the shape
of the click pulses by a Dirac impulse, which according to [28-30] is a reasonable
assumption as far as the spectral contents at baseband frequencies is concerned.
Further, these pulses are considered to be uncorrelated with the continuous de-
modulator output noise, and with each other. The latter assumption is allowed
around the threshold [31] due to the wide separation of click pulses in time.
For example, in FM audio broadcasting, only a few (1-10) clicks per second are
generated at the threshold CNR [6]. The mathematical consequence of these
observations is that click noise can be described as a stochastic train of positive
and negative impulses {corresponding to counter-clockwise and clockwise ori-
gin encirclements), distributed over time according to two independent Poisson
processes t; and ¢;, with average rate N, and N_ respectively:

éclick(t) = i 2o (t — ty) — i 2mé (t — t). (6.69)

k=—o0 I=—00

In this expression, the factor 27 represents the area of the click pulses (see
Section 5.4.3). Thus in essence, the click model contains two key parameters:
the click area and the average click rate. The white power spectral density of
the click noise, given by (5.11), is entirely determined by these parameters.

Modifications for Finite Compression

In order to extend the model to finite amplitude compression, we should inves-
tigate in which way the click area and average click rate are affected by the level
of compression.

As observed from the discussion in Section 5.4.3, the average rates N, and
N_ are entirely determined by the amplitude compressor input signal r(t) =
s(t) + n(t), and are therefore independent of the applied type of compression.
In fact, N, and N_ describe only the rate of cycles by which the noise n(t)
advances/delays the noisy FM wave r(t) in comparison to the noise free FM wave
s(t), which is entirely independent of the applied type of amplitude compression.
Consequently, it is legitimate to use these same rates N, and N_ in an extended
click model.

The observation in [5, 6] that the area of a click pulse at the FM demodula-
tor output equals 27 is entirely based on the assumption that the demodulator
output signal equals the instantaneous frequency of the FM input wave r(t),
i.e. that infinite compression is applied. When finite compression is applied,
however, this is no longer true, as observed from (6.13). In that case, the out-
put signal, and therefore also the click pulse area observed at the demodulator
output, becomes dependent on the input amplitude R(¢). As a consequence, in
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case of finite compression, the area of the click pulses is generally not equal to
2w, and, in addition, differs among the click pulses. For this case, the factor
27 in expression (6.69) should therefore be replaced by a stochastic variable &,
representing the area of the pulse generated in G [R(t)] 6(¢) at the instant ¢ = t;.
Further, it should be questioned whether the clicks still resemble Dirac impulses,
or become widened. The Dirac impulses in (6.69) should therefore generally be
replaced by pulses pi(t) of a stochastically determined shape and unity area.
The click noise in case of finite compression may therefore be expressed as

GIR®Baiex(t) = Y &pe(t—te) = D am(t—1t). (6.70)

k=—00 l=—00

Spectral Density for Finite Compression

The power density spectrum corresponding to the stochastic pulse train in(6.70)
generally differs from (5.11) for the infinite compression case. It is known [6, 30]
that as long as the clicks are independent, the double-sided click noise spectral
density equals the average total click rate N4 + N_ times the (average) power
spectral density of the pulses py(t)*.

Although the resulting spectrum is generally colored instead of white, its
shape at low frequencies, i.e. in the baseband region, will still closely resemble
the spectrum of a Dirac impulse train. This was also observed in [30], where
the Dirac impulses in the click noise where replaced by Gaussian pulses. The
differences in shape basically result in discrepancies at high frequencies, i.e.
above the baseband.

Therefore, in order to model the effect of finite compression on the click
noise at baseband frequencies, the click pulses can be appropriately represented
as Dirac impulses with area &, equal to the average area of the individual pulses.
The corresponding spectrum may therefore be expressed at baseband frequencies
as

Sclick(w) ~ 52 (N+ +N_). (6.71)

Thus, according to this expression, the click noise power density spectrum in
case of finite compression is easily obtained once the average click pulse area &
is known. Determination of this area is the subject of the subsequent sections.

6.5.2 Concept of the Procedure

This section summarizes the procedure followed in sections 6.5.3 through 6.5.5
to determine the average click pulse area for arbitrary types of compression

lIn [6, 30], the spectrum equals the average rate times the squared modulus of a deter-
ministic pulse spectrum. This squared-modulus spectrum is in fact equivalent to the power
density of a stochastic pulse.
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applied to the demodulator input FM wave.

The area £ is an average over all clicks observed sequentially in time. Such
a time average is generally hard to compute since the start and stop instants
of the pulses are difficult, if not impossible, to identify from the demodulator
output signal.

Therefore, the procedure discussed in this section uses the (assumed) prop-
erty of ergodicity to replace the time average by an ensemble average over the
input noise n(t). The assumption of ergodicity is usually allowed, since nearly
all physical noise processes are ergodic. Thus, by this assumption, the time
average ¢ is assumed to equal the area of a single click pulse, averaged over the
ensemble of the input noise n(t). In this way, the problem can be defined in
terms of a set of time-independent stochastic variables and their joint a PDF:
instead of a time-average over all click pulses, the average click pulse area is
obtained from an ensemble average of a single pulse, where the average is taken
over the input noise n(t).

Another observation that significantly simplifies the procedure is that the
click noise model, although not described by Rice [6] in this way, is essentially
defined in terms of polar coordinates; the condition for the occurrence of a click
is that noise encirclements have a radius larger than the FM phasor §. For that
reason, Section 6.5.3 formulates the problem in terms of polar coordinates with
the origin located at the tip of the noise-free FM phasor 5. The noise phasor
71 is described by means of its (stochastic) radius R,, and phase ¢,, relative to
§, as depicted in figure 6.26. In this figure, ¥ denotes the velocity vector of the
noise 1.

ImT

<

D(1) = 0t + Q1)

—
Re

Figure 6.26: Amplitude compressor input signal r(¢) = s(t) + n(t) expressed in polar
coordinates.
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The calculation of the average click pulse area £, that employs the polar
model of the demodulator input wave depicted in figure 6.26, is schematically
outlined in figure 6.27. The procedure starts from the general expression for

: radial
component
L

total click
noise

continuous noise

B R .
1 averaging over a single |
' origin encirclement !

Figure 6.27: Calculation of the average click pulse area £.

the demodulator output signal, given by (6.13). In this expression, the term
G(R)g(t) can be ignored since it contains amplitude noise only. Click noise
is part of the demodulator output frequency noise, and is therefore entirely
included in G(R)6(t).

With the aid of the polar representation of the input signal, G(R)6(t) can
be decomposed into a radial component that represents the fluctuations in the
length of the noise phasor, and an angular component that contains the rota-
tional movements of 7. As will be shown in Section 6.5.3, the radial component,
which is proportional to the time-derivative R,, of ER,,, does not contribute to
the click noise since it does not result in encirclements of 7 around the origin.
Consequently, the click noise is entirely included in the angular component,
which is proportional to the time-derivative ¢, of ¢,.

An investigation of the click pulse structure, considered in Section 6.5.4,
shows that the angular demodulator output noise component generally consists
of a mixture of click noise and continuous frequency noise. As described in
Section 6.5.5, the average click noise pulse area £ is derived from the average
value of this component, calculated over one encirclement of 7 around the origin.
The contribution of the continuous noise to this average can be approximated



228 Chapter 6. Amplitude Compression

from the first and second-order noise components derived in sections 6.3 and
6.4. Subtraction of this continuous component from the total average angular
component then yields the contribution of the click noise. Further, in advance
of the averaging procedure, the angular noise frequency ¢y, that describes the
click rate, is replaced by its absolute value |¢,| in order to prevent a zero result
for the average click noise contribution. Without this substitution, the average
click noise equals £ (N — N_), i.e. the average area times the net click rate.
However, since clockwise and counter-clockwise rotations of the noise phasor
are usually equally likely, i.e. N, = N_, this average usually equals zero. The
substitution of ¢, with its absolute value |¢/,| replaces the net click rate by
the total click rate Ny + N_, such that the average total click noise becomes
£(N4 + N_). The average click area is finally obtained through division by
the total click rate Ny + N_, which is known already from Rice’s theory, or,
alternatively, can be derived from the extended theory for the case of infinite
compression, where the area is known to be £ = 2.

6.5.3 Demodulator Output Noise in Polar Format

In order to write the part of the demodulator output noise that contains the
click noise, G[R(%)}6(t), in polar format, the components of the input noise n(t)
are expressed as

ns,i(t) = Rn(t) cospn(t), (6.72)
ns,q(t) = Rn(t) sin pn(t). (6.73)

Thus, the noise encircles the tip of the FM phasor § with a radius R,,. Substitu-
tion of these equations into (2.16) yields an expression for the amplitude R(t) in
terms of R, and ¢,. In order to obtain an expression for @, this frequency noise
component can be expressed in terms of the polar noise components R,,, ¢, and
their derivatives as

o) _ 98 , . 06

dt ~ oR, "t et (674

The first component on the right hand side (RHS) of this expression corresponds
to radial movements (it is independent of ¢,,), caused by the time-dependency
of R,(t), while the second component corresponds to angular movements of
fixed radius R, (it is independent of R,). Finally, the relevant component of
the demodulator output noise may be expressed as

_ o0 . 06
_ 2 2) (| — T’
G[R(1)]6(t) =G (\/Rn +2AR, cospn + 4 ) (aR,, Bt 5on “’")
6

a6 . o0
= G (Rn, ¥n Rn. + G (Rn, ) =——@n- (6.75)
(Rn, ¥n) R, (Rn, o )a‘pnv
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Both partial derivatives of this expression can be determined with the aid of
(2.17), (6.72) and (6.73) as

00 2+ AR n
_ R; + AR, cosyp . (6.76)
dpn, A2 +2AR, cosp, + R2
06 AR, sinpp,
n S0P (6.77)

OR, A +2AR,cospn + RZ

From (6.77) it follows that the radial component of the demodulator output
noise, the first term in (6.75), does not contribute to the click noise and can
therefore be ignored in the conclusion. Mathematically, this follows from the
observation that (6.77) is proportional to sin,, while the amplitude transfer
G(R) fluctuates synchronously with cosy,. The phase noise ¢, is uniformly
distributed, as shown in Appendix F, which means that the average contribution
of the first term in (6.75) to a single encirclement of the origin equals zero.

Consequently, the click noise, and the average click area have to be deter-
mined from the angular component of the demodulator output noise, denoted
by 7.5 ang(t), which can be expressed as

00
no,ang(t) =G (Rna ‘Pn) 5(":15071

2 (6.78)

Opn’

=G (\/Rg ¥ 2AR, cospn + A2)

6.5.4 Angular Demodulator Output Noise Components

The angular demodulator output noise 7, ang (t) generally consists of two contri-
butions; click noise and the angular component of the continuous demodulator
output noise. In order to obtain an expression for the average click area, both
components need to be separated. For that purpose, this section separately
investigates the three factors that constitute the angular demodulator output
noise Ny ang(t).

Noise Frequency

The factor ¢, in 7, ang(t) equals the radial frequency of the input noise n(t),
which represents the angular movements of the noise phasor 7i. The other
factors in the angular noise term depend only on the polar position coordinates
R, and ¢,, and serve only as a position dependent weighting factor. Since
¢n represents both clockwise and counter-clockwise motion, we replace it with
its modulus || in all subsequent calculations in order to assure that the final
result contains the total click rate Ny + N_ instead of the net rate N, — N_,
which is usually zero.
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Click Pulse Shape in case of Infinite Compression

The factor 3%9:, given by expression (6.76), represents the shape of a single
click pulse in case of infinite compression (where G (R, ¢,) is a constant), as
a function of the polar position coordinates R,, and ¢,. Note that the time
t is not explicitly included in this expression: the click pulse is expressed as
function of the stochastic variables R, and ¢, only. The average (expected)
value of this expression is considered to be equal to the time average of the click
pulse area, on the basis of the assumed property of ergodicity. An investigation
of the composition of such click pulses yields important information about the
contribution of the continuous noise to the angular demodulator output noise,
as shown below.

A remarkable property of (6.76) is observed after calculation of the expecta-
tion over the uniformly distributed phase ¢,, i.e. over one encirclement of the
noise 7, that identifies it as the click pulse in case of infinite compression. The
result is

a9 1
E{%}% = 5[1 —sgn(A - Ry,)]. (6.79)

This expression clearly demonstrates that only noise encirclements with a radius
larger than A, i.e. those that encircle the origin, yield a nonzero contribution
to the frequency noise 8(t) during one encirclement of the input noise 7. This
is exactly the property that distinguishes a click excursion of 7 from any other
noise excursion. Subsequently, by taking the expectation over |¢,| of this ex-
pression, the click noise contribution becomes proportional to 2zr, i.e. the click
area times the radius of gyration, which is a measure of the average number of
encirclements of 7.

A deeper insight into the structure of the click pulse is obtained by plotting
expression (6.76) as function of ¢,. Figure 6.28 depicts the result when R, =
0.9A, which according to (6.79) corresponds to a doublet-pulse of zero net area.
Figure 6.29 depicts the result when R,, = 1.1 A, corresponding to a click pulse of
area 27. Note that both plots contain the time ¢ as an implicit parameter only
via ¢y every value of ¢,, corresponds to one time instant during the occurrence
of a click pulse. Further, the relation between ¢, and t is generally nonlinear.
Usually, the part of the excursion located in the left half-plane is traversed in a
very short time, which means that the time-axis around ¢, = 7 is expanded in
comparison to the ¢,-axis. The part of the excursion around ¢, = 0, however, is
usually traversed relatively slowly which means that the time-axis is compressed
around ¢, = 0.

Concerning the composition of doublets and clicks, it can be seen from fig-
ures 6.28 and 6.29 that both the doublet and the click consist of two components:

e an impulsive component of area =;
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Figure 6.28: Doublet pulse as a function Figure 6.29: Click pulse as a function of
of pn, obtained from (6.76) for R, = 0.94. ¢, obtained from (6.76) for R, = 1.1A.

e a phase-independent component of area «.

In the doublet pulse, both components are of opposite polarity, resulting in an
exactly zero net area. In the click pulse, however, both components have the
same polarity, resulting in a net area of 27.

The phase independent component of the click is actually the average value
of the continuous noise during the click. This follows from the fact that it is
present for all values of the noise radius R,, i.e. not just for R, > A, and
all values for ¢,. True click noise, as the impulsive component, is present
only in the neighborhood of phase values ¢, = m. This observation has some
consequences for the modeling of click noise in case of finite compression. In that
case, part of the continuous component of the click is already contained in the
second-order continuous noise model described in Section 6.4. This contribution
obviously needs to be removed from the click noise component that is used for
the calculation of £, in a way that is discussed in Section 6.5.5.

Amplitude Compressor Transfer

The first factor, the amplitude compressor transfer G (R, ,), serves as weight-
ing factor for both components of the click pulses. It (usually) partially sup-
presses the impulsive click component, at the cost of a usually somewhat en-
hanced continuous component. This is considered in depth in subsequent sec-
tions.

6.5.5 Expression for the Average Click Pulse Area

This section derives an expression for the average click pulse area, with the aid
of the polar description derived in Section 6.5.3, and the investigation of the
click pulse shape discussed in Section 6.5.4.

In essence, the average click pulse area is determined from the average value
of the angular demodulator output noise. As observed in Section 6.5.4, the
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angular noise consists of an impulsive (click) component and a continuous com-
ponent. The continuous component is partially already contained in the models
for the continuous output noise, discussed in sections 6.3 and 6.4. Subtraction
of these components finally yields the average total click noise that yields the
average click pulse area.

Average Total Angular Noise

The average angular output noise equals the expected value of the angular
demodulator output frequency component in (6.75), with ¢, replaced by |@n],
in order to assure a nonzero result. Besides the total average click noise, equal
to £ (N4 + N_), this expectation also contains a contribution of the average
continuous noise, denoted by p.. The expectation can therefore be written as

a9 .
B0 Rnen) gtonl| =€ N+ (6.80)
n Rp,Rn,pn Pn

Since G (R, ¢») and % are independent of R, and ¢y, two of the four expec-

tation operations in (6.80) can already be elaborated without loss of generality.
This yields

E(Np + N)+ A =

o6 .
B ]G (Ruson) o (nllmin) ] - (68D

Rn,on

The inner expectation in this expression denotes the average absolute value of
the radial noise frequency as a function of the phasor-plane position coordinates
R, and ¢,. Therefore, it represents the average total click rate. The other
two factors in (6.81) represent the angular frequency noise in case of infinite
compression, and the amplitude compressor transfer that serves as a weighting
factor.
In Appendix F is shown that the inner expectation equals
E (I‘pn”va Qon)}'zmv-," =
4r/mpexp [~pv? (1 +u?)] + 2rpuvexp (—pv®) erf (uvy/p), (6.82)

where 7 denotes the radius of gyration defined by (5.13), v = R, /A, and u =
@/(2rr) represents the FM message signal, normalized to the average zero-
crossing rate of the input noise, and p denotes the demodulator input CNR.
Similar to the procedure followed in [6], a stochastic message signal can be
included in the expressions by taking the expectation of (6.82) over ¢. In the
absence of modulation, © = 0 and (6.82) reduces to a more tractable Gaussian-
like function.
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Note that (6.82) differs from the corresponding expression for the click rate
“H. (t1)" in [6], since in that reference an approximation is applied that obtains
the click rates from an event-crossing problem (see Section 5.4.3). Expression
(6.82) contains no such approximation and therefore yields the exact click rate.

Average Continuous Angular Noise

The contribution of the continuous angular noise to (6.80), denoted by u., can
be approximated with the aid of the expressions for the first and second-order
continuous noise derived in sections 6.3 and 6.4 in the following way.

A second-order approximation for the average continuous, angular demod-
ulator output noise corresponds to the terms in (6.42) and (6.51) that, after
substitution of (6.72) and (6.73), are proportional to the noise frequency ¢,.
Only these components yield a contribution to (6.80). The only terms in (6.42)
and (6.51) that satisfy this condition are those that contain the noise component
fs,i(t) or 7is 4(t). This leaves only three terms; the first order term 7, 4(t), and
the second-order terms n ;(t)1s,q(t), and 7ig ;i (£)ns 4 (t)-

By substitution of (6.72) and (6.73), it follows that u. can be expressed as

R Rz 2
Ac = G(A)E { [f- €08 (Pp — —5 COS 2¢pn + Ch, 1(A) 2 €08 (Pn] (<Pn|}
=E [G(A) Cn,1(A) 2A2E(|cpn||R . (6.83)

n

Thus, the continuous noise yields a nonzero contribution whenever finite com-
pression is applied, i.e. when Cp, ;1(A) is nonzero.

Note that the latter expectation in (6.83) over the noise phase @, can be
determined freely, since the expectation (6.82) is independent of yp,.

Total Average Click Noise

An approximate expression for the total average value of the click noise is ob-
tained by subtraction of (6.83) from (6.81).

It should further be noted, that a click is generated only when the noise
radius R, exceeds A4, i.e. when v > 1. Only in that case does a rotation of the
noise phasor 7 encircle the origin. Therefore, all expectations over R, are taken
over the interval R, € [A4,00). In this way, we arrive at

e<N++N_>=/1 E[€(Ny + N_) + el o], — E(pelv),,, dv

= /loo {E [G’(Av,gon) %\v .

2
— G(A)Cr (A)%—} E (|¢n]|v) dv.
(6.84)

n
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The total click rate N, + N_ in this expression can be approximated by the
existing theory given in [6], or determined exactly from

1 o0
N+ N_= —/ E (|¢nl|v) dv, (6.85)
27r 1

which follows from (6.79), (6.82) and (6.84) for the case of infinite compression,
i.e. Cp1(A) =0. The use of (6.84) is demonstrated for some relevant examples
in the subsequent sections.

6.5.6 Application to Infinite Compression

As an illustration, this section applies the extended click noise model derived in
sections 6.5.3 through 6.5.5 to the (trivial) case of infinite compression.

In the case of full compression, the amplitude compressor transfer G(R) is a
proportionality constant that we assume to equal unity. Consequently, the first-
order inverse compression factor Cyp,1(A) vanishes, which means according to
(6.83) that in this case the continuous demodulator output noise, as described
in sections 6.3 and 6.4, does not contribute to the expected angular output
noise component. Further, from (6.79) it is observed that the expected value of
G(R,,¢.) 6‘% over gy, used in (6.84) equals unity over the entire integration
interval of v, and zero elsewhere.

In order to simplify the calculations, we assume in this case that no modu-
lation is present, i.e. that u = 0. In that case, expression (6.84) becomes, after
substitution of (6.82),

Fils,

E(Ny+N_) = /;ﬁ dry/mpexp [—pv®] dv

= 2nr [1 —erf (/p)].

According to the exact result for Ny + N_ given by (5.12), the obtained result
equals exactly 27 times the total click rate for the case of infinite compression,
which means that we obtain £ = 27, as expected.

(6.86)

6.5.7 Application to No Compression

As a second example, this section applies the generalized click model to another
trivial example; the case in which no compression is applied. In this case, there
is obviously no click noise, which means that the generalized model should yield
a zero average click pulse area.

The “amplitude compressor” transfer in this case is proportional to the
square of the input FM amplitude R(t). Thus, for the angular component
of the output noise we obtain from (6.75) and (6.76),

o0

G (Rna (Pn) 8([7

=R’ + AR, cospn, = A* (V¥ +vcos,) . (6.87)




6.5. Generalized Click Noise Model 235

The expected value of this expression over ¢, equals A%v? = G(A)v?.

Further, from (5.8) the compression factor Cp 1(A) = 2. Thus, the contri-
bution of the continuous noise to the expected value of (6.87), obtained from
(6.83) also equals G(A)v%. Thus, in this case the average value of the angular
output noise is completely determined by the continuous noise. Consequently,
according to (6.84), the total average click noise £ (N4 + N_) observed at the
output equals zero. The average click pulse area equals £ = 0, as expected, since
no click noise is generated.

6.5.8 Application to Finite Compression: Soft-Limiter

This section applies the generalized click model to an FM demodulator pre-
ceded by a soft-limiter of the type depicted in figure 6.13. The amount of click
noise produced by an FM demodulator with this type of amplitude compression
cannot be described by the Rician click model. A characteristic property of
finite compression is that the click pulse area generally becomes a function of
the input CNR. The effect is explained for a soft-limiter with the aid of a pha-
sor representation. Subsequently, numerical results obtained with the extended
model are discussed.

Dependence of the Click Area on the Input CNR

A characteristic property of systems that employ finite compression is that the
average click area generally becomes a function of the input CNR as a result
of the FM input carrier amplitude’s contribution to the output signal. For a
soft-limiter, this effect can be explained with the aid of figure 6.30 that depicts
the motion of the noisy FM phasor 7 relative to the motion of the noise-free
FM wave §. The circle of radius K around the origin in this figure represents
the linear operating region of the limiter. If R(¢) < K, the demodulator output
signal is proportional to the square of the input signal, while it quickly saturates
for larger values, as described by (6.11).

At high input CNRs, the click excursions of 7 closely encircle the origin,
as explained in Section 5.4.4. Consequently, nearly all these click paths cross
through the linear operating region of the limiter, which causes a significant part
of the corresponding click pulse at the demodulator output to be suppressed. At
low CNRs the click excursions penetrate deeper into the left half plane (LHP),
until they finally completely encircle the linear region. In the latter case, no
click suppression at all occurs and the demodulator response becomes similar
to the response obtained in the case of infinite compression.
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Figure 6.30: Phasor plane representation of clicks in a soft-limiting FM demodulator.

Numerical Results

Numerical results for this system were obtained for the case of no modulation,
i.e. u = 0, by expressing the soft-limiter transfer G(R) = G4(R) from (6.11) in
terms of the noise parameters v and ¢,,, and application of numerical integration
to (6.84).

The effect of the limiter gain, represented in the calculations by the “inverse
over-drive” z = K /A (see figure 6.13), which is zero for infinite compression on

f £ 21 ThL . +hia S
the Sb"“a of the click “““‘SS is illustrated bJ NgUrt G.o.. 108 CuUr ves in this usl,uc

were obtained by averaging over the noise radius R,,, for several values of the
noise phase .. It is clearly demonstrated by this figure that when the limiter
gain decreases, the impulsive component of the click is significantly suppressed.
This agrees with the model in figure 6.30. There, a decrease of the gain results in
a larger radius of the circle around the origin, and consequently in an increased
probability that the click excursion crosses through this circle. Note that it is
possible that the curves in this figure become negative for certain values of y,;
this was the cause of the zero net area of a doublet pulse.

Figure 6.32 depicts the average click area as a function of the limiter gain for
input CNRs of 10, 5 and 0 dB. This plot clearly shows the reduction of the click
pulse area obtained by finite compression, i.e. a finite gain. For small input
CNRs, the reduction becomes less effective due to the on average larger radius
of the click excursions of the noise phasor 7.

Finally, figure 6.33 depicts the click noise power observed at the demodula-
tor output as function of the input CNR, normalized on the power observed in
case of infinite compression. For large limiter gain values, the click noise power
quickly approaches the power observed in the case of infinite compression when
the input CNR decreases. This is due to the increased average length of the
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Figure 6.31: Click pulse shape as a function of the inverse limiter overdrive z = K/A
at an input CNR of 8.5 dB.
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Figure 6.32: Average click pulse area as a function of the inverse limiter overdrive
z = K /A for several input CNRs.

noise phasor 7, and the correspondingly increased probability that the noise
excursions completely encircle the circle of the linear region in figure 6.30. For
small limiter gain values, the increase starts at a much lower input CNR due to
the larger linear operating region of the limiter in that case. Below 0 dB, the
curves become invalid since the inverse compression factor C 1(A) no longer
accurately describes the level of continuous noise. For CNRs above 0 dB, the
curves of figure 6.33 closely resemble the curves given in [32-34], which cor-
respond to the probability that the noise excursions exceed the bounds of the
limiter’s linear operating region in the LHP.
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Figure 6.33: Normalized click noise power as a function of the input CNR, for various
limiter gain values.

6.6 Output Signal-to-Noise Ratio

The quality of the demodulator response to a noisy FM wave is usually expressed
in terms of the signal-to-noise ratio, i.e. the ratio of the signal power to the noise
power observed at the demodulator cutput. This criterion is especially suited
as a measure of the deterioration of the intelligence due to continuous noise.
It is however questionable whether the SNR is also a suitable measure of the
deterioration of the intelligence due to click noise. Although click noise is only
present in the demodulator output signal for a very small fraction of time, it pro-
duces a tremendous amount of noise energy during this time, which completely
dominates the demodulator output signal. The SNR, as a measure of the signal
quality, spreads this energy over time, and thereby probably underestimates the
deteriorative effect.

However, due to the lack of a more convenient measure, this section uses the
receiver output SNR as a measure of the output signal quality, and describes
its dependence on the transfer characteristic of the amplitude compressor and
the parameters that characterize the IF filter and the baseband output filter. If
necessary, perception can be included in this expression by assigning different
weighting factors to the various noise components. In this section, however,
such weighting factors are omitted. The resuits obtained in previous sections are
summarized, and subsequently combined to determine the ‘optimum’ amplitude
compressor transfer that maximizes the demodulator output SNR as a function
of the input CNR.
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Figure 6.34: Threshold curve of FM receivers.

Section 6.6.1 considers the dependence of the threshold curve, i.e. the output
SNR versus input CNR, on the amplitude compressor transfer and the filter
parameters. Section 6.6.2 derives the optimum amplitude compressor.

6.6.1 Threshold Curves

As discussed previously, the demodulator output SNR is generally characterized
by three types of noise: first and second-order continuous noise, and click noise.
Each of these noise contributions affects a different part of the demodulator
threshold curve and is determined by different demodulator parameters.

This section briefly describes the effect of each noise component on the
threshold curve, and summarizes the selections of both amplitude compression
factors Cp 1(A) and Cp, 2(A), or, equivalently, A and p, that minimize the con-
tributions to the demodulator output noise power. Finally, a general expression
for the output SNR is discussed.

Throughout the discussion, the threshold curve sketched in figure 6.34 is
used as a reference.

First-Order Noise

First-order noise determines the demodulator output SNR, at high input CNRs,
when the noise is small compared to the input FM wave, i.e. region I in fig-
ure 6.34. In this region, the output SNR increases by 10 dB per decade of the
input CNR.
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The first-order output noise power level is determined by the first-order in-
verse compression factor Cp, 1(A) = 2X. The maximum possible SNR is attained
for Cp, 1(A) = 0, corresponding to the case in which all amplitude noise is sup-
pressed.

As shown in Section 6.3.4, the maximum SNR is approached within 3 dB
when the established level of compression exceeds the critical level of compres-
sion, i.e. when

2mpo

Cn,l(A) < Ao

(6.88)

Below this compression level, i.e. for large Cp 1(A), the output SNR decreases
by 6 dB per octave of Cp, ;.

Second-Order Noise

Second-order noise introduces an asymptote into the output SNR that increases
by 20 dB per decade of the input CNR, region II in figure 6.34, and dominates
at intermediate or low CNRs.

In receivers with finite amplitude compression, such as those equipped with
a soft-limiter, second-order noise is mainly due to modulation of the first-order
compression factor C, 1 (4) by the noise, and may already become noticeable at
CNRs of 10-15 dB.

It was shown in Section 6.4.4 that minimization of the second order noise
requires the first and second-order inverse compression factors to be equal. Un-
der that condition, an optimal value for the compression factors 4 = A can be
determined, that shifts the asymptote in figure 6.34 as far to the left as possi-
ble. The condition x = A can only be satisfied by means of compressors that
establish infinite compression, no compression, or linear combinations of these
two, i.e.

G(A) = co + c2 4% (6.89)

The ratio of the constants c¢g and ¢a can be used to establish the optimum values
of the first-order (and second-order) inverse compression factor, as a function of
the input CNR.

Click Noise

Click noise introduces a steep, exponential decay of the output SNR when the
input CNR drops below the threshold, as depicted in region III of figure 6.34.
In case of infinite compression, the click pulse area equals 27, while in the
absence of compression, click noise is absent, corresponding to a zero click pulse
area. As discussed in the previous sections, the area is generally dependent on
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the input CNR in case of finite compression. At low CNRs, it approaches 2,
while at high CNRs it approaches zero.

With the aid of (6.71) and (6.38), the amount of click noise power observed
at the baseband filter output can be expressed as

Pox = € (N4 + N_) |Hy (0){* Bn1, (6.90)

where the click area £ can be obtained from (6.84). Expression (6.84) also shows
that ¢ is proportional to G(A), i.e. the value of the compressor transfer at the
‘quiescent point’ R(t) = A. The click rates N4 and N_ are not affected by the
level of compression, as discussed previously.

Expression for the Output SNR

An expression for the receiver output SNR, observed at the output of the base-
band filter, is obtained as follows.

The message signal ¢(¢) is assumed to be completely passed by the baseband
output filter. According to (6.13), the signal power can therefore be expressed
as

P, = G2(A) | Hy(0)[* (Aw)?, (6.91)

where Aw denotes the RMS frequency deviation, in (rad/s). Note that the signal
suppression effect is neglected in this expression. In case of infinite compression,
this effect results in an extra factor [1 — exp(—p)] in (6.91) {11].

The first and second-order continuous noise power at the baseband filter
output are given by (6.47) and (6.60) respectively, while the click noise power
is given by (6.90).

The general expression for the receiver output SNR therefore becomes

SNR =

2
2BNnar [ Aw
Brno \27po

., (6.92)

2 B 2
144 (£2) 2 + Tona + 92558 [ ] " (Vo + N2) 222,

Where the contribution of the second-order noise equals

2BNIF{ 2(Aw)2 2(,;2)2
Tong = ’ “N =) +Q-N* (=
¢ =P {(# ) 2700 ( ) o

+2)?Bn

S,2(0)
A4

Sn,n(0)
,3m } . (693)

By,

The numerator of (6.92) equals the maximum possible SNR attained in case of
infinite compression, while the denominator represents the deviation from this
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SNR due to amplitude noise, second order (modulation) noise, and click noise.
As discussed in the subsequent section, this expression can be used to determine
the optimum amplitude compressor transfer.

6.6.2 Optimal Amplitude Compressor Transfer

This section determines the optimum amplitude compressor transfer, that max-
imizes the demodulator output SNR. Since the optimum transfer is a function
of the input CNR, as shown below, the upper bound on the SNR derived in this
section can only be attained with the aid of adaptive amplitude compression. As
mentioned previously, perceptive aspects can be included in this optimization
by assigning weighting factors to the various noise components.

The discussion in Section 6.4.4 showed that as far as minimization of second-
order noise is concerned, a trade-off between (first-order) continuous noise and
click noise can best be established by means of linear combinations of infinite
compression and no compression. Further, as far as click noise is concerned,
the advantage of such a scheme is that the (effective) click pulse area observed
at the demodulator output is independent of the input CNR. The trade-off
therefore remains effective at low input CNRs, as opposed to the situation in a
soft-limiter where the resulting click pulse area tends towards 27 at low CNRs
due to saturation of the limiter.

Therefore, this section considers the compressor transfer G(A4) = ¢y + cp A?
be optimal, even in the presence of click noise. In [26] a hybrid between infinite
compression and no compression, called “inverse limiting” in that reference, it
was already proposed as a suitable demodulator for low CNRs. However, it
remained unnoticed that this configuration is the optimum configuration, and
no rules of how to control the trade-off between infinite compression and “inverse
limiting” were given. In this section, the optimum trade-off, represented by ratio
of the coefficients cg and c¢;, as function of the input CNR, is determined: the
absolute value of ¢y and ¢y is not of interest, as discussed previously, since it
represents only an amplification applied to all components of the receiver output
signal.

General Expression for the Optimal Compressor Transfer

In order to determine the optimum ratio ¢z /co, all three types of noise need to
be expressed in terms of this ratio. For the first and second-order continuous
noise, this is a straightforward procedure that requires only the determination
of A,

62A2

== . 6.94
co + cp A? ( )
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The click noise is generated only in the part of the system, depicted in fig-
ure 6.25, that applies infinite compression, while it is absent in the absence
of compression. The click pulse area observed at the receiver output therefore
equals 27mcy, which can also be observed from figure 6.25. The contribution of
the click noise to the denominator of (6.92) then becomes proportional to

[L] ’ = 452 6(2)
GA)| 7 (co+ caA?)? (6.95)
= 4n?(1 - A%

The denominator of (6.92), denoted by D(A), can therefore be expressed as
D(\) =1+mA +m(1 - A)?, (6.96)

where 7; and 7 are given by

Aw \? By 1 Sn,n(0)
g (A, Brr g : , 6.97
" <27TP0> PBvo VA% (2mpo)’ o4n

2B 2 S,2(0 B
12 = po P <—p2) B Ag ) | 4n? (Ny + N_) 2L
BN10 Po (27rp0) (698)

The optimum value of A is then obtained as

72
Aopt = : 6.99
P+ (6.99)

Consequently, according to (6.94), the optimum ratio of the compressor transfer
parameters equals

C2 72
2 = . (6.100
o lope  A*M )

Optimal Compression for Rectangular Filters

For example, when we consider again an FM receiver with a rectangular input
filter of bandwidth W, and a rectangular baseband filter of bandwidth W, the
optimum value of A\ becomes

/\opt =

4 -3 W 4 96mpleti=Tn
Pmw W (6.101)

8 — 4 +4 () 6w"+96p(A“’) + 96mplatl= 1wy °
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Note the similarity between this expression and expression (6.68), that denotes
the optimum value of X in the absence of click noise. The click noise only
introduces an additional term in the numerator and the denominator of (6.101).

Figure 6.35 depicts the threshold curves for infinite compression, no com-
pression and optimal, adaptive compression, for a receiver with W,, = 12w,
Aw = 5W, and sinusoidal modulation; the click rates N, and N_ are thus ob-
tained from (5.15). According to this figure, the optimum compressor improves
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Figure 6.35: Output SNR versus input CNR for infinite compression, no compression,
and optimal compression.

the outpui SNR with a few dB at low CNRs, below the demodulator threshold,
by reduction of the level of compression, which also slightly ‘smooths’ the thresh-
old. The corresponding optimum value of A, and the optimum ratio c2 A2 /¢y are
depicted in figure 6.36 as functions of the input CNR. This figure shows that
infinite compression, i.e. A = 0 is optimal at high CNRs, while a compression
level of 1/A ~ 1.3 is optimal around a CNR of 0 dB.

6.7 Verification of the Theory

The theory developed in this chapter was verified by simulations and measure-
ments. This section discusses the results and compares the experimental data
with the theoretical model.

The simulations and measurements were both performed for an FM demod-
ulator preceded by a soft-limiter of the type depicted in figure 6.13. The de-
modulator was constructed such that the amplitude compressor transfer G(R)
in (6.13) equals the square of the soft-limiter transfer from (6.11), i.e. G(R) =
G%(R). Based on the previously developed theory, it is expected that a con-
siderable amount of second-order noise is generated in such suboptimal demod-
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Figure 6.36: Optimum value of A and the optimum ratio c2A%/co as a function of
the input CNR.

ulators, since, as can be derived from (6.11), the parameters g and A are not
generally equal.

The demodulator output SNR v.s. input CNR curves were determined for
various values of the parameter x = K/A, the ratio of the limiter’s linear region
(see figure 6.13) and the amplitude of the input wave.

Section 6.7.1 discusses the simulation results, while Section 6.7.2 discusses
the measurements.

6.7.1 Simulation Results

The simulations were performed with the HP series IV simulation package, which
allows high-level modeling of the various demodulator sub-functions. Figure 6.37
schematically depicts the setup. The input FM wave s(t) is modulated by a si-

Y A ES

input filter soft-limiter band-pass balanced base-band

bandwidth filter, math-demodulator filter,

S5+ W) bandwidth with zero-IF bandwidth 2W
5(Aw +W)

Figure 6.37: Simulation setup.

nusoidal wave in such a way that the frequency deviation ratio Aw/W equals
5. Together with the input noise n(t), this wave is filtered by an approximately
rectangular filter. The bandwidth of this filter equals 5(Aw + W), which is
considerably larger than the value obtained by Carson’s formula (2.8), in order
to avoid narrow-band filtering distortion. The filter at the output of the soft-
limiter is identical to the input filter and retrieves the fundamental frequency
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component of the compressed FM wave r(t) = s(t) + n(t). This wave is sub-
sequently demodulated by a balanced math-demodulator of the type discussed
in Section 3.4.7. The output signal is filtered by an approximately rectangular
low-pass filter with a bandwidth that equals twice the frequency of the baseband
sinusoidal wave.
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Figure 6.38: Simulated and calculated demodulator output SNR as a function of the
input CNR.

After the validity of the simulator model was verified for an infinite limiter
gain (hard-limiter) with the known results from literature for this case, the
output SNR v.s. input CNR curves were determined for the parameter values
z = 0.25,0.50,0.67 and 0.8, corresponding to limiter over-drives of A/K =
4,2,1.5 and 1.25 respectively. The results are depicted in figure 6.38, together
with the theoretical curves.

In order to match the simulation results, the theoretical curves depicted in
figure 6.38 required a somewhat larger value for the parameter p than the theo-
retical value given by (6.53) at the “quiescent point” R(t) = A. The explanation
for this phenomenon is found in the piece-wise linear nature of the soft-limiter
transfer curve of figure 6.13, which causes a singularity in the parameter pu, as
depicted in figure 6.39. This curve corresponds to the square of the amplitude
transfer Gq(R), depicted in figure 6.14.

The singularity in u is located at R/K = 1, where the top of the input FM
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Figure 6.39: Second-order noise parameter p for the soft-limiter transfer as a function
of the normalized amplitude R/K.

wave just touches the boundaries of the soft-limiter’s saturation region. The
selected values for the parameter x = K/A, i.e. the “quiescent points” of the
FM amplitude, are located quite close to the singularity in figure 6.39. The noisy
limiter input amplitude R(t) swings around these points, and consequently y
swings around some value p, (see figure 6.39). Usually, when u is a smooth
curve, the value y, corresponds to the quiescent point R(t) = A. However, in
the soft-limiter case, the strong convex curvature causes u to swing around a
larger value p that corresponds to a smaller amplitude R(¢) = A’ and a larger
value of z.

With the modified values of the parameter p, and the (unmodified) values
of A obtained from (6.53), the matching between the simulated and calculated
curves is quite good.

Further, notice from figure 6.38 that the demodulator threshold curves smooth
for decreasing limiter gains. The steep SNR decrease at the threshold in case of
a high limiter gain becomes more gentle due to the large amount of second-order
noise. Thus, the output SNR is exchanged for a smoothed threshold.

6.7.2 Measurement Results

The measurements were performed with a setup similar to the one dcpicted in
figure 6.37.
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In the measurement setup, two 8-th order Butterworth band-pass filters
with a 100 kHz center frequency and 6 kHz bandwidth were used. The soft-
limiter was realized by means of an emitter-degenerated differential pair. A
quadrature FM demodulator, discussed in Section 3.5.8, was constructed from
a 2.5us analog delay line and an analog linear multiplier. The 100 kHz FM
carrier was modulated by a 1 kHz sinusoidal wave. Due to the small bandwidth
of the available filters, the frequency deviation was limited to 2 kHz, a deviation
ratio Aw/W = 2.

With this setup, the output SNR v.s. input CNR curves were measured
for the parameter values z = 0.67,0.85 and 0.9. The results are depicted in
figure 6.7.2

30 — ; . v v v 30
25 L measured x<0.67 —— e 1 25| measured x=0.85 —
- calculated x=0.67 ----- . 20t calculated x=(0.85 ------
o 2+ 4 o
: 2 st
& 15+ =
Z ] wl
H 10} z Sl
8 st ] ot
of st
s . . . R R . 10 f L N L
K 0 5 10 15 20 25 30 -5 0 5 20 25 30

10 15
input CNR (dB) Input CNR (dB)

Figure 6.40: Measurement result for x = Figure 6.41: Measurement result for r =
0.67. 0.85.
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Figure 6.42: Measurement result for z =
0.90.

In this case, as opposed to the simulations, the calculated curves match
the measurements very well for the values of the parameter p calculated from
(6.53) using, as a first approximation, the transfer G(4) = G4(R) of the soft-
limiter from figure 6.13. This is explained by the fact that the transfer of
the degenerated differential pair, implementing the soft-limiter, is a smooth
curve instead of piece-wise linear. As a result, the characteristic for u(R/K)
is somewhat smoothed in comparison to the curve in figure 6.39 and does not
show such a distinct singularity as that curve.
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6.8 Conclusions

This chapter analyzed the behavior of arbitrary types of amplitude compressors
that precede the FM demodulator in the presence of additive noise/interference.
A newly developed mathematical model showed that an optimal amplitude com-
pressor transfer that maximizes the demodulator output SNR can be obtained
and expressed in terms of the demodulator parameters and FM wave charac-
teristics. If necessary, perceptive aspects can be included in this optimization
through the introduction of weighting factors into the various output noise power
contributions. Further, it was shown that the optimum compressor transfer has
to be adaptively controlled as a function of the receiver input CNR: at low input
CNRs a very low level of compression should be applied, while at high CNRs a
high level of compression is favorable.

Two different classes of amplitude compressors can be distinguished. The
first class, which includes hard-limiters, applies compression directly to the RF
carrier intensity without explicit detection of the carrier amplitude. Such com-
pressors are characterized by the generation of the harmonics in the output
signal that should not be used in the demodulation process; in order to attain
an as large as possible demodulator input CNR only the fundamental harmonic
should be used, which is established more or less automatically in many com-
pressor implementations. The second class, which includes AGCs, explicitly
detects the amplitude prior to the compression operation.

An outline of the general approach showed that the demodulator output
noise power can generally be described by seven ‘shaping’ parameters that de-
scribe the characteristics of the IF filter, the demodulator and the baseband
filter.

The description derived for the first-order demodulator output noise was
shown to agree with results obtained in the literature for several special types
of amplitude compression. Further, it was shown that the noise level observed
at the baseband filter output closely approaches its lower-bound, obtained with
infinite compression when the applied level of compression exceeds a critical
level that can be expressed in terms of the RMS modulation and the ‘shaping’
parameters.

The description derived for the second-order output noise was also shown
to agree with results obtained in the literature for special types of compression.
Further, the minimum level of second-order noise was shown to be attained when
the first-order and second-order inverse compression factors are equal. From this
condition followed that the corresponding ‘optimum ’ amplitude compressor
should realize a linear combination of infinite compression and no compression.

A newly developed, generalized click noise model was applied to an FM de-
modulator that establishes amplitude compression with the aid of a soft-limiter.
It was shown that the area of the click pulses observed at the demodulator out-
put is generally a function of the input CNR in case of finite compression. At
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low CNRs, the area approaches 27, as in the case of infinite compression, while
it approaches zero at high CNRs, as in the case of no compression.

Comparison of the theory with simulation and measurement results showed
that the piece-wise linear nature of the soft-limiter transfer used by the simula-
tor causes slight discrepancies between the theory and simulation results. The
measurements matched quite well with the theory, due to the absence of piece-
wise linear transfers: the transfer of practical soft-limiter circuits is relatively
smooth.
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Chapter 7

Phase Feedback

The previous chapters were mainly concerned with the behavior of so called
“conventional FM discriminators”, FM demodulators that do not contain phase-
or frequency feedback. Although their behavior shows many similarities with
phase feedback demodulators, such as PLLs, there are at the same time some
remarkable differences. For instance, although their response to external noise
around the threshold does show impulse noise like the click noise phenomenon
in conventional demodulators, the underlying principle is completely different.
In this respect, it is known that the phase feedback or ‘phase lock’ mechanism is
capable of suppressing part of the impulse noise and thereby achieves threshold
extension.

The purpose of this chapter is to compare the main characteristics of phase
feedback demodulators, especially their threshold behavior, with those of non-
feedback FM demodulators. This includes an explanation of the threshold ex-
tension capabilities of phase feedback demodulators.

Section 7.1 discusses the principle of operation, in conjunction with the de-
modulator classification derived in Chapter 3. Section 7.2 outlines the general
phase feedback demodulator model, that is used throughout the analyses. Sec-
tion 7.3 considers the demodulator behavior above threshold, the counterpart
of the discussion in Section 5.4.2, while Section 7.4 considers the behavior in
the threshold region, the counterpart of Section 5.4.3. The consequences of the
results of these analysis on phase feedback demodulator design are discussed in
Section 7.5. Finally, Section 7.6 closes the chapter with conclusions.

7.1 Principles of Operation

In Chapter 3 it was shown that phase feedback demodulators can be identified as
a member of the class of FM-PM conversion demodulators. This section briefly
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considers their principles of operation as an introduction to the investigation of
their noise behavior in subsequent sections.

As far as operating principles are concerned, the main distinction between
phase feedback demodulators and other, non-feedback types of FM to PM con-
version demodulators is that the former implement the exact FM to PM conver-
sion function, differentiation of the input carrier phase, whereas the latter, non-
feedback demodulators or “FM discriminators” are, except for post-detection
conversion demodulators, based on an approximation of that function. For ex-
ample, it was shown in Section 3.5.2 that quadrature demodulators approximate
differentiation of the phase by the difference of two phase values, separated in
time by a fixed delay 74.

Section 7.1.1 derives an expression for the phase feed-back algorithm, while
Section 7.1.2 briefly considers its implementation.

7.1.1 Phase Feedback Demodulation Algorithm

Mathematically, the (ideal) operation of a phase feedback demodulator may be
expressed as

n

P(t

~——

- ®(t—1) — lim A®(t, 1)

T 70 T

Yaem (t) = $(t) < lim : (7.1)

where ®(t) represents the instantaneous phase of the input FM wave s(t). The
phasor representation of this expression is depicted in figure 7.1. In this figure,
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Figure 7.1: Phasor representation of phase feedback demodulators.

the phasor § corresponds to the input FM wave, with instantaneous phase ®(t),
while the phasor §, corresponds to a reconstruction of this wave, with instanta-
neous phase ®(t — 7), generated by the demodulator. The reconstructed wave
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so(t) tracks the input FM wave s(t), such that the phase error approaches zero.
In that case, the control signal supplied to the input of the controlled oscillator
is a reconstruction of the original FM message signal.

Although (7.1) completely describes the phase feedback demodulation algo-
rithm, it is not directly suited for phase feedback demodulator design due to
the fact that it lacks an explicit description of the demodulator architecture.
Therefore we rewrite (7.1) in such a way that the feedback loop contained in
this architecture is explicitly described by the expression. This is achieved by
expressing the phase ®(t — 7) of the reconstructed FM wave s,(t) in terms of
the key parameter of the phase feedback loop: the phase error A®(t, 7).

The required relation between the phase error A®(t — 7) and the recon-
structed FM phase ®(t — 7) is obtained from (7.1) when the lim-operation is
postponed to the final step of the derivation. In fact, temporary omission of
this lim-operation is equivalent to a reduction of the loop gain from infinity to
a finite value: a finite loop gain allows the existence of a nonzero-valued phase
error A®(t, 7) inside the loop. In this way, the phase of the reconstructed FM
wave may be expressed as:

_A®(t,7)  dAB(t,T)

b(t — :
(t-7) === - (7.2)
which by integration with respect to time yields
1 t
®(t—-7)= - / A®(u,7)du — A®(t, 7). (7.3)
T

When the lim-operation is applied to this expression, corresponding to a rein-
forcement of the loop gain towards infinity, 7 approaches zero and the last term
on the RHS vanishes, leaving only the integral of the phase error.

Equation (7.3) clearly demonstrates the structure of the ideal phase feedback
demodulator loop. The presence of such a feedback loop is reflected by the
fact that the reconstructed phase ®(¢ — 7) is a function of the phase difference
A®(t,7) = ®(t) — ®(t — 7), while this phase difference is again a function of
®(t — 7). Further, it is observed that the loop necessarily contains a memory,
represented by an integration of the phase error with respect to time. This
integration is generally established by a controlled oscillator (FM modulator)
in the feedback loop. Additional memories, such as those contained in a loop
filter, may be present in order to satisfy various requirements but these are not
essential for the demodulation operation. Finally, it is noticed that for 7 — 0,
the required output signal, the demodulated FM message ¢(t), can be obtained
from the integrator input. In that case, the fraction A®(t,7)/7 approaches
wo + (), equal to the instantaneous frequency of the input FM wave. When
the free-running frequency of the oscillator equals the carrier frequency w,, the
carrier component is entirely realized inside the oscillator. The oscillator input
signal is then the same as the demodulated message signal ((t).
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7.1.2 Algorithm Implementation

As observed from equation (7.3), an implementation of the phase feedback de-
modulation algorithm, a demodulator, consists at least of

e a controllable oscillator (to generate s,(t) with phase ®(¢t — 7));

¢ a phase detector (PD) (to measure the phase difference A®(¢,7)).
In practice, the loop generally also contains

e a loop filter.

The general topology of such a system is depicted in figure 7.2.

phase loop- post-loop
detector filter filter

s(n) Hoy(s) Yaem®

®_

controlled
oscillator

Figure 7.2: General topology of a phase feedback demodulator.

The oscillator realizes the integration in (7.3) by generating the reconstruc-
tion of the FM input wave s,(t) from the phase difference Ap(t,7). It adds
iis free-running frequency w, to the demodulator output signal (i), and sub-
sequently performs an integration of the phase with respect to time. The input
signal of this oscillator is the same as the demodulator output signal yqem(t).
Further, since the oscillator is located in the feedback path of the system, its
tuning range should be linear over the region of interest for the loop in order to
establish a linear demodulator transfer.

The phase detector determines the phase difference Ap(t,7) between the
input and oscillator wave. In practice, the transfer of a phase detector differs
from the ideal response A(t,7) in a number of respects. In the first place,
the detector output signal is not exactly linear with Ap(t, 7), but contains a
nonlinearity. This is because the detector transfer is periodic in Ap(¢,7). As
discussed in subsequent sections, this PD nonlinearity determines the threshold
behavior of the demodulator. In a special type of phase feedback demodula-
tor, so called delay locked loops (DLL), the detector nonlinearity appears to
be non-periodic [1]. However, this does not result in a significantly different
threshold behavior. Secondly, the phase detector output usually becomes zero
for a nonzero phase difference between its inputs. In fact, this implies that such
detectors behave as if a fixed, built-in phase shift is contained in one of their
inputs. For example, a multiplier phase detector behaves as if a built-in phase
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shift of 90° is applied to one of the input waves since its output is zero when
both (sinusoidal) inputs are in quadrature.

Although not strictly necessary for the demodulation algorithm, the demod-
ulator usually also contains a filter Hi¢(s) inside the loop, and a post-loop filter
Hi(s), as depicted in figure 7.2. These filters are included to improve the
performance of the basic system, also in respect to its response to noise.

The remainder of this chapter is concerned with the noise behavior of the
feedback demodulator and its dependence on the phase detector nonlinearity
and the loop filter structure. It is thereby assumed that the system has reached
a state, the ‘lock mode’, in which (7.3) holds. It should be noted however, that
in practice considerable effort is required to manoeuvre the system into lock
and keep it in that mode. Although omitted here, this “acquisition” behavior,
and many other characteristics, are also important issues in research on such
systems [2-13].

7.2 Phase Feedback Demodulator Modeling

A quantitative analysis of the phase feedback demodulator performance in the
presence of noise is feasible only with the aid of the appropriate demodulator
models. This section briefly discusses the generally applicable phase feedback
demodulator model that is used in the various analyses described in this chapter.

Section 7.2.1 outlines the well-known low-pass equivalent model of the de-
modulator loop, while Section 7.2.2 considers the inclusion of the demodulator
input noise into this model.

7.2.1 Low-Pass Equivalent Demodulator Model

It is well known that during phase lock the behavior of a phase feedback demod-
ulator can be analyzed conveniently from its low-pass equivalent model, depicted
in figure 7.3 [14-18]. This model, which was originally derived for a loop with

oscillator model

Figure 7.3: Low-pass equivalent model of a phase feedback demodulator.

a linear multiplier phase detector (PD), sinusoidal input and oscillator wave,
models the oscillator by an integrator with integration constant K,. It models
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the phase detector by a subtracter, a detector constant Kz, the amplitude A of
the input FM wave s(t), and a nonlinear transfer g (¢.), where

we(t) E o(t) — 0o(t) (74)
denotes the phase error inside the loop. Components in the phase detector
output signal located at double the carrier frequency 2w, are assumed to be
suppressed by the loop and are therefore ignored.

For a linear multiplier-phase detector, the nonlinear transfer g (y.) equals
sin @, (t). In [1, 19, 20], however, is shown that the model of figure 7.3 may also
be used to describe demodulators with an arbitrary phase detector, including
delay-locked loops (DLL), by modification of the nonlinear transfer g (p.). As
shown in subsequent sections, such a system representation allows optimization
of the (noise) behavior of the loop as a function of this detector transfer.

This demodulator model constitutes the basis for both the linear demodu-
lator analysis that is valid above the threshold, and the nonlinear analysis that
remains valid below the threshold. Above the threshold, some simplifications
are allowed, as discussed in Section 7.3.1.

7.2.2 Noise Model
The noise n'(t) that adds to the loop in figure 7.3 is an “equivalent noise source”
that models the interaction between the additive input noise n(t) and the os-
cillator output wave s,(t): it is obtained by transformation of the input noise
to the phase detector output. Such a transformation is required in order to
incorporate the effect of the input noise n(t) on the demodulator input carrier
amplitude: a noise source located at the input of the low-pass equivalent model
can only account for the contribution of n(t) to the phase noise of the input FM
wave, while a noise source located at the PD output allows incorporation of the
contribution to both the carrier phase and the carrier amplitude.

First, the properties of n’(t) in a loop with a multiplier-phase detector are
considered. Subsequently, the extension to arbitrary phase detectors is dis-
cussed.

Noise in a Loop with Multiplier Phase Detector

As an important example, we consider a loop with a multiplier phase detector
and sinusoidal input and oscillator waves. The phase detector response to the
FM input wave s(t) in this loop, ignoring the double frequency terms, equals

5(t)s0(t) = —Acos [wot + ¢(t)] Ao sin [wet + @o(t)]

= L sino(t) - po(t)] (7.5)

= AKgyg (e)
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where A, denotes the amplitude of the oscillator wave. Thus, the PD constant
equals Kq = A,/2.

Its response to the input noise n(t), again ignoring double frequency terms,
is given by

n'(t) = K7'n(t)so(t)
= —2[ni(t) coswyt — ng(t) sinw,t] sin [wet + @, (t)] (7.6)
[—ni(t) sin o (t) + g (t) cos o (t)] -

The oscillator output phase ¢,(t) is generally not equal to the input phase
©(t), especially at low CNRs, due to the influence of the input noise n(t). It
follows from (7.6) that the influence of this noise on ¢,(t) generally changes the
statistics of n'(¢) and introduces correlation between the noise and the phase
©o(t) that partially depends on the input noise through the feedback loop.

However, as shown in [16, 17, 21, 22], these effects can be ignored as long as
the bandwidth of the input noise n(t) is large compared to the closed loop band-
width of the demodulator since only the low-frequency range of the spectrum,
located inside the loop bandwidth, is of interest. The phase ¢,(t) introduces
modulation similar to the modulation illustrated by figure 2.5 that basically af-
fects the spectrum of n'(t) around its cut-off frequency. From another point of
view, the large bandwidth of n(¢) in comparison to the bandwidth of ¢, (t) causes
its correlation time to be much smaller than the correlation time of ¢,(t). This
in turn means that n'(t) may be considered to be approximately independent
of the other, ‘narrow band’ signals inside the loop. The statistical properties
of n'(t) therefore resemble those of ng ;(t) and n4(t), which are the low-pass
equivalent noise processes of n(¢) (see Chapter 2).

Noise Model for Arbitrary Phase Detectors

For non-sinusoidal phase detectors, the same expressions and conclusions as de-
rived for multiplier phase detectors hold at high CNRs. At low CNRs, however,
the expressions for n’(t) become slightly different [23-25]. We return to this
subject in Section 7.5.1.

7.3 Response Above Threshold

As shown in Section 5.4.2, the output SNR of a conventional FM demodulator
above threshold is significantly improved by the application of infinite compres-
sion to the input FM wave. The brief review in this section shows that a similar
SNR improvement is achieved by the phase feedback mechanism.

Section 7.3.1 considers the demodulator modeling above threshold. Sub-
sequently, Section 7.3.2 considers the modeling of the noise above threshold.
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Finally, Section 7.3.3 derives an expression for the output SNR above thresh-
old.

7.3.1 Linear Demodulator Model

Above threshold, when the demodulator loop is in ‘lock mode’, the phase error
@.(t) and its variance, denoted by o2, are usually very small. In that case, the
nonlinear detector transfer g (¢.), depicted in figure 7.3, may be replaced by its
first-order Taylor term, resulting in the familiar linear model of figure 7.4 [7,
16, 17]. In the absence of input noise, i.e. n'(t) = 0, this model easily shows

L A K, H{(s) Hy() [ Yem

K,
s

@,

Figure 7.4: Linearized model of the demodulator during ‘lock’.

that the closed loop transfer from input instantaneous frequency ¢(t) to output
signal ydem(¢) is given in the Laplace domain by

Yaem(s) def AK 4 Hye(s) Hp(s)
5%(s) dem(s) s+ AKqKoHi(s) o

When this transfer is flat over the baseband, the demodulator output signal is
proportional to the message wave ¢(t).

Besides this transfer, two other transfers are of importance in the nonlinear
noise analysis described in Section 7.4. These transfers are related to the two
main measures for the demodulator performance as used in the nonlinear de-
modulator model described in the next section: the SNR inside the demodulator
closed-loop bandwidth, and the steady-state phase error.

The SNR inside the closed-loop bandwidth is related to the loop structure
by means of the double-sided closed-loop noise bandwidth, denoted by W, in
(rad/s) or By, in (Hz). This bandwidth is defined as

oo H..( 2d
WL = 27TBL = f—oo' CI(Jw)J v
|Hcl(0)l

where H(s) denotes the “closed loop transfer” from input phase ¢(¢) to oscil-
lator output phase @,(t), given by [7]
®,(s) def 77 (s) = AK, K Hy(s)
®(s) o 1+ AK K Hy(s)

: (7.8)

(7.9)
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In essence, the steady-state phase error (SSPE), denoted by e ss, is the
equivalent of the amplitude/phase offset encountered in non-ideal conventional
FM demodulators. Such offsets were discussed in Chapter 4. The SSPE is a
measure of the DC component of the PD output required to keep the oscillator
at the correct frequency. It is related to the loop structure by means of the
transfer H,(s), from input phase ¢(¢) to loop phase error ¢, (t) as

def ;.
Pe,ss = lslﬁ)lHe(S)(P(S). (7.10)
By inspection of the linear demodulator model of figure 7.4, it follows that
Pe(s) def s
= H = . 7.11
() ) = T AR, Ry (5) (711)

Thus, when the FM ‘message’ signal equals a constant frequency offset (g, then
®(s) = Q,/s and the SSPE becomes

0,
Pe,ss = m- (7.12)

7.3.2 Linear Noise Model

This section investigates the noise source n'(¢) contained in the low-pass equiv-
alent demodulator model of figure 7.4, above the threshold. With the aid of
a simplified model for this noise it is shown that phase feedback demodulators
and ‘conventional’ FM demodulators that apply infinite amplitude compression
to the input carrier amplitude behave similarly at high input CNRs.

Simplified Description for the Noise

At high input CNRs, all the different types of phase detectors respond in a
similar way to noise at their input. Therefore, the behavior of phase feedback
demodulators above their threshold can be analyzed using a loop with a multi-
plier phase detector, without loss of generality.

Reconsidering expression (7.6) for the noise in a loop with a multiplier phase
detector, at high input CNRs, the oscillator phase ¢,(t) closely resembles the
message phase @(t) of the input FM wave s(t). In that case, according to (2.14),

n'(t) equals
n'(t) & —n;(t) sin p(t) + ng(t) cosp(t)
= ns,q(t).

(7.13)

Thus, at high input CNRs, n’(t) resembles the quadrature component of the
input noise n(t).The phase feedback mechanism suppresses the in-phase com-
ponent of the input noise, while it passes the quadrature component.
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This behavior is explained by the observation that, as far as the transfer from
n(t) to n'(t) is concerned, the multiplier phase detector essentially behaves like
a kind of synchronous detector that, according to Chapter 3, possesses phase
selectivity. In case of a multiplier PD, the reference wave of this ‘synchronous’
detector, the oscillator output wave s,(t), is in phase quadrature with the input
FM wave. Consequently, all noise and signal components in phase with this
reference wave, in quadrature with the input FM wave, are passed, while those
in quadrature with the reference, in-phase with the input FM wave s(t), are
suppressed.

Comparison with Conventional FM Demodulators

In Section 5.4.2 it was observed that a very similar behavior is achieved by ampli-
tude compression in ‘conventional’ FM demodulators. In that case, infinite am-
plitude compression also suppresses the in-phase noise component n, ;(t), while
it leaves the quadrature component n; 4(t) unaffected. Thus, above threshold,
the response to external noise of a phase feedback demodulator and a conven-
tional demodulator with infinite compression, a “limiter-discriminator”, is es-
sentially the same. For this reason, the same SNR improvement above threshold
15 expected in both systems.

7.3.3 Output SNR Above Threshold

This section derives an expression for the output SNR above threshold from the
Bennn Anrnndnlatar smadal AF Bovivn ’7 /1

11T as u\,ntuuutauut alivnavl v J.LE’U-L\« [

By application of the superposition principle to ¢(t) and n'(t) in figure 7.4,
and (7.7) for the demodulator transfer Hgem(jw), the spectral density of the
output signal yqem(t) can be expressed as

Stam() = [Haam () [w28,) + ()" S )]
= Haem (G0 [A425,(0) + 02500 (@)]

(7.14)

where S,/(w) = Sp(w) denotes the density of n'(¢). When the closed loop
transfer Hq(jw) is flat over the baseband region w € [—-W, W], and the post-
loop filter is assumed to be rectangular with bandwidth W, integration of (7.14)
for the output SNR, in terms of the input CNR p and FM bandwidth W, yields

SNRoy: = 3p (VVVV ) (%‘,") , (7.15)

identical to the maximum SNR (2.21) of a limiter-discriminator. This shows
that above threshold, phase feedback and amplitude compression result in the
same SNR improvement.
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7.4 Response in the Threshold Region

This section investigates the demodulator behavior around the threshold, and
discusses the principles of, and results obtained by, nonlinear noise analysis
techniques described in literature.

The general characteristics of the behavior exhibited in the threshold re-
gion are similar to those of limiter-discriminators. In these demodulators, click
noise is observed which, as discussed in Section 5.4.3, is generated whenever the
noise FM input wave r(t) gains or slips a cycle with respect of the noise-free
wave s(t). In phase feedback demodulators, impulsive noise is observed due to
“cycle-slipping/skipping”, which occurs when the oscillator output wave s,(t)
slips/skips a cycle relative to the input wave s(t). The modeling of cycle-slip
noise is the subject of this section.

Section 7.4.1 discusses the nonlinear demodulator model required for the
cycle-slip analysis. Section 7.4.2 discusses the conceptual model for the de-
modulator output noise in terms of a continuous noise and a cycle-slip noise
component. Subsequently, the quantitative model for the calculation of the
cycle-slip rate is outlined. For this purpose, Section 7.4.3 considers the relation
between the cycle-slip rate and the probability density function (PDF) of the
phase error .. A formal description of this relation, the Fokker-Planck equa-
tion (F-PE), is considered in Section 7.4.4. Subsequently, Section 7.4.5 discusses
the steady-state PDF of the phase error, and its relation to the demodulator
loop structure. Section 7.4.6 combines the results of the previous sections, and
discusses the dependence of the cycle-slip rate on the loop structure, while Sec-
tion 7.4.7 compares the threshold curves of phase feedback demodulators with
those of conventional demodulators.

7.4.1 Nonlinear Demodulator Model

The cycle-slip phenomenon can be explained from the periodicity of the phase
detector nonlinearity g (@), and is therefore adequately described by nonlinear
demodulator models only. In this section, we outline the demodulator model
required by the cycle-slip noise analysis. Besides quantitative analyses, this
model is also very suited for a qualitative analysis of the underlying cycle-slip
mechanisms. First, the cycle-slip phenomenon is intuitively explained with the
aid of the nonlinear differential equation (DE) of the phase error. Subsequently,
the necessary conditions imposed on the structure of the loop in order to validate
the the nonlinear analysis are considered.

Differential Equation of the Phase Error

The general mathematical description corresponding to the system in figure 7.3
due to the phase detector, is a nonlinear differential equation (DE} of the loop
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phase error . (t) [19, 20], given by
e = @ — KaK,Hit(s) [Ag (pe) +n'(2)], (7.16)

where Hj¢(s) symbolically represents the differential equation operator of the
loop filter operating on its input signal Ag (@) + n'(t).

The periodic nature of the detector nonlinearity g (¢.) causes stable and un-
stable equilibriums in (7.16), as depicted in figure 7.5 for a sinusoidal detector
characteristic. Around the stable equilibriums located at the positive slopes of
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Figure 7.5: Stable and unstable equilibriums in the demodulator loop transfer.

g (we), negative feedback exists within the loop that tries to restore the equi-
librium whenever small noise perturbations in the phase error ¢, occur. This
effect is sometimes called the loop’s “restoring force” [19, 20].

Around the unstable equilibriums located at the negative slopes of g (w.)
positive feedback exists within the loop that drives it out of equilibrium for any
perturbation in ..

Consequently, when the noise is able to perturb ¢, from a stable equilibrium
by an amount that is larger than =, the positive feedback rapidly increases the
perturbation until ¢, arrives in the neighboring stable equilibrium, resulting in
a cycle-slip.

Markov Condition

In order to validate the nonlinear analysis of the cycle-slip rate, some constraints,
known as the “Markov Conditions” [16, 17], must be imposed on the statistics
of the signals in the loop, and consequently also on the loop’s structure. Here,
we outline these constraints.

The analysis requires that all the signals in the loop can be described as a
special type of stochastic processes, the Markov Processes. Markov processes
are memory-less processes described by a first-order DE with a white Gaussian
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noise input [17). Consequently, at every instant, their value in the near future,
predicted by their time derivative, is determined only by their present value
and the present value of the white noise, and not by their past. The white
shape of the noise spectrum assures that this process is also memory-less; its
autocorrelation function is a Dirac impulse, which means that its present value
is uncorrelated with its entire past.

In a first-order loop, where Hj¢(s) = 1, the phase error ¢, satisfies the
Markov condition whenever the input noise n'(t) is wideband compared to the
closed loop transfer, as observed from (7.16). In these loops, ¢. depends only
on the (approximately) white noise n'(t) and the present value of g (pe).

In order to satisfy the Markov condition in higher order loops, which contain
additional (dynamic) memories due to the presence of a loop filter Hi(s), the
corresponding (m+1)-th order nonlinear DE (7.16) has to be rewritten in terms
of a state-space description as a system of (m + 1) first-order DEs. For linear
loop filters with real poles, the class of most practical interest, such a state-space
description with mutually uncoupled DE’s can be found.

According to [19, 20], and assuming real poles, the loop filter transfer H¢(s)
can be written as

. H
Hir(s) = Ho + 3 1 +I‘;k8,

k=1

(7.17)

i.e. as m parallel connected first-order filters and a direct transfer (see fig-
ure 7.6). Then the following set of (m +1) first-order nonlinear DE’s, equivalent

KK, [Ag(@,) + n' (D] —

Figure 7.6: Representation of the loop filter in the analysis.
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to (7.16) is then obtained:

g0 po = (1) — HoKaKol[Ag (0e) +n' (0] + > ax,

k=1
zy H KK,
&) = —— — 2290 A0 (0,) + 1 (1)),
T 1
. (7.18)
K,
i = —Em _ HmBaKo )y e (2)].
Tm m

The analysis for filters containing complex poles or a pole in the origin (ideal
integrator) is possible [20], but considerably more complex. For this reason,
these cases are disregarded in the remainder of this chapter.

The state vector z of the system in (7.18) complies with the Markov condi-
tions when the message signal ¢(t) equals a constant frequency offset Q, and
the noise n'(t) is wideband. Gaussian message signals or narrow band noise
n'(t) can be incorporated by writing them in terms of a state-space description
with white input noise and inclusion of this description into (7.18) [16]. This
rather complicated procedure will however not be considered here.

7.4.2 Nonlinear Noise Model

The output noise of a phase feedback demodulator in the threshold region can
he described in similar terms to the noise at the ontput of non-feedback demaod-
ulators, in terms of a continuous and an impulse noise component, considered
in detail in chapters 5 and 6. This section outlines the main characteristics of
the phase feedback demodulator output noise. Throughout the remainder of
this chapter, the term “click noise” is reserved for the impulsive noise observed
at the output of ‘conventional’ limiter-discriminators, while the term “cycle-slip
noise” is reserved for the impulsive noise in phase feedback demodulators. Fur-

ther, subsequent sections do not distinguish between cycle-slips and cycle-skips.

Continuous Qutput Noise

The continuous noise observed at the output is due to small perturbations of
the phase error ¢, (t) in response to the noise n'(t). As discussed in Section 7.3,
this noise determines the demodulator output SNR above the threshold and is
conveniently calculated from the linear model.

Impulsive Cycle-Slip Noise

Similar to click noise, cycle-slip noise is conveniently modeled as a train of
impulses, with the average pulse area and pulse rate as parameters. Obviously,
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since the underlying mechanism of cycle-slips is different from the click noise
mechanism, the pulse rates are different and have to be determined by a different
type of analysis. In the click noise model, the impulse approximation for the
pulse shape was justified by the close and quick encirclements of the origin by
the noise phasor 77 at CNRs around the threshold (see Section 5.4.3). In phase
feedback systems, the impulse approximation is justified by the observation
that the positive feedback, present in the loop during a cycle-slip, assures an
extremely rapid transition between neighboring stable phase error equilibriums.

Cycle-slips may be considered as approximately independent of the continu-
ous noise, due to their rare occurrence on the one hand, and on the other hand
due to the observation that they completely overrule all other output signal com-
ponents during their occurrence. Consequently, the output noise power density
spectrum approximately equals the addition of the continuous noise spectral
density and the density of the cycle-slip noise.

The area of the cycle-slip pulses equals exactly 27 since the stable equilibri-
ums of g (p.) are separated by Ay, = 2r. When the oscillator in the loop slips
or skips a cycle relative to the input FM wave, its instantaneous phase changes
by 27, resulting in an impulse of area 27 in its instantaneous frequency. The
demodulator output signal, observed at the oscillator input, is proportional to
this frequency.

Cycle-Slip Bursts

The most important difference between the cycle-slip model and the click noise
model is that, as opposed to clicks, cycle-slips cannot be considered to be mu-
tually independent around the threshold in all circumstances.

Theoretical and experimental evidence has only been given for the indepen-
dence of cycle-slips for a first-order loop [7, 16].

For higher order loops, however, dependencies between consecutive cycle
slips resulting in cycle-slip bursts occur when the closed loop transfer contains
poles with high mutual interaction, such as complex poles. In these systems,
locking on a stable phase equilibrium requires that all other state variables z,
each corresponding to one of the loop filter poles, also adopt (values close to)
their corresponding equilibrium value, attained when #; = 0.

During a cycle-slip, the state variable z9 = ., corresponding to the oscil-
lator pole, is ‘bumped’ out of its equilibrium and, in case of strong interaction,
pulls the other states out of equilibrium as well. In such an unstable transition
state, the system is extremely vulnerable to the occurrence of another, con-
secutive cycle-slip. The cycle-slip burst continues until the ‘DC component’ of
the phase detector output has built up sufficient energy to restore all states to
their equilibrium. Consequently, a burst of cycle-slips is observed whenever the
magnitude of the phase detector ‘DC component’ is insufficient to restore all
states to equilibrium within a single slip or skip. In second-order loops with a
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sinusoidal phase detector transfer, this is the case when the damping factor of
the loop poles, ¢, satisfies the condition ¢ < 0.9 {7, 26].

Cycle-Slip Noise Spectral Density

In the presence of dependencies between cycle-slips, their double-sided spectral
density is no longer precisely described by the equivalent of (5.11), the product
of the squared noise pulse area 472, and the total average cycle-slip or skip rate
N, + N_. This is a consequence of the fact that such cycle-slip bursts are not
Poisson distributed in time, like click noise. However, although formally incor-
rect, we will still use (5.11) as an approximation of the cycle-slip noise spectrum
of such loops whenever necessary. This may be justified by the observation that
its hardly worth while to develop a more accurate description, even if this were
possible, since cycle-slip bursts are highly undesirable in virtually any demodu-
lator intended for low CNRs. Systems with long cycle-slip bursts are therefore
unsuited for such applications.

Thus, in order to calculate the power-density spectrum, we only need an
expression for the average cycle-slip rate. The calculation of this rate is outlined
in subsequent sections.

7.4.3 Cycle-Slips and the Phase Error Probability Density

The cycle-slip rate is strongly dependent on the PDF of the phase error process
©.. Therefore, knowledge of this PDF and its dependence on the structure
of the demodulator loop is highly desirable in the design of phase feedback
demodulators for low CNRs.

In this section, we discuss the qualitative relation between the cycle-slip
rate and the phase error PDF with the aid of a charged-particle analogon.
This relation constitutes the principles of the nonlinear cycle-slip rate analysis
discussed in subsequent sections.

Evolution of the Phase Error PDF as a Function of Time

A qualitative analysis of the phase error PDF’s evolution as a function of time
is an effective means of gaining insight into the underlying probabilistic mech-
anisms of cycle-slips and their mathematical formulation. For this reason, we
outline such an analysis here in advance of a discussion of the mathematical
results.

Figure 7.7 schematically depicts the evolution of the phase error PDF in
response on the stationary noise process n’(t), possessing a constant variance
and switched on at time t = 0 (see also [16, 17]). Assume that input wave
5(t) contains no modulation, i.e. ¢(¢) = 0, and that the loop is locked on the
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Figure 7.7: Evolution of the phase error PDF as function of time, and its relation to
cycle-slips.

equilibrium ¢, = 0 prior to t = 0 with a zero SSPE. Further, assume a sinusoidal
phase detector, as depicted in figure 7.5.

Since there is no uncertainty about the value of ¢, at t = 0, its initial PDF
equals an impulse of unit area located at ¢, = 0,

Py, (9e;0) = 0 (pe) - (7.19)

As a result of the noise injection into the loop starting at ¢ = 0, ¢, starts
to wander around the equilibrium in an approximately Gaussian fashion. This
causes the PDF to spread around ., such that it becomes Gaussian, as depicted
for t = t;. This “diffusion” of the PDF continues as long as the restoring force
of the loop is capable to keep the perturbations of ¢, smaller than .
Eventually, |p.| exceeds 7, resulting in a cycle-slip. After the slip, the loop
locks either on the equilibrium at ¢, = —27 or at @, = 27. From that instant on,
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the area underneath the PDF around the previous equilibrium position ¢, =0
starts to shrink, while its area around y, = 27, or . = —2x simultaneously
starts to swell. This swelling continues until the next cycle-slip occurs, causing
the loop to lock on another equilibrium, etc., as depicted for t = ¢5.

In the steady state, reached as t — oo, all stable equilibriums have become
equally likely, which means that the PDF becomes periodic while its variance
becomes unbounded. As a consequence, since the PDF is of unit area, the area
enclosed by it within any finite phase interval approaches zero. This solution
for the steady-state PDF is rather impractical since it separately describes the
statistical behavior, including the transitions between an equilibrium and its
neighbors (cycle-slips), of all individual periods in the PD transfer. However,
as far as the cycle-slip rate is concerned, only the total number of transitions
between any neighboring equilibriums is of interest.

A better suited solution is therefore obtained by exploiting the periodicity
of the PDF. Usually, the PDF is bounded to an interval Ay, = 27, equal
to one cycle of the PD nonlinearity. In the “periodic extension” (PE) ap-
proach [16, 17, 19, 20], this is achieved by replacement of p,. (v.) in the cal-
culations by a periodic function, normalized to a period of 27. In another ap-
proach, the “renewal process” theory [27-29], the phase process ¢, is truncated
(“killed”) each time it exceeds +m, one period of the PDF, and replaced by a
new process that starts again with ¢, = 0 and the initial PDF of equation (7.19).
It can be shown that both approaches are equivalent as far as cycle-slip rates
are concerned. In general, the renewal process theory yields slightly more in-
formation concerning the behavior of the phase error process than the periodic
extension approach.

Description of Cycle-Slips by Probability Theory

In probability theory, processes like the phase error . are called “random walk”
or “Brownian motion” processes [20]. For such processes, advanced theories have
been developed in conjunction to other physical phenomena. In subsequent sec-
tions of this Chapter, the random walk nature of the phase error . is explained
with the aid of a charged-particle analogon. In this analogon, the phase error
process . is represented by a “probability particle” that behaves similar to an
electron.

An important concept in probability theories is the so called “probability
current density” (19, 20]. This term describes nothing more than the swell
of the area enclosed by the PDF at one place in (the state-) space, and the
simultaneous decrease of the area at another place, as a function of time. During
such a process, probability may be considered to ‘flow’ from one place to the
other, just like an electric current can be considered to be a flow of electric
charge.
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In phase feedback demodulators, cycle-slips are the cause of a “How of prob-
ability” from an equilibrium state of the phase error process to one of its neigh-
bors: each cycle-slip corresponds to the transition of a single ‘probability par-
ticle’. Using this observation, it can be shown that the number of cycle-slips
per unit time, the slip rate, corresponds to the value of the probability current
density at the unstable equilibriums ¢, = 7 + 2kn, the boundaries of one
period of the phase error PDF [19, 20]. This is of course due to the fact that
every passage of . across these boundaries results in a cycle-slip.

With the aid of these concepts, the subsequent sections discuss the depen-
dency of the phase error PDF in the steady-state and the cycle-slip rate on the
structure of the demodulator loop.

7.4.4 Fokker-Planck Equation for the Phase Error PDF

This section discusses the meaning of the Fokker-Planck equation for the phase
error PDF that gives a formal description of the relation between the PDF and
the probability current density, related to the cycle-slip rate. Various proba-
bilistic measures are defined that are required in subsequent sections for the
description of the cycle-slip rate.

Interpretation of the Fokker-Planck Equation

The (steady-state) phase error PDF can be calculated with the aid of Fokker-
Planck (F-P) techniques, which are based on the notion of probability current
density discussed in the previous section.

This approach, developed in the 1930’s, was first applied to phase-lock sys-
tems by Tikhonov [21, 22]. He obtained the steady state PDF of a first-order
loop and a particular type of second-order loop. In the same period, others tried
to obtain results for the threshold behavior in PLLs by means of various kinds
of linearization techniques [14, 15, 30, 31], but none of these approaches resulted
in a satisfactory solution of the problem. Viterbi [16, 17] used the F-P approach
to obtain cycle-slip rates for a first order loop, considered in some more detail
in [32-34], and a special type of second-order loop. Lindsey [19, 20] generalized
the approach to higher order loops and arbitrary types of phase detectors. This
work was subsequently elaborated by many authors [27-29, 35-41].

The Fokker Planck equation (F-PE) is a second-order nonlinear partial DE
that basically describes the flow of probability through the state-space as a
function of time, of systems described by Markov Processes. Its solution equals
the PDF of these processes. In this respect, it is sometimes called the “equation
of flow” [19], or a “generalized diffusion equation” [16].

The joint PDF of the state variables in (7.18) is described by an (m + 1)-
dimensional F-PE. For the cycle-slip rate analysis, however, only the marginal
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PDF of the phase error process, the projection of the joint PDF in the state-
space on the plane through the ¢ -axis, is of interest. By application of the
proper boundary conditions, the one-dimensional F-PE for this marginal PDF
can be derived from the (m + 1) dimensional F-PE of the joint PDF [19]. This
one-dimensional equation can be expressed as

0Jo (pe,t) | Opy, (peit) _
A, + ot =0,

(7.20)

where Jo denotes the probability current density flowing through the state-space
in the direction of ¢.. This expression is equivalent to the physical law for the
conservation of electric charge in differential format [42]. It states that sources
of probability currents, characterized by a decrease in time of probability, are
located at those positions where the net (outgoing) probability currents are
nonzero.

Components of the Probability Current Density
The meaning of Jp is illustrated by figure 7.8. This figure depicts the obser-
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Figure 7.8: Components of the probability current density Jo.

vation that Jp can be subdivided into a ‘drift’ component and a ‘diffusion’
component [19, 20].

The drift component, denoted by Jo.drifs, is due to the restoring force of the
loop that drives it towards its stable equilibriums. It equals the product of the
probability density and some position and time-dependent velocity v,

Jo,drift (‘Pea t) =v (‘Pe; t) Dy, (‘pe§ t) . (7-21)

It is directed towards the stable equilibriums since it increases the probability
that ¢, attains values close to these equilibriums.
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The diffusion component, denoted by 7, aisr, represents the random motion
of ¢, , eventually resulting in cycle-slips. This component, directed outwards the
stable equilibriums due to its tendency to increase the variance of ., equals a
diffusion constant D times the gradient of the probability density, which in this
respect may be considered to be the concentration of ‘probability particles’:

7] et
To,aift (Pe,t) = —D—i’%. (7.22)
©e

The velocity v and diffusion constant D describe the influence of the ‘medium’
on the probability currents, and are thus determined by the state-space descrip-
tion (7.18) of the loop filter and the phase detector nonlinearity. Differences in
behavior between phase feedback demodulators are therefore due to differences
in these parameters.

Restoring Force and Potential Function

Two valuable quantities that complete the description of the phase error process
are the restoring force ho (pe,t) and the potential energy function Up (ge,t)
corresponding to this force. The restoring force ho (¢, ) is defined as

o pert) 129D = g g (o). (7.23)
In the electric analogon of this expression, the velocity v (yp.,t) corresponds
to the product of the particle mobility and the electric field strength, while
the restoring force ho(.), the ratio v (p.,t) /D, corresponds to the ratio of the
electric field strength and the thermal voltage Ur = kT/q. The electric field
applies a force to charged particles, resulting in a drift current. The division
through Ur represents the effect that the influence of this force decreases when
the random kinetic energy of the particles, thermal random motion, increases.

In the stochastic phase feedback demodulator model, ho(.) represents a
stochastic field that applies a force to probability particles, resulting in a drift
component of the probability current density. Due to the division by the diffu-
sion constant D, (7.23) already includes the effect, the influence of this field-force
decreases when the demodulator input CNR, decreases: the demodulator input
noise n(t) increases the kinetic energy of the probability particles through ran-
dom motion, in a similar way as thermal energy increases the random motion
in the electric analogon.

The second equality in (7.23) relates the phase error PDF to physically
interpretable characteristics of the demodulator loop by means of the parameters
a and 3. As will be explained in Section 7.4.5, a represents the “effective” SNR
inside the demodulator closed-loop bandwidth. Thus, this parameter represents
the strength of the stochastic field force, in comparison to the random motion
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of the phase error. At high CNRs, large values of «, the restoring force is large,
while at low CNRs, the force is weak. The PD transfer in (7.23) represents
the fact that the restoring force is a function of the position in the state-space:
by definition the force vanishes at the equilibriums, while it is nonzero outside
these equilibriums. The minus-sign represents the fact that the force drives the
particles towards the stable equilibriums. The parameter 8 equals the product
of a and the steady-state phase error, as subsequently shown. A nonzero value of
B, corresponding to a nonzero SSPE, reduces the influence of the restoring force
on the probability particles. In the presence of an SSPE part of the restoring
force is required to keep the local oscillator at the correct frequency, which leaves
a smaller ‘force’ to counteract the random motion of probability particles.

The potential function Up (@, ) is defined as the integral of the restoring
force, similar to the relation between the electric field and the electric potential:

def e
Uo (ge,t) = — ho (z,t) dz

o (7.24)
= —fBpe + a/ g(z)dz.

The maxima and minima of this potential function correspond to the positions
at which no restoring force is present, to the unstable and stable equilibriums
of g (.) respectively. The instantaneous value of the phase process . may be
interpreted as a (probability) particle that exhibits a Brownian motion and is
subject to the potential ‘field’ Uy (i, t).

7.4.5 Steady-State Solution for the PDF

This section discusses the steady-state phase error PDF and its relation to the
structure of the demodulator loop. This PDF determines the dependence of
the cycle-slip rate on the loop structure. The theoretical results discussed in
this section constitute the discussion on phase feedback demodulator design in
Section 7.5.

Expression for the Steady-State Solution

In the steady state, the phase error PDF becomes time-independent, which
means that its time derivative in (7.20) vanishes. Consequently, according to
(7.20), (7.21) and (7.22), the drift and diffusion components of 7y are in balance
in the steady state,

ap‘f’: ((pe; t) .

7.2
o (7.25)

U(We,t)p(pc (pe;t)=D
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An expression for the steady-state PDF can be obtained by solving (7.25).
According to [19, 20], this results in

Yet+2m

Py, (pe) = Coexp [—Up (@e)] exp [Up(z)] dz, (7.26)

Pe

where Cy follows from the condition that the area underneath p,, (@e) in the
interval @, € [~m,w| equals unity, while Up(.) denotes the potential function
given by (7.24).

In order to complete the solution for the PDF, the parameters a and 3 need
to be expressed in terms of parameters of the demodulator loop and the input
noise n'(t). However, exact expressions for these parameters cannot be found for
second or higher order loops since they contain some conditional expectations
that are subject to the “chicken-egg” problem; their evaluation requires the
PDF, while the PDF requires their evaluation. In order to solve this problem,
one may choose between measurement of these expectations from an already
implemented system, simulation, or approximation. For synthesis, the latter
option is the most convenient one since it reveals the relation between the key
parameters of the demodulator loop and the loop statistics.

With the aid of a Linear Mean Square Estimate {LMSE), Lindsey [19] obtains
approximate expressions for a and 3, which in terms of the parameters used in
this chapter become

24 Sc(0) <~ Hy
4 NOHOKoKd (1 20’% kz::l TkHo ’ (727)
2A. Qo B m Hk ( SG(O)>
~ _ He (40 7

where N, represents the power spectral density of the low pass equivalent input
noise n;(t), nq(t) (see Chapter 2). Further, g denotes the expected value, the DC
component, of the PD nonlinearity g (¢.) in figure 7.3, oé denotes its variance,
and Sg(0) its power spectral density of G (p.) = g(pe) — § at w = 0. These
three parameters are yet undetermined and cannot be obtained exactly from the
nonlinear model of the loop. However, fortunately, they can be approximated
with the aid of the linear model of figure 7.4, as discussed subsequently.

In advance of a detailed discussion on the relation of (7.27) and (7.28) to the
demodulator loop structure, it is already possible to get a grasp on the meaning
of these expressions. In the first place, it is observed that « is related to the
SNR inside the loop bandwidth since it contains the carrier amplitude in the
numerator, and the noise power spectral density times a measure for the DC
loop gain in the denominator. The parameter 3 is related to the steady-state
phase error since it is a function of the constant frequency offset Q,, which is
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used as a model for the message modulation, and the average value g of the PD
nonlinearity.

Secondly, the summations over k£ in both expressions represent the effect
of a loop filter on the phase error PDF. Such a filter introduces additional
states into the system and additional dimensions into the corresponding state-
space. Consequently, in order to establish proper operation of the loop, the
phase detector output signal, the restoring force, should not only drive the
phase error into one of its stable equilibriums but should also drive all other
state-variables to their equilibriums. In comparison to a first-order system, a
higher-order loop therefore has to satisfy far more severe requirements in order
to operate properly, which explains the minus-sign of the summations in (7.27)
and (7.28).

Finally, it is observed that the SNR inside the loop bandwidth, and therefore
also a and 3, decreases when the DC loop gain increases. The loop gain affects
the signal and the noise inside the loop in the same way such that the SNR
measured in a fized bandwidth is not affected by it. However, an increase in the
loop gain also results in an increase in the closed-loop bandwidth, and therefore
in an increased level of noise inside the loop bandwidth.

Relation between PDF and Loop Structure

Insight into the meaning of (7.27) and (7.28), and their relation to the structure
of the demodulator loop, is gained from the low-pass equivalent demodulator
loop model depicted in figure 7.9, obtained by substitution of the loop filter from

figure 7.6 into the general model of figure 7.3, When this loop is degenerated

n'(s)

80) H A I‘:é"l"‘a

Figure 7.9: Low-pass equivalent model of the demodulator, containing the loop filter
of figure 7.6.

to a first-order loop by setting Hy = 0 for 1 < k < m, the first factor in (7.27)
and (7.28) becomes equal to a factor that is usually called the “SNR inside
the (first-order) loop bandwidth” [16, 17, 19, 20}, which equals twice the CNR
within the loop bandwidth, thus

def 24 A? W
= —-_— = -— 7-29
@0 = )=t = NI KK, NoBro > (WL,O) b, (7.29)
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where B o denotes the noise bandwidth of the degenerated loop.
Further, for the same degenerated loop, the first term inside the brackets in
(7.28) equals the SSPE that would be obtained with the linear model,

def Q,

Pe,ss,0 — Pe SS‘H“‘ (s)=Ho = A—I‘I()m—d' (730)

For a first-order loop, expressions (7.27) and (7.28) are no longer approxima-
tions, but become exact [16]. In that case, @ = ag and # = @pe ss,0, COITE-
sponding to a restoring force given by

ho (‘PJ'H,;(s):HO = Qo [Pe,s5,0 — 9 (e)]

=2 (v:,i" ) Ppess,0 — 9(we)] -

y

(7.31)

For higher order loops, these expressions merely describe the properties of the
degenerated, first-order loop, the ‘intrinsic first-order’ behavior, minus some
correction term that depends on the position of the poles. This minus sign
reflects the effect that the effective SNR inside the loop is smaller in higher
order loops than in first-order loops.

As suggested by Viterbi [16], approximate expressions for the undetermined
parameters S;(0) and 02 can be obtained from the linear model as follows. The
transfer from the point in the loop where the noise is injected, to the output
of the linearized detector transfer g (p.) = ¢. equals Hq(s)/A. Consequently,
S¢(w) approximately equals

. N,
Sa(w) = Se. (w) = |Hcl(JU)|2ﬁ- (7.32)
With the aid of this expression, we obtain

Sc(0) |Ha(0)[? _ 1
202 f |Ha(jw)|?2dw 2B’

(7.33)

where Bj denotes the double-sided noise bandwidth of the loop in Hz. By
extrapolation of Viterbi’s approach, an approximate expression for g can also
be obtained from the linear model. It is observed that this parameter equals
the SSPE,

g R Pe,ss- (7.34)

Alternatively, the definition formula for g, the expectation of g (y.) taken over
e, could be solved numerically, where the phase error PDF contains g as vari-
able.
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With the aid of these approximate expressions, a and 8 may finally be
expressed as

Wn - Hk
ar2 (WL,O)p(l _’;—.—2HOBLTIC)’ (7.35)
Wn e Hk 1
B =2 ( ) p |:‘Pe,ss,0 — Pe,ss Z — (1 + —)]
WL,O =1 H, 2By (736)
— H,
=a I:‘pe,ss,o — Pe,ss I; Fﬁ] (7.37)
= (e g5- (7.38)

The last expression for 3 is an interesting result because it is the higher order
analogon of the exact expression obtained for the first order loop. It shows the
previously mentioned fact that 3 is proportional to the SSPE.

Thus, by substitution of (7.35) and (7.38) into (7.24) and (7.26), it is con-
cluded that the phase error PDF is determined by the CNR inside the bandwidth
of the degenerated loop, the SSPE of the loop itself, the noise bandwidth By,
and the loop filter parameters Hy, 7. This representation of the phase error
PDF will be used in the investigations of cycle-slip rates in the next section.

Example: Steady-State PDF for a Sinusoidal Nonlinearity

An indication of the correctness of the results is obtained by
of a sinusoidal PD for various values of the input CNR.

Figure 7.10 depicts the results for 8 = 0, a zero SSPE, while figure 7.11
depicts the results for 8/a = 0.75. The equilibrium of the phase error is located
at the value of p. where the restoring force equals zero, where, according to
(7.23), B/a = g (¢e). In case of a sinusoidal PD nonlinearity, 3/a = 0.75 corre-
sponds to an equilibrium, an SSPE, of . = g, s = arcsin(8/a) = 0.85 (rad).
Note that this result does not follow from (7.38). In that expression, the PD
nonlinearity was ignored through the application of the approximate expression
(7.34). Thus, § = @e s should actually be replaced by § ~ g (e ss). Figure 7.10
clearly demonstrates the spreading of the PDF, the “diffusion of probability”,
when the input CNR decreases.

At high CNRs, the PDF approaches a Dirac impulse centered at the steady-
state phase error ¢.q. The curves at figure 7.10 are therefore centered at
@ = 0 (rad), while those in figure 7.11 are centered at ¢, = 0.85 (rad).

At low CNRs, the PDF gradually approaches the PDF of the phase of the
input noise n(t), a uniform density with a zero mean value [43]. Since the
SSPE equals the zero-mean of the noise phase in figure 7.10, all PDF curves
have their maximum value at ¢, = 0. The maximum of the PDF curves in
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figure 7.11 gradually moves from ¢, = .5 towards the mean of the noise
phase, . = 0, for decreasing CNRs.

7.4.6 Derivation of Cycle-Slip Rates from the PDF

This section uses the theory discussed earlier to obtain an expression for the
average cycle-slip rate. First, it is shown that the results obtained for the
steady-state phase error PDF yield useful information about the dependence of
the cycle-slip rate on the structure of the demodulator loop and, as discussed
in Section 7.5, may be used to optimize the loop configuration. Subsequently,
the expression for the average cycle-slip rate is discussed and compared to the
click rate in limiter-discriminators.

Cycle-Slip Rate and the Loop Structure

The relation between the cycle-slip rate and the structure of the demodulator
loop can be analyzed with the aid of the results described in the previous section
for the steady-state PDF.

In the probabilistic model for the demodulator described previously, the
cycle-slip rate was represented by the probability current density that flows
across the bounds at ., = =+, the instable equilibriums of the phase error DE.
Because the restoring force equals zero here, this current density consists only
of the diffusion component J qin-

The dependence of this diffusion current on the loop structure is described by
the potential function Uy (@e ), which is plotted in figure 7.12 for a sinusoidal and
an ideal sawtooth phase detector for various values of . Due to the diffusion
component of the probability current density, the phase error ., which may in
this respect be represented by a particle, performs a Brownian motion through
this potential field.

A cycle-slip occurs whenever @, moves across one of the maxima in this
potential field. In lock, ¢, is positioned at a stable equilibrium, at the bottom
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Figure 7.12: Potentigl functions Uo (pe) of a sinusoidal phase detector (a) and an
ideal sawtooth detector (b), for various values of the effective SNR a.

of one of the potential wells. Thus, in order to minimize the cycle-slip rate, the
wells at the stable equilibriums should be made as deep as possible, while the
potential barriers at the unstable equilibriums should be made as high as possi-
ble. Notice that the absolute level of the potential function is not of interest to
the behavior of the loop: only the potential differences that exist between differ-
ent values of ¢, are of interest. This is similar to the way in which an absolute
potential in electronic circuits is meaningless: only the potential difference with
respect to a predefined reference, e.g. a “ground” potential, contains relevant
information about the circuit behavior.

The depth of the wells and height of the barriers is proportional to a and
thus to the input CNR, as should be expected. At high CNRs, the wells are
very deep, which means that cycle-slips are very unlikely to occur, as should
be expected. Expression (7.35) implies that, since the sign of the correction
term for higher order loops is negative, a first-order loop is likely to produce
the smallest possible amount of cycle-slips, a fact that is known to be true in
practice [7]. For higher order loops, the cycle-slip rate will be larger. Further,
as observed by comparing figures 7.12(a) and 7.12(b), the shape of the PD
nonlinearity has a profound influence on the wells and barriers.

The parameter 3, which is proportional to the SSPE, introduces a linear
slope in the potential function that increases the potential barriers at one side,
but decreases them at the other side of the wells. Since the latter effect increases
the total cycle-slip rate, 8, and thus the SSPE, should be made as small as
possible.

Further, it is observed that locking is possible only when Uy (¢, ) has minima,
i.e. when the expression

9(pe) = g = Pe,ss (7.39)

can be satisfied at a positive slope of g (p.). This condition is known as the
steady-state lock-limit [7].
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Expression for the Cycle-Slip Rate

The cycle-slip rate can be calculated from the phase error PDF through the
following procedure. First, it should be recalled that the net rate, the difference
between the positive cycle-slip rate N, that increases the phase error and the
negative cycle-slip rate N_ that decreases the phase error, corresponds to the
magnitude of the probability current density at the unstable equilibriums, as
discussed previously. At these values of the phase error ¢, the drift component of
the probability current vanishes, leaving only the diffusion component described
by (7.22). This diffusion component can be expressed in terms of the parameters
o and B, which describe the dependence of the PDF on the loop structure,
through (7.24) and (7.26).

An expression for the total cycle-slip rate N; + N_ is obtained through
combining the expression for the net cycle-slip rate N_ — N_ with an expression
for the ratio Ny /N_. According to [19, 35], it follows from the physical analogon
of the probability current density that the ratio of Ny and N_ equals

Ny o exp(2r7 (). (7.40)
N_
This expression shows that 8, which is determined by the SSPE, introduces an
imbalance between positive and negative cycle-slips, corresponding to unequal
heights of the potential barriers at both sides of the potential wells, as discussed
earlier.

With the aid Ny — N_, N4 /N_ and results obtained in [19], the total rate
of slipping cycles can then be expressed as

2Br o

N. N_ =
++ Co o

coth(w3)

k

exp(—27[3) exp (a/

-

g(x)dz) — 1’, (7.41)

where Cp denotes the normalization constant of the phase error PDF (7.26),
By, o equals the double sided noise bandwidth of the degenerated loop in (Hz),
and aq the corresponding SNR, given by (7.29).

For a loop with sinusoidal PD, the total cycle-slip rate, denoted by Ngin,tot,
(7.41) can be written, by combining the results from [19] and {35}, as

N tor = By o3 coth(nf3) (7.49)
sin,tot — . .
oo [ @) + 2550, (-1 e |

Although this expression looks quite intractable, the series in the denominator
converges quickly, and allows truncation after only a few terms. The Bessel-
functions I, () behave approximately exponentially. Consequently, when the
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SNR inside the loop, a, increases, the cycle-slip rate decays exponentially. For
small 8, Bcoth(rB) ~ [1+ (x8)?/3] /=, while for large 3, 8 coth(zxf) — |8|/x.
This shows that 8 = 0, i.e. a zero-valued SSPE, yields the smallest possible
cycle-slip rate.

Comparison between Cycle-Slip Rate and Click Rate

It is interesting to compare expression (7.42) with expression (5.12) for the
click rate in a conventional demodulator in the absence of modulation. For
this purpose, we take = 0, resulting in the smallest possible cycle-slip rate,
denoted by Ngin,min:

Brp

w2aplE(a)’ (7.43)

Nsin,min =

This result agrees with the cycle-slip rate for the first-order loop obtained in [16]
when a = ap. For high input CNRs, an asymptotic expansion may be applied
to the Bessel function in the denominator (44, 45]. If we further assume a
first-order loop, the result becomes

2By, W
Nsinmin I -2, Irr - 7.44
min > 2P exp |2 (2] (7.49)

For high input CNRs, expression (5.12) for the click rate becomes

rexp(—p)
V7P

Although both rates increase exponentially for decreasing CNRs, the cycle-
slip rate is seen to be related to the closed loop bandwidth, which is in the same
order of magnitude as the message bandwidth, while the click rate is related
to the FM transmission bandwidth. Consequently, the cycle-slip rate can be
considerably smaller than the click rate.

These “threshold extending” capabilities of phase feedback demodulators
are due to the fact that the phase feedback mechanism exploits the property of
wideband FM waves that the message bandwidth is considerably smaller than
the FM transmission bandwidth. A conventional demodulator does not exploit
this information; except for the baseband output filter, the entire demodulator
has a bandwidth that is (at least) equal to the FM transmission bandwidth.

Nk — (7.45)

7.4.7 Output SNR

This section combines the results of the linear and nonlinear noise analyses
to produce the threshold curves for phase feedback demodulators, which, as
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known, relate the output SNR to the input CNR. These curves are subsequently
compared to the threshold curve of a limiter-discriminator.

The calculations of the output SNR are limited to the case in which mod-
ulation is absent, where interaction between the FM message and the noise is
ignored. This restriction was applied in the nonlinear analysis in order to keep
the results tractable. Further, a first-order loop is assumed, which yields the
highest possible SNR and lowest possible threshold. The threshold curves for
phase feedback demodulators derived below therefore define an upper bound on
the threshold extension that can be achieved by means of phase feedback.

If, for simplicity, a sinusoidal phase detector nonlinearity is chosen, a proper
choice in practice (see Section 7.5), and the FM transmission bandwidth W,
is chosen according to Carson’s formula (2.8), the following expression for the
output SNR is obtained with the aid of the previously discussed results:

w2
3p (%) (5%)
1271)( —vv!‘,ﬂ) coth('yp-vvw")

o)y )

o m=l ()

SNR,, = , (7.46)

1+

where v = /a for small values of e, 7 & @ess, as obtained according to
the linear demodulator model. For large SSPEs however, the nonlinearity of
the PD transfer has to be included, such that v = sin e . The latter equality
follows from (7.39). The double-sided noise bandwidth By has been set to twice
the single-sided message bandwidth, By, = 2W/(27), by choosing a rectangular
post-loop filter with a bandwidth equal to the baseband. This yields the smallest
possible output noise level without attenuation of the signal by the filter.

The corresponding expression for the limiter-discriminator is given by

SNRrp = 3 (%2) (52)° : (7.47)
1+V3p (57)" [1 - erf (vP)]

The most apparent difference between both expressions is that the Bessel
functions in (7.46), which behave roughly exponentially, describe the threshold
behavior of the phase feedback demodulator in terms of the SNR in the loop
bandwidth (i.e. the baseband), while the error function in (7.47) describes the
threshold in terms of the input CNR in the FM bandwidth. This important
difference demonstrates the threshold extension capabilities of phase feedback
systems in the reception of wideband FM waves.

Figure 7.13 depicts both expressions for a system with Aw/W = 1 and
W, /W = 4. The curves of the phase feedback demodulator have been plotted
for several values of y. . For a negligible SSPE, the threshold is extended
by almost 10 dB. However, it should be remarked that this is a somewhat too
optimistic estimate. In practice, the modulation introduces a nonzero SSPE
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Figure 7.13: Threshold curves of a first-order phase feedback demodulator and a
limiter-discriminator (L-D), for several values of e ss.

and, even worse, a nonzero phase error rate (frequency error). As observed
from the figure, a nonzero SSPE dramatically reduces the threshold extension
achieved. Modulation may even increase the threshold to a level above the
limiter-discriminator threshold. When the error approaches the steady-state
lock-limit at v = 1, see equation (7.39), the threshold behavior becomes ex-
tremely “aggressive”, as clearly demonstrated by the steep decay at the thresh-
old of the curve for v = 0.9; here, a slight decrease of the input CNR results
in a dramatically reduced output SNR. In the latter case, the barriers in the
corresponding potential function Uy (¢.) have become only slightly larger than
the bottom level of the potential wells. A small amount of noise is therefore
able to introduce cycle-slips and eventually to unlock the loop.

Thus, from these numerical results we conclude that in order to maintain a
low cycle-slip rate, the SSPE, and probably also the dynamic phase error, should
be as low as possible, as should already be expected from intuitive reasoning.
This is the reason why a second-order loop appears to be a favorable choice in
practice; in such loops, the SSPE can generally be reduced to a very small value
by proper design of the loop filter.

7.5 Loop Design

The previous section showed that the phase detector nonlinearity and the struc-
ture of the loop filter have a profound influence on the nonlinear behavior of
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phase feedback demodulators in the threshold region. The implications of this
analysis on phase feedback demodulator design, supplied with some additional
results, are the subject of this section.

7.5.1 Phase Detector Design

The phase detector nonlinearity determines the shape of the wells and barriers
in the potential function Uy (@), and thereby to a large extent the cycle-slip
rate. In this section, we discuss the implications on the design of the phase
detector that follow from this potential function, and consider the behavior of
the detector nonlinearity g (y.) in the presence of noise.

Design Implications from the Potential Function

For a minimal cycle-slip rate, the wells in the potential function should be as
deep as possible, while the barriers should be as high as possible. Further,
asymmetry in the barriers, as introduced by steady-state phase errors, should
be prevented.

A maximum depth and height of the wells and barriers respectively is at-
tained when the restoring force h, (p.) is as large as possible for p. # 0. As
observed from (7.23), this implies that g (¢e) should become as large as possi-
ble for ¢, # 0. Further, in order to establish symmetric potential wells, g (i)
should possess odd-symmetry, centered around g(0) = 0.

In electronic systems, supply currents and voltages define an upper bound
on the magnitude of the PD output signal. With this in mind, one is lead to
the conclusion that, for a given PD constant Kg4, the ‘optimum’ phase detector
nonlinearity, as far as cycle-slipping is concerned, equals [19]

g (pe) = sgnfsine], (7.48)

realized for instance by a multiplier PD, followed by a hard-limiter, as depicted
in figure 7.14. Although such a phase detector is permissible in synchroniza-

—{xH{F}-

T

Figure 7.14: Theoretical optimal phase detector nonlinearity for minimization of the
cycle-slip rate.

tion/tracking loops of any order, including first-order, it cannot be applied in
first-order phase feedback demodulator loops. In a tracking loop, the square
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wave output of the phase detector is filtered by the oscillator before it becomes
available at the oscillator/loop output. In demodulator loops, however, the out-
put signal of the loop equals the oscillator input signal, and is therefore not
subjected to integration (low-pass filtering) by the oscillator. In a first-order
demodulator loop, the demodulator output would equal the ‘jittering’ square-
wave at the detector output, which is a heavily distorted copy of the message
signal. A post-loop filter cannot cannot eliminate all the undesired square wave
components, i.e. the ‘harmonics’, since some of them are located inside the mes-
sage bandwidth. This can only be achieved by a loop filter, present in second
and higher-order loops.

Transfer Degradation in Hard-Limiter Phase Detectors

It is well known that phase detectors constructed from hard-limiters suffer from
degradation in the presence of noise [7, 23, 24]. A brief explanation for the
origin of this effect and its implications on phase feedback demodulator design
is given below.

As discussed in Section 6.1.2, the presence of noise in the input signal of a
hard-limiter results in suppression of the signal component at its output; the
limiter occasionally adopts the ‘wrong’ output value, the one that does not
correspond to the input signal, but to the noise. As shown in that section,
this effect linearizes the limiter transfer from input signal component to output
signal component; the higher harmonics are subject to a larger decrease than
the fundamental.

In PDs constructed with hard-limiters, such as those with a triangular char-
acteristic, the linearization of the limiter transfer causes degeneration of the PD
nonlinearity, which becomes dependent on thé input CNR and approaches a
sinusoid at low CNRs. This effect is illustrated by figure 7.15. At high CNRs,
the harmonics of the limiter output contribute significantly to the PD trans-
fer. However, as the the CNR decreases, the harmonics vanish, leaving only
the contribution of the fundamental, similar to a multiplier PD with sinusoidal
nonlinearity.

The most important consequences of this PD degradation for demodulator
design are as follows.

Detector Gain As depicted in figure 7.15, not only the shape of the detec-
tor nonlinearity changes, but its gain, important for the linearized model, is
also reduced. Consequently, the DC loop gain is reduced at low CNRs, which
generally results in a decrease of the closed loop (noise) bandwidth. The loop
gain is the central parameter of any feedback system and that constitutes the
system operation. Proper operation of the system requires a sufficiently large
loop gain. It should therefore be expected that reduction the loop gain in phase
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detector output

Figure 7.15: Degradation of a triangular PD nonlinearity to a sinusoid for low CNRs
(calculated according to [23]).

feedback demodulators at low CNRs, due to degradation of the PD transfer,
generally results in deterioration of the performance, despite a reduction of the
closed-loop bandwidth. This reduction may result in the modulation limit {46]
being exceeded, resulting in loss of lock.

Input Noise n'(t) For high input CNRs, the expression for the noise source
n'(t) is the same for all types of PD nonlinearities. For low CNRs however,
the expression becomes dependent on the shape of the nonlinearity. In [23]
expressions for the power contained in n’(t) as a function of the input CNR are
calculated. Whereas the variance of n’(t) at the output of a multiplier detector
approaches infinity for decreasing CNRs, it saturates to the total (constant)
detector output power level in detectors with hard-limiters. Although it may
seem that this observation leads to the conclusion that limiter-phase detectors
yield a better performance at low CNRs, it should be strongly emphasized that
at the same time the DC loop gain and closed-loop bandwidth drop to zero.

Thus, in conclusion, it seems unfavorable to use hard-limiter phase detectors
in phase feedback demodulators intended for low CNRs, due to the significant
decrease of the DC loop gain, which will eventually cause the loop to lose lock.
A multiplier phase detector, with a sinusoidal nonlinearity, perhaps followed by
a hard-limiter, seems to be a good alternative.

7.5.2 Loop Filter Design

The design of the loop-filter in the demodulator has been one of the major
subjects in phase feedback demodulator research for decades. To a large extent,
this filter determines the steady-state phase error inside the loop, that may
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significantly increase the cycle-slip rate. The two main approaches encountered
in the literature are discussed separately below.

Information Theoretical Approach

From an information theoretical point of view, the loop filter Hi¢(s) is a pre-
diction filter that supplies the controlled oscillator with information concerning
the input wave’s phase-value that has to be expected in the near future. In
this interpretation, a phase feedback demodulator is considered as an approxi-
mate implementation of a theoretical optimum ‘backward’ or ‘recursive’ phase
estimator.

Starting from this approach, numerous authors have investigated the possi-
bilities of deriving the expressions for the optimum loop filter for various con-
ditions, such as noisy channels and Rayleigh fading channels [47-49]. Extensive
use is made of Wiener and Kalman-Bucy estimators to minimize some criterion
function, usually the Minimum Mean Square Estimate (MMSE) or Maximum A
Posteriori (MAP) estimate of the message. The result is often a rather complex
structure consisting of several nested feedback loops and feed-forward paths.
An example of such a system was discussed in Section 5.3, in conjunction with
co-channel interference suppression.

A shortcoming of this approach is that it starts from the linearized demod-
ulator model in order to keep the analysis tractable. For this reason, cycle-slips
cannot be taken into account, resulting in structures that operate far from op-
timally in the threshold region. For instance, it is concluded that the optimal
configuration for a second-order ioop to minimize the MMSE requires a damp-
ing factor of ¢ = 1/+/2 [48, 50]. As discussed previously, a cycle-slip analysis
of such loops concludes that the damping should be ¢ > 0.9 in order to avoid
cycle-slip bursts.

This shows that a non-adaptive configuration that behaves optimally for all
CNRs does not exist; an adaptive configuration might be able to attain the
optimal performance.

Fokker-Plack Approach

In the F-P approach, the information for the design of the loop filter is com-
pletely contained in the parameters o and 8, for which an approximate ex-
pression is given by (7.35) and (7.38) respectively. Below, we summarize the
conclusions that can be drawn from these expressions.

Noise Bandwidth It was observed in the previous section that the threshold
behavior is described in terms of the input CNR that is observed within the
closed loop bandwidth. For high values of this CNR, a, and 3 both attain
large values, resulting in a narrow phase error PDF and consequently also a low
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cycle-slip rate. The closed-loop bandwidth should therefore not be wider than
strictly necessary to track the signal properly. Requirements on the bandwidth
set forward on the modulation are considered in [46, 51].

Steady-State Phase Error The SSPE is the cause of asymmetry in the
phase error PDF, resulting in an increased cycle-slip rate. This error should
therefore be made as small as possible, which for a given input signal (an offset
frequency §p) can be achieved only by maximization of the DC loop gain. As is
well known, a high loop gain in a first-order loop automatically means a large
noise bandwidth, which is definitely undesirable.

Order of the Loop Filter As observed from expression (7.35), the poles
of the loop filter generally decrease the value of the parameter o, which for
higher order loops may be viewed as the ‘effective’ SNR in the closed loop
bandwidth. This observation is in accordance with the literature, where it is
noted that the first-order loop (with zero SSPE) achieves the lowest possible
cycle-slip rate {7, 16-20]. This conclusion follows from the observation that the
sum of the quotients Hy /7y in (7.35) is always positive and therefore reduces
the value of a. In fact, (7.35) states that the order of the loop filter should not
be made larger than strictly necessary. Thus, higher order loops should only be
used when there is a good reason to do so, e.g. in order to minimize the SSPE.

Position of the Open Loop Poles As implied by (7.35), the influence of
the loop filter poles on « is small as long as

H;,

— &« BLH 7.49

e <« B H, (7.49)
where Hjy denotes the frequency-independent component (direct feed-through)
of the loop filter, and By, the double-sided noise bandwidth. This indicates that
when a high loop gain is required, corresponding to a large value of Hy, the time
constant 73 should also possess a large value. The resulting loop filter therefore
tends towards an ‘ideal’ integrator, of which the integration time constant is
considerably larger than 1/(Bg Hp).

Direct Feed-through The direct feed-through Hp is a means to introduce
zeros into the closed loop transfer, often required to stabilize the loop. As far as
the cycle-slip rates are concerned, Hy is subject to conflicting requirements. On
the one hand, it is desirable to maximize the parameter ¢g, which, as opposed
to «, denotes the SNR in the degenerated, first-order loop, since both a and 8
are proportional to it. To achieve this, Hy should be as small as possible. On
the other hand, a small value of Hy means a large influence of higher order poles
on a. According to (7.35), a can be maximized to obtain the optimum value of
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Hy, where the dependence of ap and the noise bandwidth By, should be taken
into account. Lindsey’s analysis [19] for a second-order loop with Hy = 0, i.e.
a “modified first-order loop” [7], and a zero SSPE implies that such systems
are rather unfavorable. It is found that a equals twice the CNR in the noise
bandwidth, just as in a first-order loop. Moreover, since the noise bandwidth
and SSPE are coupled in the same (highly undesirable) way as in the first-
order loop, these systems do not seem to have any advantages compared with a
first-order loop.

Position of the Closed Loop Poles The pole positions of the closed loop
determine whether cycle-slip bursts occur or not. According to [26], a closed-
loop transfer with only real poles seems to be suitable, at least in second order
systems.

Based on the foregoing discussion, a second-order loop with an ideal integra-
tor parallel to a direct feed-through with a closed-loop damping of about one
seems to be close to optimum. However, it should be noted that this is entirely
based on a static analysis of the system. Insight into the behavior in the presence
of modulation should be attained by a more advanced (F-PE) approach.

7.6 Conclusions

This chapter investigated the behavior of phase feedback demodulators in the

adn
presence of noise. A comparison with non-feedback demodulators was made.

It was shown that, similar to non-feedback, “conventional”, demodulators
the output noise of phase feedback demodulators consists of a continuous noise
component and an impulsive component. The spectrum of the continuous noise
component, which determines the output SNR above the threshold, is paraboli-
cally shaped by the demodulator. It was shown that this output SNR equals the
maximum possible SNR, obtained in conventional demodulators by application
of infinite amplitude compression.

The threshold behavior is determined by cycle-slip noise, which has many
similarities with click noise in conventional receivers. Similar to click noise,
cycle-slip noise consists of impulses with area 27, that are generated whenever
the local oscillator slips/skips a cycle with respect to the input wave. However,
as opposed to clicks, cycle-slips may become dependent on each other, resulting
in very unpleasant cycle-slip bursts. These bursts generally occur when the
closed-loop transfer contains (undamped) complex poles.

The cycle-slip rate is usually significantly lower than the click rate in conven-
tional receivers. Consequently, the threshold of phase feedback demodulators
occurs at a lower CNR than the threshold of conventional demodulators. This is
due to the observation that the cycle-slip rate is determined by the input CNR
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inside the loop bandwidth, which approximately equals the message bandwidth,
while the click rate is determined by the FM transmission bandwidth.

A nonlinear analysis by means of Fokker-Planck techniques showed that the
cycle-slip rate is strongly dependent on the shape of the nonlinear phase-detector
transfer and the transfer of the loop filter.

The transfer of the phase detector should be anti-symmetric with respect
to a zero-valued phase error. Its output signal for nonzero valued phase errors
should be as large as possible in order to drive the error back to zero. At
low CNRs, phase detectors containing hard-limiters at their input are generally
unfavorable to multiplier phase detectors with a sinusoidal nonlinearity due to
degeneration of their transfer. This degeneration reduces the detector gain, and
thereby the loop bandwidth, and eventually causes loss of lock.

The loop-filter should be designed to minimize the steady-state phase error,
which implies the use of an ideal integrator. This steady-state phase error signif-
icantly increases the cycle-slip rate, and may result in an extremely ‘aggressive’
threshold behavior, corresponding to a steep decay of the output SNR below
the threshold. The message modulation, which was not included in the analy-
sis, is believed to cause similar deterioration of the threshold. Further, a direct
feed-through that introduces a zero into the loop filter transfer is advantageous
for the cycle-slip rate. The order of the loop filter should not be larger than
strictly necessary, while the closed loop bandwidth should not be larger than is
required to accommodate the modulation.
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Chapter 8

Frequency Feedback

As opposed to phase feedback, discussed in Chapter 7, frequency feedback is
not associated with a particular class of FM demodulators, but applies to any
FM demodulator type. Therefore, it should be considered as an improvement
technique, like amplitude compression, instead of the demodulation principle of
a particular FM demodulator class. It is for this reason that frequency feedback
(FFB) demodulators are not included in the classification of Chapter 3.

Originally, Chaffee {1, 2] introduced the application of negative frequency
feedback to FM discriminators (without limiters) to achieve distortion reduc-
tion. The threshold extending capabilities of frequency feedback applied to
FM limiter-discriminators, as qualitatively discussed in Section 5.7.1, were not
recognized until the 1960’s [3-5]. This discovery initiated their widespread ap-
plication to such areas as reception of signals from spacecraft, satellites [6, 7],
and FM broadcast reception in cars [8].

However, despite their widespread use, and the recognition of their capa-
bilities to reduce distortion/extend the threshold, the threshold mechanism
itself is still not very well understood. As opposed to ‘conventional’ limiter-
discriminators and, to some extent, phase feedback demodulators, the modeling
of this threshold mechanism is based on linear approximations that hold, at
most, only down to a few dB below the threshold. This may probably be at-
tributed to the complicated structure of such systems, containing an IF filter
and an FM limiter-discriminator inside the feedback loop.

This chapter compares the threshold behavior of FFB demodulators to the
response of conventional and phase feedback demodulators, by the combination
and application of slight modifications of theories known from the literature.

Section 8.1 discusses a model for these demodulators that is subsequently
used in the description of the demodulator response above and around the
threshold, as discussed in sections 8.2 and 8.3 respectively. An example cal-
culation of the FMFB threshold curve is discussed in Section 8.4, and compared

295



296 Chapter 8. Frequency Feedback

to the threshold behavior of conventional demodulators and phase feedback de-
modulators in Section 8.5. Section 8.6 considers the design of FMFB systems.
The conclusions are given in Section 8.7.

8.1 Frequency Feedback Demodulator Model

The various methods known in the literature for the analysis of the FFB demod-
ulator output noise above and around the threshold all use the same low-pass
equivalent demodulator model, similar to the model used to describe phase
feedback demodulators (see Chapter 7).

A brief discussion of the two types of FFB demodulators that can be dis-
tinguished, Frequency Modulation Feedback Receivers (FMFB) and Dynamic
Tracking Filters (DTF), is given in Section 8.1.1. Subsequently, Section 8.1.2
describes the structure of their low-pass equivalent model and its relation to the
original systems.

8.1.1 Types of Frequency Feedback Demodulators
The two different types of I'I'B demodulators that can be distinguished are
schematically depicted in figure 8.1 and 8.2. Both systems consist of an IF

FM-
IF filter limiter demodulator

input I I () =51+ n,(0) l - '_>
(1) = s(t) + n(@) X e ¢ € /N 4 - Hy (o) output
[

- o)
controllable st-loop
oscillator filter

Figure 8.1: Block diagram of a Frequency Feedback Receiver (FMFB).

tunable FM- post-loop
IF filter limiter demodulator filter

input—sl / "\ o -+ e Hpy(jo) [ output

H(w)
loop-filter

Figure 8.2: Block diagram of a Dynamic Tracking Filter (DTF).

filter, a limiter and an FM discriminator, together enclosed by a feedback loop.




8.1. Frequency Feedback Demodulator Model 297

The construction of this feedback loop however is different.

In FMFBs, sometimes called “Frequency Locked Loops” (FLL), the feedback
is established by means of a controlled oscillator (FM modulator) in the feedback
path and a frequency subtracter, commonly implemented by a down-conversion
mixer. The instantaneous frequency of the discriminator input wave in this
system equals the difference between the instantaneous frequency of the input
FM wave, and the oscillator output wave, as discussed in Section 5.7.1. The
filter H (jw) is a low-pass filter that eliminates high frequency (noise) components
from the discriminator output signal.

In DTFs, the feedback loop is established by adaptive control of the IF
filter sections with the aid of the FM discriminator output signal. This control
loop is arranged such that the center-frequency of the IF filter (partially) tracks
the center-frequency of the input FM wave. As discussed in Section 5.7.2, the
behavior of these systems is similar to FMFBs.

The main difference between FMFBs and DTFs, as far as demodulator de-
sign is concerned, is that the DTF structure leaves more degrees of freedom to
optimize its performance than an FMFB [8], and does not require a controlled
oscillator. In a DTF system, the closed loop transfer can be optimized by the
application of several feedback loops, whereas FMFBs cannot be optimized in
this way. An exception to this made is possible by the application of multiple
controlled oscillators and frequency subtracters in order to realize several feed-
back loops, but this solution is considered to be rather impractical in comparison
with a multi-loop DTF.

8.1.2 Low-pass Equivalent Model

The FMFB and DTF can both be described by the same low-pass equivalent
model, depicted in figure 8.3 [3, 7-11]. According to [7, 8, 10], identical models

mixer L.P.eq. limiter + post-loop
model of IF-filter FM-demodulator filter
o) +0(t eorem TeGw) K jo Hy (o) —*

L H(jw)

=2 | [&)
QLN + 6,1 )

oscillator loop-filter
model

Figure 8.3: Low-pass equivalent model of FMFB and DTF systems.

for an FMFB and DTF with a single feedback loop are obtained when the
FMFB IF filter, denoted by Hir rmrB(jw), and the DTF IF filter, denoted by
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Hyr prr(jw), obey the relation

Hip pmrB(jw)
1 + Hyr pmrB(jw)

Hir p1F (jw) = (8.1)
Since most system models described in the literature are concerned with the
FMFB system, the remainder of this chapter assumes that we are also dealing
with an FMFB systems, although there are no fundamental differences with a
single loop DTF. Multi-loop DTFs are not considered in this thesis.

Relation with the Original System

Figure 8.3 depicts the low-pass equivalent model of the FMFB system depicted
in figure 8.1. The relation between the various sub-systems in both schematics
is as follows. Let the center-frequency of the FM input wave s(t) be represented
by w, and the message part of its instantaneous phase by ¢(¢). Further, let the
center-frequency of the oscillatoe output wave s;(t) be represented by wjand the
message part of its phase by ¢;(t).

The model implicitly assumes that only spectral components centered around
the difference frequency w, = w, — w; are passed by the IF filter in the loop.
All other components, corresponding to other linear combinations of w, and
wi, are assumed to be suppressed. Therefore the center-frequency and message
phase of the wave s.(t) at the IF filter input inside the loop may be represented
by we = wo —wy and @(t) = @o(t) — @i (t) respectively, omitting any other
components.

From the discussion in Section 5.2 it follows that as long as negligible dis-
tortion is introduced, the IF filter linearly filters the message phase ¢, (t) with
its low-pass equivalent transfer I'tr (jw), as depicted in figure 8.3. When distor-
tion is introduced, I'ip (jw) is supplied with additional terms that are a function
of the spectrum/frequency deviation of the phase/frequency modulation . (t).
The the case where @, (t) is represented by Gaussian noise is considered in {12]
(see also Section 5.2), while the distortion in case of single tone modulation in
considered in [11].

Further, the operation of the ideal assumed FM limiter-discriminator is rep-
resented by a differentiator with gain K4 and the controlled oscillator/FM mod-
ulator by an integrator with gain K,. Only discriminators preceded by a hard-
limiter (infinite compression) are considered in this chapter. The down con-
version mixer is represented by a subtracter. Obviously, the filters H(jw) and
Hp1(jw) appear unchanged in the low-pass equivalent model.

Loop Transfers

Three transfers inside this loop are of interest in subsequent sections of this
chapter. These are the closed loop transfer from input phase ®(w) to the oscil-




8.2. Response Above Threshold 299

lator output phase ®;(w) given by

(W) def . .\ KoKl (jw)H(jw)
30~ H09) = TR Kl (o) HOD) (8.2)

the transfer from ®(w) to the phase of the wave at the mixer output, ®.(w),
given by

Do (W) def .\ _ 1
d(w) He(w) = 1+ KoKl (jw) H (jw)’

(8.3)

and the demodulator transfer from input frequency jw®(w) to the demodulator
output Ygem(w), given by
Yiem (w) def . Kal'tr (jw) Hp (jw)
——— = Hdem (.]w) = . -
jwd(w) 1+ KoKal'r (jw) H (jw)

(8.4)

This model, with the optional inclusion of the distortion produced by the IF
filter, is used in the determination of the demodulator output noise considered
in subsequent sections.

8.2 Response Above Threshold

This section considers the output noise of an FMFB receiver above its thresh-
old. It is shown that although the output SNR above threshold is identical to
the SNR obtained with a comparable conventional discriminator, the threshold
may be considerably extended. An upper bound on the attainable threshold
extension is derived that follows from the above threshold model.

Section 8.2.1 shows that above threshold the same output SNR is obtained as
with a limiter-discriminator. Section 8.2.2 determines the upper bound on the
threshold extension that follows from the above threshold demodulator model.

8.2.1 Output SNR above Threshold

This section determines the output SNR of FMFB receivers above threshold
and shows that frequency feedback does not affect the above-threshold SNR.
The low-pass equivalent model of figure 8.3, required for this investigation,
applies some (justifiable) approximations to the mixer output wave r(t) =
8¢(t) +ne(t) (see figure 8.1). In order to clarify the discussion, these approxima-
tions need to be considered first. Subsequently, the output SNR. is considered.
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Approximations Applied by the Low-pass Equivalent Model

The approximations applied by the low-pass equivalent model can be explained
with the aid of an expression for the mixer output signal r.(¢), obtained from
figure 8.1. This expression is obtained as follows.

Without loss of generality, a unity mixer conversion gain may be assumed.
This value is established in the models by assigning the oscillator output wave
s1(t) an amplitude equal to v/2. In case of other values the conversion gain may
be included in the IF filter transfer or the demodulator constant Kj.

It is quite obvious that a suitable expression for r.(t) is most easily obtained
by writing the noisy FM input wave s(t) + n(t) in polar coordinates, as the
amplitude and phase modulated wave r(t) from (2.15). The mixer in figure 8.1
multiplies this wave with the oscillator output s;(t). It should be noticed that
since s;(t) is the FM wave that corresponds to the (noisy) baseband FM discrim-
inator output signal, its instantaneous frequency generally contains a message
component ¢;(t) and a phase noise component 8;(t). With this in mind, the
wave 7.(t), the addition of the noise free FM wave s.(t) and the noise n.(t),
may be expressed by omission of all components that are not centered around
We = Wy — Wy, aS

re(t) = r(t)si(t)
= V2R(t) cos [wot + p(t) + 8(t)] cos [wit + i (t) + 6 (2)] (8.5)
= R(t) cos [wet + e (t) + 0.(2)] -

In this expression, the signal component of the phase equals ¢, (t) = ¢(t) — (1)
and the phase noise component equals 8. (t) = 6(t) —;(t). Above threshold, the
low-pass equivalent model applies the following' approximations to (8.5).

In the first place, because it is assumed that the FM limiter-discriminator
in figure 8.1 operates above its threshold, which is true for high input CNRs,
it is assumed that no click noise is generated and all noise processes inside the
system behave Gaussian.

Secondly, it is assumed that AM-to-PM conversion of the amplitude noise
contained in R(t), introduced by the IF filter, is negligible. At the current
level of our considerations, this is usually permissible since such conversions are
mostly due to dynamic nonlinearities in the (non-ideal) IF filter. Therefore, the
amplitude noise in R(t) can be ignored, since it is eventually, after IF filtering,
eliminated by the hard-limiter.

Thirdly, the phase noise 8.(t) is assumed to be small compared to the signal
phase . (t), which is true for high input CNRs. In that case, the bandwidth
of r.(t) is determined by the message modulation ¢.(t) only. The IF filter
bandwidth is dimensioned such that negligible distortion is introduced into the
limiter-discriminator input by narrow-band filtering. At low CNRs, however,
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such distortion will eventually become apparent due to an increased level of the
phase noise 6.(t). The consequences of this effect are considered in Section 8.3.

Calculation of the Output SNR

It becomes clear from figure 8.3 that as long as the receiver operates above
threshold, the input message phase ¢(t) and the phase noise #(t) are treated
in the same way. This already indicates that the same output SNR has to be
expected as in the case of a conventional limiter-discriminator.

Calculation of the SNR yields the same conclusion. From figure 8.1 it is
observed that when the demodulator transfer Hgem(jw) (8.4) is flat for base-
band frequencies, and the post-loop filter Hp(jw) is rectangular with band-
width W, the output SNR becomes equal to the SNR of the instantaneous
frequency ¢(t) + 0(t) = ¢(t) + ns,4(t)/A in a bandwidth W. This SNR is given
by (2.21). Consequently, frequency feedback does not affect the output SNR
above the threshold, but only the distortion (dynamic range) and the position
of the threshold.

8.2.2 Upper Bound on the Threshold Extension

Whereas the demodulator output noise above the threshold is entirely deter-
mined by the quadrature noise component n,4(t), which is the dominant con-
tribution to the phase noise of the input FM wave, the output noise around
and below the threshold is also determined by the in-phase component n, ;(t),
which dominates the amplitude noise. The latter component is responsible for
the generation of click noise at the output of the limiter-discriminator inside the
loop, and therefore initiates the FMFB threshold.

This section determines an upper bound on the threshold extension at-
tainable with frequency feedback that follows from the description of the de-
modulator above the threshold. We first discuss the “frequency compression”
mechanism that constitutes the extension, and subsequently the resulting upper
bound. In this respect, it is shown that the FMFB responds differently to the
quadrature noise (phase noise) n, 4(t) and the in-phase noise (amplitude noise)
ns,i(t): nsq(t) is suppressed, while ng ;(t) is not compressed. Finally, compar-
ison of the FMFB threshold curve with related limiter-discriminator threshold
curves explains the origin of the upper bound on the threshold extension.

Frequency Compression

Above the threshold, the frequency compression mechanism inside the loop re-
duces the wideband FM input wave s(t) to the narrow-band wave s.(t), while
it leaves the bandwidth of the wideband input noise n(t), which is converted to
ne(t), essentially unchanged. The reason for this behavior is that since at high
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CNRs the message phase ¢;(t) is much larger than the phase noise 6;(t), the
FM wave s(t) is strongly correlated with s;(¢), while the noise n(t) is hardly
correlated with it.

Therefore, by application of narrow-band filtering to s.(t) + n.(t), the CNR
at the input of the limiter-discriminator inside the loop can become significantly
larger than the receiver input CNR, without introduction of excessive distor-
tion. In such a system, the threshold CNR of the discriminator inside the loop
corresponds to a (significantly) smaller receiver input CNR, which means that
the threshold of the closed-loop system is “extended”.

The reduced bandwidth of the FM wave s.(t) can be explained from the
low-pass equivalent demodulator model as follows. The key to the bandwidth
compression mechanism is the transfer H,(jw), given by (8.3). This transfer
relates the instantaneous phase of s(¢) to the instantaneous phase of s.(t). If,
for simplicity, it is assumed that H,(jw) is flat over the frequency range of
interest, the angle modulation in s(t), i.e. ¢(t), is compressed as

o(t) _ e
1+ K3K, ' (0)H(0) 1+ F,’

0e(t) = (8.6)

where F, denotes the DC loop gain. As a result, the RMS frequency deviation
of s(t) is also reduced by 1 + F,. According to Carson’s bandwidth formula
(2.8), the bandwidth of s.(t) is also reduced in proportion. The smallest possible
bandwidth, attained when the loop gain approaches infinity, equals twice the
message bandwidth, i.e. 2W.

ML . cloneann ~f Lo Tl il (s snsvmcmias 13 {4\ nnae kn ad +h il
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aid of expression (8.5) for r.(t) = se(t) + n.(t). Above the threshold, 6(¢)
approximately equals n, 4(t)/A, and, due to the frequency compression, 6.(t)
approximately equals n, 4(t)/[(1 + F,) A]. Thus, whereas frequency compres-
sion reduces the bandwidth of the FM wave s(t), it reduces only the magnitude
of the quadrature noise n, 4(t). A first order approximation of r.(t), valid at
high CNRs, may then be written as

Te(t) = se(t) + ne(t)
~ A cos [wet + pe(t)] (8.7)

+ 1 i (t) cos [wet + @e(t)] — sm [wet + @e(t)] -

Ns q( )
_+.

Expression (8.7) shows that the loop compresses the quadrature noise, which
represents the phase noise above threshold, while the in-phase noise, which
represents the amplitude noise in R(#), is not affected. Thus, as stated in the
introduction of this section, the FMFB response to the in-phase noise differs
considerably from its response to the quadrature noise. The latter effect is
due to the absence of an amplitude feedback loop in the system; the oscillator
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modulates only the frequency of s;(¢), and not the amplitude. Furthermore, the
amplitude noise is suppressed by the limiter. The (double-sided) bandwidth of
ns,i(t) and ng 4(t) roughly equals W, the bandwidth of the input FM wave s(t).
Consequently, the bandwidth of n.(t) will be in the order of W, too.

Threshold Extension

In order to realize the largest possible threshold extension, the IF filter should
be dimensioned such that the the narrow-band FM wave s.(t) just fits within
its pass band, as illustrated by figure 8.4. Thus, by virtue of this filter, the

wide-band narrow-band spectrum s5,()
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Figure 8.4: Improvement of the limiter-discriminator input CNR by narrow band
filtering. (a) spectrum of the receiver input signal s(t) + n(t), (b) spectrum of the
compressed IF filter input signal s.(t) + n.(t).

discriminator input noise power is reduced, while the input FM carrier power
remains unaffected.

When the (double-sided) noise bandwidth of the IF filter inside the loop is
denoted by Wy, 1r in (rad/s), the FMFB receiver mazimum threshold extension
that can be achieved equals the factor

redef 1 / ~ 80 (w)dw (8.8)

' WrLirSn(0) J_ oo " ’ '
equal to the ratio of the noise bandwidth of n(t), and the IF filter noise band-
width Wy, 1p. The CNR at the input of the FM discriminator inside the loop is
therefore at most ['jq times as large as the receiver input CNR. The threshold
of the discriminator, which is determined by the in-phase noise at the IF filter
output [11], is therefore reduced at most by the same factor.

Comparison with Limiter-Discriminators

It is illustrative to compare the threshold curve of the FMFB receiver with the
corresponding curves of two limiter-discriminators, as depicted in figure 8.5 [11].
Curve (a) corresponds to the wideband limiter-discriminator (LD), required for
demodulation of s(t) + n(t) without feedback. Above threshold, its output
SNR is identical to the FMFB output SNR, given by curve (d), as shown in
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Figure 8.5: Comparison of the FMFB output SNR with two limiter discriminators.
(a) wideband limiter-discriminator, (b) narrow-band limiter-discriminator (¢) ideal
FMFB curve (ignoring feedback noise), (d) actual FMFB curve.

Section 8.2.1. The threshold CNR of the wideband LD, however, is higher than
the threshold CNR of the FMFB receiver.

Curve (b) corresponds to the narrow-band limiter-discriminator, required
for demodulation of the compressed wave s.(t) + n.(t) without feedback. Above
threshold, its output SNR is roughly 20log[1 + F,,] dB smaller than the SNR of
the FMFB receiver since the output signal power is proportional to the squared
frequency deviation (Aw)?, while the output noise power in the baseband is
independent of Aw. The threshold of this discriminator equals the lower bound
on the FMFB receiver threshold, given by curve (c), attained when the feedback
noise is negligible. This is due to the fact that the level of the in-phase noise
component at the discriminator input that determines the threshold is the same
in both systems.

Curve (d) shows the actual behavior of the FMFB receiver. As a result
of feedback noise, its threshold is generally located at a larger CNR than the
threshold of an ‘ideal’ FMFB, given by curve (c). The actual threshold gain
that is achieved by frequency feedback is represented by the distance I'yet in
figure 8.5, the difference between the threshold in (a) and (d). The previously
discussed upper bound on the threshold extension I'ig, equals the difference
between the thresholds in (a) and (b), or, equivalently, (a) and (c).
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8.3 Response in the Threshold Region

The threshold mechanism in FMFB receivers is not yet modeled as elegantly as
the threshold mechanism in limiter-discriminators and, to some extent, phase
feedback demodulators. Since the early 1960’s, a vast amount of literature
on the subject, see [3, 7, 9-11, 13-23], has resulted in a variety of sometimes
almost fantastic theories. None of them, however, seems to put all the missing
parts in place. Most theories suffer from a lack of generality, even the most
extended ones. They are somehow based on experimental data, without proof
of its validity in practically relevant cases.

By most relevant publications, the threshold effect in FMFB receivers is
attributed to one, or a combination of the following three mechanisms that each
result in a nonlinear response to noise at low CNRs:

e the threshold of the limiter-discriminator inside the loop;
o feedback of phase noise (feedback noise);
e suppression of the FM wave by the IF filter.

An important difference between the various theories is that some of them con-
sider these mechanisms to be completely independent, while others consider
these mechanisms to be mutually coupled. For example, Enloe [3] attributes
the FMFB threshold to the limiter-discriminator threshold and the feedback
noise, which he considers to be completely independent mechanisms. Bax [11],
however, attributes the FMFB threshold to a combination of all three mech-
anisms and considers them to be mutually coupled. In subsequent sections,
Bax’ theory is adopted as the basis for the discussion on the FMFB threshold
behavior.

This section investigates the threshold mechanisms in FMFB receivers by
the combination and modification of several of the most important theories
known so far. Subsequently, the FMFB threshold response is compared to the
limiter-discriminator threshold response.

Sections 8.3.1 through 8.3.3 investigate the relation between the three previ-
ously mentioned mechanisms and the FMFB threshold response, and comment
on the validity of the theories that propose that they are the dominant FMFB
threshold mechanism. Subsequently, sections 8.3.4 through 8.3.6 combine these
mechanism to form an FMFB threshold model.

8.3.1 Limiter-Discriminator Threshold

There is no in among any of the FMFB threshold theories that the limiter-
discriminator threshold is the main cause of the FMFB threshold. This thresh-
old mechanism, that is already present in the absence of feedback, is inherent
to application of infinite compression to the discriminator input wave.
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Frequency feedback cannot eliminate the limiter-discriminator threshold, but
at most achieve a shift of the threshold to a lower CNR by compression of the
FM bandwidth. Depending on the bandwidth of the IF filter, the threshold
can at most be extended by a factor I'iq (curve (c) in figure 8.5). In practice,
however, a smaller extension is achieved due to the presence of other nonlinear
effects in the loop.

Frutiger [9], attributes the FMFB threshold entirely to the limiter-discriminator
threshold. He applies Rice’s theory [24] for the limiter-discriminator to distin-
guish between continuous noise and click noise. The small continuous noise is
supposed to be compressed by the feedback in the loop, as described in Sec-
tion 8.2. Click noise, however, is believed to cause a temporary interruption
of the feedback and is consequently not compressed. The FMFB threshold oc-
curs when both noise components are of comparable strength. The threshold
level obtained in this way is indeed larger than the ideal FMFB threshold of
curve (c) in figure 8.5, and smaller than the wideband LD threshold of curve
(a). However, although it is clear that click noise will eventually break the loop,
there doesn’t seem to be any reason why it would break at every click pulse.
Experiments [11] indicate that clicks are fed-back by the loop, which contradicts
Frutiger’s view. Therefore, we will not adhere to his theory.

Roberts {7, 10}, also entirely attributes the FMFB threshold to the limiter-
discriminator threshold and applies Rice’s theory to distinguish between a con-
tinuous and a click noise component. In contrast to Frutiger, however, he as-
sumes that click noise is compressed by the feedback in the loop. Besides some
(negligible) distortion introduced by the IF filter, he disregards any other non-
linear effects. Consequently, although not explicitly stated that way, his theory
arrives at the ideal FMFB threshold of curve (c), which is too optimistic. This
optimism is also observed from his experimental results, depicted in figure 10
of [7].

8.3.2 Feedback Noise

It seems probable that the difference between the FMFB threshold (curve (d)
in figure 8.5) and the threshold of the “open-loop” discriminator (curve (b)
in figure 8.5) finds its origin in the feedback mechanism of the loop. Above
threshold, this same feedback mechanism is responsible for the difference in
output SNR between the narrow-band LD of curve (b), and the ideal/actual
FMFB threshold curves (c) and (d) in figure 8.5.

In an early paper, Enloe [3] adopts the view that besides the limiter-discriminator
threshold, feedback noise also determines the FMFB threshold. Both these
mechanisms are believed to introduce two separate thresholds; a limiter-discriminator
threshold and a “feedback threshold”.

The rather fantastic explanation given for the second threshold mechanism
is generally considered to be wrong [7, 10, 11, 18]. Enloe states that due to
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the input mixer second order noise products between the phase noise in the
oscillator and the input noise n(t) become dominant at low CNRs and finally
break the feedback loop at the “feedback threshold”. This threshold would occur
when the RMS phase deviation of the oscillator, as a result of the noise, exceeds
the “magic number” 1/3.11 (rad). It has been pointed out that his conclusions
are based on a series expansion that is definitely invalid at low CNRs [11, 18):
the feedback noise is too weak to introduce the FMFB threshold independently
from other mechanisms. In the remainder of this chapter, we will therefore not
adhere to this theory.

Bax [11] notices the influence of feedback noise, but he disagrees with Enloe’s
feedback threshold. In his theory, the interaction between the feedback noise
and the narrow-band IF filtering increases the limiter-discriminator threshold,
as discussed in the next section. Although slightly modified, Bax’ theory is used
as the basis for the FMFB threshold model discussed in subsequent sections.

8.3.3 Carrier Suppression by the IF Filter

The influence of nonlinear effects introduced by narrow-band IF filtering are
ignored, or considered to be negligible by the vast majority of the FM threshold
theories. Usually, the distortion introduced into the message by IF filtering is
included in the model. However, since the feedback loop reduces the distortion,
its influence on the FMFB threshold is usually negligible.

Besides this distortion, Bax’s theory [11] recognizes another effect introduced
by the IF filter: suppression of the FM carrier wave. This effect is considered
to occur as a result of the phase noise 6,(¢) present in the oscillator output
wave s;(t). As observed experimentally [5, 11], the level of this noise increases
significantly at low CNRs, partially due to click noise. As a result of the mixing
operation, the RMS phase/frequency deviation of s.(t) = s(t)s:(t) at the IF
filter input, and according to Carson’s formula also its bandwidth, is increased.
This eventually results in suppression of the FM wave, as explained below.

Figure 8.6 illustrates the suppression mechanism. The quasi-stationary ap-
proach, i.e.; the “moving finger” model, is used to model the spectral density of
the FM wave s.(t) at the IF filter input.

As a result of the message modulation ¢.(t), s.(t) moves along the pass
band of the IF filter. At low CNRs, the intensity of this modulation is increased
by the frequency noise 6;(t), fed back from the discriminator output by the
oscillator. As a result of this noise, the modulation contained in s, (t) is increased
such that it occasionally drives the wave out of the IF filter pass band (see
figure 8.6). During such an event, the FM wave is suppressed considerably,
while the wideband noise 1, (¢) remains essentially unaffected. Consequently, the
limiter-discriminator input CNR drops significantly, and may cause operation
below its threshold.
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Figure 8.6: Suppression of the FM wave by the IF filter, as a result of phase noise
in the oscillator output signal.

Based on experiments, Bax decides that the FMFB threshold occurs when
the discriminator is driven below its threshold for 5 — 8% of the time, which
corresponds to a certain relation between the RMS frequency deviation of the
oscillator output wave and the input CNR.

Although many of the details of this theory, especially the 5 — 8% conclu-
sion are not explicitly adopted in this chapter, its principles are elaborated in
subsequent sections.

8.3.4 Model of the Limiter-Discriminator Input Noise

This section starts the derivation of a model for the FMFB receiver threshold.
Based on the theory developed in [11] that attributed the threshold to a combi-
nation of the limiter-discriminator threshold and carrier suppression by the IF
filter, the model combines the previous threshold mechanisms in order to arrive
at a model that does not contain experimentally-determined parameters.

The input CNR of the limiter-discriminator inside the loop is a key pa-
rameter in the threshold model, since it determines whether the discriminator
operates above or below its threshold. As a first step in the determination
of this CNR, this section derives a description for the noise observed at the
limiter-discriminator input in terms of the receiver input noise n(t). Subse-
quently, Section 8.3.5 derives an expression for the FM wave observed at this
point inside the loop.

The calculation of the limiter-discriminator input noise consists of two steps.
First, an expression for the mixer output noise is determined in order to obtain
the limiter-discriminator input CNR, denoted by pg. Subsequently, application
of IF filtering is considered.
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Mixer Output Noise

The mixer response to the input noise n(t), denoted by n,(t), is readily obtained
as

n.(t) = n(t)si(t)
= ng;(t) cos [wet + pe(t) — Oi(2)] (8.9)
— ng 4(t) sin [wet + pe(t) — O (2)] .

This product may be viewed as the mixer output noise component, although
it should be noted that the corresponding “signal component” s/ (t) = s(t)s;(t)
also contains noise by virtue of the phase noise 6;(t). The latter, however, is the
response of the loop to the noise “source” n(t) that after shifting through the
mixer becomes n.(t).

Note that (8.9) is written in terms of the input noise component n ;(t) that
is in-phase with s, (t), and n,,4(t) that is in quadrature with s¢(t).

IF Filter Output Noise

The noise at the limiter-discriminator input, denoted by ng4(t), is the IF filter
response to the mixer output noise n,(t). A difficulty in the determination of
nq(t) is the presence of the phase noise 6;(t) that introduces correlation between
the amplitude and phase of n.(¢).

Fortunately, since the bandwidth of the phase noise 6;(t) determined by
the loop is much smaller than the bandwidth of the input noise n(¢) (and the
bandwidth of 1, ;(t), ns 4(¢)), its influence on the spectrum of n.(t) is essentially
negligible, at least as far as the fraction located within the pass band of the
narrow-band IF filter is concerned. A similar observation was used in Chapter 6
to disregard the modulation of the noise by the message signal. In Chapter 7,
the same observation allowed the modulation introduced into the noise n'(t) at
the phase detector output by the controllable oscillator to be ignored.

Therefore, in virtually all cases of practical interest, the spectrum of n.(t)
is essentially equal to the spectrum of n(t) inside the pass band of the IF filter.
For this reason, the noise ny(t) at the IF filter output is essentially independent
of the FM carrier at the discriminator input. Its low-pass equivalent spectrum
may thus be expressed as

Sn.a(w) = |Tip (W) Sn(w), (8.10)

the filtered input noise spectrum.

8.3.5 Model of the Limiter-Discriminator Input Signal

This section derives an expression for the FM wave observed at the limiter-
discriminator input, denoted by sq(t). As discussed in Section 8.3.3, this FM
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wave is subject to suppression by the IF filter.

The determination of the FM wave consists of two steps. First, the power
density spectrum of the mixer output signal s’ (¢) is derived. Subsequently, the
effect of IF filtering on this wave is analyzed.

Spectrum of the Mixer Output FM Wave

The mixer output signal component s'(t), which may be expressed as
$4(8) = s(t)su(t) = Acos[wet + .(t) — B1(1)], (8.11)

is modulated by the FM message ¢.(t) and the frequency noise §;(t) that is
fed back from the discriminator output. At High CNRs, ¢.(t) dominates the
modulation and determines the bandwidth of the (compressed) wave. At low
CNRs however, the frequency noise 6;(t) increases significantly and thereby
increases the RMS frequency deviation and bandwidth of s/, (¢).

According to the quasi-stationary approach discussed in Section 2.2.2, the
low-pass equivalent power density spectrum of s/ (t), denoted by S, .(w), may
be approximated by the PDF of the frequency modulation ¢, (t) — 6;(¢) times

3 3 Th e
2m the power contents of the FM wave, as described by cxpression (2.7). When

Py, (.) denotes the PDF of 4, (t), and pg,(.) denotes the PDF of 6,(t), the PDF

of P (t) — 6;(t) equals their convolution (25]. Therefore, the spectrum of the FM
wave s¢(t), denoted by S, .(w), may be expressed as

[}

. T
Sse(w) = TA* / Py, (2)pj, (w — z)dz. (8.12)

The message signal ¢.(t) simply equals the response of the system in the
absence of noise, as described by the transfer H,(jw) from (8.3). For sinusoidal
modulation and Gaussian modulation, its PDF is easily obtained. For those
signals, only the variance of .(t) differs from the variance of ¢(t): all other
characteristics of their PDF's are identical. For other types of signals, the shape
of the PDF generally changes when subjected to linear filtering. The determina-
tion of the PDF may then become quite difficult [26] unless the transfer H, (jw)
is essentially constant over the entire frequency range occupied by the spectrum
of the input message ¢(t). In that case, the PDF of both waves differs only by
some scaling factors.

The PDF of 6;(t) is difficult to calculate at low CNRs due to the presence of
click noise. Rice [27] determined a rather complicated expression for the PDF
of the discriminator output frequency noise 84 for the unmodulated carrier-case
(¢e(t) = 0). At high CNRs however, the PDF of 64(t) is Gaussian, which is
still approximately true around the discriminator threshold. Therefore, since
Gaussian random variables remain Gaussian after application of linear filtering,
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the PDF of 6;(t) _can be roughly approximated by a Gaussian density function

with a variance 2. The variance contained in this Gaussian density function
follows from the demodulator model of figure 8.3 as

- 1 /°° K, K4H(jw)
9[ ~ —
27 J_ oo

1+ KoK aT'1r (jw) H (jw)
where S; (w) equals the spectrum of the FM discriminator output noise, con-
sisting of continuous noise and click noise.

2
Sy, (W)dw. (8.13)

Narrow Band IF Filtering

The IF filter affects the FM wave s,(¢) in essentially two different ways.

In the first place, it introduces distortion into the modulation ¢, (t). This
distortion may be determined from the “open-loop” discriminator, supplied with
s’ (t) and subsequently transferred to the output by means of the transfer of the
closed-loop [11]. The feedback mechanism reduces this distortion, which means
that its effect on the threshold is usually negligible [7, 10, 11].

Secondly, IF filtering suppresses the part of the power density spectrum
Ss.e(w) that is located outside the filter pass band. Obviously, this reduces the
power content of the FM wave s4(t), as illustrated by figure 8.7. The shaded area

IF-filter

suppressed
carrier power

Figure 8.7: Reduction of the discriminator input carrier power at low CNRs, due to
IF filtering.

represents the fraction of the carrier power that is suppressed by the IF filter.
The area enclosed by the spectrum of s/ (¢) and the IF filter transfer represents
the power contents of the limiter-discriminator input FM wave s4(¢), denoted
by Ps 4. Obviously, when the variance of the frequency noise 6, increases, the
spectrum of s/ (¢) widens, resulting in a smaller power contents of s4(t). This
power contents may be expressed as

1 oo
Pog= E/ Ptk ()2 Sy (w) de. (8.14)

Thus, the inverse carrier-suppression factor, denoted by I';, equal to the ratio
of the carrier power at the IF filter output and the IF filter input, may be
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expressed as

T, c!_e_szsd

/ / ITae (@) pg. ()4, (w — 2)dzdw. (8.15)

Bax [11] uses a rather crude approximation for the suppression of the FM
wave that underestimates the actual suppression. He basically approximates the
signal suppression as a displacement of the FM wave from the center of the IF
filter equal to the RMS value of §;. He obtains this RMS value from the linear
above threshold model, ignoring click noise. In the presence of modulation, his
approximation corresponds to an expression for I';, equal to

00 . 2
Fc,Bax = / |FIF (‘,be + gl,rms)
—00

Thus, this expression approximates the PDF of 6, (t), which represents the spec-
tral density of the oscillator output wave s;(t) by a Dirac impulse located at
w = O rms- A similar approximation was used to discount the modulation in
the (wideband) input noise due to the message signal. However, since the band-
width of s.(t) and s;(t) are of the same order of magnitude, in this case this
approximation is likely to introduce considerabie errors.

Py (Pe) dpe.- (8.16)

8.3.6 FMFB Threshold Model

This section combines the models for the discriminator input noise and input

clcrnal derived in section 8.2.4 8,35 rocporhvn]v, to construct a model for the

Sigai, LRLLW aii STULavLL

FMFB threshold behavior. Similar to the theories in [7, 10], this model describes
the limiter-discriminator threshold by the click model.

An outline is as follows. First, an overview of the model is given. Subse-
quently, its components are discussed.

Overview of the Threshold Model

A low-pass equivalent FMFB model that is suitable for the calculation of the
~ threshold is depicted in figure 8.8. This model differs from figure 8.3 in several
ways. In the first place, the input noise n(¢) is no longer represented by the phase
noise #(t) at the input of the model, but by continuous phase noise 84 cnt(t),
inserted at the IF filter output, click noise éd,clk(t), inserted at the limiter-
discriminator output (before the detector constant), and distortion e dgist(t),
inserted at the IF filter output.
Further, both noise sources depend on the limiter-discriminator input CNR
pq instead of the receiver input CNR p. For input noise n(¢) with a flat spectrum,
this CNR equals

pa = I'cTiap, (8.17)
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discriminator
input CNR p,
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Figure 8.8: FMFB model used for calculation of the threshold.

where the maximum threshold extension factor I';q from (8.8) denotes the ratio
of the IF filter noise bandwidth and the noise bandwidth of n(t). This expression
clearly shows that the carrier suppression factor I';, which is smaller than unity,
reduces the actual threshold extension below the maximum possible extension,
represented by I'ig. Thus, referring to figure 8.5, ', represents the difference in
the thresholds between curve (c) and curve (d).

Unfortunately, (8.17) is an implicit expression for pq4, since I'. depends on

pa, by means of the frequency noise variance 9;2, given by (8.13). An analytic
solution for py, or Iy, as function of the receiver input CNR p cannot therefore
be obtained. Instead, pgy should be obtained as function of the receiver input
CNR p through one out of the following approaches:

e resort to measurement of 62 [11];

e approximation of @,
e graphic or iterative solving of (8.17) for pa.

Measurement is not suitable for design purposes since it does not reveal the

relations between the various parameters involved. An approximation of 6’? is
not suited either, since it has to ignore the carrier suppression (I': = 1) in
order to obtain an explicit expression. This results in an unacceptable loss of
accuracy. Therefore, in subsequent sections, the relation between I'. (or pg) and
p is determined through graphic or iterative solving, which is not subject to the
previously mentioned drawbacks of measurement and approximation.

Continuous Phase Noise

The frequency noise ;(t) equals the frequency noise of the limiter-discriminator
inside the loop. Therefore, in order to determine the relation between I'c and
the discriminator input CNR pg, the FM discriminator output noise has to be
expressed in terms of pg. Subsequently, I'. can be expressed in terms of pgy and
the receiver input CNR p through the variance of 6,(t), as described by (8.15).
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The continuous phase noise 64 cnt () resulting in the continuous discriminator
output frequency noise éd,cnt (t) is expressed in terms of py in the following way.

The discriminator input signal r4(t) = s4(t) + nq(t) can, on the basis of the
foregoing discussion, be written as

ra(t) = sq(t) + na(t)
AT, c0os ®c(t) + nyai(t) cos Pe(t) — ngq 4 (t) sin B, (t) (8.18)
= R4(t) cos [®.(t) + 4(2)],

where the carrier phase ®.(t) equals
P (t) = wet + e (t). (8.19)

Note that 6;(t) is not included in ®.(t) since its effect on s4(t) is already de-
scribed by I'c. The components n4, (t) and ngs 4(t) are in-phase and in quadra-
ture with s4(¢). They have a similar appearance as n,;(t) and n; 4(t).

The phase noise 64(t) may be decomposed into a continuous component and
a component that consists of phase jumps, corresponding to click noise. The
continuous component may be expressed as

nsd,q(t)

AT (pa)’

where A+/I'; denotes the amplitude of the FM wave at the IF filter output.
‘T'he corresponding power density spectrum equals

O4,cnt(t) = (8.20)

504 en (W) = W. (8.21)

Click Noise

The click noise component éd,clk(t) follows from the discriminator input signal
and noise, as described in [24].

Its power density spectrum is given by (5.11), where the click rates N, and
N_ depend on the discriminator input CNR py, instead of on the receiver input
CNR p. Further, the radius of gyration r from (5.13) should be calculated from
the shape of the IF filter, while the modulation (. (t) instead of ¢(t) should be
taken into account.

Variance of the Oscillator Frequency Noise

In order to complete the expression for I'., the variance 0[2 has to be expressed in
terms of the loop parameters and the limiter-discriminator output noise. From
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figure 8.8, the expressions (8.13), (8.21) and the click noise spectral density
(5.11), it follows that 62 can be expressed as

27 r.A?

=g [ Haorer 2o,

K KqH(jw) |°
1+ Tp (jw)ij)

+2n (Ny + N [ O; l dw, (8.22)

where the click-rates N; and N_ are a function of the limiter-discriminator
input CNR py.

8.4 Example Threshold Curve Calculation

As an illustration, this section determines the threshold curve of an FMFB
receiver with the aid of the approach outlined in Section 8.3.6. The resulting
curve is compared to the threshold curve of a comparable limiter-discriminator
and phase feedback demodulator in Section 8.5.

Section 8.4.1 outlines the characteristics of the example FMFB system used
in the comparison. Subsequently, Section 8.4.2 considers the solution of the
implicit expression for the discriminator input CNR. Finally, Section 8.4.3 de-
termines an expression for the FMFB output SNR as function of the receiver
input CNR p.

8.4.1 System Configuration
This section outlines the characteristics of the FMFB system used in the cal-
culation of the threshold curve. The position of the threshold of this system,
as obtained from the theory, is compared in Section 8.5.3 with the measured
position given in [11].
Loop Parameters
The FMFB loop is characterized by the following set of parameters:

¢ second-order IF filter (tuned resonant circuit), with bandwidth Wi;

o first-order low-pass loop-filter with —3-dB bandwidth 0.35Wig;

¢ an additional first-order loop filter of bandwidth 3.5Wg, representing the
parasitic poles in the FM discriminator and controlled oscillator;

a rectangular post-loop filter of bandwidth W.

o loop gain equal to F, = K, K4 = 4.



316 Chapter 8. Frequency Feedback

For such a system, the open-loop transfer from input phase ®(w) to oscillator
output phase ®;(w) can be written as

4
1+i0) (1 +i5%) (1+i2)

Fopen(i) = (8.23)

where the normalized bandwidth © equals 2 = 2w/Wip.

Input Signal

The input FM wave s(t) is assumed to have a frequency deviation Aw = 5W, and
a corresponding transmission bandwidth W,, = 12W. The noise n(t) possesses
the familiar characteristics, as used throughout this thesis. Its bandwidth W,
is chosen as W, = (1 + F,)Wir = 5Wip.

For simplicity, we consider the case of an unmodulated carrier s(¢) only. In
the expressions for the output SNR, the “message signal” ¢(t) is assumed to
possess a power contents P; = (Aw)?.

Variance of the Oscillator Frequency Noise

In order to calculate the relation between the inverse carrier suppression factor
['. and the discriminator input CNR pg, the variance of the frequency noise

BAN hoo bn hn avree A +arm m i imi
V[\b/ das v ol CXPr essed in terms of the ICCp parau.eters and the discriminator

output noise.

By substitution of the filter transfers of the example FMFB into (8.22), this
variance can be written in terms of I'. and the receiver input CNR p as

— 2 (Wip\? Tem
02 == | — —_— N N_ YWl 8.24
: 77( 5 ) 4FcFidp+Tr( + + N_) Wiplex, (8.24)

where Tcpy & 13.1 corresponds to the first integral in (8.22), representing the
contribution of the continuous demodulator output noise, and I'qy = 18.1 cor-
responds to the second integral, representing the contribution of the click noise.
Both integrals are expressed in terms of the normalized frequency (2.

Further, the maximum threshold extension factor I'i4 for the IF filter applied
in this system, and the rectangular input noise spectrum, becomes

2 W
Fi:— ’"’
4T T Wir

(8.25)

which is about 5 dB for the given system configuration.
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8.4.2 Carrier Suppression and Discriminator Input CNR

The main problem in the determination of the FMFB threshold curve is to
find a solution for the limiter-discriminator input CNR py from the implicit

expression (8.17), by substitution of (8.15) for I'. and (8.24) for the variance 912.
This section demonstrates two approaches to obtaining a solution; a graphical
approach and iteration.

Graphical Solution

A graphical solution of (8.17) for py is obtained from the intersection of two
curves. The first curve represents the inverse carrier suppression factor ', as a

function of the frequency noise variance 9,2, i.e. expression (8.15), that is treated

as an independent variable. The second curve represents 9,2 as a function of I'¢,
i.e. equation (8.24), where now I', is treated as an independent parameter.

In the closed loop, both expressions are satisfied simultaneously. The so-
lution of (8.17) therefore corresponds to the intersection of both curves in the
[.—6? plane.

An expression for T in terms of the frequency noise variance is obtained
from (8.15). The PDF of the frequency noise is approximated by a Gaussian
density with a variance equal to

62 = (Wig/2)%v. (8.26)

For the second-order IF filter in the system under consideration, (8.15) becomes

2
r 1 oo exp (——%«)
) = V2r /_oo 1+ vu?

where uv = Q//v. This expression describes I'. as the area underneath the
spectrum of the noise modulated FM wave s (t), represented by the density of
the frequency noise §; with unit-variance, filtered by the IF filter. In terms of
the normalized frequency u, the bandwidth of the IF filter is a function of the
normalized variance v. This exactly opposes the actual situation, where the
density of 9,(t) widens for increasing v. A closed form expression for (8.27)
seems hard to find, and is actually not required. In subsequent sections, we
resort to numerical calculation of this equation.

In order to express v in terms of [';, the click rate in (8.24) has to be
determined. In the absence of modulation and the given IF filter, Ny + N_ may
be expressed as

Ny+N_= VZ;F \/ar %Fidzrid) ~1[1 - et (VEiTiap) ] (8.28)

ctan (

du, (8.27)

™
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Figure 8.9 depicts the curve corresponding to (8.27), and curves correspond-
ing to (8.24) for I'cny = 13.1, Ty = 18.1, and a receiver input CNR p =0, 3,7
and 10 dB. This figure shows that for high input CNRs, the FM carrier at the
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Figure 8.9: Carrier suppression factor I'c as a function of the normalized frequency
noise variance v for various input CNRs. The intersections correspond to the solutions
for the closed loop FMFB.

considerable suppression is observed. For example, at p = 0 dB, I'. ~ 0.4, cor-
responding to a suppression of 4 dB. Notice, that for each value of py on the
I'.-pa curve, it is necessary to plot a complete curve of v as a function of T, for
a certain value of p, followed by determination of its intersection with the I',-v
curve. Although insight is gained through this procedure, it is a rather inefficient
means to determine the entire I'.-py curve. Therefore, for the determination of
the entire curve, we resort to iteration, as discussed subsequently.

Iteration

Another way of solving (8.17) is to use Picard-Iteration. For each receiver input
CNR, p, the procedure starts with the assumption that no suppression occurs,
i.e. ['; = 1. For this value, v can be calculated. The value obtained in this way
is subsequently substituted in (8.27) to obtain the new value of I';, and so on.

This approach has been used to determine I'. as a function of the input
CNR p. The iteration process was truncated when consecutive iterations for
I'; differed by less than 0.01 (1% accuracy). The resulting curve is depicted in
figure 8.10. This curve shows that the FM carrier at the discriminator input
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6
p(dB)

Figure 8.10: Inverse carrier suppression factor I'c as function of the input CNR p.

is considerably suppressed at low CNRs, which means that the accomplished
threshold extension is smaller than predicted by curve (c) in figure 8.5. It
should be noted that at low CNRs, the inaccuracy of the curve in this figure
gradually increases as a result of the fact that 6; is no longer Gaussian in that
region due to the click noise.

8.4.3 FMFB Receiver Output SNR

As a final step of the calculation, the output SNR of the FMFB receiver can
be obtained with the aid of the curve for the inverse carrier suppression factor,
depicted in figure 8.10, and the demodulator model depicted in figure 8.8. The
resulting expression equals

SNRrMmrB =

3pLe(p) (%’") (AWE)2

" I‘c o 2 Erg
1+ 3p2 8 ()7 [ E— -1 [1 - ext (VT )|

(8.29)

The numerator of this expression equals the maximum possible output SNR,
multiplied by the inverse suppression factor I'.. The denominator represents
the contribution of the click noise.
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8.5 Threshold Curve Comparison

This section compares the threshold curve of the example FMFB receiver an-
alyzed in Section 8.4 with the curves of comparable limiter-discriminators and
a comparable phase feedback demodulator in order to attain insight into the
differences in the threshold behavior of these systems.

Sections 8.5.1 and 8.5.2 determine the threshold curves of comparable limiter-
discriminators and a comparable phase feedback demodulator respectively. Sub-
sequently, Section 8.5.3 compares these curves with the FMFB threshold curve
through reproduction of figure 8.5 with these calculated curves.

8.5.1 Limiter-Discriminator Output SNR

The FMFB threshold curve is compared with two limiter-discriminators; a
wideband discriminator, that demodulates the wideband FM wave s(t), and
a narrow-band discriminator, that demodulates the compressed, narrow-band
FM wave s.(t).

For a fair comparison, a second-order IF filter with —3 dB bandwidth Wir =
W, has to be placed at the input of the the wideband limiter-discrlmlnator The
noise bandwidth of this filter equals 5W,, corresponding to I'iq = £. The equiv-
alent bandwidth of the noise at the discriminator input however equals only
7 Wh, since its spectrum extends only from —W,, /2 to W, /2. The discriminator
input CNR therefore becomes py = —W The expression for the SNR obtained
for this system, according to the theory of Chapter 5 and Chapter 6, equals

3 (%) (3’ |
1+3p;’(%&) \/ 1[1—erf(\/7)]

The SNR of the narrow-band limiter-discriminator is obtained from (8.30) by
replacement of Aw by Aw/(1+ F,). Further, since its input signal is filtered by
the narrow-band IF filter, the discriminator input CNR equals py = [jgp = lngp.

SNRipw =

(8.30)

l» SLg

3

8.5.2 Phase Feedback Demodulator Output SNR

Besides the two limiter-discriminators, the FMFB threshold is also compared
with a first-order phase feedback demodulator that possesses the same (closed
loop) noise bandwidth as the FMFB receiver. The selectivity of both systems
is therefore roughly the same. Notice that the minimum (double-sided) noise
bandwidth that can be achieved by both systems equals twice the message
bandwidth.

With the aid of the theory from Chapter 7, the output SNR of the phase
feedback demodulator (PFB), assuming a zero-valued steady-state phase error,
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can be expressed as
) (52)°
(%)

18 [2r(sv2r)

3p (

1+

Wn
SNRPFB = W

(8.31)

where the double-sided noise bandwidth equals

W, [® I Fopen(i€2) 1+ Fopen(0) "’dQ

T 220 J_oo |1+ Fopen(i©2)  Fopen(0)

8.32
W, (8.32)

8.5.3 Comparison

The resulting curves are depicted in figure 8.11. The curves (a) through (d)
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Figure 8.11: Threshold curves as a function of the FMFB receiver input CNR.
(a) wideband limiter-discriminator, (b) narrow-band limiter-discriminator, (c) ideal
FMFB, (d) actual FMFB, (e) PFB demodulator.

are the counterpart of the curves sketched in figure 8.5. Curve (c), of the ideal
FMFB, is obtained from (8.29) by setting I'. = 1, i.e. by ignoring the carrier
suppression. Curve (e) corresponds to the phase feedback demodulator (PFB).

This figure shows that the carrier-suppression causes the difference between
the ideal FMFB threshold, curve (c), and the actual FMFB threshold, curve
(d). The upper bound on the threshold extension equals I'jq = 10/m, which
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corresponds to 5 dB. The actual extension is slightly smaller since I'. < 1. The
threshold of the narrow-band discriminator, curve (b), and the threshold of
ideal FMFB, curve (c), are identical, which agrees with our expectations; the
minimum possible FMFB threshold equals the threshold of the narrow-band
discriminator. Further, notice that as a result of the carrier suppression, the
threshold of the FMFB is considerably steeper than the threshold of the limiter
discriminator. This more “aggressive” threshold behavior is also observed ex-
perimentally [11], and can be heuristically viewed as the ‘penalty’ that is paid
for the threshold extension.

It is interesting to note that the threshold of the phase feedback demodula-
tor, curve (e), roughly coincides with the threshold of the narrow-band limiter-
discriminator, curve (b), and curve (c) of the ideal FMFB. This can be explained
by the observation that the phase feedback loop does not contain an IF filter,
which means that the carrier suppression effect is absent. Below the threshold,
the PFB curve is much steeper than the limiter-discriminator curve (b), and the
ideal FMFB curve, which implies that replacement of the narrow-band limiter-
discriminator in the FMFB by the PFB demodulator, as proposed in [28], is
likely to result in an even worse threshold behavior, while the position of the
threshold basically remains unchanged.

Some confidence in the accuracy of the actual FMFB threshold curve (d) in
figure 8.11 is gained from the observation that the position of the 1 dB threshold
corresponds quite accurately to the 1 dB threshold' measured by Bax [11] for
exactly the same system. Converted into the parameters of this chapter, he
measured the threshold at p = 4.2 dB. This is about the point where curve (d)
starts to deviate significantly from the above-threshoid asymptote.

8.6 Frequency Feedback Demodulator Design

In this section, we outline the implications of the previously discussed theory
on the design of FMFB receivers. Although explicit rules for the optimization
of FMFB receivers can hardly be given, some important remarks can be made.

The design of FMFB receivers comprises the design of the IF filter, the
feedback filter H(jw) and the loop gain K,Kg4. These design topics are briefly
considered in sections 8.6.1 through 8.6.3.

8.6.1 Design of the IF Filter

The IF filter is, after the FM demodulator, the most important subsystem in the
FMFB receiver. This filter establishes the trade-off between threshold extension
and reduction of the distortion in the FMFB.

!The 1 dB threshold equals the input CNR where the output SNR deviates by 1 dB from
the above threshold asymptote described by the numerator of (8.30).
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For maximum threshold extension, the IF filter bandwidth should be chosen
to be as small as possible. The minimum permissible bandwidth is determined
by the specification of the maximum tolerable distortion; the smaller the band-
width, the larger the narrow-band filtering distortion. The distortion in the
FMFB output signal can be calculated from the narrow-band “open-loop” dis-
criminator, and subsequently transfered to the FMFB output by means of the
loop-transfer [11].

For minimum distortion, the IF filter bandwidth should be chosen to be as
large as possible. In this case, an upper bound on the bandwidth may stem from
the minimum required selectivity of the system in order to suppress carriers at
adjacent channels, or the maximum permissible threshold level.

Further, the most important constraint on the system is that its stability
has to be guaranteed in all circumstances. In practice, this will put an upper
limit on the order of the IF filter, and thereby on the selectivity of this filter.

8.6.2 Design of the Feedback Filter

The feedback filter should be dimensioned such that the loop gain of the system
is essentially constant over the entire bandwidth of the message signal [11]. By
this choice, all message frequencies are compressed by the same amount, which
roughly minimizes the required IF bandwidth.

Further, the feedback filter should minimize the contribution of the discrim-
inator output frequency noise to the oscillator output frequency noise. This
means that it should minimize the factors I'cnt and [ex defined in Section 8.4.1.
Since the transfer corresponding to both factors is different, this minimization
generally requires a trade-off between both noise contributions. The main dif-
ference between both transfers is that the poles of the IF filter ['ip(jw) appear
as zeros in the transfer of the click noise, while these zeros do not appear in the
transfer for the continuous noise.

Finally, the feedback filter should be designed to guarantee the stability of
the system. This may be accomplished by, for example, the introduction of
some (high frequency) zeros into its transfer that appear as phantom zeros [29]
in the demodulator transfer.

8.6.3 Design of the Loop gain

The most important function of the loop gain is to establish the required com-
pression of the input FM wave’s frequency deviation and the associated band-
width compression. For maximum threshold extension, as large a loop gain as
possible is required.

An upper limit to the loop gain is set by the stability requirement and, in
general, also by the requirement for an as low level as possible of oscillator
output frequency noise.
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Roberts [7, 10] indicates the existence of a rather shallow optimum loop
gain value that minimizes the variance of the oscillator output frequency noise.
Although such an optimum might indeed exists at least for certain system con-
figurations, it is questionable if his analysis is correct since it does not account
for the carrier suppression by the IF filter.

8.7 Conclusions

This chapter investigated the threshold behavior of frequency feedback demod-
ulators and made a comparison with conventional demodulators and phase feed-
back demodulators.

It was shown that, similar to phase feedback, frequency feedback does not
improve the above-threshold output SNR of limiter-discriminators, i.e. con-
ventional demodulators with infinite compression, but only shifts the threshold
to a lower input CNR (threshold extension). An upper bound on the attain-
able threshold extension is defined by the threshold of a narrow-band limiter-
discriminator with a bandwidth equal to the bandwidth of the IF filter inside
the loop.

The FMFB threshold is due to a combination of three nonlinear effects:

e the threshold of the discriminator inside the loop;
o feedback of noise from the discriminator output;
e suppression of the FM wave at the discriminator input by the IF filter.

The feedback noise alone is too weak to cause the FMFB threshold indepen-
dently. However, in combination with the suppression in the IF filter, it does
cause the threshold of the limiter-discriminator inside the loop. Thus, it is con-
cluded that all three nonlinear noise effects are mutually coupled: together they
cause the FMFB threshold.

Due to the third effect, the realized threshold extension is smaller than
the extension predicted by the upper bound determined by the narrow-band
discriminator. This effect is due to an increase of the frequency deviation of the
FM wave at the IF filter input caused by the feedback noise. A threshold model
was derived by the modification and combination of some known theories that
does not depend on experimentally determined parameters.

Comparison of the FMFB threshold curve with the threshold curve of limiter-
discriminators showed that the threshold extension is achieved at the expense
of a steeper decay of the SNR below the threshold, i.e. more “aggressive”
threshold behavior. Further, it was shown that a comparable phase feedback
demodulator realizes a larger threshold extension than the FMFB demodulator,
which is explained by the observation that carrier suppression does not occur in




References 325

phase feedback demodulators. Its threshold roughly coincides with the upper
bound on the FMFB threshold extension.

Explicit design rules for the optimization of the FMFB receiver performance
can hardly be given. However, it is clear that the IF filter plays a dominant role
in the trade-off between the threshold extension and the reduction of distortion,
the other alternative. A proper design of the loop-filter may minimize the carrier
suppression effect. The stability of the closed-loop system is the main constraint
on the design of the filters inside the loop, which should also account for parasitic
poles introduced by the limiter-discriminator and the oscillator inside the loop.
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Chapter 9

Conclusions

A classification of all possible FM demodulation principles is an indispensable
aid in a structured approach towards FM demodulator design. It shows that
direct FM demodulation by detection of the FM wave’s instantaneous frequency
is impossible since this frequency is not associated to the energy contained in
the wave. Therefore, FM demodulation is necessarily established in an indirect
way, i.e. by conversion from FM to AM, or FM to PM, and subsequent AM
or PM demodulation. Two sub-classes of FM demodulators based on FM-
AM conversion, four sub-classes based on FM-PM conversion combined with
direct PM demodulation, and three sub-classes based on FM-PM conversion
combined with indirect PM demodulation, i.e. PM-AM conversion followed by
AM demodulation, exist. All FM demodulators that were encountered in the
literature fit into this classification. Sub-classes of FM demodulators based on
FM-AM conversion followed by indirect AM demodulation do not exist.

High performance can be attained only with FM demodulators that prevent
the generation of a carrier-induced offset in their response to the instantaneous
frequency of the input wave. This offset reduces the demodulator dynamic
range; it reduces the maximum allowed signal swings, and increases the out-
put noise level. Generation of this component can be prevented only with FM
demodulators based on FM-AM conversion and subsequent AM projection de-
tection, FM demodulators that establish FM-PM conversion with the aid of a
fixed time delay, and FM demodulators that establish FM-PM conversion with
the aid of phase feedback. In all other types, this offset cannot be prevented,
but only eliminated afterwards. Further, the distortion can be minimized by
proper design of the frequency transfer of the FM-AM and FM-PM converter.

Considerable improvement of the demodulator performance can be achieved
by proper design of the FM receiver architecture that embeds the demodulator.
However, since the signal processing included in this architecture is somehow
based on assumptions regarding the characteristics of the received FM wave,
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performance degradation instead of improvement generally occurs as soon as
the assumptions become invalid, e.g. due to high noise and disturbance lev-
els. Pre-demodulation processing allows extraction of the required FM wave
from the received frequency band by separation in frequency (filtering), phase
(suppression of co-channel interference), and amplitude (elimination of ampli-
tude noise). Post-demodulation processing allows the reduction of continuous
demodulator output noise and impulsive output noise, called click noise. In
practice, however, click detection and subsequent elimination is not effective.
Finally, feedback and adaptive processing are an effective means for reducing
the demodulator output noise, as long as the feedback is not disrupted by noise
and disturbances.

The output noise of all types of FM demodulators consists of a continuous
component and an impulsive component. The origin and behavior of the contin-
uous component is similar for all types. The origin and behavior of the impulsive
component, which is responsible for the FM threshold, is quite different.

A trade-off between continuous noise and click noise can be established by
the application of finite compression to the input carrier amplitude, instead of
the usual infinite compression. The contribution of amplitude noise to the de-
modulator output increases the level of continuous noise but reduces the level of
click noise, through reduction of the average click pulse area. In order to prevent
the generation of high levels of second-order modulation noise, it is favorable
to establish the trade-off by a linear combination of infinite compression, and
no compression, which yields a signal-to-noise ratio improvement of a few dB
below the threshold.

The impuisive noise in phase feedback demodulators is due to cycie-slipping,.
The continuous output noise is identical to the noise obtained with a ‘conven-
tional’ demodulator that applies infinite amplitude compression. A nonlinear
analysis shows that considerable minimization of the cycle-slip noise is possible
by proper design of the loop filter and the phase detector characteristic. A
large detector gain, combined a loop bandwidth that is not larger than strictly
necessary, seems profitable. Detectors with limiters at their inputs should be
avoided. Loop filters with real poles, especially an ‘ideal’ integrator combined
with a direct feed-through, seems suitable. Complex closed-loop poles should be
avoided in order to avoid cycle-slip bursts. The steady-state phase error should
be minimized. Generally, considerable threshold extension can be achieved.

The threshold of frequency feedback demodulators and dynamic tracking
filters is due to the threshold of the discriminator inside the loop, in combination
with suppression FM carrier suppression by the IF filter. The latter is due to
an increase of the FM frequency deviation by feedback noise. The threshold
cannot be extended below the threshold of the discriminator inside the loop. A
phase feedback demodulator was observed to realize a slightly larger extension
since it is not subject to carrier suppression.




Appendix A

Fourier Coefficients of the
Limiter Output Signal
Component

This appendix explains the derivation of expression (6.6) for the Fourier coeffi-
cients of the limiter output signal component as a function of the input CNR p.
A similar derivation is given in [1], but it contains some annoying errors.

The derivation starts from expression (6.5) for the limiter output signal
component s,(¢). By substitution of s(t) = Acos ®(t), and application of the
definition formula for the Fourier coefficients aj, we obtain

ap 4 % 510 [®(1)] cos k®(t)dd ()
ik_ ™

=5 erf (\/pcos ®) cos k®dP
_ e [T i Al
= Skr erf (y/pcos @) dsin k® (A1)

-7
T

Ek 4 .
T ok sin k®d [erf (\/pcos ®)] .

-

_ e :
= Skn erf (/pcos @) sin k®

The first term in (A.1) equals zero, since sin(+k7w) = 0. The second term
can be expanded with the aid of the definition formula for the erf function,

T

2
def exp(—u?)du, (A.2)

erf(z) = 77? o
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as
__c [T
ap =~ » sin k®d [erf (\/pcos )]
= Sk i sin k@i exp (—pcos® @) /psin ®d®
% J_. Nz (A.3)

_ g P e (—peos? e
- 2k7r\/;/_7reXp( pcos” @) [cos(k — 1)@ — cos(k + 1)$]d®.

The squared cosine in the argument of the exp(. . . ) function can be expressed
in terms of a cosine wave with double angle using the trigonometric identity
cos?® = 1 + 1 cos2®. The result is

= g o (3)

/1r exp (—g cos 2<I>) [cos(k — 1)@ — cos(k + 1)@]d®. (A4)

-7

The exponent inside this integral is expanded with the aid of the Jacobi-Anger
formula [2, 3],

exp(z cosp) = Z emlIm(2) cosmyp, (A.5)

m=90

where 1,,,(2) denotes the modified Bessel function of the first kind and order m.
Substitution into (A.4) gives

o= 3 4 [Pexw (-5)1n ()

/ cos(k — 1)® cos 2m® — cos(k + 1)® cos 2mPdP®. (A.6)

-1

The integral in this expression can be evaluated by straightforward calculus.
We obtain

/ cos(k — 1)® cos 2m® — cos(k + 1)® cos 2mPdP =

-7

2n (st = 8pamn ), (AT)

Em 2

where d,, x is the Kronecker delta, which equals 1 for m = k and zero for m # k.
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Substitution of this equation into (A.6) results in

=3 G Lon (5 1n (5) (o =)

= mX::Oe_kg;l_)m\/gexp (-‘g) | (g) (5m’% _5m,k2i)
= { (—1)%%\/§exp (-2) [Ik;_l (2) +Tic (g)]7 k odd
0

, k even

(A.8)

Substitution of 2k + 1 for k finally yields expression (6.6) for the nonzero odd
Fourier coefficients.

References
[1] William C. Lindsey, Synchronization Systems in Communication and Control,
Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

{2] David Middleton, An Introduction to Statistical Communication Theory, McGraw-
Hill Book Company, New York, 1960.

(3] Milton Abramowitz and Irene A. Stegun, Eds., Handbook of Mathematical Func-
tions, Dover Publications, New York, fifth edition, 1968.



332




Appendix B

Autocorrelation Function of
the First-Order Noise

This appendix considers the derivation of the autocorrelation function of the
first-order demodulator output noise, R4em,1(7), given by expression (6.44).
This function is a linear combination of the autocorrelation functions and cross-
correlation function of the amplitude noise contribution ¢(t)n; 4(t) and the fre-
quency noise 7, 4(t).

We first derive these correlation functions, according to the procedure out-
lined in Section 6.2.2, and subsequently combine them to obtain the autocorre-
lation Rgem, 1 (7).

B.1 Autocorrelation of the Amplitﬁde Noise

The calculation of the autocorrelation function Ry, ,(7) of the amplitude noise
starts with the determination of the expectation over the noise processes n;(t)
and n4(t). By substitution of (2.13), we obtain

def .. .
R(¢n,,i)(¢n,,,-)(7') = E(@1902713,11,1"3,2‘,2'([71,2,(P1,2)nl_‘l‘2ynq’1'2 =
E[p192 (ni1 €081 +ng,1 sin 1)

(ni2 cosws + Tg,2 Sin v2) IC,OLQ, (,bl’g] (B.1)

ni,1,2:7q,1,2°

where the subscripts “1” and “2” represent the instants t = ¢; and ¢t = 5
respectively. Since n;(t) and n,(t) are independent stochastic processes, this
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expression simplifies to

E (016275,6,175,i.2101,2,01,2) p; | 3 inos =
E[p1¢2 (ni,1mi,2 cos ¢y cos pa

+ ng,1Mq,2 S0 @y sin 2 ) |1,2, P1,2]

(B.2)

ni,1,2,Mq,1,2"

Further, n;(t) and n4(t) have the same autocorrelation function R,(7) [1].
Therefore, (B.2) reduces to

E (p102n0,i1m5,i.2[901,2,012) 0, 1 4 me 1, = Brn(T)@12 cos (01 — 2) -
(B.3)
Finally, taking the expectation over ¢; 3 and ¢ 2, yields
Rign, ) (on..0) (T) = Run(T)E [@12 cos (o1 — ¢2)] - (B.-4)

B.2 Autocorrelation of the Frequency Noise

The calculation of the autocorrelation of the frequency noise, denoted by R

T
starts with substitution of the time-derivative of (2.14) for n,,4(t). This yiclds

),

def
R"a ,qTta, q(T) = E [nsml”s,q,?l‘f’l 2, (Pl 2]

E[(—741 801 — 1191 COS@1 + 71g,1 COS 01 — Ng 101 SIN 1)
(=11 » Sin Yo — Ni 22 COS Y2 + Ry2 COS P2 — Ng2H2 SiN P2)
lp1,2,91,2]. (B.5)

Since n;(t) and n,(t) are independent, and both are uncorrelated with their
derivative at the same instant [2, 3], this expression reduces to

E [f5,9,175,4,21¢1,2,$1,2] =
E[1:,170,2 sin @y sin o + 724170 292 COS @1 COS 03
+ 3,175,291 COS Y1 COS P2 + Mj 1M 2P1§2 COS P1 COS P2
+ 72q,174,2 COS (Y1 COS P2 — Tig 1Mg,2(P2 COS Y1 Sin s
— Tg1Tog 261 SIN ) COS P + g, 11,2012 SIN 1 SIN P2 |12, P12].  (B.6)
When the autocorrelation of n;(t) and n4(t) is denoted by R;(7), and the cross-
correlation of n;(t) and n;(t), or ny(¢) and ny(t) is denoted by Rjn(7), the result
becomes
E [f1s,4,175,9,201,2, 01,2] = Riin(7) €08 (01 ~ 2)
+ Rin(7) (1 + $2) sin (1 — ¢2) (B.7)
+ Rnn(7) cos (o1 — ¢2) -
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The expectation over ¢, » and ¢, » finally yields

Ri, 4ino(T) = Ran(7)E [cos (o1 — ¢2)]
+ Rin(T)E [(1 + ¥2) sin (@1 — 2)] (B.8)
+ Rnn(T)E [P142 cos (01 — @2)].

B.3 Cross-correlation

The cross-correlation between the amplitude and frequency noise, denoted by
Reross,1(7), is calculated as follows. By substitution of (2.13) and the derivative
of (2.14), application of the independence of n;(t) and n,(t), and the knowledge
that n;(t), ny(t) are uncorrelated with their derivatives at the same instant, we
obtain

Reross,1(T) g (P175,31 705,92 + PaNs i 2Mis g,1]01,2, P1.2) =
E (7,171,292 sin @1 08 2 — R 214,141 5in 3 cos ¢y
— 214 11 21 P2 COS V1 COS P2 + Tg, 1Ty 22 COS 1 SIN Yy
+ fg,2Mq 141 COS P2 Sin @)
— 2ng,1M4,2012 5iN @) i Y2|P1 2, P12)
= —2Rnn(7)P142 €08 (91 — @2) + Rin(7) (p1 + @2) sin (01 — 2)  (B.9)

The expectation over ¢; 2 and ¢ o finally yields

Rcross,l (7') = "Ri‘m(T)E [(901 + ‘P2) sin (‘Pl - <P2)]
= 2Rnn(T)E [p12 cos (g1 — ¢2)].  (B.10)

B.4 Composite Autocorrelation Function

The composite autocorrelation function Rgem,1(7) is obtained by addition of
Rion, )(¢n.)(T); Ra, n,,(T) and Reross,1(7) with the appropriate weighting
factors that can be obtained from expression (6.42) for the first-order component
of the demodulator output signal, ygem,1 (7)-

It is observed that, ignoring the common term G(A)/A? Rign, ) (gn, ) (T) 18
weighed by C | (A), Ra, gn, ,(T) by unity, and Reross,1(7) by Cn.1(A4). Collect-
ing terms then finally yields expression (6.44).
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Appendix C

Spectrum of the
First-Order Noise

This appendix considers the calculation of the first-order demodulator output
noise spectrum, given by expression (6.45), and the simplified expression given
by (6.46).

C.1 General Expression

The spectrum Sgem,1(w) equals the Fourier transform of the autocorrelation
function Rgem,1 (7). According to (6.44), this function consists of three terms
that each are the product of two correlation functions. One correlation function
represents the input noise n(t), while the other one represents the modulation
of this noise by the message. The output noise spectrum therefore consists of
three terms equal to the convolution of the spectra that correspond to these
correlation functions.

The spectra corresponding to Rn(7), Ran(7) and R;(7) that are contained
in Rgem,1(t) can be expressed in terms of the spectrum of n;(t) and n,(t), S» (w),
as [1]

Run(7) <5 Sn(w), (C.1)

Rantr) = Lol 7 s ), (©2)
2

Ria() = —i%';@ <y w28, (w). (C.3)

The spectra corresponding to the expectations of ¢(¢) and ¢(t) can be ob-
tained with the aid of the quasi-stationary approximation. Since E [cos (g1 — ¢2)]
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equals the autocorrelation function of the zero-IF FM wave cos p(t), its power
density spectrum may be approximated by the probability density py(.) of ().
This yields the following expressions for the spectra that correspond to the
expectations in (6.44)

E [cos (1 — ¢2)] <2 2Py (w), (C.4)

E[(¢1 + ¢2)sin (1 — @2)] =
2.3 B eos (g1 - )] £ —miupy(w), (C.5)

2

. d
E 142 cos (o1 — ¢2)] = _d?E [cos (1 — 2)] TR 27rw2p¢(w).

(C.6)

The spectra corresponding to the three terms in (6.44), i.e. the frequency-
domain convolutions of (C.1) and (C.6), (C.2) and (C.5), (C.3) and (C.4), can
be expressed as

Rpn(T)E [p162 cos (¢ — v2)] (-L)
| vSat - wmstna, 7

—00

Rin(7)E [p1 + pa sin (91 — 03)] <2

/ " 2w — 1)Salw — ¥)po )y, (C.8)

Rai(T)E[cos (o1 ~ ¢2)]

/ ~ (@ = 9)2Sn(w — 1)po(y)dy. (C.9)

Collecting terms proportional to w?, w and those independent of w, and
application of the appropriate weighting factors from (6.44) finally yields (6.45).

C.2 Approximation for Wideband FM

For wideband FM waves, a simplified expression for the noise spectrum Sgem 1 (w)
can be obtained by application of the fact that the FM transmission bandwidth
is much larger than the bandwidth of the message signal ((t).
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The message signal slightly modulates the noise spectrum, described by the
expectations in Rgem,1(7). As discussed in Chapter 2, this modulation may be
thought to result in slight perturbations of the center-frequency of the output
noise spectrum, in the rhythm of the message. Since the noise spectrum is much
wider than the message spectrum, these perturbations mainly affect the noise
spectrum outside the baseband.

The part of the noise spectrum located inside the baseband can therefore be
approximated by assuming that the bandwidth of the message approaches zero.
In that case, the integrals in (6.45) can be approximated as

/_oo Sn(w = yY)pyp(y)dy = Sn(w) /_Oo P (y)dy, (C.10)
/oo YSn(w — ¥)pyp(y)dy = Sn(w) /Oo yp, (y)dy,

—oco —oo (C.11)
/ ” Y2 Sn(w — y)py (y)dy ~ Sn(w) / ” ¥?py(y)dy.

—00 —o0 (C.12)

The integral in (C.10) equals unity, by definition, since p;(.) is a probability
density. The integral in (C.11) usually equals zero, since the message ¢(t) is
not allowed to have an offset component in FM transmission. The integral in
(C.12) equals the power contained in the message signal, equal to (Aw)?.

Substitution of these approximations into (6.45) yields the simplified expres-
sion (6.46).
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Appendix D

Correlation Functions of
the Second-Order Noise

This appendix lists the equations that express the ten correlation functions
required for the computation of Rgem2(7) in terms of the correlation functions
of the input noise n(t), and the message phase ¢(t).

Although the procedure is somewhat elaborate, all expressions are obtained
in the same way as the three first-order correlation functions calculated in Ap-
pendix B. The weighting factor of each correlation function follows from the
corresponding terms in expression (6.51) for ygem,2(t).

The complete list of correlation functions is as follows:

E [niz (t1) n?,,’ (t2) @ (1) @ (t2)] =
04 R (1) + 2R2,(1)E [p1652 cos? (o1 — 92)] (D.1)

E[nl, (t)nd, (82) @ ()@ (t2)] =
o4 R (1) + 2R%, (T)E [@r cos® (91 — ¢2)] (D-2)

E [ng; (t1) 7s,g (t1) 15,3 (B2) T2s g (t2)] =
oaRyy(7) + 2R2 (T)E [@192 cos? (01 — ¢2)]
+Rnn(T)th(T)'E [cos? (p1 — w2)]
+Run(T)Ran(T)E [(91 + @2) sin 2 (91 — 2)]
+Rfm(7')E [sin2 (p1 — ¢2)] ,
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E [hs,i (tl) Ns,q (tl) hsn’ (t2) Ns,q (t2)] =
On Ry (1) + 2R, (T)E [p1692 cos® (01 — 2)]
+Rnn(7)Rai(7)E [cos® (¢1 — ©2)]
+Rpn(T)Rin(T)E [(£1 + ¢2) sin2 (1 — 2)]
+REn(T)E [sin® (p1 ~ p2)]

(D.4)

E{¢(t) ¢ (t2) [n3; (1) nd, (82) + 02, (t2)n2 , (t1)]} =
207, Ry4(7) + 4R2,(T)E [p1a5in® (01 — ¢2)] (D.5)

E [@ (t1) 02 ; (81) nei (t2) frs,q (t2) + @ (t2) 2 ; (B2) nsi (B1) Trsg (01)] =
—203 Ry () — 4R2, (1) [£162 cos® (g1 — 2)] (D.6)
—Rnn(T)Rin(T)E [(01 + ¢2) sin 2 (1 — ¢2)], ’

E [90 (tl) ng,i (tl) hs,i (t2) Ns,q (tZ) + 90 (t2) ng,i (t2) h’s,i (tl) Ngq (tl)] =

207 Rp(7) + 4R2,(T)E [p1¢3 5in® (01 — 02)] (D7)
_Rnn(T)Rim(T)E [(‘Pl + p2)sin2 (1 — ‘102)] ) ‘

E [ (t1)n? , (t1) N q (t2) ngi (t2) + @ (t2) n? , (t2) fus g (01) nsyi (81)] =
—203, Ry (1) — 4R%,(T)E [p1425in? (@1 — ¢2)] (D.8)
+Rpn(T)Ran(T)E [(¢1 + $2) sin2 (1 — ¢2)], .

E [¢ (t1)n] , (81) s (82) s g (B2) + @ (t2) 02, (t2) s i (11) Mg g (11)] =

207 Rp(7) + 4R2,(T)E [$162 cos? (1 — 2)] (D.9)
+Run(T)Ran(T)E [(¢1 + ¢2) sin2 (p1 — ¢2)], .

E[ng,i (t1) fos,q (81) s,q (t2) 75,5 (t2) + s i (B2) 12g g (B2) Mg g (1) R i (B1)] =
—20,Rpy(7) — 4R%, (T)E [¢1425in” (91 — 02)]
—2Ry (1) Ran(7)E [sin® (¢1 — ©2)]
+2R 0 (T) Rivn (T)E [(@1 + ¢2) sin 2 (01 — 3)]
~2R},(7)E [cos? (p1 — 92)] -

(D.10)




Appendix E

Spectrum of the
Second-Order Noise

This appendix outlines the derivation of the second-order noise spectrum Sqem 2{w),
given by (6.54). First, the general expression is considered. Subsequently, the
simplifications for wideband FM are discussed. Finally, approximate expressions
for the two components contained in the simplified expression are derived.

E.1 General Expression

The derivation of the second-order noise spectrum Sqem,2(w) proceeds similar to
the derivation of first-order noise spectrum Sqem,1 (w), considered in Appendix C.

Again, the spectrum equals the addition of convolutions between spectral
components that represent the input noise and the message modulation respec-
tively. The spectra corresponding to the correlation functions in (6.52) that
represent the input noise can be expressed as

R2 (1) <25 Sp2(w) = Su(w) * Sn(w), (E.1)
Roon () Rian(7) = %%T—) & Lusa), (E.2)
2 2 T
Run(7) R (7) — B2, (7) = —%% & %oﬂsnz () (E.3)

Run(T)Ran(7) + B2, (1) ¢59 Sp(w) * w2Sp(w) — wSn(w) * wSn(w).)

(E.4)

Similarly, the spectra corresponding to the correlation functions that represent
the modulation of the noise by the message follow with the aid of the quasi-
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stationary approximation as

E[cos2 (p1 — ¢2)] = 2mpay(w) (E.5)

E[(¢1 + @2)sin2(p1 — p2)] =

d
— - Eleos2(p1 = p2)] ¢ ~2mjepa (), (E.6)

E [p1p2c0s2 (p1 — p2)] =

& Eleos2(p1 - 02)] 5w P2 (w), (E.7)

1
" 4dr?
where p2,(.) denotes the probability density of twice the message wave, 2¢(t).
In the same way as explained in Appendix C, the convolutions between

these components can be determined, and subsequently rearranged, resulting in
(6.54).

E.2 Approximation for Wideband FM
For wideband FM waves, Sgem,2(w) can be approximated in the baseband region
in the same way as the first-order noise spectrum, considered in Appendix C.

The the bandwidth of the message signal is considered to be (nearly) zero,

placed outside the mtegrals in (6.54), which results in

Sauma@) = EE (@ - 90355
+ @) [ sswa

(1= pPwSe@) [ ” paow)dy

+(1=B)a-B)usu) [ ups)dy
+ 3@ 750) [ oty

+ 2 [" v -wsie-ns.ww). €3

The first integral in this expression equals 27 times the power contents of the
message modulation, (Aw)?. The second, third and fourth integral denote the
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area of the density, which equals unity, the expected value of 2¢5(¢), which equals
zero, and the the power contained in 2¢(t), equal to 4(Aw)?. Substitution into
(E.8) and neglecting the first term, which represents the signal suppression,
finally yields the simplified spectrum given by (6.55).

E.3 Approximation with the aid of the Central
Limit Theorem

This section considers the derivation of simplified expressions for the two con-
voluted spectral components S,2(w) and S ,(w), defined by (6.35), in (6.55),
by the application of the central limit theorem for stochastic processes.

The Central Limit Theorem

The central limit theorem states that the probability density (PDF) of the
sum of a large number of arbitrary distributed, independent random variables
approaches a Gaussian density. When X, denotes the sum of random variables

B, = Xn: s, (E.9)
=0

with expected value p, and variance o2, and n is sufficiently large, then the
density of ¥, denoted by px, (u), approaches

oV 2w 202

Although the theory holds only for ‘large’ n, values of n = 2 orn = 3 al-
ready result in close approximations when the variables z; are of comparable
magnitude.

In essence, the theorem may be regarded as a property of the convolution
operation [1], because the sum of two random variables = and y, distributed
according to the densities p,(.) and py(.) respectively, equals the convolution 1]

P, (1) & —— exp [—(il)i} (E.10)

Doty(u) = /oo Pz (u —v)py(v)dv. (E.11)

-0

Approximation of S,2(w)

The spectral density S,2(w) equals the convolution of the density Sp(w) with
itself. Since S,(w) is non-negative for all values of w, it may be viewed, after
appropriate scaling, as the probability density of a random variable n;. The
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density Spz(w) is then, according to (E.11), proportional to the PDF of the sum
of two independent random variables n; and ns, both distributed according to
Sn(w). This density is calculated as follows.

Scaling In order to use the central limit theorem, a density with unit area,

should be used. For this purpose, we define the PDF p,(w), that follows from
the spectral density S, (w) as

def _ Sn(w) _ Sn(w)

) = g oy o

where o3 denotes the power contained in the noise processes n;(t) and nq(t).

(E.12)

Expected Value The expected value of the variables n; and n,, distributed
according to p,(w), equals zero. This follows from the fact that S, (w) is sym-
metrical around w = 0. Therefore, the expected value of n; + ny also equals
zero.

Variance The variance of n; and ny equals
oo

E (nf) = /roow2pn(w)dw = (27r)?, (E.13)

where r denotes the radius of gyration, defined by (5.13). The variance of the
sum of the independent processes n; and n» therefore equals 2(27r)2.

Density Function According to expression (E.10), the PDF of n, + ns can
be approximated by a Gaussian density as

1 w?
Pny+ns (LU) ~ W exp [— m] . (E14)
On the other hand, according to (E.11), this PDF equals
oo
Pritny (W) = / Pr(w — y)Pa(y)dy
> (E.15)

1 o0
= W/ Sn(w - y)sn(y)dy-

Approximate Spectral Density An approximate expression for S,2(w) is
now easily obtained from (E.14) and (E.15). By definition, S,:(w) equals

Sw@ =5 [ "~ Sulw = y)Sa(v)dy. (E.16)

Combination of this expression with (E.14) and (E.15) then yields the approxi-
mation given by (6.56).
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Approximation of S, ,(w)

The spectrum Sp, »(w), i.e. the last integral in (6.54), can be approximated in a
similar way as the spectrum S,2(w). However, instead of expressing S, n(w) as
the convolution of two non-negative densities, we determine the approximated
spectrum directly with the aid of the correlation function (E.4).

It is not difficult to show that S,, ,(w) is non-negative and symmetric around
w = 0. Therefore, it may be regarded, after appropriate scaling, as a PDF of the
sum of a number of random variables. The PDF of these variables is determined
below.

Scaling The area of S, ,(w) is obtained from (E.4) for 7 = 0. Thus

/ Spn(w)dw = —2—1;/ / Sn(w —y)Sn(y)dydw
= 27 Rnn(0) R (0) — Rin(0) = 2m0202.

(E.17)

Expected Value The expected value of the sum of random variables that
corresponds to Sy n(w) equals zero since this spectrum is symmetric around
w=0.

Variance The variance of the sum of random variables is obtained from

-t /00 W2 Sn.n(w)dw
T 2m0iol J_o -

__-1 &
- 27moloZ 072

- 2 [(Pr)
= (27r) [( - ) 1] ,
where r denotes the radius of gyration from (5.13), while p,. is defined as

def 1 ffooowllsn(w)dw
Pr= on\ =, w28, (w)dw

g

8 b

[Ron(T) Ran(T) + R (7)] (E.18)

7=0

(E.19)

Thus, p, equals the radius of gyration of the time-derivative of the input noise.

Approximate Density From the foregoing discussion, the approximation for
Sp.n(w) is observed to be a Gaussian density of area 2ro202 = 2n(27r)%0}, and
a variance given by (E.18), i.e.
4 2 2
Snn(w) N B exp { — S, (E20)
2 (22)? - 1] 2(2mr)2 [(82)° - 1]
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which equals expression (6.57).
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Appendix F

Joint Probability Density
and Conditional
Expectation

In this appendix we calculate the joint probability density of the four polar noise
variables Rn, Rn, ¢n and ¢, and the expected value of ||, conditioned on
the noise radius R, and phase ¢,. These expressions are used in Section 6.5.5
to obtain an expression for the average click pulse area .

F.1 Joint Probability Density

In order to obtain an expression for the joint probability density, we start from
the four noise processes related to the Cartesian coordinates of the input noise,
ng,i(t), N q(t), Tis,i(t) and 715,4(t). As discussed in Section 6.4, these processes
are Gaussian as long as all expectations are conditioned on the message signal
¢. The (optional) expectation over ¢ should therefore be performed in the final
stage of the calculations.

The expression of the joint Gaussian density of the four noise processes
requires evaluation of all possible (cross) correlations. The correlations that
yield a nonzero result are:

(ng,,) =E(n 24) =02, (F.1)
E (n},) = E(73,) = of (L +v?), (F.2)
E (ns,ifs,q) = —0n0al, (F.3)
E (75,iNs,9) = On0plt (F.4)
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where u = po, /04 = ¢/(2nr). This shows that n, ; is correlated with s, q, and
Ng,q is correlated with 7, ; when modulation is present.

From these expressions follows that the 2-dimensional joint Gaussian prob-
ability densities of n, ;, 25,4 and n, g, ns; can be written as [1]

) n?; n? Ng.ifs gU
p(ns,i,ns,q) — exp |— 3,21 (1 + u2) _ s,;] _ ts,1lts g ,
2m0,05 202 207 On0ph (F.5)
: 1 n? L S
P (Mo, M) = 5———exp [— 22 (1+u®) — 25 + Doglsi |
27000 202 207, OnOp (F.6)

These densities can be transformed into polar coordinates with the aid of
(6.72), (6.73) and

s = R" COSn — Rpn sin gy, (F7)
Ngq = Rn sin gy, + Rppp, cos ,. (F.8)

Further, basic algebra shows that
dng idns ¢dis ;dns g = REdR,dR,dp,dgn. (F.9)

Combination of these expressions eventually yields for the joint density in
polar format:

nl R p A \ —
rd \4'411.1“/1:,7*1“1'11} —
R2 R? o RZ4+R202 R2p,u
——5exp|——= (1 - = LLELUSS F.10
4m20202 P 202 (1+%) 202 OnOp (F.10)

Since this expression does not contain the variable ¢,,, this phase noise process
is uniformly distributed, and independent of the other processes. Further, it is
observed that the rate of change of the noise radius, R,, is independent of the
other variables, while R, and ¢,, are correlated in the presence of modulation.

F.2 Conditional Expectation

By definition, the conditional expectation of |¢,| is obtained from

0 o p Rn, ‘PnaRna (Pn .
E (l‘»bnllRm‘Pn)R @ déf_/ / |énl ( ) dR,déy,
mm —o0 J—oo p(ﬁpn) (Fll)

where p (pn) = 1/(27) denotes the marginal density of the noise phase ¢,,.
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Since it is observed from (F.10) that R., is an independent zero-mean Gaus-
sian random variable with variance o2, evaluation of the inner integral in (F.11)
results in

E (|¢n||Rn7‘Pn)Rm¢ﬂ =
oo RZ 2 R2 (P R2 <Pnu
on|—"—exp |- % (1 +u e ]dgb.
\/—-oo nl Y 27['0'%0'" 20'721 ( ) 20 2 OnOn (Fn12)
By rewriting the argument of the exp(.) function in this expression as
. . 2
R ey Tt _Fagw_ Fo R (b0,
20 2 202 On0# 202 202 2nr ’ F.13)
and application of the integral
o0 + 2
/ |z| exp [—%23)—} dz = 2b%exp ( b2> + abV2m erf (b\/_)
—00 (F.14)

we obtain with a = u, b = ¢, /Ry and z = ¢, /(277),

E(l‘i‘-’n'lRmﬂan)R 5o T

P
roV2r R? w2 rR,u R2 Ryu

f .
o[-y 0] e (- ) ot (S0)

By means of the transformation R, = Av, and dR,, = Adv, this expression can
finally be rewritten as

)1’2,.,@,, =
4r /mpexp [—pv? (1 +u?)] + 2rpuvexp (—pv*) erf (woy/p), (F.16)

where p denotes the amplitude compressor input CNR.

E (|¢nl
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Summary

This thesis describes a structured approach towards the design of high-perfor-
mance FM demodulators that provides insight into the principles available for
the construction of these demodulators, and the various architectural measures
that can be used to improve their performance. Such demodulators are applied,
for example, in car radio and various types of wireless communication systems.

A brief discussion of the history of frequency modulation in Chapter 1 reveals
that the existing theory on FM demodulator design lacks a unifying framework
that relates all possible FM demodulation principles and the characteristics of
the corresponding demodulators. Such a framework, i.e. a classification, is
indispensable in a structured design approach. Further, it was observed that
there is generally a large distance between the work of theoretic scientists, and
practicing electronic designers in this field. It is the objective of this thesis to
provide a unifying framework for FM demodulator design that bridges the gap
between theoretical results and engineering practice. The thesis concentrates
on the design of FM demodulators for analog FM, but the bulk of the material
is also applicable to digital FM schemes.

Chapter 2 reviews the main characteristics of FM transmission and FM
waves that constitute the treatises in subsequent chapters. A quasi-stationary
approximation for the spectrum of FM waves is discussed, and the characteristic
signal-to-noise improvement established by wideband FM through quadratic
shaping of the input noise spectrum is explained.

Chapter 3 develops a classification of all possible FM demodulation princi-
ples. A brief outline of the principles of the applied design approach reveals
the necessity for such a classification in demodulator design. FM demodulation
through direct detection of the FM wave’s instantaneous frequency appears to
be impossible since this frequency is not associated to the energy of the wave.
Instead, demodulation has to be established through conversion to AM, or con-
version to PM, in combination with AM or PM demodulation. Further, in this
respect, it appears that only direct AM demodulation is allowed, while both
direct PM demodulation and indirect PM demodulation, by means of PM-AM
conversion and subsequent AM demodulation, is allowed. This results in two
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sub-classes of FM demodulators based on FM-AM conversion, four sub-classes
based on FM-PM conversion in combination with direct PM demodulation, and
three subclasses based on FM-PM conversion in combination with indirect PM
demodulation. Two of the latter three subclasses are believed to be previously
unknown, but at the same time have a limited practical significance. All types
of demodulators that were encountered in the literature easily fit into the clas-
sification.

Chapter 4 discusses the design of the various sub-functions contained in FM
demodulators. It is shown that an offset in the output signal due to the input
carrier frequency deteriorates the demodulator dynamic range. It reduces the
maximum allowable signal swings, and increases the output noise level. High-
performance demodulation can therefore only be achieved when the generation
of this offset is prevented, which is possible only with FM demodulators based
on FM-AM conversion and subsequent AM projection detection, FM demodu-
lators that establish FM-PM conversion by means of a fixed time-delay, and FM
demodulators that establish FM-PM conversion by means of phase feedback. In
order to avoid the offset, a zero-IF architecture, or a ‘band pass’ FM-AM/FM-
PM converter is required. The distortion can be minimized by proper design of
the converter frequency characteristic.

Chapter 5 discusses the various architectural provisions in the FM receiver
architecture that can be used to improve the performance of the FM demod-
ulator, which is embedded in the receiver. Generally, all processing performed
by the receiver to improve the demodulator performance is somehow based on

')Qonmnfwnnﬂ rnn‘arr‘\nn‘ tho charactarictire of tho rocaivad p]\/f wave, AQ annn ac
SOSUIMPLits ITga 05 vl Caar QULETISLICE O Wil TelalveQ [ a5 5000 ab

these assumptions become invalid, e.g. due to high noise and disturbance levels,
this processing is likely to cause performance degradation instead of improve-
ment. Pre-demodulation processing extracts the required FM wave from the
received frequency band. This comprises separation in frequency, i.e. filtering,
separation in phase, i.e. some kind of phase-locking in order to eliminate co-
channel interference, and separation in amplitude, i.e. elimination of amplitude
noise by means of limiting/amplitude compression. Post-demodulation process-
ing reduces the level of continuous demodulator noise by base-band filtering/de-
emphasis, and the level of impulse noise (click noise) by means of click detection
and subsequent elimination. However, the latter type of reduction is not very ef-
fective. Frequency feedback and adaptive processing are more effective means to
reduce the level of click noise, as long as the feedback/adaption is not disrupted
by noise and disturbances.

The subsequent chapters consider the threshold behavior of ‘conventional’
demodulators, phase feedback demodulators, and frequency feedback demodu-
lators. It is shown that in all types of demodulators, the output noise consists of
a continuous noise component that behaves similarly in all three demodulators,
and an impulsive component, which behaves differently and is responsible for
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the FM threshold.

Chapter 6 investigates application of finite amplitude compression in ‘con-
ventional’ FM demodulators, instead of the usually applied infinite compression,
as means to establish a trade-off between click noise and continuous noise. After
an outline of the two types of amplitude compressors that can be distinguished,
a newly developed model shows that finite amplitude compression increases the
continuous output noise level, but at the same time reduces the click noise by
reduction of the average click pulse area. A ‘critical’ level of compression is de-
rived that should be exceeded in order to attain an output SNR that is at most
3 dB below the maximum possible SNR. Further, it is shown that second-order
‘modulation’ noise, due to ‘modulation’ of the compressor small-signal trans-
fer by the noise, is minimized by a linear combination of infinite compression,
and no compression. The optimum level of compression that maximizes the
output signal-to-noise (SNR) ratio is derived as function of the input carrier-
to-noise ratio (CNR). The theory is verified by simulations and measurements
on an FM demodulator that employed a soft-limiter as (sub-optimal) amplitude
Compressor.

Chapter 7 considers the threshold behavior of phase feedback demodulators.
Above its threshold the output SNR equals the maximum possible SNR of an FM
demodulator. Further, the threshold, due to cycle-slip noise generally occurs at a
considerably lower input CNR than in a conventional demodulator. A nonlinear
analysis shows that the cycle-slip rate is highly dependent on the phase detector
transfer and the structure of the loop filter. Generally, the steady-state phase
error should be minimized, while the closed-loop transfer should not be larger
than strictly necessary to accommmodate the modulation. Complex poles in
the closed-loop transfer should be avoided in order to avoid cycle-slip bursts.
Further, an ideal integrator in combination with a direct feed-through seems
close to optimum. The phase detector should not contain limiters at its input
since this results in degradation of its transfer at low CNR.

Chapter 8 investigates the threshold behavior of frequency feedback receivers
(FMFB) and dynamic tracking filters. Generally, the threshold of these demod-
ulators occurs at a considerably lower CNR than the threshold of a conventional
demodulator and is determined by threshold of the discriminator inside the loop
and suppression of the discriminator input FM wave by the IF filter. The latter
effect is due to feedback noise that increases the frequency deviation of the wave
at the IF filter input in such a way that the bandwidth of this wave exceeds the
bandwidth of the IF filter. This IF filter is the key element in FMFB design
that determines a trade-off between threshold extension and improvement of
the demodulator linearity. Further, the threshold of the discriminator inside
the loop defines an upper bound on the FMFB threshold. Comparison of an
example system with a comparable phase feedback demodulator showed that
the phase feedback demodulator threshold is located close to the upper bound
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on the FMFB threshold. This is due to the fact that carrier suppression does
not occur in such demodulators.
Chapter 9 presents the conclusions.




Samenvatting

Dit proefschrift beschrijft gestructureerde methode voor het ontwerp van fre-
quentiedemodulatoren (FM) met een hoge kwaliteit en een hoge gevoeligheid.
Deze methode verschaft tevens inzicht in de verschillende principes die beschik-
baar zijn voor de constructie van dergelijke demodulatoren, en in de maatregelen
die in de demodulator en ontvanger architectuur kunnen worden getroffen ter
verbetering van de ontvangstkwaliteit. Deze systemen vinden o.a. toepassing
in autoradio’s en diverse andere draadloze communicatie systemen.

Een korte beschrijving van de geschiedenis van frequentie modulatie in Hoofd-
stuk 1 brengt aan het licht, dat een allesomvattend raamwerk, dat de ver-
banden tussen de verschillende typen demodulatoren aanelkaar en aan hun
kwaliteit relateert, ontbreekt in de bestaande ontwerptheorie voor FM demod-
ulatoren. Een dergelijk raamwerk, een classificatie, is onmisbaar in een gestruc-
tureerde ontwerpmethode. Verder is geconstateerd, dat het door theoretisch
ingestelde wetenschappers verrichte werk vaak zodanig ver van de praktijk, uit-
geoefend door elektronisch ontwerpers, ligt, dat er maar weinig gebruik van
word gemaakt. Het doel van dit proefschrift is enerzijds een allesomvattend
raamwerk voor het ontwerp van FM demodulatoren te ontwikkelen, en ander-
zijds de afstand tussen het theoretische werk en de praktijk van het elektronisch
ontwerpen zo goed mogelijk te overbruggen.

Hoofstuk 2 beschrijft kort de hoofdkenmerken van FM transmissie en FM
gemoduleerde signalen. Deze vormen de basis voor de beschouwingen in de
daaropvolgende hoofdstukken van het proefschrift. Een quasi-stationaire be-
nadering voor het frequentiespectrum van FM signalen, en de verbetering van
de signaal-ruis verhouding, bewerkstelligd door kwadratische vervorming van
het ingangsruisspectrum, worden in dit hoofdstuk behandeld.

Hoofdstuk 3 ontwikkelt een classificatie van alle mogelijke principes, beschik-
baar voor het realizeren van FM demodulatie. Een kort overzicht van de
principes van de gekozen aanpak maakt het grote belang van de eerdergenoemde
classificatie daarin duidelijk. Het blijkt dat FM demodulatie in de directe zin,
dus door detectie van de momentane frequentie van het FM signaal, onmogelijk
is, omdat deze frequentie niet gerelateerd is aan de in het signaal opgeslagen
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energie. In plaats daarvan dient ten allen tijde een conversie naar AM of PM
te worden gerealizeerd, gevolgd door AM demodulatie, danwel PM demodu-
latie. Verder blijkt in dit verband, dat alleen AM demodulatie in de directe
zin is toegestaan, terwijl PM demodulatie zowel in directe zin, als in indirecte
zin, dus door middel van PM-AM conversie en daaropvolgend AM demodulatie,
mag worden toegepast. De resulterende classificatie omvat twee sub-classen
gebaseerd op FM-AM conversie, vier sub-classen gebaseerd op de combinatie
FM-PM conversie en directe PM demodulatie, en drie sub-classen gebaseerd
op de combinatie van FM-PM conversie en indirecte PM demodulatie. Van de
laatste drie sub-classen waren er twee niet eerder bekend. Deze zijn echter van
weinig praktische betekenis. Alle typen FM demodulatoren die in de literatuur
zijn aangetroffen kunnen eenvoudig in de ontwikkelde classificatie gerubriceerd
worden.

Hoofdstuk 4 behandelt het ontwerp van de verschillende deelsystemen in FM
demdulatoren. Een offset veroorzaakt door de draaggolffrequentie blijkt des-
tructief te werken op het dynamisch bereik van de demodulator. Deze beperkt
de maximale signaalslag, en verhoogt het ruisniveau. Een hoge kwaliteit kan
daarom slechts bereikt worden indien het ontstaan van deze component wordt

voorkomen. Dit is alleen mogelijk met democdulatoren gebaseerd op FM-AM

conversie gevolgd door AM projectie-detectie, demodulatoren die FM-PM con-
versie bewerkstelligen met behulp van een vaste tijdvertraging, en demodula-
toren die FM-PM conversie bewerkstelligen met behulp van fase-tegenkoppeling.
Deze demodulatoren dienen dan tevens gebruik te maken van een directe conver-
sie-ontvanger architectuur, of een ‘handdoorlatende’ FM-AM /FM-PM omzetter
De distorsie dient geminimaliseerd te worden door een geschikt gekozen frequen-
tiekarakteristiek van de omzetter.

Hoofdstuk 5 behandelt de verschillende maatregelen die in de FM ontvanger-
architectuur kunnen worden getroffen ter verbetering van de ontvangstkwaliteit.
In het algemeen zijn de kwaliteitsverbeterende signaalbewerkingen gebaseerd
op veronderstellingen omtrend de eigenschappen van het ontvangen FM sig-
naal. Wanneer deze veronderstellingen niet (meer) geldig zijn, bijvoorbeeld
door de aanwezigheid van ruis en storingen, zullen de kwaliteitsverbeterende sig-
naalbewerkingen met hoge waarschjnlijkheid veranderen in juist kwaliteitsver-
slechterende bewerkingen. Bewerkingen voorafgaand aan de eigenlijke demodu-
latie zijn gericht op het extraheren van het gewenste FM signaal uit de ontvangen
frequentieband. Dit omvat scheiding in frequentie d.m.v. filtering, scheiding in
fase d.m.v. fasevergrendeling, ter onderdrukking van co-channel interferentie, en
scheiding in amplitude door middel van begrenzing/amplitude compressie. Post-
demodulatie signaalbewerkingen zijn geént op het reduceren van continue ruis
in het demodulator uitgangssignaal, d.m.v. basisband filtering en de-emphasis,
en reductie van impulsruis (clicks) d.m.v. click detectie en eliminatie. Dit laat-
ste blikt echter niet effectief te kunnen worden gerealizeerd. Een veel effectie-
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vere ruis-reductie methode is het toepassen van frequentie-tegenkoppeling en/of
adaptieve regeling, zolang deze niet verstoort worden door ruis en storingen.

De daaropvolgende hoofdstukken onderzoeken het gedrag van zogenaamde
‘conventionele’ demodulatoren, fase-tegenkoppelingsdemodulatoren en frequen-
tie-tegenkoppelingsdemodulatoren rondom hun ruisdrempel. De uitgangsruis
van al deze demodulatoren bestaat uit een continue component, die zich in alle
drie de gevallen vrijwel hetzelfde gedraagt, en een impuls-component, verant-
woordelijk voor de ruisdrempel, die zich verschillend gedraagt voor deze drie
typen.

Hoofdstuk 6 onderzoekt de toepassing van eindige amplitude compression
i.p.v. de gebruikelijke oneindige compressie, ter realizatie van een uitwisseling
tussen continue ruis en impulsruis. Na een overzicht te hebben besproken van de
twee onderscheidbare typen compressoren, wordt m.b.v. een nieuw ontwikkeld
model aangetoond, dat eindige compressie het continue ruisniveau verhoogt, en
tevens het impuls ruis-niveau verlaagt door een reductie van het gemiddelde
impuls-oppervlak. Een ‘kritisch’ compressieniveau is afgeleid, dat dient te wor-
den overschreden ter realizatie van een signaal-ruis verhouding (SNR) die ten
hoogste 3 dB lager is dan de maximaal haalbare SNR. Verder is aangetoond, dat
‘modulatieruis’, veroorzaakt door modulatie van de klein-signaaloverdracht van
de compressor, wordt geminimaliseerd door een lineare combinatie van oneindige
compressie, en in het geheel geen compressie toe te passen. Het optimale com-
pressieniveau, dat de SNR maximaliseert, is bepaald als functie van de ingangs
CNR. De theorie is geverifiéerd door middel van simulaties en metingen aan een
FM demodulator, voorafgegaan door een zachte begrenzer.

Hoofdstuk 7 onderzoekt het drempelgedrag van fase-tegenkoppelingsdemo-
dulatoren. Boven de drempel realizeren deze demodulatoren de maximaal haal-
bare SNR. De drempel zelf, bepaald door ‘cycle-slips’, is over het algemeen
gesitueerd op beduidend lagere een ingangs CNR dan bij een conventionele de-
modulator. Een niet-lineare analysemethode geeft aan, dat de cycle-slip frequen-
tie in hoge mate afhankelijk is van de fasedetectoroverdracht en de structuur
van het lusfilter. De statische fasefout dient geminimaliseerd te worden, ter-
wijl de lusbandbreedte niet groter gekozen moet worden dan strict noodzakelijk
is. Complexe polen in de gesloten lusoverdracht dienen vermeden te worden,
ter voorkoming van cycle-slip ‘bursts’. Een lusfilter bestaande uit een ‘ideale’
integrator en een directe overdracht lijkt de optimale configuratie dicht te be-
naderen. De fase-detector dient geen begrenzers aan beide ingangen te bevatten,
ter voorkoming van degeneratie van de overdracht bij lage CNR’s.

Hoofdstuk 8 onderzoekt het drempelgedrag van frequentietegenkoppelings-
demodulatoren (FMFB) en ‘dynamic tracking filters’. De drempel van deze
demodulatoren ligt ook beduidend lager dan die van conventionele demodu-
latoren, en wordt bepaald door de drempel van de ‘discriminator’ binnen de
lus, en de onderdrukking van het ingangssignaal van deze discriminator door
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het middenfrequent filter. Dit laatste effect wordt veroorzaakt door via de te-
genkoppeling teruggevoerde ruis, die de frequentiezwaai van het FM signaal
aan de ingang van het filter zodanig vergroot, dat de bandbreedte ervan groter
wordt dan die van het filter. Het middenfrequent filter is het centrale element
in het ontwerp van FMFB ontvangers, die de uitwisseling tussen ruisdrempel
en lineariteit bepaalt. De drempel van de FMFB kan niet lager zijn dan die
van de discriminator binnen de lus. Vergelijking van een voorbeeld FMFB met
een vergelijkbare fase-tegenkoppelingsdemodulator geeft aan, dat de laatste een
drempel heeft in de buurt van de minimale drempel van de FMFB, dus in de
praktijk lager dan de FMFB, doordat in deze demodulator geen onderdrukking
door het middenfrequent filter plaats kan vinden.
Hoofdstuk 9 bespreekt de conclusies.
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