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LGM3A 2024 Chairs’ Welcome 
 
On behalf of the organizing committee, it is our distinct pleasure to extend a warm welcome to the 
LGM3A Workshop. As Chairs of this conference, we are delighted to bring together a community of 
scholars, researchers, and professionals from diverse backgrounds, all driven by a shared passion for 
advancing the frontiers of knowledge in our field. 

This workshop aims to explore the potential of large generative models to revolutionize the way we 
interact with multimodal information. A Large Language Model (LLM) represents a sophisticated form 
of artificial intelligence engineered to comprehend and produce natural language text, exemplified by 
technologies such as GPT, LLaMA, Flan-T5, ChatGLM, and Qwen, etc. These models undergo training 
on extensive text datasets, exhibiting commendable attributes including robust language generation, 
zero-shot transfer capabilities, and In-Context Learning (ICL). With the surge in multimodal content—
encompassing images, videos, audio, and 3D models—over the recent period, Large MultiModal 
Models (LMMs) have seen significant enhancements. These improvements enable the augmentation of 
conventional LLMs to accommodate multimodal inputs or outputs, as seen in BLIP, Flamingo, 
KOSMOS, LLaVA, Gemini, GPT-4, etc. Concurrently, certain research initiatives have delved into 
generating specific modalities, with Kosmos2 and MiniGPT-5 focusing on image generation, and 
SpeechGPT on speech production. There are also endeavors to integrate LLMs with external tools to 
achieve a near ‘any-to-any’ multimodal comprehension and generation capacity, illustrated by projects 
like Visual-ChatGPT, ViperGPT, MMREACT, HuggingGPT, and AudioGPT. Collectively, these models, 
spanning not only text and image generation but also other modalities, are referred to as large 
generative models.  

This workshop will provide an opportunity for researchers, practitioners, and industry professionals to 
explore the latest trends and best practices in the field of multimodal applications of large generative 
models. We also remark that the submissions are not limited to the use of such models. The workshop 
will also focus on exploring the challenges and opportunities of integrating large language models 
with other AI technologies such as computer vision and speech recognition. Additionally, the 
workshop will provide a platform for participants to present their research, share their experiences, 
and discuss potential collaborations. 

We extend our sincere thanks to the members of the organizing committee, whose dedication and 
tireless efforts have brought this event to fruition. With their help, we have assembled 5 strong papers 
and 2 invited talks that will be presented at the conference. This is around 50% acceptance rate for 
regular papers. We also express our gratitude to our sponsors and partners for their invaluable support 
in making this conference possible. 

Welcome to the LGM3A Workshop, and let us collectively chart the path to new horizons in 
multimodal applications and large generative models.  

Shihao Xu  
Huawei Singapore Research 
Center 

Yiyang Luo 
Huawei Singapore Research 
Center 

Justin Dauwels 
Delft University of Technology 

Andy Khong  
Nanyang Technological 
University 

Zheng Wang  
Huawei Singapore Research 
Center 

Qianqian Chen 
Huawei Singapore Research 
Center 

Chen Cai 
Huawei Singapore Research 
Center 

Wei Shi 
Huawei Singapore Research 
Center 

Tat-Seng Chua  
National University of 
Singapore 
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Abstract
This workshop aims to explore the potential of large generative
models to revolutionize how we interact with multimodal infor-
mation. A Large Language Model (LLM) represents a sophisticated
form of artificial intelligence engineered to comprehend and pro-
duce natural language text, exemplified by technologies such as
GPT, LLaMA, Flan-T5, ChatGLM, Qwen, etc. These models undergo
training on extensive text datasets, exhibiting commendable at-
tributes including robust language generation, zero-shot transfer
capabilities, and In-Context Learning (ICL). With the surge in mul-
timodal content—encompassing images, videos, audio, and 3D mod-
els—over the recent period, Large MultiModal Models (LMMs) have
seen significant enhancements. These improvements enable the
augmentation of conventional LLMs to accommodate multimodal
inputs or outputs, as seen in BLIP, Flamingo, KOSMOS, LLaVA,
Gemini, GPT-4, etc. Concurrently, certain research initiatives have
developed specific modalities, with Kosmos2 and MiniGPT-5 focus-
ing on image generation, and SpeechGPT on speech production.
There are also endeavors to integrate LLMs with external tools
to achieve a near “any-to-any” multimodal comprehension and
generation capacity, illustrated by projects like Visual-ChatGPT,
ViperGPT, MMREACT, HuggingGPT, and AudioGPT. Collectively,
these models, spanning not only text and image generation but
also other modalities, are referred to as large generative models.
This workshop will allow researchers, practitioners, and industry
professionals to explore the latest trends and best practices in the
multimodal applications of large generative models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LGM3A ’24, October 28-November 1 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1193-0/24/10
https://doi.org/10.1145/3688866.3696056

CCS Concepts
• Information systems → Multimedia information systems.

Keywords
large language models, generative models, multimodal applications

ACM Reference Format:
Shihao Xu, Yiyang Luo, Justin Dauwels, Andy Khong, Zheng Wang, Qian-
qian Chen, Chen Cai, Wei Shi, and Tat-Seng Chua. 2024. LGM3A 2024: the
2nd Workshop on Large Generative Models Meet Multimodal Applications.
In Proceedings of the 2nd Workshop on Large Generative Models Meet Multi-
modal Applications (LGM3A ’24), October 28-November 1 2024, Melbourne,
VIC, Australia. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3688866.3696056

1 Introduction
The cross-modal generation has achieved significant progress in
recent years. With a combination of multiple modalities (e.g., im-
age, text, audio, etc.), multimodal methods achieve state-of-the-art
performance not only on the cross-modality tasks, but also on
the vision and NLP tasks. However, how to combine the current
large pretraining models with the multimodal data to improve the
performance of the user-engaged tasks is still to be explored.

The workshop’s focus on multimodal generation and analysis,
and the integration of different forms of multimedia information, is
a topic of interest for a wide range of communities, including com-
puter vision, multimedia, artificial intelligence, human-computer
interaction, and others. Multimodal applications on large generative
models have many potentials uses in various scenarios including
visual question answering, text-to-image synthesis, speech-to-text
synthesis and data augmentation which could interest many IT
companies such as Google, Microsoft, TikTok, Baidu, Alibaba, Ten-
cent, etc. In summary, the 2nd Workshop on Large Generative
Model Meets Multimodal Applications workshop is relevant to the
ACMMultimedia community, it addresses a critical area of research

 

1

https://doi.org/10.1145/3688866.3696056
https://doi.org/10.1145/3688866.3696056
https://doi.org/10.1145/3688866.3696056


LGM3A ’24, October 28-November 1 2024, Melbourne, VIC, Australia Shihao Xu et al.

within natural language understanding and computer vision, mak-
ing it an important and timely event for researchers, practitioners,
and students in the field.

2 Scope and Topics of The Workshops
The workshop will cover a wide range of topics including but not
limited to:

• Multimodal content creation
• Multimodal data analysis and understanding
• Multimodal question answering
• Multimodal information retrieval
• Multimodal recommendation
• Multimodal summarization and text generation
• Multimodal conversational agents
• Multimodal machine translation
• Multimodal fusion and integration of information
• Multimodal applications/pipelines
• Multimodal systems management and indexing

The workshop will also focus on exploring the challenges and
opportunities of integrating large language models with other AI
technologies such as computer vision and speech recognition. It
provides a platform for participants to present their research, share
their experiences and discuss potential collaborations.

3 Relationship to previous workshops
The first LGM3A workshop was held successfully at ACM MM
2023 [2], with about 20 submissions and 8 high-quality papers ac-
cepted. We also invited three keynote speakers: Prof. Ziwei Liu,
Prof. Boyang Li, and Prof. Zheng Shou to give talks, attracting many
researchers to the workshop. The workshop on multimodal appli-
cations of large language models offers a unique perspective on the
combination of language, vision, and audio and their applications.
It provides a platform for presenting cutting-edge research and
discussing future directions in this emerging field.

4 participants and invited speakers
Ziwei Liu
Affiliation: Nanyang Technological University
Biography: Ziwei Liu is currently a Nanyang Assistant Professor
at Nanyang Technological University, Singapore. His research re-
volves around computer vision, machine learning and computer
graphics. He has published extensively on top-tier conferences and
journals in relevant fields, including CVPR, ICCV, ECCV, NeurIPS,
ICLR, ICML, TPAMI, TOG and Nature - Machine Intelligence. He is
the recipient of Microsoft Young Fellowship, Hong Kong PhD Fel-
lowship, ICCV Young Researcher Award, HKSTP Best Paper Award
and WAIC Yunfan Award. He serves as an Area Chair of CVPR,
ICCV, NeurIPS and ICLR, as well as an Associate Editor of IJCV.

Zheng Shou
Affiliation: National University of Singapore
Biography: Zheng Shou is a tenure-track Assistant Professor at
National University of Singapore. He was a Research Scientist at
Facebook AI in Bay Area. He obtained his Ph.D. degree at Columbia
University in the City of New York, working with Prof. Shih-Fu

Chang. He was awarded Wei Family Private Foundation Fellowship.
He received the best paper finalist at CVPR’22, the best student
paper nomination at CVPR’17. His team won the 1st place in the
international challenges including ActivityNet 2017, Ego4D 2022,
EPIC-Kitchens 2022. He is a Fellow of National Research Foundation
(NRF) Singapore. He is on the Forbes 30 Under 30 Asia list.

5 Workshop Organizers
Shihao Xu is a Research Scientist at Huawei Singapore Research
Center, a multimodal search and recommendation lab. His cur-
rent research interests and works fill in multimodal applications
including sports video representations, user intention generation,
multimodal geometry problem solving, and multimodal prompting.
He received his PhD degree in Nanyang Technological University in
2022, advised by Prof. Justin Dauwels and Prof. Andy Khong. He re-
ceived his Master’s degree from Nanyang Technological University
and Bachelor’s degree from Harbin Institute of Technology. During
his Ph.D., he was working on the audio-visual understanding of
human behaviors.

Yiyang Luo is currently a Multimodal Search Algorithm Engi-
neer at Huawei Singapore Research Centre, Multimodal Search
and Recommendation Lab. He received his Master’s degree from
Nanyang Technological University and his Bachelor’s degree from
the Chinese University of Hong Kong. His research interests include
multimodal deep learning and prompt engineering.

Justin Dauwels starts in January 2021 as an Associate Professor
at TU Delft. Before this, he was an Associate Professor with the
School of Electrical Electronic Engineering at Nanyang Techno-
logical University (NTU), Singapore. He obtained a PhD degree
in electrical engineering at the Swiss Polytechnical Institute of
Technology (ETH) in Zurich in December 2005. Next, from 2006-to
2007 he was a postdoc at the RIKEN Brain Science Institute, Japan
(Prof. Shunichi Amari and Prof. Andrzej Cichocki), and a research
scientist during 2008-2010 in the Stochastic Systems Group (SSG) at
the Massachusetts Institute of Technology (MIT), led by Prof. Alan
Willsky. His research interests are in data analytics with applica-
tions to intelligent transportation systems, autonomous systems,
and analysis of human behavior and physiology. He obtained his
PhD degree in electrical engineering at the Swiss Polytechnical In-
stitute of Technology (ETH) in Zurich in December 2005. Moreover,
he was a postdoctoral fellow at the RIKEN Brain Science Institute
(2006-2007) and a research scientist at the Massachusetts Institute
of Technology (2008-2010). He has been elected as an IEEE SPS
2024 Distinguished Lecturer. He has been a JSPS postdoctoral fel-
low (2007), a BAEF fellow (2008), a Henri-Benedictus Fellow of the
King Baudouin Foundation (2008), and a JSPS invited fellow (2010,
2011). He served as Chairman of the IEEE CIS Chapter in Singa-
pore from 2018 to 2020. He served as Associate Editor of the IEEE
Transactions on Signal Processing (2018 - 2023), Associate Editor
of the Elsevier journal Signal Processing (since 2021), member of
the Editorial Advisory Board of the International Journal of Neural
Systems, and organizer of IEEE conferences and special sessions.
He was also Elected Member of the IEEE Signal Processing Theory
and Methods Technical Committee and IEEE Biomedical Signal
Processing Technical Committee (2018-2023).
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Andy Khong is currently an Associate Professor in the School of
Electrical and Electronic Engineering, at Nanyang Technological
University, Singapore. Before that, he obtained his Ph.D. (’02-’05)
from the Department of Electrical and Electronic Engineering, Im-
perial College London, after which he also served as a research
associate (’05-’08) in the same department. He obtained his B.Eng.
(’98-’02) at Nanyang Technological University in Singapore. His
postdoctoral research involved the development of signal process-
ing algorithms for vehicle destination inference as well as the design
and implementation of acoustic array and seismic fusion algorithms
for perimeter security systems. His Ph.D. research was mainly on
partial-update and selective-tap adaptive algorithms with appli-
cations to mono- and multi-channel acoustic echo cancellation
for hands-free telephony. He has also published works on speech
enhancement, multi-channel microphone array, and blind deconvo-
lution algorithms. His other research interests include education
data mining, and machine learning applied to education data. Andy
currently serves as an Associate Editor for the IEEE Trans. Audio,
Speech and Language Processing and the Journal of Multidimen-
sional Systems and Signal Processing (Springer). He was a visiting
professor at UIUC in 2012 under the Tan Chin Tuan Fellowship.
He is the author and co-author of two papers awarded the “Best
Student Paper Awards” and is a recipient of the Junior Chambers
International “Ten Outstanding Young Persons Honor Award 2011”
and the Institute of Singapore “Prestigious Engineering Achieve-
ment Award 2012.” He was awarded the Nanyang Education Award
and the Educator of the Year Award in 2022.

Zheng Wang is currently a Principal Researcher and Huawei Top-
Minds at Huawei Singapore Research Center. His current research
interest focuses on multimodal content generation and search. Be-
fore that, he received his PhD degree at the School of Computer
Science and Engineering, Nanyang Technological University in
2022, advised by Prof. Cheng Long and Prof. Gao Cong. He received
his Master’s degree from the Department of Computer Science,
the University of Hong Kong in 2018, and his Bachelor’s degree
from the School of Computer Science and Technology (Elite Class),
Shandong University in 2016. Up to now, he has published over 20
papers in top conferences and journals, including SIGMOD, VLDB,
ICDE, KDD, WWW, ACL, AAAI, and TKDE. Among them, his work
MMQS [1] has been transferred to products, which indicates its
significant impacts on both industry and academia. His research
has been recognized by many prestigious awards, including Nomi-
nated Schmidt Science Fellows in 2023, World Artificial Intelligence
Conference (WAIC) Yunfan Award Finalist in 2022, Google PhD Fel-
lowship (sole winner from Asia in Database Management) in 2021,
and AISG PhD Fellowship in 2021 (one of top three NTU awardees).
He is also nominated for the NTU Best Thesis Award 2023 (under
evaluation). He serves as a PC member (reviewer) for some top-tier
conferences and journals, including KDD, NeurIPS, AAAI, CIKM,
OSDI (Reproducibility), ATC (Reproducibility), DASFAA and TKDE.

Qianqian Chen is currently a Multimodal Search Algorithm Engi-
neer at Huawei Singapore Research Centre, Multimodal Search and
Recommendation Lab. She received her MSc Degree from Nanyang
Technological University and his BSc Degree from Central South
University. Her research interests include multimodal deep learning
and prompt engineering.

Chen Cai is currently a Multimodal Search Algorithm Engineer at
Huawei Singapore Research Centre, Multimodal Search and Recom-
mendation Lab. He received his PhD Degree from Nanyang Techno-
logical University. His research interests include multimodal deep
learning and prompt engineering.
Wei Shi is currently head of multimodal search team at Huawei
Singapore Research Center. He received his PhD degree at Depart-
ment of Computer Science and Technology, Tsinghua University
in 2015. His research interests are broadly in multimodal search,
vision-language alignment, and big data systems.
Tat-Seng Chua is the KITHCT Chair Professor at the School of
Computing, National University of Singapore (NUS). He is also the
Distinguished Visiting Professor of Tsinghua University, the Visit-
ing Pao Yue-Kong Chair Professor of Zhejiang University, and the
Distinguished Visiting Professor of Sichuan University. Dr. Chua
was the Founding Dean of the School of Computing from 1998-2000.
His main research interests include unstructured data analytics,
video analytics, conversational search and recommendation, and
robust and trustable AI. He is the Co-Director of NExT, a joint
research Center between NUS and Tsinghua University, and Sea-
NExT, a joint Lab between Sea Group and NExT. Dr. Chua is the
recipient of the 2015 ACM SIGMM Achievements Award, and the
winner of the 2022 NUS Research Recognition Award. He is the
Chair of steering committee of Multimedia Modeling (MMM) con-
ference series, and ACM International Conference on Multimedia
Retrieval (ICMR) (2015-2018). He is the General Co-Chair of ACM
Multimedia 2005, ACM SIGIR 2008, ACM Web Science 2015, ACM
MM-Asia 2020, and the upcoming ACM conferences on WSDM
2023 and TheWebConf 2024. He serves in the editorial boards of
three international journals. Dr. Chua is the co-Founder of two
technology startup companies in Singapore. He holds a PhD from
the University of Leeds, UK.

6 Program Committee
We appreciate the reviewers’ efforts and would like to thank the
members of the PC for their valuable support: JieerOuyang (Huawei
Singapore Research Center), Bingzheng Gan (Huawei Singapore
Research Center), Tianyi Zhang (Huawei Singapore Research Cen-
ter), Teo Shu Xian (Huawei Singapore Research Center)

7 Workshop Statistics
We would like to thank the ACM MM’24 conference organizers
for agreeing to host our workshop and for their support, and all
reviewers for their time and helpful contributions. The workshop
in its first edition attracted 10 submissions, where 5 were accepted
for publication. In addition, we invite three keynote speakers to
present their original research in this field.

References
[1] Zheng Wang, Bingzheng Gan, and Wei Shi. 2024. Multimodal query suggestion

with multi-agent reinforcement learning from human feedback. In Proceedings of
the ACM on Web Conference 2024. 1374–1385.

[2] Zheng Wang, Cheng Long, Shihao Xu, Bingzheng Gan, Wei Shi, Zhao Cao, and
Tat-Seng Chua. 2023. LGM3A’23: 1st Workshop on Large Generative Models Meet
Multimodal Applications. In Proceedings of the 31st ACM International Conference
on Multimedia. 9744–9745.
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Multi-Modal Generative AI with Foundation Models 
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ABSTRACT 
Generating photorealistic and controllable visual contents has 
been a long-pursuing goal of artificial intelligence (AI), with 
extensive real-world applications. It is also at the core of 
embodied intelligence. In this talk, I will discuss our work in AI-
driven visual context generation of humans [1, 2], objects [3] and 
scenes [4], with an emphasis on combining the power of neural 
rendering with large multimodal foundation models [5]. Our 
generative AI framework has shown its effectiveness and 
generalizability on a wide range of tasks.   
 
CCS Concepts/ACM Classifiers 
• Computing Methodologies → Artificial Intelligence → 
Computer Vision 

Author Keywords 
Computer vision; deep learning; generative AI; multimodal 
learning; foundation models 

 
BIOGRAPHY  
Prof. Ziwei Liu is currently a Nanyang Assistant Professor at 
Nanyang Technological University, Singapore. His research 
revolves around computer vision, machine learning and 
computer graphics. He has published extensively on top-tier 
conferences and journals in relevant fields, including CVPR, 
ICCV, ECCV, NeurIPS, ICLR, SIGGRAPH, TPAMI, TOG and 
Nature - Machine Intelligence, with around 30,000 citations. He is 
the recipient of Microsoft Young Fellowship, Hong Kong PhD 
Fellowship, ICCV Young Researcher Award, HKSTP Best Paper 
Award, CVPR Best Paper Award Candidate, WAIC Yunfan 
Award and ICBS Frontiers of Science Award. He has won the 
championship in major computer vision competitions, including 
DAVIS Video Segmentation Challenge 2017, MSCOCO Instance 
Segmentation Challenge 2018, FAIR Self-Supervision Challenge 

2019, Video Virtual Try-on Challenge 2020 and Computer Vision 
in the Wild Challenge 2022. He is also the lead contributor of 
several renowned computer vision benchmarks and softwares, 
including CelebA, DeepFashion, MMHuman3D and MMFashion. 
He serves as an Area Chair of CVPR, ICCV, NeurIPS and ICLR, as 
well as an Associate Editor of IJCV. 
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ABSTRACT 

Exciting progress has been made in multimodal video 
intelligence, including both understanding and generation, these 
two pillars in video. Despite being promising, several key 
challenges still remain. In this talk, I will introduce our attempts 
to address some of them. (1) For understanding, I will share All-
in-one, which employs one single unified network for efficient 
video-language modeling, and EgoVLP, which is the first video-
language pre-trained model for egocentric video. (2) For 
generation, I will introduce our study of efficient video diffusion 
models (i.e., Tune-A-Video, 4K GitHub stars). (3) Finally, I would 
like to discuss our recent exploration, Show-o, one single LLM 
that unifies multimodal understanding and generation. 
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Abstract
Current diffusion models can generate photorealistic images from
text prompts but often struggle to correctly associate the attributes
mentioned in the text with the appropriate objects in the image.
To address this issue, we propose focused cross-attention (FCA),
which controls visual attention maps using syntactic constraints
from the input sentence. Additionally, the syntactic structure of
the prompt aids in disentangling the multimodal CLIP embeddings
commonly used in text-to-image (T2I) generation. The resulting
DisCLIP embeddings and FCA can be easily integrated into state-of-
the-art diffusion models without requiring additional training. We
demonstrate significant improvements in T2I generation, particu-
larly in the accurate binding of attributes to objects, across multiple
datasets.
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1 Introduction
Text-to-image synthesis (T2I) refers to the process of generating
visual content based on textual input, with the goal of creating real-
istic images that accurately match the provided descriptions. Recent
advances in this field are mainly attributed to the introduction of
large-scale diffusion models trained on millions of text-image pairs,
such as DALL-E 2 [15], GLIDE [12], Imagen [19], and open-source
models like Stable Diffusion [18]. While these models produce high-
quality, photorealistic images, their performance declines when
multiple objects are mentioned in the textual prompts due to incor-
rect attribute-to-object binding [3, 15, 17, 19]. These models often
associate objects with their most common attributes; for example,
given the prompt "a golden car and a red watch," the model might
generate a golden watch and a red car. Additionally, they can spread
an attribute’s influence across multiple objects (attribute leakage).
For instance, the prompt "a golden ingot and fish" might result in a
goldfish and a golden ingot [17].

To address the issue of incorrect binding between objects and
their attributes, we propose two components that leverage the syn-
tactic structure of text prompts and integrate them into diffusion-
basedmodels without requiring additional training. The term "training-
free" refers to the use of pre-trained diffusion models on large-scale
data, as commonly done in the literature. The first component, fo-
cused cross-attention (FCA), constrains the visual attention maps
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using the syntactic structure found in the input sentence. FCA en-
sures that the attention given to attributes is restricted to the same
spatial locations as their corresponding objects. The second com-
ponent uses the syntactic structure to disentangle the multimodal
prompt embeddings commonly used in T2I generation. We intro-
duce a novel encoding called disentangled CLIP (DisCLIP), which
relies on a syntax parser to generate a constituency tree from the
sentence, mitigating the entanglement issues observed with tradi-
tional CLIP encodings. Both FCA and DisCLIP lead to improved
attribute binding and a reduction in attribute leakage. An additional
benefit is their easy integration into any diffusion-based T2I model.

2 Related Work
The introduction of diffusion models [12], combined with classifier-
free guidance [8], has led to significant improvements in image
quality. However, Rassin et al. [17] highlight that T2I models still
face issues with concept leakage and homonym duplication. Addi-
tionally, Petsiuk et al. [13] and Binyamin et al. [2] show that these
models perform poorly on sentences containing multiple objects,
attributes, and relationships. To address these problems, many mod-
els have improved spatial control of image generation by leveraging
spatial constraints in the form of scene layouts to guide the diffu-
sion process. This guidance is typically achieved by using additional
resources that detect objects and their bounding boxes or segments
in the image and by exploiting the object label and region associa-
tions of the attention maps (e.g., [1, 4, 5, 7, 9, 10, 21, 23, 24, 26]), or
by using sketches, as done by ControlNet [28]. In this work, we do
not rely on such additional resources but instead use the syntactic
structure of the text prompt to provide guidance.

Feng et al. [6] adapt the Stable Diffusion backbone to attend to
multiple encodings representing the syntactic constituents of the
text prompt. Similar to this work, which we use as a baseline, we
leverage the syntax of the text prompt but explicitly exploit syn-
tactic dependencies to bind attributes to objects, leading to better
T2I generation. Attend-and-Excite [3] improves the cross-attention
between objects mentioned in the text prompt and the image em-
beddings, demonstrating that their method is particularly suited for
generating multiple objects. Zhang et al. [27] address the generation
of multiple objects by learning their masked regions in the image.
Using a set of loss functions, a diffusion-based model gradually
learns to allocate the objects and their attributes to the designated
masked regions and to prevent overlapping over the regions of other
objects and the background. SynGen [16] syntactically analyzes
the prompt and uses this information in appropriate loss functions
to enhance the similarity between the attention maps of objects
and their attributes while increasing the distance between these
attention maps and those of other words in the prompt. We show
that the proposed FCA and DisCLIP encoding can be seamlessly
integrated into state-of-the-art T2I generation baselines, including
Attend-and-Excite and SynGen, and improve their results.

3 Preliminaries
Cross-Attention in Diffusion Models. The diffusion models [12, 18,

19] are defined based on U-Nets that use cross-attention layers to
condition a denoising network 𝜖𝜃 on a text prompt 𝑦. A common
implementation of this cross-attention uses query (here encoded

image), key and value (here encoded text) attention of Vaswani
et al. [22] to calculate the cross-attention maps 𝐴𝑙𝑡 ∈ Rℎ×𝑤,𝑛 for
each layer 𝑙 and timestep 𝑡 of the denoising process:

𝑄𝑙𝑡 = 𝑥
𝑙
𝑡𝑊

𝑙
𝑄 , 𝐾

𝑙 = 𝑦𝑊 𝑙
𝐾 , 𝑉

𝑙 = 𝑦𝑊 𝑙
𝑉 (1)

𝐴𝑙𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(𝑄𝑙𝑡 (𝐾𝑙 )T√

𝑑

)
, 𝑓 𝑙𝑡 = 𝐴𝑙𝑡𝑉

𝑙 (2)

where𝑊 𝑙
𝑄
represents a linear layer transforming 𝑥𝑙𝑡 into the queries

𝑄𝑙𝑡 ∈ Rℎ×𝑤,𝑑 , where 𝑑 denotes the feature dimension. Similarly,
𝑊 𝑙
𝐾
and𝑊 𝑙

𝑉
transform 𝑦 into keys 𝐾𝑙 ∈ R𝑛,𝑑 and values 𝑉 𝑙 ∈ R𝑛,𝑑 .

𝑓 𝑙𝑡 ∈ Rℎ×𝑤,𝑑 represents the output features of the cross-attention
layer.

4 Methods to Improve Object-Attribute Binding
in T2I Generation

We propose two training-free methods to enhance the text condi-
tioning of diffusion models. The first method, called focused cross-
attention (FCA), utilizes a syntactic parse of the text prompt to
confine the attention of an attribute to the regions where the corre-
sponding object is active. This approach integrates seamlessly with
diffusion models that rely on large language encoders trained solely
on text. The second method introduces a new disentangled CLIP
representation (DisCLIP), addressing the attribute binding issues
found in standard CLIP embeddings [15]. DisCLIP also incorporates
a syntactic parse of the text prompt.

4.1 Focused Cross-Attention (FCA)
To improve the binding of attributes to the correct objects, we
restrict the attention of attributes to regions where their corre-
sponding object has attention as well. Attribute dependencies are
obtained from a dependency parse of the sentence and implemented
in a binary matrix 𝐷 ∈ {0, 1}𝑛×𝑛 , representing for each token of 𝑦
the token on which it is dependent. 1 Diffusion with FCA operates
using two denoising model traversals, as formalized in Algorithm
1. In the first traversal, standard cross-attention 𝐴𝑙𝑡 is used, from
which the average attention maps 𝐴∗ are obtained by averaging
𝐴𝑙𝑡 over each layer 𝑙 and timestep 𝑡 . From these attention maps, we
obtain the focus mask 𝐹mask ∈ {−∞, 0}ℎ×𝑤,𝑛 and calculate FCA as
follows:

𝐹mask = 𝛿
(
𝐴∗𝐷T), with (3)

𝛿
(
𝑏𝑖 𝑗

)
= −∞ if

𝑏𝑖 𝑗 −min
𝑝

(
𝑏𝑝 𝑗

)
max
𝑝

(
𝑏𝑝 𝑗

)
−min

𝑝

(
𝑏𝑝 𝑗

) < 𝑠, else 0 (4)

FCA
(
𝑄,𝐾,𝑉 , 𝐹mask

)
= softmax

( 𝐹mask +𝑄𝐾T
√
𝑑

)
𝑉 (5)

where the threshold 𝑠 is a hyperparameter and 𝛿 is a function that
operates on each cell 𝑏𝑖 𝑗 of 𝐴∗𝐷T. 𝐹mask = −∞ for the attributes’
cross-attention map regions where its corresponding object has
a normalized attention map value less than 𝑠 . By replacing the
cross-attention of 𝜖𝜃 (𝑥𝑡 , 𝑦, 𝑡) with FCA (Equation 5), we obtain
𝜖𝜃,𝐹𝐶𝐴 (𝑥𝑡 , 𝑦, 𝑡, 𝐹mask). 𝜖𝜃,𝐹𝐶𝐴 is then used to obtain the output im-
age I∗ in a second model traversal with FCA. Dimensions𝑤 ×ℎ are
1The dependency matrix can implement complex relationships involving multiple
objects and their respective attributes.
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Algorithm 1 Diffusion with FCA
Input: sentence encoding 𝑦 attribute dependencies 𝐷
𝑥𝑇 ← 𝑁

(
0, 𝐼

)
for 𝑡 ← 𝑇 ...1 do
𝑧𝑡−1, {𝐴𝑙

𝑡 } ← 𝜖𝜃
(
𝑥𝑡 , 𝑦, 𝑡

)
𝑥𝑡−1 ← 𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑥𝑡 , 𝑧𝑡−1

)
end for
𝐴∗ ← 𝐴𝑙

𝑡

𝐹mask ← 𝛿
(
𝐴∗𝐷T )

𝑥∗
𝑇
← 𝑥𝑇

for 𝑡 ← 𝑇 ...1 do
𝑧∗𝑡−1 ← 𝜖𝜃,𝐹𝐶𝐴

(
𝑥∗𝑡 , 𝑦, 𝑡, 𝐹mask

)
𝑥∗𝑡−1 ← 𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑥∗𝑡 , 𝑧

∗
𝑡−1

)
end for
Output: image I∗ ← 𝑥∗0

not the same for different layers 𝑙 in 𝜖𝜃 . We use cubic interpolation
to the largest layer size to average 𝐴𝑙𝑡 over layers of different sizes.
Max pooling is used to project 𝐹mask back to the correct layer size
of 𝑙 .

4.2 Disentangled CLIP Encoding (DisCLIP)
A CLIP encoding of a sentence includes embeddings of each word,
concatenated with a sentence embedding and padding embeddings
[14]. T2I models based on CLIP encodings often struggle with image-
text alignment [19]. We propose a novel training-free variation of
CLIP, called DisCLIP. DisCLIP utilizes a syntactic parser to derive
a hierarchical representation of the text prompt in the form of a
constituency tree. By replacing noun phrases in the higher layers of
the tree with their head nouns, we create an abstracted constituency
tree.This tree encodes compositional information, including explicit
object-attribute bindings. The tree is then used to disentangle the
CLIP representation of the text prompt. We independently encode
the entire prompt or sentence, and each constituent of the tree with
CLIP (removing padding embeddings), and concatenate the result-
ing embeddings. When used with FCA, an extra row and column are
added to 𝐷 for each additional constituent embedding, indicating a
dependency between the added constituent and the nouns present
within it. The results below demonstrate that DisCLIP mitigates
the problem of object-attribute binding.

5 Experimental Set-up
5.1 Datasets and Metrics
We evaluate the object-attribute binding of the models on Concept
Conjunction 500 (CC-500) [6] and the Attend-and-Excite (AE-276)
[3] datasets. Additionally, we report results on a novel dataset
called Difficult Adversarial Attributes (DAA-200), specially defined
for evaluating object-attribute binding in T2I generation. DAA-
200 uses the image-graph pairs of Visual Genome to obtain 100
quadruplets of the form {attribute 1, object 1, attribute 2, object 2}.
These quadruplets can be represented in a simple graph with the
two objects as nodes and one attribute for each node. From each
graph, an adversarial graph is generated by swapping the attributes
of both objects. For each of the 200 graphs a sentence of the form
⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1⟩⟨𝑜𝑏 𝑗𝑒𝑐𝑡1⟩𝑎𝑛𝑑 ⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒2⟩⟨𝑜𝑏 𝑗𝑒𝑐𝑡2⟩.” is generated. To
ensure that we have difficult adversarial examples, for DAA-200
we picked examples from Visual Genome where both objects occur
multiple times in Visual Genome with each of the attributes.

We use two human evaluations to assess the image fidelity and
image-text alignment. First, we ask annotators to compare two
generated images and indicate which image demonstrates better
image-text alignment and image fidelity. Second, following Feng
et al. [6], we ask annotators whether the two objects of the CC-500
samples are present in the generated images and whether they are
in the correct color. We also ask whether a part of the object is in the
color of the other object to assess how many attributes are leaked
to the wrong objects. The human evaluation was executed with the
use of the Amazon Mechanical Turk and Clickworker platforms.
Results are shown in Tables 1-2.

5.2 Models and Hyperparameters
We use open source T2I diffusion models and expand these with
the FCA component and DisCLIP encoding of the text prompt. We
do not show results for the method introduced in [27] as the code
of the method is not yet available.
Stable Diffusion SD is trained on a filtered version of the LAION-
5B [20] dataset, uses the latent diffusion architecture of Rombach
et al. [18] and uses a frozen CLIP [14] model as the text encoder.
Attend-and Excite AE refers to the original Attend-and-Excite
model [3]. It builds on Stable Diffusion and is designed to improve
the generating of multiple objects mentioned in the text prompt by
focusing the attention on nouns appearing in the text prompt.
Versatile Diffusion VD extends an existing single flow diffusion
pipeline into a multitask multimodal network that handles T2I,
image-to-text and image-variation generation [25].
SynGen [16] relies on loss functions to align objects with their
attributes.
Structure Diffusion adapts the Stable Diffusion model to attend
to multiple encodings of syntax constituents of the text prompt [6].
The above models are used as baselines.
SDFCA+DisCLIP, AEFCA+DisCLIP, SynGenFCA+DisCLIP and
VDFCA+DisCLIP integrate FCA and DisCLIP into Stable Diffusion,
Attend-and-Excite, SynGen and Versatile Diffusion, respectively.

All comparisons use the same seeds for each model with 50 diffu-
sion steps and a guidance scale of 7.5. Dependency and constituency
parses are obtained with the LAL-parser of Mrini et al. [11]. The
hyperparameter 𝑠 used to implement FCA is set to 0.6. The value
was selected by measuring the classification accuracy in % on the
ground truth images of DAA-200. When quantitatively evaluat-
ing the T2I generation, for DAA-200, we generate 10 images per
prompt; for CC-500 we follow Feng et al. [6] and generate 3 images
per prompt; for AE-276 we generate three images per prompt.

6 Results and Discussion
In this section, we discuss the results obtained on datasets that
challenge object-attribute binding, which are DAA-200, CC-500
and AE-276 datasets. Table 1 presents the results of the human eval-
uation. Observe that for DAA-200, CC-500 and AE-276 our methods
outperform the baselines considering image-text alignment and all
baselines but one with regard to image fidelity. The largest increase
is seen on CC-500 where our methods outperform other models by
4-25 percentage points on alignment and 8-15 percentage points on
fidelity. We hypothesize that T2I generation struggles when it is not
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Table 1: Percentage of cases in which our FCA and DisCLIP
modules generate better (win) or worse (lose) alignment and
T2I fidelity than their baselines. Structure Diffusion is an
adaptation of the Stable Diffusion (𝑆𝐷) for object-attribute
binding. Therefore Stable Diffusion enhanced with our mod-
ules, FCA and DisCLIP (SDFCA+DisCLIP) is compared only
with the Structure Diffusion.

ours Alignment Fidelity

Benchmark v.s. Win ↑ Lose ↓ Win ↑ Lose ↓

DAA-200
StructureDiffusion 36.1 34.0 37.0 32.9
Attend-and-Excite 32.5 28.5 37.0 38
Versatile Diffusion 34.2 31.3 37.3 33.8

SynGen 33.2 30.3 36.2 32.7

CC-500
StructureDiffusion 32.4 28.2 43.3 28.4
Attend-and-Excite 49.7 24.5 45.8 31.8
Versatile Diffusion 28.1 27.7 37.5 33.1

SynGen 36.5 34.4 39.7 34.7

AE-276
StructureDiffusion 36.2 27.8 45.6 33.3
Attend-and-Excite 36.3 27.1 39.8 36.9
Versatile Diffusion 29.3 27.3 29.2 30.7

SynGen 31.3 34.2 34.6 35.1

Table 2: Results of the human evaluation obtained on CC-
500. We show how often (in %) each model is able to correctly
(with the correct color) generate at least one object / the two
objects of the CC-500 captions. Leakage displays how often
(in %) an object is at least partially generated with the color
of the wrong object.

Methods Two objects ↑ Atleast one object ↑ Leakage ↓
Stable Diffusion 20.7 76.9 64.9
StructureDiffusion 21.2 77.2 63.9
SDDisCLIP+FCA (ours) 22.2 80.8 56.8

Attend-and-Excite AE 46.8 88.4 65.4
AEFCA+DisCLIP (ours) 60.2 94.3 64.5

Versatile Diffusion VD 23.4 72.8 77.5
VDFCA+DisCLIP (ours) 25.6 76.3 69.7

SynGen 45.3 90.3 32.1
SynGenFCA+DisCLIP (ours) 47.2 91.2 27.4

straightforward which attribute belongs to which object. Because
color attributes often co-occur with many objects, the captions of
CC-500 are especially difficult for T2I models (as they contain only
color attributes). This leads to a larger improvement for our models
that explicitly bind attributes to certain regions, as can be seen in
Figure 1b. DAA-200 and AE-267, on the other hand, contain diverse
categories of attributes. Base models are good at generating the
most expected attribute binding. Unlike our models, they perform
poorly when attributes are switched. An example is shown in Fig-
ure 1a where all models perform well on the prompt “yellow grass
and silver fence” but only our models perform well on the prompt
“Silver grass and yellow fence”. Although SynGen already achieves
accurate object-attribute alignments, when augmenting this model
with FCA and DisCLIP, the image quality is enhanced the leakage
is decreased. Table 2 successfully evaluates object-attribute bind-
ing of the proposed methods by conducting a human evaluation
that checks whether each object of CC-500 is generated with the

Figure 1: Qualitative results that show that the FCA and
DisCLIP enhanced models improve attribute binding and
decrease attribute leakage in images from (a) DAA-200 and
(b) CC-500.

correct color. We perform this analysis on CC-500 as the attributes
are only colors that are associated with a wide range of objects.
SDDisCLIP+FCA and IFFCA decrease leakage by 8 and 2.5 percentage
points, respectively.

7 Conclusion
We have proposed training-free methods to emphasize the impor-
tance of integrating linguistic syntactic structures in T2I generation.
We demonstrated their easy and successful integration in state-of-
the-art T2I diffusion models leading to an improved object-attribute
binding and to a decrease in attribute leakage in the generated im-
age.
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Abstract
Geometry mathematics problems pose significant challenges for

large language models (LLMs) because they involve visual elements

and spatial reasoning. Current methods primarily rely on symbolic

character awareness to address these problems. Considering ge-

ometry problem solving is a relatively nascent field with limited

suitable datasets and currently almost no work on solid geometry

problem solving, we collect a geometry question-answer dataset by

sourcing geometric data from Chinese high school education web-

sites, referred to as GeoMath. It contains solid geometry questions

and answers with accurate reasoning steps as compensation for

existing plane geometry datasets. Additionally, we propose a Large

Multi-modal Model (LMM) framework named Geo-LLaVA, which

incorporates retrieval augmentation with supervised fine-tuning

(SFT) in the training stage, called meta-training, and employs in-

context learning (ICL) during inference to improve performance.

Our fine-tuned model with ICL attains the state-of-the-art perfor-

mance of 65.25% and 42.36% on selected questions of the GeoQA

dataset and GeoMath dataset respectively with proper inference

steps. Notably, our model initially endows the ability to solve solid

geometry problems and supports the generation of reasonable solid

geometry picture descriptions and problem-solving steps. Our re-

search sets the stage for further exploration of LLMs in multi-modal

math problem-solving, particularly in geometry math problems.
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and reasoning; Natural language processing; Computer vi-
sion representations.
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1 Introduction
There has been an increased interest in using deep learning mod-

els, especially LMMs, for addressing computer vision challenges

recently. Aligning image adapters with large language models has

achieved remarkable success in image captioning and visual ques-

tion answering (VQA), highlighting their powerful reasoning and vi-

sual understanding capabilities [8]. Despite their accomplishments

in these areas, there has been limited investigation into utilizing

LLMs for more complex multi-modal math problems, particularly

geometry-related ones.

The debate between symbolic and probabilistic approaches in

mathematical reasoning persists. Traditionally, solving geometry

problems involves analyzing diagrams and texts, converting them

into logical expressions using formal symbolic language, and ap-

plying predefined geometry theorems to find solutions [11, 33].

Alternatively, geometry problem-solving can be viewed as text gen-

eration with multi-modal input, which is more generalized and

applicable to a broader range of mathematical problems, including

trigonometry and vector graphics. By examining probabilistic ap-

proaches, we can better understand their strengths and limitations,

leading to more effective strategies for solving geometry problems.

Current Large Multi-modal Models (LMMs) have shown promis-

ing capabilities in visual understanding and question-answering

tasks, as demonstrated by models such as BLIP-2 [20], LLaVA [22],

Flamingo [3], MiniGPT4 [34], and InstructBLIP [12]. However, these

models still lack a deep comprehension of geometry images, which

is crucial for solving geometry problems. Additionally, existing

small language models often lack the mathematical reasoning abili-

ties to solve complex math problems effectively.

In this paper, we propose a solution to the challenges of multi-

modal math problem-solving by introducing an LLM framework

called Geo-LLaVA. The main contributions of this paper include:

• We form a geometry question-answer dataset, GeoMath,

with reasoning steps from Chinese high school education

websites and expand the dataset by collecting more data

from existing datasets such as GeoQA+ [11], Unigeo [10],

and PGPS9K [33], and creating reasoning steps for them.

• We employ a new LLM framework named Geo-LLaVA with

around 13 billion parameters. It can effectively generate rea-

soning steps and answers, which is the first model exploring

both plane and solid geometry problems.
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 of circle  and angle between chord 
are  . The tangent line  passing through
point  intersects the extension of  at point

. What is the value of ?
A.   B.  C.   D. 

 is the tangent line of circle , so . Because , then
. In triangle , .

Therefore, the answer is C. Answer C.

Since the tangent line is perpendicular to the radius, the angle between the tangent line
and the chord  is also . Now, we can use the properties of parallel lines to find
the value of angle . Since the tangent line and the extension of   are parallel, the
angle between them is . Since the angle between the tangent line and the chord 
is also , the angle between the extension of  and the chord  is

. Therefore, the value of  is .

To solve for the value of , we can use the properties of a circle and its tangent line.
The angle formed by a tangent and a chord through the point of contact is equal to the
angle in the alternate segment. This means that  is equal to . The angle

 is half the angle at the center of the circle subtended by the same arc as the
angle on the circumference. Since  is the diameter,  is half of , which
makes it . Therefore, . Triangle ACP is an isosceles
triangle because . The sum of angles in any triangle is . Therefore, we
can calculate : , ,

.

LLaVA-1.5

GPT-4V

Geo-LLaVA

User

Figure 1: Example of geometry question answering. LLaVA-
1.5 often provides a vague image description, omitting many
details and leading to wrong answers. GPT-4V struggles to
understand geometry graphs, resulting in incorrect answers.
In contrast, our Geo-LLaVA offers concise and accurate solu-
tions to geometry problems.

• As far as we know, this is the first multimodal meta-training

[24] method to enhance geometry problem-solving ability,

which shows the state-of-the-art performance on multiple

geometry datasets, including GeoQA+ and GeoMath.

2 Related Work
Meta-Training Approaches. The general issue of meta-training

[28], which encompasses few-shot learning, has been studied for

numerous years. Recently, meta-training has emerged as a signifi-

cant technique in machine learning. Using prior knowledge, it aims

to create models that can swiftly adapt to new tasks with minimal

data. meta-training is particularly pertinent in geometry problem-

solving, where the diversity of problems can vary greatly. The most

recent meta-training models, such as MAML [15], Hypernetworks

[18], and [27], have shown promise in rapidly adapting to new tasks

with few-shot learning capabilities.

Multi-Modal Large Language Model. Concurrently, the success of
LLMs has inspired investigations into vision-language interaction,

resulting in the development of multi-modal large language models

(MLLMs) [1, 7, 12, 20, 22, 32]. These models have demonstrated re-

markable abilities in generating detailed descriptions and engaging

in dialogue based on visual inputs. Nonetheless, we observe that

even the most advanced MLLMs struggle with resolving geometric

problems using diagrams and figures.

Geometry Problem Solving by LLMs. Recently, math-specific LLMs

such as Llemma [6] and Mathcoder [31] have shown significant

capabilities in text-only mathematical reasoning tasks and are com-

petitive with general large language models like GPT-4 [2] and

PaLM-2 [4] on a much smaller scale. Notably, AlphaGeometry [30]

has exhibited impressive performance in solving challenging geom-

etry problems, though it cannot process images and must rely on

text descriptions. Current math-specific multimodal models, such

as G-llava [16], UniMath [21], and UniChart [23], are primarily

focused on plane geometry or chart-based problems and still lag

behind general multimodal models such as GPT-4V [1] in bench-

mark testing. Yet, no works have utilized RAG or meta-training

techniques on geometric problem-solving.

3 Method
The Geo-LLaVA model, illustrated in Figure 1, consists of a retrieval

network and an LMM backbone. The retrieval network’s role is to

fetch similar questions and their solutions as in-context samples

during the training and inference phases. In the following section,

we offer a comprehensive overview of the design process for our

retrieval network. Next, we delve into our method of fine-tuning the

model using image captioning, question-answering, and geometry

math-solving datasets through Meta in-context learning. Lastly,

we will describe how we have integrated a multi-modal chain of

thoughts (CoT) during the inference phase to boost the model’s

performance even further.

3.1 Retrieval Network
In this study, similar to CLIP [26], we implemented a dual-tower

network framework for retrieval tasks. Specifically, the pre-trained

ViT-L-14 [14] and Bert [13] (Bert-base-uncased) models were ap-

plied as the image and language encoders, respectively. We inte-

grated two adapter layers into each encoder to ensure compatibility

between these encoders. These adapter layers comprise three linear

layers with ReLU activation functions, designed to harmonize the

embedding dimensions of both encoders.

The Bert model [13] was chosen as the language encoder due

to its strong performance in natural language processing tasks.

Importantly, we transformed math-specific tokens absent in the

BERT pre-trained vocabulary into words (e.g., △ → triangle, ⊥→
perpendicular to) during the preprocessing stage. We believe the

BERT model can effectively grasp the meaning of inputs related

to geometric problems. Similarly, the ViT-L-14 [14] model was se-

lected as the image encoder for its outstanding performance in

image recognition tasks. This model employs a transformer-based

architecture, which is particularly adept at processing visual infor-

mation. However, the pre-trained ViT model may not generalize

well to geometric math images. As a result, we retrained the pa-

rameters of the two adapter layers and the ViT model from scratch

using question-image pairs with the InfoNCE loss, a contrastive

learning technique recognized for its efficacy in training neural net-

works for retrieval tasks. This loss function encourages the model

to learn meaningful representations of the input question and the

corresponding image, promoting accurate information retrieval.
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Meta-prompt

Question Retrieval Network

Meta-training Dataset IC Dataset

Step 1: Retrieval Model Training

CLIP Image
Encoder 

CLIP Text
Encoder

FNN FNN

Contrastive Loss

+

User: The top image displays a geometry exam
question, including the <QUESTIONk, SOLUTIONk,
ANSWERk>. Based on the problem and solution
presented above, along with the image at the bottom,
solve the following geometry question:<QUESTION>

LMM: <SOLUTION, ANSWER>

VQA Dataset

User: Can you describe the image?

LMM: <IMAGE CAPTION>

User: <QUESTION>

LMM: <SOLUTION,
ANSWER>

Geo-LLaVALoRA 

<QUESTION>

Step 2: Data Augmentation

Step 3: Fine-tuning

Geo-LLaVA

+

User: The top image displays a geometry exam
question, including the <QUESTIONk,
SOLUTIONk, ANSWERk>. Based on the problem
and solution presented above, along with the
image at the bottom, solve the following geometry
question:<QUESTION>

Question Retrieval NetworkK Retrieval Questions

K Retrieval Questions

<SOLUTION, ANSWER>

Training Stage Inference Stage

<QUESTION>

Figure 2: The overview of Geo-LLaVAmodel architecture. The training process includes three steps: training the retrieval model,
augmenting data with the meta-training dataset, and fine-tuning the Language Model with the LoRA module. The question
retrieval network is trained using inputs from a CLIP text encoder and a CLIP image encoder, supervised by a contrastive loss.
FNNs represent feedforward networks. During the fine-tuning step, a LoRA [19] is introduced for efficient fine-tuning and
improved results.

3.2 LMM backbone
This study utilized the pre-trained LLaVA1.5-13B [22] as the LMM

backbone. This model leverages the renowned LLaMA-2 [29] for

advanced language processing tasks and incorporates the CLIP

[25] visual encoder ViT-L/14 [14] for sophisticated visual compre-

hension. The integration involves a Multi-Layer Perceptron (MLP)

based vision-language connector that aligns the outputs of the vi-

sion encoder with the language model. This alignment is crucial

as it significantly enhances the model to handle and understand

multi-modal data effectively.

3.3 Datasets for Multi-Modal Geometric
Concepts and Reasoning

To address the limitations of existing models in understanding and

reasoning about multi-modal geometric concepts, we developed

three specialized geometry datasets:

• GeoMath-IC (Image-Context): This dataset includes images

paired with simple yet comprehensive descriptions and aims

to bridge the gap between visual inputs and textual descrip-

tions in geometric concepts.

• GeoMath-QA (Question-Answer): This dataset focuses on

providing questions with detailed reasoning steps. The ques-

tions are designed to challenge the model’s understanding

and reasoning capabilities regarding geometric concepts.

• GeoMath-Meta: This dataset includes a range of geometry

problems that require the model to generalize from its learn-

ing on GeoMath-IC and GeoMath-QA.

These datasets were subsequently used to fine-tune the model using

Low-Rank Adaptation (LoRA) [19]. Detailed information about the

dataset creation process and examples can be found in Section 4.2.1.

We adopted the input format from the original Flamingo model,

which efficiently integrates visual and linguistic elements to en-

hance their synergistic interaction. This structured input format

involves specific templates and prompts that guide the model in

understanding the context and relationships between the visual

and textual components.

3.4 Enhancing In-Context Learning
To further improve the model’s in-context learning capabilities,

especially for smaller models, we explored using meta-training [24].

This approach enhances the performance of the model by providing

relevant context during the fine-tuning stage. The procedure in-

volves the following steps: 1) Contextual Retrieval: For each input

sample, we retrieved the 𝐾 most similar samples from the training

data, ensuring that the input sample itself is excluded, where 𝐾 is

set to 1 in this paper. This retrieval is based on semantic similarity

metrics, ensuring the context is highly relevant. 2) Concatenation

and Fine-Tuning: The retrieved texts and corresponding images are

concatenated with the input sample. This concatenated form is used

to fine-tune the LMM, aligning it better with the reasoning required

for tasks. Since the pre-trained LLaVA only supports single-image

input, we vertically merge 𝐾 images into a single image.

The detailedmethodologies and the careful orchestration of these

components can be referenced throughout the underlying sections

of the study, particularly in Section 4.2.1 and Figure 2.

4 Experiment
4.1 Dataset
In this study, we collected about 10K solid geometry multimodal

QA datasets from the 21st-century education website in China,

named GeoMath dataset. All Chinese contents in these datasets are

 

13



LGM3A ’24, October 28-November 1 2024, Melbourne, VIC, Australia Shihao Xu, Yiyang Luo, & Wei Shi

automatically translated to English using ChatGPT3.5. The detailed

statistics of these three datasets are shown in Table 1. In addition,

to supplement the data of solid geometry, we formed the geometry

data from two existing datasets (GeoQA+ [9] and PSDK9K), which

include images of plane geometry as well as questions and answers.

Table 1: The detailed statistics of four datasets. Each row rep-
resents the number of samples of specific types. The number
inside the brackets represents the number of test samples.

Stat. type

Dataset

GeoQA PSDK-9K UniGeo GeoMath

QA-selection 12526(1509) 9986(1047) - 4258(404)

QA-cloze - - - 1423 (150)

QA-proving - - 9309(2899) 3474 (352)

Image-text pairs 4406 4000 - 4540 (453)

Provide solution

√
-

√ √

4.2 Setup Details
4.2.1 Data Augmentation. Paraphrasing by LLMs can generate a

more diverse set of training examples and has been widely used

for data augmentation. Similarly, we adopt GPT3.5 [2] for image

caption and question-answering samples followed by a translation

from Chinese to English and employ text rewriting to increase

variety. We utilize an LLM to rephrase the input text in 5 different

ways, resulting in a six times larger sample size for image caption

and QA. For the GeoMath-Meta dataset, the retrieval model selects

the top 5 samples with the highest similarity to construct the data

for Metatraining. This ensures consistency in the quantity of the

final samples and QA pairs.

4.2.2 Training settings. We select LLaVA-1.5 [22], a large multi-

modal model that combines the strengths of LLaMA-2 [29] and

fine-tuned retrieval model [25], for our experiments. All experi-

ments are conducted with consistent parameter settings during

the LoRA fine-tuning phase. Specifically, we use a learning rate of

2 × 10
−4

with a cosine learning rate scheduler and train the model

for 5 epochs. The maximum token generation length is 2048. The

batch size per GPU is 4, and we use gradient accumulation steps

set to 4. We initially evaluate the experiments on the validation set

to identify the best results, which are subsequently tested on the

test set.

4.3 Experiment results
Table 2 summarizes the main results on GeoQA+ and GeoMath

datasets. Three small-size LMMs (G-llava [16], OpenFlamingo [5]

and LLaVA [22]) for both zero-shot and finetuning and two ex-

tremely large LMMs (Bard [17] and ChatGPT-4V [1]) are chosen as

baseline models. We finetuned the model 5 times to calculate the

mean and standard deviation of the evaluation metric.

The experiment results, summarized in Table 2, demonstrate the

performance of various models across the GeoQA+ and GeoMath

datasets, alongside an ablation study exploring the incremental

application of techniques in our model. The proposed Geo-LLaVA-

13B model showed significant improvements compared to the GPT-

4V and Bard through the sequential addition of the GeoMath-IC,

Table 2: The accuracy of various models across different
datasets. Additionally, an ablation study is presented, illus-
trating the sequential application of different techniques
for solving geometry mathematics problems. IC, QA, and
MT stand for adding the GeoMath-IC, GeoMath-QA, and
GeoMath-Meta datasets for training respectively.We indicate
whether providing few-shot samples in the inference phase
using ’with ICL’ and ’w/o ICL’.

Models GeoQA+ (%,↑) GeoMath (%,↑)
Openflamingo-9B [5] 27.37 21.14

LLaVA-1.5-13B [22] 29.30 22.28

Bard [17] 47.10 20.00

GPT-4V [1] 50.50 20.00

DPE-NGS [9] 66.09 -

G-llava-13B [16] 67.00 -

Geo-LLaVA-13B (QA) 57.70 28.60

Geo-LLaVA-13B (IC+QA) 61.04 (+3.34) 37.12 (+8.52)

Geo-LLaVA-13B (IC+QA+MT, w/o ICL) 63.13 (+2.09) 41.48 (+4.36)

Geo-LLaVA-13B (IC+QA+MT, with ICL) 65.25 (+2.12) 42.36 (+0.88)

GeoMath-QA, and GeoMath-Meta datasets, with final accuracies of

65.25% and 42.36% on the respective datasets.

The results indicate that the proposed Geo-LLaVA-13B model

outperforms several other models in solving geometry mathematics

problems, particularly when using a combination of the GeoMath-

IC, GeoMath-QA, and GeoMath-Meta datasets on the solid geo-

metric problems. The step-by-step improvements highlight the

effectiveness of sequentially incorporating these datasets and tech-

niques. Additionally, the model’s performance further benefits from

ICL, suggesting that providing few-shot examples during inference

significantly enhances its accuracy.

5 Conclusion
In conclusion, this paper presents a novel approach to address

the challenges inherent in multi-modal math problem-solving on

geometry. Our research emphasizes the pivotal role of integrating

meta-learning into models, enabling them to accurately interpret

and reason through complex visual and textual inputs—an essential

capability for resolving geometric problems effectively. Recognizing

the limitations posed by the small size and the absence of reasoning

steps in current geometry datasets, we have developed a pioneering

dataset called GeoMath. This dataset amalgamates reasoning steps

drawn from pre-existing datasets and materials sourced from a

Chinese high school educational website, thereby filling a critical

gap in available resources.

This study not only provides significant contributions to the

domain of multi-modal geometry problem-solving but also paves

the way for future research endeavors. The application of LLMs and

LMMs to this domain promises to unlock new potential andmethod-

ologies. The development of GeoMath stands as a notable milestone,

offering robust strategies for addressing the complexities of geome-

try problems. Future research could explore refining these models

further, expanding the dataset with additional problem types, and

investigating their applicability across various educational contexts,

potentially transforming how multi-modal mathematical reasoning

is approached in both academic and practical settings.
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Abstract
This paper introduces SynthDoc, a novel synthetic document gen-
eration pipeline designed to enhance Visual Document Understand-
ing (VDU) by generating high-quality, diverse datasets that include
text, images, tables, and charts. Addressing the challenges of data
acquisition and the limitations of existing datasets, SynthDoc lever-
ages publicly available corpora and advanced rendering tools to
create a comprehensive and versatile dataset. Our experiments,
conducted using the Donut model, demonstrate that models trained
with SynthDoc’s data achieve superior performance in pre-training
read tasks and maintain robustness in downstream tasks, despite
language inconsistencies. The release of a benchmark dataset com-
prising 5,000 image-text pairs not only showcases the pipeline’s
capabilities but also provides a valuable resource for the VDU com-
munity to advance research and development in document image
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recognition. This work significantly contributes to the field by offer-
ing a scalable solution to data scarcity and by validating the efficacy
of end-to-end models in parsing complex, real-world documents.
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1 Introduction
Visual Document Understanding (VDU) is a complex endeavor
that seeks to decipher and interpret information from documents
across a spectrum of formats and layouts [11, 16, 25, 37, 42]. The
objective of VDU is to develop algorithms capable of grasping the
content, structure, and context of documents, thereby enabling
tasks such as document classification [11], text detection [16, 35],
layout analysis [37, 42], and object detection [24, 25].
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Current research in VDU predominantly employs two method-
ologies: one [2, 13, 26, 30, 47, 48] relies on OCR technology to
convert document images into text for subsequent processing,
while the other [1, 5, 17, 20, 28, 32, 33] adopts an end-to-end ap-
proach, analyzing the document images directly. The pre-training
and fine-tuning paradigm is extensively utilized in multimodal
learning [5, 9, 17, 20, 29, 41]. The end-to-end approach leverages
this paradigm to incorporate robust text recognition capabilities
into the model, addressing the limitations of OCR accuracy and
achieving high processing efficiency. A common pre-training task
is the text reading task, and previous studies [17, 20] have demon-
strated its efficacy in enhancing model performance across various
downstream tasks, such as document parsing and document Visual
Question Answering (VQA). Therefore, leveraging the text reading
task to bolster the capabilities of the base model is of paramount
importance.

The data requirements for the text reading task encompass two
main aspects: high-quality document images and corresponding
text annotations that reflect the reading order. Obtaining such data
is intricate, with existing methods either depending on large-scale
public document datasets and additional OCR models to generate
pseudo-labels [17] or relying on complex data processing pipelines
to scrape document data from theweb [43]. However, thesemethods
often result in low-quality labels, face copyright restrictions, and
contend with data noise. Moreover, they typically focus only on
specific elements within document images, such as text or certain
document components. For example, Nougat [5] and KOSMOS-
2.5 [32] concentrate on table parsing, whileMatCha [28] emphasizes
chart rendering. It is rare to find a dataset that encompasses all
document elements simultaneously. A recent approach Vary [44],
while employing rendering of various document types, has utilized
only over 10 templates, which falls short in terms of the richness
of document layouts.

To tackle the limitations in document layout richness and the
challenges associated with data acquisition, we introduce Synth-
Doc, a synthetic document generation pipeline. This pipeline is
designed to create datasets that include text, images, tables, and
a variety of charts. We begin by aggregating publicly available
datasets, which have been validated on large language or multi-
modal models, to form our text and image corpora. We then en-
hance the TableGeneration [46] to produce a diverse set of tables,
and use tools like pandas [34], Matplotlib [14], and ECharts [23]
to generate chart-table pairs, thus expanding our chart data cor-
pus. Therefore, our approach provides three distinct advantages: 1)
Synthdoc can leverage redundant, open-resources NLP datasets to
generate high-resolution, coherent content for multimodal model
training. 2) Synthdoc is developed with high efficiency, precision,
and dynamically customizes document layouts and features robust
scalability. 3) The synthesized data include comprehensive content
and structural annotations, facilitating the pre-training of struc-
tured document parsing models based on LLMs. Synthetic data
can effectively complement the expensive manually labeled real
datasets.

Our comprehensive experiments, leveraging the Donut model,
have yielded compelling results that underscore the efficacy of
the SynthDoc pipeline. The models trained with our synthesized

document images have achieved remarkable accuracy in the pre-
training read task, demonstrating a keen ability to parse both Chi-
nese and English text, as well as tables and charts within the gen-
erated datasets. This proficiency extends to the fine-tuning phase
of downstream tasks, where the models maintain a high level of
performance despite the primary and secondary tasks involving
languages that are not always consistent.

Furthermore, we have conducted visual analyses of the models’
parsing capabilities on more complex, real-world documents. De-
spite the relatively limited variety of document types synthesized
by our pipeline, the models have shown commendable results in
parsing these intricate documents. A particularly surprising finding
pertains to the chart parsing capabilities. In instances where scatter
plots did not explicitly label the x-axis, our models were able to
accurately infer the horizontal coordinates. This suggests that the
models trained with our rendered data possess a certain level of
spatial understanding and an awareness of the sequence among
numerical values.

In response to the absence of comprehensive public datasets for
model validation in document image parsing, we have released a
set of 5,000 images based on the SynthDoc pipeline. This release
not only showcases the quality and diversity of the document data
we generate but also provides a benchmark for the document image
recognition community to advance and develop newmethodologies.

In summary, the key contributions of this paper are as follows:

• SynthDoc Pipeline: We introduce a novel synthetic data
pipeline for document images, named SynthDoc, which uti-
lizes publicly available text or text-image pairs along with
rendered tables and charts. This pipeline is capable of simul-
taneously generating text, images, tables, and various types
of charts within document images.

• Benchmark Release: We have made available to the research
community a benchmark dataset consisting of 5,000 image-
text pairs. This release aims to highlight the robustness of
the data produced by our pipeline and to support further
research and development in the area of document image
parsing.

• Experimental Validation: Through experiments based on
the Donut model, we have demonstrated that our proposed
dataset and training methodology lead to a significant en-
hancement in the model’s document image parsing capa-
bilities. Additionally, the models trained with our approach
maintain competitive performance across a range of down-
stream tasks.

2 Related Work
2.1 Image Document Data
Deep learning-based document image understanding has consis-
tently been recognized as a significant and intricate work, andmany
datasets have been proposed to parse and understand document
images from different perspectives. For example, FUNSD [16] is
utilized for form understanding. RVL-CDIP [11]is employed for
document classification. PubLayNet [52]is utilized for document
layout analysis in our study. However, these datasets fail to meet
the requirements of recent end-to-end methods, which rely on
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Figure 1: The pipeline of Document Image Synthesis, including layout design and content rendering. The layout design involves
planning at three scales: full-page, regional, and line-by-line. Content rendering creates both visual graphics and textual
content.

large amounts of document image data for pretraining. Some ap-
proaches [6, 17] parse existing document datasets, such as IIT-
CDIP [21], by commercial OCR models. However the quality of
datasets obtained by such methods is constrained by OCR accu-
racy, and utilizing commercial OCR models can be costly. Another
approachs [32, 42, 43] rely on the crawler techniques to collect
extensive data from the internet, extracting document image data
through parsing and filtering, which often yield datasets with con-
siderable noise, due to the complexity of the document, and are
subject to copyright restrictions. Unlike these methods, we collect
existing web-scale datasets [8, 18, 36, 39, 40, 45, 49] that have been
used by large language models or multimodal large language mod-
els, employing a synthetic approach to obtain document image data,
which can yield clean data and include complex elements such as
charts.

2.2 Text Reading Task
As the end-to-end multimodal model evolves, the task of text read-
ing within document images has gained increasing attention from
scholars, affirming its significant value in the field. For example,
Donut [17] is pre-trained on document images and their associated
text annotations, reading text from images one by one according
to previous text contexts. Nougat [5] follows Donut’s model and
training approach, with a specialized focus on the domain of sci-
entific papers, adeptly reading texts, tables, and formulas using
markup language. DocParser [33] introduces the Masked Docu-
ment Reading method, which is designed to enhance the model’s
reasoning capabilities by predicting the text situated within the
masked regions. UReader [50] utilizes text reading task to train mul-
timodal large language model, and proposes to predict text from any
position of document images, which ensures the model can read
different parts of texts with the context. Pix2struct [20] found that
the text reading task showed a strong curriculum learning effect,
using it as warmup phase resulted in more stable training, faster
convergence, and better performance. It is worth noting that all of

these tasks require millions of document images, kosmos2.5 [32]
collected 324.4M data from public datasets and web, such as IIT-
CDIP [21], arxiv, and GitHub. However, these data are difficult
to obtain and have copyright restrictions, so we propose a data
rendering pipeline for text reading task to improve the model’s
understanding of dual-language documents.

2.3 Synthetic Document Image
Document image data generation has been widely concerned in
the field of visual document understanding. Some document image
generation algorithms, based on GAN networks, generate plausible
document images, emphasizing the diversity and quality of gen-
erated documents. For example, Biswas et al.[3] utilize the GAN
model to generate diverse and credible document images based
on the provided layout. Zheng et al.[51] proposed a layout depth
generation model for graphic design, which implicitly captured
the influence of visual and text content on layout, and synthesized
complex layout design according to the visual and text seman-
tics input by users. However, these methods do not consider the
annotation information used for visual document understanding,
the quality and size of the generated images are limited by the
model, and additional training models are required for different
languages, which is inefficient. Other methods generate document
and ground truth pairs for specific visual document understanding
tasks. For document layout analysis, Pisaneschi et al.[38] generates
document layout information based on LayoutTransformer[10] and
additional post-processing methods which fill in the corresponding
texts, images, and Mathematical objects based on the model or the
collected corpus. Ling et al.[27] proposed the document domain
randomization approach to simulate the document layout, and then
randomly fill in collected elements such as texts and images. For
pretraining of Document Intelligence tasks, Biten et al.[4] generates
large-scale pre-training datas with OCR annotation information on
IDL datasets based on commercial OCR tools. However, the cur-
rent pre-training of intelligent document understanding based on
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Figure 2: Gridlined and gridless table renderings.

large language models relies on document image parsing tasks, and
the existing data can no longer meet the training demands, so we
propose a new data set generation pipeline to synthesize accurate,
clear, logical and coherent document parsing datasets to adapt to
the development of visual document understanding.

A similar effort to this paper is donut[17], which uses a portion
of generated data to supplement data in different languages. The
difference is that their work randomly pastes text into images and
ignores layout information and structured elements such as tables,
charts and images.

3 Document Image Synthesis
In this section, we delve into the pipeline for generating document
images, which is primarily composed of two key components: lay-
out design and content rendering, as shown in Fig. 1. The layout
design encompasses the architectural planning at three distinct
scales: the entire page, individual regions, and lines of text. This
meticulous arrangement ensures that the document’s structure
aligns with conventional reading habits while maximizing visual di-
versity. Content rendering, on the other hand, is responsible for the
creation of both graphic and textual elements. This phase includes
the rendering of graphics, which can consist of tables, images, and
charts, as well as the rendering of text. Each element is crafted
with attention to detail, ensuring that the final document image
not only conveys information accurately but also presents it in an
aesthetically pleasing and reader-friendly manner.

3.1 Layout Design
The document image synthesis pipeline comprises three integral
components: the Page Controller, Region Controller, and Line Con-
troller. The Page Controller ensures a consistent and visually ap-
pealing layout by defining and maintaining layout elements and
typographical attributes. The Region Controller segments the doc-
ument into distinct areas for various content types, facilitating a
logical and balanced composition. Lastly, the Line Controller metic-
ulously organizes text, applying typographical rules to enhance
readability and engagement. Together, these components work to

create structured, professional-looking documents that are both
informative and aesthetically pleasing.

3.1.1 Page Controller. The Page Controller is instrumental in es-
tablishing a consistent and visually appealing layout for single-page
documents. It sets and maintains the uniformity of layout elements
such as data areas, page margins, and the spacing between segments
and lines. Additionally, it oversees the font size and color palette,
ensuring that the document’s visual presentation is coherent and
reader-friendly. This component’s role is critical in creating a struc-
tured and professional look that enhances the document’s overall
readability and impact.

3.1.2 Region Controller. The Region Controller plays a pivotal role
in the document’s structural integrity by meticulously segmenting
the data areas into distinct regions for text, images, tables, and
charts. It operates on a macro level, determining where each type
of content will be placed to optimize readability and visual impact.
This controller ensures that the document’s layout supports a logi-
cal flow, with areas designated for complex data representations
such as charts and tables, and separate sections for textual content.
By carefully allocating space for each element, the Region Con-
troller ensures that the document’s overall composition is balanced
and adheres to the principles of good document design, allowing
readers to navigate the information with ease.

3.1.3 Line Controller. The Line Controller is responsible for the
micro-level organization of textual content within the document. It
takes the individual word images produced by the Text Renderer
and arranges them into coherent lines, respecting the predefined
attributes such as word spacing, line height, and alignment. This
controller’s work is crucial for establishing the document’s typo-
graphical style, which includes setting the rhythm and pacing of
the text. By fine-tuning the line breaks, indentations, and other
typographical elements, the Line Controller ensures that the text is
not only legible but also visually engaging. This attention to detail
in formatting contributes to a professional and polished appearance,
enhancing the document’s overall presentation quality.
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Figure 3: (a) Samples of the synthesized charts: Pie Chart, Vertical Bar Chart, Scatter Chart and Line Chart. (b) The annotation
formats corresponding to different charts, which are presented in HTML format.

Figure 4: This is an overview architecture to training the
model

3.2 Content Rendering
With the layout meticulously established, the pipeline transitions to
the content rendering phase, where the visual and textual elements
of the document come to life. This stage involves the intricate pro-
cess of integrating graphics and text, ensuring that each component
not only complements the layout but also enhances the document’s
overall narrative and aesthetic appeal.

3.3 Experimental Results
3.3.1 Graphic Renderer. The Graphic Renderer is a sophisticated
component of our pipeline, dedicated to the rendering of images,
tables, and charts. For images, we focus on incorporating natural
images, where available category data is used to caption and embed
the images within the document. If category information is present,
the returned text represents the category; otherwise, it is replaced
with a generic placeholder "<nature_image>". This approach en-
sures that each image is contextually relevant and enhances the
document’s informational content.

In the realm of tables, we have designed two distinct types to
accommodate various data presentations. The first type features
complete borders, suitable for complex data with line breaks within

cells, while the second type adopts a minimalist or borderless style,
aligning with the prevalent aesthetic in research publications. Both
types incorporate random cell merging to manage data complexity
effectively. The rendered tables are displayed in Fig. 2.

For charts, our pipeline supports the rendering of four chart
types: bar, pie, line, and scatter plots. Bar charts, available in both
horizontal and vertical orientations, are crafted for data comparison,
with key-value pairs represented in a tabular format to facilitate
readability. To mitigate issues with overlapping labels in vertical bar
charts, we implement random fonts and rotation angles. Pie charts,
similar in rendering to bar charts, require that the aggregated values
represent a total of 1 or 100, expressed as decimals or percentages.
Line charts illustrate trends over time or variables, with each chart
featuring a unique set of data groups and points, generating an
image-label pair. Scatter plots, used to depict the distribution of a
single element, employ a label and x and y coordinates for each
point, with the number of points limited to a range of [5, 20] to
manage complexity. The generated examples are depicted in Fig. 3a.
The corresponding HTML annotations are displayed in Fig. 3b.

The emphasis on the model’s ability to understand the structure
of diverse elements is paramount. We refrain from using AI tools to
generate data within elements, instead leveraging an open textual
corpus for our tables and charts, ensuring the authenticity and
relevance of the data. The matplotlib library is utilized for chart
rendering, and we have refined table rendering techniques to better
integrate with the document’s overall design.

3.3.2 Text Renderer. The Text Renderer plays an indispensable role
in the content rendering process, meticulously generating word
images for each word in the text. This method affords a high level
of control over the typography and layout, ensuring that the text
is not only legible but also aesthetically integrated with the docu-
ment’s visual elements. The Text Renderer works in concert with
the Graphic Renderer to weave a cohesive and engaging narrative,
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Table 1: The comparison between different methods across diverse synthetic documents.

Metrics Methods Pure Document Complex Document Average
English Chinese Doc w/image Doc w/table Doc w/chart

AED ↓
Donut [17] 0.3764 0.5148 0.7631 0.8679 0.9097 0.6864
vary [44] 0.1452 0.1760 0.5598 0.7415 0.6663 0.4578
our 0.0321 0.1370 0.1665 0.0583 0.1029 0.0994

F1-score ↑
Donut [17] 0.9370 0.8107 0.3720 0.4573 0.2840 0.5722
vary [44] 0.8554 0.9002 0.5852 0.5854 0.6531 0.7159
our 0.9611 0.9020 0.8855 0.9199 0.8810 0.9099

Prediction ↑
Donut [17] 0.9534 0.8256 0.4061 0.5302 0.4063 0.6243
vary [44] 0.8762 0.8974 0.6383 0.7026 0.7961 0.7821
our 0.9717 0.9136 0.9065 0.9347 0.9017 0.9256

Recall ↑
Donut [17] 0.9228 0.8015 0.3647 0.4313 0.2540 0.5549
vary [44] 0.8482 0.9044 0.5746 0.5501 0.5868 0.6928
our 0.9515 0.8916 0.8682 0.9076 0.8636 0.8965

Table 2: Performance Comparison of different methods on
CORD.

Model OCR Acc Precision Recall F1
BERT [15]

√
78.2 - - 82.2

BROS [12]
√

80.3 - - 83.7
LayoutLMv2 [48]

√
87.0 - - 88.9

KOSMOS-2.5 [32] - - 83.64 87.83 85.69
Donut [17] - 93.5 - - 91.6
our - 90.1 82.6 83.3 82.9

blending visual and textual information to enhance the reader’s
experience.

Following Donut’s data generation approach, the Text Renderer
creates a word image for each word, which is crucial for the docu-
ment’s visual composition and label generation. This attention to
detail in text rendering ensures that the document’s textual con-
tent is as carefully crafted as its visual elements, contributing to a
polished and professional final product.

3.4 Concerns of Data Generation Pipeline
3.4.1 Scalability. Even if we generate as much diverse data as pos-
sible, it hardly covers all real-world document layouts. To mitigate
this, we’ve integrated real document images into our benchmark
to maximize layout variability. However, it is worth noting that
our solution is highly adaptable, with scalability in two key dimen-
sions: 1) Layout Customization: We allow for tailored document
layouts to swiftly and cost-effectively expand our training data to
fit various scenarios. 2) Language Independence: Our pipeline
transcends language barriers, enabling document image generation
in any language. For instance, we’ve produced French documents
using the ROOTS[19] dataset.

3.4.2 Data Privacy. Our pipeline allows for local regulatory adap-
tation and reproducibility of datasets through customizable pipeline

components. We advocate for the use of public corpora and tools
to foster transparency and verifiability in research.

4 Training on SynthDoc
This section details the pre-training of the model based on the
Donut architecture, focusing on its parsing performance with bilin-
gual (English and Chinese) documents. The primary objective is
to validate the model’s ability to effectively handle and interpret
content in both languages, ensuring its suitability for multilingual
document analysis.

4.1 Model Architecture
Unlike previous OCR-based approaches [2, 13] for visual document
understanding tasks, recent research [20, 33] has shifted towards
parsing document images in an end-to-end fashion, eliminating
the need for OCR results as input. The dataset we generated pri-
marily aims to enhance and validate the visual document parsing
capabilities of this end-to-end models. Illustrated in Figure 4, our
model is constructed based on the Donut architecture. We follow
the Donut [17], utilizing the Swin-Transformer [31] as our visual
encoder. Previous experiments have demonstrated its superior per-
formance compared to ViT [7]. We employ mBART [22] as the
decoder, which has stronger noise robustness and multilingual ca-
pabilities.

4.2 Implementation Details
Following the previous works [5, 17], we employ Swin-Base as the
encoder and the first four layers of mBART as the decoder, with a
patch size of 4 and a window size of 10. We set the input image size
to (H, W) = (1280, 960) to meet the requirements of Swin-Base for
image dimensions. For pre-training, we set a batch size of 192 and
employ the AdamW optimizer, initializing the learning rate at 5e-5
and setting a minimum of 7.6e-6, while utilizing an exponential
scheduler with a gamma of 0.9996, updating the learning rate every
16 training steps. For fine-tuning, we utilize a cosine scheduler with
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Figure 5: Examples of document image parsing on synthesized document with tables, images, and chart. (a), (b) and (c) stand for
the synthetic document images with tables, images, and chart, (d), (e), and (f) represent the parsing results of the model on
them, respectively.

a learning rate of 3e-5 to optimize our model, dynamically adjust-
ing the input size according to the datasets, a practice effectively
demonstrated by Donut.

4.2.1 Document Image Parsering. We evaluate the document pars-
ing capabilities of other end-to-end models using the proposed
benchmark in this paper and compare them with the performance
of the model we trained. As shown in Table 1, we evaluate the
models on five types of documents: English documents, Chinese
documents, documents with natural images, documents with tables,
and documents with charts. We observed that all models exhibited
strong performance on English and Chinese documents, except for
Donut, which showed slightly inferior results on the Average Edit
Distance (AED), possibly due to its lack of training on the docu-
ment dataset. However, with the exception of our model, all models
displayed inadequate performance on complex documents contain-
ing additional elements. Specifically, our model achieved 0.1665,
0.0583, and 0.1029 AED on document images with images, tables,
and charts, respectively, showing reductions of 0.3933, 0.6832, and

0.5634 compared to the Vary. It is noteworthy that in our bench-
mark, text labels associated with other elements represent only a
small portion. This observation indicates that elements such as im-
ages in documents can significantly impact the model’s text parsing
capability.

4.2.2 Results on CORD.. The CORD dataset is a collection of data
used for receipt recognition, comprising 800 samples for training
and 100 samples for testing. Our pipeline’s performance on the Eng-
lish CORD dataset did not demonstrate the expected improvements,
due to the substantial distribution bias towards Chinese, which
can be addressed by enhancing our model to more adeptly handle
English-language documents in subsequent research. However, it
is worth noting that our model not only improves its proficiency in
Chinese document image recognition but also ensures comparable
performance in downstream tasks.
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Figure 6: Examples of document image parsing on real English and Chinese documents. (a) real English document (b) prediction
of English documents (c) real Chinese document (d) prediction of Chinese documents.

4.3 Visual Analysis
We provide sufficient visualization results of our model to demon-
strate the excellent performance of the model in text image recogni-
tion. Specifically, The Figure 5 illustrates synthetic images, contain-
ing tables, images, and charts demonstrating our model’s ability
to parse text, tables, images, and charts information in a manner
consistent with human reading order. Furthermore, as illustrated in
the last row of Figure 6, our model exhibits robust parsing capability
when applied to real document images.

4.3.1 Spatial Understanding. We observed that end-to-end models
possess strong spatial understanding capabilities. Specifically, we
provided serialized numerical coordinates in scatter plots and line
graphs, defining a new coordinate space. Our trained model can
accurately identify the localization of points in this coordinate
space. As shown in Figure 5c is the document image with a scatter
chart, and Figure 5f is the model’s prediction, we only provided the
vertical coordinates of the points in the image. However, the model
can accurately identify their corresponding horizontal coordinates.
For example, for a point with a vertical coordinate of 435.18, the
model can identify its horizontal coordinate as 1096, which closely
aligns with our provided ground truth.

4.3.2 Robust Interference Capability. Benefiting from training our
model with documents containing natural images, our model ex-
hibits robust interference capability. As shown in Figure 6, Figure 6a
and Figure 6c presents a real image captured by a camera, while Fig-
ure 6b and Figure 6d illustrates the model’s prediction. Despite
incorrectly identifying some challenging regions as natural images,
it does not impede subsequent text parsing. This phenomenon has
not been observed in other end-to-end methods. We believe that
training with synthetic data incorporating various contexts is an
important approach to improving model robustness and perfor-
mance.

5 Limitation
While the current generation of documents through SynthDoc
is a significant step forward, we acknowledge that the types of
documents created thus far are somewhat limited in variety. To
enhance the richness of our dataset and to better mimic the com-
plexity of real-world documents, we are committed to expanding
our pipeline’s capabilities. Future iterations will incorporate more
sophisticated intermingling of document elements, allowing for the
generation of even more intricate and varied document types. This
evolution will not only challenge and refine existing models but
also pave the way for the development of more advanced document
image recognition systems, capable of handling the multifaceted
nature of documents encountered in everyday applications.

6 Conclusion
In conclusion, this study presents SynthDoc, an innovative pipeline
for generating synthetic documents, which plays a pivotal role in
bolstering Visual Document Understanding (VDU). By producing a
high-quality, diverse dataset that encompasses text, images, tables,
and charts, SynthDoc addresses the critical issues of data acquisition
and the constraints imposed by current datasets. Utilizing publicly
accessible corpora and sophisticated rendering tools, SynthDoc
has successfully created a dataset that is both extensive and adapt-
able. Our empirical evaluations, employing the Donut model, have
shown that models trained on SynthDoc’s dataset not only excel in
pre-training read tasks but also exhibit resilience in downstream
tasks, even when faced with linguistic disparities. The introduction
of a benchmark dataset featuring 5,000 image-text pairs not only
highlights the capabilities of our pipeline but also serves as a sub-
stantial contribution to the VDU community, facilitating further
research and development in the realm of document image recog-
nition. This research marks a significant advancement in the field
by providing a scalable approach to overcoming data scarcity and
by empirically validating the effectiveness of end-to-end models in
parsing intricate, real-world documents.
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Abstract
Extended Reality (XR), encompassing the concepts of augmented,
virtual, and mixed reality, has the potential to offer unprecedented
types of user interactions. An essential requirement is the auto-
mated understanding of a user’s current scene, for instance, in order
to provide information via visual overlays, to interact with a user
based on conversational interfaces, to provide visual clues on direc-
tions, to explain the current scene or even to use the current scene
or parts thereof in automated queries. Key to scene understand-
ing and thus to all these user interactions is high quality object
detection based on multimodal content – images, videos, audio,
etc. Large Multimodal Models (LMMs) seamlessly process text in
conjunction with such multimodal content. Therefore, they are an
excellent basis for novel XR-based user interactions, given that they
provide the necessary detection quality.

This paper presents a two-stage analysis: In the first stage, the
quality of two of the most prominent LMMs (LLaVA and KOSMOS-
2) is compared with the object detector YOLO. The second step
exploits Fooocus, a free and open-source AI image generator based
on Stable Diffusion for the generation of images based on the de-
scriptions derived in the first step. The second step evaluates the
quality of the scene descriptions obtained in stage one. The evalua-
tion results show that LLaVA, KOSMOS-2 and YOLO can all out-
perform the other approaches depending on the specific research
focus. LLaVA achieves the highest recall, KOSMOS-2 results are the
best in precision, and YOLO performs much faster and leads with
the best F1 score. Fooocus manages to create images containing
specific objects while still taking its liberty to omit or add specific
objects. Therefore, our study confirmed our hypothesis that LMMs
can be integrated into XR-based systems to further research novel
XR-based user interactions.

CCS Concepts
• Information systems → Query suggestion; • Computing
methodologies → Machine learning.
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1 Introduction
The rapid advancements in Large Language Models (LLMs) [8] have
enabled significant progress in natural language processing tasks,
such as text classification, sentiment analysis, and machine trans-
lation. With over 180 million users, ChatGPT1 by OpenAI is the
most popular LLM. Other major companies like Meta, with the
LLaMA model [44], provide LLMs that users can deploy locally.
Unlike LLMs, Large Multimodal Models (LMMs) [51] possess the
unique ability to process not only text but also multimodal content,
including images, sound, and videos. This versatility extends their
capabilities beyond text-based interactions. Recent studies [48, 49]
have showcased the potential of LMMs in multimodal understand-
ing, leveraging both linguistic and visual cues to identify objects,
scenes, and actions.

LMMs play a crucial role in eXtended Reality (XR) applications,
where users equipped with dedicated goggles or mobile devices
perceive a real-world scene and get additional information on the
objects within it. For these applications, high-quality LMMs for
multimodal scene understanding are vital.

The potential of LMMs for XR applications in indoor architec-
tures, a pivotal aspect of modern life, is profound. As buildings
become more intricate and dynamic, indoor environments become
more diverse and pose challenges to on-scene understanding to
support XR applications. In such XR applications, LMMs could
revolutionise how users navigate these varied indoor spaces, such
as open-plan offices, museums, shopping malls, and healthcare
facilities, each with unique navigation strategies.

Computer vision approaches have traditionally been employed to
recognise objects and scenes within these environments. However,
these methods rely on extensive training data, domain-specific
expertise, and manual annotation. Moreover, these approaches may
need help with complex or dynamic scenarios, such as varying
lighting conditions, occlusions, or changes in the environment’s

1https://chatgpt.com
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layout. Additionally, they only recognise objects in isolation rather
than understanding their relationships.

Multimodal understanding can play a vital role in indoor ar-
chitecture to overcome these limitations. By combining linguistic
and visual cues, users can interact with physical spaces using nat-
ural language queries, such as “Find the nearest coffee shop” or
“Show me where the meeting room is located.” This intuitive and
user-friendly interaction style can significantly improve the user
experience, reducing cognitive load and increasing efficiency –
not exclusively, but very prominently in XR settings. Furthermore,
multimodal understanding can enable more accurate and efficient
object detection. For instance, a user might ask, “What is that ob-
ject on the table?” or “Where can I get a similar object to the one
standing there?” By analysing both linguistic cues (e.g., the object’s
description) and visual cues (e.g., the object’s appearance), an LMM
can accurately identify the object and provide relevant information.

This information needed by users can be translated into queries
in multimedia retrieval. The concept would exist in XR to enable
a user-interactive model where the digital and real worlds blend.
Similar digital content can be retrieved by automatically detecting
objects in the real world using an LMM. In the context of indoor
architecture, users can retrieve the most similar objects in their
collection and digitally place them (e.g., retrieved furniture). This
potential application in mixed-reality multimedia retrieval opens
up exciting possibilities for the future.

In this paper, we investigate the capabilities of Large Multimodal
Models for object detection in images, exploring their potential to
complement and surpass traditional computer vision approaches.
We compare the performance of two LMMs (LLaVA [28, 29] and
KOSMOS-2 [21, 21, 35]) with YOLO (You Only Look Once) [39, 47], a
state-of-the-art object detector, on an indoor scene dataset. We aim
to determine whether LMMs can recognise objects as effectively as,
or better than, traditional object detection algorithms. In the second
step, we explore image generation using Fooocus2, an MLL capable
of generating images. We investigate if a created image specified
by the detected objects of an LMM contains the elements again
by analysing the newly generated image with YOLO to use such
automatically generated objects as query objects for a subsequent
multimedia similarity search.

Our evaluation reveals that LLaVA excels in recall, making it
particularly effective when identifying as many relevant objects
as possible, which is critical. KOSMOS-2 demonstrates superior
precision, indicating its strength in accurately identifying relevant
objects with minimal false positives. On the other hand, YOLO is
the fastest and achieves the highest F1 score, balancing precision
and recall effectively. Furthermore, Fooocus, while creatively gener-
ating images with specified objects, sometimes introduces or omits
elements, showing both the potential and limitations of image gen-
eration in XR applications. These findings confirm the potential
of integrating LMMs into XR-based systems for enhanced user
interactions and pave the way for future research in this domain.

The remainder of this paper is organised as follows: First, we
review the foundations (Section 2) and present our method (Sec-
tion 3). Then, we present our experiment and evaluate and discuss
our findings (Section 4). Next, in Section 5 we provides an overview

2https://github.com/lllyasviel/Fooocus

of related work. Lastly, Section 6 concludes and provides an outlook
on future research and possible next steps.

2 Foundations
This chapter introduces an overview of computer vision before
delving deeper into object detection, focusing on YOLO. We then
explore the capabilities of Multimodal Understanding and Large
Multimodal Models, highlighting their applications in multimedia
retrieval and eXtended Reality.

2.1 General Computer Vision
Computer vision [4] is a field of artificial intelligence that helps
computers understand visual data. It allows computers to interpret
visual information and make decisions based on what they “see”
in the world. This field involves creating algorithms and models
to automate tasks our human visual system can perform. It has
made significant progress in various fields, such as autonomous
vehicles [23] and medical imaging [16]. These tasks include image
processing [34], feature extraction [31], object detection [17], and
image recognition [20, 22].

2.2 Object Detection
Object detection [17] is a crucial area within computer vision that
involves identifying and localising objects within an image. Unlike
image classification [26], which only assigns a label to an image, ob-
ject detection provides the class and the bounding box coordinates
for each object detected in the image. This makes it particularly
useful for applications requiring precise object localisation, such as
autonomous driving, surveillance, and extended reality.

Identifying and classifying objects are pivotal aspects of com-
puter vision, enabling the development of applications ranging
from autonomous robots to virtual assistants and smart home sys-
tems. Established object detection algorithms such as YOLO (You
Only Look Once) [39], SSD (Single Shot Detector) [30], and Faster
R-CNN (Region-based Convolutional Neural Networks) [40] have
demonstrated notable achievements across various domains.

YOLO [39] is a state-of-the-art object detection algorithm known
for its speed and accuracy. Unlike traditional methods that apply a
model to an image at multiple locations and scales, YOLO reframes
object detection as a single regression problem, going straight from
image pixels to bounding box coordinates and class probabilities.
YOLO divides the image into a grid and predicts bounding boxes
and probabilities for each grid cell. Its main advantages are its
high speed and real-time processing capabilities, making it ideal
for applications requiring rapid object detection. YOLO has un-
dergone several iterations, with YOLOv10 [47] being the newest.
These models leverage advancements in convolutional neural net-
works (CNNs) and feature extraction techniques to enhance object
detection capabilities.

In contrast, SSD [30] is an expedited algorithm that utilises a
single neural network to forecast object locations and classes. How-
ever, SSD may demonstrate reduced accuracy compared to YOLO in
detecting small or partially occluded objects. Faster R-CNN, incor-
porating region proposal networks (RPNs) for object detection, has
exhibited superior accuracy to traditional algorithms like YOLO and
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SSD. Nonetheless, Faster R-CNN [40]may entail high computational
demands and limited performance in real-time applications [25].

2.3 LLMs, MU, and LMMs
Large Language Models (LLMs) [8] are advanced AI-powered sys-
tems that understand and generate human language. They use deep
learning techniques and extensive datasets to revolutionise natural
language processing (NLP) [12]. LLMs enable various language-
related tasks such as translation, summarisation, and conversational
agents. An example of LLMs is GPT-3.5 [8], which OpenAI devel-
oped. Another prominent LLM is LLaMA (Large Language Model
Meta AI) [44], created by Meta, which prioritises efficiency and
scalability, making it a valuable tool for both research and practical
NLP applications. These models signify significant advancements
in AI, providing robust solutions for complex linguistic challenges.

Multimodal understanding (MU) encompasses processing mul-
tiple data modalities, such as images, videos, text, and audio, to
comprehend the scene entirely [10].

Large Multimodal Models (LMMs) [51] are extensions of LLMs
that integrate these multiple data inputs into a single framework.
Neural networks build their architectures. This multimodal ap-
proach enables a more holistic understanding of data, allowing
models to leverage different types of information simultaneously.
LMMs are trained on vast datasets that include paired text and
image data, enabling them to learn relationships between visual
and linguistic information. This capability allows LMMs to per-
form tasks that require understanding text and visual content, such
as image captioning, visual question answering, and multimodal
search. Models of LMMs are, for example, LLaVA (Large Language
and Vision Assistant) [28, 29], which integrates visual and textual
data to perform tasks like visual question answering and image
captioning, KOSMOS-2 [21, 21, 35], developed by Microsoft, which
can seamlessly integrate textual descriptions into corresponding
bounding boxes within images, enhancing the model’s ability to
understand and generate contextually accurate visual and textual
data, or GPT-4 [32], created by OpenAI. Other LMMs are not capa-
ble of analysing but generating new content. DALL-E, operated by
OpenAI, Midjourney, and Fooocus, are examples of such LMMs [6].

2.4 Multimedia Retrieval
Multimedia retrieval involves searching and retrieving relevant
multimedia content (such as images, videos, and audio) based on a
query [41]. Traditional multimedia retrieval systems rely heavily
on metadata and manually annotated tags. However, advancements
in computer vision and multimodal learning have enabled more
sophisticated retrieval systems to interpret and understand the con-
tent within multimedia data itself [18, 19, 45]. Multimodal models
enhance multimedia retrieval by allowing users to search using
natural language queries describing visual content. This approach
can significantly improve the accuracy and relevance of search
results, making it easier for users to find the information they need.
CLIP (Contrastive Language–Image Pre-training) [36] is one of the
most used features nowadays. Its architecture employs a vision
and text encoder jointly trained to encode images and their textual
descriptions into the same space.

2.5 Extended Reality
Extended reality (XR) [14, 53] is an umbrella term for all immersive
technologies Augmented Reality (AR), Mixed Reality (MR), and Vir-
tual Reality (VR). Depending on the exact technology, environments
with physical and virtual objects exist and interact with each other.

Integrating LMMs in XR can revolutionise how users interact
with their environments. By leveraging multimodal understanding,
XR systems can recognise and interpret objects and scenes in the
real world, enabling more natural and intuitive interactions. For
example, an XR system could recognise furniture in a room and
provide digital overlays or suggestions for rearranging the space.
This capability has significant potential in various applications,
including architecture, interior design, and urban planning.

3 Methodology
This chapter outlines the methodology employed to compare the
performance of YOLO with two LMMs, LLaVA and KOSMOS-2, for
object detection in indoor architectural environments. The primary
focus is to evaluate the effectiveness of these models in recognis-
ing and identifying objects within images, which is essential for
applications in mixed-reality multimedia retrieval. In the second
step, we consider the image generation of an LMM (Fooocus) by
specifying objects that should be present in the generated file.

3.1 Experimental Design
We evaluate the object detection performance of a specified state-
of-the-art algorithm compared to asking two LMMs to describe the
objects visible in an image and one LMM for multimodal generation.
Therefore, we assess howwell YOLO, LLaVA, and KOSMOS-2 detect
and identify objects in a curated dataset of indoor scenes and how
precisely Fooocus generates images by specifying visible objects.

3.1.1 Dataset Preparation. To conduct the object detection eval-
uation, we use a comprehensive dataset featuring various indoor
environments [1]. It contains 4, 147 images from interior designs,
such as living rooms, bedrooms, and kitchens. The models process
each image in the dataset. We selected a random subset of 100 pic-
tures and annotated the detected objects manually. This annotation
is considered as the ground truth. We consciously chose this data
set because it covers indoor architecture. As our work is situated
in this context, it is a perfect fit. An alternative option would have
been Microsoft COCO: Common Objects in Context [11], which is
already annotated and, therefore, has a ground truth. However, as
the dataset does not concern interior architecture, we decided not
to use it.

3.1.2 Model Selection and Configuration.

YOLO (YOLOv10-M) [47]: The latest iteration of YOLO, pre-
trained on the COCO dataset [27]. YOLOv10 is chosen for
its balance between speed and accuracy, making it suitable
for real-time object detection tasks. In total, it detects 80
different classes of objects.

LLaVA (llava-hf/llava-v1.6-mistral-7b-hf) [28]: This large mul-
timodal model integrates visual and textual data. Leverag-
ing its pre-training on extensive paired text-image datasets,
LLaVA is configured to process the images in our dataset.
Its ability to understand the context from both visual and
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YOLO

Couch

Potted plant
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LLaVA

A large window with multiple panes

A black and white striped wall

A white sofa

A black coffee table

A white rug on the floor

A black and white striped rug

A white ottoman

Fooocus

Please generate an image of an indoor

where the following objects are visible:

potted plant, vase

YOLO
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Potted plant

Potted plant

Vase
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Manual Annotation

A large window

A ceiling with lamps

Decorative panels

A couch

Two ottomans

Two coffee table

A lamp

A shelf

A carpet

A vase

Two pillows

A plotted plant

Figure 1: This figure presents the object detection results of YOLO, LLaVA, and KOSMOS-2 on an arbitrary image from the
indoor environments dataset. The different models do not recognise the same objects. As visible, the output of YOLO is further
processed by Fooocus to generate images, where we apply YOLO again.

textual cues is crucial for effective object detection without
the limitation of predefined classes.

KOSMOS-2 (microsoft/kosmos-2-patch14-224) [35]: Developed
by Microsoft, KOSMOS-2 is another LMM fine-tuned specifi-
cally for object detection within our dataset. Its architecture
is optimised for interpreting and integrating multimodal
data, making it a valuable model for our comparative study.
Again, no limitation regarding classified objects exists.

Fooocus (“juggernautXL_v8Rundiffusion”): The default model
of Fooocus, a free and open-source AI image generator based
on Stable Diffusion, is employed to generate images [15].

3.1.3 Evaluation Metrics. To measure the performance of the mod-
els, we employ several evaluation metrics:

Precision and Recall: Precision measures the percentage of
correctly identified objects, while recall calculates the per-
centage of actual objects correctly identified. These metrics
provide insights into the accuracy and comprehensiveness
of each model’s object detection capabilities.

F1 Score: The F1 score is the harmonic mean of precision and
recall, offering a single metric that balances the trade-off
between these two measures.

Inf. Time: Inference time refers to each model’s time to pro-
cess and detect objects in an image. This metric is crucial for
real-time object detection applications like extended reality
environments.

Object Retention Rate (ORR): Thismetricmeasures howmany
objects from the original image are retained in the newly
generated images by the Fooocus API. It is calculated as the
number of original objects detected in the generated image
divided by the total number of original objects.

New Object Introduction Rate (NOIR): NOIR evaluates how
many new objects are detected in the generated images that
were not part of the original image. It is calculated as the
number of new objects detected in the generated image di-
vided by the total number of detected objects in the generated
image.

3.1.4 Procedure. The procedure for the object detection evaluation
is detailed as follows.

(1) Image Processing: Each image in the dataset is processed
by YOLO, LLaVA, and KOSMOS-2. The models analyse the
images and generate labels for detected objects. The gener-
ated labels of YOLO are parsed as a prompt to Fooocus to
generate a new image. YOLO is applied again. This pipeline
is shown in Figure 1.

(2) Output Comparison: The outputs from each model are com-
pared against the manually annotated ground truth. This
comparison involves checking the labels for accuracy and
calculating the evaluation metrics.

(3) Performance Calculation: Each model’s precision, recall, F1
score, inference time, ORR and NOIR for image generation
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Table 1: Performance Metrics for Object Detection

Model Precision Recall F1 Score Avg. Inf. Time

YOLO 0.57 0.38 0.43 12.09ms
LLaVA 0.30 0.58 0.35 3719.41ms
KOSMOS-2 0.65 0.35 0.42 1492.79ms

are calculated and recorded. These metrics are used to as-
sess and compare the performance of YOLO, LLaVA, and
KOSMOS-2 in detecting objects within indoor scenes and
to evaluate Fooocus generating images with object require-
ments.

3.2 Application in Extended Reality
The findings from our study have significant implications for XR
applications. By understanding how well LMMs and traditional
object detection models perform in identifying objects within in-
door environments, we can enhance the interactive capabilities of
extended-reality systems, as in [3] with an MR system. Accurate de-
tection and contextual understanding of objects allow for seamless
integration of digital content into the real world, enabling appli-
cations such as virtual interior design, where users can visualise
and interact with virtual furniture and decor within their physical
spaces. XR systems can provide more accurate and context-aware
guidance within complex indoor environments, and museums and
educational facilities can leverage mixed reality to provide immer-
sive and informative experiences by overlaying digital information
on physical exhibits.

4 Experiments, Results and Discussion
This section presents the experiments conducted to evaluate the
performance of YOLO, LLaVA, KOSMOS-2, and Fooocus in object
detection and image generation. We follow the methodology pre-
sented in the previous section. We illustrate and discuss the results
obtained.

4.1 Experimental Setup
We conducted experiments using a curated dataset of indoor envi-
ronments containing 4, 147 images. YOLO, LLaVA, and KOSMOS-2
processed each image to detect and identify objects. Additionally,
the detected objects from YOLO were used as prompts to generate
new images with Fooocus, and the generated images were further
analysed using YOLO.

We performed the evaluation on a server configured with the
following specifications: The operating system used was Ubuntu
22.04.4 LTS, running on a Linux kernel version 5.15.0-113-generic,
optimised for x86_64 architecture. The server is equipped with
an NVIDIA GeForce RTX 3070 graphics card. The driver version
installed was 535.183.01, which supports the CUDA 12.2 toolkit.
The CUDA version is critical to ensure compatibility with GPU-
accelerated computation’s latest features and optimisations.
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Figure 2: Comparison of performance metrics for object de-
tection models. The bar plot displays the precision, recall,
and F1 scores for YOLO, LLaVA, and KOSMOS-2 models.

4.2 Results Processing
After completion of all the evaluations, we carry out model-specific
post-parsing processes.This step is necessary because not all models
return results in the same format.

From YOLO, we receive the label of the recognised object, the
confidence and the bounding box. However, only the label is essen-
tial for our evaluation.With KOSMOS-2, the results of the individual
detections look similar to the YOLO results as we receive the object
and its position, i.e., the bounding box, in the image again.

With LLaVA, however, the results are less structured as they
come as free text. Sometimes, the response consists of one sentence
containing a long enumeration, but other times, it consists of several
sentences. To structure the queries as uniformly as possible, the
user prompted the LLaVA command to name the recognized objects
in a list. Sometimes, the response starts with phrases such as “Sure,
here are the objects I see in the picture…”.

Consequently, with this model, we receive many words that
have nothing to do with the recognised objects. Therefore, our first
preprocessing step is to filter out all nouns with the help of the
NLTK corpus3, as only these can stand for objects.

The further procedure was identical for all models. Of the 100
randomly selected images, we checked which objects were also
recognised by the object detection model. However, since an object
can also be described differently using synonyms, we use synsets4
to check whether the recognised objects are synonyms.

4.3 Results
Our study’s results are divided into two categories for analysis:
Object Detection Performance and ImageGeneration.This approach
allows for a comprehensive examination of both the efficacy of
object detection and the quality of generated images.

4.3.1 Object Detection Performance. The object detection perfor-
mance of YOLO, LLaVA, and KOSMOS-2 was evaluated based on
precision, recall, F1 score, and inference time. The exact results of
our evaluation are presented in Table 1.

3https://www.nltk.org/api/nltk.corpus.html
4https://www.nltk.org/howto/wordnet.html
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Figure 3: Inference Time Distribution for YOLO, LLaVA, and
KOSMOS-2 Object Detection

Figure 2 graphically illustrates each model’s precision, recall,
and F1 score results. YOLO has high precision but low recall, while
LLaVA demonstrates the best recall performance but lower preci-
sion and F1 score. KOSMOS-2 has the highest precision but the
lowest recall. Therefore, YOLO is considered the most balanced, as
it has the highest F1 score, even though it is not exceptionally high.

Looking at the times the models used for object recognition, we
can see that YOLO can achieve the fastest times by far. With an
average inference time of about 12 ms, it is almost 125 times as
fast as KOSMOS and over 300 times as fast as LLaVA, presented in
Table 1. It took YOLO for over 75% of all images less than 12 ms to
detect the objects, as can be seen in Figur 3. For KOSMOS-2, the
times are in the interquartile range between 1.2 and 1.7 seconds. On
average, the determination takes around 1.5 seconds. With LLaVA,
the inferences are significantly differentmagnitudes, with themedia
still at 2.2 seconds and the average at 3.7 seconds. Some analyses
take over 7 seconds. Consequently, this model is by far the slowest.

4.3.2 Image Generation and Evaluation. Fooocus was used to gener-
ate new images based on object detections from YOLO. We measure
the quality of these generated images by measuring the Object Re-
tention Rate (ORR) and the New Object Introduction Rate (NOIR).

When we examine the ORR and NOIR data, we find that, on
average, 50% of the desired objects reappeared in the generated
image. On average, slightly over 30% of new objects were added.
This behaviour is also illustrated in Figure 4. The interquartile range
shows higher values for existing objects compared to new ones.
We also see that in some cases, all objects were correctly depicted,
while in other instances, no objects remained. New objects did not
always appear, but after classification with YOLO, some images
consisted entirely of completely new objects.

Table 2: Performance Metrics for Image Generation with
Fooocus

ORR NOIR

Average 0.57 0.35
Median 0.50 0.33
Standard Deviation 0.27 0.27
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Figure 4: The left plot shows the distribution of ORRs, while
the right plot presents the distribution of NOIR. The higher
ORR median indicates maintaining the original objects,
while the lower NOIR represents fewer newly generated ob-
jects.

The relationship between ORR and NOIR is captured in Figure 5.
When ORR is high and the NOIR is low, the generated images retain
most original objects and do not introduce many new ones. This
outcome is desirable if the goal is to preserve the original content
and avoid introducing new elements, as in our research. Low ORR
and high NOIR indicate that the generated images do not retain
many original objects but introduce many new ones. Therefore,
the result is a loss of original content and a focus on adding new
elements. High ORR and high NOIR show that the generated images
retain most original objects but also introduce many new ones.
This represents a balance between retaining original content and
introducing new elements. Low ORR and low NOIR indicate that
the generated images do not retain many original objects and also
do not introduce many new objects. Consequently, the generated
images are neutral and not very informative.

As we can see, our data points are very distributed. In image
generationwith Fooocus, objects are not always present as expected.
The same applies to adding additional objects. However, based on
the trend line, we notice that the more objects correctly inserted
into the image, the fewer new objects are added. Fewer objects were
created in images in which the desired objects were included than
when Fooocus did not employ the desired objects.

4.4 Discussion
When we discuss and analyse the results, we first note that LMMs
can recognise objects in images. However, it is also clear that neither
the dedicated object detection algorithm YOLO nor the models
LLaVA or KOSMOS-2 can entirely and accurately classify objects.
It is important to note that the ground truth for the 100 sampled
images was manually created. While efforts were made to ensure
accuracy, minor errors or omissions may exist. However, these are
not expected to lead to significant deviations in the overall analysis.

YOLO generally performs well. However, it should be noted
that YOLO only recognises objects from predefined classes. Conse-
quently, some objects are not considered because they are unknown
to the model. This is likely an explanation for the lower recall value.
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Figure 5: This scatter plot of ORR (x-axis) versus NOIR (y-
axis) provides insights into the relationship between how
well objects from the original images are retained in the
generated images and how many new objects are introduced.
Both axes are scaled from 0 to 1. The slightly negative slope
of the trend line reveals that as the ORR increases, the NOIR
tends to decrease slightly.

Objects are mostly recognised if they exist, reflected in the higher
precision value. Additionally, the inference time favours YOLO.
With its fast evaluation, the algorithm suits real-time applications
in extended reality.

The high recall of LLaVA is undoubtedly very positive and en-
couraging, indicating that many correct objects were detected. At
the same time, the low precision value must be mentioned. On
one hand, this is likely due to receiving a full-text response. Even
when we only check the nouns, some words do not correspond
to detected objects. On the other hand, sporadic sample views of
the detected elements also showed that the LMM occasionally in-
vented new objects, leading to a low precision value. LLaVA’s time
to recognise objects is relatively high compared to other models.
Therefore, this variant is only suitable for applications that are not
too time-critical. However, since LLaVA provides both the object
and a full description, it remains an exciting model for XR multime-
dia retrieval applications. Users can focus on details with LLaVA,
which was impossible with YOLO until now.

KOSMOS-2 presents a comparable candidate to YOLO, with im-
proved precision. The advantage is that it can still identify precise
object boundaries in the image and is not limited to predefined
classes. However, this model requires more time, though it is still
within a reasonable range. In direct comparison to YOLO, a choice
can definitely be made between speed and precision.

When we discuss how well LMMs create images based on object
specifications, we find that they deliver solid performance, with
more than half of the desired objects typically present. Of course,
there can still be deviations, as YOLO does not always correctly
classify all objects. This image generation approach is undoubt-
edly promising for suggestions for further searches in multimedia

retrieval. If the objects are correct but the setting is not, a new
example image can be generated based on the desired format and
objects, which can then be used for similarity searches.

In summary, LMMs have a valid use case and offer exciting
options for multimedia retrieval in XR compared to classical object
detection algorithms. YOLO, LLaVA, and KOSMOS-2 can all excel
depending on the focus.

5 Related Work
The rapid development of LLMs has sparked significant interest
in their potential applications beyond traditional text-based tasks.
LLMs like GPT-3 and ChatGPT have demonstrated impressive capa-
bilities in natural language processing, including tasks such as text
classification, sentiment analysis, and machine translation. How-
ever, the emergence of LMMs marks a notable shift in the field,
extending these capabilities to process and understand multimodal
content, including images, sound, and video. In this section, we
will provide an overview of related work focusing on LMM, a com-
parison to traditional computer vision algorithms and their use in
extended reality.

5.1 Multimodal Understanding with LMMs
LLMs have shown promising results in bridging the semantic gap
due to their impressive multimodal capabilities. Learning visual
concepts from natural language descriptions, LMMs enable effi-
cient zero-shot transfer to various vision tasks [36]. This approach
underscores the potential of LMMs in recognising and generating
content that aligns with visual and textual inputs, even though
they have not been trained on the data before. In this study, we
focused on available open-source models with local deployment.
However, closed-source or only cloud-available models exist, such
as DALL-E [5, 37, 38], Midjourney5, Claude6 or Gemini [43].

5.2 Comparing LMM Object Detection to
Traditional Computer Vision Algorithms

Incorporating object detection in LMMs offers several advantages
over traditional methods. LMMs can provide a more holistic under-
standing of scenes by combining linguistic and visual cues, allowing
for natural language interactions and context-aware object recogni-
tion. For instance, [52] demonstrated that incorporating language
and vision models improves understanding and interpreting com-
plex scenes in visual question-answering tasks.

The integration of object detection with large language models
aims to leverage visual and linguistic understanding to enhance
performance on multimodal tasks. Recent research has made signif-
icant advancements in this field, particularly in the following key
areas:

Contextual Object Detection: This technique integrates LLMs
with object detection models to extract context-specific im-
age information. For example, the ContextDET framework
combines a visual encoder, a pre-trained LLM, and a visual
decoder to perform tasks such as cloze tests, captioning, and
question answering by analysing images and human text

5https://www.midjourney.com
6https://claude.ai
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inputs concurrently, providing both bounding boxes and
textual outputs [50].

Enhancing LMMs with Detection Models: Anothermethod
focuses on integrating cutting-edge object detection and
OCRmodels into multimodal large language models. A study
[24] has demonstrated that models like LLaVA-1.5 can be
optimized with the DINO object detection model [9, 33] toto
enhance object counting and localisation accuracy. This inte-
gration converts detection model outputs into textual format
and complements the LLM, enabling the model to utilise
detailed image information alongside overall image data.

These developments showcase the expanding possibilities and
applications of merging object detection with LMMs, advancing
multimodal understanding and interaction.

5.3 LLMs and LMMs in Extended Reality
Integrating LLMs in XR is a relatively new research area yet to be
explored and opens much potential.This is especially true for LMMs
in this domain. One current explored possibility is to employ LLMs
as conversation agents in XR, as different work shows [2, 42, 46].
These approaches show the use of LLMs in XR but no essential
modification to adapt to the new application domain.

A recent study discusses integrating LLMs into XR environments
to enhance inclusion, engagement, and privacy [7]. The research
highlights how fine-tuning LLMs and employing different prompt-
ing techniques can improve task performance and personalisation
in XR settings. Additionally, the study explores using custom LLMs
in XR applications as smart non-player characters (NPCs).

Another approach is to use LLMs to create and edit objects
and scenes in MR, as [13] examined. They demonstrated cross-
platform interoperabilitywith several exampleworlds. Furthermore,
they evaluated their approach to various creation and modification
tasks to show how a combination of LLMs can produce and edit
diverse objects, tools, and scenes in MR, leading to a positive user
interaction.

6 Conclusions and Future Work
Our analysis demonstrated the potential of LMMs in enabling novel
user interactions for XR applications, confirming our hypothesis.
By comparing the performance of the object detection algorithm
YOLO with the two LMMs, LLaVA and KOSMOS-2, on an image
dataset representing indoor scenes, we showed that each model
has strengths and weaknesses depending on the specific research
focus.

The results of our study highlight the importance of considering
each model’s benefits and limitations when designing XR-based
applications. For instance, LLaVA’s high recall and ability to provide
free-text answers make it an excellent choice for applications where
accuracy and detailed user interaction are vital. On the other hand,
KOSMOS-2’s precision ensures that detected objects are accurate
and reliable, which is crucial for applications that require high
confidence in object identification. Meanwhile, YOLO’s speed and
F1 score make it a suitable option for real-time applications in
extended reality, where quick processing and balanced accuracy
are important.

Furthermore, our study demonstrates the potential of LMMs to
generate high-quality scene descriptions that can be used as input
for XR-based systems. We observed that Fooocus, an AI image
generator based on Stable Diffusion, can create images containing
specific objects while also having the flexibility to omit or add
certain elements. This ability to generate and modify scene content
is beneficial for creating dynamic and adaptable XR environments.

The implications of our study extend beyond theoretical insights
and have practical significance for developing novel XR-based user
interactions. By leveraging LMMs’ strengths and capability to inte-
grate multimodal content, we can create innovative solutions that
enhance users’ interactions with buildings and spaces. For example,
architects and designers can use LMMs to generate detailed de-
scriptions of building designs and environments, facilitating more
accurate and efficient design processes. This can lead to improved
visualization and planning in architectural projects.

Additionally, our study highlights the potential of LMMs to im-
prove the user experience in XR-based applications. High-quality,
accurate, and reliable scene descriptions provided by LMMs can
enable users to understand better and navigate complex spaces.
This has significant implications for various industries, including
architecture and interior design, where understanding spatial rela-
tionships and details is crucial.

Future work involves incorporating LLaVA into an XR system,
especially XR multimedia retrieval, to enable users to interact more
effectively with detected objects. This would allow for more ac-
curate and efficient search queries and improved navigation and
exploration of complex spaces. The user interaction could benefit as
well. Additionally, Fooocus could likewise be employed to generate
possible images that can be used for further similarity searches,
enabling users to refine their search results and explore related
concepts. By combining the strengths of LMMs with advanced mul-
timedia retrieval techniques, our research can potentially impact
the development of innovative XR-based applications. It would
furthermore be interesting to see how well our concept works in
other environments. Therefore, a follow-up study with the COCO
dataset [11] could be carried out to potentially expand the range
of applications. Another potential work would deal with our pre-
sented method and 3D models. Since the result is to be used in XR
applications, not only 2D entities but also 3D objects are of interest.
3D scene understanding would, therefore, be a core component.

In conclusion, our study demonstrates the potential of LMMs
in enabling novel user interactions for XR-based applications and
suggests a potential revolution in the field. By understanding the
strengths and limitations of each model, we can develop innovative
solutions that enhance how users interact with buildings and spaces.
The results of our study have significant implications for various
industries and demonstrate the potential of LMMs to revolutionize
the field of XR.
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ABSTRACT
With the rapid advancement of large language model technology,
the data utilized for training these models has become increasingly
significant. The quality of text data samples produced by large
unsupervised models is often inadequate, leading to insufficient
outcomes. This inadequacy arises from the model’s constrained
capacity to precisely emulate the underlying structure of the data
without direct supervision, resulting in outputs that may lack the
necessary fidelity and relevance to the authentic data distribution.
In order to overcome the shortcomings of training data genera-
tion for specific language generation tasks, this paper proposes a
fast data generation system (Fast Data Generation System, FDGS)
that can handle multi-modal and structured data generation. As a
method for generating data, FDGS uses clustering abstraction to
handle multiple data input types through templates. This approach
allows for quick data generation and reduces consumption. FDGS is
robust, ensuring stable and reliable performance under various con-
ditions. It is more cost-effective in terms of token usage compared
to traditional methods that work on a per-instance basis and do not
use templates. By abstracting and clustering different input types,
FDGS can efficiently generate data from large models. This system
is highly adaptable, making it a great choice for multi-modal data
generation tasks. It relies on the basic functions of general large-
scale language models and employs a query-answer bidirectional
generation mechanism to achieve fast data amplification.
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1 INTRODUCTION
The rapid increase in data, now reaching 2.5 exabytes daily, high-
lights the need for better methods in data management and use
[2]. Machine learning and deep learning have used these large
datasets to enhance analytical precision and predictive accuracy
[30]. However, relying heavily on big data also reveals the flaws in
traditional data collection methods, which are often labor-intensive
and biased [28]. This problem is even more evident when generat-
ing multi-modal data, such as images or LiDAR point cloud data for
autonomous driving [23, 24], which usually require a lot of effort
to gather through direct collection or simulation tools [15, 53].

In model training and testing, semi-automatic generation of
grammar test items using Natural Language Processing (NLP) tech-
niques is common [35]. Additionally, acquiring image or text data is
no longer limited to direct retrieval from live networks. Advanced
techniques like attribute manipulation based on Large Language
Models (LLMs) are now key for creating efficient training datasets.
Moreover, synthetic data generation platforms like DataDreamer
are essential, enabling the creation of reproducible and customized
datasets for specific research or operational needs [39]. Understand-
ing the different methods for data generation—including real-world
data collection, synthetic data creation, and using large models—is
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crucial for informed decision-making and advancing computational
sciences and modeling. Key considerations include data distribu-
tion nuances, domain scope, and alignment with practical end-user
needs, which underscore the importance of choosing effective data
generation strategies for various applications [41].

The first method for data generation involves collecting real data
from online networks, which provides the advantage of capturing
observational data in its natural form [16]. Real data from various
online platforms like social networks, websites, and databases offers
raw insights into complex phenomena. This method is vital for
studies needing high ecological validity, especially in social science
research involving human behavior, where accurate representation
of real-world contexts is essential [29]. However, this approach has
notable downsides due to potential inaccuracies and biases in the
data sources. Online data can be skewed by over-representation
of certain demographic groups [36], and privacy concerns require
careful ethical considerations when collecting personal data [56].

The second method focuses on generating data through large
models, which replicate defined data characteristics like distribu-
tion, domain range, and alignment with actual user queries [19, 48].
Nevertheless, a major challenge with this method is its dependence
on the model’s accuracy and inclusiveness. Discrepancies within
the model can result in ineffective or biased data generation [4], and
developing these models requires extensive expertise in modeling,
which might be restrictive for some organizations [5].

Synthetic data generation utilizes algorithms and statistical meth-
ods to create artificial data that mimics real-world patterns [12].
This technique’s primary advantage is its ability to avoid privacy
issues associated with real data since the generated data is entirely
artificial and not subject to personal data regulations [1]. Addi-
tionally, synthetic data can be customized to suit specific research
queries, enhancing representation of certain scenarios or popula-
tions [52]. However, the limitations of synthetic methods often
include the inability to mass-produce high-quality data for model
training [18].

To address these challenges, this paper proposes a Data Genera-
tion System, an innovative solution for multi-modal data generation
strategies. The Fast Data Generation System (FDGS) effectively han-
dles various types of data inputs and structured data by employing
a clustering abstraction method supporting diverse data input types,
thus addressing the deficiencies of large unsupervised models. Data
generation begins with images, LiDAR point clouds, and text in-
put as three multi-modal data sources. Through preliminary image
recognition and point cloud clustering, raw data is abstracted into
patterns [15, 49]. Based on these patterns, large models are used
for automated batch generation, and with self-supervision, the sys-
tem continuously optimizes and adjusts prompts to ensure data
generation aligns with preset patterns [9].

Recent advancements in machine learning for synthetic data
generation have shown potential in mitigating data scarcity and
privacy concerns [38]. Traditional methods, such as Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs),
have been crucial in generating realistic data across various domains
[18, 26]. However, these methods often struggle with the complexity
and diversity of multi-modal data inputs [21].

This paper’s contributions are threefold: The contributions of
this paper are threefold:

(1) Innovative Data Generation Approach: FDGS introduces
a novel data generation methodology that leverages the
strengths of multi-modal data handling and structured data
generation, providing more accurate and inclusive datasets
for model training [34].

(2) Efficiency and Cost-Effectiveness: FDGS reduces token
usage and uses a bidirectional generation method, providing
a cost-effective solution that lowers the expenses of data
collection and storage [7].

(3) Reducing Bias and Improving Generalization: FDGS is
robust and adaptable, which helps reduce biases and improve
model generalization, ensuring the generated data is varied
and reflects real-world scenarios [4].

Our proposed Fast Data Generation System (FDGS) represents a
new approach in this field. FDGS excels in handling various types
of data, such as images, LiDAR point clouds, and text inputs. Using
clustering abstractionmethods, FDGS effectively processes different
input types and patterns, creating structured data that matches
predefined patterns [15]. This approach addresses the inefficiencies
often seen in large unsupervised models when dealing with diverse
data formats.

The combination of clustering abstraction and large model-based
pattern generation allows FDGS to automate the data generation
process. Self-supervised learning techniques help the system con-
tinuously optimize prompts, ensuring that the generated data con-
sistently meets the desired patterns [9]. This method not only im-
proves the efficiency of data generation but also enhances the qual-
ity and relevance of the synthetic data produced.

In summary, FDGS provides a practical solution for multimodal
data generation, addressing key gaps in current methods. Its ap-
plication has the potential to transform various fields, including
autonomous driving, medical imaging, and natural language pro-
cessing, where the diversity and complexity of data inputs are
crucial [30].

2 RELATEDWORK
This section reviews research efforts related to EDGS, focusing
on automatic prompt optimization and LLM-based intelligent data
generation.

2.1 Automatic Optimization of Prompts
Prompt optimization is crucial for large language models (LLMs)
to generate accurate results [45]. This paper presents a new ap-
proach that imitates gradient-based optimizers. AutoPrompt refines
prompts using model gradients, enhancing LLMs’ performance in
knowledge retrieval tasks [50], outperforming manually crafted
prompts [45]. However, this method primarily applies to text mod-
els, with limited effectiveness for multimodal inputs like images
and point cloud data.

The Gradient-inspired LLM-based Prompt Optimizer (GPO) im-
proves on traditional prompt optimization by learning from past
data, combining generation-based refinement with cosine-based
control. This approach enhances precision and relevance, achieving
up to 56.8% improvement on the Big-Bench Hard dataset and 55.3%
on MMLU [13].
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AutoHint enhances prompts by providing task-specific hints,
using clustering and balanced sampling strategies. This method
improves accuracy across multiple tasks, particularly in zero-shot
settings, by applying structured hints to improve LLM prompts
[32].

Implicit Reflection-based Prompt Optimization refines prompts
using historical data, enhancing performance without direct reflec-
tion. By analyzing past prompts and scores, it optimizes LLM tasks
effectively [44]. While these approaches improve LLM performance
in text domains, they lack effectiveness in optimizing prompts for
multimodal inputs like images and point clouds.

2.2 Bidirectional Data Generation System
Automated data generation is vital across various fields, enabling
advancements in machine learning, computer vision, NLP, and
software engineering. This section reviews significant contributions
and methodologies related to automated data generation.

In machine learning, automated data generation is crucial when
labeled data is limited. Techniques like rotation, translation, and
GANs enhance model robustness. Goodfellow et al. (2024) intro-
duced GANs, where a generator creates synthetic data and a dis-
criminator distinguishes it from real data, improving robustness
despite challenges like mode collapse [17, 54, 55].

Radford et al. (2024) expanded onGANswithDeep Convolutional
GANs (DCGANs) for image synthesis, improving image quality
and diversity [40]. However, DCGANs may produce images with
artifacts.

Conditional GANs (cGANs) introduced by Isola et al. (2024) ad-
vanced image-to-image translation tasks, useful in generating im-
ages or semantic segmentations, though limitations remain for
high-resolution applications [20]. Variational Autoencoders (VAEs)
generate diverse images from latent distributions but often produce
blurry results [27].

In NLP, models like BERT and GPT-3 revolutionized text genera-
tion. BERT uses bidirectional transformers for contextually appro-
priate text but requires substantial computational resources [10].
GPT-3 generates high-quality text across contexts with minimal
examples but faces challenges in controlling output quality and
addressing biases [6].

In software engineering, techniques like symbolic execution and
fuzzing are used for test case generation and vulnerability iden-
tification. Cadar and Engler (2024) discussed symbolic execution
for comprehensive program behavior coverage, though scalability
remains a challenge [8]. Sutton et al. (2024) explored fuzzing, a
technique for generating test cases to discover software bugs and
security vulnerabilities. They outlined various fuzzing strategies,
but challenges include generating meaningful test cases for com-
plex software and reducing false positives, impacting the overall
efficacy [47].

Despite progress, generated data still faces quality and diversity
issues. Liu and Yu (2024) proposed methods for improving synthetic
data fidelity under constraints [33]. Most recent works struggle
with multimodal input handling and generating data in specific
directions. The proposed EDGS overcomes these limitations by pre-
processing input content as patterns and rapidly generating text
based on these patterns.

Ethical considerations are also critical in data generation. Barocas
and Selbst (2024) examined ethical implications and biases, propos-
ing frameworks to address these challenges while recognizing the
difficulty of eliminating biases entirely [3].

3 EFFICIENT DATA GENERATION SYSTEM
In this section, we discuss the methodology in Efficient Data Gen-
eration System, including data construction, training preparation
and evaluation benchmark.

Figure 1: Data Generate System

3.1 Data Construction
The construction of a robust data-set is a critical foundational step in
the training of large machine learning models. The quality, volume,
range, diversity, and relevance of the data directly affect the model’s
performance. This section discusses in detail the methodology for
generating and preparing training data suitable for large-scale mod-
els focusing on deep learning.

• Data Collection
Carla simulation software is a professional autonomous driv-
ing simulation software developed based on the Unreal en-
gine. Epic Games constructed the Unreal engine as a game
engine, integrating rendering, collision detection, AI, graph-
ics, and networking under the engine [11]. The Unreal engine
has excellent performance in simulating the driving environ-
ment of the vehicle and possible collisions during driving.
Therefore, Carla simulation software can approximate the
real scene regardless of the scene’s reality and the sensor’s
simulation.
Although Carla has the above advantages, it is in contin-
uous development and improvement, so procedural bugs
sometimes appear, which may cause the running script to
crash. In addition, the ROS interface supported by Carla is
not highly supported on the Windows platform, so some
extensions need to be converted to the Ubuntu 18.04 system
for improvement.
In this project, I use the 0.9.11 version of the Carla simulator
1. This software is scripted based on Python to realise the

1We utilized the Carla open-source tool (version 0.9.11) to generate experimental data.
This tool is licensed under the MIT License, which allows us to freely use, modify, and
distribute the source code. Please visit https://carla.org/services/ to access the full text
of the license.
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Figure 2: Images by a semantic
segmentation camera

Figure 3: LiDAR information

required functions. It also supports the Windows platform
and Linux system. In terms of software, the Carla simula-
tor only supports Python. Considering the compatibility of
OpenCV and other aspects, install Python3.7 as the software
environment for scripting.

First, the multi-modal data content is collected from maps
and driving facilities built by the autonomous driving sim-
ulation software Carla. Through the installation of laser
radar and RGB camera, semantic segmentation camera on
the virtual simulation vehicle, the image information and
laser radar information around the vehicle are collected, and
the diversified information is obtained for experimental ver-
ification. The example is shown in the figure.

The process begins with an extensive data collection phase.
Data can be sourced from various repositories, open-source
datasets, or through web scraping, APIs, and sensor network
deployments, considering ethical and legal constraints [16].
Heterogeneous data types are collected to enrich the dataset,
including structured data (tables, CSV files) and unstructured
data (text documents, social media posts) [35].

• Annotation and Labeling Once the data is collected, it must
be properly annotated or tagged to provide a true reference
for the model. We classify scenarios based on actual driv-
ing scenarios and mark information such as vehicles, traffic
lights, and pedestrians. The labeled data is used for visual
model training to combine the point cloud clustering result
and visual recognition result to generate the target pattern
[15].

• Data Cleaning Data cleaning is essential to remove noise
and correct errors in the dataset. It involves tasks like dedu-
plication, dealing with missing values, and removing outliers
or irrelevant instances. The laser radar data is easy to be in-
terfered with, so Gaussian filtering method is used to remove
the laser point cloud noise [15]. The image is obtained by
filtering image noise, converting the image into a grayscale
image, and then segmenting the image to reduce the im-
pact of noise. For text input, data cleaning mainly includes
filtering irrelevant content in the actual corpus through a vo-
cabulary and removing excessively long or excessive phrases
from the input corpus [35].

• Feature Engineering Feature engineering transforms raw
data into a format that machine learning algorithms can
work with more effectively. It may involve data transforma-
tions such as normalization, scaling, tokenization for text,
or feature extraction techniques to reduce dimensionality
[30]. Encoding of categorical variables, one-hot encoding for
high cardinality features, or embeddings for deep learning
models are considered.

• Data Splitting The assembled dataset is divided into training,
validation, and testing sets. A common split ratio is 70% for
training, 15% for validation, and 15% for testing, although
this can vary depending on the dataset size and the model
requirements. Stratified sampling may be used to preserve
the distribution of classes.

• Data Augmentation Data can be sourced from various repos-
itories, open-source datasets, or through web scraping, APIs,
and sensor network deployments, considering ethical and
legal constraints. Heterogeneous data types are collected to
enrich the dataset, including structured data (tables, CSV
files), untextual data (images, videos), and unstructured data
(text documents, social media posts) [46].

3.2 Training preparation
Our experiment preparation includes model preparation, data gen-
eration, and evaluation of the final generation result. Because the
Prompt of different models has a self-tuning link, we assume that
effective data output can be obtained after the automatic adjust-
ment of the Prompt is completed [45]. Next, we will compare the
data generation speed and token consumption of different data
construction methods.

3.3 Evaluation benchmarks
In the domain of computational models, particularly those involv-
ing large-scale architectures, benchmarks play a fundamental role
in assessing the effectiveness, efficiency, and overall performance of
algorithms, systems, or methodologies under study. The utilization
of benchmarks follows rigorous scientific methods to ensure that
the data obtained is valid and reliable. In this context, we partition
the dataset into training, validation, and test sets to ensure that mul-
tiple pattern extraction models and language generation systems
not only undergo thorough training but also receive validation to
prevent overfitting. Ultimately, performance is evaluated through
rigorous testing to gauge the system’s overall effectiveness [30].

Benchmarks typically encompass a variety of metrics related to
the final objectives of the model. In this study, visual metrics are
employed to assess the accuracy of visual target evaluations, while
point cloud segmentation metrics focus on the proportion of clus-
tered points within the original object point clouds. For text corpus
information, the ROUGE model is utilized to evaluate the accuracy,
precision, and recall of structured information [31]. Beyond mere
predictive performance, benchmarks also assess computational as-
pects such as inference time, training efficiency, memory usage, and
scalability [30]. Given the complexity of our system, which involves
multiple modules, a full-scale evaluation of data processing stages
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is not conducted. Instead, we focus on evaluating the core genera-
tion system, considering robustness, interpretability, fairness, and
ethical implications to provide a comprehensive assessment [14].

The benchmarking process is methodical and structured to en-
sure detailed analysis and unbiased conclusions. Based on our re-
search hypothesis—that the EDGS (Feature-based Data Generation
System) can enhance the efficiency of generating multi-modal input
data—we integrate model design with benchmark standards. In the
training phase, we develop and train models on the training set,
utilizing the YOLO-v5 model for visual tasks due to its rapid infer-
ence capabilities [22]. For laser point clouds, clustering models are
trained to perform spatial clustering calculations, extracting pattern
information from point clouds. This information is then integrated
with image data to unify point cloud and image recognition results
with structured textual descriptions.

By employing these benchmarks, we guarantee a complete and
impartial evaluation of the system’s performance and potential
improvements. This way of doing things helps quantify how well
the system works, along with other factors like computational
efficiency or model robustness and even ethical considerations. Our
visual model can reach 97% accuracy for item recognition.

3.4 Training Pattern Model
In the domain of machine vision algorithms, the choice is very
important for the efficiency and accuracy of autonomous driving
systems. The KITTI dataset itself is a very good benchmark for
evaluating computer vision techniques in autonomous driving, pro-
viding a complete platform to test how well different algorithms
perform [15]. It was created by the Karlsruhe Institute of Tech-
nology and the Toyota Technological Institute at the University
of Stuttgart and comprises a large number of vision tasks: stereo,
optical flow, visual odometry, and object detection and tracking.

In our journey through the world of machine vision algorithms,
we came across the YOLO (You Only Look Once) series 2, which
though not the fastest or most accurate, strikes a good balance
between both. The YOLO series, specifically Yolo-v5, achieves an
excellent compromise between on-the-fly processing ability and
high detection accuracy, important in meeting strict latency needs
in autonomous systems [42]. The training data for our vision recog-
nition model was collected with utmost care and then annotated
by going through RGB camera feeds and semantic segmentation
camera outputs [15].

In the field of LiDAR point cloud processing, extracting individ-
ual objects or regions from laser-scanned point cloud data is not a
trivial task. We used the Euclidean Cluster Extraction algorithm.
It is very good at forming clusters by connecting adjacent points,
unlike K-Means clustering or Region Growing [43]. With a simple
adjustment of minimum cluster size, this algorithm is able to seg-
ment vehicle and pedestrian point clouds very well, while filtering

2In this study, we utilized Yolo-V5, an open-source tool released under the AGPL-3.0
license, to generate our experimental data. This license permits users to freely use,
modify, and distribute the source code, provided that they adhere to the terms and
conditions of the license. In accordance with the requirements of AGPL-3.0, if the
outcomes of this study are employed as part of a network service, we provide access
to the source code of the tool to ensure transparency and uphold the spirit of open-
source. The full text of the AGPL-3.0 license can be accessed at https://github.com/
ultralytics/yolov5. Please note that no warranties of any kind are provided with the
use or distribution of Yolo-V5, and we assume no legal liability arising from its use.

Figure 4: Yolo-v5 image recog-
nition result

Figure 5: Point cloud for a car
clustering result

ground, walls, and trees out as noise. What makes it unique is its
ability to very quickly process uniform point cloud data; that is
why it is so good for our system.

For the language model component, we constructed a language
training dataset by processing queries and utilized the Pangu-13B
model as our foundational model, subjecting it to Supervised Fine-
Tuning (SFT) [51]. Throughout the training regimen, we adhered
to the principle of incremental learning, which replaced the need
for parameter updates across the entire dataset. This approach
achieved a harmonious balance between iteration speed and con-
vergence stability. To mitigate overfitting, our dataset incorporated
regularization techniques, dropout, and batch normalization, com-
plemented by early stopping based on performance metrics derived
from a validation set. Hyperparameter tuning was conducted using
the Adam optimization method, which autonomously identified
the optimal learning rate [25]. The training process involved the
propagation of network batches, gradient computation, and weight
adjustments, reiterated over multiple epochs until a stable genera-
tion level was attained.

Through these methodologies, our model training yielded the
following results in image recognition and LiDAR clustering. By
harnessing the comprehension capabilities of large models and
integrating textual information, we effectively transformed multi-
modal inputs into structured textual information that is more di-
gestible for the model. This includes object types, positions, and
descriptions, ultimately generating structured information in tex-
tual form.

4 EXPERIMENTS
In this part, we will introduce the following research questions by
a series of experiments:

Q1 Measure the number of rounds consumed by different meth-
ods to generate the same number of results with the same
initial Prompt input and assuming that the optimal threshold
is reached.

Q2 Measure the number of tokens consumed by different meth-
ods to generate the same number of results with the same
initial Prompt input and assuming that the optimal threshold
is reached.
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4.1 Experimental Setup
In this section of our paper, we provide comprehensive details of
the methods and tools used during our research.

First, we start by outlining our main goal, which is to reduce
token consumption while increasing production speed by building a
system that produces targeted high-quality data in bulk. Specifically,
we aim to assess the effectiveness of largemodels in generating high-
quality data quickly. Key aspects include comparison of different
models, variation of parameters, and accuracy of generated results
as a system standard measure.

Next, we introduce the big data model used in the experiment.
These large models are selected for classification based on their
differentiated parameters and features. Notably, we use models that
have been recently developed or updated in the data science field,
including models such as GPT-3.5, GPT-4, and Mistrol-7B [7]. By
including a variety of models, we can get a broader perspective on
how each model performs uniquely. Considering the requirements
of eachmodel on the prompt, the fixed instruction + task description
is used as the prompt.

In addition, the data sources and parameters we apply to these
models play an important role. Since our paper is based on data
generation, we focus on synthetic datasets that are close to real-
world data, explaining why these datasets were chosen, their size,
and what they represent [52].

In terms of software and hardware, the experiment is based on
the platform cloud service system, equipped with advanced GPUs
and capable of handling large-scale model requirements [51].

Validation procedures are another key factor. We list the mea-
sures used to assess the quality of the data generated, such as
precision, recall, F1-Score, ROC curve, and other techniques. Bench-
mark models or standards for measuring the performance of large
models are also discussed [31].

The experimental setup section explains how the whole experi-
mental process was taken to ensure a standardized and unbiased
approach, and also the time required to evaluate the feasibility of
using such large-scale models in the real world [30].

In conclusion, this section provides a clear understanding of the
methodology concerning our research, which not only gives a basis
for our findings but also serves as a reference for other researchers
in the field.

4.2 Model Rounds Evaluation
In our experiments, we evaluate different data generation methods
and compare them with large-scale models. Depending on the start-
ing point, other techniques may take more iterations to achieve
the desired data. We explore and explain this effect, providing both
quantitative and qualitative insights.

The data generation process started with irregular queries and
regular results as our main goal. The query formulated was "Please
help me remember xxx." This query initiates interaction with the
large-scale model. The result generated is represented in JSON
format, with content such as "subject" and "address" as key-value
entries. The output is: "subject":"xxx,""address":"xxx..."

We set three benchmarks for evaluating the efficiency of our data
system: generating one thousand, five thousand, and ten thousand
pieces of data. These benchmarks allow us to test, understand, and

evaluate the effectiveness and efficiency of our systematic approach
to data generation. Each benchmark provides unique insights into
large-scale data generation.

The basic hypothesis of the experiment was to "measure the
number of rounds consumed by different methods to generate the
same number of results using the same initial cue input and assum-
ing that the optimal threshold is reached." We examine whether
different data generation methods have a substantial impact on the
efficiency of generating structured results within set prompt and
iteration limits.

The number of rounds consumed by different data generation
methods is the key metric. The goal is to compare the efficiency and
effectiveness of each method, assuming that the optimal threshold
is reached.

We first keep the initial prompt input the same in all methods.
Consistent inputs allow us to remove any anomalies or discrepan-
cies, ensuring a clear comparison [45].

The optimal threshold assumption is crucial for our experiment.
We assume that each method reaches a point of optimal efficiency
after a certain number of rounds. Assuming all methods reach this
threshold, we focus on the efficiency of the methods.

We use the number of rounds to achieve the final goal as a
characteristic indicator to measure system generation efficiency.
The experimental results are shown in Table 1.

We measure four distinct approaches: Bulk Generation, Maximal
Generation by the Model, EDGS (No Mixed), and EDGS (Mixed),
towards achieving the target quantity of accurate entries generated
by the GPT-4 model [37].

Bulk Generation involves providing the input prompt to the
large-scale model, obtaining one result per round. This method
focuses on generating one accurate result at a time [7].

In contrast, Maximal Generation by the Model attempts to gather
as many accurate results as possible per round, with an upper limit
of approximately 50 entries per round. We measure the efficacy
based on the average number of rounds taken to meet the desired
entry limit.

EDGS (No Mixed) implements the Efficient Data Generation
Strategy (EDGS) to construct templates and corresponding slot
information, generating approximately 50 place data entries per
cycle.

EDGS (Mixed) builds upon Method C with an incorporated mix
of places and templates. The generation process halts once the
accumulated templates ensure avoidance of duplicate data.

This study gauges the efficiency of these methods in generating
precise and structured data using the GPT-4 model, contributing
valuable insights for large-scale data generation [37].

Table 1: Model Rounds for Different Data Generate System

Method 1000-items 2000-items 5000-items 10000-items
Bulk Generation 1120 2240 5600 11200
Maximal Generation by the Model 224 448 1120 2240
EDGS (No Mixed) 224 448 1120 2240
EDGS (Mixed) 224 448 560 560

Due to factors such as model hallucinations and duplicate out-
comes, data generated by models often can’t be directly utilized;
we have incorporated these scenarios in our failure conditions for
comprehensive consideration [4]. Drawing on information from
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both practical experiments and descriptions within other studies,
under normal conditions with automated optimization of Prompt
guidance for large model result generation, approximately 12% of
the results get discarded due to reasons such as repetition or non-
compliance with data generation norms [7]. In our results, we will
also consider this part in terms of the number of rounds and actual
consumption. Consequently, we will accommodate these failure sce-
narios when evaluating the data-generating capabilities of different
models.

4.3 Tokens Consumption Evaluation
Continuing from the previous scenario, this portion of our study
entails a comprehensive assessment of the number of tokens con-
sumed by the same methods (Bulk Generation, Maximal Generation
by the Model, EDGS (No Mixed), and EDGS (Mixed)) to generate
an equal number of results with the same initial Prompt input. This
evaluation, unlike the prior one, switches the metric from the num-
ber of rounds to the number of tokens utilized, once the optimal
threshold is supposed to have been attained, thereby offering a
different metric for comparison [7].

In Bulk Generation, which achieves results through sequential
generation on a large-scale model via an iterative querying process,
one result feedback is obtained per round. The token consumption
here is relatively simple and linear, with each round potentially
consuming a constant number of tokens based on the complexity
of the prompt and response.

Maximal Generation by theModel, in comparison, tries to extract
multiple accurate outputs per round to the defined upper limit of
approximately 50 items in order to maximize efficiency, while still
adhering to the principle of accuracy. Although this approach might
increase the token consumption per round due to the larger volume
of data being generated, it could potentially reduce the overall
number of tokens needed to reach the target output quantity, owing
to fewer iterations.

EDGS with no mixed data adopts a structured data creation
approach—Efficient Data Generation System. It can rapidly generate
pattern data and a case database, which might save some tokens
as it reuses templates and place or other typical data to create
the results, thus reducing the total tokens consumed to reach the
desired amount of results.

Unlike EDGS with no mixed data, EDGS with mixed data intro-
duces an element of diversification in the data, combining places
and templates in order to avoid data redundancy, which could lead
to a slight increase in token consumption. However, this method
ensures the novelty and diversity of the generated dataset.

Table 2: Token Consumes for Different Data Generate Sys-
tem.

Method 1000-items 2000-items 5000-items 10000-items
Bulk Generation 112000 224000 560000 1120000
Maximal Generation by the Model 22400 44800 112000 224000
EDGS (No Mixed) 22400 44800 112000 224000
EDGS (Mixed) 22400 44800 56000 56000

This token-based performance evaluation provides a meaningful
standpoint to understand and compare the efficiency of the dif-
ferent generating methods in terms of their throughput within a

given token limit, presenting another perspective for the practical
applicability of these techniques.

4.4 Discussion
Large-scale data models have become increasingly essential in pre-
dictive analytics and other data-driven fields of research [7]. Our
exploration into the efficacy and efficiency of these models has led
us to several consequential findings, echoing and expanding upon
the existing body of work that suggests that while large models
can be powerful, they are not without their challenges. The com-
prehensive evaluation of various data generation methods utilizing
the same large-scale model has yielded fascinating insights. The
four distinct strategies of Bulk Generation, Maximal Generation
by the Model, EDGS (No Mixed), and EDGS (Mixed), have shown
considerable variability in their efficiency and effectiveness [7, 37].

Figure 6: Comparison of Different Data Generate System
However, one major drawback of this approach is that it is rela-

tively inefficient when large volumes of data are needed quickly.
The Bulk Generation speed is slower compared to other methods,
as it consumes many tokens for each data generation round. This
predictability of performance is what is emphasized by Brown et al
(2020) [7].

However, one major drawback of this approach is that it is rela-
tively inefficient when large volumes of data are needed quickly.
The Bulk Generation speed is slower compared to other methods,
as it consumes many tokens for each data generation round. This
predictability of performance is what is emphasized by Brown et al
(2020) [7].

In order to address some of the limitations of Bulk Generation,
the Maximal Generation by the Model method was explored. This
approach has proven to be a more viable alternative that allows
larger quantities of data to be generated per round while still main-
taining high quality in the data output [7]. By maximizing the data
output in each round and ensuring its quality, the model signifi-
cantly brings down the number of required rounds and tokens.

The Maximal Generation by the Model method is a powerful tool
for token-efficient large-scale data production since it can generate
huge amounts of data without consuming many tokens. This makes
it ideal for situations requiring immediate large volumes of data,
as token budget limitations will not impede its efficiency. This
efficiency is markedly superior, as demonstrated by Brown et al.
(2020) [7].
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However, this efficiency does come at a cost. The production of
data on bigger scales does bring up unique challenges and consid-
erations. Although maximal generation by the model is efficient, it
has to be well controlled to work on these issues effectively. One of
the key among them would be how to handle the resultant dataset
and ensure that the data produced is authentic and of good quality.

EDGS (No Mixed) employs data templates and an efficient data
generation strategy to expedite data production. The reusing of
templates and place data entries significantly reduces token usage
and the number of rounds required, except the model needs to en-
sure the avoidance of duplicate entries and the occasional addition
of new templates [7].

EDGS (Mixed) further refines the technique by introducing a
blend of diverse templates and places in the data generation process.
This ensures a unique and varied dataset. Undeniably, this method
necessitates extra carefulness to avoid data redundancy.

It is evident from the above results that all four data generation
methods have their unique advantages—Bulk Generation serves
predictability, Maximal Generation by the Model prioritizes quan-
tity while ensuring quality, EDGS (No Mixed) brings the speed, and
EDGS (Mixed) guarantees speed as the most fast method [7].

Furthermore, these methods’ efficiencies greatly depend on the
initial input prompt. BThe bias in the initial prompt might tilt the
results, indicating how important it is for the rest of the process.
Consequently, it is very necessary to take into account that the
initial prompt should be unbiased and not be inclined towards any
specific method [45].

When evaluating these techniques’ efficiencies, one must also
consider the optimal threshold assumption, which states that each
method reaches a point of optimal efficiency after a certain number
of iterations. Notably, the efficiency of methods may vary before
and after hitting this point, underscoring the importance of this
consideration.

This detailed analysis explains the process of how to generate
a large amount of data by using large-scale models. It discusses
what should be taken into account and what difficulties researchers
may have while trying to make their data generation procedures
effective, correct, and prompt.

The results of these experiments contribute not only to new
knowledge about various methods of data generation but also indi-
cate that it is possible to delve further into this process and improve
it. Subsequent studies should perfect the methods identified here,
as well as try to surpass the frontiers of data generation with large-
scale models. There is little explored possibility yet in which hybrid
models can be tested for the good points of all four techniques; this
can create some unprecedented efficiencies in data generation.

5 CONCLUSION
In conclusion, this in-depth study of the Efficient Data Generation
System (EDGS) serves as valuable input for understanding and
developing more efficient and effective user-centric data genera-
tion methodologies. It not only unveils the potential that current
methodologies have but also opens up new avenues of exploration
in data generation optimization, especially in the era where data
plays such a fundamental role [2].

EDGS thrives on extracting structured information and utilizing
template sentences for bulk results production. Hence, it performs
well when there’s a need for abstract data. Abstract data refers
to key slot values that can be utilized for abstraction. On the flip
side, for non-abstract results that are not amenable to template
abstraction—like unordered information or a non-replaceable code
structure—the abstract data bulk generation doesn’t present a dis-
tinct advantage [7].

Furthermore, since bulk-generated outcomes include content
replaced in bulk, when it is actually used for model training, its
effectiveness might be slightly less successful compared to data
produced manually or data generated individually in the same
quantity. This is because bulk replacement can lead to some level
of repetition.

In our experimental phase, Efficient Data Generation System
(EDGS) integrates structured data, completes data generation in
the fewest rounds, and consumes fewer tokens [7]. However, like
all methods, this one has its limitations. EDGS: It lacks support
for scenarios with high continuity requirements such as voice and
video, and multi-modal input depends on the effect of front-end
image and point cloud clustering [15, 49]. This is because the current
multi-modal large model has limitations in understanding patterns
of different scenario-based inputs, and cannot directly abstract
key patterns in different forms of inputs and replace and quickly
generate the key patterns. In future work, we will try to train
information recognition models (such as image models, point cloud
clustering models, etc.) into the large model, so that the large model
has the ability to directly understand multi-type inputs.

Despite these drawbacks, in specific circumstances that demand
rapid acquisition of a vast amount of structured data, EDGS can
virtually contribute towards swift bulk output generation. Addi-
tionally, it can lessen the consumption of model tokens.

Lastly, The ability of EDGS to reduce model token consump-
tion highlights an important aspect of data generation: optimizing
resources. In the long-term future, we will continue to study the
research on the rapid data construction of large multi-modal input
models, and how to efficiently build patterns to quickly generate
relevant data.
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