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We show that edge-state transport in semiconductor-based quantum spin Hall systems is unexpectedly robust
to magnetic fields. The origin for this robustness lies in an intrinsic suppression of the edge-state g-factor and
the fact that the edge-state Dirac point is typically hidden in the valence band. A detailed k · p band-structure
analysis reveals that both InAs/GaSb and HgTe/CdTe quantum wells exhibit such buried Dirac points for a wide
range of well thicknesses. By simulating transport in a disordered system described within an effective model,
we demonstrate that edge-state transport remains nearly quantized up to large magnetic fields, consistent with
recent experiments.

DOI: 10.1103/PhysRevB.98.201404

Introduction. Topological insulators (TIs) are materials that
exhibit a gapped bulk yet enjoy metallic surface or edge
states protected by time-reversal symmetry. In particular, two-
dimensional (2D) TIs host helical edge modes—i.e., coun-
terpropagating states composed of Kramers partners—that
underlie quantized edge conductance [1–3]. Consequently, 2D
TIs are often referred to as quantum spin Hall (QSH) systems.
The experimentally most studied QSH systems are now based
on semiconductor quantum wells. Following the proposal of
Bernevig, Hughes, and Zhang [4], the QSH effect was first
observed in HgTe/(Hg,Cd)Te quantum wells [5]; various QSH
signatures, including quantized edge transport, have by now
been identified in this material [6–9].

In HgTe, the QSH effect originates from an inversion
of electron and hole bands that is intrinsic to HgTe. This
inversion can also be engineered in a multilayer quantum well.
In particular, InAs/GaSb quantum wells were also predicted
to be QSH systems [10], as they exhibit a so-called broken
gap alignment where the conduction band edge of electrons
is energetically below the valence band edge of holes. Quan-
tized edge conductance has also been observed in InAs/GaSb
[11–13], and the properties of the band inversion and edge-
state transport have since been investigated by several experi-
mental groups [14–20].

The hallmark quantized edge conductance in QSH sys-
tems originates from time-reversal symmetry, which prevents
the helical edge states from elastically backscattering in the
presence of nonmagnetic disorder. A magnetic field B breaks
time-reversal symmetry, and common expectation dictates
that quantized conductance must break down in this case.
For example, a magnetic field applied to semiconductor-
based QSH systems can directly couple the counterpropa-
gating edge modes, opening up a Zeeman gap in the edge
spectrum. It thus came as a surprise that Ref. [13] measured
edge conductances that remained quantized with in-plane

magnetic fields up to 12 T—sharply defying theoretical
expectations.

Here, we show that, contrary to naive expectations, edge-
state transport in semiconductor-based QSH systems (HgTe
and InAs/GaSb) typically exhibits a very weak dependence on
in-plane magnetic fields. We have identified three mechanisms
for such robustness: (i) The effective edge-state g-factor is
strongly suppressed compared to the bulk electron g-factor
due to significant heavy-hole contribution in the edge-state
wave function. (ii) The Dirac point of the edge states typically
resides not in the bulk energy gap, but is hidden in a bulk
band. A Zeeman gap opened by the magnetic field appears
only at the Dirac point and is thus invisible to transport (see
Fig. 1). (iii) Although the combination of disorder and a mag-
netic field generically permits backscattering, it is strongly
suppressed away from the Dirac point due to the nearly
antialigned spins of the counterpropagating edge states [see
Figs. 1(b) and 1(d)]. This alignment increases for energies
away from the Dirac point. When the Dirac point is buried,
one then obtains near-perfect quantization of edge conduc-
tance in a disordered system out to large magnetic fields of
order 10 T as observed experimentally.

We note that buried Dirac points have been predicted and
observed in several three-dimensional TIs [21–23]. There are
also predictions of buried Dirac points in atomically thin 2D
QSH systems [24,25]. Our findings suggest that Dirac-point
burial is a common feature also in 2D QSH quantum-well
platforms, and has a critical influence on transport in finite
magnetic fields.

It was proposed that the edge-state protection in parallel
field can also come from finite-momentum exciton conden-
sates [26–28]. Our mechanism is expected to be more robust
as it does not require interactions and is stable to disorder.

Suppression of g-factor. We first flesh out the suppression
of the edge-state g-factor, which is already accessible from the
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FIG. 1. Schematic depiction of edge-state dispersions: In the
absence of a magnetic field, the edge-state crossing is topologically
protected, but may (a) reside in the gap or (b) be hidden in a
bulk band. In a finite magnetic field, a Zeeman gap opens and the
edge-state spins become canted—permitting backscattering as in (c)
However, when the edge-state crossing is hidden in a bulk band, spins
within the gap are further away from the Zeeman gap and nearly
antialign, greatly suppressing backscattering as in (d).

canonical Bernevig-Hughes-Zhang (BHZ) model [4] written
as

[
M − B+

(
k2
x − ∂2

y

)]
ψ1 + A(kx − ∂y )ψ2 = Eψ1, (1)

A(kx + ∂y )ψ1 − [
M − B−

(
k2
x − ∂2

y

)]
ψ2 = Eψ2. (2)

Here A, M , and B± = B ± D are BHZ model parameters, x is
the propagation direction, y is the direction into the QSH bulk,
and ψ1,2 respectively denote the electron and hole part of the
wave function within one spin sector. The derivation of the
effective g-factor is based on computing the wave functions
ψ1,2 with a hard-wall boundary condition, similar to Ref. [29],
and is presented in the Supplemental Material [30]. The result
is simple and is based on the relative contributions of electrons
and holes in the edge wave functions,

geff = geB− + ghB+
B+ + B−

. (3)

Here, ge and gh are electron and hole g-factors, respectively.
Equation (3) shows that the effective g-factor of the edge
states is the weighted sum of the electron and hole g-factors
with their corresponding inverse masses as prefactors.

Typically, gh is much smaller than ge; in fact, gh = 0 by
symmetry in [001] quantum wells [31]. Moreover, the hole
mass usually far exceeds that of electrons, i.e., B− � B+.
Together these properties suppress the effective edge-state
g-factor considerably compared to bulk values.

We have performed k · p simulations (for details see
the Supplemental Material [30]) to obtain numerical values
for the g-factor in experimentally relevant geometries. For
InAs/GaSb we find an edge-state g-factor geff ∼ 2, whereas
for HgTe we find geff ∼ 8–10 (in our conventions the Zeeman
gap is geffμBB, with μB the Bohr magneton). In contrast,

105

110

E
(m

eV
)

By =0T(c)
InAs/GaSb(12.5nm/5nm)

0

−20

−40

−60

E
(m

eV
)

By =0T(d)
HgTe(7.5nm)

−0.2 0 0.2
k (1/nm)

105

110

E
(m

eV
)

By =2T(e)

−0.2 0 0.2
k (1/nm)

0

−20

−40

−60

E
(m

eV
)

By =2T(f)

AlSb

InAs

GaSb
AlSb

W = 300 nm

12.5 nm

5 nm

[010]

[0
01

]

(Hg,Cd)Te

HgTe

(Hg,Cd)Te

W = 200 nm

7.5 nm

[010]

[0
01

]

(a) (b)

FIG. 2. (a), (b) System geometries used for k · p simula-
tions. (c)–(f) Band structures for (c), (e) InAs/GaSb and (d), (f)
HgTe/CdTe. For both materials we observe Dirac points buried in
a valence band, which obscures the opening of a Zeeman gap under
applied in-plane magnetic fields as in (e) and (f).

the bulk electron g-factors are g ∼ 6–8 in InAs/GaSb and
g ∼ 30–60 in HgTe.

Dirac-point burial from k · p models. In the “pure” BHZ
model given above, the edge-state Dirac point always re-
sides in the gap [29]. Recovering the burial of the Dirac
point requires going beyond this minimal model. To this
end we now simulate the full semiconductor heterostructure
for the experimentally relevant InAs/GaSb and HgTe/CdTe
quantum wells. In the numerical analysis we use the 8 × 8
Kane Hamiltonian [32–34]. Details of the model and material
parameters appear in the Supplemental Material [30]. Using
a finite-difference method with grid spacing a, we convert
the continuous Kane Hamiltonian into a tight-binding model.
The resulting energy dispersion are then computed using
KWANT [35].

We investigate [001]-grown quantum wells sketched in
Figs. 2(a) and 2(b). In particular, we consider InAs/GaSb
with AlSb barrier (layer thicknesses 12.5 nm/5 nm as in
Ref. [15]), and HgTe with HgCdTe barriers (thickness 7.5 nm
as in Refs. [6,9]). Figure 2 shows the dispersion for these
heterostructures along the [100] direction. We compare the
dispersion for an infinite 2D quantum well without edges (blue
lines) to systems of finite width W (black lines) modeled using
hard-wall boundary conditions.
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FIG. 3. (a) Topological gap of InAs/GaSb as a function of InAs
and GaSb well thicknesses. A red dot indicates a buried Dirac point.
(b) Subband edges at the � point of HgTe as a function of HgTe well
thickness. The Dirac point is buried for thickness LHgTe � 7.25 nm.

Figures 2(c) and 2(d) respectively illustrate the energy
dispersions for InAs/GaSb and HgTe in the absence of a
magnetic field. In both quantum wells we observe that the
edge-state crossing is shifted out of the topological gap and
buried in the valence band. Note that while the crossing itself
is topologically protected, its position inside the gap is not.

The k · p results diverge from the BHZ model due to the
presence of additional hole states that are close in energy to
the electron and heavy-hole (HH) bands forming the inverted
band structure. For InAs/GaSb, those states lead to a signifi-
cant deviation of the band structure at the topological gap from
the BHZ model, which only contains momentum up to second
order. Those states are energetically much further away from
the gap than the size of the gap itself [no additional hole states
are visible in Fig. 2(c)]; nevertheless, they strongly influence
the gap edges at finite momentum, as the coupling between
bands increases with momentum [30]. In the case of HgTe
a second HH band crosses with the topological gap. Since it
only weakly interacts with the edge state, the Dirac point is
deeply hidden in this additional band.

Figures 2(e) and 2(f) show the energy dispersions in a
finite magnetic field. For both quantum wells, the Zeeman
splitting of the edge states remains well hidden in the valence
band. Note that while the InAs/GaSb bulk band structure and
bulk transport therein is affected by an in-plane field due to
orbital effects on the tunneling between the two layers [15,36],
this modification neither removes the edge states [37] nor the
position of the edge-state crossing [38].

Figure 3 summarizes our simulations for different
quantum-well thicknesses: Fig. 3(a) shows the topological
phase diagram of InAs/GaSb as a function of layer thick-
nesses (a nonmonotonic behavior of the topological gap was
also previously found in Ref. [39]), while Fig. 3(b) shows the
HgTe band edges as a function of layer thickness (here, we
only have one parameter). In both cases we indicate when
the edge-state Dirac point is buried—which occurs for most
of the topological phase space, as expected from our general
arguments. The edge-state crossing remains in the gap only
close to the topological phase transition; here, only two bands
interact in a small range of momentum and can be well
described by the BHZ model.

Modeling Dirac-point burial via edge potentials. So far
we have considered the edge of the 2D QSH systems simply
as a hard wall. However, several semiconducting surfaces
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FIG. 4. (a) Band structure and (b)–(d) transport calculations for
the BHZ model with (blue) and without (red) an additional edge
potential Vedge. Transport calculations were performed for a disor-
dered system at (b) zero field and (c) with an in-plane field Bx =
8 T. (d) Transport calculation at fixed μ = 3 meV. All transport
calculations are averaged over 50 different disorder realizations, with
parameters Vedge = −0.14 eV, U0 = 0.05 eV, L = 4000 nm, W =
1000 nm, and finite-difference grid spacing a = 4 nm.

additionally exhibit a band bending at the interface. A promi-
nent example is InAs where the band bending can be of the
order of 100 meV [40,41]. In fact, band bending has been
shown to have significant effects also in InAs/GaSb quantum
wells [42,43]. Apart from band bending due to details of the
semiconductor surface, gating can also lead to a nonuniform
electrostatic potential near the surface, e.g., due to the change
of dielectric constant at the semiconductor/vacuum interface.

A position-dependent potential V (y) that changes only
close to the surface (edge potential) has a strong effect on the
edge-state dispersion: Within first-order perturbation theory
it leads to a shift �E(kx ) = 〈ψ (kx )|V |ψ (kx )〉. In particular,
since bulk states are affected little by the edge potential, the
edge-state crossing is shifted by �E(kx = 0) with respect to
the bulk bands. Thus, if the edge potential is much larger than
the topological gap, it also leads to a burying of the Dirac
point. (The edge potential may also give rise to trivial edge
states that are also expected to be insensitive to a magnetic
field. In contrast to topological edge states these are not
expected to be protected from scattering, leading to a length
dependence of the edge conductance [42].)

Figure 4(a) shows the burying of the edge-state Dirac point
obtained from a finite-width BHZ model supplemented by
an edge potential. We use the BHZ parameters for HgTe of
Ref. [44] and a finite-difference tight-binding model, with
an extra potential Vedge at the outermost lattice point. For
Vedge = 0 (red lines) we find the usual dispersion with the
edge-state crossing in the band gap. A finite Vedge �= 0 (blue
lines) leaves the bulk states nearly unchanged, but indeed
moves the edge-state crossing into the bulk. In particular,
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we chose Vedge = −0.14 eV which gives a Dirac point burial
similar to what we observed from our k · p calculations in
Fig. 2(d).

Apart from potentially being physically present in semi-
conductor devices, we can also use the edge potential purely
as a tool that leads to a Dirac-point burial within the BHZ
model. This is particularly advantageous for numerical calcu-
lations, which are far more costly for a 3D k · p model.

Quantized conductance in strong in-plane magnetic
fields. So far we have emphasized generic mechanisms for
hiding the edge-state Zeeman gap within a bulk band. In such
cases, observing a clear field-induced edge-state gap through
transport would certainly be challenging. Yet, time-reversal
symmetry is broken by an in-plane magnetic field, and
backscattering from disorder is allowed also outside the edge-
state Zeeman gap. Naively, a magnetic field should thus lead
to an appreciable breakdown of the conductance quantization.

We will now argue that, in practice, conductance may stay
nearly quantized even in very strong magnetic fields (B �
10 T): From Fermi’s golden rule we find that the mean free
path of edge states in a disordered potential is given as [26]

ltr = ch̄2vF

V 2
disξ

(
δμ

geffB

)2

. (4)

Here, vF is the edge-state velocity, c is a numerical factor ∼1,
δμ is the energy with respect to the edge-state crossing, and
we assumed uncorrelated disorder 〈V (x)V (x ′)〉 = V 2

disξδ(x −
x ′). In the bulk-insulating regime, burial of the edge-state
crossing implies that δμ must be of order or larger than the gap
size. Together with the strong suppression of the edge-state
g-factor geff discussed earlier, (δμ/geffB )2 then is a large
factor. Physically, this suppression of backscattering away
from Dirac point originates from the fact that kinetic energy
efficiently antialigns spins of the edge state away from the
Zeeman gap even in the presence of magnetic field; recall
Fig. 1(d). In practice, the suppression of scattering presented
here may rival that arising from bona fide topological protec-
tion at zero magnetic field.

To further quantify the suppression of backscattering, we
have performed conductance calculations for a disordered
BHZ model, with and without an edge potential, i.e., with
and without burying of the Dirac point. As for the results
sketched in Fig. 4(a), we use the HgTe parameters from
Ref. [44], and compute transport through a rectangular region
of length L and width W . We use a random disorder potential
drawn independently for every lattice point from the uniform
distribution [−U0/2, U0/2], and compute the conductance
using KWANT [35]. At zero magnetic field [Fig. 4(b)] both

models show almost identical transport properties. In partic-
ular, the conductance in the gap is perfectly quantized due
to topological protection. This behavior changes drastically
once a strong in-plane magnetic field is applied [Fig. 4(c)]:
Without an edge potential, the conductance drops well below
the quantized value of 2e2/h. Disorder leads to backscattering
within the complete range of energies in the topological gap
(not only the small Zeeman gap opened in the edge-state spec-
trum). When the edge-state crossing is buried, by contrast,
conductance inside the gap stays almost perfectly quantized.
This stark contrast can also be seen in Fig. 4(d) where we
plot conductance as a function of magnetic field for a fixed
chemical potential residing in the bulk gap.

Conclusions. In contrast to common expectation, we have
shown that the edge-state conductance quantization in semi-
conductor QSH systems can be surprisingly robust against
in-plane magnetic fields. This may be a possible explana-
tion for the surprising findings of Ref. [13], and we could
expect to find similar robustness in HgTe. Our findings also
highlight a challenge for proposals to use QSH edges as a
Majorana platform [45,46]: Localizing Majorana zero modes
requires the ability to align the chemical potential within
the edge-state Zeeman gap, which could require exceedingly
large fields if the Dirac point is buried in a bulk band. A
good strategy to overcome this obstacle is to operate in a
regime closer to the topological phase transition where the
edge-state crossing remains in the gap (if edge potentials are
unimportant). Alternative, a side gate might be used to apply
an electrostatic potential to move the Dirac point back in
the topological gap. These strategies may also allow one to
finally observe a strong in-plane magnetic field dependence
that would distinguish topological from trivial edge states—
the latter naturally exhibiting little field dependence.

Note added. Recently, we became aware of a related work
[47] that found a hidden Dirac point in the band structure of
InAs/GaSb within an effective six-band model, in qualitative
agreement with our full k · p calculations.
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