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Abstract

The present thesis has the objective to create a procedure for the automatic preliminary design of re-
inforced concrete structures, based on the Evolutionary Structural Optimization method (ESO). The
developed algorithm performs heuristic topology optimization based on multiple criteria, in subsequent
optimization cycles executed in series. In each ESO cycle, it is possible to perform material addition,
removal or transition between a couple of materials, i.e. steel, concrete and void. Each optimization cycle
is governed by an optimality criterion chosen from: stiffness, Von Mises, Drucker-Prager, tension stress
criteria or linear interpolation of previous ones. The finite element analysis used in the algorithm regards
all materials as linear elastic. The reaching of maximum strength and failure of materials is not taken
into account.

The automated design process of reinforced concrete structures has been separated in two problems:
the form-finding of reinforced concrete structure as a whole and the definition of internal distribution
between steel and concrete. The first problem is solved, in the first optimization cycle, with a “standard”
ESO procedure, with the only difference in choosing a Von Mises optimization criterion over a “classical”
stiffness criterion. The second problem is solved, in the second and third optimization cycles, combining
in series two additional “modified” ESO procedures and introducing gradual transition in optimization
criteria through linear interpolation of sensitivity numbers. The combined criteria for the second cycle
are a Von Mises and Drucker-Prager optimization criteria, while for the third cycle, a Drucker-Prager and
tensile stress optimization criteria. Moreover, additional geometrical constraints are applied, to ensure a
set minimal distance between steel and outer boundaries, i.e. concrete cover, and to ensure optimal angle
preservation for steel members found during optimization, introducing two new “density” matrices called
cover and mask. Summarizing, the preliminary design of reinforced concrete structures is dealt with
three cycles of ESO optimization procedures executed in series, with optimization criteria that gradually
change with continuity between the different cycles over the whole process.

The developed procedure has been tested on several case studies, both from ESO and reinforced
concrete literature. The defined ESO process has been found to generate solutions with steel correctly
placed in tensile stress zones both to resist bending and shear. Generally, the presence of remaining tensile
stresses in concrete zones in the solutions is absent or very limited, and in latter cases their magnitude
is very small compared to other stresses. Obtained solutions cannot be directly used as such for rein-
forcement layouts definition but, in combination with principal stresses plots and engineering judgement,
they are able to suggest useful resulting reinforcement layouts.

Application of automatic concrete cover around holes, which are generated during the optimization
process and whose position and shape is not previously known, has been proven possible. Moreover,
application of concrete cover has been observed to bring improvements to the steel distribution in the
solutions. Also the presence of internal holes in the geometry, and thus of the related stress concentra-
tions, has been found to be favorable in the same regard.

Careful choice of target steel volumes, in the input of the algorithm, has to be performed to get solu-
tions of interest. With the present procedure, the target steel volume parameter is generally needed to be
set considerably higher compared to values used in real-life applications. Therefore, in interpreting the
resulting steel zones in the solutions, it is more appropriate to refer to them as zones of structure where
reinforcements are desired. This implies the need of an additional step of engineering interpretation to
bridge the gap of applicability for the solutions.

Special attention has to be payed in presence of resulting thin members in the geometry, either due to
closeness of imposed holes to the edges of the structure or to the size of mesh compared to the parameters
for filtering of sensitivities and concrete cover. In such cases, incorrect steel elements removal may occur,
resulting in the presence of concrete members loaded in tension in the solution.

In conclusion, it has been observed that Evolutionary Structural Optimization is well suited approach
for the design process of reinforced concrete structures and offers new insights and perspectives. For
such application, ESO method could be used both to optimize the overall structure geometry and to find



internal distribution between concrete and steel.

As result of the specificities introduced for addressing the design of reinforced concrete structures,
the ESO method has been extended for the case of topological optimization of composite materials with
macro structure, with different optimization criteria applied to component materials, with one component
material that has different resistance in tension and compression and with geometrical constraints for one
component material.

The developed algorithm could be extended to address analogous cases from other disciplines by
including other material parameters, adapting optimality criteria and updating or formulating new ge-
ometrical constraints. Since the code of the present thesis has been developed modularly, it could be
upgraded with computationally more efficient parts of code, with non-linear or sequentially-linear finite
elements solvers and/or with additional algorithms for improving steel distributions obtained by current
procedure. The complete MATLAB code is published in the annex.

Preface by the Author

“In a matter of speaking, optimization is the way to harmonize existence and endeavor within the space
governed by the laws of Nature. Maybe, optimization is embedded in ourselves, and in all Nature’s
creations, as one of our basic principles of existence and, along with the growth of our mathematical
and computational capabilities, we move forward in the pursuit of our optimum form, organization and
endeavor, within all our dimensions of living.”

The deep roots of optimization have been, and continue to be, discovered in several physical phenom-
ena which well correlate to optimized results of minimization/maximization problems. For example, the
Dirichlet Principle:
“Local strict minima of potential energy are stable equilibrium configurations of a conservative mechanical
system”,
and the Fermat Principle:
“Rays of light follow the path of least travel time between two points”.

On the other hand, optimization is an important and recurrent topic in human culture as well. Over
the years, more and more scientists, engineers, entrepreneurs, managers and policy makers look for
optimization in processes, products, projects and, at the same time, researchers look for better ways and
algorithms to perform such optimizations.

The multiplicity and multidisciplinarity of optimality criteria required for addressing real-world prac-
tical applications, makes the use of rigorous mathematical optimization models quite laborious and ardu-
ous in terms of programming and of computational expenses. Therefore, throughout the years, heuristic
optimization relevance grew due to its simplicity in implementation, its elasticity of incorporating and
combining multiple criteria and its possibilities to tweak and adapt algorithms. As a matter of fact, in
heuristic optimization it is required to think “outside the box” to find new ways in combining multiple
criteria and parameters to get the needed solutions in the most effective ways.

For such reasons, a heuristic optimization method, namely the Evolutionary Structural Optimization,
has been chosen in this thesis to address the automatic design of reinforced concrete structures through
optimization procedure.
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Chapter 1

Introduction

1.1 History of optimization

Optimization has been a studied problem since the ancient Greeks, that used geometry to approach min-
imization and maximization problems.
Along with the advent of calculus, in the seventeen century, new mathematical tools to approach optimiza-
tion problems appeared, namely differential and integral calculus. Not long after then, in the eighteenth
century, the latter tools were refined and structured in a solid framework for approaching problems in
generic contexts. So, the field of Calculus of Variations was born, which provided instruments to develop
analytical solutions for optimization problems.
In the nineteenth century, the first optimization algorithms were established, i.e. the “least squares prob-
lem” and “gradient method”, which offered new possibilities to study minimization and maximization
problems and so develop numerical solutions.
Active research continued in the past two centuries in both the field of analytic solutions, through Cal-
culus of Variations, and the field of numerical solutions, through many types of algorithms established
ever since. The latter methods became more and more viable, thanks to the strong development and
increasing accessibility to electronic computations and mathematical programming. [27]

In the field of algorithm development for structural optimization, we see further distinction in two
branches, the first which comprehend the rigorous mathematical programming methods:

• SIMP “Solid Isotropic Material with Penalization”,

• MMA “Method of Moving Asymptotes”

• Homogenization Method

and the second which comprehend the heuristic methods:

• ESO “Evolutionary Structural Optimization”,

• GA “Genetic Algorithms”.

The ones listed above are generally understood as the most famous and researched methods to date, but
in literature it is possible to find several dozen other methods, as well as variants and combinations of
the above ones. Although heuristic methods do not guarantee to reach a global optimum they are still of
big interest in engineering applications. It is to note that due to constructability/manufacturing issues,
and due to engineering local phenomena caused by environmental/materials issues, the absolute optimum
in mathematical terms is not guaranteed to be the engineering optimum. In engineering practice, the
optimization techniques currently could solely take the role of an assistant and additional source of in-
formation rather than a substitute for designing process. This is especially true in the field of reinforced
concrete structures due to its complex behavior and its related phenomena.

The valuable resource of optimization algorithms is their innate freedom from traditional construction
schemes, layouts and the human design experience. In fact, the only data that is “fed” to the algorithm

7



8 CHAPTER 1. INTRODUCTION

is constituted by the physical laws, the boundary conditions (related to displacements and forces) and
the criteria to be used to create/optimize the design. Therefore, solutions can correlate and validate
customary design schemes or not resemble them at all and so provide new directions to explore or to bring
attention to issues overlooked before. With the future evolution of mathematical models, optimization
algorithms and computing power, the influence of programming and structural optimization is expected
to grow massively their influence on the way structures are designed, built and repaired, eventually
becoming one of the fundamental tools in the toolkit of the future engineer.

1.2 Literature review

Over the past 30 years a lot of research has been carried on for the multiple types of optimization meth-
ods available, mainly the Homogenization Method, MMA, SIMP, ESO and GA, which have found several
applications ever since. The SIMP algorithm has been the first of them to become efficient, robust and
widely used. As result, SIMP optimizers have recently been introduced in some of the main finite element
packages all over the world. For a comprehensive review of SIMP and Homogenization methods see the
book by Sigmund and Bendsoe [1]. Moreover, it is to note that a MATLAB code implementation of
SIMP has been open to the public since the year 2001 [7]. A revised and updated version of the code has
been published by Sigmund et al. in 2011 [8]. At comparable levels of development and popularity as of
SIMP, there is ESO.

The ESO method originally proposed by Xie and Steven [6] is built on the basic heuristic principle:
“Slowly removing inefficient materials, the structure evolves towards an optimum”.
Initially ESO was implemented solely as a material removal method, which meant that removed parts
could not be restored afterwards. However, this led to convergence issues and mesh-dependence. The
latter problems were overcome in the extension of the method called BESO “Bidirectional Evolutionary
Structural Optimization” that allowed both material addition and removal, as first presented in the pa-
per [9]. Two complete books summarizing and containing the major results from research articles are
[2] for ESO and [3] for BESO. In the thesis, both methods will be referred to using the acronym ESO only.

In subsequent implementations, the ESO method borrowed some concepts from SIMP, remarkably
the strategy to use a bi-phase material as adopted in the paper of Xie [10] written in 2008. With the
addition of the so-called material interpolation scheme, material is never removed but shifts from and to
a “softened” version of itself, which has a steep reduction of its mass, density, elastic modulus and its
other properties. This method solved ultimately numerical instabilities and gave the required robustness
to the ESO method to become of wide interest and use. Simultaneously, the very same article [10] opened
the doors to multi-material optimization in the ESO method.

In spite of using similar material interpolation schemes, ESO development goes on quite distinctively
from the one of SIMP and offers a more flexible environment for integrating new design requisites and
optimization criteria, thus offering an extended potential range of applications.

1.3 Applications

As of today, ESO method has been applied for the optimization of:

• stiffness,

• displacement,

• von mises stress,

• natural frequency

• stiffness, considering design-dependent loads (self-weight),

• stiffness, considering multiple materials,

• stiffness, considering fluid and earth interaction,



1.4. APPLICATIONS IN STRUCTURAL ENGINEERING 9

• stiffness, considering periodic structures

• stiffness, considering material and geometrical nonlinearities.

For a comprehensive review of the above ESO developments and applications till the year 2016, see the
article of Xie [11]. In such paper, applications of ESO to both macro and micro scale are presented, along
with sample MATLAB codes for the basic cases of stiffness optimization in both scales. It is remarkable
that the macro and micro scale ESO optimization algorithms presented in such paper can also be per-
formed simultaneously.

Beyond the applications reviewed in the article of Xie [11], it is important to point out other imple-
mentations found in literature, however developed with the first version of ESO algorithm only, now
superseded:

• tensile-only and compressive-only materials [12],

• simultaneous multi-criteria optimization for single material optimization

o stiffness-inertia [13],

o stiffness-natural frequency [14],

o stiffness-stress [15].

It is relevant to note that the biggest part of ESO applications found in literature refer to isotropic
materials with same resistance in tension and compression (e.g. steel) or composite materials with micro
structure (e.g. composites in the aerospace industry). For such cases, there is a wide range of real-world
applications especially in the fields of mechanical and aerospace engineering. Applications in structural
engineering, however, are still relatively limited except a few notable cases.

1.4 Applications in Structural Engineering

The most relevant applications of ESO in structural engineering and architecture to date are based on
few main figures from Japan, namely: Mutsuro Sasaki, Toshihiko Iijima and Hiroshi Ohmori.

• Mutsuro Sasaki has applied ESO for roof supports design and for shells optimization in several
projects in collaboration with the top-notch architects: Arata Isozaki, Toyo Ito and Kazuyo Sejima
+ Ryue Nishizawa (SANAA);

• Toshihiko Iijima, in collaboration with F-tai architects, has built the first ESO-designed building
in reinforced concrete in 2004, applying ESO for load bearing facade design;

• Hiroshi Ohmori, has developed the variation of ESO method, called “Extended ESO”, used by
Mutsuro Sasaki and Toshihiko Iijima in their projects.

In the text below, the main projects curated by Mutsuro Sasaki’s and Iijima’s structural design offices are
shown. As a remark, in the reinforced concrete structure designed by Iijima structural design office, the
ESO method was employed only to determine the outer shape of the structure and not to determine the
distribution between concrete and steel inside it. Details regarding the specific features of the “Extended
ESO” method used by Sasaki and Iijima, can be found by interested readers in the works by Sasaki
[5],[26] and Ohmori [26], [24].

It is to be noted that several other practical applications of ESO can be found in the fields of mechanical
and aerospace engineering. However, since those are beyond the scope of this thesis, they are not reported
or discussed further in the text.
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Figure 1.1: Mutsuro Sasaki Structural Design Office and Arata Isozaki Atelier, “Illa de Blanes” in Blanes,
Spain, 2002 [22]

Figure 1.2: Mutsuro Sasaki Structural Design Office and Arata Isozaki Atelier, 3D model of the train
station Santa Maria Novella in Florence, 2003 [22], [28]
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(a) Photo of finished building

(b) Render (left), Photo during construction (right)

(c) Optimized mesh (left), Construction detail (center), Photo (right)

Figure 1.3: Mutsuro Sasaki Structural Design Office and Arata Isozaki Atelier, Qatar National Convention
Centre in Doha, 2008 [29], [22], [30]



12 CHAPTER 1. INTRODUCTION

Figure 1.4: Mutsuro Sasaki Structural Design Office and Toyo Ito & Associates, Crematorium in Kakami-
gahara Gifu, Japan, 2006 [22]

Figure 1.5: Mutsuro Sasaki Structural Design Office and Kazuyo Sejima + Ryue Nishizawa (SANAA),
Rolex Learning Centre in Lausanne, Switzerland, 2008 [22]

(a) Photo - West facade (b) Photo - South facade

Figure 1.6: Iijima Structural Design Office and F-tai Architects, Akutagawa River Side in Takatsuki,
Japan, 2004 [28]
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(a) Problem statement - West facade (b) Problem statement - South facade

(c) Optimization procedure - West facade

(d) Optimization procedure - South facade

(e) Project render - West facade (f) Project render - South facade

Figure 1.7: Iijima Structural Design Office and F-tai Architects, Akutagawa River Side in Takatsuki,
Japan, 2004 [25], [23], [28]
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1.5 Scope of the thesis

As discussed in the section “Literature review”, several types of optimization within the ESO method
are available for isotropic materials with same resistance in tension and compression (e.g. steel) and for
composite materials with microstructure. The case of reinforce concrete, however, does not fall in either
one of them. In fact, reinforced concrete is a composite material with macro structure. And, moreover,
one of the components (i.e. concrete) has different resistance in tension and compression.

Regarding composite materials with macrostructure, the research found in ESO literature is very
limited. To the knowledge of the author, in fact, there has been only one relevant application [10] of
ESO algorithm to composite materials with macro scale, where the same optimization criteria has been
applied on all materials of the composite. In the case of reinforced concrete, however, it is needed for
each material of the composite - concrete and steel - to undergo optimization based on different criteria.

The scope of this thesis is then to extend the ESO method for the particular case of:

“Topological optimization of composite materials with macro structure, with different optimization crite-
ria applied to the component materials,”

and, more specifically, to reinforced of concrete, that adds to the previous:

“with one component material that has different resistance in tension and compression (i.e. concrete),
and with geometrical constraints for one component material (i.e. concrete cover applied on steel).”

1.6 Objective of the thesis

On a more practical level, the objective of the thesis is to:

“Define a procedure, through a MATLAB code, to perform automatic preliminary design of reinforced
concrete structures, using an Evolutionary Structural Optimization process.”

In other words:

“Given a starting geometry, a set of boundary conditions (constraints and applied forces & displacements),
and set of target volumes for concrete and steel,”

the procedure developed in the thesis, in the form of a MATLAB code, should be able to:

“define the optimal shape of the structure, and the optimal topology & distribution between concrete and
steel, also taking concrete cover requirements into consideration.”

1.7 Outline of the thesis

The thesis is organized as follows. In chapter 2, “Methods”, the optimization problem & process is
formulated, starting from its simplest case and, step by step, evolved to its required complexity, to include
all the specificities for addressing reinforced concrete. Then, the developed MATLAB code is presented
and explained. In chapter 3, “Results”, the code is tested on several case studies from literature to
assess its ability to reach the set objective and to evaluate the quality of solutions obtained with it. In
chapter 4, “Discussion”, the reasons and effects of choices and methods for the developed procedure are
discussed along with the solutions of case studies. Principal stress plots and example reinforcement layout
interpretations are shown for all case studies. In chapter 5, the conclusions are drawn and few directions
for further research and development are given. Finally, in the annex, the MATLAB code developed in
the thesis is reported in its entirety.



Chapter 2

Methods

For better understanding the optimization procedure used in the thesis, the chapter starts with presenting
the simplest case of single material stiffness ESO optimization, that is step by step modified and extended
in the chapter for the purposes of the thesis. Consequently, the strategy and specific choices for the
optimization process of the thesis are presented, and the developed procedure is outlined in its steps and
explained along its code.

2.1 Standard ESO formulation

Material interpolation scheme

In standard ESO 2-dimensional formulation, the geometry is represented by a rectangular finite element
mesh composed by bi-linear 4-noded rectangular elements in condition of plane stress. To each element,
it is assigned a “density” parameter xi, which can assume the values xi = xmin or 1, where xmin is
a very small number, usually set to 0.001. The standard ESO method considers each element to be
composed of a bi-phase material, (e.g. steel and void, or concrete and void, or steel and concrete), and
the parameter xi is used to determine the current material phase in an element. When xi = 1, the ith

element is composed by the 1st phase of the material, while when xi = xmin, it is composed by the 2nd

phase. Therefore, the standard ESO problem is reduced to the determination of the values of the matrix x.

In the biggest part of cases in literature, the bi-phase material is comprised by a chosen material and
void. Then, the optimization problem can be referred to as material removal and addition. It is used the
following material “density” definition:

xi =

 1 for material

xmin for void
(2.1)

and it is used a material interpolation scheme as follows:

E(xi) = Expi ∀i = 1, ..., N (2.2)

where p is the penalty exponent, usually chosen as p = 3. At this point, it is useful to remark that
the choice of setting xmin = 0.001 = 10−3 is done to avoid singularity of the stiffness matrix during
computations, for the cases when a bi-phase material comprised by material and void is considered. In
such cases, when the material is turned to void, its stiffness is notably reduced (by 10−9) but it remains
different from zero.

In another part of cases, the bi-phase material is comprised by two non-void material. Then, the
problem can be referred to as material phase change. It is used the following material “density” definition:

xi =

 1 for 1st phase material

xmin for 2nd phase material
(2.3)

15
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and it is used a material interpolation scheme as follows:

E(xi) = xpiE1 + (1− xpi )E2 ∀i = 1, ..., N (2.4)

where p is the penalty exponent, usually chosen as p = 3, and the materials are ordered from greatest to
least in terms of stiffness E1 > E2.

There are other cases when there are more than two materials in total, and thus one bi-phase material
would not suffice. In such cases, it is needed to define multiple bi-phase materials. The paper of Xie [10],
addresses multi-material optimization of n materials, with n− 1 bi-phase materials being optimized “in
parallel” in a single ESO procedure for stiffness maximization. The materials are ordered from greatest
to least in terms of stiffness E1 > E2 > E3 > ... > En and it is used the following material “density”
definition:

xij =

 1 for materials with: Ei ≥ Ej

xmin for materials with: Ei ≤ Ej+1

(2.5)

where xij represents the density of the ith element for the jth bi-phase material, and it is used the
following material interpolation scheme:

E(xij) = xpijEj + (1− xpij)Ej+1 ∀i = 1, ..., N ∀j = 1, ..., n− 1 (2.6)

where p is the penalty exponent, usually chosen as p = 3.

Problem formulation

In the case of single bi-phase material optimization (then in both cases of material/void and mate-
rial 1/material 2 optimization), the minimization problem appears as follows:

minimize: Obj = F (xi, u) (2.7)

subject to: V ∗ −
N∑
i=1

Vixi = 0 (2.8)

with: xi = xmin or 1 ∀i = 1, ..., N (2.9)

where Obj is the objective function to be minimized, xi is the material density 2.1 used in the material
interpolation scheme 2.2 and 2.4, u is the displacement vector, V ∗ is the prescribed volume to reach
during the optimization process, N is the number of finite elements in the mesh, Vi is the volume of the
ith element in the mesh.

In the case of multiple bi-phase material optimization (as in the paper of Xie [10]), the minimization
problem appears as follows:

minimize: Objj = F (xij , u) (2.10)

subject to: V ∗j −
N∑
i=1

Vixij −
j−1∑
i=1

V ∗i = 0 ∀j = 1, ..., n− 1 (2.11)

with: xij = xmin or 1 ∀i = 1, ..., N ∀j = 1, ..., n− 1 (2.12)

where u, N and Vi are the same parameters as described for previous case, Objj is the objective function
for the bi-phase material j, xij is the material density 2.5 used in the material interpolation scheme 2.6,
V ∗j is the prescribed volume for the bi-phase material j, and n is the number of materials.

Sensitivity number formulation

The elements are removed and added, or their phase is shifted, according to their ranking based on
a so called sensitivity number. In standard ESO algorithms, for single bi-phase material optimization
(material/void or material 1/material 2 cases) it is set:

Obj =

N∑
i=1

αi (2.13)
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and for multiple bi-phase material optimization (more than two materials in total) it is set:

Objj =

N∑
i=1

αij (2.14)

In the standard case of stiffness maximization, the sensitivity number is derived substituting the
interpolation scheme 2.2, or 2.4, or 2.6, in the compliance C = 1

2u
TKu, computing the gradient ∂C

∂xi
or

∂C
∂xij

, and, for convenience, setting αi = − 1
p
∂C
∂xi

or αij = − 1
p
∂C
∂xij

.

In case of a bi-phase material comprised by a chosen material and void, the sensitivity number for stiffness
optimization is expressed as:

αi =
xp−1
i

2
uT
i Kiui ∀i = 1, ..., N (2.15)

where Ki is the elemental stiffness matrix for the ith element.
In case of a bi-phase material comprised by two non-void materials, the sensitivity number for stiffness
optimization is expressed as:

αi =
xp−1
i

2
(uT

i Ki,1ui − uT
i Ki,2ui) ∀i = 1, ..., N (2.16)

where Ki,1 and Ki,2 are the elemental stiffness matrices for the ith element calculated respectively with
the 1st and 2nd material.
In the case of multiple bi-phase materials, the sensitivity number for stiffness optimization is expressed
as:

αij =
xp−1
ij

2
(uT

i Ki,jui − uT
i Ki,j+1ui) ∀i = 1, ..., N ∀j = 1, ..., n− 1 (2.17)

where Ki,j and Ki,j+1 are the elemental stiffness matrices for the ith element calculated respectively with
the jth and (j + 1)th material.

For better understanding, for the specific case when all materials have the same Poisson’s ratio,
substituting the density parameter definitions 2.1 or 2.3 or 2.5, the sensitivity numbers can be explicitly
expressed as follows,
- for a bi-phase material comprised by a chosen material and void:

αi =


1
2u

T
i Kiui when xi = 1 (for material)

xp−1
min

2 uTi Kiui
p→+∞−→ 0 when xi = xmin (for void)

∀i = 1, ..., N

- for a bi-phase material comprised by two non-void materials:

αi =


1
2 [1− E2

E1
]uTi Ki,1ui when xi = 1 (for material 1)

1
2

xp−1
min(E1−E2)

xp−1
minE1+(1−xp−1

min)E2
uTi Ki,2ui

p→+∞−→ 0 when xi = xmin (for material 2)

∀i = 1, ..., N

- for multiple bi-phase materials:

αij =


1
2 [1− Ej+1

Ej
]uTi Ki,jui when xij = 1 (for materials 1,...,j)

1
2

xp−1
min(Ej−Ej+1)

xp−1
minEj+(1−xp−1

min)Ej+1
uTi Ki,j+1ui

p→+∞−→ 0 when xij = xmin (for materials j+1,...,n)

 ∀i = 1, ..., N,
∀j = 1, ..., n− 1

In the ESO algorithm, the presence of the density xi is not limited to within the definition of the
sensitivity numbers, but can also appear (as it does in the present thesis) inside the finite element analysis
in the following form:

Elemental stiffness matrix: Ki = xpi Ki,1 + (1− xpi )Ki,2

Global stiffness matrix: K = Assembly(Ki)
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wherein the elemental stiffness matrices Ki,1 and Ki,2 are calculated with the following formulas:

Ki,1 =

4∑
gp=1

wgp B
T D1B det(J)h Ki,2 =

4∑
gp=1

wgp B
T D2B det(J)h

where wgp is the weight relative to the current gauss point, B is the strain-displacement matrix, D1

and D2 are the stress-strain matrices respectively for material 1 and 2, det(J) is the determinant of the
Jabobian, and h is the plate thickness.

Sensitivity numbers are used to rank elements during the ESO process for the purpose of element
removal/addition or shift in its phase, according to a design update scheme as presented further in the
text.

Filtering schemes for sensitivity numbers

To avoid numerical instabilities, such as the so called checkerboard pattern [11], and to ensure mesh
independency, it is adopted a filter scheme to average sensitivity numbers of neighboring elements and
smooth out the sensitivity numbers field. The technique used the most in the past ten years of ESO
research is comprised by the following steps:

• average sensitivity numbers αi of connected elements to define nodal sensitivity numbers αnh,

• determine a radius of influence rmin to use in the averaging process of αnh for the determination of
the filtered elemental sensitivity numbers α̃i, (all nodes inside the circular domain Ωi with radius
rmin concur to the calculation of the α̃i with different weight in the sum process),

• calculate the weight factor w(rih), dependent to the distance rih of the nodes to the center of the
element with the following formula:

w(rih) =

 rmin − rih for rih < rmin (nodes inside Ωi)

0 for rih ≥ rmin (nodes outside Ωi)
(2.18)

• calculate the filtered sensitivity numbers α̃i for each element with the following formula:

α̂i =

∑M
h=1 w(rih)αnh∑M
h=1 w(rih)

∀i = 1, ..., N (2.19)

where M is the number of nodes, indicated with the index h, and N is the number of elements, indicated
with the index i.

In addition to spatial averaging of sensitivity numbers, it is performed a ”time” averaging between
each of two consecutive iterations during the evolutionary process:

α̃i =
1

2
(α̂i,k − α̂i,k−1) ∀i = 1, ..., N (2.20)

where, k is the index of current iteration and k − 1 the index of previous one. In such a way, historical
information is taken into account in each iteration, resulting in improved convergence of the evolutionary
process.

Convergence of optimization process

The optimization is carried on in an iterative process which is stopped when the values of the objective
function Obj are converging to a stable value Obj ± τ , where τ is a set tolerance, usually set as τ =
0.001 = 0.1%. In other words, it is set a convergence criterion expressed as:

error =
|
∑L
l=1(Objk−l+1 −Objk−L−l+1)|∑L

l=1Objk−l+1

< τ (2.21)
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where k is the current iteration number and L, usually set as L = 5, corresponds to half of the ”time”
interval wherein convergence is checked. In other words, the index l, where l = 1, ..., L, is used to check
convergence in an interval of 2L successive iterations. In the standard case of L = 5, eq. 2.21 is true if
the convergence has been stable on 2L = 10 iterations.

Steps in the optimization process

Step 1 Discrete the design domain with a rectangular mesh of bilinear 4-noded elements;

Step 2 Set boundary conditions regarding applied forces, prescribed displacements and supports;

Step 3 Set material parameters (E, ν);

Step 4 Set ESO parameters:

• target volume V ∗,

• evolutionary ratio ER, to determine volume decrease in each iteration,

• radius of influence rmin for filtering sensitivities,

• allowable convergence error τ , to determine when to stop the ESO loop;

Step 5 Start iterations of ESO process, while loop;

Step 6 Determine the target volume for the current iteration with the formula: max(Vi(1 − ER), V ∗)
where V ∗ is the end target volume;

Step 7 Execute finite element analysis;

Step 8 Calculate sensitivity numbers;

Step 9 Update sensitivity numbers by filtering and averaging with historical information;

Step 10 Update design (x matrix) switching material density from 1 to xmin and vice versa, according
to ranking of sensitivity numbers;

Step 11 Repeat steps 6-10 until the end volume V ∗ is reached and the convergence criterion error ≤ τ
is satisfied;

Step 12 End ESO process.

2.2 Modified ESO formulation

The standard ESO formulation described in previous section has to be extended and modified for ad-
dressing the case of reinforced concrete. In fact, the required procedure has to respond to the following
criteria:

Requirements for RC Requirements for ESO procedure

multiple materials to optimize ⇒ more than one bi-phase material required
(thus more than one xi and αi)

every material optimized with different
criteria

⇒ different sensitivity numbers definitions
for αi required

different minimal sizes of members for
each material

⇒ different radius of sensitivity filter rmin
required

This implies that multiple ESO loops are needed. They could be arranged either in parallel or in series.

An arrangement in parallel can be found in the article [10], where multi-material stiffness optimiza-
tions are performed simultaneously in a single ESO process. The procedure goes on as follows. The
materials are ranked by their stiffness E1 > E2 > E3, (e.g. mat.1=steel, mat.2=concrete, mat.3=void).
The optimization starts with mat.1=100% of volume in the structure, while mat.2 and mat.3 start at
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0% of volume. The mat.1 is turned to mat.2 until the target volume for mat.1 is reached. After that,
the volume of mat.1 is kept constant and mat.2 is turned to mat.3 until the target volume for mat.2
is reached, and so on in case of more materials. It is to note that, once a material reaches its target
volume, only its volume is kept constant, while its distribution in the structure is allowed to change. In
case a similar ESO process executed in parallel had to be applied to reinforced concrete, the direction of
transformation would be: steel → concrete → void.

The arrangement in series, however, brings the following advantages. There can be as many loops as
desired. Materials can be processed/transformed in any order desired, as far as the two material phases
for any ESO loop are ordered according to their stiffness E1 > E2. It is possible to separate the two opti-
mization problems of outer geometry topology definition and inner material distribution determination.
In the specific case of reinforced concrete, this translates into the possibility of separating the problem of
reinforced concrete structure shape optimization and the problem of steel-concrete internal distribution
finding.

Therefore, the solution chosen in the thesis is to execute several ESO loops in series.

To obtain the formulation of the modified ESO procedure, new sensitivity numbers definitions have
to be introduced. Additionally, some remarks have to be made on the material interpolation schemes
to be used. These two points will be addressed below in this section and, after that, the steps of the
modified ESO process will be shown. The filtering scheme and convergence criteria formulations used in
the modified ESO procedure will be the same as the ones for the standard procedure.
It is important to specify that, since the ESO cycles performed in series will be in fact executed separately,
in each ESO loop a problem formulation as in the standard case of single bi-phase material will be
considered.

Material interpolation scheme

In each ESO cycle it is possible to choose the two phases for the bi-phase material between three materials:
steel, concrete and void, as long as the first phase is chosen stiffer than the second phase. According to the
presence or absence of void in the bi-phase material, it is chosen the appropriate material interpolation
scheme from:

mat. / void: E(xi) = xpiE ∀i = 1, ..., N

mat.1 / mat.2: E(xi) = xpiE1 + (1− xpi )E2 ∀i = 1, ..., N with: E1 > E2

Sensitivity number formulation

In the present thesis, three optimization criteria are used:

• Von Mises criterion

• Drucker-Prager criterion

• Tensile stress criterion

The above criteria are not found in ESO literature applied to the current version of ESO procedure (post
2008). But, it is only possible to find applications of Von Mises and Tensile stress criterion to the first
ESO method which did not make use of sensitivity numbers, and executed only element removal, with
an overall different procedure.
Therefore, in the present thesis, a heuristic choice for the sensitivity numbers definitions of the above
criteria is being made by the author.

Sensitivity number formulation - Von Mises criterion

Starting from the definition of the Von Mises criterion:

F (σ) =
√
J2(σ)−H ≤ 0 (2.22)
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where J2 is the second invariant of the deviatoric stress tensor:

J2(σ) =
1

3
σTV σ (2.23)

where, in plane stress condition:

σ =

 σxx
σyy
σxy


V =

 1 − 1
2 0

− 1
2 1 0

0 0 3


and H is a parameter to represent material strength. Usually H is defined as:

H =
σy√

3

and σy is called yield strength of the material.

In ESO literature [2], Von Mises criterion has been applied to the first ESO version, where ele-
ments were removed according to a rejection ratio RRk, updated every iteration k, with a criterion
σi,vm

σmax,vm
< RRk, where i = 1, ..., N is the index of the element.

In the following it is applied the Von Mises criterion on the latest version of ESO method and it is
chosen a definition of sensitivity number as follows:

αi =
√
J2 x

p−1
i (2.24)

Sensitivity number formulation - Drucker-Prager criterion

Starting from the definition of the Drucker-Prager criterion:

F (σ) = ℵI1(σ) +
√
J2(σ)−H ≤ 0 (2.25)

where J2 is the second invariant of the deviatoric stress tensor (as in eq. 2.23), and I1 is the first invariant
of the stress tensor:

I1(σ) = WTσ (2.26)

where, in plane stress condition:

σ =

 σxx
σyy
σxy


W =

 1
1
0


and H and ℵ (aleph) are the parameters that represent material strength, usually defined as follows:

H =
2σcσt√

3(σc + σt)
ℵ =

σc − σt√
3(σc + σt)

and σc and σt are respectively the compressive and tensile strength of the material. In the limit case when
σc = σt = σy, the material parameters become H =

σy√
3

and ℵ = 0, thus the Drucker-Prager criterion

becomes equivalent to the Von Mises criterion.

In literature, Drucker-Prager criterion has been used in the paper of Kang [16] in a mixed technique
optimization method comprising a gradient-based optimization algorithm in conjunction with the adjoint-
variable sensitivity analysis and MMA algorithm to update the design variables. In the above paper it is
used a ”rigorous” derivative of the function 2.25 and an aggregation process to use the criterion at global
scale.

In the thesis it is chosen a sensitivity number defined as follows:

αi = (ℵI1 +
√
J2) xp−1

i (2.27)
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Sensitivity number formulation - Tensile stress criterion

In literature, in the article by Xie of 1999 [12], the optimal design for a tension (or compression) dominated
structure has been addressed with the first version of ESO, where elements were removed according to a
rejection ratio RRk, updated every iteration k, with a criterion |σi,11| < RRk |σmax,11| when σi,22 ≤ 0,
where i = 1, ..., N is the index of the element. With σi,11 and σi,22 it is indicated, respectively, the first
and second principal stress of the ith element, expressed as:

σ1 =
σxx + σyy

2
+ τmax σ2 =

σxx + σyy
2

+ τmin

with:

τmax =

√
σxx − σyy

2

2

+ σ2
xy τmin = −

√
σxx − σyy

2

2

+ σ2
xy

where, for brevity, it is omitted the index i indicator of the element. In another example in literature, in
the article of Xie of 2005 [17], the tension criterion had been updated and rewritten as σi,11 +σi,22 < σth,
where σth is a stress threshold, that takes into account the maximum allowable stress, the rejection ratio
and the volume removal rate of current iteration. For more details about the formulation, please refer
to the original article [17]. For the latest formulation of ESO, with sensitivity numbers and material
removal/addition process, a correspondent formulation has not been given yet.

In the thesis, it is used a sensitivity number formulation defined as follows:

αi =
(
σ1,i + σ2,i +

∣∣min(σ1)
∣∣+ ∣∣min(σ2)

∣∣ ) xp−1
i (2.28)

Steps in the optimization process

Step 1 Discrete the design domain with a rectangular mesh of bilinear 4-noded elements, with possibility
of defining holes of various forms;

Step 2 Set boundary conditions on external forces, prescribed displacements and constraints;

Step 3 Set the number of materials and the material parameters (E, ν, ratio between σc and σt);

Step 4 Set concrete cover type and size, if desired;

Step 5 Set the number of ESO cycles to be performed in series and set, for each cycle, two materials
which will compose the bi-phase material during optimization, starting material density field xi,
material density mask which will influence xi, and ESO parameters such as:

• total volume of current bi-phase material,

• target end volume V ∗ for first component of bi-phase material,

• evolutionary ratio ER, to determine volume decrease in each iteration,

• optimization criteria, to determine sensitivity numbers αi,

• radius of influence rmin for filtering sensitivities,

• allowable convergence error τ , to determine when to stop each ESO cycle;

Step 6 Set mask definition/update rule, if desired;

Step 7 Start ESO process, for loop;

Step 8 Start iterations of current ESO cycle, while loop, selecting the chosen two materials and loading
the material density field xi and the mask field;

Step 9 Determine the target volume for current iteration with max(Vi(1 − ER), V ∗), where V ∗ is the
end volume of current ESO cycle;

Step 10 Execute finite element analysis;
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Step 11 Post-process to determine stresses;

Step 12 Calculate sensitivity numbers (mask is applied on sensitivities during their calculation);

Step 13 Update sensitivity numbers by filtering and averaging with historical information;

Step 14 Enforce voids and solids (parts that cannot be perforated), overwriting the values of sensitivity
matrix in the prescribed positions;

Step 15 Enforce concrete cover, overwriting sensitivity numbers of related elements (and adjust total
volume for iteration, in the moment when concrete cover is applied);

Step 16 Update design, switching material density from 1 to xmin and vice versa, according to ranking
of sensitivity numbers;

Step 17 Repeat steps 9-16, until the end volume V ∗ of current ESO cycle is reached and the convergence
criterion error ≤ τ is satisfied;

Step 18 End current ESO cycle;

Step 19 Repeat steps 8-18, until all ESO cycles are performed;

Step 20 End optimization process, the resulting design is the solution to the ESO problem;

Step 21 Post-process to determine final stresses, if stress plots are desired.

2.3 Strategy and key choices

Overall procedure strategy

The chosen strategy in the thesis is to separate the problem of outer structure boundaries optimization
and the problem of internal steel/concrete distribution definition. By trial and error, it is chosen the
following approach:

• the first ESO loop is used to determine the optimized outer boundaries of the reinforced concrete
structure as a whole, starting with the whole geometry filled by steel, using a bi-phase material
constituted by steel and void, and using the Von Mises optimization criterion to transform steel
into void;

• the second and third ESO loops are used to determine the internal steel/concrete distribution,
starting with the optimized structure geometry from the first ESO loop, constituted by steel, using
a bi-phase material constituted by steel and concrete, and using a transition from Von Mises to
Drucker-Prager optimization criterion in the second loop and a transition from Drucker-Prager to
Tensile stress optimization criteria in the third ESO loop, to transform steel into concrete.

Seeing the process from another point of view:

• in the first loop, the voids are inserted in the geometry to reduce its weight,
void elements are inserted in lowly stressed zones, irrespective of the sign of stresses, tensile (+) or
compressive (-) ones;

• in the second loop, the optimal positions and directions of steel members are determined,
concrete is inserted in lowly stressed zones at the beginning (starting from Von Mises criterion) irre-
spective of the sign of stresses (+) or (-) and slowly favoring the addition of concrete in compressive
(-) zones over the tensile (+) ones (when it turns to Drucker-Prager criterion);

• in the third loop, the steel volume is reduced as much as possible and only steel members in tensile
zones are kept,
at first, the remaining steel in compressive (-) zones is substituted with concrete and secondly,
concrete is added in lowly stressed tensile zones (+) around the steel members in tensile zones.

Summarizing:
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ESO loop n.: 1st 2nd 3rd

1st phase material: Steel Steel Steel
2nd phase material: Void Concrete Concrete

Criterion: Von Mises
transition from Von Mises to
Drucker-Prager

transition from Drucker-
Prager to Tensile stress

Action:

Insert voids in
lowly stresses
zones (both +
and -)

Find positions and directions
of steel members, insert con-
crete in lowly stressed zones
(more - than +)

Remove steel in compres-
sive zones (-) and reduce
size of steel members in ten-
sile zones (+)

It is to note that, the choice of Von Mises criterion for the first ESO loop, highlights the “hidden”
choice of optimizing the outer boundaries of the reinforced concrete structure, in such a way to have
equally strong members in compression and tension.

Linearly interpolated sensitivity numbers

After executing tests of optimization with different criteria in each optimization loop, it has been noted
that the abrupt change in sensitivity numbers between two consecutive loops introduced sudden changes
in geometry and difficulties in convergence. By trial and error, it has been chosen to use linear interpolated
sensitivity numbers from the second ESO loop onwards, to have a smooth change in sensitivities all over
the ESO process. The sensitivity numbers for second and third ESO loop are defined as follows:

αi,lin = tlen αi,a + (1− tlen)αi,b

where αi,a is the sensitivity number of current loop, αi,b is the sensitivity number of previous loop, tlen
is a parameter that defines the number of iterations over which the transition takes place, in the thesis
set as tlen = 20.

Additional density matrix y

Since the final configuration of the geometry comprises three materials - i.e. steel, concrete and void -
only one material density matrix x is not enough (because x matrix is comprised by “binary” parameters
1 and 0.001). Then, a new material density called y is defined and the following meaning is given to the
x and y matrices, for their final configuration:

• y determines the geometry of the reinforced concrete structure as a whole, identifying with yi = 1
the presence of structure and with yi = 0.001 the presence of void;

• x determines the distribution of steel and concrete, in the zones where there is the reinforced
concrete structure, identifying with xi = 1 the presence of steel and with xi = 0.001 the presence
of concrete.

The final structure is determined by interpretation of the two matrices y and x together:

• yi = 1 and xi = 1 ⇒ steel

• yi = 1 and xi = 0.001 ⇒ concrete

• yi = 0.001 and xi = 1 ⇒ void

• yi = 0.001 and xi = 0.001 ⇒ void

In the thesis, the following color scheme is used to plot the final solutions:

• steel → black

• concrete → grey

• void → white
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With the use of the matrix y, the implementation for the cases when the outer reinforced concrete
structure is not to be optimized, results straightforwardly setting yi = 1 ∀i = 1, ..., N , where N is the
total number of elements.

The matrix y appears in the finite element calculation in the following form:

K∗i = Ki y
p
i = (xpi Ki,1 + (1− xpi )Ki,2) ypi

where Ki is the elemental stiffness matrix of the ith element, the additional indexes 1 and 2 on Ki indicate
the number of material used for its computation, and p is the same penalty exponent used on xi.

Additional “density” matrix mask

After trial and error, it has been chosen to add another density matrix called mask which stores the final
configuration of previous ESO loop and uses it to influence current loop. The reasons and effects of such
decision are written further in the chapter “Discussion”. The additional density matrix mask is used in
the calculation of sensitivity numbers with the following formula:

α∗i = αimask
pm
i

where pm is an additional penalty exponent specially defined for the mask, usually set as pm = 2. By
setting pm = 0, it is possible to eliminate completely the effect of the mask in the procedure.

Additional “density” matrix passive

As in the paper of Sigmund [7], it is used a matrix called passive of the same size of x, but filled with
three possible values 0, 1 and 2. The value 0 does not make any effect. The value 1 correspond to
manually enforcing a void element in such position, i.e. for defining openings (e.g. for the passage of
pipes, windows or doors). The value 2 correspond to manually enforcing a non-void element in such
position, i.e. for defining pavements, ceilings, containment walls, etc.

Since the design domain in the ESO procedure is always rectangular, it is necessary to use the matrix
passive to determine voids in the standard square rectangular domain to define a non-rectangular starting
geometry. As a result, any kind of starting geometry can be defined in the algorithm of the thesis by
subtraction from a bigger rectangular domain.

Additional “density” matrix cover

In a similar way as for the matrix passive, an additional “density” matrix is introduced called cover. In
this matrix, two possible values can be assumed by the elements: 0 and 1. The value 0 does not make
any effect. The value 1 correspond to manually enforcing a non-steel element in corresponding position,
defining the so-called concrete cover. The concrete cover is the set minimal thickness, between the surface
of the embedded reinforcement and the outer surface of the reinforced concrete structure. The principal
reasons for its application are:

• chemical: to prevent corrosion of steel,

• structural: to provide enough bonding strength (to ensure composite action and prevent slip),

• thermal: to provide thermal insulation of steel in case of fire.

The concrete cover in the thesis can be defined in two ways: manually and automatically. Setting the cover
“manually” means defining an area (e.g. rectangular, circular, rhomboidal, oval) by setting manually its
center and size and this must be done by the user himself/herself. Setting the cover “automatically”
means that the cover is applied automatically by the algorithm in the procedure, without any input by
the user, other than setting its thickness. In the latter case, the cover is applied directly around the voids
generated in the structure. It is also possible to set various combinations of both manual and automatic
covers. This is in most cases necessary, since the current automatic cover algorithm is not able to apply
concrete cover around outer edges of the rectangular design domain, which have to be set and added
manually.
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(a) RC solution - (end) 1st loop (b) RC solution - (end) 2nd loop (c) RC solution - (end) 3st loop

(d) x matrix - (end) 1st loop (e) x matrix - (end) 2nd loop (f) x matrix - (end) 3st loop

(g) y matrix - 1st loop (h) y matrix - 2nd loop (i) y matrix - 3st loop

(j) mask matrix - 1st loop (k) mask matrix - 2nd loop (l) mask matrix - 3st loop

(m) passive matrix - 1st loop (n) passive matrix - 2nd loop (o) passive matrix - 3st loop

(p) cover matrix - 1st loop (q) cover matrix - 2nd loop (r) cover matrix - 3st loop

Figure 2.1: Case study n.5 - solutions and matrices x, y, mask, passive, cover for each ESO loop
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Example of use matrices x, y, mask, passive, cover

For case study n.5 (analyzed and discussed in next chapters), the plots for the matrices x, y, mask,
passive, cover, along with the reinforced concrete solutions (which are the results of the combination of
x and y) are shown in figure 2.1 for each ESO loop. In the plots, the colored elements represent the value
1 and the white elements represent the values 0 or 0.001 (depending on which matrix is shown).

Distinction of materials in Finite Element Analysis

Another choice made, was to take into account the distinction of the different materials’ elastic moduli
and Poisson’s ratios in the finite element analysis during optimization.

In case of a stiffness-based optimization as in [10], this is not a necessary choice for the validity of
the multi-material optimization, since the differences in stiffness are already considered in the sensitivity
number definition. And in the article of Xie [10] it is not stated if it has been taken into account also in
finite element analysis or not.

In case of a stress-based optimization, it is possible as well to choose not to take into account the
difference in stiffness in the finite element analysis, without affecting the validity of the multi-material
optimization. In such case, it would be just needed to consider such difference in the post-processing
function, when calculating the stresses used in the sensitivity numbers calculation.

In most cases, the ESO process can already take into account of material differences through the
sensitivity numbers definitions. Therefore, the choice to regard or disregard the difference of materials
stiffness (and Poisson’s ratio) in the finite element analysis is not so obvious and can be considered to be
a chosen assumption in the context of the ESO procedure.

Distinction of materials in Post-processing

To distinguish between the different materials in the post processing function, it is used a similar formula
as for the material interpolation scheme:

σi = xpi D1B ui + (1− xpi )D2B ui

Summarizing, the choices which can be seen as distinctive aspects in the thesis and/or novel approaches
are grouped and listed here below.

Distinctive aspects in the thesis

Based on the literature research performed, it is possible to distinguish in this thesis some, what appear
to be, novel approaches to ESO optimization:

• not only one optimization loop is performed, but a multiple number of loops is executed in series
to perform a multi-material optimization;

• a concept of ”mask” in the sensitivity analysis is introduced, which takes into account the field
of sensitivity numbers of a chosen previous loop (or potentially a user defined field representing a
preferred geometry) that influences the design update in combination with sensitivity numbers;

• transition between materials is carried on with different optimization criteria in the different opti-
mization loops in series;

• the smooth changing of optimization criteria during an optimization loop is introduced, linear
interpolating two different definitions of sensitivity numbers along a predefined number of iterations;

• alternative formulations of sensitivity numbers for Von Mises, Drucker-Prager and tensile stress
criteria from the ones found in literature are used;

• Von Mises, Drucker-Prager and tensile stress criteria are used without taking into account the
strengths of the materials, σy, σc and σt, but only the ratio between σc and σt;

• a method to enforce concrete cover automatically is introduced, which takes into account the evo-
lution of boundaries of the structure as well.

The consequences and reasons of these choices are explained further in the chapter “Discussion”.
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2.4 MATLAB code explained

The basic ESO code, for single material stiffness optimization, has been taken from the articles of Sig-
mund [7] [8] and Xie [11] [18], and has been modified to accomplish the goals of the thesis according to
the strategy and key choices outlined in previous sections.

The readers not interested in the details on the programming side, can skip the reading of
current section from this point and continue from chapter 3 “Results”.

The code is explained step by step here below, to enable the reader to gain enough familiarity for
using, adapting, editing, and basically, working interactively with it.

Code structure

The MATLAB code is comprised by 5 files for the main code:

• Evolutionary Structural Optimization script - file “ESOscript.m”

• Finite Element Analysis function - file “FEM.m”

• Sensitivity Analysis function - file “SENS.m”

• Post-processing function - file “POST.m”

• Automatic concrete cover function - file “COVER.m”

and one file to plot results:

• Plot field (defined on element-level) script - file “plotELEMfield.m”

The file “ESOscript.m” is the main script to be executed in the command line of the MATLAB software.
In this file, there is the code for the ESO process and the various inputs (materials, geometry, ESO
parameters, etc.), to be edited for analyzing the various case studies of the thesis, or for adding new ones,
or for computing alternative solutions. To execute the script in MATLAB, it is just needed to type in
the command line:

ESOscript

The files “FEM.m”, “SENS.m”, “POST.m” and “COVER.m” are separate functions called automati-
cally during the ESO process from inside the “ESOscript.m” file.

The script “plotELEMfield.m” can be executed in the command line of the MATLAB software, after the
script “ESOscript.m” has been terminated, to plot a certain field, e.g. a selected stress or strain, over
the optimized geometry, in its deformed or undeformed state. Such script needs to be called with some
user input data, as in the following example:

plotELEMfield(ELEM,NODE,0,ELEM.sigma2,6)

where ELEM and NODE contain information about structure’s geometry and displacements, 0 represents
the set scale for displaying the deformation in the plot (in the example, no deformation is shown in the
plot), ELEM.sigma2 corresponds to the field to be plotted (in the example, the second principal stress
defined on element-level) and 6 represents the chosen color scale for the plot (in the example, the red-blue
colorbar with 0.5% of values removed from top and bottom of the scale). To understand the different
colorbars available, please read the code of the “plotELEMfield.m” script.

Parameters organization in the code

Since the quantities are stored in MATLAB in several multidimensional arrays (column vectors, row
vectors, matrices, tensors) it is important to understand to which point/element/d.o.f./node the values
in a line or column refer to. Therefore, the variables in the MATLAB code has been grouped using the
MATLAB class struct to avoid confusion with quantities defined on different variables. For example:
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• the parameters ELEM.ny , ELEM.n, ELEM.epsxx, ELEM.sigma1, etc. are defined on the elements,

• the parameters NODE.xy , NODE.n_mat, NODE.connect, etc. are defined on the nodes,

• the parameters DOF.K , DOF.f, DOF.u, etc. are defined on the degrees of freedom (in the following
order: node-1-x-dir, node-1-y-dir, node-2-x-dir, etc.),

• the parameters GP.strains , GP.stresses GP.sigma2, etc. are defined on the Gauss points,

• the parameters ESO.er , ESO.criteria, ESO.rmin, ESO.startvol, etc. are parameters that deter-
mine the ESO procedure,

• the parameters SET.bctype , SET.solidvoid, SET.cover, SET.coverthick, etc. are parameters
used for settings,

• the parameters GEOM.bc , GEOM.lenght, GEOM.height, GEOM.thickness, are parameters that define
the geometry of the structure,

• the parameters VOID.E , VOID.nu, VOID.lambda, VOID.mu, are defined for the material void,

• the parameters STEEL.E , STEEL.nu, STEEL.lambda, STEEL.mu, are defined for the material steel,

• the parameters CONCR.E , CONCR.nu, CONCR.lambda, CONCR.mu, are defined for the material concrete.

The values that are changed and set for each optimization cycle are stored in the MATLAB class cell.
Those are:

• x{i}, the result material density matrix of the ith ESO cycle;

• startx{i}, the initial material density matrix set for (and to be modified during) the ith ESO
cycle;

• y{i}, the material density matrix used to define reinforced concrete structure boundaries during
the ith ESO cycle;

• mask{i}, the matrix used to influence the sensitivity numbers during the ith ESO cycle;

• MAT1{i} and MAT2{i}, respectively the two materials chosen for the bi-phase material for the ith

ESO cycle.

2.4.1 ESOscript.m code explained

The file ESOscript.m is explained, step by step, in the text below. It is comprised of four main parts:
data input, initialization, optimization and post-processing.

ESOscript.m - part n.1: Data input

%-1---INPUT----------------------------------------------------------------

The first part of the code is dedicated to the input of data.

%-1.1---INPUT-GEOMETRY-------------------------

ELEM.nx = 100; ELEM.ny = 60; %number of elements used to discretize design area

GEOM.lenght = ELEM.nx; GEOM.height = ELEM.ny; %length and height of design area

GEOM.thickness = 1;

The design domain is discretized with a rectangular mesh of size ELEM.nx along x direction and
ELEM.ny along y direction. The real length is defined by the parameters GEOM.lenght and GEOM.height.
In the attached code GEOM.lenght and GEOM.height are automatically set to ELEM.nx and ELEM.ny. It
is possible to set a scale by specifying a multiplicator in the definition of GEOM.lenght and GEOM.height,
for example defining: GEOM.lenght = 2*ELEM.nx, or GEOM.lenght = 5*ELEM.nx, etc.
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%-1.2---INPUT-SETTINGS-------------------------

SET.inttype=1; %1=2x2integration, 2=analytical

SET.bctype=2; %1=manual, 2=cantilever with central force, 3=half MBB, 4=half wheel,

%5=cantilever with bottom force ... see section 1.5 for others

SET.solidvoid=1; %1=no solids and voids, 2=round hole, 3=square hole, 4=rhombus hole,

%5=rectangular hole ... see section 1.6 for others

SET.boundaries=2; %1=keep original boundaries, 2=optimize boundaries

SET.covertype=8; %1=no concrete cover, 2=top&bottom, 3=left&right, 4=automatic cover,

%5=automatic cover + top&bottom, 6=automatic cover + left&right

%7=automatic cover + top&bottom + left&right

%8=automatic cover + top&bottom + right

SET.coverthick=2; %concrete cover thickness (expressed in number of elements)

SET.translenght=20; %n. of iterations for transition between two optimization criteria

The parameter SET.inttype enables to choose finite elements integration type: 1 corresponds to
numerical Gauss integration with 2x2 integration scheme and 2 corresponds to analytical integration as
in the paper of Sigmund [8]. In the thesis, numerical integration is always used.

The boundary conditions and voids inside the rectangular domain are predefined for some basic
geometries of the case studies from literature and can be selected choosing the parameters SET.bctype and
SET.solidvoid. New geometries can be set manually. New preset geometries can be added in the section
1.5 and section 1.6 of the code ESOscript.m, simply adding new “case” inside the MATLAB command
“switch”. With SET.solidvoid=1 there are no voids imposed on the structure. With SET.bctype=1 the
boundary conditions can be set completely manually.

With SET.boundaries it is specified if the outer geometry of reinforced concrete has to be opti-
mized or has to be kept unmodified “rectangularly-shaped” as specified originally in SET.bctype and
SET.solidvoid.

A concrete cover can be set in a similar way as for voids inside the geometry (what we will refer
to as manual mode) and/or in an automatic way using the function written in the file COVER.m. Two
parameters SET.cover and SET.coverthick are defined respectively to choose the type and the size of
the concrete cover (expressed in number of elements). With SET.cover=1 there is no concrete cover
imposed. With SET.cover=2,...,3 there is manual concrete cover applied, as defined in section 1.7 of
the code ESOscript.m. With SET.cover=4,...,8 there is an automatic concrete cover imposed, with or
without an additional manual concrete cover, as defined in the function in file COVER.m.

The parameter SET.translenght is used for the optimization criteria n. 5, 6, 7 (defined in file SENS.m)
where, not only one criterion for optimization is used, but two criteria linearly interpolated along a set
number of iterations, defined by SET.translenght. Taking the example of optimization criteria n.5, the
sensitivity numbers start from Von Mises optimization criterion with 100% influence and slowly transition
to Drucker-Prager criterion, until the Von Mises criterion has 0% influence on the sensitivity numbers and
Drucker-Prager criterion has the full 100% influence. This transition is completed once SET.translenght
iterations have been performed inside the ESO loop.

%-1.3---INPUT-MATERIAL-DATA--------------------

VOID.E = 0;

VOID.nu = 0;

VOID.lambda = 0;

VOID.mu = 0;

STEEL.E = 10.0;

STEEL.nu = 0.3;

STEEL.lambda = STEEL.nu*STEEL.E/( (1+STEEL.nu)*(1-2*STEEL.nu) );

STEEL.mu = STEEL.E/( 2*(1+STEEL.nu) );

CONCR.E = 1.0;

CONCR.nu = 0.2;

CONCR.lambda = CONCR.nu*CONCR.E/( (1+CONCR.nu)*(1-2*CONCR.nu) );

CONCR.mu = CONCR.E/( 2*(1+CONCR.nu) );

% factors for drucker prager criterion

sigmac=1;

sigmat=0.2;
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DPalpha=(sigmac-sigmat)/(sqrt(3)*(sigmac+sigmat));

clear sigmac sigmat

% for selfweight problems only

gravity = [ 0.0 %gravity acceleration x-dir

-1.0]; %gravity acceleration y-dir

VOID.density= 0.0; %material density (rho)

VOID.bodyforce = VOID.density*gravity; %specific weight(gamma=rho*g)

STEEL.density= 0.0;

STEEL.bodyforce = STEEL.density*gravity;

CONCR.density= 0.0;

CONCR.bodyforce = CONCR.density*gravity;

clear gravity

Material parameters are defined for the materials: void, steel and concrete.
The factors for Drucker-Prager criterion has to be inserted in the parameters sigmac and sigmat.

One of them can be expressed as unitary value and the other as the ratio between the two, since they
are only used to calculate DPalpha the parameter ℵ used in the Drucker-Prager principle, which is only
dependent to their ratio. In the example code the ratio between the sigmac and sigmat is set to 20%.

There is a section of code for properties to be defined for selfweight problems. Even though in this
thesis they are not treated, the code already supports such implementation, with the remark that the
sensitivity numbers must be changed and defined accordingly. For principles and examples on how to
derive sensitivity numbers definitions for design-dependent optimization problems, see the article of Xie
[11].

%-1.4---INPUT-ESO-PARAMETERS---------------------------

%-1.4.1--INITALIZATION-ESO-PARAMETERS----

x0=ones(ELEM.ny,ELEM.nx); %start geometry

ESO.cycles=3; %determine the number of cycles

x=cell(1,ESO.cycles); %initialize eso density matrix

for cycle=1:ESO.cycles; x{cycle}(1:ELEM.ny,1:ELEM.nx)=1.; end

ESO.penal = 3.; %penalty exponent applied to x

ESO.penalmask = 2.; %penalty exponent applied to mask

%set ESO.penalmask=2 to have same effect as of ESO.penal on x

%set ESO.penalmask=0 to nullify effect of mask (works only for SET.covertype=1,2,3)

%-1.4.2--INPUT-VARIABLE-ESO-PARAMETERS-----------------------

%ESO settings (1 column = 1 cycle) to be changed for each case study

ESO.volfrac= [0.60, 0.30, 0.15 ];

%-1.4.3--INPUT-FIXED-ESO-PARAMETERS----------------------------------

%ESO settings (1 column = 1 cycle) usually not needed to be changed

ESO.conv_err= [0.001 0.001 0.001 ]; %allowable conv. error

ESO.er= [0.04, 0.03, 0.02 ];

ESO.rmin= [8, 3, 2 ];

ESO.criteria= [2, 5, 7 ];

MAT1= {STEEL, STEEL, STEEL };

MAT2= {VOID, CONCR, CONCR };

ESO.startvol= [1, ESO.volfrac(1), ESO.volfrac(2) ];

update_startx=@(x0,x) {x0, x{1}, x{2} }; %values of ESO.start

update_mask=@(x0,x) {x0, x{1}, x{2} }; %values of mask

switch SET.boundaries % set values of y (concrete boundaries)

case 1 % preserve original boundaries

update_y=@(x0,x) {x0, x0, x0 };

case 2 % optimize boundaries

update_y=@(x0,x) {x0, x{1}, x{1} };

end

% startx, y and mask are set in the beginning and updated inside the eso loops

% at end of each main-iteration because x{1}, x{2} etc are calculated inside the

% eso loops, to do this MATLAB function handles are used



32 CHAPTER 2. METHODS

startx=update_startx(x0,x);

y=update_y(x0,x);

mask=update_mask(x0,x);

% In y it is stored the information about concrete boundaries

A neutral mask and initial full density matrix is defined with x0 setting all values to 1.
The number of ESO cycles is defined with ESO.cycles. The number of cycles can be increased

or decreased changing the size of the arrays ESO.conv_err, ESO.volfrac, ESO.er, ESO.criteria,
ESO.startvol, of the cells MAT1, MAT2 and of the handle functions update_startx, update_mask and
update_y.

A penalty exponent (ESO.penal) of 3 is set on the density matrix, as in the article of Xie [11]. On the
mask it is set a penalty exponent (ESO.penalmask) of 2. However, the exponent ESO.penalmask=2 has
the same effect on mask as the exponent ESO.penal=3 has on the density matrix, because in the sensitivity
numbers definitions the x is to the power of penal-1 while the mask is to the power of penalmask.

The parameters ESO.volfrac and ESO.er respectively defines the target volume for each ESO loop
and the speed with which the volume is decreased in each iteration for each ESO loop. In the example,
ESO.volfrac=0.6 it means that the target volume is 60% of the total volume and ESO.er=0.04 means
that the volume is decreased in each iteration for the 4% of the volume in previous iteration. This means
that volume in the example changes with the following values: 100%, 96%, 92.2%, 88.5%, 84.9%, ...,
60.0%. The parameter ESO.volfrac is the only ESO parameter that needs to be changed for each case
study to suit the particularities of each example problem. Depending on each case study it is wished to
reach a certain reinforced concrete total volume, or to preserve a certain simplicity of the outer structure
boundaries (not to push the optimization too much). Also the target steel volume can be lowered or
must be increased depending on complexity of steel layout. A more complex steel layout usually requires
a higher target volume, not to turn to a trivial solution. Further discussion about this aspect is carried
in the chapter “Discussion”.

The parameter ESO.conv_err determine the allowable convergence error, it is advised to keep its
value to 0.001 unless the number of iterations needed to complete loops starts to be higher than 40-50.
In such case, to lower the computational expenses, it is viable to change its value to 0.002 or 0.003 to
save considerable computational time, in exchange of a solution less close to the convergent one, which
in case of ESO optimization would not show remarkable difference in most of the cases.

With ESO.rmin is possible to set the size of the filter scheme, to avoid checkerboard patterns. Setting
ESO.rmin=1 is equivalent to disable the filter on sensitivities. In simple terms, the effect given by this
parameter is that the bigger the ESO.rmin number, the bigger the minimal size of members inside the
resulting design. All the members with “thickness” smaller than the size defined by ESO.rmin (expressed
in number of finite elements) will be cut/removed from the design. This is an important parameter to
correctly drive the solution for the reinforced concrete designs for the following two reasons: to avoid
creating too much slender concrete members and to prevent removal very thin but relevant steel parts
inside of the concrete.

With ESO.criteria is possible to choose the optimization criteria (defined in the file SENS.m) to be
used during the optimization loops with the following numbers:

1. Stiffness criterion

2. Von Mises criterion

3. Drucker-Prager criterion

4. Tensile stress criterion

5. Transition from Von Mises to Drucker-Prager criterion

6. Transition from Von Mises to tensile stress criterion

7. Transition from Drucker-Prager to tensile stress criterion

Other criteria, outside this list, could be added inserting a new “case” in the MATLAB command “switch”
in the file SENS.m, with the relative expression for calculating sensitivity numbers.
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With the MATLAB cells MAT1, MAT2 it is defined the first and second material that take part in the
bi-phase material for each ESO optimization loop.

The parameters ESO.startvol, update_startx, update_mask and update_y define for each ESO
optimization loop, respectively, the start volume, the associated material density matrix, the mask used
to steer the optimized solution and the matrix defining the (reinforced concrete) structure boundaries. In
the example, it is set that in the first ESO loop the start volume is 100%, and both the density matrices
startx, y and mask are the unitary matrices. In the second ESO loop the start volume and density
matrix are set from the end results of the first ESO loop and, similarly, in the third loop, using end
results of second loop. The density matrix y, however, is set to be kept unitary, in case the structure
boundaries are to be kept unmodified or is set to be equal to the result of first ESO loop, in case the
structure boundaries have to be optimized.

Handle functions are used so that the parameters startx, mask and y can be easily updated after each
ESO cycle inside the ESO optimization loop, in an automatic way with the calls of the handle functions.

%-1.5---INPUT-BOUNDARY-CONDITIONS--------------

% GEOM.bc=[# # # #]’=[node n., bctype, dof, bcvalue]’

% (bctype=0 for force, bctype=1 for displacement)

switch (SET.bctype)

...

see annex for rest of code

Boundary conditions are set through a matrix where, in each line, it is specified a condition on a node,
with four parameters: number of node, type of condition (0=force, 1=displacement), degree of freedom
(1=x-direction, 2=y-direction) and value of force / prescribed displacement (value=0 for constraint).
Such matrix is transposed and assigned to a matrix called GEOM.bc. Conditions are applied in file FEM.m

during finite element analysis, applying prescribed forces on the f vector before solving the system and not
resolving equations with prescribed displacements and applying them to solutions in vector u. Boundary
conditions can be defined manually or chosen from the following presets:

1. manually defined;

2. cantilever with downward force on center of right edge;

3. half “MBB” beam with downward force in middle of full beam;

4. “half wheel design” beam with downward force in middle of lower edge;

5. cantilever with downward force in lower right corner;

6. plate fixed on four edges with upward force in the middle of upper half of plate;

7. plate fixed on four edges with downward force in the center of plate;

8. wall for case study n.9, defined for mesh of 98 x 60 elements only (not scalable), with two downward
forces applied on 1/3 and 2/3 of upper edge;

9. wall for case study n.10, defined for mesh of 150 x 94 elements only (not scalable), with one eccentric
downward forces applied upper edge

10. corbel jointed to a column of case study n.11, defined for mesh of 88 x 216 elements only (not
scalable), to be used in combination with SET.solidvoid=8;

11. corbel with a ledge support of case study n.12, defined for mesh of 88 x 88 elements only (not
scalable), to be used in combination with SET.solidvoid=9;

Presets defined from n.2 to n.7 can be used for any proportion and size of meshes (for any scale as
well), without need to make any change on the code. Therefore, such presets are readily usable for mesh
refinement studies on the code developed in the thesis.
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%-1.6---VOIDS-AND-SOLIDS-IN-GEOMETRY-----------

% set ESO.passive = 1 (holes) or 2 (solids)

switch (SET.solidvoid)

...

see annex for rest of code

Holes on the geometry (for example for passage of pipes, for windows, doors, etc.) are applied through
a matrix ESO.passive which is enforced on the matrix of sensitivities in the ESO loop, just after filtering
and before the design update step. With the same procedure, there can be imposed on the structure some
parts that must remain solid and cannot be perforated during optimization. The latter are referred to in
this thesis as “solids”. Holes and solids can be defined semi-automatically from the following presets:

1. no holes, no solids;

2. circular hole/solid(*);

3. square hole/solid(*);

4. rhombus hole/solid(*);

5. rectangular hole/solid(*);

6. two rectangular holes for case study n.9, for mesh of 98 x 60 elements only (not scalable), to be
used in combination with boundary conditions SET.bctype=8;

7. one eccentric rectangular hole for case study n.10, for mesh of 150 x 94 elements only (not scalable),
to be used in combination with boundary conditions SET.bctype=9;

8. two rectangular holes (to create a colum + corbel structure from a rectangular domain), for case
study n.11, for mesh of 88 x 216 elements only (not scalable), to be used in combination with
boundary conditions SET.bctype=10;

9. one rectangular holes for case study n.12 (to create a corbel structure from a rectangular domain),
for mesh of 88 x 88 elements only (not scalable), to be used in combination with boundary conditions
SET.bctype=11.

In the cases marked with * it is needed to define manually diameter and center of hole. It possible to
choose to enforce holes or solids, setting ESO.passive=1 for holes and setting ESO.passive=2 for solids.

%-1.7---CONCRETE-COVER-------------------------

switch (SET.covertype)

...

see annex for rest of code

Concrete cover can be defined manually in the same way as holes are defined in part of code 1.6,
but these are “holes” that apply only to the steel density matrices. They are applied through a matrix
ESO.cover in the ESO loop just after the holes/solids are enforced to the sensitivity matrix and before
the design update step. The presets in the code are the following:

1. no concrete cover;

2. concrete cover in top and bottom of rectangular design domain;

3. concrete cover in left and right of rectangular design domain;

4. automatic concrete cover around holes;

5. automatic concrete cover around holes + top and bottom cover on rectangular design domain;

6. automatic concrete cover around holes + left and right cover on rectangular design domain;

7. automatic concrete cover around holes + top, bottom, left and right cover on rectangular design
domain;

8. automatic concrete cover around holes + top, bottom and right cover on rectangular design domain.

The size of the concrete cover is determined in n. of elements by the parameter SET.coverthick.
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ESOscript.m - part n.2: Initialization

%-2---INITIALIZATION-------------------------------------------------------

The second part of the code is dedicated to the initialization of geometry and the creation of the
mesh, the definition of the integration scheme and the pre-calculations for the filtering scheme.

%-2.1---INITIALIZATION-GEOMETRY------------------

% creation of node and dof numbers

% - matrix of nodes numbers

NODE.n_mat = reshape(1:(1+ELEM.nx)*(1+ELEM.ny),1+ELEM.ny,1+ELEM.nx);

% - node number on bottom right corner

DOF.n_mat_col_1 = reshape(2*NODE.n_mat(1:end-1,1:end-1)+1,ELEM.nx*ELEM.ny,1);

% - matrix of dof numbers in the element

DOF.n_mat = repmat(DOF.n_mat_col_1,1,8)+repmat([0 1 2*ELEM.ny+[2 3 0 1] -2 -1],ELEM.nx*ELEM.ny,1);

% creation of matrix of nodes coordinates (order top to bottom, right to left)

[NODE.x_mat,NODE.y_mat] = ...

meshgrid(linspace(0,GEOM.lenght,ELEM.nx+1),linspace(0,-GEOM.height,ELEM.ny+1));

NODE.xy = [NODE.x_mat(:) NODE.y_mat(:)];

NODE.n = size(NODE.xy, 1);

% creation of connections of nodes for members (order top to bottom, right to left)

NODE.connect = [(DOF.n_mat(:,2)/2) (DOF.n_mat(:,4)/2) (DOF.n_mat(:,6)/2) (DOF.n_mat(:,8)/2)];

ELEM.n = size(NODE.connect, 1);

Given the number of elements along the x and y direction, the mesh is built assembling the matrix
NODE.n_mat, with the node numbers placed in the right geometrical order as in the mesh. Each row and
column in the matrix correspond respectively to a row and column of nodes in the finite element mesh.

From the latter, it is a created another matrix called DOF.n_mat, to link the degrees of freedom to
the elements (8 d.o.f. per element, per row). The order of enumeration is from bottom left node and in a
counterclockwise direction. The 2 d.o.f. for each node are gathered in couples: 1&2, 3&4, 5&6, etc. Odd
numbers correspond to d.o.f. in x direction, while even numbers to d.o.f. in y direction.

After that, the coordinates for each node are calculated and put into two matrices in corresponding po-
sitions to the nodes, the first for x coordinates NODE.x_mat and the second for y coordinates NODE.y_mat.
In the matrix NODE.xy the nodes coordinates are reordered vertically in lines (2 coordinates per node,
per row).

The matrix NODE.connect is assembled as well. Within each line of this matrix, there are stored the
node numbers that form a corresponding finite element (4 nodes per element, per row). The order of
enumeration is from bottom left node and in a counterclockwise direction. The enumeration convention
for elements, nodes and d.o.f. is shown in the image 2.2 with:

• element n◦, highlighted in yellow;

• node n◦, in red font;

• d.o.f. n◦, in black font.

The convention for numeration is the same as in the paper of Sigmund [7].
The coordinate system is set with origin in top left corner (origin on node n.1), with x axis pointing
rightwards and y axis pointing upwards.

%-2.2---INITIALIZATION-INTEGRATION-SCHEME---------

% 2x2 point Gauss integr

GP.def = zeros(3,4);

GP.def(1,:) = 1.0; %weight of gp,

GP.def(2,1) = -1.0/sqrt(3.0); GP.def(3,1) = -1.0/sqrt(3.0); %eta and xi coord of gp

GP.def(2,2) = 1.0/sqrt(3.0); GP.def(3,2) = -1.0/sqrt(3.0);

GP.def(2,3) = 1.0/sqrt(3.0); GP.def(3,3) = 1.0/sqrt(3.0);

GP.def(2,4) = -1.0/sqrt(3.0); GP.def(3,4) = 1.0/sqrt(3.0);
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Figure 2.2: Numeration convention

Table 2.1: NODE.n_mat

1 5 9 13 17 row1
2 6 10 14 18 row2
3 7 11 15 19 row3
4 8 12 16 20 row4

col.1 col.2 col.3 col.4 col.5

Table 2.2: DOF.n_mat

3 4 11 12 9 10 1 2 elem.1
5 6 13 14 11 12 3 4 elem.2
7 8 15 16 13 14 5 6 elem.3
11 12 19 20 17 18 9 10 elem.4
13 14 21 22 19 20 11 12 elem.5
15 16 23 24 21 22 13 14 elem.6
19 20 27 28 25 26 17 18 elem.7
21 22 29 30 27 28 19 20 elem.8
23 24 31 32 29 30 21 22 elem.9
27 28 35 36 33 34 25 26 elem.10
29 30 37 38 35 36 27 28 elem.11
31 32 39 40 37 38 29 30 elem.12

Table 2.3: NODE.connect

2 6 5 1 elem.1
3 7 6 2 elem.2
4 8 7 3 elem.3
6 10 9 5 elem.4
7 11 10 6 elem.5
8 12 11 7 elem.6
10 14 13 9 elem.7
11 15 14 10 elem.8
12 16 15 11 elem.9
14 18 17 13 elem.10
15 19 18 14 elem.11
16 20 19 15 elem.12
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A standard 2x2 Gauss integration scheme is chosen with weight equal to 1 and integration points
coordinates: (

± 1√
3
,± 1√

3

)

%-2.3---INITIALIZATION-MESH-INDEPENDENCY-FILTER-----

for cycle=1:ESO.cycles

iH = ones(ELEM.nx*ELEM.ny*(2*(ceil(ESO.rmin(ESO.cycles))-1)+1)^2,1);

jH = ones(size(iH)); sH = zeros(size(iH)); k = 0;

for i1 = 1:ELEM.nx

for j1 = 1:ELEM.ny

e1 = (i1-1)*ELEM.ny+j1;

for i2 = max(i1-(ceil(ESO.rmin(cycle))-1),1):min(i1+(ceil(ESO.rmin(cycle))-1),ELEM.nx)

for j2 = max(j1-(ceil(ESO.rmin(cycle))-1),1):min(j1+(ceil(ESO.rmin(cycle))-1),ELEM.ny)

e2 = (i2-1)*ELEM.ny+j2; k = k+1;

iH(k) = e1; jH(k) = e2;

sH(k) = max(0,ESO.rmin(cycle)-sqrt((i1-i2)^2+(j1-j2)^2));

end

end

end

end

ESO.H{cycle} = sparse(iH,jH,sH);

ESO.Hs{cycle} = sum(ESO.H{cycle},2); %the arrays needed for filtering are ESO.H and ESO.Hs

clear e1 e2 i1 i2 j1 j2 iH jH sH k cycle

end

The same filtering scheme used as in Sigmund [8] and Xie [11]. The filter is “prepared” before the ESO
loops and applied during each iteration with simple matrix products. This is done in such a procedure to
reduce computational efforts, with respect to original filter application as in previous papers of Sigmund
[7] and Xie [18].

ESOscript.m - part n.3: Optimization

%-3---OPTIMIZATION-LOOP----------------------------------------------------

for cycle=1:ESO.cycles

The third part of the code comprise the core of the optimization process. A for cycle is initialized to
execute a series of consecutive ESO optimization loops. All what is written below is therefore executed
for each ESO optimization loop. In the thesis three ESO loops are used.

%-3.1--INITIALIZATION i-(th) ESO PROCEDURE-------------

iter = 0; change = 1.;

x{cycle}=startx{cycle};

vol=ESO.startvol(cycle);

The initial sensitivity matrix and volume for the ith ESO procedure is loaded. After that a while

loop is started for the ith ESO procedure.

%-3.2--START ITERATIONS FOR i-(th) ESO PROCEDURE-------

while change > ESO.conv_err(cycle)

Each ESO procedure performs a number of iterations inside the while loop until the optimization
procedure is convergent.

%-3.2.1--volume and historical data

iter = iter + 1;

if iter >1
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ESO.oldapha = ESO.alpha;

end

if cycle==2 && iter==1 && SET.covertype>1

%in first iter when it is applied cover don’t reduce volume by ER

else

vol = max(vol*(1-ESO.er(cycle)),ESO.volfrac(cycle));

end

In ESO.oldapha it is stored previous sensitivity matrix for historical averaging of sensitivities. With
the formula vol = max(vol*(1-ESO.er(cycle)),ESO.volfrac(cycle)), the volume is decreased within
each iteration and, once reached the target volume, kept stable. Only in the moment when the concrete
cover is applied (first iteration of second ESO loop), the volume is chosen not to be reduced by the
evolutionary ratio ESO.er, but only by the concrete cover application.

%-3.2.2--fem analysis

[DOF.K, DOF.f, DOF.u, ELEM.KE1, ELEM.KE2]=...

FEM(ELEM,NODE,DOF,GEOM,GP,SET,MAT1{cycle},MAT2{cycle},x{cycle},y{cycle},ESO.penal);

%-3.2.3--postprocess for stress based eso criteria

if ESO.criteria(cycle) ~= 1

[GP.strains, GP.stresses, GP.xy]=...

POST(ELEM,NODE,DOF,GP, MAT1{cycle}, MAT2{cycle},x{cycle},ESO.penal);

end

Finite element analysis and post processing are executed as MATLAB functions from the separate
files FEM.m and POST.m.

%-3.2.4--sensitivity analysis

[ESO.alpha, SET] = ...

SENS(ELEM,DOF,GP,SET,ESO.criteria(cycle),x{cycle},mask{cycle},ESO.penal,ESO.penalmask,...

DPalpha,iter);

%calculate total objective function

ESO.obj(iter) = sum(sum(ESO.alpha));

%filtering sensitivities

ESO.alpha(:) = ESO.H{cycle}*ESO.alpha(:)./ESO.Hs{cycle};

%stabilizing sensitivities

if iter > 1

ESO.alpha = (ESO.alpha+ESO.oldapha)/2.;

end

Sensitivities are calculated calling in the function from the separate file SENS.m. The object function
is simply defined as the sum of all sensitivity numbers. The sensitivities are filtered through matrix
multiplication with the arrays H and Hs calculated outside the while and for loops, in the section 2.3 of
the code.

%-3.2.5--enforce voids and solids

ESO.alpha(ESO.passive==1) = min(min(ESO.alpha));

ESO.alpha(ESO.passive==2) = max(max(ESO.alpha));

%for cases when concrete boundaries are not optimized (SET.boundaries==1)

%enforce voids and solids directly in x0

if iter==1 && SET.boundaries==1

x0(ESO.passive==1) = 0.001; %enforced voids by codes in section 1.6

x0(ESO.passive==2) = 1; %enforced solids by codes in section 1.6

end

The elements that are forced to be voids have their sensitivity number overridden as the minimum
of all sensitivity values. Vice versa, it is used the maximum for the elements forced to be solids. In the
cases when the outer geometry is kept not optimized, the voids and solids have to enforced on the initial
density matrix x0 (which is used to create the matrix y, i.e. the reinforced concrete boundaries, as seen
in section 1.4.3 of the code).
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%-3.2.6--enforce concrete cover

if cycle>1

if SET.covertype>=4

%compute automatic concrete cover (for cases SET.covertype>=4)

%and apply steel-free zone outside concrete boundaries (done inside function COVER)

[ESO.cover]=COVER(ELEM,SET,y,cycle);

else

%concrete cover already set before (for cases SET.covertype<4)

%then only apply steel-free zone outside concrete boundaries

ESO.alpha(y{cycle}~=1)=min(min(ESO.alpha));

end

if cycle==2 && iter==1 %only the first iteration on 2 cycle it adjusts volume

removedsteel=0;

for indx=1:ELEM.n

%if there is steel inside concrete boundary and it needs to be

%deleted due to application of concrete cover in first iteration

if y{cycle}(indx)==ESO.cover(indx)

removedsteel=removedsteel+1;

end

end

%modify volume

vol=vol-removedsteel/ELEM.n;

end

%concrete cover is enforced overriding ESO.alpha

ESO.alpha(ESO.cover==1) = min(min(ESO.alpha));

end

The concrete cover is set to have effect only after the first ESO loop has been terminated, since it
has been chosen that only voids are defined in the first loop and while the distribution between steel and
concrete is determined in next loops.

• For automatic cover cases (SET.covertype>=4), it is executed the function from the file COVER.m,
which fills the matrix ESO.cover with 1 in holes and around them with a thickness equal to
SET.coverthick.

• For semi-manual cover cases (SET.covertype<4) it is not needed to fill the matrix ESO.cover

because it already done in section 1.7 of the code, but it is only needed to enforce the voids also on
the steel. This is done overriding the sensitivities with the following formula:
ESO.alpha(y{cycle}~=1)=min(min(ESO.alpha)).

Moreover, in all cases when concrete cover is applied, it is needed to adjust the total volume, in the first
iteration of the second loop (if cycle==2 && iter==1). This is done through a specially defined param-
eter removedsteel that counts the steel elements removed due to the concrete cover. The cover is applied
overriding sensitivities with the following formula: ESO.alpha(ESO.cover==1) = min(min(ESO.alpha)).

%-3.2.7--beso design update

l1 = min(ESO.alpha(:)); l2 = max(ESO.alpha(:));

while abs((l2-l1)/(l1+l2)) > 1.0e-9

th = (l1+l2)/2.0;

x{cycle} = max(0.001,sign(ESO.alpha-th)) ;

if mean(x{cycle}(:)) - vol > 0

l1 = th;

else

l2 = th;

end

end

clear l1 l2 th
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Before the design update step is run for the first time in the code, it is known that all the elements
are set in x to assume the first phase of the material, as assigned in section 1.4.3 of the code.

The ESO design update used is the same as in the paper of Xie [11] with two threshold parameters l1
and l2, and works as explained here below. At first, it is set l1 as the minimum of the sensitivity numbers
from ESO.alpha and l2 as the maximum. It is calculated a mean value th. With sign(ESO.alpha-th)

it is found a matrix of -1 and +1 indicating corresponding elements with sensitivities, respectively, lower
and higher than th. The elements with sensitivity lower than th are set to 0.001 in the matrix x. In
other words, those elements are turned to the second phase of the material. The elements with sensitivity
higher than th are set to 1 in the matrix x. In other words, those elements are kept to the first phase of
the material. While the target volume is still to be reached (mean(x{cycle}(:)) - vol > 0), iteratively,
the threshold l1 is set equal to th, a new th is calculated and additional elements are removed. In case
the target volume is crossed (mean(x{cycle}(:)) - vol < 0), the threshold l2 is set equal to th, a
new th is calculated and, from the elements already removed, the ones with sensitivity higher than the
new value th are restored/re-added. This is done simply overriding their previous value of 0.001 in the
matrix x with their new value 1. This process continues iteratively until the volume mean(x{cycle}(:))

converges (oscillating from top and bottom) to the target volume vol. At that point, the values of l1,
l2 and th, as a matter of fact, assume the same value. Therefore, it is used the convergence criterion:
abs((l2-l1)/(l1+l2)) > 1.0e-9.

%-3.2.8--output results

%print results

if iter>10 && vol == ESO.volfrac(cycle)

%if minimum 10 iterations are performed and target volume has been reached

change=abs(sum(ESO.obj(iter-9:iter-5))-sum(ESO.obj(iter-4:iter)))/sum(ESO.obj(iter-4:iter));

end

disp([’ It.: ’ sprintf(’%4i’,iter) ’ Obj.: ’ sprintf(’%10.4f’,ESO.obj(iter)) ...

’ Vol.: ’ sprintf(’%6.3f’,sum(sum(x{cycle}))/(ELEM.nx*ELEM.ny)) ...

’ ch.: ’ sprintf(’%6.3f’,change )])

%plot design

if cycle ==1

colormap(gray); imagesc(-x{cycle}); axis equal; axis tight; axis off;pause(1e-6);

else

colormap(gray); imagesc(-y{cycle}); hold on; fingeom=imagesc(-x{cycle}); hold off;

alpha(fingeom,.6); axis equal; axis tight; axis off;pause(1e-6);

end

end %end of while loop of i-(th) ESO procedure

clear vol change iter

In this point of the code, the while loop of ith ESO procedure ends. The results of the ith ESO loop,
i.e. the x and y matrices, are plotted contemporaneously with two plot functions, such that the color
indicates the resulting material:

black = steel

gray = concrete

white = void

%-3.3---UPDATE-x-y-mask-WITH-i-(th)-ITERATION-CALCULATIONS-

%it is needed because x{1} x{2} etc. are calculated during the loops

startx=update_startx(x0,x);

y=update_y(x0,x);

mask=update_mask(x0,x);

end %end of for loop of the series of ESO optimizations

In the end of the ith ESO procedure, having obtained the resulting density matrix x{i} of the ith

ESO loop, the matrices startx, y and mask are updated through the handle functions update_startx,
update_y and update_mask.
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After this point in the code, the for loop of the series of ESO optimization ends. Sections of code
3.1, 3.2, 3.3 are executed for each ESO loop, until the established number of ESO loops is reached. In
the thesis, the total number of ESO loops is 3.

ESOscript.m - part n.4: Post-processing

%-4--POST-PROCESSING-------------------------------------------------------

[GP.strains, GP.stresses, GP.xy]=...

POST(ELEM,NODE,DOF,GP, MAT1{cycle}, MAT2{cycle},x{cycle},ESO.penal);

% assign nan value to void elements for not printing stresses and strains of void parts

gp_id=0;

for i_element=1:ELEM.n

for gauss_point = GP.def

gp_id = gp_id +1;

if y{cycle}(i_element)~= 1 %get the boundaries of the concrete

GP.stresses(gp_id,:) = nan;

GP.strains(gp_id,:) = nan;

end

end

end

... rest of the code in the annex

The fourth part of the code is dedicated to the post processing, needed only in the case it is wished
to perform analyses of stresses, strains, on the resulting design of the optimization. The post processing
function POST is executed once again, but outside the ESO loop and on the final design.

The stresses and strains of void elements are set to “nan” (not-a-number), in order to conveniently get
white areas on corresponding void elements, on the plots of stresses and strains drawn with the MTALAB
plot function.

It is to note that the post processing function calculates stresses and strains on Gauss points. In parts
of code not shown here (but written in the annex) the following operations are performed:

• values of stresses and strains from Gauss points are reordered separate arrays;

• Von Mises and principal stresses are calculated on Gauss points;

• stresses and strains are extrapolated at element level (averaging values on 4 Gauss points of each
element) for reducing computational times for plots.

2.4.2 Comments on FEM.m code

The file FEM.m is a classic finite element analysis code with just the following exemptions:

1. two element stiffness matrices are defined, one for each phase of the material, and assembly is
carried on with the following formula:

KEx(:,:,iel)=(K_e1(:,:)*x(iel)^penal+K_e2(:,:)*(1-x(iel)^penal))*y(iel)^penal;

executing linear interpolation between the two stiffness matrices according to the density matrix
x(iel). Moreover, the obtained values are multiplied by the y density y(iel) to penalize the void
elements in the FEM analysis;

2. two 3D tensors are defined, one for each phase of the material, to store all elemental stiffness
matrices, along the third dimension, with the formula:

KE1(:,:,iel)=K_e1(:,:);

KE2(:,:,iel)=K_e2(:,:);
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These arrays are later on stored in a MATLAB struct object, respectively, ELEM.KE1 and ELEM.KE2

and used in the sensitivity analysis function SENS.

The formula used on to assemble KEx (and therefore K) is similarly used to assemble the f. However, as
a matter of fact, assembly on vector f is needed only for selfweight problems, not treated in the current
thesis.

2.4.3 Comments on POST.m code

The file POST.m is a classic post-processing function, with the only addition of the following snippet of
code for distinguishing between the two phases of the material, according to the value of the density x:

stressesGP(gp_id,:)=D1*B*DOF.u(DOF.n_mat(i_element,:))*x(i_element)^penal+...

D2*B*DOF.u(DOF.n_mat(i_element,:))*(1-x(i_element)^penal);

2.4.4 Comments on SENS.m code

The formulas for sensitivity numbers from the file SENS.m are shown in the text below. The equations
n.2.16, n.2.24, n.2.27 and n.2.28 are multiplied by maskpenalmask and deployed in the code.

1. Stiffness criterion;
from formula 2.16, reported here below:

αi =
xp−1i

2
(uTi Ki,1ui − uTi Ki,2ui) ∀i = 1, ..., N

it is derived the following equation for alpha:

for iiel=1:ELEM.n

alphavec(iiel)=0.5 * x(iiel)^(penal-1) * mask(iiel)^(penalmask)* ...

( dot(DOF.u(DOF.n_mat(iiel,:))’*ELEM.KE1(:,:,iiel) , DOF.u(DOF.n_mat(iiel,:)))-...

dot(DOF.u(DOF.n_mat(iiel,:))’*ELEM.KE2(:,:,iiel) , DOF.u(DOF.n_mat(iiel,:))) );

end

alphamat=reshape(alphavec,ELEM.ny,ELEM.nx);

2. Von Mises criterion;
from formula 2.24, reported here below:

αi =
√
J2 x

p−1
i

it is derived the following equation for alpha:

alphamat=(sqrt(ELEM.J2mat)).*x.^(penal-1).*mask.^(penalmask);

3. Drucker-Prager criterion;
from formula 2.27, reported here below:

αi = (ℵI1 +
√
J2) xp−1i

it is derived the following equation for alpha:

alphamat=(DPalpha*ELEM.I1mat+sqrt(ELEM.J2mat)).*x.^(penal-1).*mask.^(penalmask);
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4. Tensile stress criterion;
from formula 2.28, reported here below:

αi =
(
σ1,i + σ2,i +

∣∣min(σ1)
∣∣+
∣∣min(σ2)

∣∣ ) xp−1i

it is derived the following equation for alpha:

alphamat=( ELEM.sigma1mat+ELEM.sigma2mat...

+abs(min(min(ELEM.sigma1mat)))+abs(min(min(ELEM.sigma2mat))) )...

.*x.^(penal).*mask.^(penalmask);

5. Transition from Von Mises to Drucker-Prager criterion;
linearly interpolating formula 2.24 and 2.27 it is derived the following equation for alpha:

alphamat=(SET.trans/SET.translenght*DPalpha*ELEM.I1mat+sqrt(ELEM.J2mat))...

.*x.^(penal-1).*mask.^(penalmask);

6. Transition from Von Mises to tensile stress criterion;
linearly interpolating formula 2.24 and 2.28 it is derived the following equation for alpha:

alphamat=((1-SET.trans/SET.translenght)*(sqrt(ELEM.J2mat))...

+(SET.trans/SET.translenght)*( ELEM.sigma1mat+ELEM.sigma2mat...

+abs(min(min(ELEM.sigma1mat)))+abs(min(min(ELEM.sigma2mat))) ) )...

.*x.^(penal-1).*mask.^(penalmask);

7. Transition from Drucker-Prager to tensile stress criterion;
linearly interpolating formula 2.27 and 2.28 it is derived the following equation for alpha:

alphamat=((1-SET.trans/SET.translenght)*(DPalpha*ELEM.I1mat+sqrt(ELEM.J2mat))...

+(SET.trans/SET.translenght)*( ELEM.sigma1mat+ELEM.sigma2mat...

+abs(min(min(ELEM.sigma1mat)))+abs(min(min(ELEM.sigma2mat))) ) )...

.*x.^(penal-1).*mask.^(penalmask);

In the cases when there is a transition between two criteria (case 5, 6 7), it is set an interpolation
parameter SET.trans which increases within each iteration and is defined by the following formula:

if iter<=SET.translenght; SET.trans=iter; end

so that, when SET.trans=SET.translenght, the parameter SET.trans remains constant, and the tran-
sition from one criterion to the other is complete on 100%.

2.4.5 Comments on COVER.m code

The file COVER.m is used in all cases when an automatic concrete cover is desired. Automatic means that
the cover takes place around any geometry, no matter its shape and/or the number of holes, without
specifying the geometry of the cover manually.

The main feature of COVER function is to generate a matrix named cover (later on stored into
ESO.cover), of the same size of the mesh and filled with 0 and 1. The value 1 is stored in the posi-
tions corresponding to elements affected by concrete cover, while the value 0 is kept for other elements,
unaffected by concrete cover. The discriminating parameter is the distance of the element from the edges,
in relation to the specified concrete cover thickness.

The technique developed in the thesis is to check, for each element, a surrounding circular area, of
radius equal to the cover thickness plus one (the “plus one” has to be applied because only the elements
entirely within the circle in fact are considered). In this area it is checked the presence of void elements
(which have correspondent values of 0.001 in the matrix y). If a void element is present in the circular
area, the central element is “taken out” by the concrete cover, setting cover=1. In other words, such
elements are set to be turned to second phase material (concrete), no matter its sensitivity number. This
simply results in an offset of the steel area around all holes in the geometry. The automatic concrete
cover is created with the following snippet of code:
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for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%check a close range of surrounding elements with radius = cover distance

covercheck1=0;

covercheck2=0;

for hh = 1:ELEM.nx

for kk = 1:ELEM.ny

%sqrt((kk - center_y)^2+(hh - center_x)^2) < half length

if sqrt((kk-jj)^2+(hh-ii)^2) < SET.coverthick + 1

covercheck1=covercheck1+1; %total max area elements in close range

covercheck2=covercheck2+y{cycle}(kk,hh); %total real area in close range

end

end

end

%check if there are void elements in close range

if covercheck1==covercheck2

cover(jj,ii) = 0;

else

cover(jj,ii) = 1;

end

end

end

However, this kind of code is not able to apply cover around the edges of the rectangular domain.
Therefore, for such scope, it is necessary to add a code for “taking out” the elements neighboring the
design domain edges. The code to apply top and bottom cover is:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii - center_x)/x_scale] < half length

if max([abs(jj-1),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

while for left and right cover it is:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii - center_x)/x_scale] < half length

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-1)]) < SET.coverthick

cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-ELEM.nx)]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

As it is possible to see it is created a rectangular area centered in the middle of the edge, having lenght
as the edge itself and having thickness as double the concrete thickness. It results that the half of the
rectangle inside the design domain has exactly width as the concrete thickness. To define the rectangular
area it is used the following formula:

max([abs(jj - center_y)/y_scale,abs(ii - center_x)/x_scale] < half length
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Clearly, it is possible to apply concrete cover only to top, bottom, left, right, or any combination of
them, inserting only the relative rectangular area definitions.

In case only “manual” concrete cover (around the edges of design domain) is wished, it is prefer-
able to set it outside the ESO loop to save computation expenses, as it is exactly done for the cases
SET.covertype=2 and SET.covertype=3 defined in section 1.7 of the code. In cases when it is needed
to deploy “automatic” cover, with or without “manual” cover, it is necessary to set it inside the ESO
loop, via the COVER function, because the holes in the geometry are continuously changed within the
optimization procedure.
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Chapter 3

Results

The procedure developed in the thesis has been tested on 12 case studies from literature. The first three
case studies are the classic benchmark tests for ESO method, as found in the article of Xie [11].

(a) Case study n.1 (b) Case study n.2

(c) Case study n.3

The fourth and fifth case study are two additional benchmark tests from SIMP literature, as found
in the article of Sigmund [7].

(a) Case study n.4 (b) Case study n.5

The sixth case study is a more slender version of the second case study (having ratio lenght/height=4),
as found in the article of Xie [18]. In ESO literature, the cantilever benchmark test is usually addressed
for different slenderness ratios. The same is done in this thesis.

Figure 3.3: Case study n.6

The seventh and eight case study are two square deep beams, as found in the articles of Xie [17] and
[19], which are two of the few applications in literature that address materials with different resistance

47
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in tension and compression. In literature, the first case study was solved with a tension optimization
criterion (applied on the first and obsolete formulation of ESO method) and the second with a nonlinear
finite element analysis optimization with Drucker-Prager material definition.

(a) Case study n.7
(b) Case study n.8

The last four case studies are taken from the research carried on by Liang around the years 2000-2005
[20][4]. Liang has created a variation of standard ESO method, called “Performance-Based Optimization”,
which uses a specially defined performance index to verify convergence and stop the procedure. He tested
his method on several standard case studies, also from concrete literature. His method was applied also for
the automatic generation of strut and tie models for reinforced concrete, employing a displacement-type
optimization criteria. More information on the method, along with other case studies and applications
to reinforced concrete strut and tie models, can be found in his book [4].

(a) Case study n.9
(b) Case study n.10

(c) Case study n.11

(d) Case study n.12



49

Following in the chapter, there are presented solutions for the above case studies derived by the ESO
method of this thesis, along with the solutions taken from literature. All parameters used in the procedure
are reported for each case study.

Analysis and evaluation of the results is presented separately in chapter 4 “Discussion”.

Parameters selection

As an introductory remark, it is important to state that the material parameters and loads chosen in
the solutions are not up to scale with real variables. Therefore, the solutions shown are to be considered
as academic examples, especially when evaluating the magnitude of stresses, as shown later on in the text.

The chosen material parameters are:

Material parameters in common for all case studies

STEEL.E = 10.0;

STEEL.nu = 0.3;

CONCR.E = 1.0;

CONCR.nu = 0.2;

sigmac=1;

sigmat=0.2;

DPalpha=(sigmac-sigmat)/(sqrt(3)*(sigmac+sigmat));

Since the loads are not up to scale, the only relevant factor in the choice of material stiffnesses is their
ratio. It has been chosen a ratio of stiffness between steel and concrete of 10.
It is to note also that, the strength of concrete in tension (sigmat) and compression (sigmac) appear
in the procedure only through their ratio via the Drucker-Prager parameter ℵ (indicated in the code as
DPalpha). Then, in the present procedure, their magnitude results irrelevant. The only relevant factor
remains their ratio. It has been chosen a ratio of concrete stress strengths between tension and compres-
sion of 0.2.

The other shared parameters are:

ESO parameters in common for all case studies

ESO.penal = 3.; %penalty exponent applied to x

ESO.penalmask = 2.; %penalty exponent applied to mask

ESO.conv_err= [0.001 0.001 0.001 ]; %allowable conv. error

ESO.er= [0.04, 0.03, 0.02 ];

ESO.rmin= [8, 3, 2 ];

ESO.criteria= [2, 5, 7 ];

MAT1= {STEEL, STEEL, STEEL };

MAT2= {VOID, CONCR, CONCR };

ESO.startvol= [1, ESO.volfrac(1), ESO.volfrac(2) ];

update_startx=@(x0,x) {x0, x{1}, x{2} }; %values of ESO.start

update_mask=@(x0,x) {x0, x{1}, x{2} }; %values of mask

switch SET.boundaries % set values of y (concrete boundaries)

case 1 % preserve original boundaries

update_y=@(x0,x) {x0, x0, x0 };

case 2 % optimize boundaries

update_y=@(x0,x) {x0, x{1}, x{1} };

end

The optimization criteria sequence (as defined in array ESO.criteria) has been chosen for all solutions
of case studies in the following manner:

• n.2 - Von Mises criterion - in the first optimization loop, when the void is determined
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• n.5 - Transition from Von Mises to Drucker-Prager criterion - in the second optimization loop, when
steel is replaced with concrete in compressive and low stressed tensile zones

• n.7 - Transition from Drucker-Prager to tensile stress criterion - in the third optimization loop,
when steel boundary is refined, removing remaining steel still present in compressive zones

Other settings in common for all case studies

Transition lenght for linear interpolation between criteria during optimization loop (expressed in n. iter-
ations):
SET.translenght=20;

In case original external geometry is to be kept (non-optimized), it is set:
SET.boundaries=1;

while in the case the external geometry is optimized it is set the parameter:
SET.boundaries=2;

The remaining parameters were set individually for each case study. The chosen values are indicated
further in this chapter in separate sections for each case study.

Individual settings, different for all case studies

ELEM.nx

ELEM.ny

SET.bctype

SET.solidvoid

SET.covertype

SET.coverthick

ESO.volfrac

3.1 Case study n.1

The case study n.1 is the classic half-MBB beam present in most of the articles about structural opti-
mization. The problem statement is presented in figure 3.6.

The solution in figure 3.7 is taken from the article of Xie [11] and is obtained with a stiffness opti-
mization of a 100 by 40 elements design domain, with a target volume of 60% , an evolution ratio er of
0.02 and rmin equal to 0.6.

The solution in figure 3.8 is taken from the article of Xie [10] and is obtained with a multi-material
stiffness optimization whereas E1 = 1GPa, E2 = 0.1GPa. The Poisson ratio is 0.3 for all material. The
objective volume of materials 1 and 2 are set to be 15% and 25% of the whole design domain. It was
chosen an evolution ratio er of 0.02 and rmin equal to 0.15.

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.9

ELEM.nx = 100; ELEM.ny = 40;

SET.bctype=3;

SET.solidvoid=1;

SET.covertype=1;

ESO.volfrac=[0.70, 0.35, 0.20];

Solution in figure 3.10

ELEM.nx = 100; ELEM.ny = 40;

SET.bctype=3;

SET.solidvoid=1;

SET.covertype=8;
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SET.coverthick=2; *(see below)

ESO.volfrac=[0.70, 0.35, 0.20];

In SET.bctype=3 the boundary conditions have been programmed for this case study and hold even
for different size of design domain. With SET.solidvoid=1 there are no voids of solids imposed on the
solution.
* In the solution 3.10(b) it has been used SET.coverthick=1 instead of SET.coverthick=2 because of
the small resolution of 100x40 elements and the small thickness of the tensile member in the lower right
corner. With this resolution, a bigger concrete cover thickness enforcement could cause the loss of steel
members in thin tensile zones.

3.2 Case study n.2

The case study n.2 is the classic cantilever beam present in most of the articles about structural opti-
mization, together with the previous case of half MBB beam. The problem statement is presented in
figure 3.11.

The solution in figure 3.12 is taken from the article of Xie [11] and is obtained with a stiffness
optimization of a 100 by 50 elements design domain, with a target volume of 60% , an evolution ratio er

of 0.02 and rmin equal to 0.6.
The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.13

ELEM.nx = 100; ELEM.ny = 50;

SET.bctype=2;

SET.solidvoid=1;

SET.covertype=1;

ESO.volfrac=[0.60, 0.30, 0.15];

Solution in figure 3.14

ELEM.nx = 100; ELEM.ny = 50;

SET.bctype=2;

SET.solidvoid=1;

SET.covertype=8;

SET.coverthick=2;

ESO.volfrac=[0.60, 0.30, 0.15];

In SET.bctype=2 the boundary conditions have been programmed for this case study and hold even
for different size of design domain. With SET.solidvoid=1 there are no voids of solids imposed on the
solution.

3.3 Case study n.3

The case study n.3 is the classic half-wheel beam, a famous example from Mitchell optimal solution for
trusses. The problem statement is presented in figure 3.15.

The solution in figure 3.16 is taken from the article of Xie [11] and is obtained with a stiffness
optimization of a 100 by 60 elements design domain, with a target volume of 60% , an evolution ratio er

of 0.02 and rmin equal to 0.6.
The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.17

ELEM.nx = 100; ELEM.ny = 60;

SET.bctype=4;

SET.solidvoid=1;

SET.covertype=1;

ESO.volfrac=[0.60, 0.30, 0.15];
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Figure 3.6: Case study n.1 - problem statement

Figure 3.7: Case study n.1 - solution by Xie [11] with ESO stiffness optimization

Figure 3.8: Case study n.1 - solution by Xie [10] with multi-material ESO stiffness optimization with
materials equally resistant in compression and tension but with different stiffness

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.9: Case study n.1 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.10: Case study n.1 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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Figure 3.11: Case study n.2 - problem statement

Figure 3.12: Case study n.2 - solution by Xie [11] with ESO stiffness optimization

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.13: Case study n.2 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.14: Case study n.2 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover



54 CHAPTER 3. RESULTS

Solution in figure 3.18

ELEM.nx = 100; ELEM.ny = 60;

SET.bctype=4;

SET.solidvoid=1;

SET.covertype=7;

SET.coverthick=2;

ESO.volfrac=[0.60, 0.30, 0.15];

In SET.bctype=4 the boundary conditions have been programmed for this case study and hold even
for different size of design domain. With SET.solidvoid=1 there are no voids of solids imposed on the
solution.

3.4 Case study n.4

The case study n.4 is taken from the paper of Sigmund [7] and is a cantilever beam loaded in the lower
left corner. The problem statement is presented in figure 3.19.

The solution in figure 3.20 is taken from the article of Sigmund [7] and is obtained with a stiffness
optimization of a 30 by 20 elements design domain, with a target volume of 40% and rmin equal to 1.2.

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.21

ELEM.nx = 90; ELEM.ny = 60;

SET.bctype=5;

SET.solidvoid=1;

SET.covertype=1;

ESO.volfrac=[0.50, 0.25, 0.15];

Solution in figure 3.22

ELEM.nx = 90; ELEM.ny = 60;

SET.bctype=5;

SET.solidvoid=1;

SET.covertype=8;

SET.coverthick=2;

ESO.volfrac=[0.50, 0.25, 0.15];

In SET.bctype=5 the boundary conditions have been programmed for this case study and hold even
for different size of design domain. With SET.solidvoid=1 there are no voids of solids imposed on the
solution.

3.5 Case study n.5

The case study n.5 is taken from the paper of Sigmund [7] and is a cantilever beam loaded in the lower
left corner with a fixed hole (e.g. a hole for a pipe). The problem statement is presented in figure 3.23.

The hole is defined as a circle with radius ELEM.ny
3 and center

(
ELEM.nx

3 , ELEM.ny
2

)
.

The solution in figure 3.24 is taken from the article of Sigmund [7] and is obtained with a stiffness
optimization of a 45 by 30 elements design domain, with a target volume of 50% and rmin equal to 1.5.

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.25

ELEM.nx = 90; ELEM.ny = 60;

SET.bctype=5;

SET.solidvoid=2;

SET.covertype=1;

ESO.volfrac=[0.50, 0.25, 0.15];



3.5. CASE STUDY N.5 55

Figure 3.15: Case study n.3 - problem statement

Figure 3.16: Case study n.3 - solution by Xie [11] with ESO stiffness optimization

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.17: Case study n.3 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.18: Case study n.3 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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Figure 3.19: Case study n.4 - problem statement

Figure 3.20: Case study n.4 - solution by Sigmund [7] with SIMP stiffness optimization

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.21: Case study n.4 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.22: Case study n.4 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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Solution in figure 3.26

ELEM.nx = 90; ELEM.ny = 60;

SET.bctype=5;

SET.solidvoid=2;

SET.covertype=8;

SET.coverthick=2;

ESO.volfrac=[0.50, 0.25, 0.15];

In SET.bctype=5 the boundary conditions have been programmed for this case study and hold even
for different size of design domain.

With SET.solidvoid=2 it is imposed a circular hole with chosen parameters for center and radius as

in the original case study with radius ELEM.ny
3 and center

(
ELEM.nx

3 , ELEM.ny
2

)
.

The hole is imposed with the following code:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%sqrt((jj - center_y)^2+(ii- center_x)^2) < radius

if sqrt((jj-ELEM.ny/2)^2+(ii-ELEM.nx/3)^2) < ELEM.ny/3

ESO.passive(jj,ii) = 1;

end

end

end

3.6 Case study n.6

The case study n.6 is the classic cantilever beam similar to the one in case study n.2 but more slender.
The problem statement is presented in figure 3.27.

The solution in figure 3.28 is taken from the article of Xie [18] and is obtained with a stiffness
optimization of a 160 by 40 elements design domain, with a target volume of 50% , an evolution ratio er

of 0.02 and rmin equal to 3.
The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.29

ELEM.nx = 160; ELEM.ny = 40;

SET.bctype=2;

SET.solidvoid=1;

SET.covertype=1;

ESO.volfrac=[0.70, 0.40, 0.25];

Solution in figure 3.30

ELEM.nx = 160; ELEM.ny = 40;

SET.bctype=2;

SET.solidvoid=1;

SET.covertype=8;

SET.coverthick=2;

ESO.volfrac=[0.70, 0.40, 0.25];

In SET.bctype=2 the boundary conditions have been programmed for this case study and hold even
for different size of design domain. With SET.solidvoid=1 there are no voids of solids imposed on the
solution.
In the solution 3.30(b) it has been used SET.coverthick=1 instead of SET.coverthick=2 because due
to the small resolution of 160x40 elements and the small thickness of the tensile member in the upper
right corner. With this resolution, a bigger concrete cover thickness enforcement could cause the loss of
the steel member in the tensile zone.
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Figure 3.23: Case study n.5 - problem statement

Figure 3.24: Case study n.5 - solution by Sigmund [7] with SIMP stiffness optimization

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.25: Case study n.5 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.26: Case study n.5 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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Figure 3.27: Case study n.6 - problem statement

Figure 3.28: Case study n.6 - solution by Xie [18] with ESO stiffness optimization

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.29: Case study n.6 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.30: Case study n.6 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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3.7 Case study n.7

The case study n.7 is a deep beam with an upper force applied in middle-top part. The problem statement
is presented in figure 3.31.

The solutions in figure 3.32 are taken from the article of Xie [17] and are obtained with one of first ESO
optimization algorithm (which did not yet use sensitivity numbers but performed element removal based
on stress ranking and a set rejection ratio) respectively with a tension criterion defined as σe = σ1 + σ2
and a compression criterion σe = −σ1 − σ2. ESO parameters were not specified in the paper.

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.33

ELEM.nx = 80; ELEM.ny = 80;

SET.bctype=6;

SET.solidvoid=1;

SET.covertype=1;

ESO.volfrac=[0.50, 0.25, 0.10];

Solution in figure 3.34

ELEM.nx = 80; ELEM.ny = 80;

SET.bctype=6;

SET.solidvoid=1;

SET.covertype=6;

SET.coverthick=2;

ESO.volfrac=[0.50, 0.25, 0.10];

In SET.bctype=6 the boundary conditions have been programmed for this case study and hold even
for different size of design domain. With SET.solidvoid=1 there are no voids of solids imposed on the
solution.

3.8 Case study n.8

The case study n.8 is a deep beam with a downward force applied in middle. The problem statement is
presented in figure 3.35.

The solutions in figure 3.36 are taken from the article of Xie [19] and are obtained respectively
with ESO stiffness optimization performed with linear elastic FEA, and ESO for elastic-plastic strain
energy optimization performed with material nonlinear (Drucker-Prager model) FEA. The number of
finite elements used for the discretization of the design domain had not been specified in the paper. ESO
parameters were chosen as follows: target volume of 20% , evolution ratio er of 0.02 and rmin equal to
1.

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.37

ELEM.nx = 80; ELEM.ny = 80;

SET.bctype=7;

SET.solidvoid=1;

SET.covertype=1;

ESO.volfrac=[0.50, 0.25, 0.10];

Solution in figure 3.38

ELEM.nx = 80; ELEM.ny = 80;

SET.bctype=7;

SET.solidvoid=1;

SET.covertype=6;

SET.coverthick=2;

ESO.volfrac=[0.50, 0.25, 0.10];



3.8. CASE STUDY N.8 61

Figure 3.31: Case study n.7 - problem statement

Figure 3.32: Case study n.7 - solution by Xie [17] with first generation ESO optimization with tensile
and compressive criteria

(a) maintaining ext. geometry (b) optimizing ext. geometry

Figure 3.33: Case study n.7 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining ext. geometry (b) optimizing ext. geometry

Figure 3.34: Case study n.7 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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In SET.bctype=7 the boundary conditions have been programmed for this case study and hold even
for different size of design domain. With SET.solidvoid=1 there are no voids of solids imposed on the
solution.

3.9 Case study n.9

The case study n.9 is a deep beam with two web square openings and symmetric loading. The problem
statement is presented in figure 3.39.

The solution in figure 3.40 is taken from the article of Xie and Liang [20] and is derived with a
performance based ESO optimization using a displacement constraint. Sensitivity numbers are defined
to evaluate the influence of element removal to the change in the constrained displacement. It is neither
a stress or stiffness-based optimization, but a method specially defined by Liang to generate strut and
tie models in reinforced concrete. The number of finite elements used for the discretization of the design
domain was 49 by 30. ESO parameter of evolution ratio used er was 0.01. The optimized result shown
in the picture was the one with the highest performance index with respect to final volume and set
displacement constraint. The same case study is as also present in the book of Liang [4].

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.41

ELEM.nx = 98; ELEM.ny = 60;

SET.bctype=8;

SET.solidvoid=6;

SET.covertype=1;

ESO.volfrac=[0.70, 0.35, 0.20];

Solution in figure 3.42

ELEM.nx = 98; ELEM.ny = 60;

SET.bctype=8;

SET.solidvoid=6;

SET.covertype=7;

SET.coverthick=2;

ESO.volfrac=[0.70, 0.35, 0.15];

In SET.bctype=8 the boundary conditions have been programmed for this case study and hold only
for size of design domain of 98 by 60. With SET.solidvoid=6 there are two square holes dimensioned
and positioned for a design domain of 98 by 60.

3.10 Case study n.10

The case study n.10 is a deep beam with one web square opening and asymmetric loading. The problem
statement is presented in figure 3.43. The beam is simply supported. In the computation the boundary
conditions have been modeled with a roller on the right and a hinge on the left.

The solution in figure 3.44 is taken from the article of Xie and Liang [20] and is derived with a
performance based ESO optimization using a displacement constraint. Sensitivity numbers are defined
to evaluate the influence of element removal to the change in the constrained displacement. It is neither
a stress or stiffness-based optimization, but a method specially defined by Liang to generate strut and
tie models in reinforced concrete. The number of finite elements used for the discretization of the design
domain was 75 by 47. ESO parameter of evolution ratio used er was 0.01. The optimized result shown
in the picture was the one with the highest performance index with respect to final volume and set
displacement constraint. The same case study is as also present in the book of Liang [4].

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.45
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Figure 3.35: Case study n.8 - problem statement

Figure 3.36: Case study n.8 - solution by Xie [19] with ESO stiffness / strain energy optimization with
linear and material nonlinear (Drucker-Prager) FEA

(a) maintaining ext. geometry (b) optimizing ext. geometry

Figure 3.37: Case study n.8 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining ext. geometry (b) optimizing ext. geometry

Figure 3.38: Case study n.8 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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Figure 3.39: Case study n.9 - problem statement

Figure 3.40: Case study n.9 - solution by Xie and Liang [20] with performance based ESO with displace-
ment constraint and resulting strut and tie model

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.41: Case study n.9 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.42: Case study n.9 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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ELEM.nx = 150; ELEM.ny = 94;

SET.bctype=9;

SET.solidvoid=7;

SET.covertype=1;

ESO.volfrac=[0.60, 0.25, 0.10];

Solution in figure 3.46

ELEM.nx = 150; ELEM.ny = 94;

SET.bctype=9;

SET.solidvoid=7;

SET.covertype=7;

SET.coverthick=2;

ESO.volfrac=[0.60, 0.25, 0.10];

A second set of solutions developed with the MATLAB code of this thesis for this case study used
instead the following settings:

Solution in figure 3.49

ELEM.nx = 150; ELEM.ny = 94;

SET.bctype=9;

SET.solidvoid=7;

SET.covertype=1;

ESO.volfrac=[0.76, 0.40, 0.20];

Solution in figure 3.50

ELEM.nx = 150; ELEM.ny = 94;

SET.bctype=9;

SET.solidvoid=7;

SET.covertype=7;

SET.coverthick=1;

ESO.volfrac=[0.76, 0.40, 0.20];

In SET.bctype=9 the boundary conditions have been programmed for this case study and hold only
for size of design domain of 150 by 94. With SET.solidvoid=7 there are two square holes dimensioned
and positioned exactly for a design domain of 150 by 94 to resemble the example from literature taken
from the article of Xie and Liang [20].

3.11 Case study n.11

The case study n.11 is a loaded corbel jointed to a column. The problem statement is presented in figure
3.51. The boundary conditions in the model has been applied to five points in top part of colum and five
points on bottom part, restraining both x and y directions.

The solution in figure 3.52 is taken from the article of Xie and Liang [20] and is derived with a
performance based ESO optimization using a displacement constraint. Sensitivity numbers are defined
to evaluate the influence of element removal to the change in the constrained displacement. It is neither
a stress or stiffness-based optimization, but a method specially defined by Liang to generate strut and
tie models in reinforced concrete. The number of finite elements used for the discretization of the design
domain was 44 by 108. ESO parameter of evolution ratio used er was 0.01. The optimized result shown
in the picture was the one with the highest performance index with respect to final volume and set
displacement constraint. The same case study is as also present in the book of Liang [4].

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.53
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Figure 3.43: Case study n.10 - problem statement

Figure 3.44: Case study n.10 - solution by Xie and Liang [20] with performance based ESO with dis-
placement constraint and resulting strut and tie model

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.45: Case study n.10 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover (volume fraction of first ESO loop smaller than 0.75)

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.46: Case study n.10 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover (volume fraction of first ESO loop smaller than 0.75)



3.11. CASE STUDY N.11 67

Figure 3.47: Case study n.10 - problem statement

Figure 3.48: Case study n.10 - solution by Xie and Liang [20] with performance based ESO with dis-
placement constraint and resulting strut and tie model

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.49: Case study n.10 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover (volume fraction of first ESO loop bigger than 0.75)

(a) maintaining external geometry (b) optimizing external geometry

Figure 3.50: Case study n.10 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover (volume fraction of first ESO loop bigger than 0.75)
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ELEM.nx = 88; ELEM.ny = 216;

SET.bctype=10;

SET.solidvoid=8;

SET.covertype=1;

ESO.volfrac=[0.50, 0.35, 0.15];

Solution in figure 3.54

ELEM.nx = 88; ELEM.ny = 216;

SET.bctype=10;

SET.solidvoid=8;

SET.covertype=6;

SET.coverthick=2;

ESO.volfrac=[0.50, 0.35, 0.15];

In SET.bctype=10 the boundary conditions have been programmed for this case study and hold
only for size of design domain of 88 by 216. With SET.solidvoid=8 there are two rectangular holes
dimensioned and positioned for a design domain of 88 by 216, to remove material from domain in top
and bottom of the corbel.

3.12 Case study n.12

The case study n.12 is a corbel with a ledge support. The problem statement is presented in figure 3.55.
The boundary conditions in the model has been applied to five points in top part of colum, restraining
both x and y directions.

The solution in figure 3.56 is taken from the book of Liang [4] and is derived with a performance
based ESO optimization using a displacement constraint. Sensitivity numbers are defined to evaluate
the influence of element removal to the change in the constrained displacement. It is neither a stress or
stiffness-based optimization, but a method specially defined by Liang to generate strut and tie models
in reinforced concrete. The number of finite elements used for the discretization of the design domain
was 44 by 44. ESO parameter of evolution ratio used er was 0.01. The optimized result shown in the
picture was the one with the highest performance index with respect to final volume and set displacement
constraint.

The solutions derived using the MATLAB code presented in this thesis used the following settings:

Solution in figure 3.57

ELEM.nx = 88; ELEM.ny = 88;

SET.bctype=11;

SET.solidvoid=9;

SET.covertype=1;

ESO.volfrac=[0.45, 0.30, 0.15];

Solution in figure 3.58

ELEM.nx = 88; ELEM.ny = 88;

SET.bctype=11;

SET.solidvoid=9;

SET.covertype=6;

SET.coverthick=2;

ESO.volfrac=[0.45, 0.30, 0.15];

In SET.bctype=11 the boundary conditions have been programmed for this case study and hold only
for size of design domain of 88 by 88. With SET.solidvoid=9 there are two square holes dimensioned
and positioned for a design domain of 88 by 88.
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Figure 3.51: Case study n.11 - problem statement

Figure 3.52: Case study n.11 - solution by Xie and Liang [20] with performance based ESO with dis-
placement constraint and resulting strut and tie model
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(a) maintaining external ge-
ometry

(b) optimizing external ge-
ometry

Figure 3.53: Case study n.11 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining external ge-
ometry

(b) optimizing external ge-
ometry

Figure 3.54: Case study n.11 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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Figure 3.55: Case study n.12 - problem statement

Figure 3.56: Case study n.12 - solution by Liang [4] with performance based ESO with displacement
constraint and resulting strut and tie model

(a) maintaining ext. geometry (b) optimizing ext. geometry

Figure 3.57: Case study n.12 - solution derived by the code developed in this thesis for reinforced concrete
- no concrete cover

(a) maintaining ext. geometry (b) optimizing ext. geometry

Figure 3.58: Case study n.12 - solution derived by the code developed in this thesis for reinforced concrete
- with concrete cover
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Chapter 4

Discussion

4.1 Discussion about chosen procedure

4.1.1 Choice of the structure of optimization algorithm

The peculiarities of the ESO applied to reinforced concrete include the following factors:

1. multiple materials are optimized

2. every material needs to be optimized with different criteria (steel reinforcement in tensile zones)

3. minimal sizes of members are different for each material (steel members can be much slender than
concrete ones)

In literature, it is possible to find both multi-material optimization with same criteria in a single ESO
loop [10] and single material multi-criteria optimization at once [13],[14], [15]. However, none of previous
methods can be directly applied to reinforced concrete, since the methods found in literature respond to
only one of above factors at a time. Therefore, it is needed to create a new variation of ESO procedure
that could take into account all three factors simultaneously. This implies that the new ESO procedure
has the following requirements:

1. more than one bi-phase material, and thus multiple matrices for densities xi and sensitivities αi,
are needed

2. different sensitivity numbers definitions for αi are required for each optimization criteria

3. different radiuses of sensitivity filter rmin are required for each material

One of most logic solutions is thus to have multiple optimization loops in series whereas in each loop
there is a distinct bi-phase material, sensitivity number definition and radius of sensitivity filter. Other
solutions may as well exist, however the choice of multiple ESO loops executed in series appears to be
the most clear and intuitive.

4.1.2 Smooth change of sensitivity numbers

The choice of performing several optimization loops in series with different criteria, which has not been
found by the author in the literature of ESO research, leads to a problem in convergence of the solution
during the switch of optimality criteria.

During tests is has been noted that abruptly changing optimality criteria when a new ESO loop
starts, the solution found in previous iteration can be lost, since many elements can be switched from
one material to the other in the few first iterations with the new criteria, which may bring instabilities
in the solution and sometimes even make it non-convergent.

It is in fact clear from previous researches that high number of elements change during an iteration
could cause aforementioned problems. That is the reason why evolution ratio of volume is set generally
low, between 1% and 5%. On the other hand, it is also noted that each element change during an

73
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iteration influence the solution of next iteration, thus some mistaken additions/removals could lead the
final solution to converge to a non optimal shape or not to converge at all.

Therefore, the concept of smoothing out the transition between two optimality criteria sounds quite
logic and natural to try best to preserve the convergence of the solution.

It is found that a reasonable number of iterations for transition from one criteria to another is between
20 and 30. In case the number of iterations would be bigger that 30, the optimization loop could end
before the final transition of optimality criteria is completed (since the second and third optimization
loops of this thesis’ code usually require between 30 and 70 iterations each to converge). The number
of iterations for the transition in all case studies SET.translenght has been set to 20, to ensure that
the transition to one criteria to another is carried on completely before convergence and as smoothly as
possible.

4.1.3 Use of mask and y density matrices

Together with the matrix x{i} of the material densities, there are used two more parameters, y{i} and
mask{i}, where i is the ESO cycle number.

In the matrix y{i} it is stored the density matrix from x{j}, where j = 1, ..., n.cycles, which describes
the distribution between concrete and void for the solution.

In the matrix mask{i} it is stored the density matrix from x{j}, where j = 1, ..., n.cycles, which
contains the distribution between steel and concrete of previous ESO cycle, for influencing the results of
current ESO cycle with previous ones.
Below here it is explained how they are used in the code.

Use of y matrix on stiffness

The ESO procedure does not eliminate completely the void elements from the mesh. In the first op-
timization loop the code simply sets its material properties, e.g. stiffness and Poisson’s ratio to zero,
since the bi-phase material of the first loop optimization considers void as one of the phases. In the next
optimization loops the bi-phase material consider two non-void materials, therefore the void elements are
calculated with the stiffness of the second phase of the bi-phase material (thus not zero) but penalized
multiplying by the values contained in the matrix y which are 0.001 where void elements are located.

Use of y matrix on sensitivity

On the side of sensitivity numbers, the void elements calculated in the first ESO loop have density
xij = 0.001 which diminishes the value of sensitivity considerably but not sets it to zero. This particular
choice of not setting the sensitivity to zero, called soft-kill BESO, is discussed in the book of Xie [3] and
has several advantages like the easier addition of previously removed material. Due to the non-zero value
of sensitivity number of void elements, it may happen that void material elements could be converted to
steel and thus a steel structure could be created outside of concrete, which is not desired in the case of
reinforced concrete whereas the steel has to always remain inside the concrete. Therefore, it is enforced
the boundary between concrete and void stored in the matrix y setting the sensitivity of void elements
low as the minimum value of sensitivity. In the cases when it is used a concrete cover calculated in the
function COVER (that is for SET.covertype>=4) the boundary between concrete and void is set inside
the vector ESO.cover and enforced later in the ESOscript.

if SET.covertype>=4 %compute automatic cover for cases SET.covertype>=4

[ESO.cover]=COVER(ELEM,SET,y,cycle);

else %outside y a no-material zone is enforced,

%for SET.covertype>=4 it is done already in ESO.cover by COVER function

ESO.alpha(y{cycle}~=1)=min(min(ESO.alpha));

end

In case of SET.covertype>=4, the boundary between concrete and void is applied with:

ESO.alpha(ESO.cover==1) = min(min(ESO.alpha));
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Use of y matrix on representation

The values of y matrix are used to determine distribution between reinforced concrete and void in the
solution, while the values of density matrix x define the distribution inside the reinforced concrete between
concrete and steel. This is clearly shown in the print function from the file ESOscript.m reported here
below:

colormap(gray); imagesc(-y{cycle}); hold on; fingeom=imagesc(-x{cycle}); hold off;

alpha(fingeom,.6); axis equal; axis tight; axis off;pause(1e-6);

whereas with imagesc(-y{cycle}) the void elements are colored in white and the reinforced concrete
elements are colored (temporarily) in black, while with fingeom=imagesc(-x{cycle}) and alpha(fingeom,.6)

the concrete materials are colored with 60% opaque black, that results grey, and steel materials are left
black.

(a) RC solution - end 1st loop (b) RC solution - end 2nd loop (c) RC solution - end 3st loop

(d) x matrix - end 1st loop (e) x matrix - end 2nd loop (f) x matrix - end 3st loop

(g) y matrix - end 1st loop (h) y matrix - end 2nd loop (i) y matrix - end 3st loop

Figure 4.1: Case study n.5 - solutions and matrices x, y for each ESO loop

Use of mask matrix on sensitivity

The mask matrix is used to take into account of optimization history in the calculation of final solution.
This means that the solution of ESO cycle n will be influenced by the solution of ESO cycle n-1 and so
on. In fact, it is set:

update_mask=@(x0,x) {x0, x{1}, x{2} };

...

mask=update_mask(x0,x);

This influence is exerted by multiplying the sensitivity numbers by maskpenalmask. The values of
mask are 1 where in previous cycle there was the first phase material and 0.001 where there was the
second phase material. Therefore, the elements that in previous iteration where turned from steel into
concrete are penalized in their sensitivities to make them more likely to remain concrete, in other words
not to let steel outside steel-concrete boundaries of previous iteration.
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(a) x matrix - end 1st loop (b) x matrix - end 2nd loop (c) x matrix - end 3st loop

(d) mask matrix - end 1st loop (e) mask matrix - end 2nd loop (f) mask matrix - end 3st loop

Figure 4.2: Case study n.5 - matrices x, mask for each ESO loop

In the thesis the exponent penalmask has been chosen as 2, equal as the penalty exponent for x, that
is (penal − 1) = 3 − 1 = 2. This exponent could be as well modified by the user manually changing in
ESOscript the parameter ESO.penalmask with the desired amount. Setting a new exponent between 0
and 2, the penalization effect of the mask can be softened, whereas with exponent equal to 0 the effect
of the mask would not be effective at all.

The solutions calculated with the aid of the mask usually perform more stably and tend to preserve
small steel members which would otherwise be removed. Therefore, the use of the mask in most cases is
advisable. However, much attention has to be taken if some needed tensile members are removed during
first iterations due to their too small thickness. In case of the mask is applied in computation, this
means that such lost members cannot be restored for the steel material, even in case the concrete design
boundary is not modified. That is because during the optimization process the optimized geometry of the
mask would have lost that member and carry this information to influence next ESO loops. Such issue
is encountered in one of the case studies of this thesis and further discussed in the section “Discussion
about solutions for case studies”.

With the implementation of themask it is also possible to steer the solution of the optimization process
with other user defined matrices, for example taken from engineering practice or literature case studies.
It is just needed to create, modify or define through an algorithm a matrix of the same size of the mesh
and insert it in the preferred position in the array of masks: update_mask=@(x0,x){x0, x{1}, x{2}};

according to which cycle it is wished to influence.

4.1.4 Order of materials in optimization loops

In the first ESO loop, logically, it should be needed to define the distribution of two materials - concrete
and void. Consequentially steel would be added in the second and successive ESO loops, to define
distribution of material between steel and concrete. However, such procedure determines instabilities in
the solution of the optimization problem due to the fact that in the second loop it is introduced a more
rigid material in the mix (bigger E modulus). This complies with the choice in the article of Xie [10] to
rank materials by stiffness and start optimization from the stiffest one.

Therefore, the working solution is to use steel and void in the first ESO loop and in the second loop
introduce the concrete. This means that the steel is substituted in second loop with concrete in the
parts where it is not needed to have high strength at first (with Von Mises criterion) and secondly (with
transition) where not needed to have tensile strength (with Drucker-Prager criterion). During third ESO
loop, the steel continues to be substituted with concrete where it is not needed to have tensile strength
(with Drucker-Prager criterion) and slowly transitioning in all other compression zones (with tensile stress
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criterion).

4.1.5 Different materials in finite element analysis

In the code used in the thesis, the multiple materials in the finite element analysis are computed with
their elastic modulus and Poisson’s ratio as distinct materials. Therefore, the stresses are “continuous”
in the change of materials while the strains are not. This means that the two materials in each bi-phase
material does not fully work in a composite way. In analogy to a standard reinforced concrete FEM
analysis, this corresponds to the case when the steel and concrete are “allowed” to slip between each
other. This is just the result of the choice to compute concrete and steel with different stiffnesses in the
finite element analysis and has to be kept in mind when analyzing the solutions.

4.1.6 Choice of sensitivity numbers formulations

In ESO literature, Von Mises and tensile stress optimizations [17] have been addressed with first generation
ESO only (replaced by BESO method in 2007), which performed only element removal based on a rejection
ratio and not employing sensitivity numbers at all. On another side, a Drucker-Prager type optimization
can be found in more recent ESO literature [19], addressed with current BESO method, but derived
through nonlinear FEA optimization using sensitivity numbers related to elastic and plastic energy. It
is therefore found by the author that currently in ESO literature there are no “standard” formulas for
sensitivity numbers for linear FEA optimization for Von Mises, Drucker-Prager and tensile stress BESO
optimization.

In the current thesis, sensitivity numbers for stress-based optimization (for linear FEA and Bi-
directional ESO) have been chosen in an heuristic way, as described here below. It has been chosen
to have a multiplicator of xp−1ij inside all sensitivity numbers, in a similar way as it is in the sensitivity
number for stiffness optimization.

Regarding Von Mises optimization, it has been chosen to have alpha to be proportional to the Von Mises
stress σvm =

√
3J2 and therefore the following definition for alpha has been used (formula 2.24):

αi =
√
J2 x

p−1
i

Regarding Drucker-Prager optimization, a definition of a Drucker-Prager stress does not exist, therefore,
it has been chosen to use instead the formula of the yield criterion in the following way for alpha (formula
2.27):

αi = (ℵI1 +
√
J2) xp−1i

This formulation is very convenient since, in case of a material equally resistant in tension and in compres-
sion, the parameter ℵ turns to be equal to zero and therefore the sensitivity number for Drucker-Prager
optimization becomes the sensitivity number for Von Mises optimization. The definitions of the sensitiv-
ities for the two criteria are then strongly related.

Regarding tensile stress optimization, it has been chosen to have alpha proportional to the sum of the
principal stresses σi,11 + σi,22 (similarly as for first generation ESO method in the paper [17]), which
results in the following definition for alpha (formula 2.28):

αi =
(
σ1,i + σ2,i +

∣∣min(σ1)
∣∣+
∣∣min(σ2)

∣∣ ) xp−1i

It has been chosen to “shift” all values of the principal stresses (summing |min(σi,11)| and |min(σi,22)|), so
that first phase material elements with σ11 6= 0, σ22 6= 0: σ11 +σ22 ' 0 wouldn’t have sensitivity numbers
similar to second phase material elements with σ11 6= 0, σ22 6= 0: (σ11+σ22)xp−1 = (σ11+σ22)0.001p−1 '
0. If there wouldn’t be a “shift” of |min(σi,11)|+ |min(σi,22)| in the definition of α, both cases described
above would have α = 0. This could cause mistaken element removals and/or recovers. So, thanks to
the “shift” in the modified definition of alpha, the elements with α ' 0 are all and only the elements of
second phase material. And a correct definition of alpha should indeed be able to separate through the
values of alpha the “penalized” second phase material elements from the others of the first phase. The
formula 2.28 is able to do that and has shown to perform well along all case studies in the thesis.
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4.2 Discussion about solutions for case studies

4.2.1 Target volume of reinfocred concrete

Regulating the target volume of reinforced concrete (that is changing the parameter ESO.volfrac for the
first ESO loop), it is possible to influence the number and size of holes in the structure. It is observed
that setting a target volume lower than 90%-85%, holes start to be created inside the structure. When
the target volume is set approximately lower than 55%-50%, the resulting optimized structure starts
resembling a lattice structure comprised by tensile and compressive members. In case the target volume
is set too low, relevant but thin members are eventually removed and the structure turns to a highly
stressed non-optimal solution.

The effect of various reinforced concrete target volumes is shown in figure 4.4 for case study n.1, solved
with concrete cover and with the following target volumes for first ESO loop: 95%, 90%, 80%, 70%, 55%,
35%. Together with the target volume of the reinforced concrete (ESO.volfrac for first ESO loop), also
the intermediate and final target volume of steel (ESO.volfrac for second and third ESO loop) have been
changed to maintain a similar proportion as in solution of case study n.1 from chapter 3. All values of
ESO.volfrac are reported under each corresponding image. In figures 4.4(e) and 4.4(f), the structure
becomes respectively a lowly and highly sub-optimal solution, considering the actual slenderness of the
beam, with respect to the solution of 4.4(d).

For non-slender structures (that is when 0.3 ÷ 0.5 < height/lenght < 2 ÷ 3) it is usually possible to
have a smaller target volume than for slender structures. In fact, slender structures tend to have a higher
number of members than non-slender ones and therefore need to have a proportionally higher volume
requirement to preserve the optimum solution.

In this context, it is useful to remember that the minimum size of members is related to ESO.rmin, the
radius used in the filtering of sensitivities. When rmin is increased then also the minimum “allowed” size
of members is increased. The members with thickness smaller that the resulting minimum are “penalized”
in the sensitivity numbers of their elements and therefore removed from the design.

To get an optimal solution in terms of both structural efficiency and manufacturability it is needed
therefore to choose a target volume and a rmin for the first ESO loop not too small, in order to avoid
small-volume-non-optimal solutions and to keep the resulting members thick enough to avoid problems
of concrete cover and instability. Moreover, in some cases it is preferable to use an even higher target
volume than required, so to limit the number of holes in the structure and mantain a simple and cost-
effective geometry. In the solution of case studies in the thesis it has been used for the first ESO loop
the parameters: rmin = 8 and target volume = 0.50÷ 0.60÷ 0.70.

4.2.2 Target volume of steel

In general, it is observed that it is needed to set a relatively high target volume of steel in the algorithm,
i.e. 10%, 15%, 20% (instead of around 1% what usually employed in reality) to show solutions of interests.
In fact, it has been noted that if the ESO procedure for steel is taken to target volumes smaller than
10%, the solution is comprised by only a member in the highest tensile zone while the steel members on
the secondary tensile zones vanish. In this case the solution becomes trivial and fails to address the more
complete solution.

An example of this effect is shown on the case study n.1 in figure 4.6. In such study, it has been kept
a fixed target volume of 0.70 for first ESO loop and of 0.35 for second loop. The target volume of third
ESO loop has been varied choosing between the following values: 0.20 - 0.15 - 0.10 - 0.05. As it is possible
to see in the pictures in figure 4.6, after the target steel volume of 0.20, the solution start to become
trivial, losing steel members in tensile zones where needed. In fact, in the solution 4.6(b), corresponding
to target volume of 0.15, the upper part of a vertical tensile member is lost, while in pictures 4.6(c) and
4.6(d) the solution excludes completely all vertical tensile members.

To choose the smallest yet still useful target volume for steel, the author advices to set a small target
volume, e.g. 0.10, and observe the evolution of the steel distribution on the plotted image on screen and
the relative value of volume, printed in the MATLAB command window while the script execution is still
on. Then, with engineering judgement, it is needed to choose a target volume corresponding to one of
last non-trivial solutions (before relevant members are removed) and re-run the script with the adjusted
target volume.
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Figure 4.3: Case study n.1 - problem statement

X

(a) ESO.volfrac=[0.95 0.40 0.25]

X

(b) ESO.volfrac=[0.90 0.40 0.25]

X

(c) ESO.volfrac=[0.80 0.40 0.25]

X

(d) ESO.volfrac=[0.70 0.35 0.20]

×

(e) ESO.volfrac=[0.55 0.30 0.15]

×

(f) ESO.volfrac=[0.35 0.20 0.10]

Figure 4.4: Solutions for case study n.1 with different reinforced concrete target volumes, with concrete
cover
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Figure 4.5: Case study n.1 - problem statement

X

(a) steel target volume = 0.20

×

(b) steel target volume = 0.15

×

(c) steel target volume = 0.10

×

(d) steel target volume = 0.05

Figure 4.6: Solutions for case study n.1 with different steel target volumes, with concrete cover

It has been observed that, depending on the case study, the lowest useful values for target volume of
steel for the current optimization code are usually ranging in the interval 15-20%. This results in bulky
but lowly stressed zones of steel, that could not be used as reference in practice directly but need to be
interpreted to create the resulting reinforcement layouts. It is then more appropriate to refer to the black
zones in the solutions from the ESO procedure, not as steel but as zones where steel reinforcement is
desired, and provide a successive interpretation making use of principal stress plots.

4.2.3 Target volume of steel in intermediate ESO loop

Target volumes for first and third ESO loop have been addressed in previous sections, respectively in
4.2.1 and 4.2.2. Regarding target volume of second ESO loop, the following recommendations have been
formulated after experiments during the solutions of the thesis case studies.

Since in the second loop there is the transition from Von Mises to Drucker-Prager optimization criteria,
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the resulting steel area will be both in tensile and compressive zones, with members of higher thickness
in tensile zones. Therefore, the presence of compressive members (to be removed in third ESO loop) are
to be accounted for in the target volume of second ESO loop too. It is required then to choose a target
volume not too close to one of the third ESO loop. In the examples of the thesis, it has been used the
following range:

ESO.volfrac (2) ≈ 1.5÷ 2 ESO.volfrac (3)

On the other hand, in the second ESO loop it is desirable to reduce the thickness of the members in
compressive zones as much as possible to ease their removal in the third ESO loop. Therefore, the target
volume for the second loop should be as small as possible but should still be able to retain the structural
scheme obtained in the first ESO loop. During the solution of case studies in the thesis, it has been used
the following range:

ESO.volfrac (2) ≈ 0.5÷ 0.7 ESO.volfrac (1)

4.2.4 Effect of stress concentrations

It has been noted that steel members that have ends on edges of internal holes are more stable and
“resistant” to removal (meaning that useful thin members remain even at small target volumes). This
effects of “resistance” to removal of steel members anchored to holes, seems related to the presence of
stress concentration around openings, which makes the tensile elements positioned right on the edge of
the hole harder to eliminate with tensile stress criterion.

When the steel members not “anchored” to holes, at a certain point in the ESO loop, “retract” and
get shorter than engineering judgement would suggest. This effect is specially displayed in solutions
where concrete boundary is kept rectangular, i.e. not optimized, where the vertical steel members seem
shorter and/or less in number and/or removed, with respect to the solutions with the optimized concrete
boundary. This can be clearly seen in the examples of case studies n.2, 6, 12 reported in figure 4.7.

×

(a) Solution for case study n.2 - original external
geometry

VS

X

(b) Solution for case study n.2 - optimized exter-
nal geometry

×

(c) Solution for case study n.6 - original external
geometry

VS

X

(d) Solution for case study n.6 - optimized exter-
nal geometry

×

(e) Solution for case study n.1 - original external
geometry

VS X

(f) Solution for case study n.12 - optimized ex-
ternal geometry

Figure 4.7: Comparation of solutions for case studies with and without “anchoring” effect of steel to holes
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4.2.5 Effect of concrete cover

Solutions calculated with the concrete cover enforcement in most of the cases deliver a better solution,
since it removes steel from the design boundary and around holes in the geometry, therefore reducing
the bulkiness of the steel areas and therefore the better steel distribution for a given steel volume, with
respect to the solutions without concrete cover. This is specially shown in the examples in figure 4.8.

×

(a) Solution for case study n.1 - no concrete
cover

VS

X

(b) Solution for case study n.1 - with concrete
cover

×

(c) Solution for case study n.2 - no concrete
cover

VS

X

(d) Solution for case study n.2 - with concrete
cover

×

(e) Solution for case study n.9 - no concrete
cover

VS

X

(f) Solution for case study n.9 - with concrete
cover

Figure 4.8: Comparation of solutions for case studies with and without concrete cover

4.2.6 Effect of mask

The effect of mask on solutions is possible to see in the examples in figure 4.9, calculated for case study n.3
with and without mask. In the case calculated without mask it has been set ESO.penalmask=0, whereas
in the case calculated with mask the settings used were ESO.penalmask=2. Setting the penalty exponent
of the mask set to zero, it completely nullifies the effect of the mask because maskpenalmask = mask0 = 1.
Therefore, the sensitivity numbers are multiplied by 1 no matter what the values in the mask matrix.
For having a better understanding of the effect of the mask, without other influences, it has been set
SET.covertype=2, because such concrete cover has no effect over the zones affected by the mask. In
fact, concrete covers SET.covertype=4,5,6,7,8 would have brought an additional effect due to the
information of holes from previous ESO loops inside the ESO.cover matrix.
The images shown in figure 4.9 demonstrate that the application of the mask preserves the 45 degrees
direction of the left and right steel members to counter the shear stresses, while in the solution without
mask such members change angle to 90 degrees which results in a less efficient solution.
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×

(a) Solution for case study n.3 - without
mask, no concrete cover

VS

X

(b) Solution for case study n.3 - with mask,
no concrete cover

×

(c) Solution for case study n.3 - without
mask, concrete cover

VS

X

(d) Solution for case study n.3 - with mask,
concrete cover

Figure 4.9: Comparation of solutions for case studies with and without mask

There is an example in the case studies of the thesis, where the application of the mask results in
an inefficient solution. Such issue occurs in combination with the problem of removal of thin members
in ESO optimization. The latter problem has been demonstrated with a famous case study under the
name of the Zhou-Rozvany problem, depicted in figure 4.10 and found cited in many articles in literature.
In the article of Xie [11] a brief but well explanatory summary of the problem is presented. In such
problem it has been demonstrated that the optimal solution found by ESO algorithm could be only a
local optimum, far more inefficient than the real optimum.

In fact, the ESO solution for the Zhou-Rozvany problem would at first remove the tensile vertical
member because highly stressed. However, as result it would create a simple cantilever with much more
stressed elements. The general optimal solution would be to not remove any element from the tensile
vertical member but only in the horizontal beam.

Figure 4.10: An illustration of the Zhou-Rozvany problem

Similar type of non-optimal element removal is encountered in case study n.10 where the lower left
member close to the square hole is too small and is removed during first ESO loop thus generating
an inefficient local optimum solution, as shown in figure 4.11(a). Moreover, due to the application of
the mask in the calculation of the solution in figure 4.11(c), the thin member removal from the first
ESO loop, noticeable in figure 4.11(a), causes the impossibility to restore a tensile member in the lower
left part of the beam. This is because the information of the first ESO loop is stored inside the ma-
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trix mask and used to drive the solution of second ESO loop inside those boundaries. Therefore, the
wrong removal of a thin member during the first ESO loop combined with the application of mask for
the solution of the problem with original concrete boundaries, shown in figure 4.11(c), does not work well.

It is noted therefore that to apply the mask it is necessary to monitor intermediate solutions during
the ESO process, to make sure that potentially useful members are not removed, and this holds true
specially in the case when the original rectangular concrete boundary needs to be preserved.

For the case study n.10, by trial and error it has been found that for volume fractions of first ESO
loop bigger than 0.75 the lower left member is preserved while for values of volfrac smaller than 0.75
it is removed. The problem of work element removal + application of mask is resolved in figure4.11(d),
that is a case study calculated with first volfrac=0.76.

X

(a) Case study n.10, first loop target vol-
ume=0.60

VS

X

(b) Case study n.10, first loop target vol-
ume=0.76

×

(c) Case study n.10, first loop target vol-
ume=0.60

VS

X

(d) Case study n.10, first loop target vol-
ume=0.76

Figure 4.11: Comparation of solutions for case study n.10 with different first loop target volume - with
concrete cover

4.3 Evaluation and interpretation of solutions for case studies

In the following section, the solutions for all case studies with concrete cover are shown along with the
plots of the principal stresses. For each case study, three set of solutions are shown:

• original geometry, no reinforcement;

• original geometry with optimized reinforcement;

• optimized geometry and reinforcement.

An example interpretation of the solutions from the ESO procedure is given for finding resulting steel
layouts.
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4.3.1 Case study n.1

Case study n.1 - original geometry, no reinforcement

Figure 4.12: Case study n.1 - problem statement

Figure 4.13: Case study n.1 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.14: Case study n.1 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.15: Case study n.1 - plots of principal stress sigma 2
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Case study n.1 - original geometry with optimized reinforcement

Figure 4.16: Case study n.1 - problem statement

Figure 4.17: Case study n.1 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.18: Case study n.1 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.19: Case study n.1 - plots of principal stress sigma 2
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Case study n.1 - optimized geometry and reinforcement

Figure 4.20: Case study n.1 - problem statement

Figure 4.21: Case study n.1 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.22: Case study n.1 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.23: Case study n.1 - plots of principal stress sigma 2
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Case study n.1 - results interpretation

The case study n.1 corresponds to the standard benchmark test of the MBB beam, a beam simply
supported with a load in the middle. In the ESO code it is modelled only its half, and the final result is
mirrored.

Figure 4.24: Case study n.1 - final solution - original structure boundaries

Figure 4.25: Case study n.1 - final solution - optimized structure boundaries

It is possible to observe the presence of steel in the bottom part of the beam to absorb tensile stresses
generated by bending. On the sides, diagonal steel members are present to resist shear stresses in the
beam. In the case of original beam geometry, the shear members have angle measured to be around 43◦.
In the case the optimized structure geometry, there are two couples of shear members, the ones closer to
the support with angle around 43◦ and the others with angle of approximately 54◦. The interpretation
of the solution is the following:

Figure 4.26: Case study n.1 - example interpretation of solution - original structure boundaries

Figure 4.27: Case study n.1 - example interpretation of solution - optimized structure boundaries

In both solutions, from the analysis of principal stresses plots, the only remaining tensile zones in
concrete are on supports. Steel reinforcement in those zones has to be manually added by the user in
phase of detailing of the reinforcement layout.
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4.3.2 Case study n.2

Case study n.2 - original geometry, no reinforcement

Figure 4.28: Case study n.2 - problem statement

Figure 4.29: Case study n.2 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.30: Case study n.2 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.31: Case study n.2 - plots of principal stress sigma 2
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Case study n.2 - original geometry with optimized reinforcement

Figure 4.32: Case study n.2 - problem statement

Figure 4.33: Case study n.2 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.34: Case study n.2 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.35: Case study n.2 - plots of principal stress sigma 2
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Case study n.2 - optimized geometry and reinforcement

Figure 4.36: Case study n.2 - problem statement

Figure 4.37: Case study n.2 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.38: Case study n.2 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.39: Case study n.2 - plots of principal stress sigma 2



92 CHAPTER 4. DISCUSSION

Case study n.2 - results interpretation

The case study n.2 corresponds a short cantilever with lenght = 2 x width, with centered force on the
right edge. In the solution of the ESO procedure two tensile members are recognizable, the “external”
and longer to counter the bending forces and the one closer to the constraints to resist the shear forces.
In the solution with the original rectangular boundaries, the shear steel member gets very short during
the optimization procedure but still can be seen and interpreted. The steel member closer to the support
has an angle of approximately 49◦ in case the reinforced concrete geometry is optimized, and of 35◦ circa,
in the case the geometry is kept rectangular. In both cases, the longest steel member, the one close to
the load, has inclination around 22◦.

The interpretation of the solution is the following:

Figure 4.40: Case study n.2 - example interpretation of solution - original structure boundaries

Figure 4.41: Case study n.2 - example interpretation of solution - optimized structure boundaries

From analysis of principal stress plots, in the case the reinforced concrete boundaries are optimized, a
relatively high tensile concrete zone remains in the bottom part of the beam, the zone neighboring the left
corner of the hole and below the end of the central oblique steel member. In the example interpretation
above, the steel member has been elongated to take on such tensile stresses. The reinforcement close to
the load is also elongated, to improve the load introduction in the structure.
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4.3.3 Case study n.3

Case study n.3 - original geometry, no reinforcement

Figure 4.42: Case study n.3 - problem statement

Figure 4.43: Case study n.3 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.44: Case study n.3 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.45: Case study n.3 - plots of principal stress sigma 2
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Case study n.3 - original geometry with optimized reinforcement

Figure 4.46: Case study n.3 - problem statement

Figure 4.47: Case study n.3 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.48: Case study n.3 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.49: Case study n.3 - plots of principal stress sigma 2
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Case study n.3 - optimized geometry and reinforcement

Figure 4.50: Case study n.3 - problem statement

Figure 4.51: Case study n.3 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.52: Case study n.3 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.53: Case study n.3 - plots of principal stress sigma 2
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Case study n.3 - results interpretation

The case study n.3 corresponds to a simply supported beam with load in the center of bottom edge. In
both solutions, there is one long horizontal steel member for “bending” and three vertical and oblique
members for “shear”. In the case the structure geometry is kept unmodified rectangular, the latter
members are shorter. By trial and error on the ESO procedure, if the target volume is decreased, the
only result is the shortening of such members until their complete disappearance. In both solutions, the
inclination of the oblique steel members is measured to be around 49◦.

The interpretation of the solution is the following:

Figure 4.54: Case study n.3 - example interpretation of solution - original structure boundaries

Figure 4.55: Case study n.3 - example interpretation of solution - optimized structure boundaries

In both solutions, from the analysis of principal stresses plots, the only remaining tensile zones in
concrete are on the supports and right on the point of application of the load, in the center of bottom
edge.
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4.3.4 Case study n.4

Case study n.4 - original geometry, no reinforcement

Figure 4.56: Case study n.4 - problem statement

Figure 4.57: Case study n.4 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.58: Case study n.4 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.59: Case study n.4 - plots of principal stress sigma 2
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Case study n.4 - original geometry with optimized reinforcement

Figure 4.60: Case study n.4 - problem statement

Figure 4.61: Case study n.4 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.62: Case study n.4 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.63: Case study n.4 - plots of principal stress sigma 2
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Case study n.4 - optimized geometry and reinforcement

Figure 4.64: Case study n.4 - problem statement

Figure 4.65: Case study n.4 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.66: Case study n.4 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.67: Case study n.4 - plots of principal stress sigma 2
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Case study n.4 - results interpretation

The case study n.4 corresponds to a short cantilever with load in the bottom furthest point from the
support. In case the structure is kept rectangular, the steel members derived by the ESO procedure
assume a curved shape, starting from the top-left corner (on the support) to the bottom-right corner
(on the load). In the example interpretation, the resulting steel layout for this case is represented by a
four segments polyline, with angles of around 27◦ and 47◦. In case the structure geometry is optimized,
the steel members are comprised by a horizontal member close to the support, and two oblique members
respectively with inclinations of 13◦ and 46◦.

The interpretation of the solution is the following:

Figure 4.68: Case study n.4 - example interpretation of solution - original structure boundaries

Figure 4.69: Case study n.4 - example interpretation of solution - optimized structure boundaries

In both cases, from the analysis of principal stresses plots, no remaining tensile zones appear in
concrete, other than the few elements of concrete right on the load application point.
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4.3.5 Case study n.5

Case study n.5 - original geometry, no reinforcement

Figure 4.70: Case study n.5 - problem statement

Figure 4.71: Case study n.5 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.72: Case study n.5 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.73: Case study n.5 - plots of principal stress sigma 2



102 CHAPTER 4. DISCUSSION

Case study n.5 - original geometry with optimized reinforcement

Figure 4.74: Case study n.5 - problem statement

Figure 4.75: Case study n.5 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.76: Case study n.5 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.77: Case study n.5 - plots of principal stress sigma 2
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Case study n.5 - optimized geometry and reinforcement

Figure 4.78: Case study n.5 - problem statement

Figure 4.79: Case study n.5 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.80: Case study n.5 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.81: Case study n.5 - plots of principal stress sigma 2
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Case study n.5 - results interpretation

The case study n.5 corresponds to a short cantilever with load in the bottom furthest point from the
support and with a big circular hole close to the support. The overall geometry and boundary conditions
are the same as for case study n.4, except for the hole. In case the structure is kept rectangular, the main
steel member starts with a straight shape close to the support followed by a curved shape connecting
it to the load. In the example interpretation, the chosen resulting shape is a four segments polyline,
with angles of around 20◦ and 47◦ for the inner segments. Under the bottom-left corner of the hole a
steel member appears to counter the tensile stresses generated by the presence of the hole. The resulting
layout is interpreted by a straight line and an oblique line inclined with an angle of around 45◦. Such line
has to be extended to absorb remaining tensile stresses present in the concrete zones around and below
it.

In case the structure geometry is optimized, a total of three resulting steel members can be identified.
The principal steel member, can be interpreted as a three-segment polyline with inclination of the central
segment of 27◦. The second steel member appears under the bottom-left part of the hole, as in the case
with original boundaries, but with different angles, assuming an inclination of around 36◦. A third steel
member appears in the top-left corner, just under the principal one, to take on tensile stresses generated
in that area due to the structure’s optimized geometry around the imposed circular hole and below it. A
resulting inclination of 46◦ can be interpreted for the third steel member.

The interpretation of the solution is the following:

Figure 4.82: Case study n.5 - example interpretation of solution - original structure boundaries

Figure 4.83: Case study n.5 - example interpretation of solution - optimized structure boundaries

In both cases, from the analysis of principal stresses plots, a remaining tensile zone in concrete appears
under the bottom-left corner of the hole and refers to the stress concentrations generated by the presence
of the imposed hole. The interpreted steel member in that area is elongated in both cases to take on the
remaining tensile stresses.
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4.3.6 Case study n.6

Case study n.6 - original geometry, no reinforcement

Figure 4.84: Case study n.6 - problem statement

Figure 4.85: Case study n.6 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.86: Case study n.6 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.87: Case study n.6 - plots of principal stress sigma 2
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Case study n.6 - original geometry with optimized reinforcement

Figure 4.88: Case study n.6 - problem statement

Figure 4.89: Case study n.6 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.90: Case study n.6 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.91: Case study n.6 - plots of principal stress sigma 2
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Case study n.6 - optimized geometry and reinforcement

Figure 4.92: Case study n.6 - problem statement

Figure 4.93: Case study n.6 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.94: Case study n.6 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5% highest
tensile and 0.5% compressive elements

Figure 4.95: Case study n.6 - plots of principal stress sigma 2
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Case study n.6 - results interpretation

The case study n.6 corresponds a long cantilever with lenght = 4 x width, twice the lenght of case study
n.2, with centered force on the right edge. In the solution with the original rectangular boundaries, a
horizontal steel member is found on almost the whole lenght of the beam in the top edge to counter the
tensile stresses due to the bending in the beam. The main horizontal steel member changes direction in
its end to connect with the load application point with an inclined member of around 28◦. Two additional
oblique members are found close to midspan with inclination of around 47◦.

In the solution with the optimized structure boundaries, the main horizontal steel member has an
oblique end with angle approximately equal to 30◦. The “shear” member in that case are three, instead of
two, and have angles respectively equal to 45◦, 45◦ and 53◦ (from left to right). The third shear member,
the one closer to the end of the beam, is present in the case of optimized structure, while is almost absent
in case of original rectangular boundaries, as it gets removed in the ESO procedure quite early due to its
relatively low tensile stress.

The interpretation of the solution is the following:

Figure 4.96: Case study n.6 - example interpretation of solution - original structure boundaries

Figure 4.97: Case study n.6 - example interpretation of solution - optimized structure boundaries

From analysis of principal stress plots, no remaining tensile zones are found in the concrete for both
solutions. The zones neighboring the bottom-left corners of the holes are characterized by the presence
of tensile stress concentrations, which are addressed, in the example interpretation above, elongating the
“shear” members by adding horizontal segments to their ends. The latter horizontal members are also
extended, outside above mentioned tensile zones, to meet the compressive concrete struts coming from
the other side of the holes.
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4.3.7 Case study n.7

Case study n.7 - original geometry, no reinforcement

Figure 4.98: Case study n.7 - problem statement

Figure 4.99: Case study n.7 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.100: Case study n.7 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.101: Case study n.7 - plots of principal stress sigma 2
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Case study n.7 - original geometry with optimized reinforcement

Figure 4.102: Case study n.7 - problem statement

Figure 4.103: Case study n.7 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.104: Case study n.7 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.105: Case study n.7 - plots of principal stress sigma 2
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Case study n.7 - optimized geometry and reinforcement

Figure 4.106: Case study n.7 - problem statement

Figure 4.107: Case study n.7 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.108: Case study n.7 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.109: Case study n.7 - plots of principal stress sigma 2
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Case study n.7 - results interpretation

The case study n.7 corresponds to a square deep beam loaded in the center of its upper half. In all
solutions two inclined tensile steel members can be identified connecting the load application point to the
two lower supports. In case the structure is kept rectangular, the angle between the two steel members
is around 72◦, while in the case the structure boundaries are optimized such angle results approximately
equal to 65◦. The difference in inclination between the steel members is to be mainly attributed to the
form variation of upper half of the deep beam (optimized or original), which contributes to the load
bearing capacity through compression.

The interpretation of the solution is the following:

Figure 4.110: Case study n.7 - example interpretation of solution - original structure boundaries

Figure 4.111: Case study n.7 - example interpretation of solution - optimized structure boundaries

From the analysis of principal stresses plots, no remaining tensile zones appear in concrete for both
cases.
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4.3.8 Case study n.8

Case study n.8 - original geometry, no reinforcement

Figure 4.112: Case study n.8 - problem statement

Figure 4.113: Case study n.8 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.114: Case study n.8 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.115: Case study n.8 - plots of principal stress sigma 2
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Case study n.8 - original geometry with optimized reinforcement

Figure 4.116: Case study n.8 - problem statement

Figure 4.117: Case study n.8 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.118: Case study n.8 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.119: Case study n.8 - plots of principal stress sigma 2
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Case study n.8 - optimized geometry and reinforcement

Figure 4.120: Case study n.8 - problem statement

Figure 4.121: Case study n.8 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.122: Case study n.8 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.123: Case study n.8 - plots of principal stress sigma 2
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Case study n.8 - results interpretation

The case study n.8 corresponds to a square deep beam loaded in its center. In all solutions two inclined
tensile steel members can be identified connecting the load application point to the two upper supports. In
case the structure is kept rectangular, the angle between the two steel members is around 92◦, while in the
case the structure boundaries are optimized such angle results approximately equal to 88◦. The difference
in inclination between the steel members is to be mainly attributed to the variation in overall structure
geometry (optimized or original), which contributes to the load bearing capacity also by compression in
its lower part.

The interpretation of the solution is the following:

Figure 4.124: Case study n.8 - example interpretation of solution - original structure boundaries

Figure 4.125: Case study n.8 - example interpretation of solution - optimized structure boundaries

From the analysis of principal stresses plots, no remaining tensile zones appear in concrete for both
cases.
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4.3.9 Case study n.9

Case study n.9 - original geometry, no reinforcement

Figure 4.126: Case study n.9 - problem statement

Figure 4.127: Case study n.9 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.128: Case study n.9 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.129: Case study n.9 - plots of principal stress sigma 2
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Case study n.9 - original geometry with optimized reinforcement

Figure 4.130: Case study n.9 - problem statement

Figure 4.131: Case study n.9 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.132: Case study n.9 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.133: Case study n.9 - plots of principal stress sigma 2
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Case study n.9 - optimized geometry and reinforcement

Figure 4.134: Case study n.9 - problem statement

Figure 4.135: Case study n.9 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.136: Case study n.9 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.137: Case study n.9 - plots of principal stress sigma 2
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Case study n.9 - results interpretation

The case study n.9 corresponds to a simply supported deep beam with two symmetric square openings.
Resulting steel layouts are similar in both solutions (optimized and original boundaries). However, angles
differ between the two cases. Three types of steel members can be interpreted from both solutions. A
main horizontal steel member is present in the bottom edge of the beam, to take on the bending. Right
above it, two symmetrical inclined members rise from the bottom of the beam to the bottom of the
square openings, to counter shear and stress concentrations across the openings. The third type of steel
members appears on top of the square openings on the side closer to the center of the beam, to take on
the tensile stress concentrations on top of the square holes.

In the solution with the original rectangular boundaries, the inclination of steel members under the
holes is found to be approximately 51◦. The inclination of the members on top of the holes is of circa
19◦.

In the solution with the optimized structure boundaries, the inclination of steel members under the
holes is measured to be around 60◦. The members on top of the holes are inclined by around 13◦.

The interpretation of the solution is the following:

Figure 4.138: Case study n.9 - example interpretation of solution - original structure boundaries

Figure 4.139: Case study n.9 - example interpretation of solution - optimized structure boundaries

In both cases, from analysis of principal stress plots, some tensile zones remain in the concrete right on
top of the supports and under the external lower corner of the square openings. In that zones, additional
steel members are drawn manually in the example interpretation of the solutions.
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4.3.10 Case study n.10

Case study n.10 - original geometry, no reinforcement

Figure 4.140: Case study n.10 - problem statement

Figure 4.141: Case study n.10 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.142: Case study n.10 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.143: Case study n.10 - plots of principal stress sigma 2
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Case study n.10 - original geometry with optimized reinforcement

Figure 4.144: Case study n.10 - problem statement

Figure 4.145: Case study n.10 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.146: Case study n.10 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.147: Case study n.10 - plots of principal stress sigma 2



4.3. EVALUATION AND INTERPRETATION OF SOLUTIONS FOR CASE STUDIES 123

Case study n.10 - optimized geometry and reinforcement

Figure 4.148: Case study n.10 - problem statement

Figure 4.149: Case study n.10 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.150: Case study n.10 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.151: Case study n.10 - plots of principal stress sigma 2
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Case study n.10 - results interpretation

The case study n.10 corresponds to a simply supported deep beam with asymmetric square opening and
loading. Through the combined interpretation of steel zones from ESO procedure and principal stress
plots, three main steel members are found. One horizontal member is found on the bottom edge of the
beam. Most probably, it is due to the small thickness of the structure under the square hole that the steel
member on the left support gets eliminated during the ESO procedure (approximately when steel volume
trespasses the value of 25%). The interpreted steel member is elongated manually into that zone. The
second steel member starts horizontally from the top of the square hole, gets inclined by an angle of 48◦

and gets horizontal again when it reaches the bottom edge of the beam. The third main steel member
lays on top of second one, as an offset of it in its central part, and gets inclined on both ends to take
the shear in the beam. In the ends of the third member, it is possible to recognize two triangular “steel”
zones, each composed by two “ties” and one “strut” (from the principal stress plots). The two “ties”
are respectively the ends of the second and third steel member described above. The ends of the third
member have different angles in the solutions with optimized and original geometry. In case the geometry
is kept original, the angles are 77◦ on the left and 45◦ on the right. In case the geometry is optimized, the
angles are approximately 82◦ on the left and 47◦ on the right. The difference in angles between the two
solutions is to be imputed to the variation of the internal load transfer due to the presence or absence of
the holes in the structure.

The interpretation of the solution is the following:

Figure 4.152: Case study n.10 - example interpretation of solution - original structure boundaries

Figure 4.153: Case study n.10 - example interpretation of solution - optimized structure boundaries

In both cases, from analysis of principal stress plots, a tensile zone remains in the concrete on top of
the left support and around the lower-left corner of the square opening. In that zone, additional steel
members are drawn manually in the example interpretation of the solutions.



4.3. EVALUATION AND INTERPRETATION OF SOLUTIONS FOR CASE STUDIES 125

4.3.11 Case study n.11

Case study n.11 - original geometry, no reinforcement

Figure 4.154: Case study n.11 - problem statement

Figure 4.155: Case study n.11 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.156: Case study n.11 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.157: Case study n.11 - plots of principal stress sigma 2
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Case study n.11 - original geometry with optimized reinforcement

Figure 4.158: Case study n.11 - problem statement

Figure 4.159: Case study n.11 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.160: Case study n.11 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.161: Case study n.11 - plots of principal stress sigma 2
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Case study n.11 - optimized geometry and reinforcement

Figure 4.162: Case study n.11 - problem statement

Figure 4.163: Case study n.11 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.164: Case study n.11 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.165: Case study n.11 - plots of principal stress sigma 2
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Case study n.11 - results interpretation

The case study n.11 corresponds to a corbel jointed to a column. The steel distribution found with the
ESO procedure is similar for both solutions. A tensile member appears on the right side in the top part
of the column and on the left side in the bottom part of the column, to take on the moment generated in
the column by the load on the corbel. A horizontal steel member can be recognized in the top edge of the
corbel to take on the tensile stresses generated by the bending in the corbel. A third steel member can be
identified in an inclined direction of 48◦ circa, to take on the shear force in the corbel. The interpretation
of the triangular “steel” area in the corbel into two steel members is supported also by the presence, in
the second principal stress plot, of a recognizable compressive strut connecting the two resulting steel
members.

The interpretation of the solution is the following:

(a) Case study n.11 - example interpretation of
solution - original structure boundaries

(b) Case study n.11 - example interpretation of
solution - optimized structure boundaries
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4.3.12 Case study n.12

Case study n.12 - original geometry, no reinforcement

Figure 4.167: Case study n.12 - problem statement

Figure 4.168: Case study n.12 - geometry without reinforcement and optimization

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.169: Case study n.12 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.170: Case study n.12 - plots of principal stress sigma 2
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Case study n.12 - original geometry with optimized reinforcement

Figure 4.171: Case study n.12 - problem statement

Figure 4.172: Case study n.12 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.173: Case study n.12 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.174: Case study n.12 - plots of principal stress sigma 2
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Case study n.12 - optimized geometry and reinforcement

Figure 4.175: Case study n.12 - problem statement

Figure 4.176: Case study n.12 - solution by the code of this thesis

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.177: Case study n.12 - plots of principal stress sigma 1

(a) full range of stresses (b) stress concentrations removed: 0.5%
highest tensile and 0.5% compressive elements

Figure 4.178: Case study n.12 - plots of principal stress sigma 2
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Case study n.12 - results interpretation

The case study n.12 corresponds to a corbel with a ledge support. Through combined interpretation of
steel distribution from ESO procedure and principal stress plots, it is derived a resulting steel layout
similar for both solutions (original and optimized structure boundaries). Two vertical steel members
descending directly from the support, transfer the tensile stresses to the boundary conditions. Two
horizontal and inclined steel members take on the remaining tensile stresses in the corbel. The latter
members have an inclination of approximately 57◦ on the left and 27◦ on the right in case the structure
is optimized, while they have angles of around 45◦ on the left and 30◦ in case the structure geometry
is kept original. In case the structure is optimized, from the solution of ESO process, it is possible to
identify an additional short steel member between the support and the top left edge of the upper hole,
with an inclination of circa 20◦. This member takes on the stress concentrations around the hole and the
shear force close to the support.

The interpretation of the solution is the following:

Figure 4.179: Case study n.11 - example interpretation of solution - original structure boundaries

Figure 4.180: Case study n.11 - example interpretation of solution - optimized structure boundaries



Chapter 5

Conclusion

5.1 Conclusions

At this point, it is useful to recall the objective and the scope set for this thesis (as written in chapter
1 “Introduction”), and answer each of them along with the considerations and remarks from the main
results of the thesis.

The objective of the thesis was to:

“Write a MATLAB code that is able to perform automatic preliminary design of reinforced concrete struc-
tures, through an Evolutionary Structural Optimization process.”

In other words:

“Given a starting geometry, a set of boundary conditions (constraints and applied forces & displacements),
and a set of target volumes for concrete and steel, the code should be able to define the optimal shape
of the structure, and the optimal topology & distribution between concrete and steel, also taking concrete
cover requirements into consideration.

The conclusions regarding the objective of the thesis are the following:

• It is possible to observe that Evolutionary Structural Optimization is well suited approach for the
design process of RC structures, since the very purpose of the design is to place material in the
most effective zones, remove material from zones where not needed, and use the given materials in
the best way. This agrees with the basic principle of ESO, that is to remove material in ineffective
zones to reach for the optimum.

• The first design issue, that is about finding the optimal outer shape of the RC structure, is possible
through only one - the first - ESO loop, as there is no distinction between the concrete and the
steel. Therefore, all results and all possible applications from ESO literature can be applied, simply
changing the definition of the sensitivity number for the first ESO loop. Then the code can be easily
extended to optimize the outer reinforced concrete structure with other criteria from literature.
The second design issue, that is about finding the optimal topology & distribution between steel and
concrete inside the structure, requires additional ESO loops. In the thesis, it has been found that
two additional ESO loops would suffice to give a first approximation solution, in particular, when
making use of transition of optimality criteria in sensitivity analysis from Von Mises to Drucker-
Prager in one loop, and transition from Drucker-Prager to tensile stress criteria in the second loop.
Summarizing, to find the optimal shape of the structure, and the optimal topology & (first ap-
proximation) distribution between concrete and steel, a total of three ESO loops are required to be
executed in series.

• Regulating the target volume of reinforced concrete and the parameter rmin (radius of filtering for
sensitivity numbers), it is possible to influence the number and size of holes in the RC structure.
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It is also possible to favor a structure with thick members by setting a high rmin or getting a
lattice-type structure by setting a target volume generally lower than 55%-50%. It is found that
very small target volumes can remarkably simplify the structure at the expense of degenerating
the solution to a local optimum, generally obtaining a sub-optimal, highly stressed and inefficient
solution.

• With the current code, the required target volume of steel to obtain a useful and informative
steel layout is relatively high, i.e. 10%, 15%, 20%, instead of around 1% what is required in real
construction. In fact, setting in the algorithm steel target volumes smaller than 10%, steel members
in secondary tensile zones vanish, making the solution degenerate to a trivial one, usually comprised
only by a member in the highest tensile zone. To have solutions of interest, it is therefore required
to set a significantly higher than normal target steel volume in the optimization procedure, which
results in solutions with bulky, but lowly stressed, zones of steel. The resulting “black” areas in the
solutions from the ESO procedure have then to be interpreted not directly as steel, but as zones
where steel reinforcement is desired. Therefore, solutions have to be interpreted in combination
with principal stresses plots, to create resulting informative steel reinforcement layouts.

• Stress concentrations have a relevant influence on the optimization’s results. Particularly, the
presence of steel members nearby stress concentrations results favored, due to the high stresses near
singularities, and such elements present a stronger “resistance” to removal. This influence is not
necessarily negative and results even beneficial in some cases. In fact, in presence of internal holes
in the structure (and therefore in presence of stress concentrations around them), steel members
in tensile zones result “anchored” to the holes, getting thinner and thinner but not being removed
during the ESO process, and remain in the solution also for relatively small target volumes of steel.
This results in more meaningful steel layouts when the reinforced concrete final structure contains
holes (i.e. is optimized), compared to when it remains without holes (i.e. non-optimized).

• The application of concrete cover inside the ESO procedure has been proven possible, also for the
case of automatic cover around holes with not previously known positions (i.e. the holes determined
during the optimization process). Moreover, the concrete cover enforcement on the solution reduces
the bulkiness of the steel members on the edges of the structure and so it makes possible to have
a better steel distribution for a given steel target volume. On the other hand, the application of
concrete cover in presence of small members in the structure can cause the disappearance of steel
members with size approximately equal to double the concrete cover thickness. In cases when the
presence of thin members in the structure cannot be avoided, the cover thickness must be reduced
accordingly, so that at least a minimal steel thickness is preserved inside thin tensile members,
through the optimization process.

• A novel concept of “mask” has been introduced in the thesis. In simple words, the mask is a chosen
density matrix of an intermediate ESO loop that is stored and multiplied by the sensitivity numbers,
to influence the resulting distribution of steel. The most relevant effects of the mask take place
in the third ESO loop, where the mask makes possible to “average” the solution driven by tensile
stress criterion, with historical result of the structure optimized with Drucker-Prager criterion from
the second loop. In few case studies, it has been observed that the mask contributed to preserve
the optimal angles for tensile members through the whole optimization process, especially for steel
members resisting shear stresses. In fact, without the effect of the mask, the orientation of steel
members has been observed to change in the third ESO loop, as result of steel removal from all
compressive zones.

• Special attention has to be payed when optimizing internal distribution between steel and concrete
without optimizing structure’s outer boundaries. In fact, it may happen that, in intermediate ESO
loops, some thin yet useful members are removed and, due to the application of the mask and/or
of the automatic concrete cover, such members cannot be restored in later loops. Both mask and
automatic concrete cover store information of material density from intermediate ESO loops to drive
results of subsequent loops, as a result making more difficult to restore a wrongly removed element
during intermediate loops. Therefore, both mask and automatic concrete cover must be deployed
paying attention to the whole optimization process evolution. Whenever needed, the mask can
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easily be deactivated setting ESO.penalmask=0, while non-automatic concrete covers can be chosen
setting one of the cases from SET.covertype=1,2,3.

On a wider level, the scope of this thesis, as stated in the end of chapter 1, was to extend the ESO
method for the particular case of:

“Topological optimization of composite materials with macro structure,
+ with different optimization criteria applied to the component materials,
+ with one component material that has different resistance in tension and compression (i.e. concrete),
+ with geometrical constraints for one component material (i.e. concrete cover applied on steel).”

The conclusions and remarks regarding the scope of the thesis are the following:

• The code developed in the thesis was indeed able to address all the above requirements and speci-
ficities. However, in order to do so, it was needed to use multiple ESO loops executed in series and
apply different requirements in various phases of optimization. In each cycle, the optimization of
distribution between two materials only is carried on and, for optimizing more than two materials,
it must be done in a series of ESO loops, each of them with a couple of materials to be chosen by
the user.

• The novel approach of linear interpolating two optimization criteria during an ESO process used
in this thesis could turn useful in other ESO applications. Moreover, if the interpolation is not
executed completely, for example if the first criteria is reduced from 100% and stopped to 40% and
the second criteria is increased from 0% and stopped to 60%, it is possible to obtain a gradual and
partial combination of multiple optimization criteria, different from the methods found in literature.

• The algorithm developed does not check if the resistance of the material is being reached, in other
words, the limits for the stresses in the elements are not implemented. Even in the case when
different behavior under tensile and compressive stresses is taken into account, it is considered
only through the ratio between the two resistances and not considering their magnitude. This
characteristic of the code is to be taken into consideration to understand the limits of application of
the results obtained with it. Therefore, the solutions obtained in this thesis are valid for optimum
topology pre-failure, while for post-failure, the optimum solution could have different shapes as
well. To find an optimal solution for post-failure behavior (e.g. to optimize ductility), the code of
this thesis should most probably be completely revised, introducing: resistance limits for materials,
appropriate material models for post-failure behavior and a Non-Linear Finite Element Analysis
solver or a Sequentially Linear Analysis procedure.

5.2 Directions for further development

5.2.1 Problems with self-weight

Even though it is beyond the scope of this thesis, the MATLAB code developed already includes the
parameters to take self-weight into account, both in optimization and finite element analysis codes. In
section 1.3 of the code ESOscript.m, in the point where material input data is inserted, it is possible to
define the material density and the gravity acceleration vector to compute the self-weight:

gravity = [ 0.0 %gravity acceleration x-dir

-1.0]; %gravity acceleration y-dir

VOID.density= 0.0; %material density (rho)

VOID.bodyforce = VOID.density*gravity; %specific weight(gamma=rho*g)

STEEL.density= 0.0;

STEEL.bodyforce = STEEL.density*gravity;

CONCR.density= 0.0;

CONCR.bodyforce = CONCR.density*gravity;
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The function FEM.m is already fit to include self-weight into the finite element analysis as well. The
forces applied to the finite elements due to self-weight are calculated for the two materials of the bi-phase
material:

Nmat = zeros(2, 8); % form N matrix

Nmat(1, 1:2:end) = N(:)’;

Nmat(2, 2:2:end) = N(:)’;

f_int1 = Nmat’*MAT1.bodyforce*dX*GEOM.thickness;

f_e1 = f_e1 + f_int1;

f_int2 = Nmat’*MAT2.bodyforce*dX*GEOM.thickness;

f_e2 = f_e2 + f_int2;

and later on, they are assembled in the f vector, keeping into account the material distribution of the
bi-phase material with the density matrices x and y:

edof = DOF.n_mat(iel,:);

f(edof) = f(edof) + (f_e1 *x(iel)^penal + f_e2 *(1-x(iel)^penal))*y(iel)^penal

However, it is not only necessary to specify gravity vector and material densities, but to adapt sensi-
tivity numbers definitions as well. This has not been done in the current thesis and is left to the reader.

To illustrate the extents of required adaptations to sensitivity numbers for self-weight problems, it is
reported here below an example found from literature [21] which treats stiffness ESO optimization with
design-dependent loads. In the article [21], the following material interpolation scheme had been chosen:

ρi = xiρ

E(xi) = xi

1−q(1−xi)
E

∀i = 1, ..., N (5.1)

with q a penalty factor (in the article set as q = 5). It is useful to remind that for problems without
self-weight the material interpolation scheme usually chosen is:

E(xi) = Expi ∀i = 1, ..., N

After having defined a proper material interpolation scheme, the procedure to derive the sensitivity
numbers is, as usual:

– determine the objective function C (in the case from literature, it is the compliance);

– compute the derivative of the objective function ∂C
∂xi

;

– substitute the material interpolation scheme into ∂C
∂xi

;

– determine a convenient definition of the sensitivity number αi (linear proportional to ∂C
∂xi

);

– substitute the final expression of ∂C
∂xi

obtained into αi.

It is to be noted that also the derivative of the objective function differs between problems with and
without self-weight. In the article [21], the following derivative of the objective function is used for
problems with self-weight:

∂C

∂xi
=
∂fTi
∂xi

ui −
1

2
uTi

∂Ki

∂xi
ui ∀i = 1, ..., N (5.2)

It is useful, once again, to compare it to the one used in problems without self weight:

∂C

∂xi
= −1

2
uTi

∂Ki

∂xi
ui ∀i = 1, ..., N
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In problems with self-weight, the term
∂fT

i

∂xi
is not zero since the self-weight, which is accounted for into

the vector f , is dependent to the material density distribution xi, that changes along the optimization
process.

The definition of sensitivity number is also slightly different between problems with and without
self-weight. In the article [21], it is used a sensitivity number definition:

αi = − 1

q + 1

∂C

∂xi
(5.3)

compared to the definition of sensitivity number used in problems of stiffness optimization without self-
weight:

αi = −1

p

∂C

∂xi

Further elaborations of the above formulas to derive the final expression for the sensitivity number for
stiffness-based ESO with self-weight is not reported in this thesis but may be found on the article of Xie
[21].

It is relevant to note that the formulations of sensitivities found in literature for stiffness optimization
with self-weight cannot be directly applied to stress-based optimization.

At the same time, the effect of self-weight must be taken into account into the sensitivity numbers
and not only in the FEM analysis. Otherwise the ESO optimization would not work correctly, rising
problems of divergence, giving incorrect results, etc. Several tests have been performed by the author
and not once the ESO process would work correctly when the self-weight was included only in FEM and
not in the sensitivities. Therefore, it appears extended research is needed to find out suitable formulations
for sensitivity numbers for stress-based ESO with self-weight. This work is not carried out in the present
thesis and is left to readers as a suggestion for further research.

5.2.2 Improvement of steel layout optimization

Even though steel layouts in optimized solutions of case studies, computed with the current code, appear
to be in the right positions, the steel members are too bulky and cannot be reduced in thickness enough
through diminishing the steel target volume. This issue has already been presented and discussed in
section 4.2.2 “Target volume of steel”. It is therefore desirable to improve the present code to enable the
decrease of current limits in steel target volume without getting trivial solutions.

The author believes it is possible to address this problem using a similar approach as the one used to
create the automatic concrete cover in the file COVER.m. The main idea is to run a for cycle on all the steel
elements and, for each element, check its neighboring elements within a defined radius, check a predefined
rule and override the material phase setting for the central element (depending if the predefined rule is true
or false). In such a way, the author believes that it is possible to program a minimum and maximum size
for steel members and define a minimum size of concrete between two separate steel members. Therefore,
in the resulting steel layouts, the bulky and lowly stressed steel members obtained by the present version
of code, could be transformed to multiple and higher stressed steel members, with minimum spacing and
maximum size requirements. At the same time, the algorithm should be written in such a way that thin
members are preserved during this “rationalization” process. Following this approach, the added code
would most probably assume the form of a new function, to be executed during current third ESO loop,
or of an additional fourth ESO loop.
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Annex

The MATLAB code is comprised by 5 files for the main code:

• Evolutionary Structural Optimization script - file “ESOscript.m”

• Finite Element Analysis function - file “FEM.m”

• Sensitivity Analysis function - file “SENS.m”

• Post-processing function - file “POST.m”

• Automatic concrete cover function - file “COVER.m”

and one file to plot results:

• Plot field (defined on element-level) script - file “plotELEMfield.m”
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Evolutionary Structural Optimization script

% This Matlab code was written by Andrea De Marco, for the scope of his MSc

% thesis dissertation at Delft University of Technology, The Netherlands,

% held in June 2018.

%

% The code has been elaborated from the algorithm published in "Bi-directional

% Evolutionary Structural Optimization on Advanced Structures and Materials:

% A Comprehensive Review" by L.Xia, Q.Xia, X.Huang, Y.M.Xie, in 2016.

%

% The code is intended for educational purposes. Details about the code and

% the procedure can be found in the MSc thesis "Application of Evolutionary

% Structural Optimization to Reinforced Concrete Structures" by Andrea De Marco

% downloadable at http://repository.tudelft.nl/

%

% Disclaimer:

% This code is provided by the author "as is" without any warranties of any

% sort. In no event shall the author be liable for any damage arising by the

% use of this program.

%

%-0---COMMENTS-------------------------------------------------------------

% This script is programmed with bilinear 4 noded elements numerically or

% analytically integrated with 2x2 gauss points, in condition of plane stress

% The design area is drawn in a rectangular domain with square regular elements

tic

%-1---INPUT----------------------------------------------------------------

%-1.1---INPUT-GEOMETRY-------------------------

ELEM.nx = 100; ELEM.ny = 50; %number of elements used to discretize design area

GEOM.lenght = ELEM.nx; GEOM.height = ELEM.ny; %length and height of design area

GEOM.thickness = 1;

%-1.2---INPUT-SETTINGS-------------------------

SET.inttype=1; %1=2x2integration, 2=analytical

SET.bctype=2; %1=manual, 2=cantilever with central force, 3=half MBB, 4=half wheel,

%5=cantilever with bottom force ... see section 1.5 for others

SET.solidvoid=1; %1=no solids and voids, 2=round hole, 3=square hole, 4=rhombus hole,

%5=rectangular hole ... see section 1.6 for others

SET.boundaries=2; %1=keep original boundaries, 2=optimize boundaries

SET.covertype=8; %1=no concrete cover, 2=top&bottom, 3=left&right, 4=automatic cover,

%5=automatic cover + top&bottom, 6=automatic cover + left&right

%7=automatic cover + top&bottom + left&right

%8=automatic cover + top&bottom + right

SET.coverthick=2; %concrete cover thickness (expressed in number of elements)

SET.translenght=20; %n. of iterations for transition between two optimization criteria

%FOR SWITCHING BETWEEN CASE STUDIES OF THE THESIS IS IN NOT NEEDED TO

%MODIFY PARAMETERS UNDER THIS LINE, WITH THE EXEPTION OF ESO.volfrac

%IN SECTION 1.4.2

%-1.3---INPUT-MATERIAL-DATA--------------------

VOID.E = 0;

VOID.nu = 0;

VOID.lambda = 0;

VOID.mu = 0;

STEEL.E = 10.0;

STEEL.nu = 0.3;

STEEL.lambda = STEEL.nu*STEEL.E/( (1+STEEL.nu)*(1-2*STEEL.nu) );

STEEL.mu = STEEL.E/( 2*(1+STEEL.nu) );

CONCR.E = 1.0;

CONCR.nu = 0.2;

CONCR.lambda = CONCR.nu*CONCR.E/( (1+CONCR.nu)*(1-2*CONCR.nu) );

CONCR.mu = CONCR.E/( 2*(1+CONCR.nu) );

% factors for drucker prager criterion

sigmac=1;
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sigmat=0.2;

DPalpha=(sigmac-sigmat)/(sqrt(3)*(sigmac+sigmat));

clear sigmac sigmat

% for selfweight problems only

gravity = [ 0.0 %gravity acceleration x-dir

-1.0]; %gravity acceleration y-dir

VOID.density= 0.0; %material density (rho)

VOID.bodyforce = VOID.density*gravity; %specific weight(gamma=rho*g)

STEEL.density= 0.0;

STEEL.bodyforce = STEEL.density*gravity;

CONCR.density= 0.0;

CONCR.bodyforce = CONCR.density*gravity;

clear gravity

%-1.4---INPUT-ESO-PARAMETERS---------------------------

%-1.4.1--INITALIZATION-ESO-PARAMETERS----

x0=ones(ELEM.ny,ELEM.nx); %start geometry

ESO.cycles=3; %determine the number of cycles

x=cell(1,ESO.cycles); %initialize eso density matrix

for cycle=1:ESO.cycles; x{cycle}(1:ELEM.ny,1:ELEM.nx)=1.; end

ESO.penal = 3.; %penalty exponent applied to x

ESO.penalmask = 2.; %penalty exponent applied to mask

%set ESO.penalmask=2 to have same effect as of ESO.penal on x

%set ESO.penalmask=0 to nullify effect of mask (works only for SET.covertype=1,2,3)

%-1.4.2--INPUT-VARIABLE-ESO-PARAMETERS-----------------------

%ESO settings (1 column = 1 cycle) to be changed for each case study

ESO.volfrac= [0.60, 0.30, 0.15 ]; % <-------

%-1.4.3--INPUT-FIXED-ESO-PARAMETERS----------------------------------

%ESO settings (1 column = 1 cycle) usually not needed to be changed

ESO.conv_err= [0.001 0.001 0.001 ]; %allowable conv. error

ESO.er= [0.04, 0.03, 0.02 ];

ESO.rmin= [8, 3, 2 ];

ESO.criteria= [2, 5, 7 ];

MAT1= {STEEL, STEEL, STEEL };

MAT2= {VOID, CONCR, CONCR };

ESO.startvol= [1, ESO.volfrac(1), ESO.volfrac(2) ];

update_startx=@(x0,x) {x0, x{1}, x{2} }; %values of ESO.start

update_mask=@(x0,x) {x0, x{1}, x{2} }; %values of mask

switch SET.boundaries % set values of y (concrete boundaries)

case 1 % preserve original boundaries

update_y=@(x0,x) {x0, x0, x0 };

case 2 % optimize boundaries

update_y=@(x0,x) {x0, x{1}, x{1} };

end

% startx, y and mask are set in the beginning and updated inside the eso loops

% at end of each main-iteration because x{1}, x{2} etc are calculated inside the

% eso loops, to do this MATLAB function handles are used

startx=update_startx(x0,x);

y=update_y(x0,x);

mask=update_mask(x0,x);

% In y it is stored the information about concrete boundaries

%-1.5---INPUT-BOUNDARY-CONDITIONS--------------

% GEOM.bc=[# # # #]’=[node n., bctype, dof, bcvalue]’

% (bctype=0 for force, bctype=1 for displacement)

switch (SET.bctype)

% 1-manual

case 1

GEOM.bc = [

1 1 1 0.0 %example restrained displacement x-dir

1 1 2 0.0 %example restrained displacement y-dir

683 0 1 -10.0 %example applied force x-dir

683 0 2 -10.0 %example applied force y-dir
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3 1 1 -5.0 %example applied displacement x-dir (settlement)

3 1 2 -5.0 %example applied displacement y-dir (settlement)

]’; %note that the matrix is transposed

% 2-cantilever with central force

case 2

GEOM.bc=zeros(4,2*(ELEM.ny+1)+1);

for ibc=1:ELEM.ny+1

GEOM.bc (:,ibc)= [ibc, 1, 1, 0.0]; %x-dir

GEOM.bc (:,ibc+ELEM.ny+1)= [ibc, 1, 2, 0.0]; %y-dir

end

GEOM.bc (:,2*(ELEM.ny+1)+1)= [(ELEM.nx+1)*(ELEM.ny+1)-ELEM.ny/2, 0, 2, -1.0]; %force

clear ibc

% 3-half MBB beam

case 3

GEOM.bc=zeros(4,(ELEM.ny+1)+2);

for ibc=1:ELEM.ny+1

GEOM.bc (:,ibc)= [ibc, 1, 1, 0.0]; %x-dir

end

GEOM.bc (:,(ELEM.ny+1)+1)= [(ELEM.nx+1)*(ELEM.ny+1), 1, 2, 0.0]; %support

GEOM.bc (:,(ELEM.ny+1)+2)= [1, 0, 2, -1.0]; %force

clear ibc

% 4-half wheel design

case 4

GEOM.bc=zeros(4,4);

GEOM.bc (:,1)= [(ELEM.ny+1), 1, 1, 0.0]; %x-dir

GEOM.bc (:,2)= [(ELEM.ny+1), 1, 2, 0.0]; %y-dir

GEOM.bc (:,3)= [(ELEM.nx+1)*(ELEM.ny+1), 1, 2, 0.0]; %support

GEOM.bc (:,4)= [(ELEM.nx/2+1)*(ELEM.ny+1), 0, 2, -1.0]; %force

% 5-cantilever with bottom force

case 5

GEOM.bc=zeros(4,2*(ELEM.ny+1)+1);

for ibc=1:ELEM.ny+1

GEOM.bc (:,ibc)= [ibc, 1, 1, 0.0]; %x-dir

GEOM.bc (:,ibc+ELEM.ny+1)= [ibc, 1, 2, 0.0]; %y-dir

end

GEOM.bc (:,2*(ELEM.ny+1)+1)= [(ELEM.nx+1)*(ELEM.ny+1), 0, 2, -1.0]; %force

clear ibc

% 6-plate fixed on edges with up force on upper quarter in the middle

case 6

GEOM.bc=zeros(4,9);

GEOM.bc (:,1)= [1, 1, 1, 0.0]; %x-dir

GEOM.bc (:,2)= [1, 1, 2, 0.0]; %y-dir

GEOM.bc (:,3)= [(ELEM.ny+1), 1, 1, 0.0]; %x-dir

GEOM.bc (:,4)= [(ELEM.ny+1), 1, 2, 0.0]; %y-dir

GEOM.bc (:,5)= [(ELEM.nx+1)*(ELEM.ny+1)-ELEM.ny, 1, 1, 0.0]; %x-dir

GEOM.bc (:,6)= [(ELEM.nx+1)*(ELEM.ny+1)-ELEM.ny, 1, 2, 0.0]; %y-dir

GEOM.bc (:,7)= [(ELEM.nx+1)*(ELEM.ny+1), 1, 1, 0.0]; %x-dir

GEOM.bc (:,8)= [(ELEM.nx+1)*(ELEM.ny+1), 1, 2, 0.0]; %y-dir

GEOM.bc (:,9)= [(ELEM.nx/2+1)*(ELEM.ny+1)-3/4*ELEM.ny, 0, 2, 1.0]; %force

% 7-plate fixed on edges with down force in the middle

case 7

GEOM.bc=zeros(4,9);

GEOM.bc (:,1)= [1, 1, 1, 0.0]; %x-dir

GEOM.bc (:,2)= [1, 1, 2, 0.0]; %y-dir

GEOM.bc (:,3)= [(ELEM.ny+1), 1, 1, 0.0]; %x-dir

GEOM.bc (:,4)= [(ELEM.ny+1), 1, 2, 0.0]; %y-dir

GEOM.bc (:,5)= [(ELEM.nx+1)*(ELEM.ny+1)-ELEM.ny, 1, 1, 0.0]; %x-dir

GEOM.bc (:,6)= [(ELEM.nx+1)*(ELEM.ny+1)-ELEM.ny, 1, 2, 0.0]; %y-dir

GEOM.bc (:,7)= [(ELEM.nx+1)*(ELEM.ny+1), 1, 1, 0.0]; %x-dir

GEOM.bc (:,8)= [(ELEM.nx+1)*(ELEM.ny+1), 1, 2, 0.0]; %y-dir

GEOM.bc (:,9)= [(ELEM.nx/2+1)*(ELEM.ny+1)-0.5*ELEM.ny, 0, 2, -1.0]; %force
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% 8-wall with 2 square holes case study 98 x 60 only (not scalable)

case 8

GEOM.bc=zeros(4,5);

GEOM.bc (:,1)= [305, 1, 1, 0.0]; %x-dir

GEOM.bc (:,2)= [305, 1, 2, 0.0]; %y-dir

GEOM.bc (:,3)= [5795, 1, 2, 0.0]; %y-dir

GEOM.bc (:,4)= [1831, 0, 2, -0.010]; %force 1

GEOM.bc (:,5)= [4149, 0, 2, -0.010]; %force 2

% 9-wall with 1 square holes case study 150 x 94 only (not scalable)

case 9

GEOM.bc=zeros(4,4);

GEOM.bc (:,1)= [570, 1, 2, 0.0]; %y-dir

GEOM.bc (:,2)= [13870, 1, 1, 0.0]; %x-dir

GEOM.bc (:,3)= [13870, 1, 2, 0.0]; %y-dir

GEOM.bc (:,4)= [8931, 0, 2, -0.010]; %force

% 10-column with corbel case study 88 x 216 only (not scalable)

case 10

GEOM.bc=zeros(4,21);

GEOM.bc (:,1)= [1, 1, 1, 0.0]; %x-dir

GEOM.bc (:,2)= [1, 1, 2, 0.0]; %y-dir

GEOM.bc (:,3)= [217, 1, 1, 0.0]; %x-dir

GEOM.bc (:,4)= [217, 1, 2, 0.0]; %y-dir

GEOM.bc (:,5)= [2171, 1, 1, 0.0]; %x-dir

GEOM.bc (:,6)= [2171, 1, 2, 0.0]; %y-dir

GEOM.bc (:,7)= [2387, 1, 1, 0.0]; %x-dir

GEOM.bc (:,8)= [2387, 1, 2, 0.0]; %y-dir

GEOM.bc (:,9)= [4341, 1, 1, 0.0]; %x-dir

GEOM.bc (:,10)= [4341, 1, 2, 0.0]; %y-dir

GEOM.bc (:,11)= [4557, 1, 1, 0.0]; %x-dir

GEOM.bc (:,12)= [4557, 1, 2, 0.0]; %y-dir

GEOM.bc (:,13)= [6511, 1, 1, 0.0]; %x-dir

GEOM.bc (:,14)= [6511, 1, 2, 0.0]; %y-dir

GEOM.bc (:,15)= [6727, 1, 1, 0.0]; %x-dir

GEOM.bc (:,16)= [6727, 1, 2, 0.0]; %y-dir

GEOM.bc (:,17)= [8681, 1, 1, 0.0]; %x-dir

GEOM.bc (:,18)= [8681, 1, 2, 0.0]; %y-dir

GEOM.bc (:,19)= [8897, 1, 1, 0.0]; %x-dir

GEOM.bc (:,20)= [8897, 1, 2, 0.0]; %y-dir

GEOM.bc (:,21)= [16573, 0, 2, -0.010]; %force

% 11-corbel with ledge support case study 88 x 88 only (not scalable)

case 11

GEOM.bc=zeros(4,10);

GEOM.bc (:,1)= [1, 1, 1, 0.0]; %x-dir

GEOM.bc (:,2)= [1, 1, 2, 0.0]; %y-dir

GEOM.bc (:,3)= [891, 1, 1, 0.0]; %x-dir

GEOM.bc (:,4)= [891, 1, 2, 0.0]; %y-dir

GEOM.bc (:,5)= [1781, 1, 1, 0.0]; %x-dir

GEOM.bc (:,6)= [1781, 1, 2, 0.0]; %y-dir

GEOM.bc (:,7)= [2671, 1, 1, 0.0]; %x-dir

GEOM.bc (:,8)= [2671, 1, 2, 0.0]; %y-dir

GEOM.bc (:,9)= [3561, 1, 1, 0.0]; %x-dir

GEOM.bc (:,10)= [6813, 0, 2, -0.010]; %force

end

%-1.6---VOIDS-AND-SOLIDS-IN-GEOMETRY-----------

%set ESO.passive = 1 (holes) or 2 (solids)

switch (SET.solidvoid)

% 1-no void or solids

case 1

ESO.passive = zeros(ELEM.ny,ELEM.nx);

% 2-circular hole

case 2
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ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%sqrt((jj - center_y)^2+(ii- center_x)^2) < radius

if sqrt((jj-ELEM.ny/2)^2+(ii-ELEM.nx/3)^2) < ELEM.ny/3

ESO.passive(jj,ii) = 1;

end

end

end

% 3-square hole

case 3

ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y),abs(ii- center_x)] < half length

if max([abs(jj-ELEM.ny/2),abs(ii-ELEM.nx/3)]) < ELEM.ny/3

ESO.passive(jj,ii) = 1;

end

end

end

% 4-rhombus hole

case 4

ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%abs((jj - center_y)+abs(ii- center_x) < half length

if abs(jj-ELEM.ny/2)+abs(ii-ELEM.nx/3) < ELEM.ny/3

ESO.passive(jj,ii) = 1;

end

end

end

% 5-rectangular hole

case 5

ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-ELEM.ny/2)/1,abs(ii-ELEM.nx/3)/1.5]) < ELEM.ny/3

ESO.passive(jj,ii) = 1;

end

end

end

% 6-two rectangular holes for wall with two forces SET.bctype=8

case 6

ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-30),abs(ii-16)]) < 6

ESO.passive(jj,ii) = 1;

end

if max([abs(jj-30),abs(ii-83)]) < 6

ESO.passive(jj,ii) = 1;

end

end

end

% 7-rectangular hole for wall with one force SET.bctype=9

case 7

ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny
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%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-69)/1,abs(ii-25)/1]) < 15

ESO.passive(jj,ii) = 1;

end

end

end

% 8-rectangular hole for column and corbel case study SET.bctype=10

case 8

ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-40)/4,abs(ii-65)/2.4]) < 10

ESO.passive(jj,ii) = 1;

end

if max([abs(jj-177)/4,abs(ii-65)/2.4]) < 10

ESO.passive(jj,ii) = 1;

end

end

end

% 9-rectangular hole for column and corbel case study SET.bctype=11

case 9

ESO.passive = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y),abs(ii- center_x)] < half length

if max([abs(jj-24),abs(ii-65)]) < 24

ESO.passive(jj,ii) = 1;

end

end

end

end

%-1.7---CONCRETE-COVER-------------------------

switch (SET.covertype)

% 1-no concrete cover imposed

case 1

ESO.cover = zeros(ELEM.ny,ELEM.nx);

% 2-top and bottom cover

case 2

ESO.cover = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-1),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

ESO.cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

ESO.cover(jj,ii) = 1;

end

end

end

% 3-left and right cover

case 3

ESO.cover = zeros(ELEM.ny,ELEM.nx);

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-1)]) < SET.coverthick

ESO.cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-ELEM.nx)]) < SET.coverthick
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ESO.cover(jj,ii) = 1;

end

end

end

% 4-automatic cover around void elements

case 4

ESO.cover = zeros(ELEM.ny,ELEM.nx);

%function to fill ESO.cover is called inside the ESO code

% 5-automatic cover around void elements + top and bottom cover

case 5

ESO.cover = zeros(ELEM.ny,ELEM.nx);

%function to fill ESO.cover is called inside the ESO code

% 6-automatic cover around void elements + left and right cover

case 6

ESO.cover = zeros(ELEM.ny,ELEM.nx);

%function to fill ESO.cover is called inside the ESO code

% 7-automatic cover around void elements + top and bottom + left and right cover

case 7

ESO.cover = zeros(ELEM.ny,ELEM.nx);

%function to fill ESO.cover is called inside the ESO code

% 8-automatic cover around void elements + top and bottom + right cover

case 8

ESO.cover = zeros(ELEM.ny,ELEM.nx);

%function to fill ESO.cover is called inside the ESO code

end

%-2---INITIALIZATION-------------------------------------------------------

%-2.1---INITIALIZATION-GEOMETRY------------------

% creation of node and dof numbers

% - matrix of nodes numbers

NODE.n_mat = reshape(1:(1+ELEM.nx)*(1+ELEM.ny),1+ELEM.ny,1+ELEM.nx);

% - node number on bottom right corner

DOF.n_mat_col_1 = reshape(2*NODE.n_mat(1:end-1,1:end-1)+1,ELEM.nx*ELEM.ny,1);

% - matrix of dof numbers in the element

DOF.n_mat = repmat(DOF.n_mat_col_1,1,8)+repmat([0 1 2*ELEM.ny+[2 3 0 1] -2 -1],ELEM.nx*ELEM.ny,1);

% creation of matrix of nodes coordinates (order top to bottom, right to left)

[NODE.x_mat,NODE.y_mat] = ...

meshgrid(linspace(0,GEOM.lenght,ELEM.nx+1),linspace(0,-GEOM.height,ELEM.ny+1));

NODE.xy = [NODE.x_mat(:) NODE.y_mat(:)];

NODE.n = size(NODE.xy, 1);

% creation of connections of nodes for members (order top to bottom, right to left)

NODE.connect = [(DOF.n_mat(:,2)/2) (DOF.n_mat(:,4)/2) (DOF.n_mat(:,6)/2) (DOF.n_mat(:,8)/2)];

ELEM.n = size(NODE.connect, 1);

%-2.2---INITIALIZATION-INTEGRATION-SCHEME---------

% 2x2 point Gauss integr

GP.def = zeros(3,4);

GP.def(1,:) = 1.0; %weight of gp,

GP.def(2,1) = -1.0/sqrt(3.0); GP.def(3,1) = -1.0/sqrt(3.0); %eta and xi coord of gp

GP.def(2,2) = 1.0/sqrt(3.0); GP.def(3,2) = -1.0/sqrt(3.0);

GP.def(2,3) = 1.0/sqrt(3.0); GP.def(3,3) = 1.0/sqrt(3.0);

GP.def(2,4) = -1.0/sqrt(3.0); GP.def(3,4) = 1.0/sqrt(3.0);

%-2.3---INITIALIZATION-MESH-INDEPENDENCY-FILTER-----

for cycle=1:ESO.cycles

iH = ones(ELEM.nx*ELEM.ny*(2*(ceil(ESO.rmin(ESO.cycles))-1)+1)^2,1);

jH = ones(size(iH)); sH = zeros(size(iH)); k = 0;

for i1 = 1:ELEM.nx

for j1 = 1:ELEM.ny

e1 = (i1-1)*ELEM.ny+j1;

for i2 = max(i1-(ceil(ESO.rmin(cycle))-1),1):min(i1+(ceil(ESO.rmin(cycle))-1),ELEM.nx)

for j2 = max(j1-(ceil(ESO.rmin(cycle))-1),1):min(j1+(ceil(ESO.rmin(cycle))-1),ELEM.ny)

e2 = (i2-1)*ELEM.ny+j2; k = k+1;

iH(k) = e1; jH(k) = e2;
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sH(k) = max(0,ESO.rmin(cycle)-sqrt((i1-i2)^2+(j1-j2)^2));

end

end

end

end

ESO.H{cycle} = sparse(iH,jH,sH);

ESO.Hs{cycle} = sum(ESO.H{cycle},2); %the arrays needed for filtering are ESO.H and ESO.Hs

clear e1 e2 i1 i2 j1 j2 iH jH sH k cycle

end

%-3---OPTIMIZATION-LOOP----------------------------------------------------

for cycle=1:ESO.cycles

%-3.1--INITIALIZATION i-(th) ESO PROCEDURE-------------

iter = 0; change = 1.;

x{cycle}=startx{cycle};

vol=ESO.startvol(cycle);

%-3.2--START ITERATIONS FOR i-(th) ESO PROCEDURE-------

while change > ESO.conv_err(cycle)

%-3.2.1--volume and historical data

iter = iter + 1;

if iter >1

ESO.oldapha = ESO.alpha;

end

if cycle==2 && iter==1 && SET.covertype>1

%in first iter when it is applied cover don’t reduce volume by ER

else

vol = max(vol*(1-ESO.er(cycle)),ESO.volfrac(cycle));

end

%-3.2.2--fem analysis

[DOF.K, DOF.f, DOF.u, ELEM.KE1, ELEM.KE2]=...

FEM(ELEM,NODE,DOF,GEOM,GP,SET,MAT1{cycle},MAT2{cycle},x{cycle},y{cycle},ESO.penal);

%-3.2.3--postprocess for stress based eso criteria

if ESO.criteria(cycle) ~= 1

[GP.strains, GP.stresses, GP.xy]=POST(ELEM,NODE,DOF,GP, MAT1{cycle}, MAT2{cycle},x{cycle},ESO.penal);

end

%-3.2.4--sensitivity analysis

[ESO.alpha, SET] = ...

SENS(ELEM,DOF,GP,SET,ESO.criteria(cycle),x{cycle},mask{cycle},ESO.penal,ESO.penalmask,DPalpha,iter);

%calculate total objective function

ESO.obj(iter) = sum(sum(ESO.alpha));

%filtering sensitivities

ESO.alpha(:) = ESO.H{cycle}*ESO.alpha(:)./ESO.Hs{cycle};

%stabilizing sensitivities

if iter > 1

ESO.alpha = (ESO.alpha+ESO.oldapha)/2.;

end

%-3.2.5--enforce voids and solids

ESO.alpha(ESO.passive==1) = min(min(ESO.alpha));

ESO.alpha(ESO.passive==2) = max(max(ESO.alpha));

%for cases when concrete boundaries are not optimized (SET.boundaries==1)

%enforce voids and solids directly in x0

if iter==1 && SET.boundaries==1

x0(ESO.passive==1) = 0.001; %enforced voids by codes in section 1.6

x0(ESO.passive==2) = 1; %enforced solids by codes in section 1.6

end

%-3.2.6--enforce concrete cover

if cycle>1

if SET.covertype>=4

%compute automatic concrete cover (for cases SET.covertype>=4)

%and apply steel-free zone outside concrete boundaries (done inside function COVER)

[ESO.cover]=COVER(ELEM,SET,y,cycle);

else
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%concrete cover already set before (for cases SET.covertype<4)

%then only apply steel-free zone outside concrete boundaries

ESO.alpha(y{cycle}~=1)=min(min(ESO.alpha));

end

if cycle==2 && iter==1 %only the first iteration on 2 cycle it adjusts volume

removedsteel=0;

for indx=1:ELEM.n

%if there is steel inside concrete boundary and it needs to be

%deleted due to application of concrete cover in first iteration

if y{cycle}(indx)==ESO.cover(indx)

removedsteel=removedsteel+1;

end

end

%modify volume

vol=vol-removedsteel/ELEM.n;

end

%concrete cover is enforced overriding ESO.alpha

ESO.alpha(ESO.cover==1) = min(min(ESO.alpha));

end

%-3.2.7--beso design update

l1 = min(ESO.alpha(:)); l2 = max(ESO.alpha(:));

while abs((l2-l1)/(l1+l2)) > 1.0e-9

th = (l1+l2)/2.0;

x{cycle} = max(0.001,sign(ESO.alpha-th)) ;

if mean(x{cycle}(:)) - vol > 0

l1 = th;

else

l2 = th;

end

end

clear l1 l2 th

%-3.2.8--output results

%print results

if iter>10 && vol == ESO.volfrac(cycle)

%if minimum 10 iterations are performed and target volume has been reached

change=abs(sum(ESO.obj(iter-9:iter-5))-sum(ESO.obj(iter-4:iter)))/sum(ESO.obj(iter-4:iter));

end

disp([’ It.: ’ sprintf(’%4i’,iter) ’ Obj.: ’ sprintf(’%10.4f’,ESO.obj(iter)) ...

’ Vol.: ’ sprintf(’%6.3f’,sum(sum(x{cycle}))/(ELEM.nx*ELEM.ny)) ...

’ ch.: ’ sprintf(’%6.3f’,change )])

%plot design

if cycle ==1

colormap(gray); imagesc(-x{cycle}); axis equal; axis tight; axis off;pause(1e-6);

else

colormap(gray); imagesc(-y{cycle}); hold on; fingeom=imagesc(-x{cycle}); hold off;

alpha(fingeom,.6); axis equal; axis tight; axis off;pause(1e-6);

end

end %end of while loop of i-(th) ESO procedure

clear vol change iter

%-3.3---UPDATE-x-y-mask-WITH-i-(th)-ITERATION-CALCULATIONS-

%it is needed because x{1} x{2} etc. are calculated during the loops

startx=update_startx(x0,x);

y=update_y(x0,x);

mask=update_mask(x0,x);

end %end of for loop of the series of ESO optimizations

%-4--POST-PROCESSING-------------------------------------------------------

[GP.strains, GP.stresses, GP.xy]=POST(ELEM,NODE,DOF,GP, MAT1{cycle}, MAT2{cycle},x{cycle},ESO.penal);

% assign nan value to void elements for not printing stresses and strains of void parts

gp_id=0;

for i_element=1:ELEM.n

for gauss_point = GP.def
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gp_id = gp_id +1;

if y{cycle}(i_element)~= 1 %get the boundaries of the concrete

GP.stresses(gp_id,:) = nan;

GP.strains(gp_id,:) = nan;

end

end

end

clear DPalpha ii jj indx removedsteel gp_id cycle gauss_point i_element fingeom x0

% extract ux and uy in separate vectors, needed for deformed plots

NODE.ux = DOF.u(1:2:end);

NODE.uy = DOF.u(2:2:end);

% extract epsxx, epsyy and epsxy in separate vectors

GP.epsxx=GP.strains(:,1);

GP.epsyy=GP.strains(:,2);

GP.epsxy=GP.strains(:,3);

% extract sigmaxx, sigmayy and sigmaxy in separate vectors

GP.sigmaxx=GP.stresses(:,1);

GP.sigmayy=GP.stresses(:,2);

GP.sigmaxy=GP.stresses(:,3);

% compute principal stresses and von mises stress

GP.toumax = +sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma1 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumax ;

GP.toumin = -sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma2 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumin ;

GP.vonmises = sqrt(0.5*((GP.sigma1-GP.sigma2).^2+GP.sigma2.^2+GP.sigma1.^2));

% for plots with element averaged stresses

ELEM.epsxx = sum(reshape(GP.epsxx,4,ELEM.n))/4;

ELEM.epsyy = sum(reshape(GP.epsyy,4,ELEM.n))/4;

ELEM.epsxy = sum(reshape(GP.epsxy,4,ELEM.n))/4;

ELEM.sigmaxx = sum(reshape(GP.sigmaxx,4,ELEM.n))/4;

ELEM.sigmayy = sum(reshape(GP.sigmayy,4,ELEM.n))/4;

ELEM.sigmaxy = sum(reshape(GP.sigmaxy,4,ELEM.n))/4;

ELEM.sigma1 = sum(reshape(GP.sigma1,4,ELEM.n))/4;

ELEM.sigma2 = sum(reshape(GP.sigma2,4,ELEM.n))/4;

ELEM.vonmises = sum(reshape(GP.vonmises,4,ELEM.n))/4;

toc
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Finite Element Analysis function

% function to execute the finite element analysis and calculate displacements

function [K, f, u, KE1, KE2] = FEM(ELEM,NODE,DOF,GEOM,GP,SET,MAT1,MAT2,x,y,penal)

%-1---ASSEMBLE-K,f-MATRICES------------------------------------------------

% preallocate element matrices

K_e1 = zeros(8); K_e2 = zeros(8);

KEx = zeros(8,8,ELEM.n); KE1 = zeros(8,8,ELEM.n); KE2 = zeros(8,8,ELEM.n);

f_e1 = zeros(8,1); f_e2 = zeros(8,1);

% preallocate global vectors

f = sparse(NODE.n*2,1);

u = zeros(NODE.n*2,1);

% loop over all elements to get necessary data to assemble stiffness matrix

for iel=1:ELEM.n

% extract coordinates of the nodes of element considered

xy_el = NODE.xy(NODE.connect(iel,:),:);

% assemble

switch (SET.inttype)

% 1 numerical integration

case 1

% loop over integration points to assemble element matrix

for gauss_point = GP.def

% shape functions for 4-noded quad

N = zeros(4,1); dN = zeros(4,2);

a(1) =-1.0; a(2) = 1.0; a(3) = 1.0; a(4) =-1.0; % x locations of nodes

b(1) =-1.0; b(2) =-1.0; b(3) = 1.0; b(4) = 1.0; % y locations of nodes

xi = gauss_point(2);

eta = gauss_point(3);

N(:) = 0.25*(1.0 + a(:)*xi + b(:)*eta + a(:).*b(:)*xi*eta);

dN(:,1) = 0.25*(a(:) + a(:).*b(:)*eta);

dN(:,2) = 0.25*(b(:) + a(:).*b(:)*xi);

% transform derivatives from isoparametric configuration to global config.

J = xy_el’ * dN; % Note that J is the inverse of the usual J

jacobian = det(J); % determinant of Jacobian matrix

dN = dN/J; % transform derivatives to global system (=dN*inv(J))

% form B matrix

B = zeros(3, 8); %(8 = 2dof x 4nodes)

B(1, 1:2:end) = dN(:,1)’;

B(2, 2:2:end) = dN(:,2)’;

B(3, 1:2:end) = dN(:,2)’;

B(3, 2:2:end) = dN(:,1)’;

% form D matrix for material 1

D1 = zeros(3);

D1(1,1) = MAT1.lambda + 2*MAT1.mu; D1(2,2) = MAT1.lambda + 2*MAT1.mu;

D1(3,3) = MAT1.mu; D1(1,2) = MAT1.lambda; D1(2,1) = MAT1.lambda;

% form D matrix for material 2

D2 = zeros(3);

D2(1,1) = MAT2.lambda + 2*MAT2.mu; D2(2,2) = MAT2.lambda + 2*MAT2.mu;

D2(3,3) = MAT2.mu; D2(1,2) = MAT2.lambda; D2(2,1) = MAT2.lambda;

% compute matrix K_int and assemble K_e

dX = gauss_point(1)*jacobian;

K_int1 = B’*D1*B*dX*GEOM.thickness;

K_e1 = K_e1 + K_int1;

K_int2 = B’*D2*B*dX*GEOM.thickness;

K_e2 = K_e2 + K_int2;

% only for self weight problems, assemble f vector

Nmat = zeros(2, 8); % form N matrix

Nmat(1, 1:2:end) = N(:)’;

Nmat(2, 2:2:end) = N(:)’;

f_int1 = Nmat’*MAT1.bodyforce*dX*GEOM.thickness;

f_e1 = f_e1 + f_int1;
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f_int2 = Nmat’*MAT2.bodyforce*dX*GEOM.thickness;

f_e2 = f_e2 + f_int2;

end

% 2 analytical integration

case 2

k1=[ 1/2-MAT1.nu/6 1/8+MAT1.nu/8 -1/4-MAT1.nu/12 -1/8+3*MAT1.nu/8 ...

-1/4+MAT1.nu/12 -1/8-MAT1.nu/8 MAT1.nu/6 1/8-3*MAT1.nu/8];

K_e1 = MAT1.E/(1-MAT1.nu^2)* [k1(1) k1(2) k1(3) k1(4) k1(5) k1(6) k1(7) k1(8)

k1(2) k1(1) k1(8) k1(7) k1(6) k1(5) k1(4) k1(3)

k1(3) k1(8) k1(1) k1(6) k1(7) k1(4) k1(5) k1(2)

k1(4) k1(7) k1(6) k1(1) k1(8) k1(3) k1(2) k1(5)

k1(5) k1(6) k1(7) k1(8) k1(1) k1(2) k1(3) k1(4)

k1(6) k1(5) k1(4) k1(3) k1(2) k1(1) k1(8) k1(7)

k1(7) k1(4) k1(5) k1(2) k1(3) k1(8) k1(1) k1(6)

k1(8) k1(3) k1(2) k1(5) k1(4) k1(7) k1(6) k1(1)];

k2=[ 1/2-MAT2.nu/6 1/8+MAT2.nu/8 -1/4-MAT2.nu/12 -1/8+3*MAT2.nu/8 ...

-1/4+MAT2.nu/12 -1/8-MAT2.nu/8 MAT2.nu/6 1/8-3*MAT2.nu/8];

K_e2 = MAT2.E/(1-MAT2.nu^2)* [k2(1) k2(2) k2(3) k2(4) k2(5) k2(6) k2(7) k2(8)

k2(2) k2(1) k2(8) k2(7) k2(6) k2(5) k2(4) k2(3)

k2(3) k2(8) k2(1) k2(6) k2(7) k2(4) k2(5) k2(2)

k2(4) k2(7) k2(6) k2(1) k2(8) k2(3) k2(2) k2(5)

k2(5) k2(6) k2(7) k2(8) k2(1) k2(2) k2(3) k2(4)

k2(6) k2(5) k2(4) k2(3) k2(2) k2(1) k2(8) k2(7)

k2(7) k2(4) k2(5) k2(2) k2(3) k2(8) k2(1) k2(6)

k2(8) k2(3) k2(2) k2(5) k2(4) k2(7) k2(6) k2(1)];

end

% assemble f vector, only for selfweight problems

edof = DOF.n_mat(iel,:);

f(edof) = f(edof) + (f_e1 *x(iel)^penal + f_e2 *(1-x(iel)^penal))*y(iel)^penal;

% store K_e matrix of (iel)-th element on KE tensor

KEx(:,:,iel)=(K_e1(:,:)*x(iel)^penal+K_e2(:,:)*(1-x(iel)^penal))*y(iel)^penal;

KE1(:,:,iel)=K_e1(:,:); % used for sensitivity only

KE2(:,:,iel)=K_e2(:,:); % used for sensitivity only

% reset element matrix

K_e1(:) = 0.0; K_e2(:) = 0.0;

f_e1 = 0.0; f_e2 = 0.0; % only for selfweight problems

end

% assemble stiffness matrix

iK = reshape(kron(DOF.n_mat,ones(8,1))’,64*ELEM.nx*ELEM.ny,1);

jK = reshape(kron(DOF.n_mat,ones(1,8))’,64*ELEM.nx*ELEM.ny,1);

sK = reshape(KEx,64*ELEM.nx*ELEM.ny,1);

K = sparse(iK,jK,sK);

%-2---APPLY-BOUNDARY-CONDITIONS--------------------------------------------

fixeddofs=zeros(1,size(GEOM.bc,2));

i_dof=0;

for bc = GEOM.bc

if bc(2) == 0 % Neumann boundary conditions, forces

dof = 2*(bc(1)-1)+bc(3); % multiplied by 2 because 2 dof per node

f(dof) = f(dof)+bc(4); % it is added to selfweight if present

elseif bc(2) == 1 %Dirichlet boundary conditions, displacements

i_dof=i_dof+1;

dof = 2*(bc(1)-1)+bc(3); % multiplied by 2 because 2 dof per node

fixeddofs(1,i_dof)=dof;

u(dof) = bc(4); % assign value of displacement to fixed dof

else

disp(’Unkown boundary condition code’)

end

end

%-3---SOLUTION-OF-SYSTEM---------------------------------------------------

alldofs = (1:NODE.n*2);

freedofs = setdiff(alldofs,fixeddofs);
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%solve systems for free dof only; fixed dof are set when applying bc

u(freedofs) = K(freedofs,freedofs)\f(freedofs);
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Sensitivity Analysis function

% function used to get sensitivity numbers

function [alphamat,SET] = SENS(ELEM,DOF,GP,SET,criteria,x,mask,penal,penalmask,DPalpha,iter)

switch (criteria)

% 1-stiffness criteria

case 1

alphavec=zeros(1,ELEM.n);

for iiel=1:ELEM.n

alphavec(iiel)=0.5 * x(iiel)^(penal-1) * mask(iiel)^(penalmask)* ...

( dot(DOF.u(DOF.n_mat(iiel,:))’*ELEM.KE1(:,:,iiel) , DOF.u(DOF.n_mat(iiel,:)))-...

dot(DOF.u(DOF.n_mat(iiel,:))’*ELEM.KE2(:,:,iiel) , DOF.u(DOF.n_mat(iiel,:))) );

end

alphamat=reshape(alphavec,ELEM.ny,ELEM.nx);

% 2-von mises criteria

case 2

W=[1,1,0]’;

V=[1,-0.5,0; -0.5,1,0; 0,0,3];

GP.I1=GP.stresses*W;

GP.J2=1/3*sum(GP.stresses*V.*GP.stresses,2);

% calculate average stress on elem from values on gauss points

ELEM.J2vec = sum(reshape(GP.J2,4,ELEM.n))/4;

ELEM.J2mat = reshape(ELEM.J2vec,ELEM.ny,ELEM.nx);

alphamat=(sqrt(ELEM.J2mat)).*x.^(penal-1).*mask.^(penalmask);

% 3-drucker prager criteria

case 3

W=[1,1,0]’;

V=[1,-0.5,0; -0.5,1,0; 0,0,3];

GP.I1=GP.stresses*W;

GP.J2=1/3*sum(GP.stresses*V.*GP.stresses,2);

% calculate average stress on elem from values on gauss points

ELEM.I1vec = sum(reshape(GP.I1,4,ELEM.n))/4;

ELEM.I1mat = reshape(ELEM.I1vec,ELEM.ny,ELEM.nx);

ELEM.J2vec = sum(reshape(GP.J2,4,ELEM.n))/4;

ELEM.J2mat = reshape(ELEM.J2vec,ELEM.ny,ELEM.nx);

alphamat=(DPalpha*ELEM.I1mat+sqrt(ELEM.J2mat)).*x.^(penal-1).*mask.^(penalmask);

% 4-tensile stress criteria

case 4

% calculate principal stresses on gauss points

GP.toumax = +sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma1 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumax ;

GP.toumin = -sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma2 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumin ;

% calculate average stress on elem from values on gauss points

ELEM.sigma1vec = sum(reshape(GP.sigma1,4,ELEM.n))/4;

ELEM.sigma1mat = reshape(ELEM.sigma1vec,ELEM.ny,ELEM.nx);

ELEM.sigma2vec = sum(reshape(GP.sigma2,4,ELEM.n))/4;

ELEM.sigma2mat = reshape(ELEM.sigma2vec,ELEM.ny,ELEM.nx);

alphamat=( ELEM.sigma1mat+ELEM.sigma2mat...

+abs(min(min(ELEM.sigma1mat)))+abs(min(min(ELEM.sigma2mat))) )...

.*x.^(penal).*mask.^(penalmask);

% 5-transition from von mises to drucker prager criteria

case 5

W=[1,1,0]’;

V=[1,-0.5,0; -0.5,1,0; 0,0,3];

GP.I1=GP.stresses*W;

GP.J2=1/3*sum(GP.stresses*V.*GP.stresses,2);

% calculate average stress on elem

ELEM.I1vec = sum(reshape(GP.I1,4,ELEM.n))/4;

ELEM.I1mat = reshape(ELEM.I1vec,ELEM.ny,ELEM.nx);

ELEM.J2vec = sum(reshape(GP.J2,4,ELEM.n))/4;
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ELEM.J2mat = reshape(ELEM.J2vec,ELEM.ny,ELEM.nx);

if iter<=SET.translenght; SET.trans=iter; end

alphamat=(SET.trans/SET.translenght*DPalpha*ELEM.I1mat+sqrt(ELEM.J2mat))...

.*x.^(penal-1).*mask.^(penalmask);

% 6-transition from von mises to tensile criteria

case 6

W=[1,1,0]’;

V=[1,-0.5,0; -0.5,1,0; 0,0,3];

GP.I1=GP.stresses*W;

GP.J2=1/3*sum(GP.stresses*V.*GP.stresses,2);

% calculate principal stresses on gauss points

GP.toumax = +sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma1 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumax ;

GP.toumin = -sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma2 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumin ;

% calculate average stress on elem from values on gauss points

ELEM.I1vec = sum(reshape(GP.I1,4,ELEM.n))/4;

ELEM.I1mat = reshape(ELEM.I1vec,ELEM.ny,ELEM.nx);

ELEM.J2vec = sum(reshape(GP.J2,4,ELEM.n))/4;

ELEM.J2mat = reshape(ELEM.J2vec,ELEM.ny,ELEM.nx);

ELEM.sigma1vec = sum(reshape(GP.sigma1,4,ELEM.n))/4;

ELEM.sigma1mat = reshape(ELEM.sigma1vec,ELEM.ny,ELEM.nx);

ELEM.sigma2vec = sum(reshape(GP.sigma2,4,ELEM.n))/4;

ELEM.sigma2mat = reshape(ELEM.sigma2vec,ELEM.ny,ELEM.nx);

if iter<=SET.translenght; SET.trans=iter; end

alphamat=((1-SET.trans/SET.translenght)*(sqrt(ELEM.J2mat))...

+(SET.trans/SET.translenght)*( ELEM.sigma1mat+ELEM.sigma2mat...

+abs(min(min(ELEM.sigma1mat)))+abs(min(min(ELEM.sigma2mat))) ) )...

.*x.^(penal-1).*mask.^(penalmask);

% 7-transition from drucker prager to tensile criteria

case 7

W=[1,1,0]’;

V=[1,-0.5,0; -0.5,1,0; 0,0,3];

GP.I1=GP.stresses*W;

GP.J2=1/3*sum(GP.stresses*V.*GP.stresses,2);

% calculate principal stresses on gauss points

GP.toumax = +sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma1 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumax ;

GP.toumin = -sqrt((0.5*(GP.stresses(:,1)-GP.stresses(:,2))).^2+GP.stresses(:,3).^2);

GP.sigma2 = 0.5*(GP.stresses(:,1)+GP.stresses(:,2))+GP.toumin ;

% calculate average stress on elem from values on gauss points

ELEM.I1vec = sum(reshape(GP.I1,4,ELEM.n))/4;

ELEM.I1mat = reshape(ELEM.I1vec,ELEM.ny,ELEM.nx);

ELEM.J2vec = sum(reshape(GP.J2,4,ELEM.n))/4;

ELEM.J2mat = reshape(ELEM.J2vec,ELEM.ny,ELEM.nx);

ELEM.sigma1vec = sum(reshape(GP.sigma1,4,ELEM.n))/4;

ELEM.sigma1mat = reshape(ELEM.sigma1vec,ELEM.ny,ELEM.nx);

ELEM.sigma2vec = sum(reshape(GP.sigma2,4,ELEM.n))/4;

ELEM.sigma2mat = reshape(ELEM.sigma2vec,ELEM.ny,ELEM.nx);

if iter<=SET.translenght; SET.trans=iter; end

alphamat=((1-SET.trans/SET.translenght)*(DPalpha*ELEM.I1mat+sqrt(ELEM.J2mat))...

+(SET.trans/SET.translenght)*( ELEM.sigma1mat+ELEM.sigma2mat...

+abs(min(min(ELEM.sigma1mat)))+abs(min(min(ELEM.sigma2mat))) ) )...

.*x.^(penal-1).*mask.^(penalmask);

end
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Post-processing function

% function used to get stresses, strains at integration points

function [strainsGP, stressesGP, xyGP]=POST(ELEM,NODE,DOF,GP, MAT1, MAT2,x,penal)

strainsGP = zeros(4*ELEM.n,3) ; % strains at GP (e_xx, e_yy, e_xy)

stressesGP = zeros(4*ELEM.n,3) ; % stresses at GP (s_xx, s_yy, s_xy)

xyGP = zeros(4*ELEM.n,2) ; % location of GP

% GP are ordered in a single column from first to fourth, element after element

% loop over all elements to assemble stiffness matrix

gp_id=0;

for i_element=1:ELEM.n

% extract coordinates of the nodes of element considered

x_element = NODE.xy(NODE.connect(i_element,:),:);

% loop over integration points to assemble element matrix

for gauss_point = GP.def

gp_id = gp_id +1;

% shape functions for 4-noded quad

N = zeros(4,1); dN = zeros(4,2);

a(1) =-1.0; a(2) = 1.0; a(3) = 1.0; a(4) =-1.0; % x locations of nodes

b(1) =-1.0; b(2) =-1.0; b(3) = 1.0; b(4) = 1.0; % y locations of nodes

xi = gauss_point(2);

eta = gauss_point(3);

N(:) = 0.25*(1.0 + a(:)*xi + b(:)*eta + a(:).*b(:)*xi*eta);

dN(:,1) = 0.25*(a(:) + a(:).*b(:)*eta);

dN(:,2) = 0.25*(b(:) + a(:).*b(:)*xi);

% transform derivatives from isoparametric configuration to global config.

J = x_element.’ * dN; % Note that J is the inverse of the usual J

dN = dN/J; % transform derivatives to global system (=dN*inv(J))

% form B matrix

B = zeros(3, 8); %(8 = 2dof x 4nodes)

B(1, 1:2:end) = dN(:,1)’;

B(2, 2:2:end) = dN(:,2)’;

B(3, 1:2:end) = dN(:,2)’;

B(3, 2:2:end) = dN(:,1)’;

% form D matrix for material 1

D1 = zeros(3);

D1(1,1) = MAT1.lambda + 2*MAT1.mu; D1(2,2) = MAT1.lambda + 2*MAT1.mu;

D1(3,3) = MAT1.mu; D1(1,2) = MAT1.lambda; D1(2,1) = MAT1.lambda;

% form D matrix for material 2

D2 = zeros(3);

D2(1,1) = MAT2.lambda + 2*MAT2.mu; D2(2,2) = MAT2.lambda + 2*MAT2.mu;

D2(3,3) = MAT2.mu; D2(1,2) = MAT2.lambda; D2(2,1) = MAT2.lambda;

% compute locations of GP

xyGP(gp_id,:)=N’*NODE.xy(NODE.connect(i_element,:),:);

% compute strains on GP

strainsGP(gp_id,:)=B*DOF.u(DOF.n_mat(i_element,:));

% compute stresses on GP

stressesGP(gp_id,:)=D1*B*DOF.u(DOF.n_mat(i_element,:))*x(i_element)^penal+...

D2*B*DOF.u(DOF.n_mat(i_element,:))*(1-x(i_element)^penal);

end

end
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Automatic concrete cover function

% function to create automatic cover around empty elements

% It is needed to do it in separate function because it must be called

% inside the ESO loop and not before it, like other concrete cover cases

%ESO.cover is created based on positions of void determined in the first ESO loop so with x{1}

function [cover] = COVER(ELEM,SET,y,cycle)

switch (SET.covertype)

% 4-automatic cover around void elements

case 4

cover = zeros(ELEM.ny,ELEM.nx);

%for every element:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%check a close range of surrounding elements with radius = cover distance

covercheck1=0;

covercheck2=0;

for hh = 1:ELEM.nx

for kk = 1:ELEM.ny

%sqrt((kk - center_y)^2+(hh- center_x)^2) < half length

if sqrt((kk-jj)^2+(hh-ii)^2) < SET.coverthick +1

covercheck1=covercheck1+1; %total max area elements in close range

covercheck2=covercheck2+y{cycle}(kk,hh); %total real area in close range

end

end

end

%check if there are void elements in close range

if covercheck1==covercheck2

cover(jj,ii) = 0;

else

cover(jj,ii) = 1;

end

end

end

% 5-automatic cover around void elements + top and bottom cover

case 5

cover = zeros(ELEM.ny,ELEM.nx);

%automatic cover around void elements

%for every element:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%check a close range of surrounding elements with radius = cover distance

covercheck1=0;

covercheck2=0;

for hh = 1:ELEM.nx

for kk = 1:ELEM.ny

%sqrt((kk - center_y)^2+(hh- center_x)^2) < half length

if sqrt((kk-jj)^2+(hh-ii)^2) < SET.coverthick + 1

covercheck1=covercheck1+1; %total max area elements in close range

covercheck2=covercheck2+y{cycle}(kk,hh); %total real area in close range

end

end

end

%check if there are void elements in close range

if covercheck1==covercheck2

cover(jj,ii) = 0;

else

cover(jj,ii) = 1;

end

end

end
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%top and bottom

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-1),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

% 6-automatic cover around void elements + left and right cover

case 6

cover = zeros(ELEM.ny,ELEM.nx);

%automatic cover around void elements

%for every element:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%check a close range of surrounding elements with radius = cover distance

covercheck1=0;

covercheck2=0;

for hh = 1:ELEM.nx

for kk = 1:ELEM.ny

%sqrt((kk - center_y)^2+(hh- center_x)^2) < half length

if sqrt((kk-jj)^2+(hh-ii)^2) < SET.coverthick + 1

covercheck1=covercheck1+1; %total max area elements in close range

covercheck2=covercheck2+y{cycle}(kk,hh); %total real area in close range

end

end

end

%check if there are void elements in close range

if covercheck1==covercheck2

cover(jj,ii) = 0;

else

cover(jj,ii) = 1;

end

end

end

%left and right

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-1)]) < SET.coverthick

cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-ELEM.nx)]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

% 7-automatic cover around void elements + top and bottom + left and right cover

case 7

cover = zeros(ELEM.ny,ELEM.nx);

%automatic cover around void elements

%for every element:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%check a close range of surrounding elements with radius = cover distance

covercheck1=0;

covercheck2=0;
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for hh = 1:ELEM.nx

for kk = 1:ELEM.ny

%sqrt((kk - center_y)^2+(hh- center_x)^2) < half length

if sqrt((kk-jj)^2+(hh-ii)^2) < SET.coverthick + 1

covercheck1=covercheck1+1; %total max area elements in close range

covercheck2=covercheck2+y{cycle}(kk,hh); %total real area in close range

end

end

end

%check if there are void elements in close range

if covercheck1==covercheck2

cover(jj,ii) = 0;

else

cover(jj,ii) = 1;

end

end

end

%top and bottom

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-1),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

%left and right

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-1)]) < SET.coverthick

cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-ELEM.nx)]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

% 8-automatic cover around void elements + top and bottom + right cover

case 8

cover = zeros(ELEM.ny,ELEM.nx);

%automatic cover around void elements

%for every element:

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%check a close range of surrounding elements with radius = cover distance

covercheck1=0;

covercheck2=0;

for hh = 1:ELEM.nx

for kk = 1:ELEM.ny

%sqrt((kk - center_y)^2+(hh- center_x)^2) < half length

if sqrt((kk-jj)^2+(hh-ii)^2) < SET.coverthick + 1

covercheck1=covercheck1+1; %total max area elements in close range

covercheck2=covercheck2+y{cycle}(kk,hh); %total real area in close range

end

end

end

%check if there are void elements in close range
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if covercheck1==covercheck2

cover(jj,ii) = 0;

else

cover(jj,ii) = 1;

end

end

end

%top and bottom

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-1),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

if max([abs(jj-ELEM.ny),abs(ii-ELEM.nx/2)/ELEM.nx]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

%right

for ii = 1:ELEM.nx

for jj = 1:ELEM.ny

%max([abs(jj - center_y)/y_scale,abs(ii- center_x)/x_scale] < half length

if max([abs(jj-ELEM.ny/2)/ELEM.ny,abs(ii-ELEM.nx)]) < SET.coverthick

cover(jj,ii) = 1;

end

end

end

end
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Plot field (defined on element-level) script

% script to plot deformed mesh and a color plot linearly interpolated

% from values at the nodes

% -> component vector must be defined on elements!

% -> select factor=0 to plot undeformed mesh

% -> possible to set colorbar:

% setbar=1 - jet colormap - plot all range of values of field

% setbar=2 - jet colormap - remove stress concentrations (0.5% positive, 0.5% negative)

% setbar=3 - jet colormap - remove stress concentrations (0.5% positive)

% setbar=4 - jet colormap - remove stress concentrations (0.5% negative)

% setbar=5 - red/blue colormap - plot all range of values of field

% setbar=6 - red/blue colormap - remove stress concentrations (0.5% positive, 0.5% negative)

% setbar=7 - red/blue colormap - remove stress concentrations (0.5% positive)

% setbar=8 - red/blue colormap - remove stress concentrations (0.5% negative)

function plotELEMfield(ELEM,NODE,factor,component,setbar)

X = zeros(4,ELEM.n); UX = zeros(4,ELEM.n);

Y = zeros(4,ELEM.n); UY = zeros(4,ELEM.n);

profile = zeros(4,ELEM.n); %the vector used to assign colors

component = repmat(component,4,1); %information from element is copied to the 4 nodes

for iel=1:ELEM.n % for (iel)-th element:

nd=NODE.connect(iel,:); % - extract numbers of connected nodes

X(:,iel)=NODE.xy(nd,1); % - extract x values of the nodes

Y(:,iel)=NODE.xy(nd,2); % - extract x values of the nodes

UX(:,iel)=NODE.ux(nd’); % - extract ux values for the nodes

UY(:,iel)=NODE.uy(nd’); % - extract uy values for the nodes

profile(:,iel) = component(:,iel);

end

defoX = X+factor*UX;

defoY = Y+factor*UY;

% plotting the profile of a property on the deformed mesh

figure

plot(defoX,defoY,’k’)

colors=fill(defoX,defoY,profile);

title(’’);

axis equal ;

set(colors,’EdgeColor’,’none’);

%---set-colormap-----------------------------------------------------------

switch(setbar)

% 1 - jet colormap - plot all range of values of field

case 1

colormap(jet(16));

numpts = 17 ; % Number of points to be displayed on colorbar

cmax=max(max(profile));

cmin=min(min(profile));

caxis([cmin cmax]);

% 2 - jet colormap - remove stress concentrations (0.5% positive, 0.5% negative)

case 2

colormap(jet(16));

numpts = 17 ; % Number of points to be displayed on colorbar

% exclude highest values of stress concentrations from colorbar and colorplot

maxnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

minnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

profileclear = sort(profile(~isnan(profile))); %remove nan from vector and sort

cmax=max(max(profile))

cmax2 = profileclear(end-maxnum+1)

cmin=min(min(profile))

cmin2 = profileclear(minnum)

caxis([cmin2 cmax2]);

% 3 - jet colormap - remove stress concentrations (0.5% positive)

case 3
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colormap(jet(16));

numpts = 17 ; % Number of points to be displayed on colorbar

% exclude highest values of stress concentrations from colorbar and colorplot

maxnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

profileclear = sort(profile(~isnan(profile))); %remove nan from vector and sort

cmax=max(max(profile))

cmax2 = profileclear(end-maxnum+1)

cmin=min(min(profile));

caxis([cmin cmax2]);

% 4 - jet colormap - remove stress concentrations (0.5% negative)

case 4

colormap(jet(16));

numpts = 17 ; % Number of points to be displayed on colorbar

% exclude highest values of stress concentrations from colorbar and colorplot

minnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

profileclear = sort(profile(~isnan(profile))); %remove nan from vector and sort

cmax=max(max(profile));

cmin=min(min(profile))

cmin2 = profileclear(minnum)

caxis([cmin2 cmax]);

% 5 - red/blue colormap - plot all range of values of field

case 5

numpts = 20 ; % Number of points to be displayed on colorbar

cmax=max(max(profile));

cmin=min(min(profile));

caxis([cmin cmax]);

s=sign(profile);

n_pos=sum(s(:)==1)/4;

n_neg=sum(s(:)==-1)/4;

i1val=0;

i2val=0;

c_pos=round(abs(cmax)/(abs(cmax)+abs(cmin))*ELEM.n);

c_neg=round(abs(cmin)/(abs(cmax)+abs(cmin))*ELEM.n);

redmap=zeros(c_pos,3);

bluemap=zeros(c_neg,3);

for i1=1:c_pos

i1val=i1val+1;

redmap(i1,1)=0.9;

redmap(i1,2)=i1val/c_pos*0.9;

redmap(i1,3)=i1val/c_pos*0.9;

end

for i2=1:c_neg

i2val=i2val+1;

bluemap(i2,1)=i2val/c_neg*0.9;

bluemap(i2,2)=i2val/c_neg*0.9;

bluemap(i2,3)=0.9;

end

redmapflip = flipud(redmap);

redplusbluemap=cat(1,bluemap,redmapflip);

colormap(redplusbluemap);

% 6 - red/blue colormap - remove stress concentrations (0.5% positive, 0.5% negative)

case 6

numpts = 20 ; % Number of points to be displayed on colorbar

% exclude highest values of stress concentrations from colorbar and colorplot

maxnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

minnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

profileclear = sort(profile(~isnan(profile))); %remove nan from vector and sort

cmax=max(max(profile))

cmax2 = profileclear(end-maxnum+1)

cmin=min(min(profile))

cmin2 = profileclear(minnum)
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caxis([cmin2 cmax2]);

s=sign(profile);

n_pos=sum(s(:)==1)/4;

n_neg=sum(s(:)==-1)/4;

i1val=0;

i2val=0;

c_pos=round(abs(cmax2)/(abs(cmax2)+abs(cmin2))*ELEM.n);

c_neg=round(abs(cmin2)/(abs(cmax2)+abs(cmin2))*ELEM.n);

redmap=zeros(c_pos,3);

bluemap=zeros(c_neg,3);

for i1=1:c_pos

i1val=i1val+1;

redmap(i1,1)=0.9;

redmap(i1,2)=i1val/c_pos*0.9;

redmap(i1,3)=i1val/c_pos*0.9;

end

for i2=1:c_neg

i2val=i2val+1;

bluemap(i2,1)=i2val/c_neg*0.9;

bluemap(i2,2)=i2val/c_neg*0.9;

bluemap(i2,3)=0.9;

end

redmapflip = flipud(redmap);

redplusbluemap=cat(1,bluemap,redmapflip);

colormap(redplusbluemap);

% 7 - red/blue colormap - remove stress concentrations (0.5% positive)

case 7

numpts = 20 ; % Number of points to be displayed on colorbar

% exclude highest values of stress concentrations from colorbar and colorplot

maxnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

profileclear = sort(profile(~isnan(profile))); %remove nan from vector and sort

cmax=max(max(profile))

cmax2 = profileclear(end-maxnum+1)

cmin=min(min(profile));

caxis([cmin cmax2]);

s=sign(profile);

n_pos=sum(s(:)==1)/4;

n_neg=sum(s(:)==-1)/4;

i1val=0;

i2val=0;

c_pos=round(abs(cmax2)/(abs(cmax2)+abs(cmin))*ELEM.n);

c_neg=round(abs(cmin)/(abs(cmax2)+abs(cmin))*ELEM.n);

redmap=zeros(c_pos,3);

bluemap=zeros(c_neg,3);

for i1=1:c_pos

i1val=i1val+1;

redmap(i1,1)=0.9;

redmap(i1,2)=i1val/c_pos*0.9;

redmap(i1,3)=i1val/c_pos*0.9;

end

for i2=1:c_neg

i2val=i2val+1;

bluemap(i2,1)=i2val/c_neg*0.9;

bluemap(i2,2)=i2val/c_neg*0.9;

bluemap(i2,3)=0.9;

end

redmapflip = flipud(redmap);

redplusbluemap=cat(1,bluemap,redmapflip);

colormap(redplusbluemap);

% 8 - red/blue colormap - remove stress concentrations (0.5% negative)

case 8
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numpts = 20 ; % Number of points to be displayed on colorbar

% exclude highest values of stress concentrations from colorbar and colorplot

minnum=round(ELEM.n*0.005); %number of highest value to skip (0.5%)

profileclear = sort(profile(~isnan(profile))); %remove nan from vector and sort

cmax=max(max(profile));

cmin=min(min(profile))

cmin2 = profileclear(minnum)

caxis([cmin2 cmax]);

s=sign(profile);

n_pos=sum(s(:)==1)/4;

n_neg=sum(s(:)==-1)/4;

i1val=0;

i2val=0;

c_pos=round(abs(cmax)/(abs(cmax)+abs(cmin2))*ELEM.n);

c_neg=round(abs(cmin2)/(abs(cmax)+abs(cmin2))*ELEM.n);

redmap=zeros(c_pos,3);

bluemap=zeros(c_neg,3);

for i1=1:c_pos

i1val=i1val+1;

redmap(i1,1)=0.9;

redmap(i1,2)=i1val/c_pos*0.9;

redmap(i1,3)=i1val/c_pos*0.9;

end

for i2=1:c_neg

i2val=i2val+1;

bluemap(i2,1)=i2val/c_neg*0.9;

bluemap(i2,2)=i2val/c_neg*0.9;

bluemap(i2,3)=0.9;

end

redmapflip = flipud(redmap);

redplusbluemap=cat(1,bluemap,redmapflip);

colormap(redplusbluemap);

end

%---colorbar-setting-------------------------------------------------------

cbar = colorbar;

% title of the colorbar

set(get(cbar,’title’),’string’,’’);

% setting the values on colorbar

% get the color limits

clim = caxis;

ylim(cbar,[clim(1) clim(2)]);

int = linspace(clim(1),clim(2),numpts);

set(cbar,’YtickMode’,’manual’,’YTick’,int); % Set the tickmode to manual

for i = 1:numpts

imep = num2str(int(i),’%+3.2E’);

vasu(i) = {imep} ;

end

set(cbar,’YTickLabel’,vasu(1:numpts),’fontsize’,9);

%---other------------------------------------------------------------------

%{

% uncomment to plot nodes and elements numbers

for i1 = 1:ELEM.n

for i2 = 1:4

text(defoX(i2,i1),defoY(i2,i1), int2str(NODE.connect(i1,i2)),...

’fontsize’,8,’color’,’b’,’HorizontalAlignment’,’center’);

end

text(sum(defoX(:,i1))/4,sum(defoY(:,i1))/4,int2str(i1),...

’fontsize’,10,’color’,’k’,’HorizontalAlignment’,’center’) ;

end

%}
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