
Rosa E.S. Maessen

Department of Cognitive Robotic, TU Delft

Robotic Skill Mutation when
Propagating a Physical
Collaborative Task from
Robot-to-Robot.

M
as

te
r o

f S
ci

en
ce

 T
he

si
s

Robotic Skill Mutation when
Propagating a Physical

Collaborative Task from
Robot-to-Robot.

by

Rosa E.S. Maessen
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended on December 16th 2022.

Student number: 4564200
Master program: Robotics
Thesis committee: Dr. L. Peternel TU Delft, supervisor, chair

Prof. Dr. M. Wisse TU Delft, member
Dr. A. Seth TU Delft, external member
Dr. J.M. Prendergast TU Delft, added member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

This thesis, named “Robotic Skill Mutation when Propagating a Physical Collaborative Task from Robot-to-Robot”, is the
culmination of my research for my Master’s in Robotics at the Delft University of Technology. Over the course of the past
year, I have had the privilege of exploring the potential of skill mutation while conducting a collaborative sawing task. In the
final months of this research, I was able to take advantage of the KUKA LBR robots available at the university and apply my
method in a real-world setting. I had limited experience in programming robots for real-world applications before, so working
with these robots was incredibly valuable to my learning process.

The results of my research show that skill mutation does occur during the propagation of collaborative tasks. Additionally, I
gained insight into why this mutation occurs and recognised its potential benefits and risks. This thesis provides a thorough
overview of my research and results and a detailed discussion of the implications of my findings. I hope this thesis will be
useful for future researchers exploring skill mutation in a collaborative setting.

I am incredibly grateful to all of those who have contributed to making this research successful. I want to thank
Luka Peternel, my supervisor, for his consistent guidance and feedback during our weekly meetings. Micah Prendergast
deserves special mention for his technical support with the KUKA robots and for his willingness to discuss the project
during the final months of the thesis. Furthermore, I am thankful for the invaluable assistance from the PhD candidates of the
Cognitive Robotics department, who assisted me with the KUKA robots and provided insight into potential solutions. Lastly,
I extend my sincerest gratitude to my friends who have made graduating an enjoyable experience. They have provided me
with emotional support and constructive feedback, especially on my grammar, which has been invaluable in the completion
of my thesis. Without their support, this journey would not have been possible.

Rosa E.S. Maessen
Delft, December 2022

I

CONTENTS

Preface I

I Introduction 1

II Methodology 3
II-A Task and Robot Control . 3
II-B Skill Propagation . 4
II-C Learning Scheme . 4
II-D Skill Encoding . 5

III Experiment & Results 6
III-A Experimental Setup & Protocol . 6
III-B Metrics . 7
III-C Default Settings . 8
III-D Influence of the External Factors . 9

III-D1 Phase Lag . 10
III-D2 Overshoot on the Desired Trajectory . 11
III-D3 Joint States . 12
III-D4 Torque Limits . 13

III-E Reproducibility . 13

IV Discussion 14

V Conclusion 15

Appendix A: Validation Stiffness Scheme 18
A-A Reference Stiffness Scheme . 18
A-B Safety Margin Dynamic Motion Primitives . 19

Appendix B: Validation Dynamic Movement Primitive and Locally Weighted Regression parameters 20
B-A Gaussian Kernels . 21
B-B Gaussian Width . 21
B-C Dynamic Movement Primitive Gains . 22
B-D Forgetting Factor . 22

Appendix C: Experimental Setup 24
C-A Robot Control . 24
C-B Real World Setup . 25
C-C Simulation Setup . 25

Appendix D: Influence of External Factors on Mutation 27

Appendix E: Reproducibility of Mutations 29

Appendix F: Force Manipulability 30
F-A Calculation of Force Manipulability . 30
F-B Case Studies . 31

III

MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022 1

Robotic Skill Mutation when Propagating a
Physical Collaborative Task from Robot-to-Robot.

Rosa E.S. Maessen1
Supervised by: Luka Peternel1

Abstract—In this research, we examined the occurrence of
skill mutation when propagating a collaborative sawing task
from robot-to-robot. We conducted this research, to gain insight
into this mutation to understand the generation of potentially
beneficial or dangerous skills. Thirty propagation steps in sim-
ulation were conducted per experiment, each consisting of one
expert robot teaching a novice (learner) robot. To explore what
influences mutation, different external factors were changed, such
as the maximum stiffness of the robots, the base position of
the robots, the friction coefficient of the object and saw, and
the period span of one sawing movement. The robots were
controlled using a hybrid force/impedance controller, with the
impedance part responsible for the sawing movement. The goal
of the skill propagation was to teach the novice robot the
impedance controller inputs (desired trajectory and stiffness),
which is implemented through a three-staged learning process.
In stage one, the desired trajectory was learned by encoding
the measured trajectory using Dynamic Movement Primitive
(DMP) and Locally Weighted Regression (LWR), in stage two
the stiffness was learned by encoding the computed stiffness,
and in stage three the novice robot became an expert, able
to collaboratively execute the task. The results showed that
the skill varied over the different propagation step, therefore
proven the existence of skill mutation. It was found that the
biggest mutations were caused by a phase lag, overshoot on
the desired trajectory, differences in joint states, and reaching
torque limits. It was also found that environmental boundaries
limited the mutations. By comparing the results of the different
propagation steps of both different and the same conditions, it
was that the mutations were not reproducible. This is a result of
not being able to fix all external factors. We also identified the
benefits (skill useful for different settings or different tasks, and
energy efficiency) and dangers/drawbacks (high forces and skill
becoming useless for initial task) of the mutation.

Index Terms—Robotic skill mutation, skill propagation, col-
laborative task, robot-to-robot learning, periodic Dynamic Move-
ment Primitive (DMP) and Locally Weighted Regression (LWR).

I. INTRODUCTION

When many robots need to be programmed at once, the
conventional method of programming each robot individually
might not be practical. This is particularly true when, for
example, the robots are of different types or when they are
subject to different environmental constraints. A solution could
be to teach one robot a task, after which that robot can
propagate its skill to the other robots. This concept of skill
propagation is illustrated in Fig. 1. While each of the robots
could learn a nearly identical behaviour from their teacher,
skill propagation could also result in different behaviour.

1Department of Cognitive Robotics, Delft University of Technology, Delft,
The Netherlands.

???
run 0 0

?

?

??

?

? ?

0run 1

run 2

run 3

1

12 0

123 0

a) b)

c)

Pose A

Pose B

Pose C

x
z
O

x-pose Virtual Saw

run 0 run 1 run 2 run 3

time [s]

x-
po

se
 [m

]

−0.2

0.0

0.2

0 2 4 6 8 10 12 14

A
B

C

Fig. 1. Concept of illustration of robot skill propagation. a) Shows the process
of skill propagation using a sawing task. A human demonstrates the task to
a novice robot (robot 0, illustrated in red), who then collaboratively executes
the task with the human, which allows the robot to learn the task and become
an expert (illustrated in green). The robot is then able to propagate its learned
skill to other robots. b) Shows a sequence of images which indicate different
moments of the sawing movement. c) Shows a graphical representation of
the movement of the robot along the x-axis during 4 s of four different runs
(identified in image a). Points A, B and C refer back to the sequence of images
in b).

For example, the robot could learn to move to a desired
position using a different trajectory than what was taught by
their teacher. These differences would, ideally, improve the
performance of the task. Alternatively, these differences could
also lead to unsafe behaviour or the skill becoming useless
for the original task. For the latter, it is possible that the skill
would be useful for a different task. Mutation due to skill
propagation is the topic of this research.

Robot skill acquisition has been researched extensively in
literature, and many possibilities can be found. Up to the
1980s, manually programming the skill of the robot was the
most frequently used approach. Here, a code is created, usually
consisting of hundreds or even thousands of parts, which
combined describe the behaviour of the robot. Especially in
industrial settings where robots are required to perform a repet-
itive task, this method is still frequently used [1]. However,
the demand for humans to work alongside robots has increased
in recent years. Due to safety issues, the usage of manually

2 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

programmed robots has become an issue, as they are unable
to deal with unpredictable environments [2, 3]. In addition,
manually coding robots is not intuitive and time-consuming
[4]. Therefore, recent studies have focused on the possibility of
robotic learning, which allows the robot to learn and adjust its
skill by interacting with the environment and/or other agents.
Robotic learning also allows for the generalizability of the
skill, which means that the skill, learned in a specific setting,
could be exploited in other settings [5].

One widely studied approach, which allows for learning
from the environment, is Reinforcement Learning (RL). RL
uses a trial-and-error approach, where the environment is
explored in order to perform the desired task as accurately
as possible [6–9]. The learning of the robot is guided by a
human-defined cost or reward function that motivates the robot
to improve the task performance during the different iteration
steps. An example is the dart game, where a robot should
learn to hit a target on a board [10]. The reward of the robot
could then be dependent on the distance between the position
of the dart after throwing, and the target position. Reward
functions can also be discrete, where, for example, a positive
reward is given if a goal is reached and/or a negative reward
is given if the robot is not able to complete the task [11]. In
[12], a more complex reward function is used for a picking
task. In addition to the difference between the desired and
actual position, the approach also considered the amount of
reactive control needed to reduce the occurrence of irreversible
events like slipping. RL has the advantage of searching for
a solution without the need for human involvement, which
allows for the exploring of many possible solutions for a task.
However, this also has the downside that, especially during
the initial exploratory actions, unsafe behaviour both for the
robot and its environment can occur [11]. In addition, often
many iterations are needed until a solution is found, which
makes this approach data-extensive and time-consuming and
thus undesired for a real-world implementation. An alternative
approach that overcomes these limitations is Learning from
(human) Demonstration (LfD), which comes at the expense
of human involvement.

LfD, also known as Programming by Demonstration (PbD),
Imitation Learning (IL) and apprenticeship learning, uses (hu-
man) demonstrations to train an agent [3, 13–15]. The demon-
stration could be exerted by kinaesthetic teaching (guiding the
robot) [16–20], teleoperation (controlling the robot using an
external device) [21–23], or passive observation (observing the
execution of the expert and perform the task based on this
data) [24, 25]. A big advantage of this approach is that the
human can demonstrate safe skills directly. However, as the
robot learns directly from an expert, the skill is limited by
the ability of the expert to perform a task or provide a good
demonstration [14]. To tackle this issue, LfD can be combined
with an exploration-based method like RL [26, 27], which
can improve upon initial non-optimal human demonstrations.
However, these previous approaches were limited to single-
agent tasks and did not account for direct collaborative tasks.
In [28], a method was presented to teach the skill through
online collaboration, where a combination of demonstration
and optimisation is employed. The results of the experiments

conducted in this research showed variability in the behaviour
of the learning agent compared to the teacher. Therefore, one
can use this method to avoid the limitation posed by the ability
of the expert to perform the desired task.

We define this deviation of the skill between the novice
(learner) and the expert as skill mutation. In [28], the goal
was to learn an impedance control, consisting of a desired
trajectory and corresponding stiffness, in order to execute a
collaborative task involving physical interaction between two
agents. It could be observed that mutation occurred both for
the learned trajectory, describing the desired position of the
robot, and the stiffness of the robots, describing the influence
of the specific robot on the task. While it is visible that
new behaviour has emerged, this study has not explored the
underlying reasoning for these mutations. Therefore, there is
a knowledge gap in why skill mutation occurs during robot-
to-robot skill transfer. It is important to have insight into these
mutations to understand the generation of potentially beneficial
or dangerous skills.

To address this critical gap, we performed a study to explore
the mutation of skill when learning a collaborative task from
an expert online during task execution. The benefit of online
learning is the ability of the agent to adjust its skill based on
the interaction with the other agent, and the environment [29,
30]. Especially for a collaborative task, this is important, as
the execution only partially depends on the skill of one agent.
Instead, it depends on the interaction between both agents.
The following research question guided the investigation of
the skill mutation:

When a skill mutation results from doing robot-to-
robot learning, in what way does the skill mutate
and what causes this mutation?

To answer the research question, we investigated three sub-
parts. Firstly, we examined whether mutation occurs and, if so,
how it mutates. Secondly, we tested multiple external factors
to observe if, and if so, how they influence the mutation. The
factors discussed in Section III-D are as follows: the maximum
stiffness of an agent, the base position of the robot, the
period describing the time that one sequence of the movement
requires, and the friction force acting in the opposite direction
of the movement. Lastly, we investigated the repeatability of
the mutation when using the same conditions. The experiments
conducted to investigate each of these subjects are described
in Section III-A.

To better understand how the skill mutations occur, we
investigated the mutation of a robotic skill by performing
simulations and experiments on two KUKA LBR iiwa robots
performing and learning a collaborative sawing task. During
the initial propagation of the skill, one robot was an expert
while the other was a novice without skill. To teach the
novice robot the skill, we extended an online learning approach
based on [28]. After learning, the novice was assumed to have
become an expert, which was followed by this new expert
propagating its learned skill among other novice robots in a
similar manner.

3

Expert robot Novice robot

Hybrid
force/impedance

controller

Existing
skill

Hybrid
force/impedance

controller

Position
feedback

Force
feedback

Learning
system

Force
feedback

Position
feedback

Stage 1:
learn desired trajectory

Stage 2:
learn stiffness scheme

Stage 3:
execution stage

0 0 1 1 2 N

Three staged learning scheme

Control Robot

Skill Propogation

Fig. 2. Workflow of the skill propagation.The robot propagate its skill to
another by executing a collaborative task. The expert (teacher) robot is here
indicated in green, and the novice (learner) in red. To control the robots,
a hybrid force/impedance controller is used. The impedance part of this
controller makes use of either an existing skill (for the expert) or a three
staged learning scheme (for the novice). The three staged scheme consist of
a stage in which the desired trajectory is learned, one where the stiffness is
learned, and one where the learned skill is used to execute the task.

II. METHODOLOGY

In this research, a collaborative sawing task is used to
investigate the mutation of robotics skills during skill propa-
gation. The robot is controlled using a hybrid force/impedance
controller, where the force control is responsible for maintain-
ing contact with the environment, and the impedance control
for the sawing movement (Fig. 2). During the collaborative
execution of the sawing task, one novice agent will become an
expert. Therefore, it can propagate its learned skill to the next
robot, and so on. This skill propagation process is expanded in
Section II-B. To learn the sawing task, a three-staged learning
scheme is used (Section II-C). The goal of this scheme is to
learn the different elements of the impedance controller, which
are encoded using DMPs with LWR (Section II-D).

A. Task and Robot Control

This research uses a collaborative task, which should allow
for more variability in the learned skill. This variability is a re-
sult of not precisely dictating the movement of the robot during
learning, which is the case for the previously discussed demon-
stration methods (kinaesthetic teaching/teleoperation/passive
observation). In addition, the performance of the task is not
just affected by one agent, which makes the ability of the
agents to interact with one another a key factor of the task. For
this purpose, we use a collaborative sawing task. This task has
the advantage that the skill consists of a periodic movement,
which allows for the evolution of the mutation to be clearly
visible. In addition, it incorporates the interesting feature

of leader/follower behaviour that is periodically exchanged
during the execution. When executing the collaborative sawing
task, it is desired to have a high stiffness when pulling (leader)
and a low stiffness (high compliance) when pushing (follower)
in order to oppose each other in different stages [31].

The collaborative robots are controlled using a hybrid
force/impedance controller, which allows for the control of
the robot to be separated into two subspaces [32]. The force
controller ensured that the saw maintained contact with the
environment by exerting a specific amount of force. The
impedance controller was used to control the movement while
dealing with the uncertainties of the environment [31].

F control = F for + F imp, (1)

where F control is the control force resulting from the hybrid
controller, F for the force controller, and F imp the impedance
controller.

To maintain a desired force, a PI controller was imple-
mented. The PI is preferred over the PID controller when
the measured signal is noisy, which is the case of the force
readings as the saw interacts with the environment[31]. Since
digital controllers are implemented with discrete sampling
periods, a discrete form of the PI controller has been used

F for = KF
PeF +KF

I

nt∑
i=0

eF,i(t)∆t, (2)

eF = F d − F a, (3)

where eF describes the difference between the measured force
F a acting on the end-effector of the robot and the desired
force F d =−5N. The PI controller tuning values are set by
the diagonal matrices KF

P and KF
I . These matrices have non-

zero values on the diagonal of the axis being controlled, which
in the case of the sawing task is the z-axis in Cartesian space.

The impedance controller imposes a mass-damping be-
haviour, which maintains a relationship between the desired
position xd and velocity ẋd

F imp = K (xd − xa) +D (ẋd − ẋa) , (4)

where xa and ẋa represent the actual position and velocity of
the end-effector of the robot respectively, K is the stiffness
matrix, and D is the damping matrix. The stiffness and
damping matrices are diagonal matrices, which have non-zero
values on the diagonal for the axes desired to be controlled.
The goal of the learning process, described in Section II-C, is
to learn the desired position and the corresponding stiffness
matrix. The damping matrix is defined as a function of the
stiffness matrix to achieve a critically damped system [33].

The control force F control is defined in the Cartesian space,
however, the used robots are controlled at the robot’s joint
torque level and therefore need to be transformed using

τ = JT
r F control, (5)

where τ are torques send to the robot and Jr is the robot arm
Jacobian matrix. To account for the mass of the robot, a gravity
compensation function has been implemented. However, as
this is not the scope of the research, it is left out of the
remaining of this paper.

4 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

B. Skill Propagation

The process of skill propagation describes how one agent
passes a known skill to another agent, who then will pass it to
the next, and so on. One of these steps is implemented using
the three-staged learning scheme, as described in Section II-C.
While this research implements the steps of skill propagation
linearly (robot 1 teaches robot 2, robot 2 reaches robot 3, and
so on) for the sake of a controlled examination, the reality
would look like an exponentially growing tree, as shown in
Fig. 1a. This means that if robot 1 has taught robot 2 the task, it
will continue teaching robot 3, followed by robot 4, and so on.
We decided to use the linear process of skill propagation, as we
are interested in how the skill evolves over the different runs.
Using the exponential concept would limit this research, as we
would continuously investigate a similar step of propagation,
namely robot 1 teaching another robot. In addition, this also
makes the analysis of the skill mutation much more difficult,
as simply making this a function of the different propagation
steps would not be possible.

We decided to manually define the skill of the initial agent,
consisting of the desired trajectory and corresponding stiffness.
The reason for this is that this research focuses on robots
transferring their skill to another, not on the ability of a human
to transfer its skill to a robot. Therefore, in the rest of the
paper, skill propagation will only refer to the transfer of skills
between robots.

To define the desired trajectory xd of the initial robot, we
observed the movement exerted by humans in collaborative
sawing from previous studies [28, 34–36], and propose a
model that can replicate this behaviour. Since human sawing
movements exhibit a form of a periodic sinusoidal signal, we
define the mathematical model as

xd(ϕ) =

√
1 + n2

1 + n2x2
sin(ϕ)

xsin(ϕ)
∆x0

2
, (6)

xsin(ϕ) = sin

(
2π

τ
t

)
, (7)

where n = 0.5 is a constant responsible for “flattening out”
the sine function, τ =2 s is the period of the signal, and
∆x0 =0.15m the initial stroke displacement. The last two
values were defined based on the results of [28].

In literature, it was found that the human was exerting a
leader/follower behaviour allocated with the pushing/pulling
motion respectively in a reciprocal manner [28, 31]. Therefore,
we propose to define the stiffness as a function of the time
derivative of the trajectory, the velocity ẋd. When the velocity
is negative, a high stiffness (Kmax) is applied, as the robot
should be pulling. When the velocity is positive, the robot
should push so the stiffness is set to zero, which means the
robot is compliant

K =

{
Kmax if ẋd ≤ 0,

0 if ẋd > 0.
(8)

C. Learning Scheme

For the robot to obtain the skill needed for the sawing task, a
three-staged learning scheme based on [28] was implemented.
This method assumes that there are two agents: a novice who
has no knowledge of the skill and an expert who is already
skilled. Both are, for this research, always assumed to be
robots. The skill of the robot consists of the impedance part
of the hybrid controller (4). Therefore, the goal is to learn
the desired inputs of the impedance controller: the desired
trajectory and the corresponding stiffness scheme. The desired
trajectory is learned in stage 1 of the learning scheme, and the
corresponding stiffness scheme in stage 2. As the aim is to
learn a periodic sawing movement, the desired trajectory and
stiffness can be defined as a function of the phase ϕ ∈ [0, 2π].
This phase dictates the current progress of the robot during a
sawing movement. For example, at the starting position of the
motion (x = 0.0m) ϕ = 0 rad. For the initial sawing motion,
where the expert is manually programmed using (6) and (8),
when ϕ = 0.5π rad the saw is closest to the expert and when
ϕ = 1.5π rad the saw is closest to the novice. Once the phase
reaches 2π rad, the saw returns to its original position, and the
cycle begins again. A full sawing movement from ϕ = 0 rad
to ϕ = 2π rad is referred to as one period. An example of an
implementation of this learning scheme has been provided in
Fig. 3. In this example, Fig. 3a indicates the current stage of
the learning scheme.

The goal of the first stage is to learn the desired trajectory.
During this stage, the novice robot will be compliant, meaning
its stiffness equals zero. In contrast, the expert robot will have
a high, constant stiffness, which allows it to be the leader
and thus control the movement. As both robots are holding
the saw, an interaction force will result in the novice robot
following a similar trajectory as the expert. This has been
visualised in the Fig. 3b, where it could be observed that
the measured trajectory of the novice is almost identical to
the negative projection of the expert’s measured trajectory. To
obtain the desired trajectory, the position of the end-effector
of the novice is measured. This measured trajectory in the first
stage will be encoded as the desired trajectory for the second
stage using the encoding method described in Section II-D.

The goal of the second stage is to learn a stiffness scheme by
encoding the desired stiffness. The expert robot is controlled
using its known skill consisting of a desired trajectory and
stiffness scheme, in other words, its known impedance con-
troller. The novice robot will use its desired trajectory, learned
in the previous stage, and the measured trajectory to compute
a stiffness scheme. In this stage, the stiffness used to control
the motion of the novice robot is the desired stiffness instead
of the encoded stiffness. This is because results have proven
that the learning algorithm can provide quite large values for
the stiffness initially, which could mean that the behaviour
becomes unsafe.

In this research, the desired stiffness Kd is computed using a
continuous function. This function is based on the difference
between the desired xd (learned in stage 1) and actual xa

position (measured) of the end-effector of the robot,

5

E des

E meas

N des

N meas

Actual

DMP

st
ag

e
x

[m
]

K
E [

N
/m

]
K

N
 [N

/m
]

er
ro

r [
m

]

time [s]

1

2

3

−0.1

0.0

0.1

0

500

1000

0

500

1000

-0.05

0.00

50 2.5 7.5 12.5 17.5 22.5 27.510 15 20 25 30

a)

b)

c)

d)

e)

1 2 3

Fig. 3. Example of a three-staged learning scheme, used for the propagation of a skill from one robot to another. The sequence of images above the graph
shows the movement of the robots during the three different stages. a) Shows the stage of the learning process as described in Section II-C. b) Shows the
desired xd and the measured xa trajectory of both the expert (E) and novice (N) robot, which is learned using DMP and LWR. c) Shows the stiffness of the
expert robot. d) Shows the actual stiffness of the novice, used to control the motion of the novice robot, and the encoded stiffness by means of DMP. In stage
2, the novice robot is controlled using the desired stiffness computed using (9), and in stage 3, the novice robot is controlled using the encoded stiffness,
making the actual and the encoded stiffness the same. e) Shows the error between the measured and desired position of the novice robot, based on which the
desired stiffness is computed (9).

Kd(ϕ) =


(

|e(ϕ)|
eth

)2
Kmax if |e(ϕ)| > eth,

Kmax if |e(ϕ)| ≥ eth,
(9)

e(ϕ) = xd(ϕ)− xa(ϕ) (10)

where eth is the threshold of the error, and Kmax the
maximum stiffness value. The maximum stiffness has the
same value as the stiffness used by the expert in stage 1.
Previous work [28] implemented a discrete function Kd that
was set to either the maximum value or zero depending
on whether the error exceeded or was below the threshold,
respectively. In this research, the filtering done by the encoding
method resulted in the discrete reference stiffness becoming
continuous. It is possible that the filtering gives bad results. As
we cannot control this resulting stiffness, we decided that using
a continuous scheme would be more suitable. A comparison
of the effects of both schemes can be found in Appendix A-A.

The third stage is used to demonstrate the learned behaviour,
using the learned trajectory and stiffness obtained in the
previous two stages. During this stage, the novice and the
expert robot will use their known trajectory and stiffness
scheme as inputs for their impedance controller. Before this
stage, the novice robot has completed the learning, meaning
that two experts are now working together to execute the task.

We discovered that a shift in the stiffness scheme occurred
in some cases when transitioning from the learning stage (stage

2) to the execution stage (stage 3). This shift increased or
decreased the average value of the entire stiffness scheme.
It occurred when the time derivative of the stiffness was
relatively high. An example of this shift can be seen in Ap-
pendix A-B. To prevent this, we propose implementing a safety
regulation that requires the absolute slope of the stiffness not
to exceed 15 for each of the past five measurements.

D. Skill Encoding

Periodic Dynamic Movement Primitive (DMP) [37–39] was
selected to encode the skill of the robot. DMP allows for online
encoding of trajectories following a rhythmic motion, making
it a suitable choice for the periodic sawing task. The difference
compared with the discrete variant of the DMP is that the
discrete variant only allows for point-to-point learning and is
therefore not useful for the sawing task.

The DMP for a single DoF trajectory y, is defined by a set
of nonlinear differential equations

ż = Ω(α(β(−y)− z) + f(ϕ)), (11)
ẏ = Ωz, (12)

τ ϕ̇ = 1, (13)

where Ω is the frequency, z the auxiliary variable, α and β
are positive parameters defining the behaviour of the second
order system, which are set to 8 and 2 correspondingly, ϕ
the phase, and τ the time of one period. To ensure a smooth

6 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

behaviour, the initial phase (ϕ = 0) must be equal to the final
one (ϕ = 2π).

The forcing term f(ϕ) is defined with N = 50 Gaussian
kernel functions (Ψi(ϕ)), which allow for a smooth trajectory

f(ϕ) =

∑N
i=1 Ψi(ϕ)wir∑N

i=1 Ψi(ϕ)
, (14)

Ψi(ϕ) = exp (h (cos (ϕ− ci)− 1)) , (15)

where ci are the centres of the Gaussian basis functions
distributed along the phase of the movement, hi their widths
which have been set to 0.05, and wi the weights to be learned.
The parameter r can be used to modulate the amplitude of the
periodic signal. If this is not used, which is the case for this
research, it can be set to r = 1 [40].

To learn the forcing term f(ϕ), one could invert (11) and
use a measured demonstrated trajectory yd(tj) and its time
derivatives ẏd(tj) and ÿd(tj). In the case of the sawing task,
this demonstrated trajectory is the actual pose of the end-
effector when learning the desired trajectory in stage 1 or
the computed stiffness when learning the desired stiffness in
stage 2 (Section II-C). This result in the desired shape fd to
be approximated by

fd (tȷ) =
ÿd (tj)

Ω2
− α

(
β (−yd (tȷ))−

ẏd (tȷ)

Ω

)
. (16)

In order to learn the weights wi of the DMP, a Locally
Weighted Regression (LWR) is used, as it is suitable for
online learning due to its ability to quickly update the model
[28, 39]. This method update the weights using recursive least-
squares method, which is based on the error er ((18)) between
the desired trajectory shape fd and the currently learned
trajectory shape, as well as a forgetting factor λ = 0.995 which
determines the rate of weight change

wi (tȷ+1) = wi (tj) + ΨiPi (tȷ+1) rer (tj) , (17)

er (tj) = fd (tj)− wi (tj) r, (18)

Pi (tȷ+1) =
1

λ

(
Pi (tȷ)−

Pi (tȷ)
2
r2

λ
Ψi

+ Pi (tȷ) r2

)
. (19)

The initial values of the parameters are set to Pi(t0) = 1 and
wi(t0) = 0. Once learning is complete, the learned weights
can be saved in order for the DMP to be used at a different
time, for example, during the next skill propagation step.

We conducted an experiment to validate the values used for
the parameters of the DMP and LWR. This has been described
in Appendix B.

III. EXPERIMENT & RESULTS

In this chapter, we present the experiments conducted and
their results. The first section will entail a description of the
experimental setup and the protocol used. This is followed
by a description of the metrics employed to analyse the
results: the peak-to-peak amplitude/stroke displacement, the
travelled distance, the midpoint of movement, the average
value/stroke offset, and the number of peaks. In Section III-C,
the results of the experiments using the default settings will

be presented, followed by the results of changing the external
factors (maximum stiffness, configuration, period, and friction
coefficient) in Section III-D.

Initially, the task was implemented in the real world. We
found that one skill propagation step (also referred to as
one run) would take roughly 5 minutes. This time included
mounting the object, setting the robots into the correct initial
position, launching the control, and carrying out the col-
laborative sawing task. We decided to carry out 30 steps
for each tested setting, as the resultsf(ϕ), using the default
settings, showed that the most interesting mutation features
occurred during the first 20 runs. Therefore, 30 runs would
allow enough time to evaluate the most interesting mutations.
We refer to these runs as one trial, which would take ap-
proximately 2.5 hours to execute. As we are also interested
in the reproducibility of the mutation, we decided that each
trial should be executed 5 times. Therefore, this experiment
would take approximately 12.5 hours. However, these 12.5
hours only give results for one parameter setting. As we are
also interested in how changing these settings would affect
the mutation, multiple additional trials should be conducted.
In total, we tested 20 different settings, which in the real-
world would take approximately 250 hours. In addition, the
real-world setup also requires an object to be sawn for the
30 runs × 5 trials × 20 settings = 3000 different propagation
steps. Besides these time and resource limitations, another
disadvantage is that it could not be promised that skill propaga-
tion would not lead to unsafe behaviour. This unsafe behaviour
has a high potential of arising after multiple propagation steps,
as each step allows for the skill to deviate further, resulting in a
skill that can be quite different from the initial one. Therefore,
we decided to execute the runs in simulation. An additional
advantage of using a simulation is that the external factors can
be fixed, which allows for a more controlled investigation of
their influence on the mutation. Gazebo is used to simulate the
robots interacting with their environment, and Robot Operating
System (ROS) as a tool to control the robots. This setup is
described in Appendix C.

A. Experimental Setup & Protocol

Multiple experiments have been conducted to investigate
the mutation during skill propagation. During each of these
experiments, the goal was the same; The propagation of
the sawing skill from the expert to the novice robot, using
the three-staged learning scheme which will be presented in
Section II-C. One execution of the skill propagation using this
learning scheme is referred to as a run. Each stage of the
learning takes 10 s, resulting in a total time of 30 s per run.
The entire skill propagation process (robot 1 teaching robot 2,
teaching robot 3, etc.), is called a trial. In this research, we
conducted 5 trials per experimental setting, each consisting of
30 runs.

The experiments are split into two groups: the group using
the default setting of the external factors, and the group with
changed values for the external factors. The external factors
tested are presented in Table I, which also shows their default
settings. Each factor was changed individually to investigate

7

TABLE I
THE EXTERNAL FACTORS TESTED, AND THEIR DEFAULT SETTINGS.

Factor Variable Value

Maximum stiffness Kmax 1100Nm−1

Base position - Both at y= 0.4m
Period τ 2.0 s
Friction coefficient µ 0.0

whether changing these values would influence the mutation,
and if so, how. This meant that each factor would be set to
their default value during this group of experiments, except
the one being investigated.

The default setting is used for three purposes: 1) To in-
vestigate whether mutation occurs and, if it occurs, why. 2)
As a baseline, which is used to compare the influence of the
changed external factors. 3) To show whether the mutation is
repeatable.

For the external factor group, we only set one factor to a
non-default value during each trial. This allows the isolation of
the factors, resulting in a controlled examination of their effect
on skill mutation. By comparing the results with the default
setting, we can investigate which factors do or do not influence
the skill mutation. If no difference is observed, we can assume
that the effect on the overall mutation is minimal. As for the
default setting, each changed factor is tested using 5 trials. An
example of a changed external factor, is the time of one period
(τ). In addition to the default settings, we investigated two
different settings (τ=1 s and τ=3 s), resulting in a total of 10
trials. Besides the four factors shown in Table I, six additional
external factors were tested; however, they have proven to be
less significant and are therefore discussed in Appendix D.

We implemented sawing experiments with the KUKA LBR
iiwa7 and KUKA LBR iiwa14 robots in the real world and a
simulation environment. From now one, these robots will be
referred to as the iiwa7 and iiwa14, respectively. To control
the robots, we used ROS, an open-source robotics framework
that enables robots to interact with their environment [41]. An
overview of the control structure is provided in Appendix C-A.
As the real-world and simulated setups have different require-
ments, they are discussed separately.

For the real-world implementation, we used a BAHCO
metal saw featuring handles on two sides so that both robots
could hold it. The saw is attached to the robot with a 3D-
printed clamp, which is mounted to the robot. The object to
be sawn is a wooden plank. A visualisation of this setup has
been provided in Appendix C-B.

We simulated the motion and interaction of the robots using
Gazebo. The saw was modelled as a rectangular object that
weight was distributed equally along its length. It was attached
to the robot’s end-effector through a virtual joint, preventing
it from dropping. The object that was sawn had a size of
0.565 x 1.0 x 0.1m, with a grove in the middle along the x-
axis with a depth of 0.3m and a width similar to the saw.
This constraint the movement of the saw along the y-axis on
both sides and towards the bottom along the z-axis. We did not
consider that parts of the object would be sawn away, resulting
in an increased depth of the grove. Instead, this depth remained

time [s]

 Average/
 stroke offset

Travelled distance

Midpoint

Peaks

Ampltidue/
stroke
displacement

Fig. 4. Graphical representation of the used metrics. The metrics are
defined as follows: peak-to-peak amplitude/stroke displacement (difference
between maximum and minimum value), travelled distance (total distance
of trajectory), the midpoint of movement (between maximum and minimum
value), average value/stroke offset, and the number of peaks.

the same throughout the sawing motion. This was done as this
research did not focus on the robot’s ability to saw an object.
A visualisation of this setup has been provided Appendix C-C.

B. Metrics

To analyse both the skill of the robot (desired trajectory
and stiffness) and outputs (e.g., forces on end-effector, joint
torques, and joint angles) we defined multiple metrics, of
which a graphical representation has been provided in Fig. 4.
As we are interested in the evolution of the skill throughout
the different runs, we defined these metrics as a function of
the different runs. To do so, we computed the value per metric
over the span of one period. If the signal to be investigated
consisted of a time longer than one period, we took the
average per period as a result. For example, if one is to
investigate the desired trajectory during stage 1, then the
result would be the average of 10 s/(τ=2.0 s) = 5 periods. As
discussed, each experiment consists of 5 trials. Therefore, the
results are shown as the average of the five trials (per run)
and their standard deviation. This additionally allows for the
investigation of the repeatability of the skill, as a low standard
deviation means that the main trends occurring in the different
mutations are similar.

Peak-to-peak amplitude/stroke displacement: The dis-
tance between the maximum and minimum value of a sig-
nal over one period is called the peak-to-peak amplitude
|max(x(ϕ)) − min(x(ϕ))|. When discussing the measured
or desired trajectory, this metric is referred to as the stroke
displacement.

Travelled distance: The distance travelled by the end-
effector of the robot in during one period

∫ 2π

0
|δx(ϕ)dϕ|. This

metric is only used to investigate the trajectory and does not
have a general name.

Midpoint of the movement: The point halfway between the
maximum and minimum value (max(x(ϕ)) + min(x(ϕ)))/2
As this metric is only used to investigate the trajectory, no
general name exists. In the case of the default settings, the
base of the iiwa7 and iiwa14 are located at x = −0.7m
and x = 0.7m, respectively. A value for the movement’s
midpoint equal to 0.0m would mean that the midpoint was
right between these robots. An increase in this value means
that the midpoint is shifted towards the iiwa7, whereas a
decrease means it is shifted towards the iiwa14.

8 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

run 0 run 2 run 4 run 6 run 10 run 20 run 30

x d
[m

]
K

 [N
/m

]
x a

[m
]

F N
 [N

]

F E
[N

]

time [s]

Novice

Expert

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.2

0.0

-0.2

1000

500

0
0.2

0.0

-0.2
100

-100

0

200

-200

0F

O

O

xa

K

O

xd

O

a)

b)

c)

d)

Fig. 5. The skill evolution of the expert and novice robots showed using one period of stage 3 of the learning scheme for different runs. On the left, four
images describing the different component has been visualised. In the graph, from left to right, different runs are shown from one trial. Note here that the
runs are not linearly spaced from 0 to 30. Each of the graphs a)-d) show both the results of the novice (blue) and expert (green). From top to bottom; a)
Visualises the desired trajectory xd, here means a high value that the end-effector of the robot is further away from the robot’s origin. b) Shows the stiffness
scheme. c) Illustrates the actual trajectory xa of the robots. d) Shows the forces sent to the robot, where the left axis is used to show the forces of the novice
robot and the right axis the forces of the expert robot.

Average value/stroke offset: The average value of the data
(t2π − t0)

−1
∫ 2π

0
x(ϕ)dϕ. It should not be confused with the

average named before, which describes the average per run.
When discussing the measured or desired trajectory, this metric
is referred to as the stroke offset. Just as for the midpoint of the
movement, a value higher and lower than 0.0m indicate that
the movement is closer to the iiwa14 and iiwa7, respectively.

Number of peaks: The number of peaks illustrates the
complexity of the data, meaning a large number of peaks
states that the signal is more complex than a low number.
Note that for stiffness, a flattened peak is often found where
the maximum stiffness was reached. These “flattened” peaks
are counted as only one.

Besides these objective metrics, we also analysed the data
qualitatively by using the raw data to investigate the evolution
of the skill. In contrast to the previously discussed metrics,
the raw data is a function of time rather than a function of the
different runs.

C. Default Settings

In this section, the mutation of the skill of a robot will be
discussed using the default settings as defined in Table I. A
quantitative analysis of the mutation in skill of both the expert
and novice robot, has been visualized in Fig. 5. This graph
shows one period of the learned skill (stage 3) for multiple
runs of one trial.

The desired trajectory xd (Fig. 5a), learned in stage 1, shows
an increase in stroke displacement throughout from run 0 to
run 6, after which it stagnates. This stagnation is confirmed
when looking at the analysis of the stroke displacement in
Fig. 6a. The stagnation of the stroke displacement results from
reaching the environment’s boundaries, i.e. the saw is touching

St
ro

ke
di

sp
.[m

]
Tr

av
el

le
d

di
st

. [
m

]
M

id
po

in
t

[m
]

St
ro

ke

of
fs

et
 [m

]

run [-]

0.2

0.4

0.50
0.75

0.00

0.03

-0.03

0.00

0.03

0 10 3020

a)

d)

c)

b)

Fig. 6. Analysis of the desired trajectory learned by the novice robot in stage
1 of the learning scheme. Different metrics are used for this analysis. a)-d)
Illustrate the stroke displacement, the travelled distance, the midpoint of the
movement, and the stroke offset, respectively.

the object it is sawing. This limit is at 0.45m, which is equal
to the length of the saw. There is a similar pattern visible for
the distance travelled (Fig. 6b). Based on these metrics, we
could assume that the desired trajectory is smooth with only
one peak. This is substantiated by looking at Fig. 5a.

The results of the midpoint and the stroke offset of the
desired trajectory (Fig. 6C and D) show similar patterns. Based
on this and the results in Fig. 5, it can be concluded that the
general motion characteristics in one direction are similar to
the other direction. If these were different, the stroke offset
would be shifted compared to the midpoint of the movement.
Upon further analysis, it is evident that the stroke offset has
a zigzag pattern; In the even-numbered runs, the stroke offset

9

Av
er

ag
e

[N
/m

]

Pe
ak

s
[-]

400
600
800

1000

2

3

4

run [-]
0 10 3020

a)

b)

Fig. 7. Analysis of the stiffness learned by the novice robot in stage 2.
Different metrics are used for this analysis. a) Shows the average value of the
stiffness scheme. b) Shows the number of peaks per period.

moves down (compared to the prior run), which indicates that
the movement is shifted towards the iiwa7 robot. Moreover,
in the odd-numbered runs, the stroke offset moves up, which
indicates that the movement is shifted towards the iiwa14
robot. As the role of the expert robot is switched between
the two with each run, we found that the movement is always
directed towards the expert robot.

Analysing the stiffness K of the robots (Fig. 5b) shows that
initially, there was a pattern of high stiffness when pulling
and low stiffness when pushing, which is logical as this is
the manually defined input we gave to the expert in the first
run ((6) and (8)). This pattern, however, starts to disappear
in the following runs (run 2) and has eventually completely
disappeared (run 4). By analysing the stiffness learned by the
novice in stage 2 (Fig. 7), we see that the stiffness’s average
value increases throughout the different runs. The raw data
showed that in the later runs, the error between the desired
and measured position of the robot increased. As the computed
stiffness depends on this error (9), the stiffness was often set
to its maximum value. Therefore, peaks only occurred when
the desired trajectory crossed the measured trajectory, which
for most cases was only twice. The complexity of the stiffness
will be further discussed in Section III-D.

The task execution, a result of the learned skill (desired
trajectory and stiffness) and the collaboration between the
robots, has been presented in Fig. 5c by means of the measured
position. Comparing the desired and measured positions shows
that they are different. This is partial because in stage 3, both
robots try to control the movement, whereas in stage 1, when
the desired trajectory was learned, only the expert controlled
the robot’s movement. Another reason has been indicated in
Fig. 3b, which shows the difficulty for the expert robot to
match the desired trajectory in stage 1. This results from
the impedance control law (4), which requires a difference
between the desired and measured trajectory to compute a
force. In runs 10 and 20 (Fig. 5), we see that this results in the
peaks of the measured trajectory being sharper than those of
the desired trajectory. These sharp peaks have been smoothed
out in run 30. Based on this, we can conclude that if the robot
cannot overshoot on the desired trajectory, which is especially
done in the earliest runs, as a result of the boundary limits, it
can smooth out its trajectory.

The forces used to control the robot along the x-axis, the
direction of movement for the sawing task, are visualised in

Fig. 5d. These show that the absolute maximum force used by
the expert is almost double the one used by the novice (note
that different scales are used for the forces of the robots). The
difference between these forces indicates that the influence
of the expert on the movement is twice as large as the one
of the novice. As both forces are computed using (4), this
difference can either result from a larger value for the stiffness,
which we can see in Figs. 5 and 7 is not the case or a larger
error between the desired and measured trajectory. We already
identified that a phase lag between the desired and measured
trajectory always occurred, even in stage 1. As the novice
robot learns from a similar trajectory as the expert is exerting
in stage 1, it will learn from this phase-lagged trajectory and
will, therefore, always have an equal or smaller lag than the
expert in stage 3. As this lag largely influences the error,
the expert’s resulting forces will be larger than those of the
novice. In Section III-D, we will elaborate on how the size
of this lag influences mutations of the skill. In addition to
the phase lag, the increased force is also a direct result of the
increased travelled distance (Fig. 6b). As the travelled distance
increase by a factor of 2, it is reasonable that so do the forces.
However, the increasing forces are approximately increased by
a factor of 4. Therefore, this increase is not solely dependent
on this increased travelled distance, but rather a combination
of this increase and the phase lag. Looking at the size of these
resulting forces in the final run, we see that the forces are quite
large, which can result in unsafe behaviour. We discuss this
possibility of unsafe skills due to large forces in Section IV.

One could also discuss the skill (desired trajectory and
stiffness) as one aspect instead of two. The initial run shows
a clear distinction between when the novice is putting in the
effort and when the expert is. They are both, at times, exerting
high stiffness when pulling and lows stiffness while pushing.
This clear distinction, however, fades throughout the different
runs. At the same time, the size of the force increases. This
increase in force would let one think that both robots are trying
to pull or push, which would result in both forces increasing.
However, the results show that the forces are both in the same
direction and amplify each other. While this amplification is
visible, it is evident that the more significant influence on
the movement is due to the expert’s contribution, which was
already identified as a result of the phase lag.

D. Influence of the External Factors
The second set of tests was conducted to show how different

external factors influence mutations. We tested ten external
factors, of which four showed significant differences compared
to the default settings described in Section III-C. The factors
which showed this significant influence on the mutation will
be discussed in this section. These factors are the maximum
stiffness, the length of the period, the base position of the
robots, and the friction coefficients. Their default settings were
presented in Table I. Appendix D contains a analysis including
the six additional tested factors.

For each of the tested factors in this section, it was visible
that mutation occurred. We conducted a general analysis, of
which the results have been presented in Table II. This anal-
ysis consists of the following aspects; Whether the resulting

10 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

TABLE II
COMPARISON OF THE EXTERNAL FACTORS.

Factor Symbol Default value Value Same as default Repeatable1 Converges

Maximum stiffness Kmax 1100N 500N No Yes Yes2

5000N No Yes Yes1

Period τ 2 s 1 s No No Yes2

3 s No No No
Base position - Both at y = 0.4m Both at y=0.0m No Yes No

y=0.4m/y=-−0.4m Yes Yes Yes2

y=0.4m/y=-0.5m Yes Yes Yes2

Friction coef. µ 0.0 0.05 No Yes Yes
0.01 No Yes Yes2

0.005 No Yes Yes2

1 Repeatable is set to “yes” if the main trends of the different trials are similar. As will be discussed in Section III-E, the
mutations are never repeatable throughout the different trials, but often their main trends are.

2 This mutation converges due to approaching some limit, i.e. an environmental boundary, a joint limit or a torque limit.

mutation was the same or similar as the mutation occurring
for the default settings (Section III-C). If the mutation was
repeatable, which is determined by comparing the five different
trials tested. Here we state that a mutation is repeatable if the
main trends are. And whether the mutation converges, either
due to approaching a limit or due to some stable behaviour.

The remaining section will discuss the mutation patterns
found when analysing each of the individual factors. It was
chosen not to discuss the tested factors individually, as often
different tested factors resulted in similar patterns. The patterns
discussed are the influence of the phase lag, overshoot on the
desired trajectory, effect of the joints states, and approaching
torque limits.

1) Phase Lag

In the example of a learning scheme, provided in Fig. 3,
it is visible that the desired trajectory of the novice and the
expert are not identical. This difference is a result of the
inability of the expert robot to match the desired trajectory
perfectly. We define this difference between the desired and
measured trajectories as the phase lag. This phase lag does
not necessarily have to be an issue; if the measured trajectory
matches the desired trajectory, according to the impedance law
there would be no force to move the saw (4). However, we
see in the results that, besides a shift of the phase, the phase
lag also changes the characteristics of the skill. As the novice
robot is connected to the expert robot by means of the saw,
these changes in characteristics will also influence the learned
skill of the novice robot.

In Fig. 8a, three cases are presented where the phase
lag causes alterations in the characteristics of the learned
trajectory. The example using the default settings (Fig. 8a.1)
and the one using a low value for the maximum stiffness
Kmax =500N (Fig. 8a.2) both show an overall increase in
the stroke displacement throughout the different runs. This is
confirmed when looking at the visualisation of the analysed
results in Fig. 8b.1. As a result of the phase lag, forces
are computed to control the movement, which allows the
robot to overshoot on the desired trajectory. When the desired
trajectory and the measured trajectory intersect, the force will
switch direction. However, we observe that these resulting
forces are not strong enough to counteract the initial velocity

0.0

−0.2
8π 12π 16π 20π0 4π

−0.2

0.0

0.2

−0.2

0.0

0.2
x de

fa
ul

t [
m

]

phase [rad]

x K
=5

00
 [m

]
x τ

=1
s [

m
]

run 1 run 4 run 7 run 15 run 30
E des

E meas

St
ro

ke
of

fs
et

[m
]

St
ro

ke
di

sp
. [

m
]

run [-]
0 5 10 15 20 25 30

−0.1

0.0

0.2

0.4 default

K=500N

τ=1.0s

a)

b)

1)

2)

3)

1)

2)

Fig. 8. Influence of the phase lag on the mutation of the learned trajectory.
a) Shows from left to right the desired and measured trajectory of the expert
during the second and third period of stage 1 of different runs. From top
to bottom, the default setup (1), a setup where the maximum stiffness was
changed to Kmax =500N (2), and a setup where the period was set to 1 s is
visualised (3). b) Shows the evolution of the stroke displacement (1) and the
stroke offset of the learned trajectory of the novice robot during the different
runs (2).

in the opposite direction. This, again, does not necessarily have
to be an issue, as we see, for example, in run 4 of the 500N
case (Fig. 8a.2), that this intersection often occurs when the
peak of the desired trajectory is already passed. So, to reach
the same stroke displacement as the desired trajectory, a small
amount of overshoot on the desired trajectory is required to
maintain the same trajectory characteristics. However, we see
that the resulting peaks of the measured trajectory exceeded
the ones of the desired trajectory, resulting in an overshoot
of the stroke displacement. By comparing the default and low

11

maximum stiffness cases, we see that the overshoot is less in
the case of the smaller lag. For a smaller lag, it will thus take
more runs until the boundaries of the environment (at 0.45m)
are reached.

In Fig. 8a.3, we showed a case (τ = 1 s) with a larger
phase lag than previously discussed. This phase lag can result
in the inability of the robot to match or exceed the stroke
displacement (e.g. run 4 and 30). However, this was not
always the case, as we also identified cases where the robot
exceeded this displacement (e.g. run 7 and 15). We found
that the stroke displacement (Fig. 8a) follows a zigzag pattern,
which matches the zigzag pattern of the stroke offset (Fig. 8b).
This indicates that the expert robot always moves the entire
movement slightly closer to its base position. When the iiwa7
robot is the expert, the entire movement shifts more towards
its base than when the iiwa14 is. As will be discussed in
Section III-D3, this can be attributed to an average decrease
in the stroke offset.

Besides the trajectory, the phase lag also influences the
learned stiffness in stage 2. As the stiffness is calculated
using the error between the desired and measured trajectory
(9), a larger gap between these trajectories should result in
higher stiffness on average. To confirm this, three different
values for the maximum stiffness have been compared, the
results of which are provided in Fig. 9a. Note that we used
a normalized average stiffness instead of the actual ones, as
this allows for a more useful comparison between the stiffness
characteristics. The results show, that when the used stiffness
is low (Kmax =500N), the phase lag increases, resulting in a
larger error between the desired and measured trajectory than
for the cases with high stiffness. This larger error is reflected
in the computed size of the stiffness (9), which results in a
higher normalised average stiffness than the case with high
stiffness (Kmax =5000N), when the phase lag is low (as is
visible in Fig. 9b.1). Additionally, (9) states that if the error
between the desired and measured trajectory exceeds a set
threshold, the stiffness is set to the maximum value. If this
threshold is exceeded for an extended time, a flattened part
in the stiffness will be visible, which is the case for a low
stiffness (500N) in Fig. 9a.3. As a flattened peak will only
be counted as one in the complexity analysis (Fig. 9b.2), the
results of a low stiffness will show a lower amount of peaks
than the cases with a higher stiffness. Based on the results of
Fig. 9a and b, we conclude that a smaller phase lag will result
in a more complex stiffness scheme, while the average value
of this scheme will be lower.

2) Overshoot on the Desired Trajectory

When the error between the desired and measured trajectory
is small, the robots overshoot on the desired trajectory. We pro-
vided an example of this in Fig. 10a. This shows two periods
of the desired and measured trajectory, and the corresponding
forces in stage 1 for both the default settings (τ=2 s) and a
longer period (τ=3 s). Relating the force to the movement, we
identify the results of these default settings to be primarily
intuitive; Negative while pulling and positive while pushing.
This is not applicable for the case using a longer period. As
visible in the example, the small error between the desired

N des

N meas

x
[m

]
e

[m
]

K=5000 [N]K=500 [N] K=1100 [N]

time [s]time [s]time [s]

K
/K

m
ax

 [-
]

−0.1

0.0

0.1

0.00

0.05

0

1

0 2 40 2 40 2 4

0 5 10 15 20 25 30

0.0

0.5

1.0

2.5

5.0

run [-]

Pe

ak
s

[-]
A

ve
ra

ge
 [-

]

K=500N

K=1100N

K=5000N

a)

b)

1)

2)

3)

1)

2)

Fig. 9. Influence of the phase lag on the mutation of the learned stiffness. a)
Shows two periods of the measured and desired trajectory of the novice robot
in stage 2 and its normalized desired stiffness (stiffness divided by maximum
stiffness). This is shown for different maximum stiffness values during run
8. b) Shows the evolution, throughout the different runs, of the normalized
average value and the number of peaks of the learned stiffness scheme of the
novice robot during one period.

E des

E meas

x
[m

]

τ= 2.0s τ= 3.0s

time [s]

F
[N

]

time [s]

−0.2

0.0

0.2

0 1 2 3 4

0

100

0 2 4 6

Pe

ak
s

run [-]

0

2

0 5 10 15 20 25 30

τ=2.0s

τ=3.0s

a)

b)

1)

2)

Fig. 10. Influence of overshoot on the desired trajectory on the measured
trajectory. a) Shows an example of the results of two phases of stage 1 of
the desired and measured trajectory (1) and its corresponding force along the
x-axis (2) for the expert robot using two different periods (τ=2 s and τ=3 s).
b) shows the complexity of the trajectories learned by the novice throughout
the different runs.

and measured trajectory often results in the expert robot
overshooting the desired trajectory. The robot compensates for
this overshoot by applying a counterforce, resulting in a rough
trajectory, i.e. more peaks. As the novice learns from this
measured trajectory, a trajectory including these irregularities

12 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

will be learned. The extent of these irregularities increases
throughout the different runs, which is shown by analysing
the peaks of the learned trajectory (Fig. 10b). This indicates
that the trajectory becomes rougher throughout the different
runs.

A benefit of the mutations, resulting in a rough trajectory,
can be found when looking at energy efficiency. This efficiency
is computed using the work W =

∫
K(xd − xa)dx. As the

examples provided in Fig. 10a have different periods, we
decided to compare them by computing the work per period.
The results for τ = 2 s is 33.3 kJ/period, whereas it was
11.3 kJ/period for τ = 3 s. These results indicate a trade-off
between the smoothness (low complexity) of the trajectory and
its energy efficiency.

3) Joint States

Testing different setups of the robot, i.e., different base
positions, has highlighted the effect of joint states on the
mutation. The base positions were defined as a displacement
from the x-axis, which is the axis of the sawing movement. For
the default setting, the robots were displaced 0.4m parallel to
this axis, which means that they are located at y = 0.4m. We
also tested a setup where the base was aligned with the x-axis,
meaning y = 0.0m. For both of these setups, one robot was
set at x = 0.7m (iiwa14) and one at x = −0.7m (iiwa7).
The sawing motion and the resulting movement of the end-
effectors were both along the x-axis. Therefore, the different
base positions caused the initial joint states of the robots to
vary. A visualisation of the analysis, comparing these two base
positions, has been provided in Fig. 11a.

In Section III-C, we already identified the converges of the
default setting (y = 0.4m) as a result of the boundaries of
the environment. For the case where the base position of the
robot was aligned with the sawing movement (y = 0.0m), we
see that the stroke displacement did not increase (Fig. 11a).
To make sure this was not a result of a joint limitation, we
tested moving the end-effector of the robot closer to itself.
This showed us that it should be able to increase the stroke
displacement. This was also confirmed as the stroke offset of
the movement decreased while the stroke displacement was
averagely stable.

The rapid decrease in the stroke offset of the movement
indicates a shift towards the base position of the iiwa7
robot. However, this is not a smooth decline, but instead, a
zigzag pattern is visible. This pattern corresponds to which
of the two used robots is the expert; In case the iiwa7 is
the expert, the stroke offset moves down, which means that
the movement is shifted towards the base position of this
robot. When the iiwa14 is the expert, the stroke offset moves
up, shifting the movement toward this specific robot’s base
position. The shifting of the movement is a result of the
robots’ force manipulability [42], an example of which has
been provided in Appendix F. The force manipulability of a
robot greatly impacts the robot’s ability to change directions
and is dependent on the robot’s joint states. This tells us that
the reason the results of the y = 0.0m and y = 0.5m setup
are quite different, is due to the states of the joints, which are
different for the initial configurations of both robots. If the

y=0.4m

y=0.0m

run [-]

St
ro

ke
di

sp
. [

m
]

St
ro

ke

of
fs

et
 [m

]

0.2

0.4

−0.1

0.0

0 5 10 15 20 25 30

φ
jo

in
t 4

, y
=0

.0
m

 [r
ad

]

iiwa14

iiwa7

−2

0

2

run [-]
0 5 10 15 20 25 30

a)

b)

1)

2)

Fig. 11. Effect of joint states of mutation of robot’s skill. a) Shows the stroke
displacement (1) and stroke offset (2) of the robot using two different base
positions of the robots. b) shows the evolution of the moving range of joint
4 by both used robot, during one trial.

end-effector is further away from the robot’s base position,
its force manipulability will be increased, thus enhancing its
directional flexibility. When the robot is shifting from pushing
to pulling, the end effector is far from the base position and the
force manipulability is relatively high, enabling a successful
shift in direction. However, when the robot is shifting from
pulling to pushing, which occurs closer to the base position,
it has a lower force manipulability, making it difficult to shift
directions. If the robots are executing the task collaboratively,
the other robot can compensate for the difficulty in shifting
from pulling to pushing. However, during stage 1 of the
learning scheme, when the expert robot controls the entire
movement, the inability to shift direction can result in the
robot overshooting on the stroke displacement closest to its
base position. As a result, the stroke offset of the movement
will move towards the expert robots during each run, resulting
in a zigzag pattern visible in Fig. 11a.2.

If the influence of both the robots on the movement had been
the same, we would still see a zigzag pattern in the stroke
offset, but there would not be an average decline visible in
Fig. 11a. This indicates that the force manipulability of one
robot is higher, allowing it to shift direction more efficiently,
resulting in less overshoot than the other robot. We identified
the iiwa14 as the robot with higher ability to shift direction.
Therefore, resulting in a decline of the stroke offset away from
this robot and towards the iiwa7. A similar pattern to the one
shown in Fig. 11a was also visible in Fig. 10, where τ =
1 s. Throughout this research, we have treated the two robots
similarly, meaning we gave them similar torques to control
their position. However, the decline of the stroke offset tells
us that the robots are affected differently by similar torques.

The results of the y=0.0m do not show a convergence in
the learned trajectory (both the stroke displacement and stroke
offset are still declining). However, we found that one joint
(joint 4) was approaching its limit, therefore, affecting the

13

mutation. In Fig. 11b, we compare the range of movement
for joint 4 of the iiwa14 and iiwa7 robots. The graph displays
how the joint slowly moves towards its limit (indicated in red)
throughout the different runs. The results show that joint 4 of
the iiwa7 reaches one of its lower joint limits at approximately
run 20. After this run, we still see that the maximum value of
the joint is changing. While this only considers one joint out
of the robot’s seven joints, this explains why we see a more
rapid decrease in stroke displacement after 20 runs. More runs
are required to test whether this mutation will stabilize at some
point.

4) Torque Limits

Reaching torques limits restrains the robot from following
the desired trajectory. This can best be demonstrated by
looking at stage 1, where the motion is only dependent on
the effort exerted by the expert. An example of this has been
shown in Fig. 12a, where a high static friction coefficient
(µ = 0.5) was applied on both the object and the saw.
In the initial runs (0 to 3), the robot is able to follow the
desired trajectory. In run 4, we see that this is no longer the
case, as torque limitations hinder the robot. As a result, the
stroke displacement significantly decreases. This is followed
by the trajectory eventually smoothing out, resulting in a final
behaviour with zero stroke displacement (run 30).

Run 4 is highlighted in Fig. 12b, where not only the desired
and measured trajectory are shown, but also the corresponding
forces required to obtain this trajectory. This example illus-
trates how the torque limitation results in the robot’s inability
to follow the desired trajectory. The force indicated in red is
referred to as the send force, which was computed using the
impedance control law (4). The force indicated by yellow is
referred to as the measured force, which was computed by
transforming the measured torques executed by the robot. It
can be seen that the values of the required forces are almost
20 times as large as the measured force, indicating that the
robot’s torque is often saturated. By comparing the forces sent
and the ones measured with the resulting trajectory, it can be
seen that when the torques are flattened (e.g. at t = 1.8 s to
3.0 s), the desired trajectory cannot be followed by the expert.
Therefore, the torque limitation largely influences the mutation
of the trajectories.

The saturation of the torque limits also affects the learned
stiffness scheme. As the variability of both the desired and
measured trajectory decreases, the computed stiffness scheme
is largely affected as it depends on the error between both
trajectories. This results in the average and the stiffness
decreasing. For the final run, the average, and the variability
of the stiffness are almost being reduced to zero.

E. Reproducibility

To investigate the reproducibility of the mutation, the same
run of different trials, using the default settings, have been
compared, as visualized in Fig. 13. The reproducibility of the
mutation is defined as the ability of the robot to reproduce
the same skill (desired trajectory and stiffness), during each
trial. In these examples, the offset of the phase is accounted

E des

E meas

E des

E meas

time [s]

x d [
m

]

run 0 run 4 run 24 run 30run 12

0.0

0.2

0 10 3020 40 50

time [s]

F x,
se

nd
 [N

]

F x,
m

ea
s [

N
]

x
[m

]

0

200

−10

0

10

−200

0.0

0.2

0 2 4 6 8 10

a)

b)
1)

2)

Fig. 12. Effect of torque limit on the mutation of robot’s skill, illustrated
with data where the friction coefficient was set to a high value. a) Shows the
desired (blue) and measured (green) trajectory of the expert during the first
stage of multiple runs. b) Shows stage 1 of run 2, where the upper graph
(1) illustrates both the desired (blue) and measured (green) position of the
expert, and the lower graph (2) the force sent to the robot (red) and the forces
measured using the measured joint torques (yellow).

trial 1

trial 3

trial 5

time [s]

run 4 run 18 run 25 run 27
x d

[m
]

K
 [N

/m
]

0 1 2 3 4 5 6 7 8

1000

−0.2

0.0

0.2

0

a)

b)

Fig. 13. One period of the skill learned by the novice robot during multiple
(random) runs of different trials is shown. From left to right, four different
runs are visualized. The upper graphs a) show the learned trajectory and the
bottom graphs b) show the learned stiffness.

for by calculating the phase shift corresponding to a frequency
component equal to 1/(τ = 2.0 s) = 0.5 s−1. As a result, the
peaks of the trajectories overlay one another.

The desired trajectory of the different trials exhibits minimal
variability. However, as the trajectories are not identical,
the mutation of the desired trajectory is not reproducible.
Nonetheless, both Fig. 13a and the analysis of the desired
trajectory in Fig. 6 reveal that the main trends of the mutation
for each of the different runs are largely similar.

The differences between the stiffness scheme of the trials
are much more evident. An example of this is provided in
trial 1 of run 18 (Fig. 13b), where the characteristics of the
learned stiffness were completely different compared to the
other trials. However, for most of the other cases, we often
only identified two peaks. For these cases, the valleys only
appear when the desired trajectory and measured trajectory
cross. The analysis of the stiffness, in Fig. 7, does show similar
trends for the stiffness, as the standard deviations are relatively
small, again indicating a similar trend for the different trials.
These deviations are, however, respectively larger than for the
trajectory.

14 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

Based on these results, we conclude that while the mutations
are not reproducible, their general trends are. One reason it
may be difficult to reproduce a mutation exactly is that it is
impossible to control all the factors that influence the mutation.
Although running a simulation reduces the variability of the
environment significantly, there are still some factors that
cannot be accounted for. An example is the phase differences
between the control of the expert and novice robot. As discrete
control commands are sent to the robot, small differences in
the sent control inputs will influence how the combined task is
executed and, therefore, how the mutation occurs. This could
be accounted for by using one control node to control both
robots, however, this would be counterintuitive as such control
modality would undermine the ability of the robots to act as
independent agents -— a potentially useful, but completely
different use case.

The example of reproducibility presented in this section
showed small differences for both the trajectory and the
stiffness. In Appendix E examples are given where these
differences are larger. However, as the default setting proves
the main point – that mutation is not reproducible, but the
trends are – it was decided to use the default settings in this
paper.

IV. DISCUSSION

The purpose of this research was to explore the occur-
rence of mutation during robot-to-robot skill propagation to
gain insight into the generation of potentially beneficial or
dangerous skills. We conducted experiments to confirm the
suspicions of skill mutation from [28] and thoroughly explored
the underlying mechanisms for mutations.

We tested many parameters to examine various possible sit-
uations, and mutations occurred in all of them. The mutations
found using these different situations were always different
from each other. Furthermore, we also identified differences
between the trials for which the same settings were used.
We assume that the mutations are not reproducible due to
the inability to keep all environmental conditions constant,
even in simulation. An example is a slight difference in time
between launching the control nodes of the expert and novice.
As the controlling is done discretely, a different delay between
these nodes will influence the movement of the robot and
therefore influence the mutations. Fixing the conditions in the
real world is more complicated than in simulation. Therefore,
we assume that skill propagation will always lead to some
form of mutation when using a collaborative task.

The testing of different settings revealed both benefits and
risks associated with the mutations. For instance, as a result of
the propagation, new skills may be generated that are useful
in various settings. An example of this was seen in the default
settings (Fig. 5), where the novice robot’s trajectory in run 30
had a significantly increased stroke displacement compared to
the original run. The increase in stroke displacement could
be beneficial when using a longer saw or if the cut object
has a smaller width. While this part of the skill looks quite
similar to the original, the same cannot be said for the learned
stiffness. We found that the emerged stiffness usually had a

value equal to its maximum. For the collaborative movement,
this was found to be counterintuitive and energy inefficient, as
both robots exert high forces in order to achieve the movement.
Nevertheless, while this behaviour might not be beneficial for
collaborative tasks requiring reciprocal behaviour, it could be
useful in collaborative tasks requiring mirrored behaviour [31],
or in adapting the task from collaborative to single-agent where
the robot must be stiff all the time.

The increase in the stroke displacement also showed benefits
in terms of force manipulability. As the range of the movement
increased, the point where the saw switches direction, from
now on referred to as the switch-over point, was further away
from the base of the robot that had to begin pulling. Therefore,
the force manipulability of the robot at this switch-over point
was much higher, producing more endpoint force in the sawing
axis for the same joint torques. This is desired, as, at this
point, the inertia that is needed to build up the speed and
momentum of the movement, and the static friction forces are
the highest. Therefore, this mutation optimised the movement
in terms of the force manipulability of both robots. In addition
to the stroke displacement being useful for cases where the saw
length increases or the object width decreases, this optimised
manipulability also showed to be beneficial for cases where
tougher objects should be sawed. For these objects, the static
friction would be higher; therefore, more force is needed to
pull, which can be gained with improved force manipulability.
While this improved manipulability is useful when using two
similar types of robots, if one of them is stronger than the
other, a large manipulability could result in the stronger robot
overpowering the weaker one.

In Fig. 11, we saw an example where the stroke offset (av-
erage) changed while the stroke displacement stayed the same.
The result showed that when only the expert was controlling
the movement (stage 1), low force manipulability would be
especially problematic at the switch-over point closest to the
base of the robot who was pulling. At this point, the manip-
ulability of the robot is the lowest, resulting in the inability
to apply enough force to switch from direction immediately.
As a result, the stroke offset shifts towards the expert robot
and the force manipulability of one robot increases while it
decreases for the other. A better force manipulability would
result in less overshoot on the trajectory and, therefore, a
smaller shift in the stroke offset. This newly gained skill,
where the force manipulability of one robot is much higher
than the other, might not be beneficial when two robots are
of the same strength, as one would overpower the other.
However, if one robot is much stronger, this difference is force
manipulability can counteract the overpowering of the weaker
one. In this case, the weak robot would use the optimised force
manipulability, resulting in a reduced manipulability of the
strong robot. While this might be less beneficial for the strong
robot’s ability to pull, the collaboration between the robots
is improved, resulting in better task execution. Examples of
the cases where the force manipulability is improved for both
robots and where it is improved for one of them have been
provided in Appendix F.

Besides developing potentially beneficial skills, we also
identified potential hazards in the results obtained with the

15

default settings. An example of a hazard is where unsafe
behaviour occurs due to the size of the forces exerted by the
expert, which emerged during the later runs. Initially, forces
were between −50N to 50N, however, the last run showed
a range of −200N to 200N. According to ISO/TS15066
(2016) [43], safety regulations mandate that the force exerted
by the robot during human-robot collaboration should not
exceed 140N. Although this might not be critical during robot-
robot collaboration (our scenario), it is important in other
scenarios involving human-robot collaboration or even when
robots work in close proximity to humans. Thus, a force of
200N is too high. To account for these high forces, torque lim-
itations have been embedded into the control system. As these
limitations are set at the joint level, the resulting behaviour in
Cartesian space might be undesired and unpredictable, which
is illustrated in Fig. 12. To avoid this, we advise future research
to saturate the force at the Cartesian level instead.

We also observed cases where the alternation of the charac-
teristics of the skill were much larger. An example of this is
provided for the case where we used a long period (Fig. 10).
The results of this setting showed a higher complexity. While
less smooth than the original, this behaviour was still suitable
for sawing. The resulting behaviour came with the benefit of
being more energy efficient as the work exerted by the robot
was less. This trade-off between efficiency and smoothness is
clear; When the robot can follow the desired trajectory closely,
instabilities in the behaviour cause it to be less smooth. At the
same time, it requires less effort from the robot to control the
movement, making it more energy efficient. The later runs,
using the same setting, showed that the trajectories became
more complex, which made them less suitable for the sawing
task. However, this skill may be beneficial for other tasks
that can benefit from complex movements, such as cleaning
operations like vacuuming, sweeping, and polishing. Some of
these examples can especially benefit from the roughness of
the movement; for example, when the robot tries to remove a
tough stain, some jerkiness might actually help.

Another example where the behaviour was no longer suit-
able for the sawing task was presented in Fig. 12. Here, the
stroke displacement of the movement was reduced to zero.
This skill could be used for a task where the goal is to maintain
a specific position, such as holding an object. However, the
stiffness of the robot was also reduced to zero, which means
that the used stiffness scheme would not be able to maintain
the position. An application of a compliant robot in this
situation could be to hold an object while allowing another
agent to guide the movement. However, these kinds of skills
could quite easily be programmed.

To investigate skill mutation, we implemented a sawing
task. This task is an excellent case study as it provides many
aspects like motion, stiffness, coordination, and physical in-
teraction with both environment and another agent. While the
implementation of this task proves the existence of mutations,
the influences could be task-specific. To investigate mutation
in a more general sense, one should apply the principle of
robot skill propagation on other collaborative tasks. With this
in mind, future research could separate mutations which are
task specific and those which are more general.

In this study, we identified some benefits of mutations,
i.e. energy efficiency, optimised force manipulability, and
the occurrence of new skills. However, these benefits were
mainly examined conceptually and through analysis in this
discussion. To gain a better understanding of how mutations
affect performance of the task, future research should be
conducted to determine if mutations can be beneficial in
terms of task performance. If research indicates that task
performance decreases, this should not necessarily be seen as
a negative outcome. Therefore, further research should also be
done to explore if mutated skills could be applied to different
conditions/tasks.

After implementing the skill propagation system in the real
world, it quickly became evident that executing all experi-
ments would be too time and resource-consuming. Therefore,
we decided to conduct experiments using simulation. Using
simulation also came with the additional benefit of the ability
to more carefully control environmental conditions, which
allows for the investigation of how certain external factors
affect the mutations. However, simulations may not be able
to capture all the complexities of the real world, resulting in
disparities between real-world mutations and those observed
in the simulations. Despite this, these simulations have still
been able to provide valuable insight into understanding skill
mutation to a certain degree.

V. CONCLUSION

This research has taken the initial steps towards filling the
knowledge gap concerning mutation that occurs during robot-
to-robot skill propagation when executing a collaborative task.
Through experimentation, it was observed that mutation oc-
curred in each of the tested conditions. It can thus be inferred
that mutation will always happen during skill propagation in
collaborative tasks, which answers the first part of the research
question. We conducted experiments with the same value for
the conditions, and found that the mutations varied, but the
trend was similar, which answered the second part of the
research question. The variance during each of the conducted
trials, even if the settings were kept similar, suggests that
mutations are not reproducible, as it is impossible to keep
all conditions constant. This therefore answer the third part of
the research question.

REFERENCES

[1] L. Sanneman, C. Fourie, J. A. Shah et al., “The state
of industrial robotics: Emerging technologies, challenges,
and key research directions,” Foundations and Trends®
in Robotics, vol. 8, no. 3, pp. 225–306, 2021.

[2] J. Arents and M. Greitans, “Smart industrial robot control
trends, challenges and opportunities within manufactur-
ing,” Applied Sciences, vol. 12, no. 2, p. 937, 2022.

[3] A. G. Billard, S. Calinon, and R. Dillmann, “Learning
from humans,” Springer handbook of robotics, pp. 1995–
2014, 2016.

[4] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish,
“Recent progress on programming methods for industrial

16 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

robots,” Robotics and Computer-Integrated Manufactur-
ing, vol. 28, no. 2, pp. 87–94, 2012.

[5] S. Calinon, F. Guenter, and A. Billard, “On learning, rep-
resenting, and generalizing a task in a humanoid robot,”
IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 37, no. 2, pp. 286–298, 2007.

[6] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement
learning in robotics: A survey,” The International Journal
of Robotics Research, vol. 32, no. 11, pp. 1238–1274,
2013.

[7] A. S. Polydoros and L. Nalpantidis, “Survey of model-
based reinforcement learning: Applications on robotics,”
Journal of Intelligent & Robotic Systems, vol. 86, no. 2,
pp. 153–173, 2017.

[8] H. Nguyen and H. La, “Review of deep reinforcement
learning for robot manipulation,” in 2019 Third IEEE
International Conference on Robotic Computing (IRC).
IEEE, 2019, pp. 590–595.

[9] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-
based reinforcement learning: A survey,” arXiv preprint
arXiv:2006.16712, 2020.

[10] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Rein-
forcement learning to adjust parametrized motor prim-
itives to new situations,” Autonomous Robots, vol. 33,
no. 4, pp. 361–379, 2012.

[11] P. Kulkarni, J. Kober, R. Babuška, and C. Della Santina,
“Learning assembly tasks in a few minutes by combining
impedance control and residual recurrent reinforcement
learning,” Advanced Intelligent Systems, vol. 4, no. 1, p.
2100095, 2022.

[12] P. Falco, A. Attawia, M. Saveriano, and D. Lee, “On
policy learning robust to irreversible events: An appli-
cation to robotic in-hand manipulation,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1482–1489,
2018.

[13] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell,
P. Abbeel, J. Peters et al., “An algorithmic perspective
on imitation learning,” Foundations and Trends® in
Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[14] H. Ravichandar, A. S. Polydoros, S. Chernova, and
A. Billard, “Recent advances in robot learning from
demonstration,” Annual review of control, robotics, and
autonomous systems, vol. 3, pp. 297–330, 2020.

[15] A. K. Tanwani and S. Calinon, “A generative model for
intention recognition and manipulation assistance in tele-
operation,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 43–50.

[16] I. Havoutis and S. Calinon, “Supervisory teleoperation
with online learning and optimal control,” in 2017 IEEE
International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 1534–1540.

[17] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal,
“Online movement adaptation based on previous sensor
experiences,” in 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, 2011,
pp. 365–371.

[18] S. Calinon, D. Bruno, M. S. Malekzadeh,

T. Nanayakkara, and D. G. Caldwell, “Human–
robot skills transfer interfaces for a flexible surgical
robot,” Computer methods and programs in biomedicine,
vol. 116, no. 2, pp. 81–96, 2014.

[19] J. Kim, N. Cauli, P. Vicente, B. Damas, F. Cavallo,
and J. Santos-Victor, ““icub, clean the table!” a robot
learning from demonstration approach using deep neural
networks,” in 2018 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC).
IEEE, 2018, pp. 3–9.

[20] F. J. Abu-Dakka, L. Rozo, and D. G. Caldwell, “Force-
based variable impedance learning for robotic manipula-
tion,” Robotics and Autonomous Systems, vol. 109, pp.
156–167, 2018.

[21] B. Nemec, F. J. Abu-Dakka, B. Ridge, A. Ude, J. A.
Jørgensen, T. R. Savarimuthu, J. Jouffroy, H. G. Petersen,
and N. Krüger, “Transfer of assembly operations to new
workpiece poses by adaptation to the desired force pro-
file,” in 2013 16th International Conference on Advanced
Robotics (ICAR). IEEE, 2013, pp. 1–7.

[22] L. Peternel, T. Petrič, and J. Babič, “Robotic assembly
solution by human-in-the-loop teaching method based
on real-time stiffness modulation,” Autonomous Robots,
vol. 42, no. 1, pp. 1–17, 2018.

[23] M. J. Zeestraten, I. Havoutis, and S. Calinon, “Program-
ming by demonstration for shared control with an appli-
cation in teleoperation,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1848–1855, 2018.

[24] D. Chen, J. He, G. Chen, X. Yu, M. He, Y. Yang, J. Li,
and X. Zhou, “Human-robot skill transfer systems for
mobile robot based on multi sensor fusion,” in 2020 29th
IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). IEEE, 2020, pp.
1354–1359.

[25] J. Li, J. Wang, S. Wang, and C. Yang, “Human–robot
skill transmission for mobile robot via learning by
demonstration,” Neural Computing and Applications, pp.
1–11, 2021.

[26] V. Chu, T. Fitzgerald, and A. L. Thomaz, “Learn-
ing object affordances by leveraging the combination
of human-guidance and self-exploration,” in 2016 11th
ACM/IEEE international conference on human-robot in-
teraction (HRI). IEEE, 2016, pp. 221–228.

[27] C. Celemin, G. Maeda, J. Ruiz-del Solar, J. Peters, and
J. Kober, “Reinforcement learning of motor skills using
policy search and human corrective advice,” The Inter-
national Journal of Robotics Research, vol. 38, no. 14,
pp. 1560–1580, 2019.

[28] L. Peternel and A. Ajoudani, “Robots learning from
robots: A proof of concept study for co-manipulation
tasks,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids), 2017, pp. 484–490.

[29] D. Nguyen-Tuong and J. Peters, “Model learning for
robot control: a survey,” Cognitive processing, vol. 12,
no. 4, pp. 319–340, 2011.

[30] L. Peternel, E. Oztop, and J. Babič, “A shared con-
trol method for online human-in-the-loop robot learning
based on locally weighted regression,” in 2016 IEEE/RSJ

17

International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 2016, pp. 3900–3906.

[31] L. Peternel, N. Tsagarakis, and A. Ajoudani, “A human–
robot co-manipulation approach based on human sen-
sorimotor information,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 7,
pp. 811–822, 2017.

[32] C. Schindlbeck and S. Haddadin, “Unified passivity-
based cartesian force/impedance control for rigid and
flexible joint robots via task-energy tanks,” in 2015 IEEE
international conference on robotics and automation
(ICRA). IEEE, 2015, pp. 440–447.

[33] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger,
“Cartesian impedance control of redundant robots: Re-
cent results with the dlr-light-weight-arms,” in 2003
IEEE International conference on robotics and automa-
tion, vol. 3, 2003, pp. 3704–3709.

[34] L. Peternel, L. Rozo, D. Caldwell, and A. Ajoudani, “A
method for derivation of robot task-frame control author-
ity from repeated sensory observations,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 719–726, 2017.

[35] X. Chen, N. Wang, H. Cheng, and C. Yang, “Neu-
ral learning enhanced variable admittance control for
human–robot collaboration,” Ieee Access, vol. 8, pp.
25 727–25 737, 2020.

[36] E. Zheng, Y. Li, Z. Zhao, Q. Wang, and H. Qiao,
“An electrical impedance tomography based interface for
human–robot collaboration,” IEEE/ASME Transactions
on Mechatronics, vol. 26, no. 5, pp. 2373–2384, 2020.

[37] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning
rhythmic movements by demonstration using nonlinear
oscillators,” in Proceedings of the ieee/rsj int. conference
on intelligent robots and systems (iros2002), no. CONF,
2002, pp. 958–963.

[38] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and
S. Schaal, “Dynamical movement primitives: learning at-
tractor models for motor behaviors,” Neural computation,
vol. 25, no. 2, pp. 328–373, 2013.

[39] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and
L. Peternel, “Dynamic movement primitives in robotics:
A tutorial survey,” arXiv preprint arXiv:2102.03861,
2021.

[40] L. Peternel, T. Noda, T. Petrič, A. Ude, J. Morimoto,
and J. Babič, “Adaptive control of exoskeleton robots
for periodic assistive behaviours based on emg feedback
minimisation,” PloS one, vol. 11, no. 2, p. e0148942,
2016.

[41] Stanford Artificial Intelligence Laboratory et al.,
“Robotic operating system.” [Online]. Available:
https://www.ros.org

[42] T. Petrič, L. Peternel, J. Morimoto, and J. Babič, “Assis-
tive arm-exoskeleton control based on human muscular
manipulability,” Frontiers in neurorobotics, vol. 13, p. 30,
2019.

[43] “Iso/ts 15066:2016—robots and robotic de-
vices—collaborative robots,” International Organization
for Standardization, Geneva, Switzerland, Tech. Rep.,
2016.

[44] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič,
“On-line learning and modulation of periodic movements
with nonlinear dynamical systems,” Autonomous robots,
vol. 27, no. 1, pp. 3–23, 2009.

https://www.ros.org

18 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

APPENDIX A
VALIDATION STIFFNESS SCHEME

A. Reference Stiffness Scheme

A continuous stiffness scheme defines the desired stiffness in stage 2 of the learning scheme (Section II-C). Previous work
uses a discrete scheme as a reference instead [28]. As the resulting stiffness scheme is continuous, a discrete scheme cannot
control the output of the encoding method. We decided to compare the results of both methods with each other to investigate
to what extent choosing a different scheme affects the mutation.

A quantitative analysis is provided in Fig. A.1. It shows the evolution of the skill using the continuous and discrete reference
stiffness. This result shows that the difference between the learned trajectories is minimal, which can be confirmed by looking
at the trajectory analysis in Fig. A.2. This difference is a result of the mutation of the trajectory being independent of the
learned stiffness scheme.

run 0 run 2 run 4 run 6 run 10 run 20 run 30

x d
[m

]
K

 [N
/m

]

time [s]

Novice

Expert

x d
[m

]
K

 [N
/m

]

Novice

Expert

Co
nt

in
uo

us
D

is
cr

et
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.2

0.0

-0.2

1000

500

0

0.2

0.0

-0.2

1000

0

500

0.1

-0.1

0.1

-0.1

a)

b)

c)

d)

Fig. A.1. Quantitative comparison of the different stiffness schemes. The top two graphs show the evolution of the expert and novice robot’s skill (desired
trajectory x and stiffness K) using the continuous reference scheme. The bottom two graphs show the evolution of the skill of the expert and novice robots
using the discrete reference scheme.

While the trajectory is independent of the used reference stiffness, this is not the same for the learned stiffness. The results
in Fig. A.1 clearly show that the learned stiffness scheme is quite different. However, we also saw this for the different trials
of the continuous scheme (Section III-E). The interesting parts are observed when looking at the stiffness of the novice and the
expert robot. For the continuous scheme, the average stiffness is quite high for both robots. However, for the discrete variant,

Continous

Discrete

St
ro

ke
di

sp
. [

m
]

Tr
av

el
le

d
di

st
. [

m
]

St
ro

ke

of
fs

et
 [m

]
M

id
po

in
t

]m
]

time [s]

0.2

0.4

0.50

0.75

−0.025

0.000

0.025

0.000

0.025

0 5 10 15 20 25 30

a)

d)

c)

b)

Fig. A.2. Analysis of the learned trajectory of the novice robot during
stage 1 of the learning scheme. The stroke displacement, travelled distance,
stroke offset, and the midpoint of movement throughout the different runs
are shown from top to bottom. Both the results using the continuous and
discrete stiffness schemes are shown.

A
ve

ra
ge

[N
/m

]

Pe
ak

s
[-]

time [s]

0

550

1100

2

4

0 5 10 15 20 25 30

Continous

Discrete
a)

b)

Fig. A.3. Analysis of the learned stiffness scheme of the novice robot during
stage 2 of the learning scheme. The average value and the number of peaks
per period are shown throughout the different runs from top to bottom. Both
the results using the continuous and discrete stiffness schemes are shown.

19

it is often the case that either the novice has a high value or the expert does (see runs 10 and 20). We found that the runs
during which the expert robot has high stiffness and during which the novice robot does, are not necessarily the same for the
different trials. Therefore, the standard deviation in the analysis of the learned stiffness (Fig. A.3) is much higher than for the
discrete.

The chosen reference stiffness does not affect the learned trajectory. In addition, both methods do not maintain the
leader/follower behaviour. As the continuous scheme’s encoding can better control the output, we decided to use this scheme.

B. Safety Margin Dynamic Motion Primitives

During the experiment, we encountered an increase in the average value of the stiffness scheme when shifting from stage
2 to stage 3. We identified this as a limitation of the learning method LWR. In Fig. A.4, three different runs of one trial are
shown. These results show where no safety regulation was applied when shifting from stage 2 to 3. Run 16 is an example of
how the shifting between stages should be. First, the stiffness scheme is learned in stage 2. Then, after around 5 s, the encoding
method has captured the main characteristics of the stiffness scheme, which is updated in the final 5 s of this stage. Finally,
when the stage is shifted to stage 3, the stiffness scheme is similar to the last 5 s of stage 2.

x
[m

]

run 16 run 21 run 26

time [s]

K
 [N

]

time [s] time [s]

N des

N meas

−0.2

0.0

0.2

0 5 10 15 20

−1000

0

1000

2000

0 5 10 15 20 0 5 10 15 20

Fig. A.4. Three different runs of a setup using no safety regulations on shifting between stages 2 and 3. For each of the runs, the trajectory and stiffness of
stage 2 (0 s to 10 s) and 3 (10 s to 20 s) are shown. Run 16 shows an example of the desired result. Run 21 is an example of a shift between stages resulting
in an increased stiffness scheme. Run 26 is an example where the shift between stages results in a decreased stiffness scheme.

We identified two possible bad results of no implementation of safety regulations. An example of the first is shown in run
21. We see that after 5 s, the encoding method can capture the stiffness scheme’s characteristics. However, once it shifts to the
next stage, the entire stiffness scheme moves up, resulting in a higher average stiffness than learned. While this is not desired,
we do not see this badly affecting the measured trajectory.

An example where the measured trajectory is badly affected is in run 26. In this example, the stiffness scheme moves
down after shifting to the third stage, resulting in the stiffness often being negative. This shift largely influences the measured
trajectory as the robot tries to push itself away from the desired trajectory.

We identified that the shifted stiffness scheme after switching from stage 2 to stage 3 is caused by a large difference between
the stiffness value in the last few steps before switching. Therefore, we proposed to implement the following safety regulation

Allowing shifting between stage 2 and 3 =

{
True if |Kt −Kt−1| < Kth is true for the last nt time steps,
False else,

(20)

where Kth = 15 is a threshold, defining the maximum difference between the stiffnesses. The value for this threshold was
identified by using a trial-and-error approach. By doing so, we found that if the value was too high, it would be impossible to
shift from stage 2 to stage 3. If this value was too low, this method did not account for the shifting of the average as shown
in Fig. A.4. A similar effect was visible when tuning the number of time steps nt, resulting in the choice to investigate the
last 5.

20 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

APPENDIX B
VALIDATION DYNAMIC MOVEMENT PRIMITIVE AND LOCALLY WEIGHTED REGRESSION PARAMETERS

We investigated multiple studies using DMP and LWR and found that they often use the same values for the parameters
[28, 37, 44]. To validate these values, we conducted an experiment in which we changed each parameter individually. For
each test, all parameters were set to the default values used in literature besides the one being tested. The literature values are
presented in Table B.1. The analysed parameters are the Gaussian kernel N , Gaussian width h, DMP gain α and β, and the
forgetting factor λ. As we are tuning the parameters individually, the results might not be optimal. However, we conducted
this experiment to validate the values found in literature. A caveat of this approach is that if multiple parameter values are
better than the one used in literature, their combination could lead to undesirable results. If this is the case, they should be
tested together. However, as the values in Table B.1 show, we only used one value different from literature.

TABLE B.1
VALUES FOR DMP FOUND IN LITERATURE [31, 37, 44], AND THOSE CHOSEN FOR THE EXPERIMENTS.

N h α β λ

Literature value 25 2.5N 2 8 0.995
Chosen value 50 2.5N 2 8 0.995

To validate the values of the parameters, we ran a 40 s test run using the simulation setup (Fig. B.5). The first 20 s of this
run represent stage 1 (Section II-C). This means that the novice robot is compliant, and the expert robot has high stiffness.
The first 10 s of this part will be used to train the DMP of the trajectory by using the measured trajectory of the novice as an
input. The second 10 s is used to validate the resulting DMP. The second 20 s of the test run are similar to stage 2, in which
the novice robot computes a reference stiffness based on the error between the measured and actual trajectory. This stage is
used to train and validate the DMP of the stiffness. Again, the first 10 s are used to learn the DMP and the second 10 s to
validate it.

No noise

Noise

0 5 10 15 20
−0.10

0.00

0.10

0 5 10 15 20

0

400

800

1200

time [s]

x
[m

]

time [s]

K
 [N

/m
]

Fig. B.5. Reference signal used for the validation experiment of the DMP and LWR. The left graph shows the trajectory, and the right graph shows the
stiffness. The signal without (in blue) and with (in green) noise have been presented for both cases.

To test the robustness of the different values of the parameters, we also conducted an experiment in which random noise
was applied to the reference signals. To do so, we added normally distributed noise p(t) to the signal y(t)

yr(t) = y(t) + p(t), (21)

p(t) =
1√
2πσ2

exp
(t− µ)2

2σ2
, (22)

where yr(t) is the resulting signal after adding noise, µ is the mean of the noise set to 0, and σ the standard deviation defined
as 5% of the maximum value of the signal y. The result of the reference trajectory with noise and stiffness with noise are also
presented in Fig. B.5.

We used three metrics to validate the result of the learned signal; The computational time needed to update the trajectory
weights and stiffness weights during one updating step. The mean absolute error (MAE) between the reference and the learned
trajectory. And the MAE between the reference and the learned stiffness. The result only showed deviations in the computational
time for the experiment validating the amount of Gaussian kernels N . Therefore, we only used this metric for this parameter.
In addition to the described metrics, we analysed the data quantitatively by visualising the raw data.

21

A. Gaussian Kernels

We have determined the value of Gaussian kernels N based on the results presented in Fig. B.6. Fig. B.6b illustrates
that computation time is linearly correlated with N , while the error between the reference signal and the computed signal
is asymptotic for both the trajectory and stiffness. When no noise is applied to the reference signal, the results in Fig. B.6
demonstrate that no further improvement in MAE is gained when N ≥ 15 for the trajectory, and N ≥ 25 for the stiffness.
A higher number of kernels means that a higher complexity can be captured, which explains the higher number of kernels
required for the stiffness, which shows higher complexity than the trajectory.

No Noise Noise

0.2

0.0000
0.0005
0.0010
0.0015

1000

0

2000
0.0

0.1

0 20 40 60 80 100

M
A

E x
[m

]
ti

m
e

[s
]

N [-]

M
A

E K

[N
/m

]

Ref

DMP

DMP
(noise)

0.1

0.0

−0.1

0.0

0.1

−0.1

0.0

0.1

−0.1

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

2000

0
500

1000

0
500

500

1000

0

1000
0.1

1500

1500

1500

N
=5

Position [m] Stiffness [N/m]

N
=2

5
N

=5
0

time [s]

N
=1

00

time [s]

a) b)

Fig. B.6. The effect of changing the Gaussian kernels N used to learn the DMP using LWR. a) Shows the results of learning the trajectory (left) and stiffness
scheme (right) using different values of N . For each of the four cases, the reference signal (blue), the learned DMP using a reference signal without noise,
and the learned DMP using a reference signal with noise is shown. b) Show the analysis of the different values for N . The top graph shows the computational
time needed to update the weights of the DMP of the trajectory and stiffness. The middle and bottom graphs show the MAE the trajectory and stiffness,
respectively.

The trajectory result shows that a low amount of kernels results in the lowest error for the trajectory. This low error results
from the reference signal’s low complexity, which is confirmed by the stiffness results as the error is quite large. For the
trajectory, we see that when switching between the learning and the evolution stage, the average of the learned trajectory
scheme moves down. This can be accounted to the inability of the DMP to deal with rapid changes in the reference signal
just before switching between these stages (explained in Appendix A-B).

For the stiffness with noise, we see that the DMP can filter out most of the noise, resulting in a similar stiffness as in the
case of learning for a signal without noise. For the examples in Fig. B.6a, we see that the computed signal during the validation
stage is slightly different from what is visible in the learning stage. We expect this to also result from the switching of stages
at a bad time.

Based on the results, we decided to use 50 kernels. The reason for this is that we want the DMP to be able to capture
the complexity of the signal. As some later runs will have more complex trajectories and stiffness schemes, we still want the
DMP to be able to capture the characteristics. The results also show that for the reference signal with noise, the large number
of kernels did not affect the smoothness of the learned signal. Therefore, we concluded that for large values, the DMP could
smooth out the noise. That we decided to use a value of 50 kernels instead of 25 comes at the cost of computational time.
During experiments, we use time steps 0f 0.2 s. Therefore, a value of 0.0075 s will not be an issue.

B. Gaussian Width

In [44], the Gaussian width h was set as a function of the number of kernels, i.e., h = 2.5N . We decided to change the
factor 2.5, and investigate how this influences the ability to follow the reference signal. We define this factor as the Gaussian
width coefficient ch. The result of testing different coefficients has been presented in Fig. B.7.

The results in Fig. B.7b show that for the reference without noise, no improvement is gained for the MAE of the trajectory
when ch ≥ 0.5. When there is noise, we see in Fig. B.7a that when ch ≤ 2.5, the learned trajectory captures the characteristics
of the reference signal, but the amplitude and average value are different. When the factor increases, the signal cannot capture
these characteristics. These findings have been confirmed by looking at Fig. B.7b.

The MAE of the stiffness, without noise, shows the lowest error when ch = 2.5. When there is noise, this value becomes a
bit lower, but ch = 2.5 still seems to be a reasonable choice.

We concluded that ch = 2.5 was the best choice based on the findings. The main reason is that this factor resulted in the
lowest error overall for a reference signal without noise. When there was noise, the value of ch = 2.5 fell right between the
trajectory’s best value and the stiffness’ best value.

22 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

No Noise Noise

0.00

0.02

0.04

200

400

600

0 1 2 3 4 5

M
A

E x
[m

]

ch [-]

M
A

E K
 [N

/m
]

Ref

DMP

DMP
(noise)

−0.05
0.0

−0.1

0.0

−0.1

0.0

0.1

−0.1
0.0
0.1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0
500

1000
1500

1500

1500

-1000

0
500

1000

0
500

1000

0
1000

0.05

c h=
0.

10

Position [m] Stiffness [N/m]
c h=

1.0
0

c h=
2.

50

time [s]

c h=
5.

00

time [s]

a) b)

Fig. B.7. Effect of changing the Gaussian width coefficient ch. a) Shows the results of learning the trajectory (left) and stiffness scheme (right) using different
values of ch. For each of the four cases, the reference signal (blue), the learned DMP using a reference signal without noise, and the learned DMP using a
reference signal with noise is shown. b) Shows the MAE between the reference signal with and without noise and the learned signal. The top graph shows
the MAE for the trajectory and the bottom graph the one fo MAE for the stiffness.

C. Dynamic Movement Primitive Gains

In Fig. B.8, we show the results of changing the DMP gains α and β. The tuning of β is based on literature [38, 39, 44],
which states that when ensuring a relation of 4:1 between α and β, the system would be critically damped. The results of the
MAE in Fig. B.8 show an exponentially decreasing for both the trajectory and stiffness. In the case of no noise, when α ≥ 8
there is no improvement, which occurred around α ≥ 12 when the reference signal has noise. A downside of using a high
value is that the reference trajectory is over-controlled. Therefore, we decided to use a value of α = 8 and β = 2.

No Noise Noise

0.0

0.2

0.4

0

2500

7500

5000

2 4 6 8 10 12 14

M
A

E x
[m

]
M

A
E K

 [N
/m

]

α = 4β[-]

Ref

DMP

DMP
(noise)

-1.0

0
-0.5

−0.1
0.0
0.1

0.0

0.1

0.0

0.1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

500

5000
10000

2000

0

1000

1000

0
500

1000

0

1500

−0.1

Position [m] Stiffness [N/m]

time [s] time [s]

α=
1.0

α=
4.

0
α=

8.
0

α=
10

.0

a) b)

Fig. B.8. Effect of changing the DMP gains α and β, where the system is critically damped: β = α/4. a) Shows the results of learning the trajectory (left)
and stiffness scheme (right) using different values of α. For each of the four cases, the reference signal (blue), the learned DMP using a reference signal
without noise, and the learned DMP using a reference signal with noise is shown. b) Shows the MAE between the reference signal without noise and the
computed signal. The top and bottom graphs show the MAE of the learned trajectory with and without noise, and stiffness with and without noise, respectively.

D. Forgetting Factor

The results of tuning the forgetting factor λ ∈ [0, 1] are shown in Fig. B.9. This factor defines how much of the previous
data is taken into account when computing the DMP [44]. When it is set to a high value, the system does not forget any input
value and learns the average of the periodic signal over multiple periods. Moreover, when set low to a low value, it forgets all
previous periods, meaning that the resulting DMP is computed using only the last period.

When there is no noise, the value chosen for the forgetting factors does not influence the learned trajectory. We see in
Fig. B.9a that even when λ = 0.5, the learned DMP can capture the characteristics of the signal. For stiffness, this is not the
case. For the case that λ = 0.5, the learned stiffness is not similar to the reference. The results of the MAE of the stiffness
(Fig. B.9b) show that when λ ≥ 0.85, there is no improvement in the learned stiffness scheme.

Looking at results when there is noise, we see that a higher forgetting factor always results in a better MAE. We decided
to set the value to less than 1, as during the actual experiments, the robot often needs time to adapt to the reference signal.
Therefore, it would be beneficial if the first two periods might be taken less into account than the final ones. Based on this, we
decided to use a value of 0.995, as it allows forgetting the first part of the learning stage while maximizing the entire learning
stage.

23

No Noise Noise

0

1

2

0

5000

10000

0.5 0.6 0.7 0.8 0.9 1.0

M
A

E x
[m

]

λ[-]

M
A

E K
 [N

/m
]

Ref

DMP

DMP
(noise)

0
-1

-3

-0.5

00.

−0.1
0.0
0.1

0.1

-0.1

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

10000

20000

0
2500

7500

0

500

1000

0

1000

-2

5000

1500

λ=
0.
5

Position [m] Stiffness [N/m]
λ=

0.
9

λ=
0.
99

time [s]

λ=
0.
99

5

time [s]

a) b)

Fig. B.9. Effect of changing the forgetting factor λ used when learning DMP using LWR. a) Shows the results of learning the trajectory (left) and stiffness
scheme (right) using different values of λ. For each of the four cases, the reference signal (blue), the learned DMP using a reference signal without noise,
and the learned DMP using a reference signal with noise is shown. b) Shows the MAE between the reference signal without noise and the computed signal.
The top and bottom graphs show the MAE of the learned trajectory with and without noise, and stiffness with and without noise, respectively.

24 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

APPENDIX C
EXPERIMENTAL SETUP

A. Robot Control

To control the robots, we used Robot Operating System (ROS). The ROS framework uses processes (nodes) that enable parts
of the control structure to be individually designed. Communication between these different nodes can be done by streaming
data over topics. A graphical representation of the implemented control structure is provided in Fig. C.10. The rectangle boxes
illustrate the nodes, and the lines connecting the different nodes are the topics.

Fix Pose

Skill

Force Controller

Control System

Robot

+
joint torques

saturated joint torques

joint states

External torques

end effector position

Impedance

Hybrid force/impedance

Fig. C.10. The control scheme of the robots, controlled using ROS. The expert and the novice robot are controlled using a hybrid force/impedance controller.
The impedance controller comprises two components: Skill and Fix Pose. Skill calculates a force using a desired trajectory and stiffness, both based on the
phase ϕ. Fix Pose, on the other hand, computes the force using a fixed reference position and a fixed stiffness. Both of these nodes use the measured end
effector state/position to compute the impedance force. The Force Controller uses the measured external force, determined by translating the external torques
to forces using the Jacobian, to compare with the reference force of 5N. Each force, computed by the different parts of the hybrid controller, is translated
to torques using the Jacobian. They are combined and sent to the Control System, which, if needed, saturates them based on the defined torque limits. This
node will then send the saturated joint torques to the Robot.

Both the expert and the novice robot are controlled using a hybrid force/impedance controller ((1)), which has been highlighted
in red in Fig. C.10. The implementation in ROS divides this controller into three parts:

• Skill: This node computes forces required to control the sawing movement along the x-axis of the concerning robot by
means of the impedance law ((4)). The input of the impedance controller (desired trajectory and stiffness scheme) consists
of an existing skill for the expert robot and a learning method for the novice robot. For both cases, the control depends
on the phase ϕ of the movement, the current stage of the three-staged learning scheme (Section II-C) and the measured
position of the end effector of the robot. The desired trajectory and stiffness are determined based on the phase and stage.
The impedance force is translated to torques, using the Jacobian computed with the model of the robot and the joint states
((5)). This is required, as the robots are controlled on the joint level and not in the Cartesian space.

• Fix Pose: This node also computes forces using the impedance law. However, in contrast to the skill, the reference positions
are fixed. This node computes translation forces along the y-axis and rotational forces along each axis. The computed
force is translated to torques using the Jacobian.

• Force controller: This node implements the force control part of the hybrid controller ((2)), ensuring the saw makes contact
with the object. This node receives the external torques acting on the robots, which are translated to end-effector forces
using the Jacobian. Based on this force and the reference force of 5.0N, a resulting force along the z-axis is computed,
which is translated to torques by using the Jacobian.

The combined torques, consisting of those computed using an impedance controller and those using the force controller, are
sent to the Control System. This system determines whether the torques exceed the predefined torque limits. The torques that
exceed this limit are saturated. The resulting torques are sent to the Robot. In addition, the Control System computes the
end effector states of the robot, by translating the joint states using the Jacobian. The hybrid impedance/force nodes use the
resulting end effector position as an input.

The Robot describes the robot in the real world or the robot in simulation (Gazebo). After receiving the torques of the
control system, it should move to the desired position while maintaining a certain reference force. This node also sends the
current states of the robot, which consist of the joint positions and the external torques acting on the robot.

25

B. Real World Setup

The real-world setup consists of two robots (iiwa7 and iiwa14), a saw, a clamp, and an object. This setup is visualised in
Fig. C.11.

a) b)

c)

Fig. C.11. Setup used for real world experiments. a) Shows the complete setup including a iiwa7 (right) and iiwa14 (left) robot, the BACHO metal saw, and
the wooden plank that is sawn. b) Visualises the SolidWorks render of the clamp used to attach the saw to the end-effector of the robot. c) Presents a close-up
of the saw attached to the robot.

We needed to calculate a rotation matrix to ensure the local frame of the robot’s end-effector was aligned with the global
frame since the perfect alignment of the robots was not possible. To do this, we put the robot’s end-effector into its initial
position, which was then used as the origin of the local frame. We then moved the robot along the x-axis of the global frame,
measuring the positions as we went. Using these data points, we calculated the rotation matrix. In the different stages of the
learning scheme, the robot’s movements were controlled by rotating the measured positions of the end-effector, computing the
corresponding force in the local frame, and then rotating the force back to the base frame of the robot.

C. Simulation Setup

The main principle of the setup used in simulation is the same as in the real world; There are two robots, a saw and an
object. The setup is visually represented in Fig. C.12. The main difference with the real-world setup is the saw and how it is
attached to the robot. This has been visualized in Fig. C.13. Instead of a saw, we simulated a rectangular box with a shape of
Lsawx0.05x0.05m. The length of the saw Lsaw variates between the different setups. For the default settings, the saw has a
length of 0.45m. The weight of the saw is equally distributed. This weight also variates between the different setups, with a
default setting of 0.5 kg.

a) b)

c) d)

Fig. C.12. The setup used for the simulation experiments. a) - d) Show the setup’s top view, 3D-view, front view and side view. These figures show the iiwa7
(left in c) and iiwa14 (right in c), the blue-coloured simulated saw, and a white object.

26 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

a) b) c)

Fig. C.13. Object and saw used in the simulation environment. a) shows the object, which has a grove in which the saw fits. b) Shows the simulated saw. c)
Shows the attachment of the saw to the robot’s end-effector, which is done using a virtual joint.

27

APPENDIX D
INFLUENCE OF EXTERNAL FACTORS ON MUTATION

In addition to the external factors presented in Section III-D, we also tested multiple other factors. This appendix will
illustrate these factors and give a general analysis of them. The factors tested are as follows: the base position, the friction
coefficient, the initial stroke displacement, the length of the saw, the mass of the saw, the maximum stiffness value, the length
of the period, the switching of the type (iiwa7 or iiwa14) robot being an expert and the robot being a novice, and the threshold.
Some of these factors are visually represented in Fig. D.14. In addition, a comparison of these factors is shown in Table D.2,
which is an extended version of Table II.

Length saw

 μ mass saw

y
x

(xOrigin,expert yOrigin,expert)

(xOrigin,novice, yOrigin,novice)

Fig. D.14. Visualisation of the robots in Gazebo. The left illustration is a side view of the setup and the right illustration a top view.

TABLE D.2
EXTENDED COMPARISON OF THE EXTERNAL FACTORS.

Factor Symbol Default value Value Same as default Repeatable1 Converges

Base position - Both at y = 0.4m Both at y=0.0m No Yes No
y=0.4m/y=−0.4m Yes Yes Yes2

y=0.4m/y=−0.5m Yes Yes Yes2

Friction coef. µ 0.0 0.05 No Yes Yes
0.01 No Yes Yes2

0.005 No Yes Yes2

Initial stroke displacement ∆x0 0.15m 0.15m No Yes Yes2

0.2m No Yes Yes2

Length saw Lsaw 0.45m 0.65m No No Yes2

1.05m No No Yes
Mass saw msaw 0.5 kg 3.0 kg No Yes Yes2

10.0 kg No No Yes
Maximum stiffness Kmax 1100N 500N No Yes Yes2

2200N No Yes Yes2

5000N No Yes Yes2

Period τ 2 s 1 s No No Yes2

3 s No No No
Switch Robot N/A True False No Yes Yes2

Threshold eth 0.02 0.01 Yes Yes Yes2

0.04 Yes Yes Yes2

1 Repeatable is set to “yes” if the main trends of the different trials are similar. As discussed in Section III-E, the mutations are never
repeatable throughout the different trials, but often their main trends are.

2 This mutation converges due to approaching some limit, i.e. an environmental boundary, a joint limit or a torque limit.

The based position describes the origin of both robots (iiwa7 and iiwa14). The value given in Table D.2 gives the y coordinate
of the origin of both robots, as defined in Fig. D.14. The x coordinate depends on the length of the saw. In case of the default
length of 0.45m, this coordinate has a value of 0.7m or −0.7m, depending on the type of robot. When this length is changed,
the value has increased (or decreased) half the difference in length. So for a length of 0.65m, the values are set to 0.8m or
−0.8m, and for a length of 1.05m to 1.0m or 1.0m. The reason for this is that, in this case, the initial joint positions of the
robot have not changed. This way, the influence of increasing the saw length can solely be investigated, as otherwise, the joint
configuration would also play a part. The results of this factor have already been discussed in Section III-D.

The results of the period τ (one sequence of movement), the friction coefficient (ratio between friction force and normal
force), and the maximum stiffness Kmax, have also been discussed in Section III-D. In addition, an extensive analysis of the
results of the type of stiffness scheme (continuous or discrete) is presented in Appendix A.

The initial stroke displacement of the movement is the difference between the maximum and minimum x-position during
the first run. Changing this value showed a difference in the amount of run until the boundary of the environment was reached.
Increasing the initial stroke displacement seemed to have a linear correlation with the number of runs until the environmental

28 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

boundary was reached. As a small initial stroke displacement of 0.1m has a smaller initial value than the default of 0.15m,
it would thus take more time to reach this boundary.

The result of changing the length of the saw at first glance looked interesting, as the variability in the results was relatively
high. This variability would indicate that the mutation was not repeatable. The results also showed not to converge to an
environmental boundary or one of the robot limits. However, upon closer inspection, it was found that the reference force of
−5N was not large enough to remain in contact between the saw and the object. This resulted in the saw floating in the air.
As a result, the robot had more freedom to rotate around, which largely influenced the x position.

In simulation, the mass of the saw has been equally distributed along the saw. Increasing the mass of the saw to 3.0 kg
showed only a small difference compared to the default setting of 0.5 kg. This difference was visible in the number of runs
until the boundary of the environment was reached, which was less for a larger weight. In the case where the mass was
increased quite significantly (10.0 kg), it was visible that the stroke displacement stagnated around 0.3m instead of 0.4m.
This is because the expert keeps overshooting the desired trajectory on the side closest to itself. A zigzag behaviour occurred
as we switched between the type of robot used as the expert between the different runs.

If the switching of robot is set to true, the type of robot (iiwa7 and iiwa14) used as the expert is different after each run;
For the even number runs, the iiwa14 is the expert, and for the odd number runs iiwa7 is. In case the switching of the robot
is set to false, the expert is always the iiwa7. No switching means that the expert robot uses a skill which was learned by
another type, namely the iiwa14. The results of not switching showed no zigzag patterns in the analysis. We were expecting
the expert robot to averagely move the trajectory closer to itself, as this was visible when the robots switched between being
the expert. However, this does not happen. Instead, the results are quite similar to the setup where the robot is switched. The
results might have been more interesting if we applied this no-switching approach, to a more complex case, for example, when
the period is long.

The threshold value eth was defined in (9). As the trajectory is learned in stage 1, when the stiffness used is of a constant
high value or zero, the threshold did not influence the mutation of the trajectory. The results on the stiffness scheme were more
significant, as a higher threshold resulted in more complexity in the scheme and a lower average value. In the case of a value
of eth = 0.4, we observe some follower/leader behaviour when looking at the results. However, this pattern is significantly
less clear than what was visible during the initial run.

29

APPENDIX E
REPRODUCIBILITY OF MUTATIONS

We investigated the repeatability of the skill mutation by comparing the results, using the same settings for the external
factors, during different trials. In Section III-E we discussed the reproducibility of the mutation using the default settings.
These results showed that the mutation was not repeatable, but the main trends found in the analysis were. In Fig. E.15, two
other examples, which are more extreme than the one shown previously, are presented. These cases make use of a different
period than the default.

trial 1

trial 3

trial 5

time [s]

run 4 run 18 run 25 run 27

x d
[m

]
K

 [N
/m

]

0 0.5 1 1.5 2 2.5 3 3.5 4

1000

0.0

0.2

0

(a)

trial 1

trial 2

trial 4

time [s]

run 4 run 18 run 25 run 27

x d
[m

]
K

 [N
/m

]

0 1.5 3.0 4.5 6 7.5 9 10.5 12

1000

−0.2

0.0

0.2

0

(b)

Fig. E.15. Reproducibility of the mutation. Figures E.15a and E.15b show the reproducibility using a period of 1 s and 3 s respectively. In each subfigure,
the top graphs illustrate the learned trajectory, and the bottom graphs illustrate the learned stiffness. Different runs are shown with the results for three trials
from left to right.

For a short period (1 s), it is visible that the mutation of the trajectory is not identical for each trial. While the shape of the
learned trajectory stays quite similar, the average value during each trial is shifted. In contrast, the stiffness scheme is quite
similar for each trial. This is because the reference of the stiffness usually remains at its highest value, except when the desired
trajectory intersects the actual trajectory, which occurs twice per period.

The results for a long period (3 s) shown in Fig. E.15b show both differences between the trajectories and the stiffnesses
for the different trials. For the trajectory, we see similar mutations throughout the different runs. However, for some trials,
specific mutations have been reached during earlier runs than for other trials. For example, trials 1 and 3 have mutated more
extensively than trial 5 in run 27.

We do not necessarily see a pattern when observing the stiffness in Fig. E.15b, which results from the trajectory being more
complex. The analysis of the different trials is similar (high complexity, same average value). However, this trend does not
seem to be visible in the raw data.

30 MASTER THESIS ROSA E.S. MAESSEN, DECEMBER 2022

APPENDIX F
FORCE MANIPULABILITY

A. Calculation of Force Manipulability

The manipulability of the robot can be computed by means of the J of a robot [42]. This Jacobian describes the relationship
between the joint velocities and endpoint (end-effector) velocities of the robots. The relationship between the joint torques and
endpoint forces are described using J−T . We can define an ellipsoid which maps all possible variables in the joints space to
the endpoints in the Cartesian space. As set of these joint torques is described by

||τ ||2 = τT τ ≤ 1, (23)

where τ is the joint torque vector. As the transformation of from joint torques to enforces is given by

τ = JT (q)F , (24)

where F are the end effectors Cartesian forces/torques and q the joint angle vectors, we can define (23) as follows

||JTF ||2 = F T
(
JJT

)
F ≤ 1, (25)

where the inner product (JJT)−1 = MF is used to compute the force manipulability. We can decompose MF by means of
its eigenvalues and eigenvectors

MF = QΛQ−1, (26)

where Q = [v1,v2,v3] is a matrix containing the eigenvectors, and Λ = diag(λ1λ2λ3) a diagonal matrix with the eigenvalues.
Filling in (26) therefore results into

MF =

v1x v2x v3x
v1y v2y v3y
v1z v2z v3z

λ1 0 0
0 λ2 0
0 0 λ3

v1x v1y v1z
v2x v2y v2z
v3x v3y v3z


=

v1x v2x v3x
v1y v2y v3y
v1z v2z v3z

λ1v1x λ1v1y λ1v1z
λ2v2x λ2v2y λ3v2z
λ3v3x λ2v3y λ3v3z


=

 λ1v
2
1x + λ2v

2
2x + λ3v

2
3x λ1v1xv1y + λ2v2xv2y + λ3v3xv3y

λ1v1yv1x + λ2v2yv2x + λ3v3yv3x λ1v
2
1y + λ2v

2
2y + λ3v

2
3y

λ1v1yv1x + λ2v2yv2x + λ3v3yv3x λ1v1zv1x + λ2v2zv2x + λ3v3zv3x

· · ·

· · ·
λ1v1xv1z + λ2v2xv2z + λ3v3xv3z
λ1v1yv1z + λ2v2yv2z + λ3v3yv3z

λ1v
2
1z + λ2v

2
2z + λ3v

2
3z

 .

=

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 .

(27)

We are interested in finding the manipulability along the x-axis, as this is the axis of the sawing movement. Therefore, we can
define F = [Fx, 0, 0]

T . If we rewrite (25) and fill it, we get

(
Fx 0 0

)m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

Fx

0
0

 ≤ 1

(
m1,1Fx m1,2Fx m1,3Fx

)x
0
0

 ≤ 1

m1,1F
2
x ≤ 1

(28)

We are interested in the maximum value of the manipulability, therefore, we can rewrite (28) and find the formula of the
manipulability along the x-axis as follows

Fx =

√
1

m1,1
=

√
(λ1v21x + λ2v22x + λ3v23x)

−1 (29)

31

B. Case Studies

In the results, we found two different case studies for force manipulability. In case 1, the stroke displacement of the robot
increases. This results in both robots optimising their force manipulability when they first need to pull. For case 2, one robot
has optimised its force manipulability while the other becomes slightly worse. Figures F.16 and F.17 show stage 3 of two runs
(run 2 and run 30). For both cases, we see in the upper graph the trajectory of the expert and novice robot and the bottom its
force manipulability calculated using (29). These trajectories have been presented in the global frame, where the base of the
iiwa7 and iiwa14 are located at x = −0.7m and x = 0.7m respectively.

−0.4
−0.2

0.0
0.2
0.4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
1.9
2.0
2.1
2.2
2.3
2.4

x
[m

]

time [s]

M
an

ip
ul

ab
ili

ty

run 2 run 30
Expert

Novice

Fig. F.16. Force manipulability of both the expert and novice robots during
two runs, obtained when their base is displaced from the x-axis with 0.4m.

−0.4
−0.2

0.0
0.2
0.4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

3
4
5
6
7
8

x
[m

]

time [s]

M
an

ip
ul

ab
ili

ty

run 2 run 30
Expert

Novice

Fig. F.17. Force manipulability of both the expert and novice robots during
two runs, obtained when their base is aligned with the x-axis.

For both cases, we have identified two points of the expert (with squares) and two points of the novice (with circles).
The red-coloured markers indicate the point when the end-effector is furthest away of its base position. After this point, the
movement will, for this specific robot, switch from a pushing to a pulling movement. At this point, the force manipulability
of the robot is always the highest, as the end-effector is the furthest away from its base position. On the other hand, the
purple-coloured markers indicate the point when the end-effector is the closest to the base of the robot, meaning after this
point, they will switch from a pulling to a pushing movement. At this point, the force manipulability is always the lowest, as
it is closest to its base position.

The results of case 1 (Fig. F.16) were obtained by using the default settings, where both robots were located at a y position
of 0.4m. In Section III-C, we already discussed that an increase in the stroke displacement was visible throughout the results.
The results show that this increase in stroke displacement, which is visible when comparing run 2 with run 30, also influences
the force manipulability of the robots. As the stroke displacement is almost double, so does the amplitude of both the force
manipulability. While the range of movement of both robots is averagely just as far from their base position, we see that the
resulting force manipulability is not the same. This means that one of these robots (the novice)is stronger than the other one.

That one of the robots is stronger than the other, has especially been highlighted in Fig. F.17. These results were obtained
when both robots were aligned with the x-axis, meaning y = 0.0m. This graph also shows two dotted lines, which indicate the
limits of the movement of both robots along the x-axis, which result from the joint limits; The limit of the expert is indicated
by the orange line, and the ones of the novice by the red one. We found these values by moving the end-effector of the robot
as close as possible to the base of the robot, while maintaining a fixed reference position of y = 0.0m and z=0.3m. For the
presented cases, We can see that the entire movement moves away from the novice by comparing run 2 to run 30. As a result,
the force manipulability of this robot significantly increases.In contrast, the force manipulability of the expert robot decreases.
However, the decrease in force manipulability of the expert is significantly smaller than the increase of the novice. The results
indicate that the novice robot was stronger than the expert one. While this behaviour is thus not desired for this setting, as the
novice robot will overpower the expert during movement, it can be useful when we would switch the learned skill between the
robots. In this case, the novice robot would be stronger, while the expert gains the benefit of being in a better configuration,
which allows for higher force manipulability. Therefore, combined, they would execute the task much better.

	Preface
	Introduction
	Methodology
	Task and Robot Control
	Skill Propagation
	Learning Scheme
	Skill Encoding

	Experiment & Results
	Experimental Setup & Protocol
	Metrics
	Default Settings
	Influence of the External Factors
	Phase Lag
	Overshoot on the Desired Trajectory
	Joint States
	Torque Limits

	Reproducibility

	Discussion
	Conclusion
	Appendix A: Validation Stiffness Scheme
	Reference Stiffness Scheme
	Safety Margin Dynamic Motion Primitives

	Appendix B: Validation Dynamic Movement Primitive and Locally Weighted Regression parameters
	Gaussian Kernels
	Gaussian Width
	Dynamic Movement Primitive Gains
	Forgetting Factor

	Appendix C: Experimental Setup
	Robot Control
	Real World Setup
	Simulation Setup

	Appendix D: Influence of External Factors on Mutation
	Appendix E: Reproducibility of Mutations
	Appendix F: Force Manipulability
	Calculation of Force Manipulability
	Case Studies

