

Delft University of Technology

Tools for Developing Cognitive Agents

Koeman, Vincent

DOI
10.4233/uuid:f80750ee-db68-480e-8c58-2c167bd24ee5
Publication date
2019
Document Version
Final published version
Citation (APA)
Koeman, V. (2019). Tools for Developing Cognitive Agents. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:f80750ee-db68-480e-8c58-2c167bd24ee5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:f80750ee-db68-480e-8c58-2c167bd24ee5
https://doi.org/10.4233/uuid:f80750ee-db68-480e-8c58-2c167bd24ee5

Tools for Developing Cognitive Agents

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 18 juni 2019 om 15:00 uur

door

Vincent Jaco KOEMAN

Master of Science in Computer Science,
Technische Universiteit Delft, Nederland,

geboren te Hoorn, Nederland.

Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie bestaat uit:

Rector Magnificus voorzitter
Prof. dr. K.V. Hindriks Technische Universiteit Delft /

VU Amsterdam, promotor
Prof. dr. C.M. Jonker Technische Universiteit Delft, promotor

Onafhankelijke leden:

Prof. dr. A. El Fallah Seghrouchni Sorbonne University, Frankrijk
Prof. dr. M.M. Dastani Universiteit Utrecht
Prof. dr. T. Holvoet Katholieke Universiteit Leuven, België
Prof. dr. F.M. Brazier Technische Universiteit Delft
Prof. dr. ir. M.J.T. Reinders Technische Universiteit Delft, reservelid

Printed by: Haveka

Front & Back: W.J. Buijs

Copyright © 2019, V.J. Koeman. All rights reserved.

SIKS Dissertation Series No. 2019-19
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

ISBN 978-94-6366-167-6

An electronic version of this dissertation is available at
https://repository.tudelft.nl

https://repository.tudelft.nl

Contents

Summary v

Samenvatting vii

1 Introduction 1
1.1 Developing Cognitive Agents . 2
1.2 Research Questions . 3
1.3 Approach . 4
References. 6

2 Designing a Source-Level Debugger for Cognitive Agents 9
2.1 Introduction . 10
2.2 Issues in Debugging Cognitive Agent Programs 10
2.3 Debugger Design Approach . 21
2.4 Evaluation . 35
2.5 Conclusions and Future Work . 39
References. 40

3 Automating Failure Detection in Cognitive Agents 45
3.1 Introduction . 46
3.2 Related Work . 47
3.3 Automated Testing Framework. 48
3.4 Testing for Failures. 54
3.5 Testing GOAL Agents in the Eclipse IDE 64
3.6 Evaluation . 65
3.7 Conclusions and Future Work . 74
References. 75

4 Facilitating Omniscient Debugging for Cognitive Agents 79
4.1 Introduction . 80
4.2 Related Work . 80
4.3 Agent Trace Design. 84
4.4 Evaluation . 88
4.5 Visualizing Traces . 90
4.6 Conclusions and Future Work . 92
References. 92

5 Designing a Cognitive Connector for Complex Environments 95
5.1 Introduction . 96
5.2 Related Work . 97
5.3 Case Study: StarCraft . 98

iii

iv Contents

5.4 Connector Design Approach . 99
5.5 Conclusions and Future Work . 111
References. 112

6 Conclusion 115
6.1 Conclusions . 115
6.2 Limitations . 117
6.3 Contributions . 118
6.4 Future Work. 119
References. 121

A Source-Level Debugger Questionnaire and Correlation Analysis 123

Curriculum Vitæ 125

List of Publications 127

SIKS Dissertation Series 129

Acknowledgements 143

Summary

Agent-oriented programming (AOP) is a programming paradigm introduced roughly
thirty years ago as an approach to problems in Artificial Intelligence (AI). An agent
is a piece of software that can perceive its environment (e.g., through sensors) and
act upon that environment (e.g., through actuators). A cognitive agent is a specific
type of agent that executes a decision cycle in which it processes events and selects
actions based on cognitive notions such as beliefs and goals. Often, multiple agents
are used, which is referred to as a multi-agent system (MAS). MAS is generally
advertised an approach to handling problems that require multiple problem solving
methods, multiple perspectives, and multiple problem solving entities.

Tools and techniques for the programming of cognitive agents need to be based
on the underlying agent-oriented paradigm, which is a significant challenge, as un-
like more traditional paradigms, they should for example take into account that
agents execute a specific decision cycle and operate in non-deterministic environ-
ments. Therefore, in this thesis, we take existing AOP theories a step further by
designing tools for the development of cognitive agent programs with an explicit
focus on usability. Each development tool we propose is extensively evaluated on
hundreds of (novice) agent programmers. In the context of AOP, the process of
detecting, locating and correcting mistakes in a computer program, known as de-
bugging, is particularly challenging. As large part of the effort of a programmer
consists of debugging a program, efficient debugging is an essential factor for both
productivity and program quality. In this thesis, we contribute both to the pro-
cess of locating mistakes in agent programs as well as the process of identifying
misbehaviour of an agent in the first place.

First, we propose a source-level debugger design for cognitive agents aimed
at providing a better insight into the relationship between program code and the
resulting behaviours. We identify two different types of breakpoints specifically
for agent programming: code-based and cycle-based. The former are based on
the structure of an agent program, whereas the latter are based on an agent’s
decision cycle. We propose design steps for designing a debugger for cognitive
agents; by using the syntax and decision cycle of an agent programming language,
a set of pre-defined breakpoints and the flow between them can be determined
in a structured manner, and represented in a stepping diagram. Based on such a
diagram, features such as user-defined breakpoints, visualization of the execution
flow, and state inspection can be handled. We provide a design for the GOAL and
Jason programming languages, as well as a full implementation for GOAL, and argue
that our approach can be applied to other agent programming languages.

Next, we propose an automated testing framework for cognitive agents. We
identify a minimal set of temporal operators that enable the specification of test
conditions. We show that the resulting test language is sufficiently expressive for

v

vi Summary

detecting all failure types of an existing taxonomy of failures for cognitive agents.
We also introduce an approach for specifying test templates that supports pro-
grammers in writing tests for their agents. The proposed test language is minimal
in the sense that only two temporal operators are provided. We show by analysing
different agent program samples that the language is nevertheless sufficient for
detecting failures in cognitive agent programs. An implementation of the proposed
framework for the GOAL agent programming language serves as a prototype for
evaluation and as an example for other agent programming languages.

Moreover, we show that for AOP back-in-time debugging, a technique that fa-
cilitates debugging by moving backwards in time through a program’s execution,
is possible in practice. We design a tracing mechanism for efficiently storing and
exploring agent program runs. We are the first to demonstrate that this mechanism
does not affect program runs by empirically establishing that the same tests succeed
or fail. This is in stark contrast with previous work in different paradigms, in which
the overhead caused by tracing is so large that the technique cannot be effectively
used in practice. Usability is supported by a trace visualization method aimed at
allowing developers of cognitive agents to more effectively locate mistakes.

Finally, cognitive agents specifically require a connector to their target environ-
ment. However, connecting agents with an environment that puts strict real-time
constraints on the responsiveness of agents, requires coordination at different lev-
els, and requires complex reasoning about long-term goals under a high level of
uncertainty is not a trivial task. In this thesis, we therefore present a design ap-
proach for creating connectors for cognitive agent technology to complex environ-
ments, illustrated by a case study of such a connector that provides full access to
the game StarCraft: Brood War. A major challenge that is addressed is to ensure
corresponding cognitive agents can be programmed at a high level of abstraction
whilst simultaneously allowing sufficient variety in strategies to be implemented.
The viability of the approach is demonstrated by multiple large-scale practical uses
of the StarCraft connector, resulting in a varied set of competitive AI systems.

We contribute to the field of developing cognitive agents by empirically investi-
gating the needs of developers of cognitive agents in effectively engineering solu-
tions to AI problems. We introduce design methods for the creation of source-level
debuggers, automated testing frameworks, back-in-time debuggers, and cognitive
connectors; all vital tools for engineering MAS. Each tool is implemented in the
GOAL agent platform, making sure the proposed design approaches are feasible
in practice and serving both as a prototype for use in evaluations as well as an
open-source example for the developers of other AOP solutions. We believe this
work enhances the potential of demonstrating the added value of cognitive agents.
First, empowering developers of cognitive agents to effectively debug and test their
systems should enhance their potential willingness to employ these technologies.
Second, providing developers with a design approach for developing efficient cog-
nitive connectors to complex environments allows AOP to be actually employed for
engineering large-scale complex distributed systems. Finally, our empirical results
provide concrete examples of the potential of AOP.

Samenvatting

Agentgeoriënteerd programmeren (AOP) is een programmeerparadigma dat on-
geveer dertig jaar geleden is geïntroduceerd als een aanpak voor problemen in de
Kunstmatige Intelligentie (AI). Een agent is een stuk software dat zijn omgeving kan
waarnemen (bv. met sensoren) en in die omgeving kan acteren (bv. door te bewe-
gen). Een cognitieve agent is een specifieke soort agent die een beslissingscyclus
uitvoert waarin gebeurtenissen worden verwerkt en acties worden geselecteerd op
basis van cognitieve noties als kennis en doelen. Vaak worden meerdere agenten
gebruikt, wat een multi-agent systeem (MAS) wordt genoemd. MAS wordt over het
algemeen geadverteerd als een aanpak voor problemen die meerdere probleem-
oplossingsmethoden, meerdere perspectieven, en meerdere probleemoplossende
entiteiten nodig hebben.

Hulpmiddelen en technieken voor het programmeren van cognitieve agenten
moeten gebaseerd zijn op het onderliggende agentgeoriënteerde paradigma, wat
een grote uitdaging is in verhouding met traditionelere paradigma doordat agen-
ten een specifieke beslissingscyclus uitvoeren en in niet-deterministische omgevin-
gen opereren. In dit proefschrift gaan we daarom een stap verder met bestaande
AOP-theorieën door hulpmiddelen voor het ontwikkelen van cognitieve agentpro-
gramma’s te ontwerpen met een focus op bruikbaarheid. Elke ontwikkeltool die
wij voorstellen is uitgebreid geëvalueerd op honderden (beginnende) agentpro-
grammeurs. In de context van AOP is met name het proces van het detecteren,
lokaliseren en corrigeren van fouten in een computerprogramma (‘debugging’) een
uitdaging. Omdat een groot deel van de inzet van een programmeur bestaat uit het
debuggen van programma’s is efficiënt debuggen een essentiële factor voor zowel
productiviteit als kwaliteit. In dit proefschrift dragen we zowel aan het proces van
het opsporen van fouten in agentprogramma’s als het proces van het identificeren
van verkeerde gedragingen van een agent bij.

Als eerste stellen we een ontwerp van ‘source-level debugger’ voor cognitieve
agenten voor, gericht op het geven van een beter inzicht in de relatie tussen pro-
grammacode en de resulterende gedragingen. We identificeren twee verschillende
soorten breakpoints die specifiek zijn voor agentprogrammeren: op basis van code
en op basis van de cyclus. De eerste zijn gebaseerd op de structuur van een agent-
programma, terwijl de andere zijn gebaseerd op de beslissingscyclus van een agent.
We stellen ontwerpstappen voor het ontwerpen van een debugger voor cognitieve
agenten voor; door de syntaxis en de beslissingscyclus van een agentprogram-
meertaal te gebruiken kan een set van voorgedefinieerde ‘breakpoints’ en de loop
daartussen op een gestructureerde manier worden bepaald en gerepresenteerd in
een diagram. Op basis van een dergelijk diagram kunnen functionaliteiten als door
de gebruiker bepaalde breakpoints, visualisaties van de executieflow en inspectie
van de programmatoestand worden afgehandeld. We bieden ontwerpen voor de

vii

viii Samenvatting

agentprogrammeertalen GOAL en Jason aan, samen met een volledige implemen-
tatie voor GOAL, en beargumenteren dat onze aanpak ook op andere agentpro-
grammeertalen kan worden toegepast.

Vervolgens stellen we een ‘framework’ voor het automatisch testen van cogni-
tieve agenten voor. We identificeren een minimale set van temporele operatoren
voor waarmee test condities kunnen worden gespecificeerd. We laten zien dat
de hieruit voortvloeiende testtaal voldoende expressief is voor het detecteren van
alle defecten uit een bestaande taxonomie voor defecten van cognitieve agenten.
We introduceren ook een aanpak voor het specificeren van testsjablonen die pro-
grammeurs ondersteunen bij het schrijven van tests voor agenten. De voorgestelde
testtaal bevat slechts twee temporele operatoren. We laten met verschillende voor-
beelden van agentprogramma’s zien dat de testtaal toereikend is voor het detec-
teren van defecten in agentprogramma’s. Een implementatie van het voorgestelde
framework voor de agentprogrammeertaal GOAL dient als een prototype voor eva-
luaties en als een voorbeeld voor andere agentprogrammeertalen.

We laten verder zien dat ‘terug-in-de-tijd’ debuggen, een techniek waarbij de-
buggen wordt gefaciliteerd door terug te gaan in de executie van een programma,
in de praktijk mogelijk is met AOP. We ontwerpen een traceringsmechanisme voor
het efficiënt opslaan en verkennen van executies van agentprogramma’s. We zijn
de eerste die laten zien dat dit mechanisme de uitvoering van programma’s niet
beïnvloedt door empirisch vast te stellen dat dezelfde tests slagen of mislukken.
Dit is sterk in contrast met eerder werk in andere paradigma’s waarbij de overhead
van het traceren zo groot is dat de techniek niet effectief in de praktijk kan worden
gebruikt. De bruikbaarheid wordt gefaciliteerd door een visualisatiemethode voor
getraceerde executies, gericht op het effectief opsporen van fouten door ontwikke-
laars van cognitieve agenten.

Cognitieve agenten hebben specifiek een ‘connector’ met hun doelomgeving no-
dig. Het is echter geen triviale taak om agenten te verbinden met een omgeving
die strikte realtime responsiveness (het vermogen om gelijk te doen wat wordt
gewenst) van de agenten eist, waarbij er op verschillende niveaus gecoördineerd
moet worden en waarbij er complexe redeneringen over lange-termijn doelstellin-
gen met een hoog niveau van onzekerheid nodig zijn. In dit proefschrift presenteren
we daarom een ontwerpmethode voor het maken van connectoren voor cognitieve
agent technologie en complexe omgevingen, geïllustreerd met een case study van
zo’n connector met volledige toegang tot het spel StarCraft: Brood War. Een be-
langrijke uitdaging die wordt aangepakt is het verzekeren dat bijbehorende cogni-
tieve agenten op een hoog niveau van abstractie kunnen worden geprogrammeerd
terwijl tegelijkertijd een voldoende variëteit in strategieën geïmplementeerd kun-
nen worden. De uitvoerbaarheid van de aanpak wordt gedemonstreerd door de
grootschalige inzet van de StarCraft connector in meerdere praktijksituaties, wat
resulteerde in een gevarieerde set van competitieve AI-systemen.

We leveren een bijdrage aan het veld van het ontwikkelen van cognitieve agen-
ten door de behoeftes van de ontwikkelaars van cognitieve agenten bij het effectief
oplossen van AI-problemen empirisch te onderzoeken. We introduceren ontwerp-
methodes voor het maken van source-level debuggers, frameworks voor automa-

Samenvatting ix

tische tests, terug-in-de-tijd debuggers en cognitieve connectoren; stuk voor stuk
essentiële hulpmiddelen voor het ontwikkelen van MAS. Elke ontwikkeltool is ge-
ïmplementeerd in het GOAL-platform voor agenten, waarmee we garanderen dat
de voorgestelde ontwerpmethodes in de praktijk uitvoerbaar zijn en welke zowel
als prototype voor evaluaties functioneren als ‘open-source’ voorbeeld voor de ont-
wikkelaars van andere AOP oplossingen. We geloven dat dit werk het potentieel
voor het demonstreren van de toegevoegde waarde van cognitieve agenten ver-
sterkt. Ten eerste, door ontwikkelaars van cognitieve agenten in staat te stellen om
hun systemen effectief te debuggen en testen zou hun potentiële bereidheid om
deze technieken in te zetten moeten verbeteren. Ten tweede, door ontwikkelaars
te voorzien van een ontwerpmode voor het ontwikkelen van efficiënte cognitieve
connectoren kan AOP daadwerkelijk worden ingezet om complexe gedistribueerde
systemen te maken. Als laatste geven onze empirische concrete voorbeelden van
de potentie van AOP.

1
Introduction

Nowadays, when a programmer sets out to create a piece of software, he or she
can choose from over 700 ‘non-esoteric’ programming languages like Java, Python,
C++, and many others [1]. Adequately solving a programming problem requires
choosing a language that facilitates the use of the right concepts in the context
of that problem. Any programming language can be classified into one or more
paradigms. A programming paradigm is an approach to programming that makes
use of a specific set of concepts that is aimed at solving certain kinds of problems
[2]. Object-oriented programming and functional programming are examples of
well-known programming paradigms.

In this thesis, we focus on one such paradigm: agent-oriented programming
(AOP). Introduced roughly thirty years ago as a programming paradigm [3], AOP
is an approach to problems in Artificial Intelligence (AI) that is centred around the
concept of an agent. We take the definition of Russell and Norvig [4] here, as also
illustrated in Figure 1.1, in that an agent is a piece of software that can perceive its
environment (e.g., through sensors) and act upon that environment (e.g., through
actuators). An agent generally does not require (constant) human guidance or
intervention, and operates in an environment (either real or simulated) in which
other processes take place and other agents exist. A specific type of (software)
agent is a cognitive agent [5]. Cognitive agents execute a decision cycle in which
they process events and derive a choice of action from their beliefs and goals (see
also in Figure 1.1). The cognitive notions like beliefs and goals, often grouped in a
so-called cognitive state (also: mental state), stem from the Belief Desire Intention
(BDI) philosophy of Bratman [6]1.

Often, multiple (co-operative) agents are used to solve problems, which is re-
ferred to as a multi-agent system (MAS). Multi-agent systems are generally ad-
vertised as an approach to handling problems that require multiple problem solving
methods, multiple perspectives, and/or multiple problem solving entities [8]. AOP
1Although the term ‘BDI agent’ is also often used in literature, we use ‘cognitive agent’ here as it
represents a more generic type of agent (of which BDI agents are a subtype).

1

1

2 1. Introduction

Figure 1.1: A schematic overview of key concepts in (cognitive) AOP is shown on the left; a typical agent
decision cycle is shown on the right. Both are from the GOAL agent programming language [7].

offers an alternative to other approaches for engineering complex distributed sys-
tems [9, 10]. Applications of MAS are reported in diverse areas such as logistics
and manufacturing, telecommunication, aerospace, e-commerce, and defence by
Müller and Fischer [11]. An (early) industrial paper [12] even states that “In a wide
range of complex business applications ... BDI technology incorporated within an
enterprise-level architecture can improve overall developer productivity by an av-
erage of 350%.” However, currently applications are (still) not widespread, and
mostly based on older non-cognitive platforms (as found earlier by Dignum and
Dignum [13] as well).

Hindriks [9] argues that the step to mature applications for technologies that
support the engineering of cognitive agents is bigger than that of more general
purpose frameworks for engineering agents. Cognitive agent technology offers
a powerful solution for developing the next generation of agent-based decision-
making systems, but as Hindriks [9] also underlines: “it it is time to start paying
more attention to the kind of support that a [cognitive] MAS developer needs to
facilitate him or her when engineering future MAS applications … it is important to
identify the needs of a developer and make sure that a developer is provided
with the right tools for engineering MAS.”

1.1. Developing Cognitive Agents
Software development is generally performed in an Integrated Development Envi-
ronment (IDE): a set of software tools or applications that provides comprehensive
facilities for software development [14]. An IDE consists of tools such as a source

1.2. Research Questions

1

3

code editor, a compiler or interpreter (or both), build-automation tools, a debugger,
and automated testing support [15, 16]. It is, however, challenging to design usable
IDEs [17], and perhaps even more so for cognitive agent programming languages,
as the paradigm differs largely in many aspects from more traditional paradigms.

Although the need for dedicated development tools for agent program-
ming has been broadly recognised for over a decade [9, 18–23], and some meth-
ods and tools have been proposed, e.g. [24–29], the current literature has a lack
of evaluations performed on agent developers. Tools and techniques for the pro-
gramming of cognitive agents need to be based on the underlying agent-oriented
paradigm [30, 31], which is a significant challenge, as they should, for example,
take into account that agents execute a specific decision cycle and operate in non-
deterministic environments [32–34]. In this thesis, we take the existing theory a
step further by designing tools for the development of cognitive agent programs
with an explicit focus on usability. Each development tool we propose has been
extensively evaluated on hundreds of (novice) agent programmers.

1.2. Research Questions
The main question that this thesis explores is:

How can we support developers of cognitive agents in effectively engineering
multi-agent systems?

In the context of AOP, the literature as mentioned in the previous section specifically
indicates that debugging, the process of detecting, locating and correcting faults in
a computer program [14], is challenging. A large part of the effort of a programmer
consists of debugging a program; this makes efficient debugging an essential factor
for both productivity and program quality [35, 36]. A failure is an event in which
a system does not perform a required function within specified limits [14]. They
are caused by a fault, an incorrect step, process, or data definition in a program
or mistake in a program [14]. Upon detecting a failure, a programmer needs to
locate and correct the fault that causes the failure. Tools for debugging thus aim to
assist a programmer in detecting failures (i.e., differences between observed and
intended behaviour) and locating faults (i.e., find the problem in the code).

Between the two, “fault localization ... is widely recognized to be one of the
most tedious, time consuming, and expensive – yet equally critical – activities.”
[37]. Many fault localization techniques have been developed for paradigms like
object-oriented and functional programming, but as detailed in the previous section,
the unique approach to programming that is inherent to the AOP paradigm requires
a unique approach to its tooling [38]. Moreover, as Wong et al. [37] also state,
“analyses very often make over-simplified and non-realistic assumptions that do not
hold for real-life programs.” As we aim to address the specific needs of developers
of cognitive agents in this thesis, our first research question is:

RQ 1: How can we provide developers of cognitive agents with an insight into
how observed behaviour relates to the program code?

1

4 1. Introduction

Detecting failures in the first place is a major challenge as well [39]. Especially in a
multi-agent (and thus concurrent) setting, manually keeping track of the behaviour
of all agents is practically infeasible. We thus need to pro-actively detect failures,
i.e., automate failure detection. A tool for automated failure detection can even
provide clues about the localization of the corresponding fault. Our second research
question therefore is:

RQ 2: How can we automate the detection and localization of failures for
developers of cognitive agent programs?

Even after addressing these two challenges, there are still types of failures in cog-
nitive agent programs for which fault localization is difficult. For example, it is
frequently difficult to locate a fault for a failure to execute a certain action based on
an agent’s current state only; the root cause of a failure in an agent program is more
often than not both far removed in time and in code(location). Moreover, real-time
programs like multi-agent systems are typically not deterministic. Running the same
agent system again more often than not results in a different program run or trace,
which further complicates the iterative process of debugging. In order to address
these issues, a record (trace) of all decision making processes that took place in an
agent’s execution (up until the point of failure) is required. Tracing techniques have
been developed in different fields (i.e., object-oriented programming). Employing
and extending these techniques into the field of cognitive agents, however, is a
non-trivial task, resulting in the third research question:

RQ 3: How can we facilitate developers of cognitive agents in employing ‘back-
in-time’ debugging techniques?

Finally, in order to address a ‘real-world’ AI problem, ‘just’ developing a MAS is not
enough. Cognitive agents specifically require a ‘connector’ to the target environ-
ment. However, connecting cognitive agents with an environment that puts strict
real-time constraints on the responsiveness of agents, requires coordination at dif-
ferent levels (ranging from a few agents to large groups of agents), and requires
complex reasoning about long-term goals under a high level of uncertainty is not a
trivial task [40]. Moreover, as such a connector essentially defines which inputs an
agent will receive and which outputs it has to decide on, this has a major impact
on all aspects of the development of a corresponding MAS as well. Therefore, the
fourth and final research question is:

RQ 4: How can developers of cognitive agents connect their agents to complex
real-time environments?

1.3. Approach
In the following four chapters, each research question is addressed in turn.

In Chapter 2, addressing RQ 1, we propose a design approach for single-step ex-
ecution (i.e., source-level debugging) of cognitive agents that supports both code-
based as well as cycle-based suspension of an agent program. This approach results

1.3. Approach

1

5

in a concrete stepping diagram ready for implementation, as illustrated by a diagram
for both the GOAL and Jason agent programming languages, and a corresponding
full implementation of a source-level debugger for GOAL in the Eclipse development
environment. Based on this implementation, the results of both quantitative and
qualitative evaluations on over 200 students are presented and discussed.

In Chapter 3, addressing RQ 2, we propose an automated testing framework
for detecting failures in cognitive agent programs. We identify a minimal set of
temporal operators that enable the specification of test conditions and show that
the test language is sufficiently expressive for detecting all failure types of an ex-
isting failure taxonomy for cognitive agents. We also introduce an approach for
specifying test templates that supports a programmer in writing tests for cognitive
agents. Empirical analysis of agent programs allows us to evaluate whether our
approach using test templates adequately detects failures, and to determine the
effort that is required to do so in both single and multi agent systems. We also
discuss a concrete implementation of the proposed framework for the GOAL agent
programming language that has been developed for the Eclipse IDE. Based on this
framework, the results of both quantitative and qualitative evaluations on close to
100 pairs of students are presented and discussed.

In Chapter 4, addressing RQ 3, we show that for agent-oriented programming,
practical back-in-time (‘omniscient’) debugging is possible. We design a tracing
mechanism for efficiently storing and exploring agent program runs. We are the
first to demonstrate that this mechanism does not affect program runs by empiri-
cally establishing that the same tests succeed or fail. This is in stark contrast with
previous work in different paradigms, in which the overhead caused by tracing is so
large that the technique cannot be effectively used in practice. Usability is supported
by a trace visualization method aimed at allowing developers of cognitive agents
to more effectively locate faults in agent programs. We also discuss a concrete
implementation of the proposed tracing mechanism and according visualization for
the GOAL agent programming language that has been developed for Eclipse.

In Chapter 5, addressing RQ 4, we propose a design approach to connectors for
cognitive agents, based on the principle that each unit that can be controlled in an
environment should be mapped onto a single agent. We design and implement a
cognitive connector for the real-time strategy (RTS) game StarCraft and use it as a
case study for establishing a design method. StarCraft is particularly suitable to this
end, as AI for an RTS game such as StarCraft requires the design of complicated
strategies for coordinating hundreds of units that need to solve a range of challenges
including handling both short-term as well as long-term goals. Our connector is
the first implementation that provides full access for cognitive agents to StarCraft:
Brood War. We draw several lessons from how our design evolved and from the
use of our connector by over 500 students in two years.

Finally, in Chapter 6, we discuss the implication of all these chapters on our main
research question. Suggestions for future work are provided based on the results
and limitations of our work.

1

6 References

References
[1] Wikipedia, List of programming languages, https://wikipedia.org/

wiki/List_of_programming_languages (2019), accessed: 2019-01-
10.

[2] P. Van Roy, Programming paradigms for dummies: What every programmer
should know, New computational paradigms for computer music 104 (2009).

[3] Y. Shoham, Agent-oriented programming, Artificial intelligence 60, 51 (1993).

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
(Prentice Hall, Upper Saddle River, NJ, USA, 2010).

[5] M. B. van Riemsdijk, Cognitive agent programming: A semantic approach,
Ph.D. thesis, Utrecht University (2006).

[6] M. Bratman, Intention, Plans, and Practical Reason (Center for the Study of
Language and Information, 1987).

[7] K. V. Hindriks, GOAL Programming Guide, https://bintray.com/
artifact/download/goalhub/GOAL/GOALProgrammingGuide.pdf
(2018), accessed: 2019-01-10.

[8] N. R. Jennings, K. Sycara, and M. Wooldridge, A roadmap of agent research
and development, Autonomous Agents and Multi-Agent Systems 1, 7 (1998).

[9] K. V. Hindriks, The shaping of the agent-oriented mindset, in Engineering Multi-
Agent Systems: Second International Workshop, EMAS 2014, Paris, France,
May 5-6, 2014, Revised Selected Papers, edited by F. Dalpiaz, J. Dix, and
M. B. van Riemsdijk (Springer International Publishing, 2014) pp. 1–14.

[10] B. Logan, A future for agent programming, in Engineering Multi-Agent Sys-
tems: Third International Workshop, EMAS 2015, Istanbul, Turkey, May 5,
2015, Revised, Selected, and Invited Papers, edited by M. Baldoni, L. Baresi,
and M. Dastani (Springer International Publishing, Cham, 2015) pp. 3–17.

[11] J. P. Müller and K. Fischer, Application impact of multi-agent systems and tech-
nologies: A survey, in Agent-Oriented Software Engineering: Reflections on
Architectures, Methodologies, Languages, and Frameworks, edited by O. She-
hory and A. Sturm (Springer Berlin Heidelberg, 2014) pp. 27–53.

[12] S. S. Benfield, J. Hendrickson, and D. Galanti, Making a strong business case
for multiagent technology, in Proceedings of the Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS ’06 (ACM,
New York, NY, USA, 2006) pp. 10–15.

[13] V. Dignum and F. Dignum, Designing agent systems: State of the practice, Int.
J. Agent-Oriented Softw. Eng. 4, 224 (2010).

https://wikipedia.org/wiki/List_of_programming_languages
https://wikipedia.org/wiki/List_of_programming_languages
https://bintray.com/artifact/download/goalhub/GOAL/GOALProgrammingGuide.pdf
https://bintray.com/artifact/download/goalhub/GOAL/GOALProgrammingGuide.pdf

References

1

7

[14] ISO/IEC/IEEE, 24765:2017-9 Systems and software engineering – Vocabulary,
https://www.iso.org/standard/71952.html (2017).

[15] A. Fuggetta, A classification of CASE technology, Computer 26, 25 (1993).

[16] S. P. Reiss, Software tools and environments, ACM Computing Surveys 28,
281 (1996).

[17] R. B. Kline and A. Seffah, Evaluation of integrated software development envi-
ronments: Challenges and results from three empirical studies, International
Journal of Human-Computer Studies 63, 607 (2005).

[18] R. H. Bordini, L. Braubach, J. J. Gomez-Sanz, G. O. Hare, A. Pokahr, and
A. Ricci, A survey of programming languages and platforms for multi-agent
systems, Informatica 30, 33 (2006).

[19] J. Dix, K. V. Hindriks, B. Logan, and W. Wobcke, Engineering Multi-Agent
Systems (Dagstuhl Seminar 12342), Dagstuhl Reports 2, 74 (2012).

[20] M. Winikoff, Challenges and directions for engineering multi-agent systems,
arXiv preprint arXiv:1209.1428 (2012).

[21] M. B. van Riemsdijk, 20 years of agent-oriented programming in distributed
ai: History and outlook, in Proceedings of the 2nd Edition on Programming
Systems, Languages and Applications Based on Actors, Agents, and Decen-
tralized Control Abstractions, AGERE! 2012 (ACM, New York, NY, USA, 2012)
pp. 7–10.

[22] M. Dastani, A survey of multi-agent programming languages and frame-
works, in Agent-Oriented Software Engineering: Reflections on Architec-
tures, Methodologies, Languages, and Frameworks, edited by O. Shehory and
A. Sturm (Springer Berlin Heidelberg, 2014) pp. 213–233.

[23] M. Dastani, Programming multi-agent systems, The Knowledge Engineering
Review 30, 394 (2015).

[24] D. N. Lam and K. S. Barber, Debugging agent behavior in an implemented
agent system, in International Workshop on Programming Multi-Agent Sys-
tems (Springer, 2004) pp. 104–125.

[25] R. Collier, Debugging agents in Agent Factory, in International Workshop on
Programming Multi-Agent Systems (Springer, 2006) pp. 229–248.

[26] J. J. Gomez-Sanz, J. Botía, E. Serrano, and J. Pavón, Testing and debugging of
MAS interactions with INGENIAS, in International Workshop on Agent-Oriented
Software Engineering (Springer, 2008) pp. 199–212.

[27] M. Dastani, J. Brandsema, A. Dubel, and J.-J. C. Meyer, Debugging BDI-based
multi-agent programs, in International workshop on programming multi-agent
systems (Springer, 2009) pp. 151–169.

https://www.iso.org/standard/71952.html

1

8 References

[28] Z. Huang, R. Alexander, and J. Clark, Mutation testing for Jason agents, in
International Workshop on Engineering Multi-Agent Systems (Springer, 2014)
pp. 309–327.

[29] V. J. Koeman and K. V. Hindriks, A fully integrated development environ-
ment for agent-oriented programming, in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection,
edited by Y. Demazeau, K. S. Decker, J. Bajo Pérez, and F. de la Prieta
(Springer International Publishing, Cham, 2015) pp. 288–291.

[30] Z. Zhang, J. Thangarajah, and L. Padgham, Model based testing for agent
systems, Software and Data Technologies 22, 399 (2008).

[31] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, and J. Thangarajah, Testing
in multi-agent systems, in Agent-Oriented Software Engineering X, Vol. 6038
(Springer Berlin Heidelberg, 2011) pp. 180–190.

[32] G. Caire, M. Cossentino, and A. Negri, Multi-agent systems implementation
and testing, in Proceedings of the 4th From Agent Theory to Agent Implemen-
tation Symposium, AT2AI-4 (2004).

[33] R. Bordini, M. Dastani, and M. Winikoff, Current issues in multi-agent systems
development, in Engineering Societies in the Agents World VII, Lecture Notes
in Computer Science, Vol. 4457 (Springer Berlin Heidelberg, 2007) pp. 38–61.

[34] Z. Houhamdi, Multi-agent system testing: A survey, International Journal of
Advanced Computer Science and Applications 2, 135 (2011).

[35] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debug-
ging, 2nd ed. (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2009).

[36] C. Parnin and A. Orso, Are automated debugging techniques actually helping
programmers? in Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’11 (ACM, New York, NY, USA, 2011) pp.
199–209.

[37] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, A survey on software
fault localization, IEEE Transactions on Software Engineering 42, 707 (2016).

[38] K. Potiron, A. E. F. Seghrouchni, and P. Taillibert, From fault classification to
fault tolerance for multi-agent systems, SpringerBriefs in Computer Science
(Springer, 2013).

[39] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling, What do we
know about defect detection methods? Software, IEEE 23, 82 (2006).

[40] D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet, Environments
in multiagent systems, Knowledge Engineering Review 20, 127 (2005).

2
Designing a Source-Level
Debugger for Cognitive

Agents

When an agent program exhibits unexpected behaviour, a developer needs
to locate the fault by debugging the agent’s source code. The process of fault
localisation requires an understanding of how code relates to the observed
agent behaviour. The main aim in this chapter is to design a source-level
debugger that supports single-step execution of a cognitive agent program.
Cognitive agents execute a decision cycle in which they process events and
derive a choice of action from their beliefs and goals. Current state-of-the-
art debuggers for agent programs provide insight in how agent behaviour
originates from this cycle but less so in how it relates to the program code.
As relating source code to generated behaviour is an important part of the
debugging task, arguably, a developer also needs to be able to suspend an
agent program on code locations.
We propose a design approach for single-step execution of agent programs
that supports both code-based as well as cycle-based suspension of an agent
program. This approach results in a concrete stepping diagram ready for
implementation and is illustrated by a diagram for both the GOAL and Jason
agent programming languages, and a corresponding full implementation of
a source-level debugger for GOAL in the Eclipse development environment.
The evaluation that was performed based on this implementation shows that
agent programmers prefer a source-level debugger over a purely cycle-based
debugger.

This chapter has been published in the the Journal of Autonomous Agents and Multi-Agent Systems
31(5) (2016) [1], an extension of work published in the Conference on Principles and Practices of
Multi-Agent Systems (2015) [2].

9

2

10 2. Designing a Source-Level Debugger for Cognitive Agents

2.1. Introduction
Debugging is the process of detecting, locating, and correcting faults in a computer
program [3]. A large part of the effort of a programmer consists of debugging a
program. This makes efficient debugging an important factor for both productivity
and program quality [4]. Typically, a defect is detected when a program exhibits
unexpected behaviour. In order to locate the cause of such behaviour, it is essential
to explain how and why it is generated [5].

A source-level debugger is a very useful and important tool for fault localization
that supports the suspension and single-step execution of a program [6]. Single-
step execution is based on breakpoints, i.e., points at which execution can be sus-
pended [3]. Stepping through program code allows for a detailed inspection of the
program state at a specific point in program execution and the evaluation of the
effects of specific code sections.

Debuggers typically are source-level debuggers. However, most debuggers
available for agent programs do not provide support for suspending at a partic-
ular location in the source code. Instead, these debuggers provide support for
suspension at specific points in the reasoning or decision cycle of an agent. The
problem is that these points are hard to relate to the agent program code. In ad-
dition, these debuggers only show the current state, but do not show the current
point in the code where execution will continue. It thus is hard for a programmer
to understand how code relates to effects of agent behaviour. Although the role of
an agent’s decision cycle in the generation of an agent’s behaviour is very impor-
tant, we believe that source-level debugging is also very useful for agent-oriented
programming.

In this chapter, we propose a design of a source-level debugger for agent pro-
gramming. Arguably, such a tool provides an agent programmer with a better
understanding of the relation between an agent’s program code and its behaviour.
Part of the contribution of this chapter is to propose a design approach that is
applicable to programming languages for cognitive agents.

2.2. Issues in Debugging Cognitive Agent Programs
In this section, we briefly discuss what is involved in debugging a software system,
and analyse the challenges that a developer of cognitive agent programs faces.

2.2.1. Debugging and Program Comprehension
Katz and Anderson [7] provide a model of debugging derived from a general, some-
what simplified model of troubleshooting that consists of four debugging subtasks:
(i) program comprehension, (ii) testing, (iii) locating the error, and (iv) repairing
the error. Program comprehension, the first subtask in the model, is an important
subtask in the debugging process as a programmer needs to figure out why a defect
occurs before it can be fixed [8–10]. Gilmore [11] argues that the main aim of pro-
gram comprehension during debugging is to understand which changes will fix the
defect. Based on interviews with developers, Layman et al. [12] conclude that the
debugging process is a process of iterative hypothesis refinement (cf. Yoon and

2.2. Issues in Debugging Cognitive Agent Programs

2

11

Garcia [13]). Gathering information to comprehend source code is an important
part in the process of hypothesis generation. Lawrance et al. [14] also emphasize
the information gathering aspect in program comprehension and the importance
of navigating source code, which they report is by far the most used information
source during debugging (cf. Romero et al. [6]). Similarly, Eisenstadt [15] sug-
gests to provide a variety of navigation tools at different levels of granularity. In
addition, reproducing the defect and inspecting the system state are essential for
fault diagnosis and for identifying the root cause and a potential fix. It is common in
debugging to try to replicate the failure [12, 14]. In this process, the expected out-
put of a program needs to be compared with its actual output, for which knowledge
of the program’s execution and design is required. Testing is not only important for
reproducing the defect and for identifying relevant parts of code that are involved,
but also for verifying that a fix actually corrects the defect [13].

Eisenstadt [15] also argues that it is difficult to locate a fault because a fault
and the symptoms of a defect are often far removed from each other (cause/effect
chasm, cf. Ducassé and Emde [16]). As debugging is difficult, tools are important
because they provide insight into the behaviour of a system, enabling a developer to
form a mental model of a program [12, 13] and facilitating navigation of a program’s
source code at runtime [14]. A source-level debugger is a tool that is typically
used for controlling execution, setting breakpoints, and manipulating a runtime
state. The ability to set breakpoints, i.e., points at which program execution can
be suspended [3], by means of a source-level debugger is one of the most useful
dynamic debugging tools available and is in particular useful for locating faults [6,
13].

2.2.2. Challenges in Designing a Source-Level Debugger
Even though much of the mainstream work on debugging can be reused, the agent-
oriented programming paradigm is based on a set of abstractions and concepts that
are different from other paradigms [17, 18]. The agent-oriented paradigm is based
on a notion of a cognitive agent that maintains a cognitive state and derives its
choice of action from its beliefs and goals which are part of this state. Thus, agent-
oriented programming is programming with cognitive states.

Compared to other programming paradigms, agent-oriented programming in-
troduces several challenges that complicate the design of a source-level debugger
(cf. Lam and Barber [10]). For example, many languages for programming cog-
nitive agents are rule-based [19, 20]. In rule-based systems, fault localization is
complicated by the fact that errors can appear in seemingly unrelated parts of a rule
base [21]. Moreover, a rule base does not define an order of execution. Due to this
absence of an execution order, agent debugging has to be based on the specific
evaluation strategy that is employed. Moreover, cognitive agent programs repeat-
edly execute a decision cycle which not only controls the choice of action of an
agent (e.g., which plans are selected or which rules are applied) but also specifies
how and when particular updates of an agent’s state are performed (e.g., how and
when percepts and messages are processed, or how and when goals are updated).
This style of execution is quite different from other programming paradigms, as a

2

12 2. Designing a Source-Level Debugger for Cognitive Agents

decision cycle imposes a control flow upon an agent program, and may introduce
updates of an agent’s state that are executed independently of the program code
at fixed places in the cycle or when a state changes due to executing instructions
in the agent program. This raises the question of how to integrate these updates
into a single-step debugger.

An agent’s decision cycle provides a set of points that the execution can be sus-
pended at, i.e. breakpoints. These points do not necessarily have a corresponding
code location in the agent program. For example, receiving a message from an-
other agent is an important state change that is not present in an agent’s source,
i.e., there is no code in the agent program that makes it check for new messages.
Thus, two types of breakpoints can be defined: code-based breakpoints and (de-
cision) cycle-based breakpoints. Code-based breakpoints have a clear location in
an agent program. Cycle-based breakpoints, in contrast, do not always need to
have a corresponding code location. Together, these are referred to as the set of
pre-defined breakpoints that a single-step debugger offers. When single-stepping
through a program, these points are traversed. An example1 of the difference
between code-based and cycle-based breakpoints has been illustrated in Figure
2.1. The two traces demonstrate that the same cycle-based event (breakpoint) of
achieving the finished goal can originate as the result of two different points in
the agent program (due to the random execution order of the main module, i.e.,
either the post-condition of the finish action or the insert action).

agent’s goal

1 finished.

finish action

1 define finish as internal with
2 pre{ not(finished) }
3 post{ finished }

agent’s main module

1 exit = nogoals.
2 order = random.
3
4 module mainModule {
5 if true then finish.
6 if true then insert(finished).
7 }

trace example 1

1 agent ‘example’ has been started.
2 ‘finished’ has been adopted as a goal.
3 condition of rule ‘if true then finish’ holds.
4 pre-condition of ‘finish’ holds.
5 post-condition ‘finished’ has been inserted as a belief.
6 ‘finished’ has been achieved and removed as a goal.
7 agent ‘example’ terminated successfully.

trace example 2

1 agent ‘example’ has been started.
2 ‘finished’ has been adopted as a goal.
3 condition of rule ‘if true then insert(finished)’ holds.
4 ‘finished’ has been inserted as a belief.
5 ‘finished’ has been achieved and removed as a goal.
6 agent ‘example’ terminated successfully.

Figure 2.1: The main components of an exemplary GOAL agent program on the left, and two possible
(partial) traces of this agent’s execution on the right.

A user should also be able to mark specific locations in an agent’s source at which
execution will always be suspended, even when not explicitly stepping. To facilitate
this, a debugger has to identify such a marker (e.g., a line number) with a code-
based breakpoint. These markers are referred to as user-defined breakpoints. A

1This example uses basic elements from the GOAL language.

2.2. Issues in Debugging Cognitive Agent Programs

2

13

specific type of user-defined breakpoint is a conditional breakpoint, which only sus-
pends execution when a certain (state) condition applies. A user should also be able
to suspend execution upon specific decision cycle events, especially when those do
not have a corresponding location in the agent source. This can for example be
indicated by a toggle in the debugger’s settings. Such an indication is referred to
as a user-selectable breakpoint.

2.2.3. Languages and Debugging Tools for Cognitive Agents
In this section, we will briefly discuss specific debugging tools as illustrations of
state-of-the-art debugging of cognitive agent programs. Moreover, we discuss the
main language features and the decision cycle of such an agent program, which
is most important in defining the semantics of a language. By understanding the
building blocks of a specific agent programming language, we can identify the spe-
cific challenges that we will face in designing a source-level debugger for such a
language.

We have chosen to focus on some of the more well-known languages in the
literature that have been around for some time now and that provide development
tools for an agent programmer to code and run an agent system. In our analysis,
we have included the rule-based languages 2APL [22], GOAL [23], and Jason [24]
and the Java-based languages Agent Factory [25], JACK [26], Jadex [27], and JIAC
[28]. The former languages each define their own syntax for rules with conditions
expressed in some knowledge representation language such as Prolog, whereas
the latter languages build on top of and extend Java with cognitive agent concepts.
The rationale for this selection is that we wanted to analyse relatively mature lan-
guages that have been well-documented in the literature, whilst making sure we
could investigate the current implementation and tools available for a language. It
should be noted that published papers about a language may differ from the cur-
rently available implementation as most of the languages are being continuously
developed.

For the selected platforms, we now describe the basic language elements and
abstractions available for programming cognitive agents, whether any embedded
languages are used, e.g., for knowledge representation (KR), and the decision cycle
that specifies how an agent program is executed. We also summarize the function-
ality of the debugging tools that are available.

2APL
2APL aims for the effective integration of declarative and imperative style program-
ming [22]. To this end, the language integrates declarative beliefs and goals with
events and plans that are similar to imperative-style programs in a single rule-
based language. JProlog [29] is used as the embedded KR language. Plans consist
of actions that are composed by a conditional choice operator, iteration operator,
sequence operator, or non-interleaving (atomic) operator. If the execution of a
plan does not achieve its corresponding declarative goal in the goal base, the goal
persists and can be used to select a different plan. A planning goal rule can be
used to generate a plan when an agent has certain goals and beliefs. A plan repair

2

14 2. Designing a Source-Level Debugger for Cognitive Agents

rule can be used when a plan (execution of first action) fails and the agent has a
certain belief in its belief base to replace the failed plan with another plan. Events
remain in an event base until processed, which includes messages received from
other agents. There is no explicit modularization construct available.

Decision Cycle The decision cycle of a 2APL agent is illustrated in Figure 2.2.
Each cycle starts by applying all applicable planning goal rules, after which the first
action of all plans are executed. Afterwards, all events (first external and then
internal) are processed. A new cycle is only started if a rule has been applied or a
new event has been received. By using such a cycle, when the execution of a plan
fails, it will be either repaired in the same cycle or re-executed in the next.

Figure 2.2: The 2APL agent decision cycle [22].

Environment and MAS 2APL agents are connected to an environment via a
Java class that implements a dedicated environment interface for the language.
The implemented functions form the actions that an agent can execute on the en-
vironment’s state. Actions can have a return parameter, and thus execution of a
plan is blocked until such a return value is available. Actions can also throw excep-
tions to indicate their failure. Observing the environment is possible by either active
or passive sensing. Messages and events are represented through special predi-
cates in an agent’s belief base. Each 2APL agent runs in its own single thread, and
agents and environments are executed in parallel. There are no tools for controlling
the scheduling of individual agent execution.

Development Tools 2APL provides a separate runtime with a set of monitoring
tools. This runtime environment is separate from the environment for programming
a 2APL agent program. During a run, the cognitive state of a single agent can be
inspected, though not manipulated, and execution can be controlled by stepping an

2.2. Issues in Debugging Cognitive Agent Programs

2

15

entire cycle or suspending execution at specific points in the cycle. While stepping,
logging output is generated that can be inspected in a console window. It is also
possible to inspect all past states of an agent in this runtime, either in full or for
specific bases only. There is no link to the program code that is being executed
while stepping or for relating state changes to the execution, although the logging
output and state views contain specific code fragments. A user-defined breakpoint
mechanism is not available.

Agent Factory
Agent Factory aims to provide a cohesive framework for the development and de-
ployment of multi-agent systems [25]. Agents can be created by implementing
a Java interface, but dedicated rule-based languages exists as well; through the
use of a Common Language Framework (CLF), multiple languages can be used,
although the Agent Factory AgentSpeak (AF-AS) language is the default. There are
no embedded languages used, though it is possible to interface with external APIs
written in Java.

Decision Cycle Agent Factory agents follow a specific decision cycle. First, per-
ceptors are fired and beliefs are updated. Second, the agent’s desired states are
identified, and a subset of desires (new intentions) is added to the agent’s commit-
ment set. Older commitments that are of lower importance will be dropped if there
are not enough resources available. Finally, various actuators are fired based on
the commitments.

Environment and MAS Agent Factory supports the Environment Interface Stan-
dard (EIS) [30], a standard for connecting to agent environments. Multiple schedul-
ing algorithms are available for agents, ranging from round-robin to multi-threaded.

Development Tools Agent Factory provides a separate debugger (“inspection
tool”) in which the cognitive state of one or more agents can be inspected, though
not edited, and execution can be controlled by stepping through entire decision
cycles one at a time. It is also possible to inspect all past states of an agent, and a
number of logs are provided. However, there is no relation to the code anywhere
in this tool. When using a CLF language (instead of plain Java), no user-defined
breakpoint mechanism is available.

GOAL
GOAL aims to provide programming constructs for developing cognitive agent pro-
grams at the knowledge level that are easy to use, easy to understand, and useful
for solving real problems [23]. A dedicated rule-based language is used for the for-
malization of agent concepts. GOAL is designed to allow for any embedded KR lan-
guage to be used; currently mostly SWI-Prolog is used. An agent’s cognitive state
consists of a belief base, a goal base, a percept base, and a mailbox. Declarative
goals specify the state of the environment that an agent wants to establish, and are
used to derive an agent’s choice of action. Agents commit blindly to their goals, i.e.,

2

16 2. Designing a Source-Level Debugger for Cognitive Agents

they drop (achieve) goals only when they have been completely achieved. Agents
may focus their attention on a subset of their goals by using modules.

Decision Cycle The decision cycle of a GOAL agent is illustrated in Figure 2.3. A
GOAL agent cycle starts with the processing of percept rules, allowing an agent to
update its cognitive state according to the current perception of the environment.
Next, using this new cognitive state, an action is selected for execution. If the
precondition of this action holds, its postcondition will be used to update the agent’s
cognitive state, after which a new decision cycle starts.

Environment and MAS GOAL makes use of EIS [30] to facilitate interaction
with environments, as does Agent Factory. Agents and environments are executed
in parallel.

Development Tools A new debugger for GOAL will be designed in this chapter;
the previous implementation was similar to that of 2APL, e.g., facilitating the in-
spection of the cognitive state of a single agent in a separate runtime, and allowing
specific steps of the decision cycle to be executed in a stepwise fashion. No rela-
tion to the code was provided in this runtime either; multiple consoles with logging
output were available. This runtime also has a user-defined breakpoint mechanism,
halting the execution when a certain line of code is reached or when a certain con-
dition has been met. However, these breakpoints only paused the agent’s decision
cycle (i.e., no program code or evaluations were shown). In addition, actions to
alter the cognitive state of an agent can be executed, and a cognitive state can be
queried as well.

JACK
JACK aims for the elegant and practical development of multi-agent systems [26].
As it is a conservative extension to Java, there is no explicit notion of any rule-based
constructs. No embedded language is used either. Agents are specified by defining
the events they handle and send, the data they have, and the plans and capabilities
they use. Agents use beliefsets that are relational databases which are stored in
memory. Events are used to model messages being received, new goals being
adopted, and information being received from the environment. A plan is a recipe
for dealing with a given event type, under a certain context condition. Each (Java)
statement in a plan body can fail, which will prevent the rest of the plan from
being executed, and failure handling will be triggered instead (the consideration
of alternative plans). Capabilities and sub-capabilities are used as (hierarchical)
modularisation constructs.

Decision Cycle A JACK agent has no explicit decision cycle, but waits until it
receives an event or a goal, upon which the agent initiates activity to handle that
event or goal; if it does not believe that the event or goal has already been handled,
it will look for the appropriate plan(s) to handle it. The agent then executes the
plan(s), depending on the event type. Such a plan can succeed or fail; if the plan

2.2. Issues in Debugging Cognitive Agent Programs

2

17

fails, the agent may try another plan. The applicability of alternatives is evaluated
in the current situation, that is, not the situation when the event was first posted.
Moreover, a plan’s context condition is split into two parts: the context and a rel-
evance condition, which is used to exclude plans based on the details of an event
(which do not change). Meta-plans can also be used to decide which plan to select
in more detail (i.e., if multiple are applicable). A special event type is the inference
goal, which is handled by executing all applicable plans in sequence.

Environment and MAS JACK has no explicit notion of an environment; actions
are performed using Java calls. In principle, JACK is single-threaded, although
specific constructs exist to execute tasks in a new thread.

Development Tools The Jack Development Environment (JDE) allows the cre-
ation of entities by dragging and dropping, automatically generating skeleton code.
A graphical plan editor is also available, allowing the bodies of plans to be specified
using a graphical notation. Moreover, a design tool is included that allows overview
diagrams to be drawn, which can be used to create a system’s structure by placing
entities onto the canvas and linking them together, which can be automatically cre-
ated based on an existing system as well. A textual trace of processing steps that
can be configured to show various types of steps is available as a debugging tool.
For distributed agents, interaction diagrams are used that graphically display mes-
sages sent between agents. Moreover, graphical plan tracing is provided, showing
a graph whilst a plan is executing, highlighting the relevant notes and showing
the values of the plan’s variables and parameters. Execution can be controlled by
stepping through specific events, or stepping with a fixed time delay between the
steps. However, a direct relation to the code is absent in all these interfaces, and
a user-defined breakpoint mechanism is not available.

Jadex
Jadex aims to make the development of agent based systems as easy as possi-
ble without sacrificing the expressive power of the agent paradigm by building up
a rational agent layer and allowing for intelligent agent construction using sound
software engineering foundations. In its latest version (BDI V3), Jadex uses anno-
tated Java code to designate agent concepts; there are no rule-based elements or
embedded languages. Beliefs are represented in an object-oriented fashion, and
operations against a belief base can be issued in a descriptive set-oriented query
language. Goals are represented as explicit objects contained in a goal base that
is accessible to the reasoning component as well as to plans. An agent can re-
tain goals that are not currently associated to any plan. Four types of goals are
supported: perform (actions), achieve (world state), query (internal state), and
maintain (continuously ensure a desired state). Thus, changes to beliefs may di-
rectly lead to actions such as events being generated or goals being created or
dropped. Plans are composed of a head and a body. The head specifies the cir-
cumstances under which a plan may be selected, and a context condition can be

2

18 2. Designing a Source-Level Debugger for Cognitive Agents

stated that must be true for the plan to continue executing. The plan body pro-
vides a predefined course of action given in a procedural language. It may access
any other application code or third party libraries, as well as the reasoning engine
through a BDI API. Capabilities represent a grouping mechanism for the elements
of an agent, allowing closely related elements to be put together into a reusable
(scoped) module which encapsulate a certain functionality.

Decision Cycle There is also no explicit decision cycle, but, similar to JACK, when
an agent receives an event, the BDI reasoning engine builds up a list of applicable
plans for an event or goal from which candidate(s) are selected and instantiated for
execution. Jadex provides settings to influence the event processing individually
for event types and instances, though as a default, messages are posted to a single
plan, whilst for goals many plans can be executed sequentially until the goal is
reached or finally failed (when no more plans are applicable). Selected plans are
placed in the ready list, from which a scheduler will execute plans in a step-by-step
fashion until it waits explicitly or significantly affects the internal state of the agent
(i.e., by creating or dropping a goal). After a plan waits or is interrupted, the state
of the agent can be properly updated, e.g., facilitating another plan to be scheduled
after a certain goal has been created.

Environment and MAS Jadex offers a standard environment model called “En-
vSupport” that is meant to support the rapid development of virtual environments.
In addition, as Java is used for the procedural code, external APIs can be referenced
there as well. A single thread model for each component is enforced.

Development Tools Debugging a BDI V3 agent allows stepping an agent through
the aforementioned steps that are taken for each event in a separate runtime that
does not provide a relation to the program code itself, whilst facilitating inspection
of the agent’s cognitive state. No modifications to the cognitive state are possible
at runtime, and no (generic) logging output or user-defined breakpoint mechanism
is available (for BDI V3).

Jason
Jason is a multi-agent system development platform based on an extended version
of AgentSpeak [31] aimed at the elegant and practical development of multi-agent
systems. A dedicated rule-based language is used for the formalization of agent
concepts. This language does not make use of any explicit embedded language, as
KR constructs are part of the agent specification language itself. An agent is defined
by a set of beliefs and a set of plans. Thus, a Jason agent is a reactive planning
system: (internal or external) events trigger plans. A plan has a head, composed
of a trigger event and a conjunction of belief literals representing a context. A plan
also has a body, which is a sequence of basic actions or (sub)goals the agent has
to achieve (or test) when the plan is triggered. If an action fails or there is no
applicable plan for a (sub)goal in the plan being executed, the whole failed plan is
removed from the top of the intention, and an internal event associated with that

2.2. Issues in Debugging Cognitive Agent Programs

2

19

same intention is generated, allowing a programmer to specify how a particular
failure is handled. If no such plan is available, the whole intention is discarded.
Two types of goals are distinguished in a goal base: achievement goals and test
goals.

Decision Cycle The decision cycle of a Jason agent is illustrated in Figure 2.6.
Each cycle, the list of current events is updated, and a single event is selected for
processing. For this event, the set of applicable plans is determined, from which a
single applicable plan has to be chosen: the intended means for handling the event.
Plans for internal events are pushed on top of the current intentions, whilst plans for
external events create a new intention. Finally, a single action of an intention has
to be selected to be executed in the current decision cycle. When all instructions
in the body of a plan have been executed (removed), the whole plan is removed
from the intention, and so is the achievement goal that generated it (if applicable).
To handle the situation in which there is no applicable plan for a relevant event, a
configuration option is provided to either discard such events or insert them back
at the end of the event queue. A plan can also be configured for atomic execution,
i.e., no other intention may be executed when such a plan has started executing.
Moreover, in a cooperative context, the agent can try to retrieve a plan externally.

Environment and MAS Similar to 2APL, a Jason environment is a Java class
that extends the provided environment interface which contains functions for deal-
ing with percepts and actions. In addition, the Common ARTifact infrastructure for
AGents Open environments (CArtAgO) [32] has been developed as a general pur-
pose framework for programming and executing virtual environments. Jason makes
use of multiple threads. An environment has its own execution thread and uses a
configurable pool of threads devoted to executing actions requested by agents. As
actions have a return parameter, the execution of a plan is blocked until such a
return value is accessible. In addition, each agent has a thread in charge of exe-
cuting its decision cycle, though these can be configured to be shared in a thread
pool as well. Moreover, the agents can use different execution modes. In the de-
fault asynchronous mode, an agent performs the next decision cycle as soon as it
has finished the current cycle. In the synchronous mode, all agents in a system
perform one decision cycle at every “global execution step”.

Development Tools Jason provides a separate runtime that includes a debug-
ger. This debugger can show the current and previous cognitive states of an agent,
though editing a cognitive state is not possible. It is possible to execute one or more
(complete) decision cycles in a stepwise fashion. There is no direct relation to the
program code anywhere in this runtime; one general console that displays log mes-
sages is available, accompanied by several logging mechanisms that can be used
by an agent. Other debugging mechanism such as user-defined breakpoints are
not available.

2

20 2. Designing a Source-Level Debugger for Cognitive Agents

JIAC
JIAC aims to combine agent technology with a service-oriented approach in order
to emphasize industrial requirements. A dedicated rule-based script-language is
used by JIAC: JADL++, although an agent can be programmed in Java as well by
using certain pre-defined classes. OWL is used as the embedded KR language,
i.e., for representing knowledge and beliefs. Agent configurations are provided in
XML documents. Services and actions can be described semantically in terms of
preconditions and effects, allowing dynamic service discovery and selection. Each
agent has a set of abilities (services), which can be used by other agents as well.
A specific agent plays a specific role, specified by the relevant goals and actions to
fulfil such a role. The actions can be implemented in pure Java, from which other
existing technologies like a web service can also be used.

Decision Cycle A JIAC agent uses a life-cycle. This life-cycle defines three agents
states (void, ready, and active). A specific function can be executed on each state
transition. Moreover, a specific “execute method” can be periodically called (in the
active state) depending on the agent’s configuration.

Environment and MAS JIAC has no explicit notion of an environment; actions
(and agent communication) are handled through service invocation. Each JIAC
agent is run in its own dedicated thread, although actions are executed asyn-
chronously.

Development Tools The default Java runtime and/or debugger are to be used
for executing JIAC agents. In this case, code written in JADL++ or XML is not
(directly) accessible in the debugging process, and no specific agent debugging
tools are available, although JIAC does feature several visual tools such as a service
designer and a distributed system monitor.

Overview
From this analysis, we can conclude that source-level debugging is not currently
employed by any agent programming language. Debugging is performed in a sep-
arate runtime application that is able to step through a decision cycle in parts or as
a whole. When debugging or running an agent program in 2APL, Agent Factory,
GOAL, Jack, Jadex, and Jason, the agent program (i.e., source code) is not shown,
and no indication of the currently executed line of code is given. Alternatively, with
JIAC agents, debugging is performed at a low level of abstraction (e.g., stepping
into code of the framework itself with the Java debugger). 2APL, Agent Factory,
and Jason facilitate inspecting an agent’s history, for example, stepping ‘back’ in the
agent cycle (i.e., cognitive states), whilst only GOAL supports querying or editing
an agent’s cognitive state at runtime. GOAL is also the only language that supports
some form of user-defined breakpoints in the agent program.

We can thus conclude that current state-of-the-art debuggers for cognitive agent
programs provide insight into agent behaviour related to the specific decision cycle
it executes, but less so in how the behaviour relates to the agent program code.

2.3. Debugger Design Approach

2

21

However, as this section also showed that relating code to generated behaviour has
important benefits for the debugging task, we propose a method for the design of
a source-level debugger for cognitive agent programs in the next section.

2.3. Debugger Design Approach
In this section, we propose a design approach for a source-level agent debugging
tool that is aimed at providing a better insight into the relationship between program
code and the resulting behaviour, with a focus on single-agent debugging. A number
of principles and requirements will be introduced to guide the design of a stepping
diagram, which defines how the program code is navigated by a user. Such a
diagram will be given for both the GOAL and Jason agent programming languages.

2.3.1. Principles and Requirements
We will list some important principles and requirements for a source-level debugger
that will be taken into account when designing such a debugger in the next sec-
tion. As our main objective is to allow an agent developer to detect faults through
understanding the behaviour of an agent, an important principle is usability. More
specifically, Romero et al. [6] indicate that a programmer should be able to focus
on the declarative semantics of a program, e.g., its rules, checking whether a rule
is applicable, how it interacts with other rules, and what role the different parts of
a rule play [21, 33]. This is related to the work of Eisenstadt [15], which indicates
that a debugger should employ a traversal method for resolving large cause/effect
chasms, but without the need to go through indirect steps, intermediate subgoals,
or unrelated lines of reasoning. Side-effects pose an additional challenge, as they
might be part of a cause/effect chain, but cannot always be easily related to lo-
cations in the code. Therefore, transparency is an important principle that can be
supported by providing a one-to-one mapping between what the user sees and
what the interpreter is doing whilst explicitly showing any side effects that occur
[34]. A debugger should also strive for temporal, spatial, and semantic immediacy
[35]. Temporal immediacy means that there should be as little delay as possible
between an effect and the observation of related events. Spatial immediacy means
that the physical distance (on the screen) between causally related events should
be minimal. For example, the evaluation of a rule should be displayed as close as
possible to the rule itself. Semantic immediacy means that the conceptual distance
between semantically related pieces of information should be kept to a minimum.
This is often represented by how many user-interface operations, such as mouse
clicks, it takes to get from one piece of information to another. As source-level
debuggers aim to correlate code with observed effects, immediacy is an important
motivation for the use of such a debugger.

Breakpoints are an essential ingredient of single-step execution. Their main pur-
pose is to facilitate navigating the code and run (generated states) of a program.
As discussed in the previous section, a debugger for cognitive agent programming
languages can define two types of breakpoints: code-based and cycle-based. We
propose that for a source-level debugger, code-based breakpoints should be pre-

2

22 2. Designing a Source-Level Debugger for Cognitive Agents

ferred over cycle-based breakpoints when they serve similar navigational purposes.
In other words, when breakpoints show the same state, the code-based break-
point should be used as a starting point, as it is important to highlight the code
to increase a user’s understanding of the effects of the program. A good example
illustrating this point is the reception of percepts in the decision cycle of a GOAL
agent. As percepts are processed in the event module, the entry of this module
is a code-based breakpoint that can be identified with the processing of percepts,
i.e., the received percepts can be displayed when entering the event module. This
reduces the amount of steps that are required and improves the understanding of
the purpose of the event module.

In addition, Collier [36] indicates that a user should be able to control the gran-
ularity of the debugging process. In other words, a user should be able to navigate
the code in such a way that a specific fault can be investigated conveniently. For
example, a user should be able to skip parts of an agent program that are (seem-
ingly) unrelated to the fault, and examine (seemingly) related parts in more detail.
The common way to support this is to define three different step actions: step into,
step over, and step out [37]. The stepping flow to follow after each of these actions
will have to be defined (i.e., in a stepping (flow) diagram) in order to provide a user
with the different levels of granularity that are required.

Hindriks [5] and Romero et al. [6] indicate that at any breakpoint, a detailed
inspection of an agent’s cognitive state should be facilitated. The information about
an agent’s state should be visualized and customizable in multiple ways to support
the different kinds of searching techniques that users employ. In addition, the work
of Eisenstadt [15] indicates that support for evaluable cognitive state expressions
should be provided. This will aid a user by supporting, for example, posing queries
about specific rule parts to identify which part fails. Romero et al. [6] also indicate
that modifying the program’s state and continuing with a new state should be sup-
ported as well. Thus, we propose that support for the modification of a cognitive
state should be provided. A user could for example be allowed to execute actions
in a similar fashion to posing queries in order to perform operations on an agent’s
state.

2.3.2. Designing a Stepping Diagram
We propose a design approach for a source-level debugger for cognitive agent pro-
grams that consists of the following steps. First, possible code-based breakpoints
will be defined by using the programming language’s syntax (Step 1). The rel-
evance of these code-based breakpoints to a user’s stepping process needs to be
evaluated, leading to a set of points at which events that are important to an agent’s
behaviour take place (Step 2a). In addition, the agent’s decision cycle needs to
be evaluated for important events that are not represented in the agent’s source
in order to determine cycle-based breakpoints (Step 2b). These points will then
be used to define a stepping flow, i.e., identifying the result of a stepping action
on each of those points in a stepping diagram (Step 3). Finally, other required
features such as user-defined breakpoints (Step 4), visualization of the execution
flow (Step 5) and state inspection (Step 6) need to be handled. As an example,

2.3. Debugger Design Approach

2

23

we will provide a detailed design for the GOAL agent programming language in this
part, and afterwards we will discuss the design of a source-level debugger for some
other agent programming languages that were discussed in the previous section as
well.

Step 1: Syntax Tree
Inspired by Yoon and Garcia [13], we propose that an agent’s syntax tree can
be used as the starting point for defining the single-step execution of an agent
program. Figure 2.4 (top part) illustrates a slightly modified syntax tree for a GOAL
agent, based on the simplified language specification as shown in Tables 2.1 and
2.2 (see Hindriks [38] for the full grammars). Note that ‘id[(term)]’ represents a
call to either a user-specified (environment) action or a module in the grammar (at
action). In addition, each node in the syntax tree represents a specific type, but
not an instance. For example, one module usually consists of multiple rules, as
indicated by the labels on the edges. An edge indicates a syntactic link, whilst a
broken edge indicates a semantic link. Relevant semantic links need to be added in
order to represent program execution flow that is not based on the syntax structure
alone.

module := useclause option∗ module id(term) { rule }
useclause := use id [as usecase] .
usecase := knowledge | beliefs | goals | actionspec | module
option := exit= exitoption . | focus= focusoption . | order= orderoption .
rule := if csq then actioncombo . | forall csq do actioncombo .
csq := stateliteral (, stateliteral)∗
stateliteral := stateop(term) | not(stateop(term)) | true
stateop := bel | goal | a-goal | goal-a | percept | sent
actioncombo := action (+ action)∗
action := id[(term)] | generalaction(term)
generalaction := insert | delete | adopt | drop | send
term := a (composite) KR expression

Table 2.1: The (simplified) core of the GOAL Module Grammar (BNF).

specification := useclause actionspec
useclause := use id [as knowledge] .
actionspec := define id[(term)] with pre{ term } post{ term }
term := a (composite) KR expression

Table 2.2: The (simplified) core of the GOAL(User-Defined) Action Spec. Grammar (BNF).

Step 2a: Code-Based Breakpoints
The idea is that each node in a syntax tree can be a possible code-based breakpoint
(‘step event’). However, as the actual source of some nodes is fully represented

2

24 2. Designing a Source-Level Debugger for Cognitive Agents

by their children, these non-terminal nodes can be left out of the stepping process.
Moreover, some nodes might not be relevant to a user in order to understand an
agent’s behaviour. Here, we define a node that is relevant to agent behaviour as
a point at which (i) an agent’s cognitive state is inspected or modified, or (ii) a
module is called and entered.

State inspections allow a user to identify mismatches between the expected and
the actual result of such an inspection. In other words, if a user expects a condition
to fail, he should be able to confirm this (and the other way around). Changes to a
(cognitive) state are important to the exhibited behaviour of an agent and it should
always be possible to inspect it, as should module calls or entries (or similarly, e.g.,
pushing a plan to an intention) as they are important to the execution flow of an
agent. In Figure 2.4, the breakpoints thus identified have been indicated at the
corresponding syntax node.

Step 2b: Cycle-Based Breakpoints
There are points at which important behaviour occurs that a user would want to
suspend the execution upon that are not present in an agent’s syntax tree. For
example, achieving a goal involves an important cognitive state inspection (looking
for a corresponding belief) and modification (removing the goal), which are not
represented in an agent program’s source. Points like these that have no fixed cor-
respondence in the agent program we call cycle-based breakpoints. To include such
a breakpoint, a toggle (setting) can be added that provides a similar mechanism to
user-defined breakpoints by always suspending the execution upon such an event.

Figure 2.3: The GOAL agent structure and decision cycle [23].

2.3. Debugger Design Approach

2

25

The need for these cycle-based breakpoints and additional explanations highlight
an important challenge specific to agent-oriented programming. This results in the
fact that we cannot simply construct a source-level debugger by using an agent’s
source code only. Thus, a combination of both the syntax and the semantics of
an agent is required to account for all possible changes of an agent’s behaviour.
The decision cycle of a GOAL agent is illustrated in Figure 2.3. The only event
that cannot be directly identified with a location in the source code in GOAL is the
achievement of a goal (i.e., in updating the mental state).

Step 3: Stepping Flow
Next, for each identified breakpoint, we need to determine the result of a stepping
action, i.e., the flow of stepping. Based on the syntax tree, the stepping actions
can be defined as follows:

• Into: traverse downward from the current node in the syntax diagram until
we hit the next breakpoint. In other words, follow the edges going down in
the tree’s levels until an indicated node is reached. If the current node is a
leaf (i.e., we cannot go down any further), perform an over-step.

• Over: traverse to the next node (i.e., to the right) on the current level until
we hit the next breakpoint. If there are none, perform an out-step.

• Out: traverse upward from the current node until we hit the next breakpoint,
whilst remaining in the current context. In other words, the edges going back
up in the tree’s levels should be traced until any applicable node, and then
from there back down again until any indicated node is reached (like an into-
step). Here, applicable refers to a ‘one-to-many’ edge of which not all cases
have been processed yet.

On the bottom part of Figure 2.4, the flow for the step into and step over actions on
each breakpoint has been illustrated. For readability, the step out action has been
left out. Note that the broken edge indicates a link to the event module. This special
module is executed after each action that has been performed in order to process
any new percepts or messages that have been received by the agent. After the
event module has been processed, depending on the rule evaluation order, either
the first rule in the module or the rule after the performed action will be evaluated.
In addition, a module’s exit conditions might have been fulfilled at this point as well,
which means that the flow may return to the action combo in which the call to the
exited module was made. An example of a stepping flow is illustrated in Figure 2.5.

The extensive definition of an out-step is needed because, for example, when
stepping out of a user-defined action, purely following the edges until the previous
(upper) breakpoint would result in reaching the module node, whilst we actually
want to step to the next rule. Following this reasoning, the same result would be
obtained even when doing a step-into from the post-condition node. Therefore,
when traversing upward, we consider all nodes. In the example in Figure 2.5, both
the action combo and the rule nodes have been processed completely already, so
we will reach the module node. If the module contains any more rules, this node will

2

26 2. Designing a Source-Level Debugger for Cognitive Agents

Figure
2.4:

A
G
O
AL
syntax

tree
w
ith

the
relevant

breakpoints
indicated

on
the

nodes
that

are
present

at
the

different
levels

on
the

left
side

of
the

figure,
and

the
stepping

flow
betw

een
those

breakpoints
(for

into
and

over)
illustrated

on
the

right
side

of
the

figure.

2.3. Debugger Design Approach

2

27

still be applicable, and thus we traverse downward until the first indicated node,
which in this case is the next rule evaluation. If there are no more rules to be
executed, we continue upwards, exiting the current module entirely, thus arriving
back at the point where the call to the module was made (or finishing the execution
when in a top-level module).

The stepping flow after a user-selectable breakpoint (i.e., cycle-based) can be
dictated by the existing (surrounding) node. For example, achieving a goal is only
possible after either executing a cognitive state action or applying a post-condition,
so the stepping actions from the relevant node should be used when stepping away
from a goal-achieved breakpoint.

Step 4: User-Defined Breakpoints
User-defined breakpoints are usually line-based. In other words, a user can indicate
a specific line to break on, instead of a code part. This breaking will always be done,
even when not explicitly stepping. Line-based user-defined breakpoints are a widely
used mechanism of convenience. However, some breakpoints can be at the same
line as other breakpoints. In this case, we pick the breakpoints that are on a higher
level in the tree in order to allow a user to still step into a lower level. In the case
of GOAL, actions and post-conditions can thus not be used as a (‘regular’) user-
defined breakpoint, whilst module entries, rule evaluations, and pre-conditions can.
Conditional user-defined breakpoints in GOAL are also associated with either rule
evaluations or pre-conditions (not module entries), but will only suspend execution
when the corresponding condition has a successful evaluation (holds).

Step 5: Visualization
Each time the execution is suspended, the code that is about to be executed is high-
lighted, and any relevant evaluations of (e.g., the values of variables referenced in
a rule) of this highlighted code should be displayed. These evaluations will improve
a user’s understanding of the execution flow. For example, if a rule’s condition has
no solutions, a user will not expect the rule’s action to be the next point at which
the execution is suspended. Such info is (usually) absent in cycle-based debuggers.

Problems can arise when the code evaluation does not help in making the exe-
cution flow clear to a user. For example, stepping into an action’s precondition is a
step that can lead to a completely different location in the code base, which might
be unexpected. Another example is the completion of an action combo, which can
result in leaving the current module depending on its exit conditions. To help a
user understand these ‘jumps’ through a program, the code evaluations that are
shown can be augmented with additional information indicating the source of the
step. For example, when at a precondition, besides the evaluation of the condition
a user could also see “selected external action: …”, which gives a hint about the
reason why we arrived at the action’s precondition. Similar explanations can be
provided after or before other steps that might not be clear to a user. Moreover, a
visualisation of the call stack (i.e., the locations at which ‘functions’ were called) is
useful for this as well. In the case of GOAL, calls to modules and actions ‘push’ a
new element on the stack, thus keeping the location of the call in the view of the
user.

2

28 2. Designing a Source-Level Debugger for Cognitive Agents

Figure
2.5:

An
exam

ple
of
a
stepping

flow
through

a
G
O
AL
agent

program
.

2.3. Debugger Design Approach

2

29

Logging output (i.e., in a console) can also help a user gain understanding of
the history of the execution flow. For GOAL, all breakpoints generate a log message
that is printed to the specific agent’s console. In addition, in case any action fails or
an (environment) exception occurs, an error message is shown in the same console.

Step 6: State Inspection
Finally, the inspection and modification of a cognitive state will not be discussed in
detail here, as this is a more standard feature. However, care should be taken to
conveniently support all of those operations, as they are important to the debugging
process. In particular, we have added features that allow the cognitive state of
a GOAL agent to be sorted and filtered (by search queries). This helps a user
make sense of a cognitive state, especially if it is very large. In addition, a single
interactive console is provided in which both cognitive state queries and actions can
be performed in order to respectively inspect or modify a cognitive state.

2.3.3. Application to Other Agent Programming Languages
The same design steps discussed above can be applied to other agent programming
languages in a similar fashion. The syntax and accompanying decision cycle of a
Jason agent, for example, can be used in the same manner as described above.
Although a Jason agent does not have modules, it does consist of a number of
(plan) rules. These rules are built up of a trigger event, a context (conjunction of
belief literals), and a body (a sequence of actions: deeds). A simplified specification
of the syntax of the Jason language is specified in Table 2.3 (see Bordini et al. [24]
for the full grammar).

agent ::= belief∗ plan
belief ::= literal .
plan ::= triggering_event : context <- body .
triggering_event ::= (+ | -) [! | ?] literal
context ::= literal (& literal)∗
body ::= body_formula (; body_formula)∗
body_formula ::= [! | ? | + | -] literal
literal ::= a (composite) KR expression

Table 2.3: The (simplified) core of the Jason Agent Specification Grammar (BNF).

The syntax tree (Step 1) based on this grammar is illustrated on the top part of
Figure 2.7. In that tree, the code-based breakpoints (Step 2a) have been indi-
cated as well, i.e., at each node that corresponds with an inspection or modification
of an agent’s cognitive state. As represented in the decision cycle of a Jason agent
in Figure 2.6, Jason has three selection functions (i.e., for events, options, and in-
tentions), a belief revision function, and it also has a goal achievement mechanism
and a mechanism for handling events that have no applicable plans; these all rep-
resent cycle-based breakpoints (Step 2b), as they represent important behaviour
that is not present in an agent’s syntax tree. A toggle (setting) should be added for
each of these events in order to allow suspending execution on them.

2

30 2. Designing a Source-Level Debugger for Cognitive Agents

Figure
2.6:

The
Jason

agent
decision

cycle
(based

on
AgentSpeak)

[24].

2.3. Debugger Design Approach

2

31

In addition, we look at a stepping flow for the source-level debugging of Jason
agents, as illustrated on the bottom part of Figure 2.7, which has been derived in the
same manner as before (Step 3). We assume that when for a certain event, the
event triggers of an agent’s plans are evaluated, a successful evaluation of a trigger
will lead to directly evaluating the corresponding context2. However, successful
evaluation of both an event trigger and the context of a plan will not always directly
lead to the execution of the corresponding plan body, as the deeds in the body will
be processed into the intention set (by the option selection function), from which in
turn a different deed might be selected to execute next (by the intention selection
function). The execution of a deed usually leads to a new event, and thus the
stepping flow will start again at the first node. Even when a plan is atomic (i.e.,
indicating that all actions in the plan’s body should be executed directly after each
other), this flow will remain the same, as atomic plans only override the intention
selection mechanism; each deed will still (generally) lead to a new event being
generated, and thus the start of a new decision cycle.

In a sense, this flow is similar to that of GOAL. However, after executing an
action, the execution flow in GOAL is ‘restarted’, whilst in Jason an intention that
has been selected many cycles ago might still be executed. It will thus be important
to make sure the flow from one plan’s context into (a certain point in) another plan’s
body is made as clear as possible, for example by using some visualisation of an
agent’s intention stack (Step 5). For user-defined breakpoints and state inspection
(Step 4 and Step 6), the same principles as for GOAL can be applied to Jason.

Finally, for Java-based languages like Jadex, the set of available annotations
that indicate the cognitive agent constructs can be used as the base for the syntax
tree. In contrast to the default Java debugging flow, the ‘evaluation’ of such an
annotation is an important point of interest. Care would have to be taken to make
sure the execution flow between the annotated functions or classes is clear. In
general, the design principles and according structure of an agent programming
language play a significant role in the design of a source-level debugger for it [?
]; the harder it is to relate the execution flow of an agent to its program code, the
more effort is required to design a debugger that provides sufficient insight into the
behaviour resulting from the code.

2.3.4. Implementation for GOAL
An implementation of the proposed source-level debugger design for GOAL was per-
formed by extending the GOAL plug-in for the Eclipse IDE3. This plug-in provides a
full-fledged development environment for agent programmers, integrating all agent
and agent-environment development tools in a single well-established setting [39].
The Eclipse platform is based on an open architecture that allows for building on top
of well-known existing frameworks [40]. By using Eclipse and the DLTK framework

2Although this does not match the described cycle directly, it is an optimization of the cycle that is the
default behaviour of a Jason agent, as confirmed in a discussion with the language designers of Jason.
We also assume synchronous execution without the use of concurrent plans.
3See http://goalhub.github.io/eclipse for a demonstration of the debugger implementation,
instructions on how to install GOAL in Eclipse, and links to relevant source code.

http://goalhub.github.io/eclipse

2

32 2. Designing a Source-Level Debugger for Cognitive Agents

Figure
2.7:

A
Jason

syntax
tree

w
ith

the
relevant

breakpoints
indicated

on
the

nodes
that

are
present

at
the

different
levels

on
the

left
side

of
the

figure,
and

the
stepping

flow
betw

een
those

breakpoints
(for

into
and

over)
illustrated

on
the

right
side

of
the

figure.

2.3. Debugger Design Approach

2

33

[41], for example, a state-of-the-art editor for GOAL has been created, which forms
a solid foundation for further tools. It includes a state-of-the-art editor that fea-
tures syntax highlighting, auto-completion, a code outline, code templates, bracket
matching, and code folding. Exchangeable support for embedded KR languages is
provided as well.

Figure 2.8: An overview of the debugging component structure in GOAL(left) and Eclipse (right).

The source-level debugger implementation makes use of the DeBugGer Protocol
(DBGP), which is a common debugger protocol for languages and debugger UI
communication [42]. The DLTK framework in Eclipse provides support for using
the DBGp protocol in order to offer a debugging interface to a programmer. The
debugger implementation expands on the support for implementing the stepping
diagram that has been integrated into GOAL by adopting a stack-based execution
model, which naturally follows from the different levels that are represented in the
stepping tree. This mechanism works by, for example, pushing the task of execut-
ing of the actions of a rule (level 5 in the diagram of Figure 2.4) onto the agent’s
execution stack after successful evaluation of a rule’s condition (level 4 in the di-
agram). The stepping actions (i.e., the flow) can thus be implemented based on
these levels, following the rules identified in Step 3 of our approach. This implemen-
tation was also inspired by the debugging infrastructure of Lindeman et al. [37].
The resulting GOAL debugging interface is illustrated in Figure 2.9. In addition,
a general overview of the organization of the debugging components is given in
Figure 2.8. As illustrated in this image, a listener is attached to the GOAL runtime.
This listener responds to events from that runtime (i.e., the breakpoints), forward-
ing them to Eclipse (as the GOAL core and Eclipse run in separate processes). In
Eclipse, these events are translated into DBGp messages, that in turn control the
debugging interface. By using DLTK and DBGp, Eclipse’s generic debugging inter-
face could be reused; only slight adjustment was needed to for instance support
the inspection of the multiple bases (i.e., beliefs, goals, etc.) of an agent. A user
can also give commands through this interface, which traverse the same flow, but
then in reverse.

2

34 2. Designing a Source-Level Debugger for Cognitive Agents

Figure
2.9:

A
screenshot

of
the

G
O
AL
debugging

interface
in
Eclipse

N
eon.

2.4. Evaluation

2

35

2.4. Evaluation
In this section, we evaluate the source-level debugger that has been implemented
for GOAL. In order to perform this evaluation, an implementation of the source-level
debugger design has been added to the Eclipse plug-in for GOAL.

2.4.1. Quantitative

Table 2.4: Descriptive statistics of the performed evaluation (). The answers to Questions 4 and
8 are discussed in this section.

Question Mean Range
1. Total Time Spent 11.1 Number of hours
2. Debugging and Testing 34.5% Percentage of total time
3. Using Debugger 25.6% ” ”
7. Debugger Effectiveness 3.2 1 (not) to 5 (very) effective
5f. Debug: Watch Express. 2.8 1 (least) to 6 (most) useful feature
5b. Debug: Interact. Console 3.0 ” ”
5d. Debug: Breakpoints 3.0 ” ”
5a. Debug: Logging 3.7 ” ”
5e. Debug: State Inspection 4.1 ” ”
5c. Debug: Stepping 4.3 ” ”
6f. AOP: Multiple agents 2.2 1 (least) to 6 (most) easy aspect
6b. AOP: Ext. Environments 3.3 ” ”
6d. AOP: Decision Cycles 3.6 ” ”
6e. AOP: Rule-based Reas. 3.7 ” ”
6a. AOP: Use of KR 4.0 ” ”
6c. AOP: Cognit. States 4.2 ” ”

A group of over 200 first-year computer science bachelor students at Delft Uni-
versity of Technology made use of this implementation during 6 weeks, working in
pairs to develop a team of agents operating in the BW4T environment [43]. When
handing in their final agents, the pairs were asked to answer a number of questions
in order for us to improve the GOAL platform; it was made clear that their answers
would not influence their grade in any way. The questionnaire that was used is
provided in Appendix A.

94 pairs filled out this questionnaire. The results were processed by assigning a
numeric value to the (Likert-scale) answers on questions 5, 6, and 7, and taking the
lower bound as the single number to the answers on questions 1, 2, and 3. Using
this processed data, the descriptive statistics given in Table 2.4 were obtained. Note
that for readability the order in this table does not correspond to the order in which
the questions were given (e.g., the ordering questions 5 and 6 have been sorted
in ascending order of their results). In addition, (Tukey) boxplots for these results
are given in Figures 2.10, 2.11, and 2.12.

The results show that these novice agent programmers spend about a third of
their time on debugging and testing their agent program, and nearly all that time

2

36 2. Designing a Source-Level Debugger for Cognitive Agents

Figure 2.10: Boxplots of the results of Questions 1, 2, 3, and 7 (higher means more effective).

(a quarter of the total time on average) is spent using the source-level debugger.
Stepping and state inspection are clearly regarded as the most useful features of
the debugger, which is a positive affirmation of our work. The debugger is usually
utilized (Q4) when students see their agent doing something wrong (56% of re-
spondents indicated this) or to see how their agent program behaves exactly (32%
of respondents indicated this). In addition, the use of external environments and
especially multiple agents is regarded as causing most of the problems for debug-
ging (Q5), suggesting directions for future work.

A correlation analysis showed some significant results, i.e., with a Pearson corre-
lation coefficient less than .05 in a 2-tailed test, as shown in more detail in Appendix
A. An expected result is that the the total time spent on programming (Q1) is posi-
tively correlated with the percentage of time spend on debugging and testing (Q2),
which in turn is positively correlated with the percentage of time spend in the de-
bugger (Q3). Moreover, the percentage of time spend in the debugger is positively
correlated with the perceived effectiveness of the debugger (Q7). As the total av-
erage of the perceived effectiveness of source-level debugging for locating faults
is quite high (3.2 out of 5 even with some low outliers), this correlation suggests
that although some time is needed to familiarize oneself with the agent debugging

2.4. Evaluation

2

37

Figure 2.11: Boxplot of the results of Question 5 (higher means a more useful debugging feature).

tools, they provide a programmer with an effective development tool.
In addition, the correlations between the different debugging features (Q5) sug-

gest that the students can be split into two groups: one that indicates stepping,
state inspection and breakpoints are most useful, and one that indicates logging, the
interactive console, and watch expressions are most useful. This grouping is sup-
ported by the correlations between the debugging features and the different AOP
aspects (Q6), as finding stepping and/or state inspection a more useful debugging
feature is positively correlated with the rule-based aspect of AOP (i.e., regarded
as easier), whilst in contrast finding logging and/or the interactive console a more
useful debugging feature is negatively correlated with the rule-based aspect of AOP
(i.e., regarded as more difficult). This suggests that using source-level debugging
facilitates understanding of rule-based reasoning. A related result is the fact that
finding breakpoints a more useful debugging feature is negatively correlated with
the usefulness of the state inspection debugging feature, and that finding watch
expressions a more useful debugging feature is negatively correlated with the log-
ging debugging feature. This suggests that breakpoints and watch expressions are
useful tools to reduce the amount of ‘manual’ inspection (e.g., looking at states or
logs) that is needed.

2

38 2. Designing a Source-Level Debugger for Cognitive Agents

Figure 2.12: Boxplot of the results of Question 6 (higher means a more easy AOP aspect).

2.4.2. Qualitative
The hypotheses in this section are also supported by the qualitative data that was
provided by the students in their answers to Question 8. A selection of these com-
ments is given below:

• “I liked the visual GOAL environment as it is much more relatable than a simple
console. I liked its simplicity in separating logical processes.”

• “Debugging with multiple agents was not as good as we expected it to. It was
hard to see what each agent believed and percepted. You had to pause one
agent, but the others would just continue to gather blocks. So by trying to
debug you interfered with the program and you might get a different outcome
that way. That is not what you want to happen when you are debugging.”

• “Being able to look at the beliefs, goals, percepts and messages when the
bots are paused was very helpful for debugging, as was seeing those update
while stepping through a bot’s code. This especially helped with starting to
learn the platform, as it was easy to see the effect of each line of code.”

• “I found the debugger ineffective as when you use the debugger the agents

2.5. Conclusions and Future Work

2

39

act differently from without using the debugger. Also because when one agent
hits a breakpoint the others keep going, making it very hard to determine what
went wrong in the communication or teamwork.”

• “We loved the debugging, this was really easy to understand and you could
easily find the bugs. The pausing and stepping is clear and very useful!”

• “I found it very annoying that the debugger and stepping apparently could
yield very different behaviour, but it was something that you could work
around with eventually. In a way it was a good thing because it also reminds
you of its multi-threaded nature; make no assumptions about synchroniza-
tion. I think this is partly what caused the most trouble for people using
GOAL. Using the debugger is an essential tool for figuring out when a rule is
fired, namely by putting a (conditional) breakpoint at the ‘then’-line. I liked
this a lot!”

Although the comments are generally positive, clear directions for future work (as
also suggested by the quantitative data) are indicated by the students, which will
be discussed in the next section.

2.5. Conclusions and Future Work
In this chapter, we proposed a source-level debugger design for agents that takes
code stepping more serious than existing solutions, aimed at providing a better
insight into the relationship between program code and the resulting behaviour. We
identified two different types of breakpoints for agent programming: code-based
and cycle-based. The former are based on the structure of an agent program,
whereas the latter are based on an agent’s decision cycle. We proposed concrete
design steps for designing a debugger for cognitive agent programs. By using
the syntax and decision cycle of an agent programming language, a set of pre-
defined breakpoints and a flow between them can be determined in a structured
manner, and represented in a stepping diagram. Based on such a diagram, features
such as user-defined breakpoints, visualization of the execution flow, and state
inspection can be handled. We provided a concrete design for the GOAL and Jason
programming languages, as well as a full implementation for GOAL, and argue that
our design approach can be applied to other agent programming languages as well.
A qualitative evaluation shows that agent programmers prefer the source-level (i.e.,
code-based) over a purely cycle-based debugger.

The debugging challenges related to rule-based reasoning and agent decision
cycles form the core of this chapter. However, there are more challenges in de-
bugging cognitive agents that need to be addressed. One of these is the fact that
agents are (usually) connected to an environment. Two problems need to be dealt
with: (i) it cannot be assumed that an environment is deterministic which makes it
difficult to reproduce a defect, and (ii) environments typically cannot be suspended
instantly (or at all) which makes it difficult to understand the context of a defect.
This is especially the case when dealing with physical environments, e.g., controlling

2

40 References

robots like search-and-rescue drones. Simulating environments could be a possi-
ble solution for this, i.e., using a deterministic, suspendable and repeatable version
of an environment for debugging purposes. However, this is a major challenge,
especially in large or uncertain domains.

Another problem is the fact that debugging multiple agents at once is signif-
icantly more complicated than debugging a single agent. This problem is most
prominent in the evaluation results. Although debugging concurrent programs is
a major problem in any type of programming language [44], the agent-oriented
paradigm entails a number of aspects that might aid in supporting this for multi-
agent systems specifically. For example, the fact that the way in which agents
communicate is determined by the platform could be exploited for specific visual-
izations. In addition, grouping concepts such as organizations and roles [45, 46]
could help in clustering information for users, especially considering that the amount
of information needed for debugging can easily explode in a systems with many
agents.

In addition, many programming languages for cognitive agents embed knowl-
edge representation (KR) languages like Prolog or a Web Ontology Language (OWL).
Some agent programming languages also embed (instead of extend) an object-
oriented programming language such as Java. This introduces the additional prob-
lem of how to employ the debugging frameworks that are available for the em-
bedded languages. For example, the SWI Prolog trace mechanism could be made
available through the GOAL debugger in some way.

Finally, the debugger design should be evaluated on different groups of users,
i.e., different from novice (first-year student) programmers. Moreover, additional
quantitative measures such as the average time of finding a bug, the average quality
of programs (e.g., the amount of faults/failures in a result with or without use of
the source-level debugger), and more could give more insights into the challenges
of debugging multi-agent systems.

References
[1] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, Designing a source-level de-

bugger for cognitive agent programs, Autonomous Agents and Multi-Agent
Systems 31, 941 (2017).

[2] V. J. Koeman and K. V. Hindriks, Designing a source-level debugger for cog-
nitive agent programs, in PRIMA 2015: Principles and Practice of Multi-Agent
Systems, edited by Q. Chen, P. Torroni, S. Villata, J. Hsu, and A. Omicini
(Springer International Publishing, Cham, 2015) pp. 335–350.

[3] ISO/IEC/IEEE, 24765:2017-9 Systems and software engineering – Vocabulary,
https://www.iso.org/standard/71952.html (2017).

[4] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debug-
ging, 2nd ed. (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2009).

https://www.iso.org/standard/71952.html

References

2

41

[5] K. V. Hindriks, Debugging is explaining, in PRIMA 2012: Principles and Prac-
tice of Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 7455,
edited by I. Rahwan, W. Wobcke, S. Sen, and T. Sugawara (Springer Berlin
Heidelberg, 2012) pp. 31–45.

[6] P. Romero, B. du Boulay, R. Cox, R. Lutz, and S. Bryant, Debugging strate-
gies and tactics in a multi-representation software environment, International
Journal of Human-Computer Studies 65, 992 (2007).

[7] I. R. Katz and J. R. Anderson, Debugging: An analysis of bug-location strate-
gies, Human–Computer Interaction 3, 351 (1987).

[8] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, A
systematic survey of program comprehension through dynamic analysis, IEEE
Transactions on Software Engineering 35, 684 (2009).

[9] D. N. Lam and K. S. Barber, Comprehending agent software, in Proceedings
of the Fourth International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS ’05 (ACM, New York, NY, USA, 2005) pp. 586–593.

[10] D. N. Lam and K. S. Barber, Debugging agent behavior in an implemented
agent system, in Programming Multi-Agent Systems, Lecture Notes in Com-
puter Science, Vol. 3346, edited by R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni (Springer Berlin Heidelberg, 2005) pp. 104–125.

[11] D. J. Gilmore, Models of debugging, Acta Psychologica 78, 151 (1991).

[12] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Venolia, De-
bugging revisited: Toward understanding the debugging needs of contem-
porary software developers, in Empirical Software Engineering and Measure-
ment, 2013 ACM / IEEE International Symposium on (2013) pp. 383–0392.

[13] B.-d. Yoon and O. Garcia, Cognitive activities and support in debugging, in
Human Interaction with Complex Systems. Proceedings., Fourth Annual Sym-
posium on (1998) pp. 160–169.

[14] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. Fleming, How
programmers debug, revisited: An information foraging theory perspective,
Software Engineering, IEEE Transactions on 39, 197 (2013).

[15] M. Eisenstadt, My hairiest bug war stories, Communications of the ACM 40,
30 (1997).

[16] M. Ducassé and A.-M. Emde, A review of automated debugging systems:
Knowledge, strategies and techniques, in Proceedings of the 10th Interna-
tional Conference on Software Engineering, ICSE ’88 (IEEE Computer Society
Press, Los Alamitos, CA, USA, 1988) pp. 162–171.

2

42 References

[17] K. V. Hindriks, The shaping of the agent-oriented mindset, in Engineering
Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 8758, edited
by F. Dalpiaz, J. Dix, and M. B. van Riemsdijk (Springer International Publish-
ing, 2014) pp. 1–14.

[18] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf, and W. Renz, Validation
of BDI agents, in Programming Multi-Agent Systems, Lecture Notes in Com-
puter Science, Vol. 4411, edited by R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni (Springer Berlin Heidelberg, 2007) pp. 185–200.

[19] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, eds., Multi-Agent
Programming: Languages, Platforms and Applications (Springer US, 2005).

[20] A. E. F. Seghrouchni, J. Dix, M. Dastani, and R. H. Bordini, eds., Multi-Agent
Programming: Languages, Tools and Applications (Springer US, 2009).

[21] V. Zacharias, Tackling the debugging challenge of rule based systems, in Enter-
prise Information Systems, Lecture Notes in Business Information Processing,
Vol. 19, edited by J. Filipe and J. Cordeiro (Springer Berlin Heidelberg, 2009)
pp. 144–154.

[22] M. Dastani, 2APL: a practical agent programming language, Autonomous
Agents and Multi-Agent Systems 16, 214 (2008).

[23] K. V. Hindriks, Programming rational agents in GOAL, in Multi-Agent Program-
ming: Languages, Tools and Applications, edited by A. El Fallah Seghrouchni,
J. Dix, M. Dastani, and R. H. Bordini (Springer US, 2009) pp. 119–157.

[24] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-Agent
Systems in AgentSpeak using Jason (John Wiley & Sons, Ltd, 2007).

[25] C. Muldoon, G. M. O’Hare, R. W. Collier, and M. J. O’Grady, Towards pervasive
intelligence: Reflections on the evolution of the Agent Factory framework,
in Multi-Agent Programming: Languages, Tools and Applications, edited by
A. El Fallah Seghrouchni, J. Dix, M. Dastani, and R. H. Bordini (Springer US,
2009) pp. 187–212.

[26] M. Winikoff, Jack intelligent agents: An industrial strength platform, in Multi-
Agent Programming, Multiagent Systems, Artificial Societies, and Simulated
Organizations, Vol. 15, edited by R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni (Springer US, 2005) pp. 175–193.

[27] A. Pokahr, L. Braubach, and W. Lamersdorf, Jadex: A BDI reasoning engine,
in Multi-Agent Programming, Multiagent Systems, Artificial Societies, and Sim-
ulated Organizations, Vol. 15, edited by R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni (Springer US, 2005) pp. 149–174.

[28] B. Hirsch, T. Konnerth, and A. Heßler, Merging agents and services - the JIAC
agent platform, in Multi-Agent Programming: Languages, Tools and Applica-
tions, edited by A. El Fallah Seghrouchni, J. Dix, M. Dastani, and R. H. Bordini
(Springer US, 2009) pp. 159–185.

References

2

43

[29] B. Demoen and P. Tarau, jProlog, a Prolog to Java compiler, https://
people.cs.kuleuven.be/~bart.demoen/PrologInJava (1996).

[30] T. M. Behrens, K. V. Hindriks, and J. Dix, Towards an environment interface
standard for agent platforms, Annals of Mathematics and Artificial Intelligence
61, 261 (2011).

[31] A. S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage, in Agents Breaking Away, Lecture Notes in Computer Science, Vol.
1038, edited by W. Van de Velde and J. W. Perram (Springer Berlin Heidel-
berg, 1996) pp. 42–55.

[32] A. Ricci, M. Piunti, M. Viroli, and A. Omicini, Environment programming in
CArtAgO, in Multi-Agent Programming: Languages, Tools and Applications,
edited by A. El Fallah Seghrouchni, J. Dix, M. Dastani, and R. H. Bordini
(Springer US, 2009) pp. 259–288.

[33] V. Zacharias and A. Abecker, Explorative debugging for rapid rule base devel-
opment, in Proceedings of the 3rd Workshop on Scripting for the Semantic
Web at the ESWC (2007).

[34] T. Rajan, Principles for the design of dynamic tracing environments for novice
programmers, Instructional Science 19, 377 (1990).

[35] D. Ungar, H. Lieberman, and C. Fry, Debugging and the experience of imme-
diacy, Communications of the ACM 40, 38 (1997).

[36] R. Collier, Debugging agents in Agent Factory, in Programming Multi-Agent
Systems, Lecture Notes in Computer Science, Vol. 4411, edited by R. H. Bor-
dini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni (Springer Berlin Heidel-
berg, 2007) pp. 229–248.

[37] R. T. Lindeman, L. C. Kats, and E. Visser, Declaratively defining domain-specific
language debuggers, SIGPLAN Notices 47, 127 (2011).

[38] K. V. Hindriks, Programming cognitive agents in GOAL, https://bintray.
com/artifact/download/goalhub/GOAL/GOALProgrammingGuide.
pdf (2018).

[39] V. J. Koeman and K. V. Hindriks, A fully integrated development environ-
ment for agent-oriented programming, in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection,
Lecture Notes in Computer Science, Vol. 9086, edited by Y. Demazeau, K. S.
Decker, J. Bajo Pérez, and F. de la Prieta (Springer International Publishing,
2015) pp. 288–291.

[40] D. Geer, Eclipse becomes the dominant Java IDE, Computer 38, 16 (2005).

https://people.cs.kuleuven.be/~bart.demoen/PrologInJava
https://people.cs.kuleuven.be/~bart.demoen/PrologInJava
https://bintray.com/artifact/download/goalhub/GOAL/GOALProgrammingGuide.pdf
https://bintray.com/artifact/download/goalhub/GOAL/GOALProgrammingGuide.pdf
https://bintray.com/artifact/download/goalhub/GOAL/GOALProgrammingGuide.pdf

2

44 References

[41] S. Gomanyuk, An approach to creating development environments for a wide
class of programming languages, Programming and Computer Software 34,
225 (2008).

[42] S. Caraveo and D. Rethans, DBGP - a common debugger protocol
for languages and debugger UI communication, https://xdebug.org/
docs-dbgp.php (2007).

[43] M. Johnson, C. Jonker, B. Riemsdijk, P. J. Feltovich, and J. M. Bradshaw,
Engineering societies in the agents world x: 10th international workshop,
esaw 2009, utrecht, the netherlands, november 18-20, 2009. proceedings,
(Springer Berlin Heidelberg, 2009) Chap. Joint Activity Testbed: Blocks World
for Teams (BW4T), pp. 254–256.

[44] S. Abbaspour Asadollah, D. Sundmark, S. Eldh, H. Hansson, and W. Afzal,
10 years of research on debugging concurrent and multicore software: A sys-
tematic mapping study, Software Quality Journal 25, 49 (2017).

[45] H. Aldewereld and V. Dignum, OperettA: Organization-oriented development
environment, in Languages, Methodologies, and Development Tools for Multi-
Agent Systems: Third International Workshop, LADS 2010, Lyon, France, Au-
gust 30 – September 1, 2010, Revised Selected Papers, edited by M. Dastani,
A. El Fallah Seghrouchni, J. Hübner, and J. Leite (Springer Berlin Heidelberg,
2011) pp. 1–18.

[46] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat, MOISE: An organiza-
tional model for multi-agent systems, in Advances in Artificial Intelligence: In-
ternational Joint Conference 7th Ibero-American Conference on AI 15th Brazil-
ian Symposium on AI IBERAMIA-SBIA 2000 Atibaia, SP, Brazil, November 19–
22, 2000 Proceedings, edited by M. C. Monard and J. S. Sichman (Springer
Berlin Heidelberg, 2000) pp. 156–165.

https://xdebug.org/docs-dbgp.php
https://xdebug.org/docs-dbgp.php

3
Automating Failure Detection

in Cognitive Agents

Debugging is notoriously difficult and time consuming but also essential for
ensuring the reliability and quality of a software system. In order to reduce
debugging effort and enable automated failure detection, we propose an au-
tomated testing framework for detecting failures in cognitive agent programs.
Our approach is based on the assumption that moduleswithin such programs
are a natural unit for testing.
We identify a minimal set of temporal operators that enable the specification
of test conditions and show that the test language is sufficiently expressive
for detecting all failure types of an existing failure taxonomy. We also intro-
duce an approach for specifying test templates that supports a programmer
in writing tests.
Furthermore, empirical analysis of agent programs allows us to evaluate
whether our approach using test templates adequately detects failures, and
to determine the effort that is required to do so in both single and multi agent
systems. We also discuss a concrete implementation of the proposed frame-
work for the GOAL agent programming language that has been developed for
the Eclipse IDE. With the use of this framework, evaluations have been per-
formed based on test files and according questionnaires that were handed
in by 94 novice programmers.

This chapter has been published in the International Journal of Agent-Oriented Software Engineering
6(3-4) (2018) [1], an extension of work published in the book Engineering Multi-Agent Systems (2016)
[2], in turn an extension of works published in the Conference on Autonomous Agents and Multi-Agent
Systems (2016) [3, 4].

45

3

46 3. Automating Failure Detection in Cognitive Agents

3.1. Introduction
Debugging is notoriously difficult and extremely time consuming [5] but also es-
sential for ensuring the reliability and quality of a software system. Manual testing,
using, for example, a debugger for single-step execution to identify differences
between observed and intended behaviour, however, is not an efficient failure de-
tection method and heavily relies on the programmer to identify the failure. In
order to reduce debugging effort and enable automated failure detection, we pro-
pose an automated testing framework for cognitive agent programs. Automated
testing yields a reduction in the effort needed to detect a failure and is more effec-
tive than code inspection methods [6]. In addition, it also facilitates running tests
repeatedly at no additional costs.

The aim of this chapter is to introduce and develop a testing framework that
supports automated failure detection for programs written in rule-based agent pro-
gramming languages that use logic for representing the cognitive state of the agent,
including e.g. its beliefs. A failure is an event in which a system does not perform
a required function within specified limits [7]. Failures thus are manifestations of
undesired behaviour. They are caused by a fault, an incorrect step, process, or data
definition in a program [7] or mistake in a program [8]. Upon detecting a failure, a
programmer needs to locate and correct the fault that causes the failure. Our focus
is on automating the detection of failures and on dynamic analysis, i.e., the process
of evaluating a system or component based on its behaviour during execution [7].
The testing framework that we introduce, however, also provides support for fault
localization.

The main contribution of this chapter is an automated testing framework for
cognitive agent programs that provides support for detecting frequently occurring
failure types. As a first step towards such a framework, we argue that an aggregate
level that collects multiple goals, plans, and/or rules in a single unit is the most
natural unit for testing, and that test conditions should be associated with such
units, which we call modules. Second, we introduce two basic temporal operators
that in practice turn out to be sufficient for specifying test conditions to detect
failures. Third, using this generic framework, we propose test templates for failure
types that have been identified in a previously developed taxonomy by Winikoff
[8]. The test templates can be considered as a refinement of this failure taxonomy.
Finally, we introduce a test approach for deriving test templates given some initial
functional requirements.

In order to empirically evaluate and demonstrate that our framework is expres-
sive enough to detect all failure types, we verify that we can reproduce and identify
all failures found in the sample used by Winikoff [8]. Moreover, we show that by
automating testing, we are able to identify more failures. We also show that our
work is not biased towards this sample by demonstrating that the same test ap-
proach is able to identify failures in different samples of programs. In addition,
we discuss empirical and qualitative feedback that was collected, focusing on the
practical use by novice programmers of a concrete implementation of the proposed
framework.

As cognitive agents usually operate in dynamic, asynchronous environments

3.2. Related Work

3

47

[9], they need to be able to achieve their objectives flexibly and robustly. Winikoff
[10] finds that because of this, agent programs are harder to test than equivalently
sized procedural programs. Therefore, we also evaluate the effort that is required
to reproduce failures in both single and multi agent systems. Winikoff [10] also
states that it is not yet possible to apply formal validation methods to realistically-
sized agent systems, providing further motivation for this work, focusing on practical
run-time validation.

3.2. Related Work
In general, different techniques for detecting failures of program code are avail-
able, ranging from inspection of source code and logs to automated testing tools
[6]. The need for debugging techniques and test approaches for agent-oriented
programming has been broadly recognized [11–13]. Techniques for agent-oriented
programming need to be based on the underlying agent paradigm [14, 15]. How-
ever, this is a significant challenge, as they should for example take into account
that agents execute a specific decision cycle and operate in non-deterministic en-
vironments [16–18].

To facilitate code inspection, a (source-level) debugger that supports single-step
execution of an agent can be used (c.f. Chapter 2). Debugging is particularly use-
ful for zooming in on a bug of which the location is already more or less clear;
it requires a programmer to go through the execution steps of an agent program
one-by-one and to observe any mistakes in the program manually. This method of
code inspection is not only inefficient, but also subjective, as it depends on obser-
vations made by a programmer. It requires the same effort repeatedly since, after
correcting an identified fault, a programmer needs to manually evaluate program
behaviour again to verify that a fix does not introduce new defects. Automated
testing offers a method that is complementary to debugging, able to find differ-
ent kinds of failures, and thus increasing the overall number of detected failures
[5, 6]. Moreover, debugging techniques that support the localization of the fault
that causes a failure that has been identified by automated tests are still needed.
Such techniques include state inspection, mechanisms for browsing and searching
(historical) agent states, et cetera [19] (c.f. Chapter 2).

Five levels of testing a multi-agent system (MAS) are distinguished by Moreno
et al. [20]: unit, agent, integration, system, and acceptance. In this classification,
unit testing targets components that are part of an agent. Testing an agent means
to test the integration of these components as well as its ability to interact with
its environment. Integration testing focuses on agent interaction and communi-
cation protocols, system testing concerns the target operating environment, and
acceptance testing takes the customer’s perspective into account. The focus of this
chapter is on unit and agent testing.

Testing can target different artifacts [6]. The testing framework of Zhang et al.
[15], for example, targets Prometheus design models. The paper presents a mecha-
nism for generating suitable test cases. Similarly, the methodology of Gómez-Sanz
et al. [21] is based on specific ‘meta-models’ and ‘protocol descriptions’. Other
methods focus on the interaction between agents specifically, often using ‘mock

3

48 3. Automating Failure Detection in Cognitive Agents

agents’ to check if a specific interaction has taken place [22, 23]. The concept of a
‘mock agent’, i.e., a specific agent that is used for testing, is also used in the work
of Carrera et al. [24] to test an agent’s behaviour based on ‘agent stories’. Most
of these approaches consider an agent to be the smallest possible artifact to test.
Other approaches target more specific artifacts like plans [25, 26], goals [27], or a
combination of those [28]. However, we argue instead that modules are the most
suitable target artifact.

Our approach to automated testing is partly motivated by the work of Hovemeyer
and Pugh [29], which states that techniques that rely heavily on formal methods or
sophisticated program analysis are valuable, but difficult to apply in practice, and
thus not always effective in finding real bugs. Bug patterns (code idioms that are
often errors) can be used to facilitate the development of simple detectors (e.g.,
test templates) that facilitate efficient bug detection in real applications. Therefore,
unlike these existing methods, we focus on how to create tests that can detect
specific bug patterns in cognitive agents. To this end, we introduce an approach
for specifying test templates that supports an agent programmer in writing tests,
based on a minimal set of temporal operators that enable the specification of test
conditions in a corresponding test language that we show is sufficiently expressive
for detecting all failure types of an existing failure taxonomy.

3.3. Automated Testing Framework
We introduce an automated testing framework for rule-based agent programming
languages that use some knowledge representation (KR) for representing the cog-
nitive state of an agent. We aim for a framework that is as generic as possible,
but in order to introduce a concrete framework we need to make a number of
assumptions about these languages.

First, agents have a perception processing component that they use for pro-
cessing received percepts, which are simple facts that we denote by 𝑝(𝑡), i.e.,
some identifier 𝑝 with any number of arguments 𝑡. We assume that percepts are
stored each agent cycle when received from an environment for further process-
ing. Second, we assume that the KR used supports a negation operator, denoted
by not. Third, we assume that the cognitive state includes a belief state that can
be queried and which allows to make percepts persistent. Fourth, we assume that
agents somehow can represent goals that they want to achieve as part of their state;
agents can do this, for example, by means of events, plans, or declarative goals.
Otherwise, the structure of an agent’s cognitive state depends on the specifics of
the agent programming language, which almost always includes more, e.g., also
events, messages, and/or plans. Fifth, we assume that the language provides sup-
port for aggregating or encapsulating basic language elements such as knowledge,
goals, plans, and/or rules in what we call modules. Finally, we assume that an
agent has a top-level module, which enables associating test conditions with the
agent itself.

Three important design questions need to be addressed to define an automated
testing framework for cognitive agent programs. First, we need to specify what the
basic unit or program component is that tests are performed on or are associated

3.3. Automated Testing Framework

3

49

with. Second, we need to define a test language for specifying test conditions. And,
third, we need to specify an infrastructure that automates running tests. In order
to provide concrete examples of the concepts introduces in these three steps, we
will first introduce a case study that will be used in the remainder of this chapter.

3.3.1. Case Study: Blocks World for Teams
The Blocks World for Teams (BW4T) [30] is a simulated environment in which one
or more ‘robots’ have to work together in order to retrieve coloured blocks from
rooms in the environment and deliver them to a dropzone in a pre-defined order.
Each individual robot has to move around the environment in order to inspect the
various rooms for their contents, and is able to to pick-up (and drop) one block at
a time. The BW4T environment has been proposed and used as a unified testbed
for multi-agent systems, and will be used as an example throughout the remainder
of this chapter. To this end, in Table 3.1, we briefly introduce the concepts that can
be used as input (i.e., percepts) for an agent controlling a BW4T robot, and the
possible output (i.e., actions) that an agent can generate.

Percept Description
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐿𝑖𝑠𝑡) Indicates which blocks should be delivered in what order.
𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) Indicates which location the robot is currently in.
𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝐶𝑜𝑙𝑜𝑢𝑟) Indicates that the robot sees a block of a certain colour.
ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘) Indicates that the robot is currently carrying the given block.
Action Description
𝑔𝑜𝑇𝑜(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) Orders the robot to move to the specified location.
𝑝𝑖𝑐𝑘𝑈𝑝(𝐵𝑙𝑜𝑐𝑘) Orders the robot to pick-up the specified block.
𝑝𝑢𝑡𝐷𝑜𝑤𝑛 Orders the robot to put down the block that it is holding.

Table 3.1: A brief description of the percepts and actions in the BW4T environment

3.3.2. Modules as a Basic Unit for Testing
An important initial question that we need to address when setting up a testing
framework is what the target unit for testing is in an agent-oriented program. We
argue that a testing framework for agent programs should not focus on knowledge
bases to avoid reinventing the wheel, but developers should rather re-use existing
(unit) testing frameworks for the underlying KR technology of an agent program-
ming language. For example, a language that uses SWI Prolog for KR should aim
at re-using the available unit testing framework [31]. We have also found that, in
practice, testing at the level of individual goals, plans, or rules is too fine-grained
and not that useful. Writing tests at the level of individual rules, for example, would
not only result in more test than source code, but even worse, would not focus on
the failures that need to be detected. A more suitable level is the aggregate level
that collects multiple goals, plans, and/or rules in a single unit. We call such units
modules and assume agent programming languages provide some level of support
for modules. We will therefore associate test conditions with modules and introduce

3

50 3. Automating Failure Detection in Cognitive Agents

a test language that supports this.
Modules thus can be perceived of as components in an agent program that

set goals or plans and generate actions to be executed, much like individual basic
actions but at a higher level of abstraction. A module thus provides an execution
unit smaller than the agent program itself but larger than other basic language
elements. By using modules as targets for testing, we provide a developer with
some additional control over which behaviour of the agent program is tested, as only
the behaviour generated by the module will be evaluated. This allows a developer
to write tests that target only specific parts of an agent program.

An agent enters a module when it starts executing the module and exits the
module again when module execution is finished. These execution points provide
two natural places for introducing test conditions. We will associate pre-conditions
and post-conditions with a module that is evaluated, respectively, when entering
and when exiting the module. Although useful, in practice pre- and post-conditions
are not sufficient for monitoring the trace, i.e., behaviour and states, generated
while a module is executed. To be able to evaluate a module’s behaviour, we there-
fore also introduce so-called in-conditions that are associated with a module. An
in-condition is a temporal property evaluated on the trace generated by a module.
These conditions allow the detection of failures that occur during module execu-
tion. They also provide better support for fault localization by indicating the code
location where a failure was detected, as we will explain below.

3.3.3. Test Language
A test language should provide support for two main tasks: setting up a test and
specifying which test conditions should be evaluated. To this end, we introduce the
test language in Table 3.2. A testing framework that, when provided with a test
program as specified by the grammar, should initialize and set up the infrastructure
for running an agent system and (external) environment in which the test will be
automatically performed. A time-out can be specified to ensure termination of the
test after a specified time. A time-out is global and specifies how many time (in
seconds) is allowed to pass before the entire test should have been completed.

Test setup
The agents that are part of a test need to be referenced explicitly in a test program
by means of their id’s. These agents are launched when the test is started and au-
tomatically connected to an environment, if available, to receive percepts from and
perform actions in that environment. The fact that agents are launched, however,
does not mean that the program code of these agents is executed. Instead, the
testactions that are specified in an agenttest clause (see Table 3.2) are performed
when the test is run1. Test actions can be preparatory actions do𝑎𝑐𝑡𝑖𝑜𝑛 for, e.g.,
initializing an agent’s state, where 𝑎𝑐𝑡𝑖𝑜𝑛 can be a sequence of actions that are
available in an agent language. Test actions can also be instructions do𝑖𝑑 to exe-
cute a module, with 𝑖𝑑 the module’s name. Note that it is possible to run an agent
1We note that other agents in the MAS that are not referenced in the test are launched and run as usual
until all test actions have been completed.

3.3. Automated Testing Framework

3

51

test := [timeout] moduletest∗ agenttest
timeout := timeout = integer .
agenttest := id (, id)∗ { testaction }
testaction := do(action | id) [until 𝜓] .
moduletest := test id with

[pre{ 𝜓 }] [in { 𝜒 }] [post{ 𝜓 }]
𝜓 := Ψ | not(Ψ) | 𝜓 ∧ 𝜓
𝜒 := never 𝜓 | 𝜓 leadsto 𝜓 .
Ψ := stateop(𝜙) | done(action)
id := A simple identifier (e.g., denoting the name of an agent or module).
stateop := Any state query operator (e.g., for inspecting beliefs or goals).
action := Any action expression.
𝜙 := Any KR expression (i.e., within a state operator or action arguments).

Table 3.2: Test Language Grammar

itself by executing its top-level module (each agent is assumed to have one).
Finally, an until 𝜓 condition can be associated with a module (or, less use-

fully, an action) that terminates execution when a state condition 𝜓 holds (state
conditions are discussed in more detail in the following subsection). An agent test
thus determines which actions and modules are executed and when they should be
terminated. An agent test can be shared by multiple agents, but it is also possible to
define different actions for different agents, which will then be executed in parallel.

The environment that agents operate in is not explicitly referenced in our test
language because the specifics of starting an external environment are very dif-
ferent for each agent language. Here, we simply assume that a language-specific
mechanism is used for connecting agents to an environment.

Test conditions
As explained, test conditions are associated with modules. Which conditions should
be evaluated when a module is executed is specified by a test id with state-
ment, where id is a module name. With that module, a pre-condition pre{ 𝜓 }, a
post-condition post{ 𝜓 }, and/or in-conditions in { 𝜒 } can be associated. Any
conjunction of (possibly negated) state conditions Ψ is defined as 𝜓; for simplicity
any such combination is also referred to as ‘a state condition’. Such a ‘full’ state
condition generally describes (i.e., in terms of goals and beliefs) a reason for se-
lecting a certain action. A state condition Ψ is a condition of the form 𝑠𝑡𝑎𝑡𝑒𝑜𝑝(𝜙)
on the cognitive state of an agent where 𝜙 is an expression in a KR language, or
a clause of the form done(𝛼) on an action 𝛼 that an agent has just performed2.
The state conditions that are supported will be different for each agent language,
as they each use a specific cognitive state structure and associated state operators
𝑠𝑡𝑎𝑡𝑒𝑜𝑝 for inspecting that state. Querying the beliefs of an agent, for example,
may be written as 𝜙? in one language and as bel(𝜙) in another. Multiple state
2We note that because of this definition of the done operator, it only makes sense to use at most a
single done clause in a state condition .

3

52 3. Automating Failure Detection in Cognitive Agents

conditions can be joined by a conjunction operator, which again might for example
be written as ‘,’ in a specific language, and ‘𝐴𝑁𝐷’ in another. Note that we do not
introduce a disjunction operator in order to prevent complication through for ex-
ample nesting conjunctions with disjunctions. Moreover, a disjunction can usually
be rewritten by introducing additional tests or conditions (which is discussed below
as well).

The pre-condition of a module is a state condition 𝜓 that should hold when
a module is entered (otherwise, the test fails). An example of such a condition
is: goal(𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)), i.e., informally the agent should have the goal to be in a
certain location before entering the module this pre-condition is associated with.
Similarly, a post-condition is a state condition that should hold when a module
is exited (terminated). An example of such a condition is: bel(𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)), i.e.,
informally the agent should believe it is in a certain location when leaving the module
this post-condition is associated with (otherwise, the test fails).

An in-condition 𝜒 is a temporal condition that specifies which behaviour is ex-
pected of a module. Such a temporal property or condition is a statement of the
form never 𝜓 or 𝜓 leadsto 𝜓 . Conditions never 𝜓 can be used to specify safety
conditions, i.e., things that never should occur. Conditions 𝜓 leadsto 𝜓 can be
used to specify liveness conditions, i.e., things that are supposed to occur sooner
or later after something else has happened [32, 33].

Our test language only uses the two basic temporal operators never and lead-
sto, as these two operators turn out to be sufficient for detecting failures (as we
will show). We do not want to complicate our test language more than strictly nec-
essary, as we aim for our language to be used by trained agent programmers. We
therefore want to minimize the level of acquaintance with concepts from temporal
logic that is needed. In particular, similar to preventing nesting conjunctions and
disjunctions, we want to avoid nesting temporal operators, as conditions would oth-
erwise quickly become difficult to understand. A disjunction in never can always
be rewritten to multiple never conditions, as well as a disjunction in the first part
of 𝜓 leadsto 𝜓 . A disjunction in 𝜓 can usually be resolved in a similar way by
specifying more specific (strict) versions of 𝜓 in separate leadsto conditions. Fi-
nally, we note that some temporal operators such as always 𝜓 can be introduced
as syntactic sugar for never not(𝜓). Similarly, eventually 𝜓 can be introduced
as shorthand for true leadsto 𝜓.

3.3.4. Semantic model
Although it is outside the scope of this chapter to provide a formal semantics of
the test conditions, we briefly introduce the basic semantic model that we assume
informally. A run or trace of an agent program consists of a (finite or potentially
infinite) sequence of cognitive states of the agent. Test conditions associated with a
module are evaluated on (partial) traces generated by that module. For testing pur-
poses, these conditions are assigned one of three values: undetermined, passed,
or failed. Initially, all test conditions of a module have the value undetermined.
The pre-condition of a module, if specified, is evaluated on the current state when
entering the module and assigned passed when the condition succeeds, and failed

3.3. Automated Testing Framework

3

53

otherwise. Similarly, the post-condition is evaluated on the current state when a
module is exited or terminated. The value of in-conditions is (re-)evaluated every
time the cognitive state of the agent changes while the module is being executed.
The temporal operator of the condition determines whether the value is updated:

• never 𝜓: the value is changed to failed if 𝜓 holds in the state; the value is
changed to passed if the module (or test) is terminated and the value still is
undetermined; otherwise, its value remains undetermined.

• 𝜓 leadsto 𝜓 : if the module (or test) is terminated, the value is changed to
passed if every state where 𝜓 holds has been followed by a state where 𝜓
holds (and vacuously so if 𝜓 did never hold); otherwise, the value is changed
to failed. If the module (or test) has not been terminated yet, the value is
undetermined.

Note that when a test is terminated, all conditions will have been assigned the
value passed or failed. The definition of the leadsto operator requires 𝜓 to
follow every time that 𝜓 held. More precisely, because the evaluation of a state
condition could possibly lead to multiple solutions (e.g., when using variables), 𝜓
should follow for every unique solution for 𝜓. Take, for example, the condition:
bel(𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝑤ℎ𝑖𝑡𝑒)) leadsto bel(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘))
This condition implies that for every white block that is believed to exist at any
point in the execution of the module the condition is associated with, a holding be-
lief should follow (before the module is left). This behaviour might be undesirable
when, for example, testing the selection of a single result from a condition with mul-
tiple solutions. However, in such cases, the KR-language used can provide support.
In Prolog, for example, a setof or similar operator can be used to produce a single
solution (i.e., a list of possibilities) in 𝜓 for which 𝜓 should then only hold once (i.e.,
for a specific or random possibility). In the previous example, if the agent’s module
should only collect one block out of all known white blocks, the condition could be:
bel(𝑠𝑒𝑡𝑜𝑓(𝐵𝑙𝑜𝑐𝑘, 𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝑤ℎ𝑖𝑡𝑒), 𝐵𝑙𝑜𝑐𝑘𝑠)) leadsto
bel(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐴𝑛𝑦𝐵𝑙𝑜𝑐𝑘) ∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝐴𝑛𝑦𝐵𝑙𝑜𝑐𝑘, 𝐵𝑙𝑜𝑐𝑘𝑠))
Here, the 𝑚𝑒𝑚𝑏𝑒𝑟 predicate checks if a certain predicate is an element of a certain
list (i.e., 𝐴𝑛𝑦𝐵𝑙𝑜𝑐𝑘 is in 𝐵𝑙𝑜𝑐𝑘𝑠).

Time-out mechanics
If a test is terminated because of a time-out, this does not always imply that the
test is a failure; if all conditions are passed at that time, the test is considered to
have passed as well. However, it is important to consider the specific nature of
test conditions that have not passed (yet) when a time-out occurs, as there can be
‘false positives’ for 𝜓 leadsto 𝜓 conditions, i.e., for conditions that would have
succeeded if the agent had continued running after the time-out (𝜓 would have
been true at some later point). Naturally, such false positives have a higher chance
of occurring when the expected time of seeing 𝜓 after having seen 𝜓 is longer, i.e.,
spanning more than one evaluation of a module.

3

54 3. Automating Failure Detection in Cognitive Agents

A time-out mechanism should not be implemented by simply interrupting the
agent system, i.e., instantly aborting the execution of each agent (and thus test)
when a time-out occurs, as this way of terminating a test will cause problems with
leadsto conditions that will hold within a single evaluation of a module; an inter-
ruption might then occur at any point in the module’s execution. A better time-out
mechanism that prevents false positives from these ‘short’ leadsto conditions can
be implemented by ‘evaluating the time-out’ at fixed points in the execution, e.g., at
the end of each module evaluation. Such a mechanism will prevent false positives
in for example a module that processes percepts; if such a module with multiple
decision rules that process percepts into appropriate beliefs is aborted before all
rules have been evaluated, any related leadsto conditions for percepts handled
by rules after the point of interruption will fail.

It is in any case important for a developer to consider that the result of a test
condition that either held (i.e., never 𝜓) or did not hold (i.e., 𝜓 leadsto 𝜓) when
a time-out occurs might have changed when the program had run for a longer time.
It should thus be clearly stated in test results if a test condition failed before or after
a time-out occurred.

Based on the testing framework as introduced in this section, we will introduce
test templates and a corresponding test approach in the following section.

3.4. Testing for Failures
In this section, we provide a systematic approach for detecting failures by introduc-
ing test templates that target specific types of failures in the taxonomy of Winikoff
[8], given in Table 3.3, and a systematic method for using these templates. The
introduced test templates can be considered a refinement of the failure taxonomy.

P1: failure to deal with percept
P2: other incorrect percept processing
G1: failure to add a goal that should be added
G2: failure to drop a goal that should be dropped
G3: adding a goal that shouldn’t be added
G4: incorrectly adding a second goal of the same type
G5: dropping a goal that shouldn’t be dropped
A1: selecting the wrong (user-defined) action
A2: beliefs not updated correctly when action performed
A3: action selected when should be doing nothing
A4: action interface mismatch
O: other failure not classified above

Table 3.3: Failure Taxonomy of Winikoff [8]

3.4. Testing for Failures

3

55

3.4.1. Test Templates
A test template consists of one or more templates for individual test conditions.
We provide test templates for each failure type in the taxonomy, except for A4
(action interface mismatch), which calls for another detection method and raises a
specific design issue for testing frameworks. We note that a test condition specifies
expected behaviour, and a violation indicates a failure. An example is provided with
each template to illustrate this.

P1, P2: Failure to process percept (correctly) In order to define test condi-
tions for percept processing, we assume a state operator percept(𝑝(𝑡)), indicating
that a percept named 𝑝 with arguments 𝑡 is perceived, that can be used to inspect
the contents of the stored percepts. This does not mean that these conditions must
be supported in the programming language itself, but only that it should be possible
to somehow inspect which percepts have been received.

In order to support various options for percept processing, we distinguish three
ways in which a percept can be updated, and associate specific test templates with
each such method. Although in theory alternatives can be conceived of, we have
specified test templates below based on the assumption that the percept informa-
tion needs to be made persistent in the agent’s belief state, which worked well in
practice. We also assume that test conditions for percepts can be associated with
a percept processing module (abbreviated ppm), and we can write test statements
of the form test ppm with in { 𝜒 }. Each agent language provides some kind
of support for this, although perhaps not in the language itself but ‘under the hood’.
It is important that test conditions for percepts are associated with and evaluated
while executing the percept processing module. Because such a module is generally
executed once per agent decision cycle, in order to not violate the test conditions,
percepts must have been processed and beliefs updated accordingly at the end of
percept processing.
Template P-once: concerns percepts that are only received once, typically when
the agent is launched to inform it about static information such as locations on
maps. The test template expects that after receiving the percept, it will be made
persistent in the agent’s beliefs.

percept(𝑝(𝑡)) leadsto bel(𝑝(𝑡))

For example, the condition ‘percept(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐿𝑖𝑠𝑡)) leadsto bel(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐿𝑖𝑠𝑡))’
verifies if the sequence of coloured blocks that is sent only when the agent starts is
correctly inserted into the agent’s beliefs, i.e., that the percept has been (correctly)
processed into a belief the end of the percept processing module with which the
condition is associated.

Template P-always: concerns percepts about facts 𝑝(𝑡) that are always received
when 𝑝(𝑡) is the case, meaning that not receiving the percept implies that 𝑝(𝑡)
does not hold. For example, a percept 𝑏𝑙𝑜𝑐𝑘(1, 𝑟𝑒𝑑) is sent to an agent as long
as it can see that red block. The corresponding test template consists of two test

3

56 3. Automating Failure Detection in Cognitive Agents

conditions. The first is identical to the one for P-once; the second condition expects
that not perceiving 𝑝(𝑡), which would indicate that 𝑝(𝑡) does not hold, should lead
to removing the belief 𝑝(𝑡) (if present).

percept(𝑝(𝑡)) leadsto bel(𝑝(𝑡))
(not(percept(𝑝(𝑡))) ∧ bel(𝑝(𝑡))) leadsto not(bel(𝑝(𝑡)))

The conditions ‘percept(𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝐶𝑜𝑙𝑜𝑢𝑟)) leadsto bel(𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝐶𝑜𝑙𝑜𝑢𝑟))’
and ‘(not(percept(𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝐶𝑜𝑙𝑜𝑢𝑟))) ∧ bel(𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝐶𝑜𝑙𝑜𝑢𝑟))) leadsto
not(bel(𝑏𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘, 𝐶𝑜𝑙𝑜𝑢𝑟)))’ can for example be used to verify that the agent’s
beliefs about the blocks that it can see are correct.

Template P-on-change: concerns percepts that are sent only when parameters
change. The percept 𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛), for example, is sent each time an agent’s loca-
tion changes.

percept(𝑝(𝑡)) leadsto bel(𝑝(𝑡))
(percept(𝑝(𝑡)) ∧ bel(𝑝(𝑡)) ∧ 𝑡 ≠ 𝑡) leadsto not(bel(𝑝(𝑡)))

Here, the conditions ‘percept(𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)) leadsto bel(𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))’ and
‘(percept(𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)) ∧ bel(𝑖𝑛(𝐶𝑢𝑟𝑟𝑒𝑛𝑡)) ∧ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≠ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡) leadsto
not(bel(𝑖𝑛(𝐶𝑢𝑟𝑟𝑒𝑛𝑡)))’ illustrate verifying the agent’s beliefs about its location.

The three test templates for percepts assume that any percept information should
be stored in the agent’s beliefs ‘as is’. In practice, information contained in a per-
cept may be purposely left out of the beliefs, or information from multiple percepts
may be combined. The generic structure of the above templates still applies in such
situations depending on the type of percept updating that is applicable, but some
instantiations of 𝑝(𝑡) will need to be changed depending on the specific situation.
Moreover, in some situations, removing a belief when something is (perhaps tem-
porarily) no longer percepted might not be desired in the specific implementation,
in which case the corresponding test condition can be left out.

G1: Failure to add a goal that should be added The taxonomy in Table 3.3
includes five failure categories related to goal handling. We therefore assume that
a state operator goal is available for checking for the presence or absence of a goal.
Each of these failure categories, with the exception of G4, suggest that a reason
for (not) having a goal has not been adequately taken into account.

Template G-adopted: concerns a goal 𝜙 that the agent is expected to adopt
because of some (sufficient) reason 𝜓.

𝜓 leadsto goal(𝜙)

For example, the functional requirement that an agent adopts an ‘in-goal’ for every
unvisited room that it beliefs to exist can be formalized as a condition
‘(bel(𝑟𝑜𝑜𝑚(𝐿𝑜𝑐)) ∧ not(bel(𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝐿𝑜𝑐)))) leadsto goal(𝑖𝑛(𝐿𝑜𝑐))’.

3.4. Testing for Failures

3

57

G2: Failure to drop a goal that should be dropped The failure to drop a goal
is taken here as an indication that the agent did not adequately reconsider the goals
that it has. As one would expect an agent to reconsider its goals if the environment
has changed outside the control of that agent, these failures would most likely only
occur in dynamic environments or in a multi-agent context.

Template G-reconsider: concerns a goal 𝜙 that should be reconsidered and
dropped as a result for some reason 𝜓.

𝜓 leadsto not(goal(𝜙))

The condition ‘(goal(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘)) ∧ not(bel(𝑛𝑒𝑒𝑑𝐵𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘)))) leadsto
not(goal(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘)))’ illustrates this failure type, where 𝑛𝑒𝑒𝑑𝐵𝑙𝑜𝑐𝑘(𝐵𝑙𝑜𝑐𝑘)
is some predicate that checks if 𝐵𝑙𝑜𝑐𝑘 needs to be delivered according to the goal
sequence, which might not be the case any longer when another agent in the
environment delivered a block.

G3: Adding a goal that should not be added G3 is the counterpart of G1,
reflected by the fact that we use a safety (never) instead of liveness (leadsto)
condition here.

Template G-incorrect: concerns a situation in which there is a reason 𝜓 for not
adopting (having adopted) the goal 𝜙.

never(goal(𝜙) ∧ 𝜓)

The condition ‘never(goal(𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)) ∧ bel(𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)))’ can for ex-
ample be used to verify that the agent never adopts a goal to visit a location that
has been visited before.

G4: Incorrectly adding a second goal of the same type Some goals should
only occur once and it should never be the case that the goal is instantiated twice.
For example, an agent might have a goal of visiting a certain location but should
never have two of those goals simultaneously.

Template G-duplicate: concerns a single-instance goal 𝜙(𝑡) that should be in-
stantiated at most once.

never (goal(𝜙(𝑡)) ∧ goal(𝜙(𝑡)) ∧ 𝑡 ≠ 𝑡)

Verifying that the agent has at most one ‘holding-goal’ can for example be done with
the condition ‘never (goal(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘)) ∧ goal(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝑂𝑡ℎ𝑒𝑟)) ∧ 𝐵𝑙𝑜𝑐𝑘 ≠
𝑂𝑡ℎ𝑒𝑟)’.

3

58 3. Automating Failure Detection in Cognitive Agents

G5: Dropping a goal that should not be dropped Similar as G3 is to G1, G5
is the counterpart of G2.
Template G-maintain: concerns a situation in which 𝜓 is a reason why an agent
should have a goal 𝜙, and should maintain it for that reason.

never (not(goal(𝜙)) ∧ 𝜓)

The condition ‘never (not(goal(𝑖𝑛(𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒))) ∧ bel(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘)))’ can
for example be used to verify that the agent always has the goal to be in the
dropzone whilst it is holding a block (i.e., in order to deliver the block there).

A1: Failure to select an action Table 3.3 includes four failure categories related
to actions. Categories A1 and A3 suggest that a reason for (not) selecting an action
has not been adequately taken into account.
Template A-selected: concerns an action 𝛼 that the agent is expected to have
selected because of some (sufficient) reason 𝜓.

𝜓 leadsto done(𝛼)

An illustration of this template is the condition ‘(bel(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘), 𝑖𝑛(𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒)))
leadsto done(𝑝𝑢𝑡𝐷𝑜𝑤𝑛)’, which can be used to verify that the agent puts down
any block that it is holding when located in the dropzone.

A2, A3: Incorrect action (selection) We provide one test template for cate-
gories 𝐴2 and 𝐴3, which both suggest that something happened that should (never)
have happened, and thus can be viewed as the counterpart of 𝐴1. 𝐴2 indicates that
beliefs should not have been updated the way they are, and 𝐴3 indicates there is
a situation in which an action should never have been selected.
Template A-incorrect: concerns an action 𝛼 that should never be (immediately)
followed by 𝜓 (𝐴2), or a situation 𝜓 in which an action should never have been
selected (𝐴3).

never (done(𝛼) ∧ 𝜓)

For example, the condition ‘never (done(𝑝𝑢𝑡𝐷𝑜𝑤𝑛) ∧ not(bel(𝑖𝑛(𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒))))’
can be used to verify that the agent will never put down a block outside of the drop-
zone.

A4: Action interface mismatch This failure concerns an agent that attempts
to perform an action in an environment that is not supported by that environment.
An environment is expected to raise an exception or use another event-mechanism
to indicate this issue. To detect these failures, rather than providing a test tem-
plate, the testing framework should abort testing immediately after receiving the
exception or event. Aborting upon receiving an exception is a general principle that
is supported in our framework.

3.4. Testing for Failures

3

59

3.4.2. Taxonomy Refinement
The test templates that we have introduced, as summarized in Table 3.4, do not
offer a perfect match with the failure categories, but provide a refinement of the
taxonomy in Table 3.3. Instead of two categories P1,P2 for percept processing
failures, we introduced four templates (P-once, etc.). The main reason for this
difference is that in a test approach we should specify what kind of percept is
expected, instead of indicating that no processing was done at all (P1) or something
went wrong (P2). For a similar reason, we renamed A1 from ‘selecting the wrong
action’ to ‘failure to select an action’, which also highlights the similarity with the
template for G1. We merged A2 and A3 which are covered by a single A-incorrect
test template; note again the structural similarity with the template for G-incorrect
(G3). As discussed, we do not have a corresponding template for A4, as tests should
rather be aborted when this failure happens. Finally, we have no templates for the
‘other’ category, as our empirical results suggest there is no need for an additional
template.

P-once: failure to process a percept that was received only once
P-always: failure to process a percept that is always received when it holds
P-on-change: failure to process a percept that is received when parameters change
G-adopted: failure to adopt a goal that should have been adopted
G-reconsider: failure to drop a goal that should have been dropped
G-incorrect: incorrectly adopting a goal that should not have been adopted
G-duplicate: incorrectly adopting a second instance of a single-instance goal
G-maintain: incorrectly dropping a goal that should not have been dropped
A-selected: failure to select an action that should have been selected
A-incorrect: incorrectly selecting an action that should not have been selected

Table 3.4: Test templates indicating a refined failure taxonomy

3.4.3. Test Approach
In order to test and use the test templates, we need a systematic test approach
that tells us what to do (steps) and, more specifically, provides clues on how to
instantiate the templates for a specific application. An important question, for ex-
ample, is how to find reasons to instantiate the 𝜓 conditions that occur in the G-
and A-templates. Table 3.5 lists information resources that are particularly useful
for testing.

Step 1: defining success
The first step is to identify functional requirements from available agent design doc-
umentation (Table 3.5). These requirements define success and provide a concrete
method for checking that a program does what it is supposed to do. A program can
be considered free of failures if it meets all its requirements. In order to automati-
cally check this, functional requirements must also be specified in the test language.

3

60 3. Automating Failure Detection in Cognitive Agents

Source Type of Information
Agent program (comments) Clues for reasons & design
Agent trace (screen, logs) Observable behaviour
Agent design & specification Functional requirements
Environment (documentation) Percepts, actions available

Table 3.5: Information sources for testing

Typically, these requirements will be associated with the top-level module, called
main here, that is executed by the agent, and we can specify them as pre-, post-,
or in-conditions of that module using test main with statements or by using a
statement domain until 𝜓. The latter is particularly useful for checking that some
overall objective 𝜓 is realized (and, if so, the test will be automatically terminated;
a timeout should be specified to guarantee termination if this is not the case).
For example, the requirement or objective to pickup and deliver 𝑛 blocks can be
specified by domain until bel(𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(𝑛)).

Step 2: testing cognitive state updating
It is important to test that updating of an agent’s cognitive state works as expected.
The state conditions used in test conditions are evaluated on this state and will
fail for unclear reasons when state updating has not been implemented correctly.
For example, a condition never(done(𝑝𝑢𝑡𝐷𝑜𝑤𝑛) ∧ not(bel(𝑖𝑛(𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒)))),
which expresses that a block should never be put down when not in the dropzone,
could simply fail because beliefs about 𝑖𝑛(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) were not updated correctly.

Identify percepts, actions, and goals used As a preparatory step, it is useful
to collect and list all types of percepts that can be generated by the environment,
i.e., a percept’s name, (number of) arguments, and update type (once, etc.). Sim-
ilarly, the types of actions that may be performed in the environment should be
collected, and all types of goals that an agent may have should be collected from
the agent program code (all by their name and possible arguments).

Validating percept processing The most basic step is to instantiate the appro-
priate test templates P-once, etc. for each percept according to its update type.
The resulting test conditions should be associated as in-conditions with the percept
processing module, and the testing framework used to evaluate these conditions.
Tests should be repeated sufficiently often as percepts generated will differ per run,
if only because environments are more often than not non-deterministic. To gain
confidence that percepts are correctly handled, it is important to (manually) check
against the list of actions created above whether a sufficient variation of actions has
been performed during test runs, as different actions often yield other percepts.

Check single-instance goals Based on the design and intended use of goals
in a program (annotated by comments for example, see also Table 3.5), and using
the goal list created in Step 1, the subset of goal types that are single-instance

3.4. Testing for Failures

3

61

goals should now be identified. For each of these, the test template G-duplicate
should be instantiated and associated as an in-condition with the module(s) where
a corresponding goal is adopted.

We note that the first and second steps can be performed by almost mechanically
instantiating templates once relevant information has been collected. If these initial
tests succeed, therefore, this will give a high level of confidence that cognitive
states are updated correctly. For all templates other than those used up until now,
however, a state condition 𝜓 needs to be derived using insights gained from the
design and behaviour of an agent.

Step 3: classifying failures
After testing state updating and checking that failures still are present, there are
two approaches for classifying those failures. A bottom-up approach would start
with the action and goal list created and try to instantiate templates for all these
actions and goals, using the agent program itself as the main source of information.
A top-down approach would rather start by analysing agent traces (see also Table
3.5) and observing agent behaviour in order to identify which action should (not)
have been performed or goal should (not) have been added. Although a top-down
approach suggests to start with testing goals, this order is not fixed and testing
might just as well proceed with actions.

Failures concerning actions In order to instantiate A-templates, apart from
the action, a state condition 𝜓 should be identified that provides a reason for (not)
selecting an action. For A-selected (resp. A-incorrect), the question is in which
situations an action should (never) be executed. The instantiated conditions should
be associated as in-conditions with the module(s) where the action might (not) be
selected.

Bottom-up approach
By inspecting the agent program, clues may be obtained for useful test condi-
tions 𝜓. In particular, the triggering conditions of rules can be useful, as they
typically indicate reasons for selecting an action. For example, a (rule) condi-
tion bel(𝑖𝑛(𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒) ∧ ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘)) that triggers execution of an action
𝑝𝑢𝑡𝐷𝑜𝑤𝑛 suggests that an agent should execute 𝑝𝑢𝑡𝐷𝑜𝑤𝑛 when it is holding a
block in the 𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒 . By simply using this condition for 𝜓 we can instantiate
A-selected as follows:
(bel(𝑖𝑛(𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒) ∧ ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘))) leadsto done(𝑝𝑢𝑡𝐷𝑜𝑤𝑛)
This simple approach can already detect failures, e.g., in case a wrong ordering of
rules prevents the rule for 𝑝𝑢𝑡𝐷𝑜𝑤𝑛 to ever be applied. Similarly, by simply negat-
ing conditions found in a program, we can instantiate A-incorrect. This assumes
that the condition must hold for the action to be selected. Although these assump-
tions may be too strong, they provide a useful starting point and can be weakened
based on further analysis.

Top-down approach
If an action failure is suspected because, for example, a functional requirement is
not satisfied, observing an agent’s behaviour may provide clues for identifying a

3

62 3. Automating Failure Detection in Cognitive Agents

useful condition 𝜓 for instantiating a test template for that action. Suppose the
following condition fails:
bel(𝑖𝑛(𝐿𝑜𝑐)) leadsto not(bel(𝑖𝑛(𝐿𝑜𝑐)))
This indicates that the agent does not always leave a location after entering it. By
identifying that the goTo action is required to leave a location and observing that
it is never performed, a failure to select that action is suggested. To test for this,
the A-selected template can be instantiated by instantiating 𝜓 with the reason for
leaving and 𝛼 with the goTo action, which yields:
(bel(𝑖𝑛(𝐿𝑜𝑐) ∧ 𝐿𝑜𝑐 ≠ 𝑂𝑡ℎ𝑒𝑟𝐿𝑜𝑐)) leadsto done(𝑔𝑜𝑇𝑜(𝑂𝑡ℎ𝑒𝑟𝐿𝑜𝑐))
This process can be continued until the root cause has been identified.

Failures concerning goals The approach for instantiating G-templates, apart
from identifying the goal that might cause the failure, is similar to that for A-
templates. The associated questions for the templates are, for G-adopted: for
which 𝜓 should the goal be added?; for G-reconsider: for which 𝜓 should the
goal be dropped?; G-incorrect: for which 𝜓 should a goal never be added?; and
for G-maintain: for which 𝜓 should a goal never be removed? The approach for
identifying 𝜓 for actions above also applies for goals. The instantiated conditions
should be associated as in-conditions with the module(s) that are related to the
goal. We illustrate a test for a goal 𝑖𝑛(𝐿𝑜𝑐) that is adopted in a rule with a trig-
gering condition bel(𝑟𝑜𝑜𝑚(𝐿𝑜𝑐)) ∧ not(bel(𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝐿𝑜𝑐))), i.e., indicating that an
agent should adopt (multiple) goals to be in a certain location when it knows about
a room that it has not visited before. By simply using this condition for 𝜓 we can
instantiate G-adopted as follows:
(bel(𝑟𝑜𝑜𝑚(𝐿𝑜𝑐)) ∧ not(bel(𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝐿𝑜𝑐)))) leadsto goal(𝑖𝑛(𝐿𝑜𝑐))
Again, this simple approach can already detect failures, e.g., in case the rule order
prevents the rule from ever being applied. Similarly, by simply negating conditions
found in a program, we can instantiate G-incorrect. This assumes that the condi-
tion must hold for the goal to be adopted, e.g., we never want to go to rooms we
have visited before. A similar approach can be used for the G-reconsider and the
G-maintain templates.

3.4.4. Test Results
In order to facilitate fault localization, it is important to consider how the results of a
test are presented to a developer. First, we will discuss what the (textual) results of
an agent test should look like when not considering integration into a source-level
debugger. Next, we will discuss how tests can be integrated into a source-level
debugger.

Output
The results of a test can be displayed by printing the evaluations of the test con-
ditions (to some console) when all the actions in a test have been completed (or
a time-out occurs). Alternatively, one could consider running a test until the first
failure occurs, and printing only that failure. Both could be supported by adding a

3.4. Testing for Failures

3

63

toggle that enables either one or the other mode of running. First and foremost,
the user should be notified if the test has passed overall, i.e., if all conditions held.
In that case, just printing this is sufficient. However, more interestingly, when a
test fails, the user should be informed about the specific test conditions that have
failed (per module).

A condition of the form never 𝜓 can only fail at one specific point in a module’s
execution, i.e., in the first cognitive state that 𝜓 held. Therefore, the exact details
of 𝜓 should be displayed, i.e., the instantiation (variables) that made the condition
hold. Moreover, it can be useful to provide some information about the point in
time at which the condition held, for example by adding the number of decision
cycles that an agent had performed up until that point to the result. This can for in-
stance be used to look up the mentioned cycle in agent logs, and from there search
for further information. An example of the result of a never condition would be:
The condition never (done(𝑔𝑜𝑇𝑜(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)) ∧ bel(𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))) failed
in cycle 51 with Location=‘Room1’.
A condition of the form 𝜓 leadsto 𝜓 can only fail at one specific point in a mod-
ule’s execution, i.e., when the module exits and 𝜓 did not hold yet. However,
multiple specific instantiations of 𝜓 can require multiple specific instantiations of
𝜓 to hold. It is even possible that specific instantiations of both 𝜓 and 𝜓 al-
ready held at some point in the module’s execution, but not for the final time that
𝜓 was seen, as each time that 𝜓 holds 𝜓 should follow at some later point in
the module’s execution. Therefore, not only should the exact details of 𝜓 be dis-
played, i.e., the instantiation (variables) for which the condition held, but also the
exact details of the possible multiple instantiations of 𝜓 that did not hold. Again,
providing information about the timing of such failures can be useful, i.e., adding
the number of decision cycles that the agent had performed up until 𝜓 held (from
which 𝜓 did not follow). Moreover, because these conditions can fail due to a
time-out (and perhaps falsely so), the result should clearly state if the specific fail-
ure occurred before or after the time-out. An example of such a result would be:
The condition not(bel(𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))) leadsto done(𝑔𝑜𝑇𝑜(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))
failed as when the first part of the condition held in cycle 151 with
[Location=‘Room1’,Location=‘Room2’], the second part of the condition did
not hold with Location=‘Room2’ before the module exited in cycle 152.
Another variation that should be taken into account is when a condition 𝜓 leadsto
𝜓 did hold, but vacuously so, i.e., when 𝜓 was never satisfied.

We note that it is also possible some (run-time) exception occurs during the
execution of a test action. In this case, the test itself should be regarded as failed,
and the exception printed in the test results.

Debugger integration
Besides using a console (for logging output), fault localization can be facilitated
even more by integrating a test in a source-level debugger (c.f. Chapter 2). Such
a debugger allows single-step execution of a program, providing a better insight
into the relationship between program code and the resulting behaviour. When
executing an agent test, such a debugger should suspend the execution of an agent

3

64 3. Automating Failure Detection in Cognitive Agents

whenever a test failure occurs in order to allow a developer to inspect the agent’s
cognitive state at that exact point (and perhaps its log up until that point). When
this happens, the details of the failure should be printed as well, as discussed in the
previous part. The failing test condition combined with its specific location in the
agent’s source code and the agent’s current cognitive state will provide a developer
with strong clues about which parts of the agent to inspect. For example, when
a condition never (done(𝑔𝑜𝑇𝑜(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)) ∧ bel(𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))) fails (i.e.,
directly after 𝑔𝑜𝑇𝑜(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) was executed for an already 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 location), the
source-level debugger should suspend the agent and highlight the location at which
the failure occurred, which is in this case a call to 𝑔𝑜𝑇𝑜(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) in some specific
decision rule. The condition of that rule might already be the case of that failure,
when for example it was not strong enough, or otherwise it will provide further
clues towards the fault location, when for example a certain goal lead to the action
being performed (thus spawning further investigation into that goal).

When a failure occurred during debugging, the developer can either choose to
halt and correct the agent at that point, or continue running (or perhaps single
stepping) until either the next failure occurs or the test ends.

3.5. Testing GOAL Agents in the Eclipse IDE
A concrete implementation of the proposed automated testing framework has been
performed for the GOAL agent programming language [34], embedded in its plug-
in3 for Eclipse. This plug-in provides a full-fledged development environment for
agent programmers, integrating all agent and agent-environment development tools
in a single well-established setting [35]. A source-level debugger for agents has
been integrated in this plug-in (c.f. Chapter 2). Full editing support has been added
for test files (with extension .test2g), as illustrated in Figure 3.1.

The testing framework has been fully integrated into the source-level debugger,
as illustrated in Figure 3.2. In the plug-in there are several examples embedded
that can be used to demonstrate the testing framework. Most of these are based
on educational environments4 that usually include an assignment for (novice) agent
programmers.

3.5.1. Implementation Details
As detailed in Chapter 2, a listener can be attached to the GOAL runtime, which
emits specific events (i.e., the breakpoints). The testing framework uses this same
mechanism in order to determine when to (re-)evaluate test conditions. First, when
a module is entered, its precondition is evaluated, and any test conditions associ-
ated with it are added to the general set of test conditions to evaluate for that
specific agent. Then, upon each change to the agent’s cognitive state (e.g., a be-
lief is inserted or a goal is achieved), all test conditions in this set are evaluated.
Conditions of the form never 𝜓 remain in this set until the module is exited. For
3See the tutorials at https://goalapl.atlassian.net/wiki for a demonstration(video) of the
testing framework implementation and instructions on how to install GOAL in Eclipse.
4All (educational) agent environments are available at https://github.com/eishub/.

https://goalapl.atlassian.net/wiki
https://github.com/eishub/

3.6. Evaluation

3

65

Figure 3.1: An example of a test2g file being edited in the GOAL plug-in for Eclipse.

conditions of the form 𝜓 leadsto 𝜓 , initially only 𝜓 will be in the set of test
conditions for the agent. Then, for each time 𝜓 holds (i.e., after a single change
to the agent’s cognitive state), all applicable variations of 𝜓 will be added to the
set of conditions (i.e., if the specific instantiation is not already present). In turn,
when any specific instantiation of 𝜓 is already in the set, whenever it holds (i.e.,
again after any change to the agent’s cognitive state) it is removed from the set.
Then, in the end when the module is exited, at which point its postcondition will be
evaluated, each remaining condition 𝜓 in the set indicates a specific failure of the
complete 𝜓 leadsto 𝜓 condition.

Test failures behave in a similar way as user-defined breakpoints (c.f. Chapter
2), i.e., always halting the execution of an agent immediately when they occur.

3.6. Evaluation
In this section, we first evaluate whether our automated approach is able to detect
all failures as previously identified in a specific set of agent programs [8]. Next,
we evaluate whether we are able to detect failures in a different set of agents
operating in the same environment, but with additional functional requirements.

3

66 3. Automating Failure Detection in Cognitive Agents

Figure 3.2: An example of how test failures are displayed in the source-level debugger. Information
about the agent’s cognitive state at this point is available elsewhere in the debugger.

In addition, we evaluate this for a single agent program sample that operates in a
different environment. Next, we evaluate the effort that is required to reproduce
failures in both single and multi agent systems. Finally, we discuss both empirical
and qualitative evaluations that have been performed with novice programmers
who have used the testing framework for GOAL.

3.6.1. Comparing the Approaches
To establish the effectiveness of our automated testing framework and test ap-
proach, we evaluate here whether the automated testing framework, using the
test templates introduced above, is able to detect the failures that were detected
by manual inspection by Winikoff [8]. We aim to show that our framework can
be used to detect failures to obtain failure-free programs, meaning that functional
requirements are met.

Methodology
We used the agent program sample and the methodology for testing, debugging,
and classifying failures of Figure 3.3 that was also used by Winikoff [8]. Only step
1 and 3 were replaced by tests performed using our testing framework instead of
manual inspection of logs and traces. We also used the same ‘success criteria’,
i.e., the requirement formulated at the end of Step 1 of our approach. As we
want to demonstrate that failures detected by Winikoff [8] can also be detected
automatically, we used a bottom-up approach for writing tests and created test
templates for all percepts, actions, and goals in a program to ensure as large a
coverage as possible. Upon detecting a failure (bug), we applied the same fixes as
Winikoff [8], which we obtained from the author, and re-ran our tests. We verified
that the same bug was found by our tests, e.g., by checking that the code location
where the test was terminated corresponds with the code location where a fix was
applied. If we could not match a failure found by automated testing with one
found originally by manual inspection, this failure was registered separately, the
corresponding test conditions were removed, and the evaluation was continued.

Results
We analysed and wrote a large set of test conditions for 20 agent programs. The
results in terms of number of failures found are summarized in Table 3.6. Each
individual failure found was counted and included in the table. We used the taxon-
omy of Table 3.3 for classification, and not our refinement, to allow for comparison.

3.6. Evaluation

3

67

1. Test

Program

2. Debug

Program

3. Re-test

Program

4. Sum.

Changes

5. Classify

faults & failures

Exclude

Program

Bugs

found?
More

bugs?

Yes Yes

No

No

6. Aggregate

counts

Figure 3.3: The methodology used in Winikoff [8]

We were able to reproduce every failure found by Winikoff [8] (‘Manual’ column
in Table 3.6) and often found more (‘Difference’ column). In particular, we were
able to automatically verify that all programs were failure-free after fixing buggy
programs by testing that they met the requirement, indicating success.

Failure Manual [8] Automated Difference
P1 14 17 (3) 3
P2 11 16 (1) 5
A1 29 30 (5) 1
A2 3 4 (0) 1
A3 4 5 (0) 1
A4 1 1 (0) 0
G1 5 5 (0) 0
G2 3 3 (0) 0
G3 7 10 (1) 3
G4 5 11 (0) 6
G5 0 0 (0) 0
Totals 82 102 (10) 20

Table 3.6: Comparison of results (6.1)

We were initially able to detect 88% of the original failures by performing automated
tests. So even though we were able to fully automatically establish that a program
was failure-free, detecting some problems that were originally classified as failures
required manual inspection (counts between brackets in Table 3.6). After analysis,
it turned out that all these failures only occur when agent’s cycles are delayed
indefinitely while an environment may continue running. This can happen when a
developer manually pauses an agent. As an example, an agent that runs at normal
speed and is connected to the BW4T environment, which we used in our sample,
would never simultaneously receive the percepts in(‘Room1’) and in(‘Room2’). This
is because it takes time to move from Room1 to Room2, and an agent running at
normal speed would first receive the first and only later receive the second percept.
If an agent is paused, because the environment continues running both percepts
may be queued and received simultaneously when the agent is resumed. When
we run tests with agents using the automated testing framework, we do not detect

3

68 3. Automating Failure Detection in Cognitive Agents

such ‘failures’ because agents are never paused. Our finding thus highlights that it
is important to take timing issues into account. We eventually reproduced 100% of
the original failures by introducing (manual) pauses to our tests. We note that no
G5 failures were found (confirmed after discussion with the author of Winikoff [8]),
but we did find such a failure in the sample we discuss in the next section.

We identified 24% more failures, most of which (70%) were detected by means
of the percept test templates (P1, P2) and the template G-duplicate (G4). Inter-
estingly, these templates are used in Step 2 of our test approach. This suggests
that manual inspection is biased more towards a top-down approach in Step 3. As
we argued, developing and testing a program is facilitated, however, if confidence
is gained first that state updating is free of failures. One likely other reason that
explains why we found more failures is that we were able to perform many test
runs, as the testing framework facilitates performing repeated test runs, and each
run may produce different failures because of non-determinism.

A particularly interesting result is that we found that 63 from the 82 (77%) fail-
ures detected by automated tests immediately pointed at the code location of the
fault. This, of course, makes it easier for a developer to fix a bug, and is a clear
indication of the value that automating testing can have for agent programming.
Fault locations are hardly ever pointed at, however, when a wrong action is per-
formed (A-selected, A1), suggesting that locating faults for such failures requires
a different approach.

We now show that our approach is also able to adequately detect failures in
sample programs other than those used to reproduce the results of Winikoff [8].
The test templates that we proposed have been based on the failure taxonomy of
Winikoff [8] which was derived from an analysis of the sample used in the previous
section.

3.6.2. Different Agent Program Sample
We aim to provide additional support that shows that our set of test templates is
complete and our approach is not biased towards a particular sample by looking
at other sample programs. We therefore selected a new sample of 10 agent pro-
grams that were written for the BW4T environment but by different programmers.
Moreover, these programs were supposed to satisfy several more functional re-
quirements instead of only one. Agents were required, for example, to not do any
redundant tasks. For example, the requirement “An agent should go directly to the
drop zone when it is holding a block” was formalized as:
never (done(𝑔𝑜𝑇𝑜(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)) ∧ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≠ 𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒 ∧ bel(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘)))
Another example is the requirement “An agent should not go to the drop zone with-
out holding a block”, formalized as:
never (done(𝑔𝑜𝑇𝑜(𝐷𝑟𝑜𝑝𝑍𝑜𝑛𝑒)) ∧ not(bel(ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝐵𝑙𝑜𝑐𝑘))))
These additional requirements pose a greater challenge for our test approach, as a
program is considered failure-free only if all requirements are satisfied.

All failures found could be classified using our refined taxonomy; Table 3.7
presents counts per type. We did not find any A4 failures but did find a G-maintain

3.6. Evaluation

3

69

(G5) failure. Failures that were detected were fixed using the same approach as
Winikoff [8]. We thus were able to successfully generate failure-free agents that
satisfy all functional requirements.

Failure Count
P-failure (P1,P2) 10
A-selected (A1) 11
A-incorrect (A2,3) 7
G-adopted (G1) 4
G-reconsider (G2) 1
G-incorrect (G3) 16
G-duplicate (G4) 3
G-maintain (G5) 1
Total 53

Table 3.7: Results of the performed evaluation (6.2)

A larger set of functional requirements facilitated the use of a top-down approach
rather than a bottom-up approach, as was used for reproduction. An interesting
finding is that this lead to a decrease in the amount of test failures that pointed
directly at code locations of corresponding faults (25%, 13 out of 53, as opposed
to 77% before). More work is needed to explain this finding.

3.6.3. Different Environment
We also performed an evaluation on whether the testing framework and approach
would detect failures in a single agent program sample that operates in a different
environment. We chose an environment called the Vacuum World to this end [36].
In this world, squares in a grid can be either clean, dusty, or contain an obstacle
that the robot should move around, thus requiring the agent to also successfully
navigate the robot over the grid. A robot is able to move to any neighbouring clean
or dusty square and clean up (vacuum) the square it is currently on (removing the
dust).

For the evaluation, we used an agent program sample that was developed to
meet the requirement that all dusty squares in a grid have been cleaned. This
initial agent program did not meet the functional requirement specified, and we
thus applied our test approach to detect failures.

Four failures were detected in the agent program, which is similar to the average
of about four or five failures that were found for all other sample programs. Two
percept failures were detected using the P templates, and two failures related to
action selection were detected using the A-selected template. After fixes were
applied for these failures, the agent did meet its requirement. Consistent with
earlier results, percept failures indicated code locations for corresponding faults,
whereas the action failures required more debugging effort for fault localization.

3

70 3. Automating Failure Detection in Cognitive Agents

3.6.4. Reproduction
In this part, we empirically investigate and compare the reproduction rate of failures
in an agent (system). In other words, we determine how often an agent system
has to be run on average to reproduce a specific failure, which is an indication of
the effort required for testing (single or multi) agent systems in general.

Figure 3.4: A flowchart of our evaluation method for the test reproduction rate.

Based on Chapter 2, the method we used is to first run a given test set many times
in order to identify all failures in an agent system. We then ran multiple sessions in
which those same tests were repeated in order to determine how many repetitions
are needed (on average per session) to reproduce all the failures that were initially
found. We used a time-out parameter as agent systems may run indefinitely without
making any progress (i.e., producing no new test results). Failures that are due
to a time-out are ignored because these cannot be consistently reproduced. Our
method, as illustrated in Figure 3.4, uses the following parameters:

• 𝐵: number of initial test runs for each agent system.
• 𝑇: number of seconds after which a test is aborted.
• 𝑁: number of ‘sessions’ for each agent system.
• 𝑀: maximum number of test runs in a single session.

The aim is to empirically determine the reproduction factor 𝑅: the number of times
a run needs to be repeated to detect all failures in an agent system.

We used two sets of agent systems programmed in GOAL that control robots in
the BW4T environment. They were created by pairs of first-year Computer Science
bachelor students and handed-in with accompanying tests (i.e., test2g files). The
first set consists of 84 single-agent systems, and the second set of 42 multi-agent
systems (3 agents). We applied our method to both sets of agents, with parameter
𝐵 set to 100, 𝑇 to 60 seconds, 𝑁 to 10, and 𝑀 to 1000. These parameters were
chosen after an iterative process of running experiments to minimize the runtime
whilst making sure that unreproducible nor new failures would be found in the
repetition part of our method (see also the step to increase parameter B in Figure
3.4). In total, for our final experiment, almost 23,000 runs were performed with a
total runtime of about 330 hours.

3.6. Evaluation

3

71

We found a significantly lower number of failures for the single-agent systems
(on average 0.3 failures, with a maximum of 8 failures) than for the multi-agent
systems (on average 4.3 failures, with a maximum of 21 failures). In a rather
static environment like BW4T with a low number of failures, we found that a single
agent’s failure set can be reproduced on every single run, i.e., 𝑅 = 1. This is very
different for multi-agent systems where on average 𝑅 = 11 runs were needed to
reproduce all failures that were initially found. The distribution of 𝑅 for the multi-
agent systems is shown in Figure 3.5. Even though on average only 11 runs were
needed, and the majority of failures only needed 1 run to be reproduced, in a few
cases up to even 300 repetitions were needed to reproduce all failures.

Figure 3.5: The distribution of for the evaluated multi-agent systems.

The issues with reproducing failures in multi-agent systems operating in external
environments originate from the inherent problems that arise when testing concur-
rent software [37]. However, this does underline the need for an automated testing
tool that is able to run tests repeatedly at no additional costs. Improving the testa-
bility of multi-agent systems is an interesting direction for future work, for example
by examining the applicability of solutions developed for mainstream programming
languages (like Edelstein et al. [38]) to the agent-oriented paradigm.

3.6.5. Practical Use
An empirical investigation into the practical use of the testing framework was per-
formed on a large set of solutions handed in by novice GOAL agent programmers,
who were working in a total of 94 pairs. These pairs were given the same as-

3

72 3. Automating Failure Detection in Cognitive Agents

signment5, for which they had to develop a single agent and corresponding test(s)
together. At three fixed points in time, they were asked to (voluntarily) send us
their work up till that point; only the third (and final) version was actually graded.
This set-up specifically allowed us to investigate failures in non-final submissions
through a set of evaluations (i.e., using test conditions we formulated based on the
assignment), as also suggested by Winikoff [8].

Tests
In Table 3.8, the descriptive statistics of the evaluations at each of the three hand-in
moments are presented. The failures in each agent were determined by running
them with a test constructed by ourselves (based on the assignment they were
given).

Statistic Mean Std. Dev. N
(1) No. of rules (1) 18.2 5.1 29
(1) P-failures 1.8 1.5 29
(1) G-failures 0.5 0.6 29
(1) A-failures 2.3 1.4 29
(1) No. of tests 0 0 29
(2) No. of rules 25.8 5.4 64
(2) P-failures 0.9 1.0 64
(2) G-failures 2.7 2.1 64
(2) A-failures 4.0 2.2 64
(2) No. of tests 2.8 10.8 64
(3) No. of rules 29.9 4.1 94
(3) P-failures 0.5 0.8 94
(3) G-failures 3.7 1.4 94
(3) A-failures 4.5 2.2 94
(3) No. of tests 30.8 19.2 94

Table 3.8: Descriptive statistics of the evaluations on the student assignments at each of the three
hand-in moments.

At each hand-in moment, more students sent in their work (the final hand-in was
the only mandatory one). As writing test condition was an explicit part at the end
of the assignment, it is clear from the results that many students choose to do
this at the end only. In addition, when the agent programs grow larger (i.e, in their
number of rules) towards the final hand-in, the number of P-failures (i.e., failures in
percept processing) simultaneously decreases each time whilst there is an increase
in both A- and G-failures6. This is supported by correlation analysis at all hand-in
moments (𝑝 = .01). Failures in goals also seem closely related to failures in actions,
most likely because failures in goal management often cause problems in action
selection. This is also supported by correlation analysis at all hand-in moments
(𝑝 = .01). Finally, a correlation analysis of the number of failures (as determined by
5See https://github.com/eishub/BW4T.
6Note that missing functionality was not considered a failure in these evaluations.

https://github.com/eishub/BW4T

3.6. Evaluation

3

73

us) with respect to the number of test conditions written by the students themselves
showed significant results only at the final hand-in moment (𝑝 = .05), indicating a
similar decrease (𝑟 ≈ −.25) in all three failure categories when the number of tests
conditions increases, thus cautiously confirming the usefulness of automated tests
for these agents.

Questionnaires
At each hand-in, the pairs of students were also requested to fill in a short ques-
tionnaire when uploading their program. In Table 3.9, the descriptive statistics of
these questionnaires are given. The students were asked to report the total num-
ber of hours spent on the assignment at each hand-in, and at the final deadline
the percentage of that time they spent on testing and how effective they found the
agent testing framework (on a Likert scale of 0-3).

Question Mean Std. Dev. N
Hours spent (1) 3.6 2.3 29
Hours spent (2) 5.4 2.2 64
Hours spent (3) 14.0 4.5 94
Time spent on testing 19% 16% 94
Effectiv. of testing 1.1 0.8 94

Table 3.9: Descriptive statistics of questionnaire answers at each of the three hand-ins.

Interestingly, the amount of time spent on testing is quite high (and also quite dif-
ferent per student pair), but the effectiveness of the testing framework is not rated
that highly. A qualitative evaluation of the feedback that students could provide at
the final hand-in indicated some problems. The most frequently occurring feedback
was (i) tests can take a long time to complete, (ii) failures can be hard to repro-
duce, and (iii) a full integration of the test results in Eclipse is missing. Most of these
problems are related to the environment in which the (single) agent operated, as
it could only run at a certain maximum speed, and by default randomly generates
the world in which the agent operates. This indicates that agent environments may
also require changes specifically to facilitate reproducible and repeatable testing.
Moreover, even though an integration of the testing in the source-level debugger
exists, students would like to see more integration of the test results in Eclipse
itself, i.e., similar to the more graphical overviews that are given by mainstream
programming languages.

Finally, a correlation analysis of the number of hours spent on the assignment
(and the percentage of time spent on testing) with the amount of failures in the
different categories supports the earlier conclusion that initially most of the failures
are in the P category, whilst in the end most of the failures are in the G and A
categories (𝑝 = 0.01).

3

74 3. Automating Failure Detection in Cognitive Agents

3.7. Conclusions and Future Work
In this chapter, we proposed and defined an automated testing framework for cog-
nitive agent programs, facilitating automated failure detection and reducing debug-
ging effort that is required from a developer. We argue that modules are a natural
unit for testing, and associate test conditions with modules of an agent program.
We also introduced a test language that is used to specify test templates for de-
tecting failure types. These test templates refine a failure taxonomy introduced by
Winikoff [8]. A test approach has also been specified that explains how to instan-
tiate test templates and derive test conditions for specific failure types. The main
steps of this approach are to (i) define success in terms of functional requirements,
(ii) test cognitive state updating, and (iii) classify failures that concern actions and
goals.

The test language proposed is minimal in the sense that only two temporal
operators are provided. We showed by analysing different agent program samples
that the language is nevertheless sufficient for detecting failures in these programs.
In particular, we were able to reproduce and detect all failures that were manually
identified by Winikoff [8] using our automated testing framework. Interestingly,
in about 77% of failures found in this reproduction, the testing framework also
pointed to the code location of the corresponding fault. We demonstrated that our
approach is not biased towards a specific sample of agent programs by applying the
framework to other sample programs, and in a different environment. We were able
to adequately detect failures by means of the automated testing framework, i.e., all
agents eventually met all functional requirements after fixing the detected failures.
We also showed that for single agents, test results are always consistent. However,
when running multiple agents, a high number of repetitions might be needed to
reproduce the same failure in some cases, suggesting an important direction for
future work into the testability of multi-agent systems.

A concrete implementation of the proposed automated testing framework has
been performed for the GOAL agent programming language, and detailed in this
chapter, serving as a prototype for evaluation and as an example for other agent
programming languages.

Empirical evaluation of a large set of test files and according questionnaires
handed in by novice GOAL agent programmers also lead to several interesting
results, suggesting additional directions for future work. For instance, develop-
ers spent a considerable amount of time on testing, indicating the importance of
proper support for this task. However, some problems were present in the current
implementation, mostly related to the fact that an external environment was used,
causing problems for both reproducibility and (fast) repetition.

Finally, the focus of our work has been on automatically detecting failures. Even
though our results are encouraging in that fault localization was facilitated by the
testing framework, more work is needed for locating faults that correspond with
these failures. In particular, we found that faults related to actions that are per-
formed but should not have been performed are difficult to locate. Tools that can
explain why these actions were performed might be useful here [39].

References

3

75

References
[1] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, Automating failure detec-

tion in cognitive agent programs, Agent-Oriented Software Engineering 6, 275
(2018).

[2] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, Using automatic failure de-
tection for cognitive agents in Eclipse (AAMAS 2016 DEMONSTRATION), in
Engineering Multi-Agent Systems: 4th International Workshop, EMAS 2016,
Singapore, Singapore, May 9-10, 2016, Revised, Selected, and Invited Pa-
pers, edited by M. Baldoni, J. P. Müller, I. Nunes, and R. Zalila-Wenkstern
(Springer International Publishing, 2016) pp. 59–80.

[3] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, Automating failure detection in
cognitive agent programs, in Proceedings of the 2016 International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’16 (International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,
2016) pp. 1237–1246.

[4] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, Using automatic failure de-
tection for cognitive agents in Eclipse (demonstration), in Proceedings of the
2016 International Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS ’16 (International Foundation for Autonomous Agents and Mul-
tiagent Systems, Richland, SC, 2016) pp. 1507–1509.

[5] C. Parnin and A. Orso, Are automated debugging techniques actually helping
programmers? in Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’11 (ACM, New York, NY, USA, 2011) pp.
199–209.

[6] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling, What do we
know about defect detection methods? Software, IEEE 23, 82 (2006).

[7] ISO/IEC/IEEE, 24765:2017-9 Systems and software engineering – Vocabulary,
https://www.iso.org/standard/71952.html (2017).

[8] M. Winikoff, Novice programmers’ faults and failures in GOAL programs, in
Proceedings of the 2014 International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’14 (International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 2014) pp. 301–308.

[9] D. Weyns, H. Van Dyke Parunak, F. Michel, T. Holvoet, and J. Ferber, Envi-
ronments for multiagent systems state-of-the-art and research challenges, in
Environments for Multi-Agent Systems: First International Workshop, E4MAS
2004, New York, NY, July 19, 2004, Revised Selected Papers, edited by
D. Weyns, H. Van Dyke Parunak, and F. Michel (Springer Berlin Heidelberg,
2005) pp. 1–47.

[10] M. Winikoff, BDI agent testability revisited, Autonomous Agents and Multi-
Agent Systems 31, 1094 (2017).

https://www.iso.org/standard/71952.html

3

76 References

[11] R. H. Bordini, L. Braubach, J. J. Gomez-Sanz, G. O. Hare, A. Pokahr, and
A. Ricci, A survey of programming languages and platforms for multi-agent
systems, Informatica 30, 33 (2006).

[12] M. Dastani, Programming multi-agent systems, The Knowledge Engineering
Review 30, 394 (2015).

[13] J. Dix, K. V. Hindriks, B. Logan, and W. Wobcke, Engineering multi-agent
systems (Dagstuhl seminar 12342), Dagstuhl Reports 2, 74 (2012).

[14] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, and J. Thangarajah, Testing
in multi-agent systems, in Agent-Oriented Software Engineering X, Vol. 6038
(Springer Berlin Heidelberg, 2011) pp. 180–190.

[15] Z. Zhang, J. Thangarajah, and L. Padgham, Model based testing for agent
systems, Software and Data Technologies 22, 399 (2008).

[16] R. Bordini, M. Dastani, and M. Winikoff, Current issues in multi-agent systems
development, in Engineering Societies in the Agents World VII, Lecture Notes
in Computer Science, Vol. 4457 (Springer Berlin Heidelberg, 2007) pp. 38–61.

[17] G. Caire, M. Cossentino, and A. Negri, Multi-agent systems implementation
and testing, in Proceedings of the 4th From Agent Theory to Agent Implemen-
tation Symposium, AT2AI-4 (2004).

[18] Z. Houhamdi, Multi-agent system testing: A survey, International Journal of
Advanced Computer Science and Applications 2, 135 (2011).

[19] R. Collier, Debugging agents in Agent Factory, in Programming Multi-Agent
Systems, Lecture Notes in Computer Science, Vol. 4411, edited by R. H. Bor-
dini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni (Springer Berlin Heidel-
berg, 2007) pp. 229–248.

[20] M. Moreno, J. Pavón, and A. Rosete, Testing in agent oriented methodologies,
in Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Comput-
ing, and Ambient Assisted Living, Lecture Notes in Computer Science, Vol.
5518, edited by S. Omatu, M. P. Rocha, J. Bravo, F. Fernández, E. Corchado,
A. Bustillo, and J. M. Corchado (Springer Berlin Heidelberg, 2009) pp. 138–
145.

[21] J. Gómez-Sanz, J. Botía, E. Serrano, and J. Pavón, Testing and debugging of
MAS interactions with INGENIAS, in Agent-Oriented Software Engineering IX
(2009) pp. 199–212.

[22] R. Coelho, U. Kulesza, A. von Staa, and C. Lucena, Unit testing in multi-
agent systems using mock agents and aspects, in Proceedings of the 2006
international workshop on Software engineering for large-scale multi-agent
systems - SELMAS ’06 (ACM Press, New York, NY, USA, 2006) p. 83.

References

3

77

[23] M. A. Khamis and K. Nagi, Designing multi-agent unit tests using systematic
test design patterns-(extended version), Engineering Applications of Artificial
Intelligence 26, 2128 (2013).

[24] A. Carrera, C. A. Iglesias, and M. Garijo, Beast methodology: An agile test-
ing methodology for multi-agent systems based on behaviour driven develop-
ment, Information Systems Frontiers , 1 (2013).

[25] L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller, Model-based test oracle
generation for automated unit testing of agent systems, Software Engineering,
IEEE Transactions on 39, 1230 (2013).

[26] A. M. Tiryaki, S. Öztuna, O. Dikenelli, and R. C. Erdur, SUnit: a unit testing
framework for test driven development of multi-agent systems, in Proceedings
of the 7th international conference on Agent-oriented software engineering VII
(2007) pp. 156–173.

[27] E. E. Ekinci, A. M. Tiryaki, v. Çetin, and O. Dikenelli, Goal-oriented agent
testing revisited, in Agent-Oriented Software Engineering IX, Lecture Notes
in Computer Science, Vol. 5386, edited by M. Luck and J. J. Gomez-Sanz
(Springer Berlin Heidelberg, 2009) pp. 173–186.

[28] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf, and W. Renz, Valida-
tion of BDI agents, in Programming Multi-Agent Systems: 4th International
Workshop, ProMAS 2006, Hakodate, Japan, May 9, 2006, Revised and Invited
Papers, edited by R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni
(Springer Berlin Heidelberg, 2007) pp. 185–200.

[29] D. Hovemeyer and W. Pugh, Finding bugs is easy, SIGPLAN Notices 39, 92
(2004).

[30] M. Johnson, C. Jonker, B. van Riemsdijk, P. J. Feltovich, and J. M. Bradshaw,
Joint activity testbed: Blocks world for teams (BW4T), in Engineering Societies
in the Agents World X, Lecture Notes in Computer Science, Vol. 5881, edited
by H. Aldewereld, V. Dignum, and G. Picard (Springer Berlin Heidelberg, 2009)
pp. 254–256.

[31] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, SWI-Prolog, Theory and
Practice of Logic Programming 12, 67 (2012).

[32] T. Bosse, C. M. Jonker, L. van der Meij, and J. Treur, LEADSTO: A language
and environment for analysis of dynamics by simulation, in Multiagent System
Technologies, Lecture Notes in Computer Science, Vol. 3550, edited by T. Ey-
mann, F. Klügl, W. Lamersdorf, M. Klusch, and M. N. Huhns (Springer Berlin
Heidelberg, 2005) pp. 165–178.

[33] M. Dastani, J. Brandsema, A. Dubel, and J.-J. C. Meyer, Debugging BDI-
based multi-agent programs, in Programming Multi-Agent Systems: 7th In-
ternational Workshop, ProMAS 2009, Budapest, Hungary, May 10-15, 2009.

3

78 References

Revised Selected Papers, edited by L. Braubach, J.-P. Briot, and J. Thangara-
jah (Springer Berlin Heidelberg, 2010) pp. 151–169.

[34] K. V. Hindriks, Programming rational agents in GOAL, in Multi-Agent Program-
ming: Languages, Tools and Applications, edited by A. El Fallah Seghrouchni,
J. Dix, M. Dastani, and R. H. Bordini (Springer US, 2009) pp. 119–157.

[35] V. J. Koeman and K. V. Hindriks, A fully integrated development environ-
ment for agent-oriented programming, in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection,
LNCS, Vol. 9086, edited by Y. Demazeau, K. S. Decker, J. Bajo Pérez, and
F. de la Prieta (Springer International Publishing, 2015) pp. 288–291.

[36] R. Collier and J. Howell, Vacuum world, https://github.com/eishub/
vacuumworld (2010), accessed: 2017-04-30.

[37] W. Pugh and N. Ayewah, Unit testing concurrent software, in Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE ’07 (ACM, New York, NY, USA, 2007) pp. 513–516.

[38] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur, Framework for
testing multi-threaded java programs, Concurrency and Computation: Practice
and Experience 15, 485 (2003).

[39] K. V. Hindriks, Debugging is explaining, in PRIMA 2012: Principles and Prac-
tice of Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 7455,
edited by I. Rahwan, W. Wobcke, S. Sen, and T. Sugawara (Springer Berlin
Heidelberg, 2012) pp. 31–45.

https://github.com/eishub/vacuumworld
https://github.com/eishub/vacuumworld

4
Facilitating Omniscient
Debugging for Cognitive

Agents

For real-time programs reproducing a bug by rerunning the system is likely
to fail, making fault localization a time-consuming process. Omniscient de-
bugging is a technique that stores each run in such a way that it supports
going backwards in time. However, the overhead of existing omniscient de-
bugging implementations for languages like Java is so large that it cannot be
effectively used in practice.
In this chapter, we show that for agent-oriented programming practical omni-
scient debugging is possible. We design a tracing mechanism for efficiently
storing and exploring agent program runs. We are the first to demonstrate
that this mechanism does not affect program runs by empirically establishing
that the same tests succeed or fail. Usability is supported by a trace visual-
ization method aimed at more effectively locating faults in agent programs.

This chapter has been published in the International Joint Conference on Artificial Intelligence (2017)
[1, 2].

79

4

80 4. Facilitating Omniscient Debugging for Cognitive Agents

4.1. Introduction
For traditional (cyclic) debugging to work, the program under investigation has to
be deterministic. Otherwise, reproducing a bug by rerunning the program is likely
to fail as it will not hit the same bug again or even hit different bugs [3]. Real-
time programs like multi-agent systems are typically not deterministic. Running the
same agent system again more often than not results in a different program run or
trace, which complicates the iterative process of debugging. Chapter 3 also showed
that the most frequently occurring type of failure in agent programs (a failure to
select the right action) is caused by faults that occurred in a past state far from the
point of detection. In other words, the root cause of a failure in an agent program
is more often than not both far removed in time and in code (location).

Omniscient debugging is an approach to tackle these issues. Also known as
reverse or back-in-time debugging, omnisicient debugging is a technique that origi-
nates in the context of object-oriented programming (OOP), allowing a programmer
to explore arbitrary moments in a program’s run by recording the execution. Such a
‘time travelling debugger’ is regarded as one of the most powerful debugging tools
[4, 5].

However, omniscient debugging is still not widely adopted. An important rea-
son for this is that existing (OOP) implementations have a significant performance
impact, with slowdown factors ranging from 2 to 300 times. Moreover, most exist-
ing solutions are heavy on memory or disk space requirements, requiring tens of
gigabytes for a single trace.

The fact that the agent-oriented programming (AOP) paradigm is based on a
higher level of abstraction compared to most other programming languages pro-
vides an opportunity to apply omniscient debugging techniques with a significantly
lower overhead. The premise here is that tracing for AOP can be based on captur-
ing only high-level decision making events instead of the lower-level computational
events of OOP. Tracing techniques for AOP would thus need tracing of significantly
fewer events while still being able to reconstruct all program states, making omni-
scient debugging for AOP more feasible in practice than for e.g. OOP.

The main contribution of this chapter is the design of a tracing mechanism for
cognitive agent programs that: (i) has a small impact on runtime performance;
we show that our technique only has a 10% overhead instead of the much larger
factors known from the literature (see Table 4.1); (ii) has virtually no impact on
program behaviour; we empirically establish that the same tests succeed and fail
with or without our tracing mechanism; (iii) can be effectively used for debugging,
we propose a visualization technique tailored to cognitive agents and illustrate its
application for fault localization. The key question we thus address is whether it
is feasible and practical to apply omniscient debugging techniques to AOP without
affecting testability.

4.2. Related Work
Omniscient debugging is based on the idea that a developer explores a run that
failed by reversing back into its execution to locate the corresponding fault, rather

4.2. Related Work

4

81

Work Method Storage req. Slowdown Storag loc.
[6] Java bytecode instr. 100 MB/s 7-300x in-memory1

[7] Smalltalk bytecode instr. 1-100 MB/s 6-248x in-memory
[8] Java bytecode instr. 15 MB/s 10-115x files
[9] VM modification 300 MB/s 2-7x in-memory
[10] Java bytecode instr. 1-10 MB/s 2-15x files
This work Recording events 0.1 MB/s 1.1x files

Table 4.1: A comparison of omniscient debugger implementations. Reported numbers have been
rounded.

than trying to reproduce an observed failure in a separate (re)run as traditional
(cyclic) debugging requires [3]. This is especially useful for programs that have non-
deterministic aspects (e.g., randomness) and/or rely on external resources (e.g.,
agent environments), as such programs generally do not behave exactly the same
way on each run.

Fundamentally, it is impossible to reverse the execution of a program because
for many operations there is no way to take the state after the operation and infer
the state before the operation [3]. Omniscient debugging facilitates ‘going back in
time’ by recording an entire run of a program in a log, also called a trace of the
run. Such a trace should allow any state of a program’s execution to be correctly
reconstructed. An intermediate form between cyclic and omniscient debugging is
record-replay debugging, in which only the aspects of a run that cannot be re-
constructed (i.e., by re-running) are recorded. With this method, going back to a
previous point in the execution requires restarting the run, and then feeding the
recorded aspects back in at exactly the right times. Record-replay debugging is
easier to implement, but also more time-consuming for developers, as a complete
restart and re-run is needed to go back only one state in an execution. More-
over, it is not always possible to record all required (non-deterministic) aspects of
a program, especially when a program relies on external resources such as exter-
nal environments. Finally, we note that tracing a program for debugging purposes
is different from manual instrumentation like in Lam and Barber [11] or collecting
(performance) measurements like in Helsinger et al. [12].

Although omniscient debugging has been a research topic since the 1970s, one
of the first influential attempts to apply this debugging technique to a modern
programming language (Java) was performed by Lewis and Ducasse [6]. In this
chapter, a proof-of-concept omniscient debugger is presented with the intention of
demonstrating an upper bound for the costs of collection and display. Every change
to every accessible object or local variable is recorded in memory separately for each
thread by adding instrumentation code before every assignment and around every
method call. The author claims that this proof of concept is effective for many kinds
of bugs. A similar effort for Smalltalk was performed by Hofer et al. [7], which also
provides support for searching traces by queries (boolean expressions) specified in
the language itself.
1There is a cut-off after 10.000 events on 32-bit systems.

4

82 4. Facilitating Omniscient Debugging for Cognitive Agents

The work of Pothier et al. [8] builds upon the work of Lewis, focusing on effi-
ciency and usability. Events that are generated by (Java) bytecode instrumentation
are stored in an on-disk database rather than in the program’s memory space.
Although this increases the capture cost, this provides better scalability as usu-
ally more disk space than memory is available, and reduces interference with the
program memory itself. Moreover, this allows for post-mortem debugging by us-
ing previously recorded files. According to the authors, the benefits of omniscient
debugging in quickly pinpointing hard-to-find bugs far outweigh any performance
impact. The work of Lienhard et al. [9] aims to further address performance issues
by tracing at the virtual machine level.

A related tool created by Ko and Myers [10] is WHYLINE, which allows develop-
ers to pose “why did” or “why didn’t” questions about the output of Java programs.
A trace is generated in memory through bytecode instrumentation, containing ev-
erything necessary for reproducing a specific execution. From this trace, a set of
questions and according answers is generated. The authors note that their ap-
proach is not suited for executions that span more than a few minutes or execu-
tions that process or produce substantial amounts of data. However, their results
do show that the approach enables developers to debug failures substantially faster.

Key aspects of the omniscient debuggers discussed in this section are compared
with our mechanism in Table 4.1. We note that it is not possible to precisely compare
the storage requirements (per second) and slowdown factors, as each work uses
different programs (with varying amounts of activity in a run) in their evaluations,
but the reported numbers do give a general indication of the various performance
impacts.

A review of current state-of-the-art agent programming platforms shows that
only three support something similar to a tracing mechanism2. 2APL [13] provides
an event-based mechanism that captures so-called reasoning steps in-memory. Ja-
son [14] provides a similar mechanism, but, as far as we can tell, only captures
(snapshots of) the full state of an agent after each of its decision cycles. AFAPL
[15] also captures the full state of an agent after each decision cycle. It is not clear
if these tracing mechanisms provide sufficient support for implementing an omni-
scient debugging technique. 2APL and Jason’s mechanisms do not scale well as
they show fast growing memory usage, and, as a consequence, will quickly cause
a significant impact on an agent’s execution. The mechanism store the snapshots
in files, but it is unclear what the associated performance impact is. From the three
platforms discussed only AFAPL supports searching in a trace for the occurrence
of specific beliefs, but none of the platforms support more advanced navigation,
querying or filtering of a trace. None of these platforms is able to relate agent
states that are stored to the agent program’s source code, which is another feature
that a developer needs for effectively locating faults.

4.3. Agent Trace Design

4

83

Tr
ac
in
g

Cy
cl
es
1

Cy
cl
es
2

Cy
cl
es
3

Cy
cl
es
4

To
ta
lC
.

Sp
ac
e
1

Sp
ac
e
2

Sp
ac
e
3

Sp
ac
e
4

To
ta
lS
.

N
on
e

49
6

55
8

14
53

74
9

32
56

Ev
en
ts

50
6

54
8

14
32

78
0

32
66

2M
B

2M
B

2M
B

2M
B

8M
B

+
2%

-2
%

-1
%

+
4%

+
0%

Ch
an
ge
s

48
0

51
7

12
81

69
6

29
74

4M
B

4M
B

4M
B

4M
B

16
M
B

-5
%

-6
%

-1
1%

-1
1%

-9
%

+
10
0%

+
10
0%

+
10
0%

+
10
0%

+
10
0%

Ch
an
ge
s

46
9

50
1

12
93

67
4

29
37

5M
B

5M
B

6M
B

5M
B

21
M
B

+
so
ur
ce
s

-2
%

-3
%

+
1%

-3
%

-1
%

+
25
%

+
25
%

+
50
%

+
25
%

+
31
%

Fu
ll

77
78

83
79

31
6

39
4M
B

38
5M
B

39
1M
B

39
0M
B

15
60
M
B

-8
4%

-8
4%

-9
4%

-8
8%

-8
9%

+
77
80
%

+
76
00
%

+
64
17
%

+
77
00
%

+
73
29
%

Ta
bl
e
4.
2:
An
ev
al
ua
tio
n
of
di
ffe
re
nt
tr
ac
in
g
m
et
ho
ds
by
co
m
pa
rin
g
th
e
av
er
ag
e
am
ou
nt
of
cy
cl
es
ov
er
te
n
1-
m
in
ut
e
ru
ns
of
a
sy
st
em

w
ith
4
ag
en
ts
op
er
at
in
g

in
th
e
U
T3
en
vi
ro
nm
en
t
an
d
th
e
co
rr
es
po
nd
in
g
av
er
ag
e
am
ou
nt
of
st
or
ag
e
sp
ac
e
th
at
is
re
qu
ire
d.
Th
e
pe
rc
en
ta
ge
s
th
at
ar
e
gi
ve
n
fo
r
a
m
et
ho
d
ar
e
re
la
tiv
e

to
th
e
m
et
ho
d
di
re
ct
ly
ab
ov
e
in
th
e
ta
bl
e.

4

84 4. Facilitating Omniscient Debugging for Cognitive Agents

4.3. Agent Trace Design
A tracing mechanism for cognitive agent programs should facilitate reverting an
agent to any previous state by recording its execution. However, there are many
ways to record a program’s execution. Different solutions provide support for differ-
ent techniques, ranging from record-replay debugging to support for full inspection
which requires storing a full trace, i.e., all events, states, and actions performed in
the run. Such a full trace that captures each individual state completely in practice
is not feasible, as it takes 5-20x more time to execute an agent system and requires
more than 50-200x the storage space needed for other mechanisms (see row Full
in Table 4.2).

In this section, we take an incremental approach to the design of a tracing
mechanism. We begin with an initial mechanism that stores a trace that captures
as little information as possible but still provides sufficient information for record-
replay. In this first step, a minimal trace is constructed based on events that,
however, limits the options for a developer to (rapidly) locate points of interest in
a trace and establish meaningful relations between these points. Step two extends
the trace with information about state changes that allows efficient reconstruction
of a previous state. In the third step, we add source code information associated
with points in a trace to enable a debugger to more effectively explore the trace.
At each step, we try to minimize the additional time and space resources needed
and evaluate the impact of the tracing mechanism on the agent system’s (runtime)
performance. All evaluations were performed on a Linux server with a quad-core
Intel i7 processor and 6GB of RAM. Finally, we discuss how to store traces for later
use. In this chapter, we will show that the behaviour of different sets of agents in
different environments is not significantly affected.

4.3.1. Tracing Events (Record-Replay)
In order to facilitate record-replay debugging, we need to determine which aspects
must be stored in order to reconstruct any previous state of an agent program’s
execution by replaying. Assuming for the moment that agents themselves are de-
terministic (we will relax this assumption later), events such as percepts from an
environment or messages from other agents would be the only items that need to
be recorded in the trace. This is true because re-running an agent program does
not guarantee the same events to be produced, as the environment is external and
asynchronous and because multiple agents generally run concurrently in separate
threads without a strict scheduling mechanism. By re-running the agent program
with an initially empty set of events and by feeding the right events to the agent
program at the right time to ‘imitate’ the environment and/or other agents, the run
can be reconstructed from this event trace and the agent can be replayed.

An event trace can be implemented by storing a snapshot of all events that
happened after each change. However, two optimizations can be applied to agent
systems. First, events typically need to be stored only once per agent cycle. Second,

2No work has been published on the 2APL and Jason mechanisms; conclusions were drawn from own
observations.

4.3. Agent Trace Design

4

85

only changes in consecutive snapshots need to be stored. It is more efficient to only
store events that have been added and deleted compared to the last snapshot as
the rate of environment change typically is slow compared to the execution time of
a single agent cycle and on consecutive cycles e.g. only a few changes to percepts
are received. Storing the changes to events (e.g., with a listener pattern) thus
only requires a simple comparison check with previous snapshots, and the required
storage is linear in terms of this.

As a method to determine the performance impact of the tracing mechanism, we
compare the average amount of cycles that agents performed in one minute. We
used a randomly selected program from a pool of GOAL [16] multi-agent systems
with four (different) agents that control bots in the highly dynamic UT3 environment
[17]. The system first was ran ten times without any tracing enabled, and then ten
times with the record-replay mechanism. Although runs are different due to the
dynamics of the environment, the run settings (e.g., the map, the number of com-
puter opponents, etc.) were identical in each case. We note that if a GOAL agent
receives the same events as in a previous cycle and performs no new action in the
environment, it (but not the environment entity) ‘sleeps’ until a new event occurs;
we therefore actually report the number of ‘effective cycles’ an agent performed in
one minute.

The results of these runs are summarized in the rows labelled None and Events
in Table 4.2; columns match with each of the four agents with an additional column
for totals. The results indicate that there is no significant difference in cycle numbers
when the event tracing mechanism is enabled or not. Less than 2MB of storage
space is needed per agent per minute, with about 100 events generated on average
per second. We also established that space requirements grow linearly over time,
i.e., no more than 20MB is required when agents are executed for ten minutes.

An important usability metric is how long it takes to reconstruct a program state.
In a record-replay mode, it is clear that stepping from the final to the initial state
takes no (significant) time at all, as this simply means restarting the agent. Mov-
ing forward in time to a next state is also fast as the agent does not need to be
restarted. However, going just a single step backwards in time, i.e., to a previous
state compared to the current state, an agent will need to be re-started and almost
re-run completely to reconstruct that state.

To obtain an indication of our usability metric, we first established that re-playing
our example agent programs to obtain the final state starting from the initial state
using the event trace takes about 2.5 seconds. Given this measurement, navigating
to an arbitrary state in a run in order to inspect that state will take about 1.25 second
on average. Users, moreover, will want to evaluate queries to identify states they
need to inspect, and in our test cases this will take more than 2.5 seconds as a query
will need to be evaluated on each state that is reconstructed as well. For an agent
that has run for just one minute (even though in a highly dynamic environment),
this means a waiting time of more than 4% relative to execution time, which in
practice is quite high.

4

86 4. Facilitating Omniscient Debugging for Cognitive Agents

4.3.2. Tracing State Changes
We have assumed that the execution of agent programs is deterministic, but this
assumption does not hold for multi-agent systems as, e.g., the scheduling of exe-
cution steps of agent programs is non-deterministic. Moreover, a single agent can
contain non-deterministic choice points like selecting a random element from a list
or evaluating rules in a random order that will cause a different trace to be gener-
ated even with identical input. It is generally not possible to account for all such
points, especially if they are at the knowledge representation level (and thus not
explicitly represented in the agent programming language). The substantial waiting
times are thus not the only reason why a record-replay approach for agent systems
will not be useful in practice for agent systems.

In order to reduce the amount of time a navigation step in the trace takes on
average and to facilitate non-deterministic agents, we need to make sure that an
agent’s state can be reconstructed without requiring re-execution. As storing each
state in full is infeasible (see Table 4.2), we propose a mechanism that in addition
to the changes to events also records all changes to an agent’s cognitive state.
The idea is that by recording all event and state changes, a navigation step can be
performed by reconstructing a state by applying all changes between the current
state and that target state.

The changes that need to be recorded differ per programming language. For
the GOAL language, each change to an agent’s beliefs or goals needs to be stored
(besides the event changes related to percept and messages). For other agent
programming languages that include notions like plans for example, a new intention
that is scheduled or a change that pushes a new plan on an intention also needs to
be recorded.

Note that it is not sufficient to store the actions performed by an agent program.
For example, the actions of inserting a belief that the agent already has or dropping
a goal the agent does not have, do not change the agent’s cognitive state. In order
to be able to navigate back in time, we need to know how we can ‘roll back’ each
action to reconstruct a previous state. For each action performed by an agent
that can change the agent’s state, therefore, the real change brought about by that
action given the agent’s current state needs to be computed and stored in the trace.
In other words, while executing an agent program, the mechanism needs to store
aggregations of items that have been added to and/or removed from a state.

It is also not sufficient to ‘instrument’ program code to record state changes.
Although most state changes correspond to an action that is performed as part of
an agent program, they do not always originate directly from program code. For
example, accomplishing a goal results in removing that goal automatically from
an agent’s goal base in GOAL. This means that the tracing mechanism has to be
integrated into the virtual machine or interpreter of an agent platform.

As before, we analysed the performance of the state change tracing mechanism
discussed in this section. The main results are summarized in the row labelled
Changes in Table 4.2. Compared to event traces, we now see that on average
the number of cycles has decreased by almost 10 percent. Even though this is
still much better than the overhead introduced for traditional languages (see Table

4.3. Agent Trace Design

4

87

4.1), further evaluation is required, and so in our evaluation we will determine
whether agent behaviour has been changed to a point where it affects debugging
or not. The space requirements have doubled, but on average still less than 4MB
per agent per minute is required. The gain we achieve by increasing space usage
is that our metric of navigation speed has been much improved: fully reversing
an agent’s state (either from first to last state but now also the other way around)
takes only 0.5 seconds on average, less than 1% of the original execution time, and
a substantial speedup compared to record-replay. As the time needed to evaluate
queries remains the same, the speed-up factor for search queries on a trace will
be lower, but only slightly so, as the time needed for evaluating a query on a state
compared to reconstructing a state is almost negligible.

4.3.3. Tracing Source Code Locations
The state change tracing mechanism supports efficient reconstruction of a pro-
gram’s run. It also facilitates debugging by enabling fast querying of traces to
identify unexpected state changes. But it does not yet support fault localization,
as it is hard to relate such state changes to program code; the information about
the state change itself does not specify where in the agent program it was brought
about. For effective fault location, ideally, a tracing mechanism is fully integrated
into the existing development facilities of an agent programming platform such as,
for example, single-step execution debugging and automated testing. The integra-
tion with automated testing in general is relatively straightforward as our tracing
mechanism makes a program run available for exploration immediately when a test
failure is detected. Test conditions (that fail), moreover, also provide useful clues
for executing search queries or applying filters on a trace.

The integration of our tracing mechanism with a source-level debugger, how-
ever, is more complicated. Ideally, a developer is able to follow the same stepping
flow s/he can create with a source-level debugger but now also in the reverse di-
rection using the recorded trace. But even if we are given a ‘current’ source code
location and are able to revert to a previous state (given a trace), it is not clear how
to ‘reverse step’ through the source code because there are many paths through a
program that can result in the same state. It is not clear whether it is possible to
reconstruct a single path from local state change information only, and even less
clear how to do that efficiently. Instead, we therefore propose to support ‘reverse
stepping’ by adding source code location markers, i.e., the traversed execution
events/breakpoints to an agent’s trace. This means storing a trace that not only
records events and state changes, but also the full path of source code locations
that is traversed while executing an agent program. In order to save space, each
code location in an agent program is encoded as an integer number and this num-
ber instead of the file-based code references are stored together with an inverse
mapping to retrieve the locations from these numbers.

To evaluate the impact of also storing code locations, we used the source-level
debugging framework proposed in Chapter 2 to implement such a tracing mecha-
nism and recorded all possible breakpoints, i.e. code locations that are traversed
when ‘single-stepping’ an agent in forward mode. The main results are summarized

4

88 4. Facilitating Omniscient Debugging for Cognitive Agents

in the row labelled Changes + sources in Table 4.2. They show that recording source
code locations does not have a big impact on the average number of cycles. The
additional space needed to store traces was about 25%. It is worth noting though
that space needed still only grows linearly over time, e.g., after ten minutes, our
traces grew to roughly 50MB per agent (<0.1 MB/s).

4.3.4. Trace Storage
In order to minimize the impact of the tracing mechanism, the information that
needs to be stored can be written to an (in-memory) queue. Due to the possible
size of this queue and the memory requirements of agents themselves, this queue
will need to be flushed to some more permanent storage in a thread(pool) that is
separated from the agent runtime, preferably with a lower priority. One of the most
efficient ways to do this is by using memory-mapped files [18], as they facilitate
the best I/O performance for large files by mapping between a file and memory
space, enabling an application to modify the file by reading and writing directly to
the memory. Using files also facilitates debugging a trace at a later point in time
(i.e., loaded from the file) and interaction with tools external to the agent runtime
itself.

4.4. Evaluation
The main purpose of a tracing mechanism is to support debugging. It therefore
is important to establish that the tracing mechanism does not significantly change
the behaviour of an agent program. For debugging purposes, it is most important
that the failures that occur in the agent system executed without tracing also occur
when runs are being traced. It is also important to establish that the reproduction
of a failure while tracing a program will not take many more runs and thus more
time.

In this section, we empirically investigate and compare the performance and
reproduction of a failure in an agent (system) with and without our ‘state change
and source location’ tracing mechanism enabled. Whilst in the previous section we
used Unreal Tournament (with 4 agents) for evaluation, in this section we will use
the Blocks-World-for-Teams (BW4T; Johnson et al. [19]) environment with varying
numbers of agents. Of all EIS-compatible environments [20] available to us ready
for testing, UT3 and BW4T are the most dynamic.

4.4.1. Method
The method we used is to first run a given test set many times in order to identify
all failures in an agent system (c.f. Chapter 3). We then ran multiple sessions in
which those same tests were repeated in order to determine how many repetitions
are needed (on average per session) to reproduce all the failures that were initially
found. We used a time-out parameter as agent systems that produce many failures
may run indefinitely without making any progress (i.e., producing no new results).
Failures that are due to a time-out are ignored because these cannot be consistently
reproduced. Our method, illustrated in Figure 4.1, uses these parameters:

4.4. Evaluation

4

89

• 𝐵: number of initial test runs for each agent system.

• 𝑇: number of seconds after which a test is aborted.

• 𝑁: number of ‘sessions’ for each agent system.

• 𝑀: maximum number of test runs in a single session.

The aim is to empirically determine the reproduction factor 𝑅: the number of times
a run needs to be repeated to detect all failures in an agent system. We use 𝑅 to
evaluate our tracing mechanism, but our experiments also contribute useful insights
into the testability of agent systems.

Figure 4.1: A flowchart of our evaluation method.

We used two sets of agent systems programmed in GOAL that control robots in
the BW4T environment. They were created by pairs of first-year Computer Science
bachelor students and handed-in with accompanying tests. The first set consists of
84 single-agent systems, and the second set of 42 multi-agent systems (3 agents).

4.4.2. Results
We applied our method to both sets of agents, with parameter 𝐵 set to 100, 𝑇
to 60 seconds, 𝑁 to 10, and 𝑀 to 1000. These parameters were chosen after
an iterative process of running experiments to minimize the runtime whilst making
sure that unreproducible nor new failures would be found in the repetition part of
our method (see also the step to increase parameter B in Figure 4.1). We first ran
agents with tracing turned off and then ran the same agents again with tracing
turned on but skipped the first step (see Figure 4.1) as the goal is to establish
whether failures are reproduced also when tracing is turned on. In total, for our
final experiment, almost 23,000 runs were performed with a total runtime of about
330 hours.

We found a significantly lower number of failures for the single-agent systems
(on average 0.3 failures, with a maximum of 8 failures) than for the multi-agent
systems (on average 4.3 failures, with a maximum of 21 failures). In a rather
static environment like BW4T with a low number of failures, we found that a single
agent’s failure set can be reproduced on every single run both with and without
tracing enabled, i.e., 𝑅 = 1. This is very different for multi-agent systems where on

4

90 4. Facilitating Omniscient Debugging for Cognitive Agents

Figure 4.2: Distribution of R with and without tracing.

average 𝑅 = 11 runs were needed to reproduce all failures that were initially found.
Most importantly, this establishes that all failures could be reproduced (and no new
failures were introduced) when the tracing mechanism is used. The distribution of
𝑅 for both with and without tracing enabled is shown in Figure 4.2. Even though
on average only 11 runs were needed, in a few cases up to even 300 repetitions
were needed to reproduce all failures. The high number of runs required in these
cases provides a strong indication that omniscient debugging is a technique that
is needed in practice to be able to debug multi-agent systems. When comparing
the distributions for 𝑅 using a Wilcoxon signed-rank test, no statistically significant
difference is found (𝑍 = −0.79, 𝑝 = 0.43). This provides additional support for the
claim that the tracing mechanism does not impact the agent system’s execution.
Finally, we note that a few extreme outliers where >500 runs were required were
excluded from these results.

4.5. Visualizing Traces
For efficient fault localization, it needs to be easy for a developer to identify states in
a program’s execution that are related to the failure under investigation. Moreover,
a developer should not get lost in navigating between these states, but always have
a sense what point in the execution s/he is evaluating and how the current state
affected the execution.

We adapt the concept of a space-time view first developed in Azadmanesh and
Hauswirth [21] in the context of Java programming to cognitive agent programming.
A space-time view is a table that is structured along space and time dimensions,

4.5. Visualizing Traces

4

91

where the rows in the table correspond to the space dimension, which is composed
of the different elements in a state that are traced. Each cell indicates whether an
element was modified by executing an operation or only accessed for inspection at
a specific time (the columns in the table).

Figure 4.3: Space-time view (top) and filtered version (bottom)

For cognitive agents, the elements in a space-time view that are traced are the
agent’s events, beliefs, goals, actions, plans, and/or modules (i.e., sets of decision
or plan rules). Assuming a basic representation of a name with associated param-
eters is used to represent these elements, we use the corresponding signatures as
the rows in the space dimension. For example, the signature print/1 in Figure 4.3
represents a print action with one parameter. Each point (event, state change,
source code location) in a trace represents a step (column) in the time dimension.
Multiple space elements (signatures) can be used in a single step, e.g., evaluating
a query may require accessing several beliefs and goals. The cells in our space-
time view contain information about how an element was used at a particular step,
which differs per type of element (e.g., a belief can be modified or inspected, an
action or plan can be called and performed, a module can be entered or exited).
Empty cells indicate the element was not used. An example of a space-time view
for a simple agent is shown in Figure 4.3.

A developer can use and manipulate a space-time view in several ways. The
signatures listed in the space time view can be ordered based on type (beliefs next to
beliefs) or alphabetically (using the signature names). A user can also apply queries
or filters to a trace both textually as well as through selecting cells of interest or
rather cells that should be hidden in the table; see, for example, the bottom table
where only the first row is selected by a user in Figure 4.3. A user can click on any
cell in the table in order to step the agent to the state matching that cell’s column
(either forwards or backwards through its execution), allowing a developer to use
all debugging tools (e.g., inspecting or modifying an agent’s beliefs and goals) in
that specific historic state.

We illustrate the use of such a space-time view for analysing a failure of the
following example test condition associated with a BW4T agent program:
goal(holding(B)), bel(atBlock(B)) leadsto done(pickUp(B))
This condition expresses that if the agent has the goal to hold block B, and believes
it is at the block, that it should (eventually) pick up B. A failure to do so will lead to
failure of the test condition (i.e., when the agent is terminated). Without an omni-

4

92 References

scient debugger, a developer would need to restart the agent, navigate to a point
where the goal-believe query holds (assuming it will at some point in the restarted
run), and continue by manually stepping to try to understand why the action is not
performed. With an omniscient debugger, we do not need to restart the agent, and
can use the clues provided by the test condition itself to navigate to the last time
that holding/1 and atBlock/1 were modified in the space-time view. We can
do so either by double-clicking the corresponding cell, or, even faster, by using the
query goal(holding(B)), bel(atBlock(B)) to filter the trace. Note that
such a point must exist in the run as the test condition failed on the exact same
run that was traced. Because our tracing mechanism also traces source code lo-
cations and is integrated with a source-level debugger, a developer can now step
from that point through the source code as if it is executed for the first time (and
go backwards whenever needed). In our example, it quickly became clear to the
developer that some decision rules were incorrectly ordered, which prevented the
pickUp action from being executed.

4.6. Conclusions and Future Work
In this chapter, we proposed a tracing mechanism design that supports omniscient
debugging for cognitive agents, a technique that facilitates debugging by moving
backwards in time through a program’s execution. Using a prototypical implemen-
tation of the tracing mechanism in the GOAL agent programming language, we
evaluated and demonstrated empirically that the mechanism is efficient and does
not substantially affect the runs of program in the sense that the same failures can
be reproduced when the mechanism is turned on and off. This essentially shows
that our mechanism is fast enough and can be used in practice for debugging fail-
ures without a need to rerun a program.

We also introduced a trace visualization method tailored to cognitives agents
based on a space-time view of the execution history. A developer can navigate this
view, evaluate queries on a trace, and apply filters to it to obtain views of only the
relevant parts of a trace. Our approach is integrated with a source-level debugger
and traces source code locations, which enables a developer to single-step through
a program’s execution history and facilitates fault localization.

Future work will include a user study to evaluate the usability of our omniscient
debugging approach for programmers. Our findings that it can be hard to reproduce
a failure at least sometimes also prompt the need for further investigation into
how failure reproduction for multi-agent systems can be improved. Finally, we
believe that our tracing mechanism can provide a starting point for a history-based
explanation mechanism that can automatically answer questions such as ‘why did
this action (not) happen?’ [22].

References
[1] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, Omniscient debugging for

cognitive agent programs, in Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, IJCAI’17 (AAAI Press, 2017) pp. 265–272.

References

4

93

[2] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, Omniscient debugging for GOAL
agents in Eclipse, in Proceedings of the 26th International Joint Conference
on Artificial Intelligence, IJCAI’17 (AAAI Press, 2017) pp. 5232–5234.

[3] J. Engblom, A review of reverse debugging, in System, Software, SoC and
Silicon Debug Conference (S4D), 2012 (2012) pp. 1–6.

[4] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debug-
ging, 2nd ed. (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2009).

[5] G. Bracha, Debug mode is the only mode, https://gbracha.blogspot.
nl/2012/11/debug-mode-is-only-mode.html (2012), accessed:
2017-02-19.

[6] B. Lewis and M. Ducasse, Using events to debug Java programs backwards in
time, in Companion of the 18th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA ’03
(ACM, New York, NY, USA, 2003) pp. 96–97.

[7] C. Hofer, M. Denker, and S. Ducasse, Design and implementation of a
backward-in-time debugger, in NODe 2006, Vol. P-88 (GI, Erfurt, Germany,
2006) pp. 17–32.

[8] G. Pothier, r. Tanter, and J. Piquer, Scalable omniscient debugging, SIGPLAN
Notices 42, 535 (2007).

[9] A. Lienhard, T. Gîrba, and O. Nierstrasz, Practical object-oriented back-in-time
debugging, in ECOOP 2008 – Object-Oriented Programming: 22nd European
Conference Paphos, Cyprus, July 7-11, 2008 Proceedings, edited by J. Vitek
(Springer Berlin Heidelberg, 2008) pp. 592–615.

[10] A. J. Ko and B. A. Myers, Extracting and answering why and why not questions
about Java program output, ACM Transactions on Software Engineering and
Methodology 20, 4:1 (2010).

[11] D. Lam and K. Barber, Comprehending agent software, in Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’05 (ACM, New York, NY, USA, 2005) pp. 586–593.

[12] A. Helsinger, R. Lazarus, W. Wright, and J. Zinky, Tools and techniques for
performance measurement of large distributed multiagent systems, in Pro-
ceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’03 (ACM, New York, NY, USA, 2003) pp. 843–
850.

[13] M. Dastani, 2APL: a practical agent programming language, Autonomous
Agents and Multi-Agent Systems 16, 214 (2008).

https://gbracha.blogspot.nl/2012/11/debug-mode-is-only-mode.html
https://gbracha.blogspot.nl/2012/11/debug-mode-is-only-mode.html

4

94 References

[14] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-Agent
Systems in AgentSpeak using Jason (John Wiley & Sons, Ltd, 2007).

[15] R. Collier, Debugging agents in Agent Factory, in Programming Multi-Agent
Systems: 4th International Workshop, ProMAS 2006, Hakodate, Japan, May
9, 2006, Revised and Invited Papers, edited by R. H. Bordini, M. Dastani, J. Dix,
and A. E. F. Seghrouchni (Springer Berlin Heidelberg, 2007) pp. 229–248.

[16] K. V. Hindriks, Programming rational agents in GOAL, in Multi-Agent Program-
ming: Languages, Tools and Applications, edited by A. El Fallah Seghrouchni,
J. Dix, M. Dastani, and R. H. Bordini (Springer US, 2009) pp. 119–157.

[17] K. V. Hindriks, B. van Riemsdijk, T. Behrens, R. Korstanje, N. Kraayenbrink,
W. Pasman, and L. de Rijk, Unreal GOAL bots, in Agents for Games and Sim-
ulations II: Trends in Techniques, Concepts and Design, edited by F. Dignum
(Springer Berlin Heidelberg, 2011) pp. 1–18.

[18] D. S. Roselli, J. R. Lorch, T. E. Anderson, et al., A comparison of file system
workloads, in USENIX annual technical conference, general track (2000) pp.
41–54.

[19] M. Johnson, C. Jonker, B. van Riemsdijk, P. J. Feltovich, and J. M. Brad-
shaw, Joint activity testbed: Blocks World for Teams (BW4T), in Engineering
Societies in the Agents World X: 10th International Workshop, ESAW 2009,
Utrecht, The Netherlands, November 18-20, 2009. Proceedings, edited by
H. Aldewereld, V. Dignum, and G. Picard (Springer Berlin Heidelberg, 2009)
pp. 254–256.

[20] T. M. Behrens, K. V. Hindriks, and J. Dix, Towards an environment interface
standard for agent platforms, Annals of Mathematics and Artificial Intelligence
61, 261 (2011).

[21] M. R. Azadmanesh and M. Hauswirth, Space-time views for back-in-time de-
bugging, Tech. Rep. 2015/02 (University of Lugano, 2015).

[22] K. V. Hindriks, Debugging is explaining, in PRIMA 2012: Principles and Prac-
tice of Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 7455,
edited by I. Rahwan, W. Wobcke, S. Sen, and T. Sugawara (Springer Berlin
Heidelberg, 2012) pp. 31–45.

5
Designing a Cognitive

Connector for Complex
Environments

One issue that needs to be addressed time and again is how to create a con-
nector for interfacing cognitive agents with richer environments. Cognitive
agents use knowledge technologies for representing state, their actions and
percepts, and for deciding what to do next. Issues such as choosing the right
level of abstraction for percepts and action synchronization make it a chal-
lenge to design a cognitive agent connector for more complex environments.
The leading principle for our design approach to connectors for cognitive agents
is that each unit that can be controlled in an environment is mapped onto a
single agent. We design a connector for the real-time strategy (RTS) game
StarCraft and use it as a case study for establishing a design method for
developing connectors for environments. StarCraft is particularly suitable to
this end, as AI for an RTS game such as StarCraft requires the design of
complicated strategies for coordinating hundreds of units that need to solve
a range of challenges including handling both short-term as well as long-
term goals. We draw several lessons from how our design evolved and from
the use of our connector by over 500 students in two years. Our connector
is the first implementation that provides full access for cognitive agents to
StarCraft: Brood War.

This chapter is to be published in the book Engineering Multi-Agent Systems (2018), an extension of
work published in the International Workshop on Engineering Multi-Agent Systems (2018) [1], in turn an
extension of work published in the Conference on Autonomous Agents and Multi-Agent Systems (2018)
[2].

95

5

96 5. Designing a Cognitive Connector for Complex Environments

5.1. Introduction
Multi-agent systems, consisting of multiple autonomous agents interacting with an
external environment, have been promoted as the approach for handling problems
that require multiple problem solving methods, multiple perspectives, and/or mul-
tiple problem solving entities [3]. In the past twenty years, the research commu-
nity has combined multi-agent system (MAS) concepts and approaches into mature
frameworks for agent-oriented programming (AOP) [4, 5]. Current cognitive agent
technology thus offers a viable and promising alternative to other approaches for
engineering complex distributed systems [6, 7]. However, Hindriks [6] also con-
cludes that “if [cognitive] agents are advocated as the next generation model for
engineering complex, distributed systems, we should be able to demonstrate the
added value of [multi] agent systems.” Designing a connector that can demonstrate
this added value by connecting cognitive agents with an environment that puts strict
real-time constraints on the responsiveness of agents, requires coordination at dif-
ferent levels (ranging from a few agents to large groups of agents), and requires
complex reasoning about long-term goals under a high level of uncertainty is not a
trivial task. The connectors that are currently available for use with cognitive agent
systems have remained rather simple, and thus do not fully demonstrate the added
value of cognitive agent technology.

In this chapter, we aim to establish a design approach for developing connectors
for complex environments, aimed at facilitating the development of more connec-
tors that can be used to demonstrate the ease of use of cognitive technologies for
engineering large-scale complex distributed systems for challenging environments.
We believe that RTS games that deploy large numbers of units provide an ideal
case study to this end [8, 9]. The basic idea is to control each unit with a cogni-
tive agent. Based on this, and in accordance with Google (DeepMind) and many
other AI researchers [10, 11], we believe that StarCraft is the most suitable RTS
game to target in our case study. Moreover, several popular competitions exist for
StarCraft AI that can serve as a benchmark for implementations that use cognitive
technologies [11]. By carefully designing and efficiently implementing a cognitive
agent connector to StarCraft, and then testing this connector with large groups
of students, we iteratively refine our approach for the development of cognitive
agent-environment connectors.

Our focus in this work is on the case study of designing a connector that enables
and facilitates the use of cognitive agent technology for engineering strategies for
StarCraft (Brood War) based on a one-to-one unit-agent mapping, which is dif-
ferent from most existing StarCraft AI implementations. This unit-agent mapping
introduces important challenges that need to be addressed:

1. The connector should facilitate a MAS that operates at a level of abstraction
that is appropriate to cognitive agents.

2. The connector should be sufficiently performant in order to support a suffi-
cient variety of viable MAS implementations using cognitive agents (i.e., both
different approaches to implementing strategies as well as the use of different
agent platforms).

5.2. Related Work

5

97

In other words, the connector design should not force a cognitive MAS to operate
at the same level of detail as bots written for StarCraft in C++ or Java, but also
not promote the other extreme and abstract too much (e.g., clearly the extreme
abstraction of providing a single action ‘win’ is not useful). To make optimal use of
the reasoning typically employed by cognitive agents, the connector should leave
low-level details to other control layers whilst still allowing agents sufficiently fine
grained control.

5.2. Related Work
Connectors that support connecting cognitive agent technology to games have been
made available for other games [12]. So far, however, most connectors have re-
mained rather simple. The most complex cognitive multi-agent connectors that
have been made available so far, are connectors for Unreal Tournament [13]. The
design of such a connector involves similar issues related to the facilitated level of
abstraction and the resulting performance as in this work. However, the resulting
implementation as reported on by Hindriks et al. [13] does not support running more
than 10 agents, whereas for a StarCraft interface we need to connect hundreds of
cognitive agents to control the hundreds of units in game. Moreover, corresponding
agent systems for Unreal Tournament generally offer only a very restricted set of
actions that agents can perform (i.e., mostly just a “go to” action because other
middleware software is used to take care of path planning, shooting, etc.) or com-
munication (i.e., mostly just informing others about enemy positions), limiting the
complexity of decision making that is required. Relatively speaking, compared to
StarCraft, the diversity in strategies or tactics that can be deployed is rather small.
Another problem related to Unreal Tournament is that games cannot be sped up,
complicating testing and debugging. It is therefore not feasible to derive a design
approach for connectors to richer environments from this work.

RTS games are widely regarded as an ideal testbed for AI [9, 10]. An RTS
game like StarCraft involves long-term high-level planning and decision making, but
also short term control and decision-making with individual units. This distinction
between respectively strategical and tactical decision making is generally referred to
as macro and micro respectively. These factors and their real-time constraints with
hidden information make RTS games like StarCraft ideal for iterative advancement
in addressing fundamental AI challenges [9]. Although machine learning solutions
have been applied to some problems at the micro level, learning techniques have
not been successfully applied to other aspects, mainly due to the vast state spaces
involved [11]. The concepts of cognitive agents seem to be a good fit for addressing
these challenges, allowing individual cognitive agents to reason about their tactical
decision making whilst also inherently facilitating communication to make decisions
at a joint strategical level. The reasoning typically applied by cognitive agents seems
to lend itself for macro really well, but such systems can potentially employ learning
techniques to perform specific sub-tasks (at the micro level) as well. A cognitive
agent connector can also facilitate the use of MAS as an approach for allowing
several individual AI techniques to work together.

The work of Weber et al. [14] recognizes the value of agent-oriented techniques

5

98 5. Designing a Cognitive Connector for Complex Environments

for StarCraft AI. Their “EISBot” uses a reactive planner combined with external
components like case-based reasoning and machine learning. Similar to multi-agent
systems, the concepts of percepts and actions are used. However, there is only
a single ‘agent’ that is compartmentalized into several specific managers. This
approach is thus still based on a single-bot approach, whilst in this work, we instead
aim to design a connector for multi-agent systems in which each in-game unit is
connected to an individual cognitive agent. Moreover, it is not made clear which
percepts and actions are provided, and what the gain in terms of abstraction level
and the loss in terms of performance in this implementation is, as the focus is on
the implementation of the StarCraft bot itself, instead of on the design of a (generic)
connector as in this paper.

The prototypical RTS game is StarCraft [11], originally developed by Blizzard in
1998, but still immensely popular both in (professional) gaming and AI research.
An API for StarCraft (Brood War) has been developed for several years: BWAPI
[15]. BWAPI reveals the visible parts of the game state to AI implementations,
facilitating the development of competitive (non-cheating) bots. Several dozens of
such bots have been created with this API, mostly written in C++ or Java, aimed
at participating in one of the tournaments that are being held for StarCraft AI im-
plementations. However, this work does not directly facilitate cognitive agents that
use knowledge technologies and realise a one-to-one unit-agent mapping.

A first attempt at creating a cognitive interface for StarCraft was performed
by Jensen et al. [16]. In this work, a working proof-of-concept that ties in-game
units to cognitive agents was introduced. However, it does not address the major
challenges such an implementation faces concerning the level of abstraction and
corresponding performance, as we do in this work. When using this connector, it
is not possible to create viable (diversities of) strategies, as the range of strategies
it supports is quite limited. This connector only offers a small subset of all possible
actions associated with each unit in the game, and the percepts made available
by the connector do not provide sufficient information for in game decision making
either. In this work, we aim to allow virtually any strategy to be implemented with
a sufficient level of performance using a cognitive agent connector based on the
design approach we propose.

5.3. Case Study: StarCraft
In StarCraft, each of the three playable races have their own set of unit types, with
roughly 15 types of air/ground units and 15 types of buildings per race. Although
many races share similar types of buildings (e.g., depots to bring resources to),
there are also substantial differences to take into account (e.g., one race requiring
units to ‘morph’ into a different type of unit). For most types of units, there are
usually multiple ‘instances’ (i.e., individual units) in a game, thus allowing anywhere
from 5 up to 400 units representing one army in the game at a certain time. De-
pending on factors such as game length, the average number of units for an army
in a typical game at any point in time is around 100, although many units will also
die during the game (i.e., the total number of agents used is much higher). Perfor-
mance is thus of vital importance, as a substantial performance impact caused by

5.4. Connector Design Approach

5

99

large amounts of percepts for example, will limit the amount of viable strategies.
Our cognitive agent connector to StarCraft was developed and refined in three

iterations. We draw several general lessons from these iterations, which we have
incorporated into our proposal for a connector design approach. Initially, a pilot was
held with around 100 Computer Science master’s students that worked in groups
on creating a StarCraft bot using this connector. Shortly after, over 200 first year
Computer Science bachelor’s students did the same with an improved version of the
connector, being the largest StarCraft AI project so far. We continued development
of the connector after this project, and made several additional improvements, after
which 300 first year Computer Science bachelor’s students used the ‘final version’
of our connector.

5.4. Connector Design Approach
In this section, we discuss our design approach for a cognitive agent connector.
The core of such a connector consists of three components: (i) the entities that
are provided for agents to connect to (i.e., units in an RTS game), (ii) the outputs
that are generated by each entity (and thus which percepts a corresponding agent
receives), and (iii) the inputs that are available for each entity (and thus which
actions an agent controlling the entity can perform). This structure is illustrated in
Figure 5.1. Each of these aspects will be discussed, starting with general guidelines,
their application to our case study of StarCraft, and the refinements that were made
after practical use of the StarCraft connector. Next, key steps for evaluating whether
the connector design is fit for use in practice for developing cognitive MAS will be
given and performed for our connector.

We make some basic assumptions about the architecture of a cognitive agent,
as illustrated in Figure 5.2. We assume such an agent pro-actively reasons about
the actions that it should take based on (for example) its goals and beliefs in some
fixed decision cycle that is asynchronous from the environment in which it operates
(for a certain entity in that environment), from which it receives information through
percepts. Multiple agents can work together in one multi-agent system, which is
not centrally controlled but does facilitate direct messaging between (groups of)
agents. Our connector makes use of the Environment Interface Standard [17] in
order to facilitate interacting with MAS platforms.

5.4.1. Micro and Macro Management
In complex environments such as StarCraft, a crucial distinction exists between top-
down strategical decision making (macro) and bottom-up tactical decision making
(micro). The basic assumption that we make is that a connector needs to provide
support for a multi-agent approach based on a one-to-one unit-agent mapping,
which inherently facilitates decision making from a bottom-up perspective. At the
micro level, every unit that is active in the environment should be mapped onto an
entity that a cognitive agent can connect to in order to control the behaviour of the
unit. For StarCraft, this thus means that any moving or otherwise active unit such
as a building will be controlled by a cognitive agent.

5

100 5. Designing a Cognitive Connector for Complex Environments

Figure
5.1:

An
overview

of
the

various
com

ponents,w
ith
StarCraft

on
the

left,our
connector

in
the

center,and
a
cognitive

agent
system

playing
the

gam
e

on
the

right.

5.4. Connector Design Approach

5

101

Figure 5.2: The assumed structure of a cognitive agent in a multi-agent system (left) interacting with
an external environment (right).

Although we initially assumed that the emergent behaviour from these agents
would be sufficient to cover the strategical aspects, in practice this was hindered
by the high dynamicity of an environment such as StarCraft, for example illustrated
by the fact that any unit can be killed at any point in time. To facilitate macro
management, we therefore have introduced a new, special kind of entities, so-
called managers, which are made available by the connector. Managers do not
match with unique in-game units, and as such they do not naturally have percepts
or actions associated with them. However, as they still need to be informed about
the state of the game in order to perform strategical decision making, they instead
should have the ability to receive desired global information through percepts, as
for example indicated by a developer in the initialization settings of a MAS.

Manager agents are especially useful to reason about groups of units. For exam-
ple, without managing agents, all agents for resource gathering units in StarCraft
(of which there are generally several dozen) would have to process information
about the available resources and resource depots (i.e., subscribe to the relevant
percepts and handle them), and then coordinate amongst each other about the
division of tasks (i.e., implement some decentralized messaging protocol). Instead,
a single manager agent can be the only one to have to deal with all the information
about resources, and then use this information to assign a task to each resource
gathering unit (i.e., through messaging), whilst in contrast the agents for those
units would still handle defending themselves for example. This significantly re-
duces the total amount of percept processing and message sending that is required

5

102 5. Designing a Cognitive Connector for Complex Environments

in such a situation. Moreover, in our case study we found that there is a need
for dynamically adding or removing managers in order to for example temporarily
centralize the reasoning for a group of attacking units, which is another frequently
occurring situation in which using managers is beneficial for both performance and
the effectiveness of the coordination between the relevant agents. The specific type
and choice of managers that are made available by a connector and the resulting
organizational structure is, however, not specified in our design approach so as to
facilitate as many multi-agent system structures as possible. As there is information
that is specific to certain units (and thus specific agents), and each unit has its own
set of actions (which a single agent needs to call), it is not possible to completely
centralize the reasoning.

Because our approach is to provide an entity (i.e., to which an agent can con-
nect) for each unit, and the available actions for each unit are mainly defined by the
(interface to) the environment itself, the main challenge when balancing the level
of abstraction with the resulting performance is in determining the percepts that
are available. As we assume cognitive agents here that explicitly represent their
beliefs and goals, this essentially means we need to design an ontology that in-
cludes all relevant concepts for representing and reasoning about the environment
at an appropriate level of abstraction.

5.4.2. Local and Global Information
The set of available percepts determines what information a specific entity ‘sees’
during the game, and thus what information its corresponding agent will receive.
Percepts have a name to describe them and a set of arguments that contain the
actual data. For example, a percept could be defined as map(Width, Height),
and an agent could then receive map(96, 128) in a match. In order to determine
the percepts that are created for each type of unit, our approach proposes several
design guidelines. A key foundation of our approach to handling information from
complex environments such as StarCraft is that there is a difference between ‘local’
information that is specific to a certain unit in the game (e.g., a unit’s health) and
‘global’ information that is potentially relevant to all units (e.g., the locations of
enemy units). An agent should be able to perceive all local information that is
specific to its corresponding unit’s state, whilst a manager agent should be able to
perceive all global information that is needed for its strategic (macro) reasoning.
However, pieces of global information might also be needed in the agent for a
specific unit (e.g., nearby enemy units in StarCraft).

To this end, we initially pushed all global information to all unit and manager
entities, as a connector cannot determine which parts of this information a specific
agent will need. However, our case study showed that this caused a significant per-
formance impact with larger numbers of units. We have therefore found it useful to
provide specific mechanisms to a developer to fine-tune the delivery of global per-
cepts. Through the connector’s initialization settings, a list of desired ‘global infor-
mation’ (i.e., names of percepts) can be given (“subscribed to”) for each unit type.
For example, the (pseudocode) initialization rule zergHatchery: [friendly,
enemy] will ensure that all agents for all Zerg Hatchery entities in a match will

5.4. Connector Design Approach

5

103

receive information about all friendly units and all visible enemy units. In this way,
a developer can decide which information is relevant for certain agents, instead
of such information being sent to agents at all times. This mechanism can also
be used for specifying in more detail which global information a certain manager
agent needs to be made aware of. Finally, we assume that when local information
is needed for macro reasoning, this can be sent to the appropriate manager agent
by the agent for a specific unit within the agent platform; it is thus not required to
handle this within the connector (design) itself, as illustrated by the wave-shape in
Figure 5.3.

Figure 5.3: Main design approach for organizing information into local and global percepts for micro
(unit) or macro (manager) entities.

The ease of use of the percepts for an agent programmer should also be taken into
consideration, i.e., by grouping related pieces of information together. The design
guideline here is that one should only group sets of parameters that naturally belong
together. Moreover, to avoid having to deal with different kinds of percepts for each
type of unit, a design guideline is that the percepts should be as generic as possible
in order to facilitate re-use between different agents. This guideline is aimed at
reducing the number of different concepts introduced in our percept ontology, and
thus aims for efficiency of design. An example of this is the status percept for
each unit, as its structure (i.e., the set of parameters) is the same for each unit,
even though not all information might be relevant for each unit (not all units use
energy for example, but a unit’s energy level is always provided in the percept).
This also allows for specifying generic code for handling the status percept for all
agents only once in the program, instead of having to specify this specifically (and
nearly identically) for each unit type; special cases for certain types of units can
then be programmed only where necessary.

Performance
One of the main challenges is how to deliver all percepts while guaranteeing suffi-
cient performance levels. It is important to manage the percept load of individual
agents, as creating the information needed for percepts (i.e., in the connector) and
relaying that information to one or multiple agents who then have to make this
information available for use in reasoning (i.e., by representing them in a Prolog
base) is the most resource intensive task in a connector. In contrast to actions, of

5

104 5. Designing a Cognitive Connector for Complex Environments

which usually at most one is selected per decision cycle, there are usually many
percepts (all containing various amounts of information) sent to each agent per
decision cycle. We therefore introduce a number of optimization guidelines which
aim to either reduce the total number of percepts an agent will have (to store) or
the amount of updates to this set of percepts that an agent will have to process.

Complex environments have a lot of static information to which all individual
agents may need to have access, like what a certain unit costs to produce or what
kinds of units a certain building can produce in StarCraft. Because such environ-
ments also introduce many units (and thus many agents), the initialization costs for
such information for each of these agents can have a rather big impact on a connec-
tor’s performance. To avoid this issue as much as possible, we introduce another
design guideline to only create percepts for information that changes in a single
match or between matches. Static information is better suited to be encoded in the
agent system itself instead of being sent through percepts, as this will significantly
reduce the performance when initializing an agent (which as aforementioned can
happen many times during a game as large numbers of units come and go almost
constantly). To this end, information that is fixed by the game itself can be coded
as a separate part of the ontology that can and needs to be loaded only once at
the start of the game. Agents will still need to be informed about changes between
matches, e.g., map-specific information should not be included in the ‘fixed part’ of
the ontology. Another guideline to keep the number of percepts low is to ensure
that no data is sent through percepts that can either be calculated based on other
data (e.g., the number of friendly units by counting the number of percepts about
their status), or retrieved from other agents (e.g., the position of a friendly unit).
Relaying information (like friendly unit positions) through messaging between the
agents in a MAS is usually much more efficient, as an agent programmer can then
selectively choose at which times and to which units to send specific pieces of in-
formation, as opposed to percepts always being sent to certain units even when
they do not require them (at that time).

In order to improve the performance of the percepts that we do have to send,
the Environment Interface Standard (EIS) [17], that we have used as a foundation
for implementing our connector, differentiates between three types of percepts1:

• Send once: this type of percept is only sent once. Such percepts are gener-
ally used to send data about the (specific) match when an agent is created,
such as information about the map on which the match is played.

• Send on change: a percept of this type will only be sent if the percept
changes. Such percepts are generally used to update known information,
such as a unit’s health or the number of available resources.

• Send always: a percept of this type will be perceived every time the cor-
responding agent asks for percepts. Such percepts are generally used to

1There are actually four percept types, but we do not consider on-change-with-negation as this type
will be removed in future versions of EIS due to compatibility issues with knowledge representation
languages other than Prolog.

5.4. Connector Design Approach

5

105

indicate temporary information, such as seeing an enemy unit (which can die,
after which the corresponding percept is no longer generated).

Send once percepts will be most performant, whilst send always percepts will be
least performant. However, as indicated, some information cannot be represented
in a ‘more performant’ type. It is thus important for to carefully consider which per-
cept category certain (groups of) information would best fit in in order to optimize
the performance.

For StarCraft, combining the (finite set of) information that is available through
the BWAPI interface with the guidelines as posed in this section lead to a set of
about 25 percepts2. We have designed and optimized our algorithms to compute
the difference between information states in order to generate new percepts as
fast as possible. Most percepts are only generated if some change occurred. Our
connector has been carefully designed so as to optimize the generation of percepts
by first and only once generating the global percepts (i.e., that are not specific
to units), such as the list of (visible) friendly and enemy units, followed by the
generation of the percepts specific to each entity. This structure also ensures that
agents receive their percepts immediately when they ask for them, i.e., they are
not generated when requested (which would slow down the agent significantly) but
only when information actually changes.

5.4.3. Asynchronous Actions
The actions available for a certain entity define the range of behaviour that is pos-
sible for a corresponding agent implementation. The basic design guideline here
is that as a rule, any action that a unit can do (i.e., that is available in the envi-
ronment) should be available to its corresponding entity (and thus agent). A unit
in StarCraft can roughly choose from about 15 types of actions at any given time.
Certain actions are only available to specific types of units (e.g., loading a unit into
a loadable building). Some abstractions were used in order to better facilitate the
usability of this set of actions for agent programmers. For example, instead of using
pixel coordinates, StarCraft allows tile coordinates to be used, i.e., corresponding
to a certain block of 32 by 32 pixels (buildings in StarCraft always have a size that
is a multiple of 32 pixels in any dimension). This abstraction of pixels to tiles is also
used in coordinates in percepts, thus not only ensuring easy compatibility with the
actions but also allowing for percepts containing coordinates to be updated signif-
icantly fewer times when a unit is moving for example. We also note that BWAPI
does not explicitly support grouping units (i.e., as a human player would do), and
thus each unit needs to choose its own course of action. However, creating group
behaviour in a multi-agent system is facilitated through inherent mechanisms such
as messaging between agents. Manager agents thus do not need specific actions
from a connector, as they can rely solely on the facilities in the agent platform.

However, as a MAS platform uses and runs agents in its own (set of) thread(s)
that need to be connected to the environment, synchronisation issues arise that in
2For the full set of percepts and actions that are available, we refer to the StarCraft Con-
nector Manual at https://github.com/eishub/Starcraft/blob/master/doc/Resources/
StarCraftEnvironmentManual.pdf.

https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraft Environment Manual.pdf
https://github.com/eishub/Starcraft/blob/master/doc/Resources/StarCraft Environment Manual.pdf

5

106 5. Designing a Cognitive Connector for Complex Environments

particular for StarCraft pose a challenge, as StarCraft runs at a specific rate, up-
dating the game logic at fixed millisecond intervals in so called ‘match frames’. In
existing (C++/Java) BWAPI bots, the match frame function is used as the start-
ing point (or even single function) for all decision making. In principle, this con-
flicts with a multi-agent approach in which all cognitive agents run in their own
separate (autonomous) thread(s). As a solution, we use several synchronisation
mechanisms. First, and most importantly, for each entity all requested actions are
recorded (queued). On each match frame call, all queued actions (for all entities)
are executed, i.e., ‘forwarded’ to the corresponding unit in StarCraft itself. Agents
have to carefully rely on feedback from the environment (i.e., through percepts) to
detect the effect of their actions, or when an action has failed (e.g., because some
other action by another agent just used up some resources). A basic understand-
ing of the synchronisation issues is thus needed when developing agents for highly
dynamic environments such as StarCraft.

Debugging and Testing
For complex environments such as real-time strategy games and StarCraft in par-
ticular, it is also essential to provide a developer with environment-specific visual-
ization tooling that provides easy access to information that will allow the developer
to understand what is going on in this environment. Which (types of) tooling can
be provided is specific to an environment and the access provided by the basic
API made available by the environment. In our case study, we have found that
visualization tooling is most useful for providing insight into basic capabilities such
as navigation, the status of units, and the progress of long-term actions such as
a buildings producing a unit. For example, even though agents do not exercise
low-level navigation control, agents do control the setting of target locations where
units will move to. We therefore provide a developer with the option to enable visual
cues about where a unit is moving to in order to be able to debug the agent code
that sets these target locations. Another example of what our connector supports
is visualizing when a unit is being produced by a building, removing the need to
click on each building to see what it is producing (and how far along this production
is) when trying to debug the production logic in a specific building agent. Visualiza-
tions like this can be implemented in StarCraft by using its debug drawing features
that support drawing lines or writing text in the game window. Using these basic
features, our connector allows for specific visualizations to be created by agents
themselves (i.e., through calling specific actions), also facilitating drawing custom
texts above in-game units. Examples of such ‘debug visualizations’ in StarCraft are
shown in Figure 5.4.

More generally, to be able to debug and test multi-agent systems effectively
and efficiently in an environment such as StarCraft where hundreds of agents are
running simultaneously, requires a developer to have access to cheats that disclose
or even modify gaming information that is not normally available to a player. Star-
Craft specifically offers useful development functionalities (through BWAPI calls)
like removing the fog of war (i.e., making the whole map visible to the player),
quickly gaining resources, or to making units invincible. We have integrated these
functionalities in a separate development tool (that includes a button for gaining

5.4. Connector Design Approach

5

107

Figure 5.4: A screenshot of StarCraft with a bot performing many debug draw actions.

resources for example) and through initialization properties of the connector (e.g.,
making units invincible right from the start of a match) in order to make them easily
accessible.

5.4.4. Evaluation
As high performance is critical for any cognitive approach that uses many agents
to deal with the challenges of AI for RTS, it is important to verify the (CPU) per-
formance of a connector. In addition, one should evaluate the requirement that a
connector does not restrict the strategy space in any essential way by for exam-
ple examining the success (i.e., in tasks in the environment) of a set of cognitive
MAS implementations that make use of the connector. We do so by discussing
the lessons we learned from the use of our connector by over 500 students in two
years.

Performance
Complex real-time tasks, such as effectively attacking enemy units in StarCraft, po-
tentially require a new decision to be made in each match frame (based on the new
information such a frame generates). As our approach is based on an unit-agent
mapping, there are at least as many agents as units in the game. To be performant,

5

108 5. Designing a Cognitive Connector for Complex Environments

we need to show that all agents have the opportunity to receive new percepts and
make a decision (i.e., perform an action) each match frame. AI tournaments run
StarCraft at speeds of at least 50 match frames per second, which implies that in
our case every agent should receive new information and be able to perform a new
action at least 50 times per second as well, i.e., averaging3 at most 20 millisec-
onds for performing all cycles of the agents in a MAS. We assume here that no
single agent should perform less than 50 decision cycles per second, even though
many agents will not need that many decision cycles (e.g., most buildings would
not as the decision making for production is not as time critical as for combat for
instance). We aim to demonstrate that the minimum load required in the execution
of the StarCraft connector leaves sufficient CPU time for adding the key decision
logic in an agent program. We do so for our StarCraft connector by evaluating a
simple multi-agent system that keeps producing simple units (‘Zerglings’) that con-
tinuously move to a random location on the map. In addition, all of these units
are subscribed to all percepts (i.e., have to process them every decision cycle). A
cheat was also enabled to ensure that these units cannot die. In this way, the
maximum amount of units that a player can have (which is close to 400) can be
reached without being influenced by the enemy in the game. Even though a player
is very unlikely to reach this number of units in a game in practice, or to have all
units subscribed to all percepts, we aim for our connector to provide sufficient CPU
time for strategic reasoning even in this worst-case scenario.

Figure 5.5: The average speed of a decision cycle for all agents under a growing number of agents.

The results of this evaluation for a minimum baseline are shown in Figure 5.5. The
evaluation was performed on a system with an Intel i7-6500U CPU and 8GB RAM,
3Most tournaments allow bots to take more time for a limited amount of frames during a single match,
but we disregard that here.

5.4. Connector Design Approach

5

109

with the StarCraft game speed set to the default tournament speed of 50 FPS. As
each agent runs in its own thread(s), the average time any agent’s cycle takes will
increase when the number of agents increases due to limited system resources (e.g.,
the number of available CPU cores). However, even in this worst-case situation
with up to 400 agents all processing all information available in the environment,
the average cycle time per agent grows to about 10 milliseconds at most. This
thus leaves 10 milliseconds for any additional reasoning to be implemented in the
MAS in this extreme scenario. In practice, there will be fewer agents that are all
subscribed to percepts more selectively. Therefore, in general, we see that around
18 milliseconds (out of the possible 20 milliseconds enforced by the tournaments
themselves) will be available to a MAS that uses our connector.

We note that we have designed this baseline MAS such that all of the agents
continuously execute decision cycles, whilst in practice, a decision is not required
by each agent in every frame. This fact provides further support for our claim that
sufficient processing power remains for implementing decision logic, as agents in
a MAS with a more diverse set of agents should refrain from executing decision
cycles (i.e., ‘sleep’) from time to time, thus freeing up CPU time for where it is
needed most.

Success
As we cannot directly establish whether the full strategy space is made available
by a connector, we aim to indirectly determine this by how well a cognitive MAS is
able to perform relative to an environment measure that we would like to optimize.
For a game like StarCraft, being successful at the game by winning (against other
AI implementations) can provide such a measure.

Over the course of two years, groups of students created a varied range of full-
fledged StarCraft AI implementations using (different versions of) our connector.
After at most 8 weeks of work, nearly all of their implementations are able to
defeat the game’s built-in AI consistently. Some of the groups joined the Student
StarCraft AI Tournament (SSCAIT) [18] with their implementations, successfully
competing with the over 100 other active bots (which are mostly written in C++ or
Java, frequently based on other well-established implementations, and have often
been around for many years or developed by companies like Facebook). One of the
students’ StarCraft AI implementations that makes use of our connector is currently
ranked at around the 50th place with a win-rate of roughly 60%. Altogether, this
suggest that we have made the strategy space associated with StarCraft sufficiently
available.

During the development and initial uses of the connector, we also gained valu-
able insights into the benefits and challenges of using current cognitive technologies
for engineering complex distributed systems. One particularly challenging develop-
ment issue that developers face when environments become more complex and the
number of agents increases, is that every run of the system will produce different
results. For this reason, it is very hard for a developer to test a specific scenario
that s/he has in mind without additional tooling to provide a developer with control
over the type of scenario that will evolve in the game. This makes testing very

5

110 5. Designing a Cognitive Connector for Complex Environments

difficult and it thus is of the utmost importance to do whatever possible to provide
a developer with tooling and capabilities to handle this. Testing against StarCraft’s
built-in AI, for example, will give different results on each run. More importantly, it
can take quite a while before a scenario of interest occurs (if it does at all). In order
to test specific (defined) scenarios, agent programmers should be allowed to save
the state of the game at any given point, and then load that specific game again
at a later stage, which is supported by StarCraft itself. Although our connector has
been designed to support such state saving, in practice this will only provide sup-
port to some extent, and agent platforms should provide some way of storing and
restoring the state of all agents at the same time.

5.4.5. Impact on Cognitive Technology
Even though the StarCraft connector has been optimized as far as possible when
it comes to percept delivery, we found that there still are optimizations that can
and should only be provided by the cognitive technology that is used, as we can
only do so much; if the MAS platform itself is inefficient, it will not be possible to
create an effective MAS approach for StarCraft with its strict real-time response
requirements. One issue is for example that cognitive agents typically try to run
as many decision cycles as possible. Considering the large number of agents that
are typically employed in StarCraft, however, this is not ideal. In order to free up
cycle time for e.g. agents that that have received new information to reason about.
Therefore, we believe that functionalities that reduce the total load on the CPU,
such as a ‘sleep mode’ in which an agent that does not receive new percepts from
the connector or new messages from other agents will not execute any reasoning,
should be provided by agent platforms.

However, problems do arise in this mode when for example an agent is supposed
to do something (e.g., move around) after it has not received new information for
some time. Therefore, a timing mechanism should be introduced as well, facilitating
the automatic generation of timer percepts upon a certain requested interval (thus
waking up the agent after a set amount of time). A sleep action can be added
as well, allowing a developer to manually sleep an agent for a certain amount of
time, and thus free up performance for other agents if they do not need to do any
reasoning for a while (even when new information comes in). An example of this is
when a building agent starts producing a new unit, and is sure it will keep producing
this unit (which takes a while). In addition, to allow developers to get more insight
into the performance of their agents, specific logging messages can be added to
agents that when enabled, after each decision cycle, show how many queries were
performed and how many beliefs, goals, percepts and messages the agent has
(received) in total. This can be useful for a developer to for example improve the
ordering or nesting of rules in order to reduce the average amount of queries that
are executed per cycle, or to keep tabs on the amount of messaging between agents
(e.g., one agent might flood another agent with redundant messages due to some
bug).

Another observation is that communication with large amounts of agents poses
many challenges. In practice, with peer-to-peer based messaging, as is typically

5.5. Conclusions and Future Work

5

111

done in cognitive architectures, developers often use broadcasts to all agents in
order to prevent having to use numerous bookkeepings of agents, which has an
especially large performance impact in systems with many agents (such as those
for StarCraft). We believe that this suggests that agent platforms should support
a publish-subscribe messaging system to be effective, as this prevents agents that
need to send messages to other agents from having to deal with continuously keep-
ing track of which agents are relevant for its messages (i.e., interested in the infor-
mation and still alive). Publish-subscribe messaging facilitates sending messages
to a ‘channel’. Agents can subscribe to (and unsubscribe from) such channels, thus
receiving messages sent to a certain channel only if they have explicitly indicated
they want to do so. This allows for messaging based on content instead of specific
targets. This is especially convenient for ‘manager agents’ to communicate with
other (groups of) agents, as such an agent could for instance relay all required
information about enemy units in a specific region to a certain channel, to which
agents that need that information can then subscribe.

We believe that the application of cognitive agent technologies to complex en-
vironments such as StarCraft will yield more ideas for further development.

5.5. Conclusions and Future Work
We have presented a design approach for creating connectors for cognitive agent
technology to (complex) environments, illustrated by a case study of such a con-
nector that provides full access to StarCraft. A major challenge that was addressed
during the development of this connector was to ensure corresponding cognitive
agent systems can be programmed at a high level of abstraction whilst simultane-
ously allowing sufficient variety in strategies to be implemented by such systems.
Based on this challenge, design guidelines for determining the set of available per-
cepts and actions in agent-environment connectors were formulated. The viability
of our approach is demonstrated by multiple large-scale practical uses of the Star-
Craft connector, resulting in a varied set of competitive AIs. Based on the devel-
opment of the connector and this initial use, we gained valuable insights on the
development of complex cognitive agent systems as well, such as the benefits of
using publish-subscribe based messaging and the challenges of debugging large
sets of agents.

Ensuring a sufficient level of performance of the connector was a significant
challenge that had to be addressed in particular in order to demonstrate that a unit-
agent mapping (MAS) approach is viable. In our evaluations, we determined the
baseline performance of the connector in a worst-case scenario, which shows that
on average there remains sufficient CPU time for strategic reasoning in a cognitive
MAS. Even though the performance of such a MAS depends largely on the agent
technology used itself, we believe that our connector, and thus our design approach,
can be effectively used in practice. Although our case study is focused on the
‘Brood War’ version of StarCraft, the new ‘raw API’ of StarCraft 2 is reported to be
similar to BWPAI by Vinyals et al. [19], and tour work should therefore be relatively
straightforwardly applicable and/or portable to StarCraft 2 (and possibly other RTS
games) in future work.

5

112 References

Finally, through the development and use of our connector for StarCraft, a num-
ber of challenges to cognitive agent technologies were identified. One of those
challenges is the fact that debugging (cf. Chapter 2) becomes increasingly difficult
with increasing numbers of agents. As debugging concurrent programs is a hard
problem in general, more work is required in this area; it could for example be
useful to visualize the interaction between agents or the CPU time required by each
agent. In addition, in order to better support automated testing, (cf. Chapter 3),
it may be beneficial to develop a mechanism that automatically saves the state of
a MAS when a save game is created in StarCraft. This can be used to immediately
initialize a MAS to the desired state when executing a test with a specific save game
(i.e., a scenario). Another observation is that communication with large amounts
of agents poses many challenges, requiring more investigation in future work, for
example into messaging architectures based on a publish-subscribe pattern. Fi-
nally, the performance of a MAS itself (i.e., all processing that takes place outside
of a connector) is of critical importance in highly dynamic environments such as
StarCraft. Functionalities that can reduce the CPU load of a MAS are thus important
to explore as well.

References
[1] V. J. Koeman, H. J. Griffioen, D. C. Plenge, and K. V. Hindriks, Designing

a cognitive agent connector for complex environments: A case study with
starcraft, in Proceedings of the 6th International Workshop on Engineering
Multi-Agent Systems, EMAS ’18 (2018).

[2] V. J. Koeman, H. J. Griffioen, D. C. Plenge, and K. V. Hindriks, Starcraft
as a testbed for engineering complex distributed systems using cognitive
agent technology, in Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’18 (International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC, USA,
2018) pp. 1983–1985.

[3] N. R. Jennings, K. Sycara, and M. Wooldridge, A roadmap of agent research
and development, Autonomous Agents and Multi-Agent Systems 1, 7 (1998).

[4] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, Multi-Agent
Programming (Springer, 2009).

[5] J. P. Müller and K. Fischer, Application impact of multi-agent systems and tech-
nologies: A survey, in Agent-Oriented Software Engineering: Reflections on
Architectures, Methodologies, Languages, and Frameworks, edited by O. She-
hory and A. Sturm (Springer Berlin Heidelberg, 2014) pp. 27–53.

[6] K. V. Hindriks, The shaping of the agent-oriented mindset, in Engineering Multi-
Agent Systems: Second International Workshop, EMAS 2014, Paris, France,
May 5-6, 2014, Revised Selected Papers, edited by F. Dalpiaz, J. Dix, and
M. B. van Riemsdijk (Springer International Publishing, 2014) pp. 1–14.

References

5

113

[7] B. Logan, A future for agent programming, in Engineering Multi-Agent Sys-
tems: Third International Workshop, EMAS 2015, Istanbul, Turkey, May 5,
2015, Revised, Selected, and Invited Papers, edited by M. Baldoni, L. Baresi,
and M. Dastani (Springer International Publishing, Cham, 2015) pp. 3–17.

[8] F. Dignum, J. Westra, W. A. van Doesburg, and M. Harbers, Games and
agents: Designing intelligent gameplay, International Journal of Computer
Games Technology 2009 (2009).

[9] G. Robertson and I. Watson, A review of real-time strategy game AI, AI Mag-
azine 35, 75 (2014).

[10] R. Lara-Cabrera, C. Cotta, and A. Fernández-Leiva, A review of computa-
tional intelligence in RTS games, in 2013 IEEE Symposium on Foundations of
Computational Intelligence (FOCI) (2013) pp. 114–121.

[11] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss,
A survey of real-time strategy game AI research and competition in Star-
Craft, IEEE Transactions on Computational Intelligence and AI in Games 5,
293 (2013).

[12] F. Dignum, Agents for games and simulations, Autonomous Agents and Multi-
Agent Systems 24, 217 (2012).

[13] K. V. Hindriks, B. van Riemsdijk, T. Behrens, R. Korstanje, N. Kraayenbrink,
W. Pasman, and L. de Rijk, Unreal GOAL bots, in Agents for Games and Sim-
ulations II: Trends in Techniques, Concepts and Design, edited by F. Dignum
(Springer Berlin Heidelberg, 2011) pp. 1–18.

[14] B. G. Weber, M. Mateas, and A. Jhala, Building human-level AI for real-time
strategy games, in AAAI Fall Symposium: Advances in Cognitive Systems,
Vol. 11 (2011).

[15] A. Heinermann, Brood War API, https://github.com/bwapi/bwapi
(2008), accessed: 2018-05-12.

[16] A. S. Jensen, C. Kaysø-Rørdam, and J. Villadsen, Interfacing agents to real-
time strategy games, in SCAI (2015) pp. 68–77.

[17] T. M. Behrens, K. V. Hindriks, and J. Dix, Towards an environment interface
standard for agent platforms, Annals of Mathematics and Artificial Intelligence
61, 261 (2011).

[18] M. Čertický, P. Paradies, M. Šuppa, B. P. Mattsson, T. Vajda, R. Poni-
atowski, and S. Klett, Student StarCraft AI Tournament, https://
sscaitournament.com (2011), accessed: 2018-05-12.

[19] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al., StarCraft II: A new
challenge for reinforcement learning, arXiv preprint arXiv:1708.04782 (2017).

https://github.com/bwapi/bwapi
https://sscaitournament.com
https://sscaitournament.com

6
Conclusion

The research presented in this thesis focuses on tools for the development of cog-
nitive agents. It provides validated design approaches for source-level debuggers
of cognitive agents (Chapter 2), testing frameworks for cognitive agents (Chap-
ter 3), tracers for cognitive agents (Chapter 4), and connectors of cognitive agents
to complex environments (Chapter 5). The main question of this thesis is:

How can we support developers of cognitive agents in effectively engineering
multi-agent systems?

6.1. Conclusions
From the main question, five research questions were derived, and answered in
each respective chapter of this thesis.

RQ 1: How can we provide developers of cognitive agents with an insight into
how observed behaviour relates to the program code?

We proposed a source-level debugger design for cognitive agents aimed at provid-
ing a better insight into the relationship between program code and the resulting
behaviour. We identified two different types of breakpoints specifically for agent
programming: code-based and cycle-based. The former are based on the structure
of an agent program, whereas the latter are based on an agent’s decision cycle. We
proposed concrete design steps for designing a debugger for cognitive agent pro-
grams; by using the syntax and decision cycle of an agent programming language,
a set of pre-defined breakpoints and a flow between them can be determined in
a structured manner, and represented in a stepping diagram. Based on such a
diagram, features such as user-defined breakpoints, visualization of the execution
flow, and state inspection can be handled. We provided a concrete design for the
GOAL and Jason programming languages, as well as a full implementation for GOAL,
and argue that our design approach can be applied to other agent programming

115

6

116 6. Conclusion

languages as well. A qualitative evaluation shows that agent programmers prefer
the source-level (i.e., code-based) over a purely cycle-based debugger.

RQ 2: How can we automate the detection and localization of failures for
developers of cognitive agent programs?

We proposed an automated testing framework for cognitive agents, facilitating au-
tomated failure detection and reducing the debugging effort that is required from a
developer. We argued that modules are a natural unit for testing, and associate test
conditions with modules of an agent program. We introduced a test language that
is used to specify test templates for detecting failure types. These test templates
refine a failure taxonomy introduced by Winikoff [1]. A test approach has also been
specified that explains how to instantiate test templates and derive test conditions
for specific failure types. The main steps of this approach are to (i) define success in
terms of functional requirements, (ii) test cognitive state updating, and (iii) classify
failures that concern actions and goals.

The proposed test language is minimal in the sense that only two temporal
operators are provided. We showed by analysing different agent program samples
that the language is nevertheless sufficient for detecting failures in these programs.
In about 77% of failures found in this reproduction, the testing framework also
pointed to the code location of the corresponding fault. We demonstrated that our
approach is not biased towards a specific sample of agent programs by applying the
framework to other sample programs, and in a different environment. We were able
to adequately detect failures by means of the automated testing framework, i.e., all
agents eventually met all functional requirements after fixing the detected failures.
We also showed that for single agents, test results are always consistent. However,
when running multiple agents, a high number of repetitions might be needed to
reproduce the same failure in some cases, suggesting an important direction for
future work into the testability of multi-agent systems.

A concrete implementation of the proposed automated testing framework has
been performed for the GOAL agent programming language, serving as a prototype
for evaluation and as an example for other agent programming languages. Empirical
evaluation of a large set of test files and according questionnaires handed in by
novice agent programmers confirmed that developers spend a considerable amount
of time on testing, reaffirming the importance of proper support for this task.

RQ 3: How can we facilitate developers of cognitive agents in employing ‘back-
in-time’ debugging techniques?

We proposed a tracing mechanism design that supports omniscient debugging for
cognitive agents, a technique that facilitates debugging by moving backwards in
time through a program’s execution. Using a prototypical implementation of the
tracing mechanism in the GOAL agent programming language, we evaluated and
demonstrated empirically that the mechanism is efficient and does not substantially
affect the runs of program in the sense that the same failures can be reproduced

6.2. Limitations

6

117

when the mechanism is turned on and off. This essentially shows that our mech-
anism is fast enough and can be used in practice for debugging failures without a
need to rerun a program.

We also introduced a trace visualization method tailored to cognitives agents
based on a space-time view of the execution history. A developer can navigate this
view, evaluate queries on a trace, and apply filters to it to obtain views of only the
relevant parts of a trace. Our approach is integrated with a source-level debugger
and traces source code locations, which enables a developer to single-step through
a program’s execution history and facilitates fault localization.

RQ 4: How can developers of cognitive agents connect their agents to complex
real-time environments?

We presented a design approach for creating connectors for cognitive agent tech-
nology to (complex) environments, illustrated by a case study of such a connector
that provides full access to StarCraft: Brood War. A major challenge that was ad-
dressed during the development of this prototypical connector was to ensure corre-
sponding cognitive agent systems can be programmed at a high level of abstraction
whilst simultaneously allowing sufficient variety in strategies to be implemented by
such systems. Based on this challenge, design guidelines for determining the set of
available percepts and actions in agent-environment connectors were formulated.
The viability of our approach is demonstrated by multiple large-scale practical uses
of the StarCraft connector, resulting in a varied set of competitive AIs. Based on the
development of the connector and this initial use, we gained valuable insights on
the development of complex cognitive agent systems as well, such as the benefits
of using publish-subscribe based messaging and the challenges of debugging large
sets of agents.

Ensuring a sufficient level of performance of the connector was a significant
challenge that had to be addressed in particular in order to demonstrate that a
unit-agent mapping approach is viable. In our evaluations, we determined the
baseline performance of the connector in a worst-case scenario, which shows that
on average there remains sufficient CPU time for strategic reasoning in a cognitive
MAS. Even though the performance of such a MAS depends largely on the agent
technology used itself, we believe that our connector, and thus our design approach,
can be effectively used in practice.

6.2. Limitations
One limitation of this work is that all three proposed design approaches for develop-
ment tools for cognitive agents have been implemented and evaluated in the GOAL
agent programming language. Although the approaches are designed for cognitive
agent systems in general, and all assumptions are listed for each respective design,
this means that each evaluation has been performed on specific sets of program-
mers (i.e., students at the Delft University of Technology). We aim for this work
to inspire the maintainers of other cognitive agent platforms to apply our design
approaches to strengthen the development tools in their platforms in the future,

6

118 6. Conclusion

and perhaps also different groups of programmers (e.g., in industry) to adopt the
cognitive toolset. A similar limitation applies to our proposed design approach for
connectors of cognitive agents to complex environments, as this approach has been
applied to only one such scenario (i.e., StarCraft). Although we believe this envi-
ronment is prototypical, we similarly aim for this work to promote the development
of such connectors.

An additional limitation applies to Chapters 4 and 5 specifically. For these works,
no (qualitative) user studies have been performed yet. For the omniscient debug-
ger, we believe that a history-based explanation mechanism that can automatically
answer questions such as ‘why did this action (not) happen’ [2, 3] is first required for
developers to enjoy the full potential of this tool. Regarding connectors of cognitive
agents to complex environments, there is only a handful of people in the world who
develop such connectors at this time. We hope that our proposed design approach
will empower others to undertake such development as well, thus also increasing
the use of cognitive agents as a solution to AI problems.

Finally, even though explicitly aiming at tooling for multi-agent systems from the
start, all studies show that working with more than a handful of agents still vastly
complicates a large portion of the development process. Although vitally important
for cognitive agents, the debugging and testing of concurrent programs in general is
an active research topic [4]. Further work is necessary both in general and for MAS
specifically to deal with the issues that concurrency introduces to the developers.

6.3. Contributions
In this work, we have contributed to the field of developing cognitive agents in mul-
tiple ways. We have empirically investigated the needs of developers of cognitive
agents in effectively engineering solutions to AI problems. Based on this, for the
AOP community as a whole, we have introduced design methods for the creation of
source-level debuggers, automated testing frameworks, omniscient debuggers, and
cognitive connectors; all vital tools for engineering MAS. Each tool has been imple-
mented in the GOAL agent platform, making sure the proposed design approaches
are feasible in practice and serving both as a prototype for use in evaluations as
well as an open-source example for the developers of other AOP solutions1.

We believe all of this work also enhances the potential of “demonstrating the
added value of cognitive agents” [5]. First, empowering developers of cognitive
agent systems to effectively debug and test their systems should enhance their
potential willingness to employ these technologies; debugging and testing are a
large part of the entire development process after all [6, 7]. Second, providing
developers with a design approach for developing efficient cognitive connectors
to complex environments (like StarCraft) allows AOP to be actually employed for
engineering large-scale complex distributed systems. Finally, our empirical results
provide concrete examples of the potential of AOP. In total perhaps close to a thou-
sand students made use of the GOAL agent platform over the past four years. The
StarCraft connector, for example, was used in conjunction with the GOAL platform

1See https://bitbucket.org/goalhub/ and https://github.com/eishub/.

https://bitbucket.org/goalhub/
https://github.com/eishub/

6.4. Future Work

6

119

by three distinct sets of students in two years: from a pilot with around 100 stu-
dents, a first run with over 200 students, to a second run with over 300 students.
As discussed in the evaluation of Chapter 5, the results of (most of) these students
are a clear indicator of the success of both the GOAL platform (of which all our
development tools are a major part) and the accompanying cognitive connector for
StarCraft, which in turn demonstrates the advancements made in AOP tooling and
cognitive connectors in general by our work.

All students together form another more societal contribution of our work to
the education of AI in general. Students were convincingly enthusiastic about the
StarCraft projects for example, a project which would not have been feasible without
all the contributions of this thesis. A master’s student of ours graduated on the
subject of GOAL and StarCraft specifically [8]. Moreover, our endeavours sparked
attention outside of the scientific community2.

Perhaps one of the most profound contributions of this thesis can be found in
the back-in-time debugger for AOP of Chapter 4. Not only does it show the vast
potential of AOP compared to e.g. OO by requiring only a 10% overhead (instead
of up to 300%), efficient agent traces can serve as a foundation for vital future
challenges. One of these can be found in the field of Explainable AI (see e.g. Miller
[9] for a recent overview). Being able to trace the reasoning of an agent in a
real-life deployment is vital for future AI, relating to concepts such as responsibility,
transparency, and accountability (see e.g. [10]). For cognitive agents specifically,
as they derive their choice of action from their beliefs and goals which are stored in
the trace, this potentially provides these agents with the capability to self-explain
their behaviour in terms of these concepts. However, on top of the behavioural
trace data that we can thus now provide in a trace, e.g. Taylor et al. [11] identify at
least four more knowledge sources required for (end-user) explanations: (i) agent
design rationale, (ii) domain knowledge, (iii) display ontology, and (iv) explanation
knowledge. Although test conditions (c.f. Chapter 3) might serve as part of a design
rationale, employing the knowledge sources in AOP is subject for future work. I have
developed a prototype of an ‘explaining debugger’ (c.f. Hindriks [2], Winikoff [3])
during my stay at the University of Liverpool, for which publications are in writing
at the time of finishing this thesis.

6.4. Future Work
The debugging challenges related to rule-based reasoning and agent decision cy-
cles form an important part of this thesis. However, there are more challenges in
debugging cognitive agents that still need to be addressed. One of these is the fact
that agents are generally connected to environments that cannot be suspended
instantly (or at all), which makes it difficult to understand the context of a defect.
This is especially the case when dealing with physical environments, e.g., controlling
robots like search-and-rescue drones. Simulating environments could be a possi-
ble solution for this, i.e., using a deterministic, suspendable and repeatable version
of an environment for debugging purposes. However, this is a major challenge,

2See https://sscaitournament.com/index.php?action=blog&date=2017-12-25.

https://sscaitournament.com/index.php?action=blog&date=2017-12-25

6

120 6. Conclusion

especially for large and/or uncertain domains. A similar challenge is encountered
when using multiple agents, as the inherent randomness of allocating CPU time to
agent threads can also cause differences upon each run of the system3. These
same challenges also lead us to rely on ‘runtime verification’ of agents, instead of
using formal techniques like model checking [12]. Although such techniques pro-
vide much stronger assurances on the behaviour of a MAS, they inherently require
a specification of all possible inputs (or at least the range they are in) and the exact
effect of each action any agent takes. Again, this could only be feasible in a con-
strained simulation environment. Moreover, the usability of model checking tools
for non-trivial domains in e.g. the time it requires to execute the verification will
need to be improved as well.

Although as aforementioned debugging concurrent programs is a major problem
in any type of programming language, the agent-oriented paradigm entails a num-
ber of aspects that might aid in supporting this for multi-agent systems specifically.
For example, the fact that the way in which agents communicate is determined
by the platform could be exploited for specific visualizations. In addition, grouping
concepts such as organizations and roles could help in clustering information for
users, especially considering that the amount of information needed for debugging
can easily explode in a systems with many agents.

Most programming languages for cognitive agents embed knowledge represen-
tation (KR) languages like Prolog or a Web Ontology Language (OWL). This in-
troduces an additional opportunity to employ the debugging frameworks that are
available for such embedded languages. For example, SWI Prolog debugging tools
could be made available through the GOAL debugger in some way. Moreover, some
agent programming languages also embed (instead of extend) an object-oriented
programming language such as Java. For these languages, designing a debugger
that enables developers of cognitive agents to debug their agents specifically (i.e.,
without stepping into the reasoning engine itself) is a major open challenge.

Our tracing mechanism for cognitive agents focuses on the core aspects of such
agents. However, when using additional components like an ethical reasoner or
a reinforcement learner, tracing the (implication of the) reasoning in these com-
ponents is vital as well. Our ‘state change-based’ design does inherently facilitate
adding any important event to a trace, but defining those events in such compo-
nents is still an open challenge.

Finally, through the development and use of our cognitive connector for Star-
Craft, further challenges to cognitive agent technologies in general were identified.
In time-critical environments, profiling (i.e., measuring the space or time complexity
of a program) is a vital development process. However, in the context of multi-agent
systems, profiling has not been received much attention so far. It could for exam-
ple be useful to visualize the CPU time required by each (module of each) agent.
In addition, in order to improve the support for automated testing with complex
environments without any form of simulation, it would be beneficial to develop a
mechanism that automatically saves the state of a MAS when e.g. a save game
is created in StarCraft. This could then be used to immediately initialize a MAS to

3Only trivial performance-hampering scheduling mechanisms could truly prevent this.

References

6

121

the desired state when executing a test with the specific save (i.e., scenario). An-
other observation is that communication with large amounts of agents poses many
challenges, requiring more investigation in future work, for example into messaging
architectures based on a publish-subscribe pattern and organisational structures of
multi-agent systems in general4. Finally, the performance of a MAS itself (i.e., all
processing that takes place outside of a connector) is of critical importance in highly
dynamic environments such as StarCraft. Functionalities that can further reduce the
CPU load of a MAS are thus important to explore as well.

More generally, the co-existence of a MAS on one side and a connector on the
other side raises some questions about the level of abstraction that is desired in
each component. It is obvious that an agent should not consist of a single action
like win which then delegates all tasks to within the connector nor of actions as
specific as controlling the individual joints as a robot; however, the grey area that is
in-between these two ends perhaps deserves more attention, as developers wanting
to tackle a certain problem in a certain with our tools will need to create both the
MAS and the corresponding connector for that environment. To this end, a clear
overarching design approach would be beneficial.

References
[1] M. Winikoff, Novice programmers’ faults and failures in GOAL programs, in

Proceedings of the 2014 International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’14 (International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, USA, 2014) pp. 301–308.

[2] K. V. Hindriks, Debugging is explaining, in PRIMA 2012: Principles and Prac-
tice of Multi-Agent Systems, Lecture Notes in Computer Science, Vol. 7455,
edited by I. Rahwan, W. Wobcke, S. Sen, and T. Sugawara (Springer Berlin
Heidelberg, 2012) pp. 31–45.

[3] M. Winikoff, Debugging agent programs with why? questions, in Proceed-
ings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’17 (International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, USA, 2017) pp. 251–259.

[4] S. Abbaspour Asadollah, D. Sundmark, S. Eldh, H. Hansson, and W. Afzal,
10 years of research on debugging concurrent and multicore software: A sys-
tematic mapping study, Software Quality Journal 25, 49 (2017).

[5] K. V. Hindriks, The shaping of the agent-oriented mindset, in Engineering Multi-
Agent Systems: Second International Workshop, EMAS 2014, Paris, France,
May 5-6, 2014, Revised Selected Papers, edited by F. Dalpiaz, J. Dix, and
M. B. van Riemsdijk (Springer International Publishing, 2014) pp. 1–14.

[6] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling, What do we
know about defect detection methods? Software, IEEE 23, 82 (2006).

4I recently contributed to this line of research with two undergraduate students in Bernstein et al. [13].

6

122 References

[7] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debug-
ging, 2nd ed. (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2009).

[8] T. Peeters, Evaluating a Cognitive Agent-Orientated Approach for the creation
of Artificial Intelligence in StarCraft, Master’s thesis, Delft University of Tech-
nology (2018).

[9] T. Miller, Explanation in artificial intelligence: Insights from the social sciences,
Artificial Intelligence 267, 1 (2019).

[10] Ethically Aligned Design, A Vision for Prioritizing Human Well-being with Au-
tonomous and Intelligent Systems, Report (The IEEE Global Initiative for Eth-
ical Considerations in Artificial Intelligence and Autonomous Systems, 2018).

[11] G. Taylor, R. M. Jones, M. Goldstein, R. Frederiksen, and R. E. Wray III, Vista:
A generic toolkit for visualizing agent behavior, in Proceedings of the 11th Con-
ference on Computer Generated Forces and Behavioral Representation (Insti-
tute for Simulation and Training, University of Central Florida, Orlando, FL,
USA, 2002) pp. 157–167.

[12] L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini, Model checking agent
programming languages, Automated Software Engineering 19, 5 (2012).

[13] B. A. Bernstein, J. C. Geurtz, and V. J. Koeman, Evaluating the effectiveness of
multi-agent organisational paradigms in a real-time strategy environment, in
Proceedings of the 2019 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’19 (International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, USA, 2019) p. in press.

A
Source-Level Debugger

Questionnaire and
Correlation Analysis

The following instructions were given in the questionnaire that was used for the
evaluation in Chapter 2:

1. Indicate the total time you spent on programming for this assignment.
(Less than 8 hours, 8-12 hours, 12-16 hours, 16-20 hours, or More than 20
hours)

2. Indicate the percentage of time that you spent on debugging and testing out
of the total time you spent on programming for this assignment.
(Less than 10%, 10 to 25%, 25 to 40%, 40 to 55%, or More than 55%)

3. Indicate the percentage of time that you spent using the Eclipse debugger
out of the total time you (both) spent on programming for this assignment.
(Less than 10%, 10 to 25%, 25 to 40%, 40 to 55%, or More than 55%)

4. Select the option that best matches you.
(I use the debugger after an automated test fails, I use the debugger to see
how my program behaves, I use the debugger when I see that the robots in
BW4T do something wrong, or I hardly use the debugger)

5. Order the following debugging features provided by the Eclipse debugger from
most useful to least useful.
(Logging, Interactive Console, Stepping, Breakpoints, State Inspection, and
Watch Expressions)

6. Order each of the following aspects of agent-oriented programming frommak-
ing debugging more easy to more difficult.

123

A

124 A. Source-Level Debugger Questionnaire and Correlation Analysis

(Embedded KR languages like Prolog, External environments like BW4T, Cog-
nitive states, Decision cycles, Rule-based decision making, and Multiple agents)

7. Rate how effective you find source-level debugging for locating faults in an
agent program.
(Very Effective, Effective, Somewhat Effective, Not that Effective, Ineffective)

8. Provide any comments you have on agent programming, developing, debug-
ging, and testing. We would like to know what you think works well but
would also appreciate any comments or suggestions for improving how you
can develop agent programs.

The following provides correlation analyses of the results of the evaluation as dis-
cussed in Chapter 2 (N=94).
∗∗. Correlation is significant at the 0.01 level (2-tailed).
∗. Correlation is significant at the 0.05 level (2-tailed).

Table A.1: Correlation Analysis of the answers to Questions 1, 2, 3, and 7.

Pearson C. TotalTime DebuggingTesting UseDebugger Effectiveness
TotalTime 1 .436∗∗ .097 .005
DebuggingTesting .436∗∗ 1 .460∗∗ -.071
UseDebugger .097 .460∗∗ 1 .235∗∗

Effectiveness .005 -.071 .235∗ 1

Table A.2: Correlation Analysis of the answers to Question 5.

Pearson C. Logging Console Stepping Breakpoints Inspection Expressions
Logging 1 -.043 -.279∗∗ -.129 -.435∗∗ -.216∗

Console -.043 1 -.319∗∗ -.305∗∗ -.248∗ -.178
Stepping -.279∗∗ -.319∗∗ 1 -.008 .087 -.335∗∗

Breakpoints -.129 -.305∗∗ -.008 1 -.269∗∗ -.186
Inspection -.435∗∗ -.248∗ .087 -.269∗∗ 1 -.119
Expressions -.216∗ -.178 -.335∗∗ -.186 -.119 1

Table A.3: Correlation Analysis of the answers to Question 6.

Pearson C. KR Environments States Cycles Rules Multiagent
KR 1 .014 -.188 -.438∗∗ -.234∗ -.417∗∗

Environments .014 1 -.249∗ -.309∗∗ -.563∗∗ -.054
States -.188 -.249∗ 1 -.054 .036 -.330∗∗

Cycles -.438∗∗ -.309∗∗ -.054 1 .072 -.006
Rules -.234∗ -.563∗∗ .036 .072 1 -.212∗

Multiagent -.417∗∗ -.054 -.330∗∗ -.006 -.212∗ 1

Curriculum Vitæ

Vincent Jaco KOEMAN

24-01-1992 Born in Hoorn, the Netherlands.

Education
2003–2009 Pre-University Education

Werenfridus Gymnasium, Hoorn
Cambridge Certificate in Advanced English (CAE), CEFR Level C1
International Baccalaureate (IB), English Language A1 Higher Level

2009–2012 Bachelor Computer Science
Delft University of Technology
Economics, Law and Management minor

2012–2014 Master Computer Science
Delft University of Technology
Media and Knowledge Engineering track
Interactive Intelligence specialization

Work experience
2011–2014 Teaching Assistant

Delft University of Technology
2011– Co-founder

Chainels (retailer platform)
2014–2019 PhD candidate Interactive Intelligence

Delft University of Technology
Thesis: Tools for Developing Cognitive Agents
Promotor 1: Prof. dr. K.V. Hindriks
Promotor 2: Prof. dr. C.M. Jonker

125

List of Publications

14. B. A. Bernstein, J. C. M. Geurtz, and V. J. Koeman (2019). Evaluating the Ef-
fectiveness of Multi-Agent Organisational Paradigms in a Real-Time Strategy Environ-
ment. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems (in press). International Foundation for Autonomous Agents
and Multiagent Systems.

13. V. J. Koeman, K. V. Hindriks, J. Gratch, and C. M. Jonker (2019). Recognising
and Explaining Bidding Strategies in Negotiation Support Systems. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems (in
press). International Foundation for Autonomous Agents and Multiagent Systems.

12. V. J. Koeman, H. J. Griffioen, D. C. Plenge, and K. V. Hindriks (2019). Designing
a Cognitive Agent Connector for Complex Environments: A Case Study with StarCraft.
In Engineering Multi-Agent Systems. EMAS 2018. Lecture Notes in Computer Science
(in press). Springer, Cham.

11. V. J. Koeman, K. V. Hindriks, and C. M. Jonker (2018). Automating failure detec-
tion in cognitive agent programs. Agent-Oriented Software Engineering, 6(3-4), pp.
275-308.

10. V. J. Koeman, H. J. Griffioen, D. C. Plenge, and K. V. Hindriks (2019). Designing
a Cognitive Agent Connector for Complex Environments: A Case Study with StarCraft.
In Proceedings of the 6th International Workshop on Engineering Multi-Agent Systems.
EMAS 2018.

9. V. J. Koeman, H. J. Griffioen, D. C. Plenge, and K. V. Hindriks (2018). StarCraft
as a Testbed for Engineering Complex Distributed Systems Using Cognitive Agent Tech-
nology. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems (pp. 1983-1985). International Foundation for Autonomous
Agents and Multiagent Systems.

8. V. J. Koeman, K. V. Hindriks, and C. M. Jonker (2017). Omniscient debugging
for GOAL agents in Eclipse (Demonstration). In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (pp. 5232-5234). AAAI Press.

7. V. J. Koeman, K. V. Hindriks, and C. M. Jonker (2017). Omniscient debugging for
cognitive agent programs. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence (pp. 265-272). AAAI Press.

6. V. J. Koeman, K. V. Hindriks, and C. M. Jonker (2017). Designing a source-level
debugger for cognitive agent programs. Autonomous Agents and Multi-Agent Systems,
31(5), pp. 941-970.

127

https://doi.org/10.1504/IJAOSE.2018.096432
https://doi.org/10.1504/IJAOSE.2018.096432
http://emas2018.dibris.unige.it/images/papers/EMAS18-18.pdf
https://dl.acm.org/citation.cfm?id=3238045
https://dl.acm.org/citation.cfm?id=3238045
https://dl.acm.org/citation.cfm?id=3172069
https://dl.acm.org/citation.cfm?id=3172069
https://dl.acm.org/citation.cfm?id=3171681
https://dl.acm.org/citation.cfm?id=3171681
https://doi.org/10.1007/s10458-016-9346-4
https://doi.org/10.1007/s10458-016-9346-4

128 List of Publications

5. V. J. Koeman, K. V. Hindriks, and C. M. Jonker (2016). Using Automatic Failure
Detection for Cognitive Agents in Eclipse (AAMAS 2016 DEMONSTRATION). In Baldoni
M., Müller J., Nunes I., Zalila-Wenkstern R. (eds) Engineering Multi-Agent Systems.
EMAS 2016. Lecture Notes in Computer Science, vol 10093 (pp. 59-80). Springer,
Cham.

4. V. J. Koeman, K. V. Hindriks, and C. M. Jonker (2016). Using Automatic Failure
Detection for Cognitive Agents in Eclipse (Demonstration). In Proceedings of the 16th
International Conference on Autonomous Agents and MultiAgent Systems (pp. 1507-
1509). International Foundation for Autonomous Agents and Multiagent Systems.

3. V. J. Koeman, K. V. Hindriks, and C. M. Jonker (2016). Automating failure detec-
tion in cognitive agent programs. In Proceedings of the 16th International Conference
on Autonomous Agents and MultiAgent Systems (pp. 1237-1246). International Foun-
dation for Autonomous Agents and Multiagent Systems.

2. V. J. Koeman and K. V. Hindriks (2015). Designing a Source-Level Debugger for
Cognitive Agent Programs. In Chen Q., Torroni P., Villata S., Hsu J., Omicini A. (eds)
PRIMA 2015: Principles and Practice of Multi-Agent Systems. PRIMA 2015. Lecture
Notes in Computer Science, vol 9387 (pp. 335-350). Springer, Cham.

1. V. J. Koeman and K. V. Hindriks (2015). A fully integrated development environ-
ment for agent-oriented programming. In Demazeau Y., Decker K., Bajo Pérez J., de
la Prieta F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems,
and Sustainability: The PAAMS Collection. PAAMS 2015. Lecture Notes in Computer
Science, vol 9086 (pp. 288-291). Springer, Cham.

https://doi.org/10.1007/978-3-319-50983-9_4
https://doi.org/10.1007/978-3-319-50983-9_4
https://doi.org/10.1007/978-3-319-50983-9_4
https://dl.acm.org/citation.cfm?id=2937229
https://dl.acm.org/citation.cfm?id=2937229
https://dl.acm.org/citation.cfm?id=2937229
https://dl.acm.org/citation.cfm?id=2937104
https://dl.acm.org/citation.cfm?id=2937104
https://doi.org/10.1007/978-3-319-25524-8_21
https://doi.org/10.1007/978-3-319-25524-8_21
https://doi.org/10.1007/978-3-319-25524-8_21
https://doi.org/10.1007/978-3-319-18944-4_29
https://doi.org/10.1007/978-3-319-18944-4_29
https://doi.org/10.1007/978-3-319-18944-4_29
https://doi.org/10.1007/978-3-319-18944-4_29

SIKS Dissertation Series

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in
Latent Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and
Operational Semantics of an Organization-Oriented Programming Lan-
guage

03 Jan Martijn van der Werf (TU/e), Compositional Design and Verification
of Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal
analysis and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - In-
creasing the Performance of an Emerging Discipline.

06 Yiwen Wang (TU/e), Semantically-Enhanced Recommendations in Cul-
tural Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Hu-
man Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented
Dialogues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused

HCI Perspective
12 Carmen Bratosin (TU/e), Grid Architecture for Distributed Process Min-

ing
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for

Airport Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Mar-

kets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evi-

dence for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different Complex-

ity
17 Jiyin He (UvA), Exploring Topic Structure: Coherence, Diversity and

Relatedness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-

based approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-

Oriented Systems
22 Junte Zhang (UvA), System Evaluation of Archival Description and Ac-

cess

129

130 SIKS Dissertation Series

23 Wouter Weerkamp (UvA), Finding People and their Utterances in Social
Media

24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Co-
ordination with Virtual Humans On Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models
for Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication -
Emotion Regulation and Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous
management of design patterns

28 Rianne Kaptein (UvA), Effective Focused Retrieval by Exploiting Query
Context and Document Structure

29 Faisal Kamiran (TU/e), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling

the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches

for Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Map-

ping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and

Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive

approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applica-

tions for Preference Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious

Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Soft-

ware Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access

Control
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribu-

tion
43 Henk van der Schuur (UU), Process Improvement through Software Op-

eration Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative

Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-

based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent

Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive

Artificial Listening Agent

SIKS Dissertation Series 131

49 Andreea Niculescu (UT), Conversational interfaces for task-oriented
spoken dialogues: design aspects influencing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human

and Ambient Agent Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Soft-

ware Repositories
04 Jurriaan Souer (UU), Development of Content Management System-

based Web Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers

in Research Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring

Agent-based Models of Human Performance under Demanding Condi-
tions

08 Gerben de Vries (UvA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for

Context-Aware Service Platforms
10 David Smits (TU/e), Towards a Generic Distributed Adaptive Hyperme-

dia Environment
11 J.C.B. Rantham Prabhakara (TU/e), Process Mining in the Large: Pre-

processing, Discovery, and Diagnostics
12 Kees van der Sluijs (TU/e), Model Driven Design and Data Integration

in Semantic Web Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions

of emotion during playful interactions
14 Evgeny Knutov (TU/e), Generic Adaptation Framework for Unifying

Adaptive Web-based Systems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of

Integrated Internal and Social Dynamics of Cognitive and Affective Pro-
cesses.

16 Fiemke Both (VU), Helping people by understanding them - Ambient
Agents supporting task execution and depression treatment

17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Busi-
ness Process Compliance

18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TU/e), What’s Next? Operational Support for Busi-

ness Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust

Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information

Retrieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare

grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Ex-

ploring the Neurophysiology of Affect during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken

Document Retrieval

132 SIKS Dissertation Series

25 Silja Eckartz (UT), Managing the Business Case Development in Inter-
Organizational IT Projects: A Methodology and its Application

26 Emile de Maat (UvA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation &

Brain-Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Re-

flective Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for

Higher Order Cognitive Skills Improvement, Building Capacity and In-
frastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference representa-
tion and reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and appli-

cations
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of

Controllers in Swarm- and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative

Modeling Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Archi-

tecture Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolution-

ary Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination net-

works
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated

Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Trans-

actions
46 Simon Carter (UvA), Exploration and Exploitation of Multilingual Data

for Statistical Machine Translation
47 Manos Tsagkias (UvA), Mining Social Media: Tracking Content and Pre-

dicting Behavior
48 Jorn Bakker (TU/e), Handling Abrupt Changes in Evolving Time-series

Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynam-

ics of reinforcement learning algorithms in strategic interactions
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information

Systems Engineering
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical

framework with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support

SIKS Dissertation Series 133

02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store
Database Technology for Efficient and Scalable Stream Processing

03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and schedul-

ing
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and

Queries for a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for oppo-

nent agents in fighter pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods

and Applications
10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework

for Service Design.
11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-

organization in Overlay Services
12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of in-

tegrated IT-based homecare services to support independent living of
elderly

14 Jafar Tanha (UvA), Ensemble Approaches to Semi-Supervised Learning
Learning

15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Appli-
cations

16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-
agent deliberation

17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart
Electricity Grid

18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and

Scheduling
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for

Information Retrieval
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine

translation
22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learn-

ing
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision

Support. A new way of representing and implementing clinical guide-
lines in a Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare
Service Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data
Provenance

28 Frans van der Sluis (UT), When Complexity becomes Interesting: An
Inquiry into the Information eXperience

134 SIKS Dissertation Series

29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TU/e), Resource-Aware Business Process Manage-

ment: Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineer-

ing Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Net-

working in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging

Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design

of Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UvA), Supporting the Conceptual Modelling of Dynamic

Systems: A Knowledge Engineering Perspective on Qualitative Reason-
ing

42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UvA), Exploration and Contextualization through Interaction

and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Mod-

eling Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children:

Search Behavior and Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strate-

gies and interface design - Three studies on children’s search perfor-
mance and evaluation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dy-
namic Capability

06 Damian Tamburri (VU), Supporting Networked Software Development
07 Arya Adriansyah (TU/e), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Heteroge-

neous Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Rep-

resentation and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social

Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous

Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change:

Models and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information

SIKS Dissertation Series 135

15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human
Functioning in Complex Socio-Technical Systems: Applications in Safety
and Healthcare

16 Krystyna Milian (VU), Supporting trial recruitment and design by auto-
matically interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators automat-
ically: Secondary Use of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UvA), Methods and Models for the Design and Study of
Dynamic Agent Organizations

19 Vinicius Ramos (TU/e), Adaptive Hypermedia Courses: Qualitative and
Quantitative Evaluation and Tool Support

20 Mena Habib (UT), Named Entity Extraction and Disambiguation for In-
formal Text: The Missing Link

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments
22 Marieke Peeters (UU), Personalized Educational Games - Developing

agent-supported scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big

Data Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of

disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy

and Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Man-

ufacturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software

Development: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware

Design Approach
36 Joos Buijs (TU/e), Flexible Evolutionary Algorithms for Mining Struc-

tured Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better:

improving usability through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Cap-

ital
40 Walter Omona (RUN), A Framework for Knowledge Management Using

ICT in Higher Education
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events

in News Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance

Models

136 SIKS Dissertation Series

43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method
Increments

44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel:
Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden.

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Ap-
proach

46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Di-
versity

47 Shangsong Liang (UvA), Fusion and Diversification in Information Re-
trieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in
Crisis Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking
in Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environ-

ments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation - Com-

puting Non-Functional Requirements to Improve Business Processes
07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for

designing and evaluating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support

Systems
10 Henry Hermans (OUN), OpenU: design of an integrated system to sup-

port lifelong learning
11 Yongming Luo (TU/e), Designing algorithms for big graph datasets: A

study of computing bisimulation and joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The

Effect of Context on Scientific Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news

conversations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture

Documentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot

Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Prop-

erties, Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data

in Asymmetric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordi-

nation
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online

Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage

SIKS Dissertation Series 137

24 Richard Berendsen (UvA), Finding People, Papers, and Posts: Vertical
Search Algorithms and Evaluation

25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by

Semantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Perfor-

mance; The Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-

Player and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-

Learning
31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Per-

ception and Effects in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Ma-
chines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews
through decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered
Knowledge Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UvA), Expanded Acyclic Queries: Containment and

an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for

virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical

Social Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on

Cultural Artefacts
10 George Karafotias (VU), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UvA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-

Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural De-

velopment in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,

Algorithms and Experiments
16 Guangliang Li (UvA), Socially Intelligent Autonomous Agents that Learn

from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (TU/e), Mining Social Structures from Genealogical Data

138 SIKS Dissertation Series

20 Daan Odijk (UvA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive

Playspaces: Automatic Analysis of Player Behavior in the Interactive
Tag Playground

22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging
Systems

23 Fei Cai (UvA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data;

An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand

Searching and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computa-

tional Models to Study the Role of Human Awareness and Control in
Behavioural Choices, with Applications in Aviation and Energy Manage-
ment Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A

study on epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity sys-

tems - Markets and prices for flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability

Risks for Crisis Organisations
33 Peter Bloem (UvA), Single Sample Statistics, exercises in learning from

just one example
34 Dennis Schunselaar (TU/e), Configurable Process Trees: Elicitation,

Analysis, and Enactment
35 Zhaochun Ren (UvA), Monitoring Social Media: Summarization, Classi-

fication and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal inter-

action behavior optimized for robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and com-

putational inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art

& Interaction Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Inter-

personal Style Selection for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UvA), Combinatorial and Compositional Aspects of

Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-

Management: From Theory to Practice
44 Thibault Sellam (UvA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy

SIKS Dissertation Series 139

47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic
innovation networks

48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-

Theoretic Analysis
50 Yan Wang (UvT), The Bridge of Dreams: Towards a Method for Opera-

tional Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian

Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Ap-

proach with Autonomous Products and Reconfigurable Manufacturing
Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UvA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product

Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU), Detecting Interesting Differences:Data Mining in

Health Insurance Data using Outlier Detection and Subgroup Discov-
ery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational
Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in

Twitter #anticipointment
12 Sander Leemans (TU/e), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of

social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling

Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UvA), Understanding and Modeling Users of Modern

Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UvA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors

in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge

Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Seri-

ous Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UvA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guide-

lines, with applications to Multimorbidity Analysis and Literature Search

140 SIKS Dissertation Series

26 Merel Jung (UT), Socially intelligent robots that understand and respond
to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of
Social Robots: People’s Preferences, Perceptions and Behaviors

28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Perfor-

mance: A Moderated Mediation Model of Social Innovation, and Enter-
prise Governance of IT”

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web

Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Doc-

umentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from

High-throughput Imaging
37 Alejandro Montes Garcia (TU/e), WiBAF: A Within Browser Adaptation

Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system

and compressive sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VU), Steer your Mind: Computational Exploration

of Human Control in Relation to Emotions, Desires and Social Support
For applications in human-aware support systems

41 Adnan Manzoor (VU), Minding a Healthy Lifestyle: An Exploration of
Mental Processes and a Smart Environment to Provide Support for a
Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data
with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Lin-

guistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VU), Comparing and Aligning Process Representations
02 Felix Mannhardt (TU/e), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Mod-

eling, Model-Driven Development of Context-Aware Applications, and
Behavior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis
Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UvA), Supporting the Complex Dynamics of the In-
formation Seeking Process

SIKS Dissertation Series 141

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of
Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent sys-
tems

08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VU), Moving forward: supporting physical activity be-

havior change through intelligent technology
11 Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented Col-

laborative Networks
12 Xixi Lu (TU/e), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VU), Computing a Sustainable Future
14 Bart Joosten (UvT), Detecting Social Signals with Spatiotemporal Gabor

Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in

a group of children
17 Jianpeng Zhang (TU/e), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VU), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and

playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VU), Contagious: Modeling the Spread

of Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analy-

sis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-

Autonomous Telepresence Robots
25 Riste Gligorov (VU), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT), Theory-Based and Tailor-Made: Moti-

vational Messages for Behavior Change Technology
27 Maikel Leemans (TU/e), Hierarchical Process Mining for Scalable Soft-

ware Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and

how they make you feel
29 Yu Gu (UvT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowledge”: scal-

ing semantics to the web

2019 01 Rob van Eijk (UL), Comparing and Aligning Process Representations
02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations

for Assessing Class Size Uncertainty
03 Eduardo Gonzalez Lopez de Murillas (TU/e), Process Mining on

Databases: Extracting Event Data from Real Life Data Sources
04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TU/e), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked

Cultural Heritage Datasets

142 SIKS Dissertation Series

07 Soude Fazeli (TUD),
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision

Processes
09 Fahimeh Alizadeh Moghaddam (UvA), Self-adaptation for energy effi-

ciency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Alloca-

tion and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner

Behavioral Engagement in MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content

Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner

Behavior & Improving Learning Outcomes in Massive Open Online
Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and
Partially Observable Environments

16 Guangming Li (TU/e), Process Mining based on Object-Centric Behav-
ioral Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN), Extracting actionable information from micro-
texts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication

Acknowledgements

This dissertation marks the end of almost 10 years at the TU Delft for me, a decade
which I thoroughly enjoyed. Here I would like to thank the people who have sup-
ported me during this time, especially during my PhD.

I have known my promotor, Koen, for almost that entire decade. His then brand-
new first-year course “Project Multi-Agent Systems” sparked my interest in AI. In
any capacity (teaching assistant, master’s student, scientific programmer, PhD can-
didate), I have always immensely enjoyed working with you, both on a personal
level as well as in the results we achieved; thank you very much!

I have got to know my other promotor, Catholijn, as the caring head of the
group. Thank you for always trusting me and the others in the group, giving words
of encouragement or putting up a fight when needed, and for always providing
insightful feedback on my work or my future career.

I would also like to thank all my other colleagues of the Interactive Intelligence
group, in particular: Chris for helping me start my PhD; Timi for bringing some
much needed greenery into our office; Chang for his self-brewed beers; Ilir for the
discussions about football and making the summer school in Maastricht way more
fun; Mike for a fun BNAIC in Groningen and driving me through The Hague by
night; Elie for putting up with my horrible French greetings; Fran for bringing so
much more fun into the group and visiting me in Hoorn; Bernd for the dinner that
we still have to pin a date for (I take full responsibility); Ding for learning us Chinese
culture and beating us at ping-pong; Frank for the discussions about explanations;
Thomas for deep discussions about machine learning and football alike; Birna for the
pleasant collaboration on the AI courses; Reyhan for her genuine care for everyone
in the group; Anita for being the best secretary of the TU; Bart for his care for
peregrines and servers alike; Ruud for his tireless techsupport; Wouter for the help
on the software and many discussions on the art of programming. And thanks to
Aleksander, Elena, Frans, Iulia, Joachim, Joost, Malte, Marieke, Mark, Max, Miguel,
Myrthe, Nils, Pietro, Rifca, Rijk, Roel, Rolf, Ursula, Willem-Paul, and perhaps others
I forgot to mention; sorry for not knowing you better.

I would also like to thank Jonathan Gratch and Michael Winikoff, with whom I
have had the pleasure of collaborating with on some of my work. I am also grateful
to have enjoyed a month of working at the Autonomy and Verification Laboratory
of the University of Liverpool, for which I would like to thank Louise Dennis and
Michael Fisher in particular.

In addition, I would like to thank all of the students who have made use of
software produced by my research, and who provided me with invaluable feedback
and data. In particular, I would like to thank Danny and Harm, Tom, Buster and
Jasper, and Wesley and Cedric for working with me on various projects. I would
also like to thank all students who have assisted me as a teaching assistant.

143

144 Acknowledgements

Last, but certainly not least, I would like to thank my family and friends who
have supported me throughout this journey. Especially my parents, who have put
me through my entire education and always fully supported me with more love and
care than I could wish for, and my wife and soon-to-be mother of our child, Rianca,
for the unconditional love, making sure I took a much needed break from work
every now and then, and bringing so much happiness into my life.

Vincent

	Summary
	Samenvatting
	Introduction
	Developing Cognitive Agents
	Research Questions
	Approach
	References

	Designing a Source-Level Debugger for Cognitive Agents
	Introduction
	Issues in Debugging Cognitive Agent Programs
	Debugger Design Approach
	Evaluation
	Conclusions and Future Work
	References

	Automating Failure Detection in Cognitive Agents
	Introduction
	Related Work
	Automated Testing Framework
	Testing for Failures
	Testing GOAL Agents in the Eclipse IDE
	Evaluation
	Conclusions and Future Work
	References

	Facilitating Omniscient Debugging for Cognitive Agents
	Introduction
	Related Work
	Agent Trace Design
	Evaluation
	Visualizing Traces
	Conclusions and Future Work
	References

	Designing a Cognitive Connector for Complex Environments
	Introduction
	Related Work
	Case Study: StarCraft
	Connector Design Approach
	Conclusions and Future Work
	References

	Conclusion
	Conclusions
	Limitations
	Contributions
	Future Work
	References

	Source-Level Debugger Questionnaire and Correlation Analysis
	Curriculum Vitæ
	List of Publications
	SIKS Dissertation Series
	Acknowledgements

