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A B S T R A C T

Sea surface currents are of significant importance in various scientific and maritime applications. There are
several measurement techniques available to study surface currents, however, they have limitations in spatial
coverage and resolution. This study presents a proof-of-concept for a new measurement principle that relies
on the difference between a ship’s speed relative to water and land. The approach involves estimating the
ship speed vector relative to water from optical satellite imagery of Kelvin wakes. This ship speed vector is
subtracted from the ship speed over ground, which is determined from Automatic Identification System (AIS)
data, to estimate the surface current. A case study in the Strait of Gibraltar was performed using two months
of Sentinel-2 imagery, which yielded 81 visible Kelvin wakes over 25 images. Surface currents were estimated
in directions parallel and perpendicular to the ship’s sailing line for each Kelvin wake. The estimated currents
were validated with respect to surface currents derived from High-Frequency Radars (HFRs) and modelled
currents from the Copernicus Marine Environmental Monitoring Service (CMEMS). The uncertainty in the two
surface current components was estimated using triple collocation. After removing 12 data points with large
ship course variability, standard deviations of 0.14 and 0.16m s−1 were estimated for the surface currents along
and across the sailing line, respectively. Despite limitations in measurement frequency due to satellite revisit
times, cloud cover and Kelvin wake visibility, this new method can provide accurate estimates of sea surface
currents in regions with high vessel density.
1. Introduction

Sea surface currents are important for many scientific and mar-
itime applications. These currents influence weather and climate; water
levels; transport of energy, sediment and pollutants; shipping routes
and fish distribution, among others. Accurate measurements of surface
currents are crucial to our understanding of physical processes, but also
for the development of hydrodynamic models. However, present-day
measurement techniques are still unsatisfactory in spatial resolution
and coverage (Isern-Fontanet et al., 2017).

In-situ measurements provide excellent temporal resolution, but
their number is too few to provide good spatial resolution. While High-
Frequency Radars (HFRs) achieve good spatial and temporal resolution,
their spatial coverage is limited to a few coastal sites. Surface drifters
provide a great dataset to study surface currents globally (e.g., Lumpkin
et al. (2017)), however, at any given time, there are generally little to
no drifters in specific marginal seas. Therefore, their use in regions with
significant human activity is limited.

∗ Corresponding author at: Department of Civil Engineering and Geosciences, TU Delft, Delft, The Netherlands.
E-mail address: k.b.haakman@tudelft.nl (K. Haakman).

There also exist several remote sensing techniques for estimating
ocean currents, as discussed in e.g. Klemas (2012) and Hauser et al.
(2023). The estimation of geostrophic currents through satellite altime-
try has been successful, but altimetry is challenging in coastal regions
due to large footprints and insufficiently accurate geophysical correc-
tions. Moreover, in coastal areas, currents may deviate significantly
from the geostrophic balance.

Surface currents have also been estimated from Synthetic Aperture
Radar (SAR) imagery using two techniques: Along-Track Interferometry
(ATI) (e.g. Romeiser et al., 2010) and Doppler Centroid Anomaly
estimation (DCA) (Chapron et al., 2005). In ATI, the phase difference
between two SAR images captured with a small time lag is related to
the surface current. In DCA, the Doppler shift of the radar echoes is
analysed to detect a contribution of the surface current. Main limita-
tions of these techniques include inaccurate removal of wave effects
and that they provide only the radar line-of-sight component of the
https://doi.org/10.1016/j.rse.2024.114400
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surface current (Hauser et al., 2023). Hence, additional assumptions
are required to project these into East and North components.

The reconstruction of total surface currents is one of the objectives
of the Harmony Earth Explorer 10 mission. This will be achieved
by measuring radar echoes transmitted by Sentinel-1 using two new
satellites carrying receive-only radars (López-Dekker et al., 2019). This
allows the estimation of radial surface currents with three lines of sight,
which enables computation of the total surface current. However, the
launch of these satellites is not expected before 2029.

Optical satellite imagery has also been used to derive surface cur-
rents by exploiting the small inter-band time lags of the Sentinel-2
MultiSpectral Instrument (MSI) (Yurovskaya et al., 2019). They com-
pute phase shifts between the spectra generated from the blue and red
image bands, which have a time lag of about 1 s. After removing the
phase shift predicted from the linear dispersion relation, the remaining
phase shift is attributed to the surface current. The method shows
promising results and is able to achieve good spatial resolution and
coverage. Still, the method has limitations including cases where waves
and currents are nearly perpendicular, errors due to inaccurate co-
registration and difficulty in estimating small currents due to the short
time lag between the high-resolution MSI bands.

Recently, data from the Automatic Identification System (AIS) has
also been used to estimate surface currents (Le Goff et al., 2021;
Christodoulou et al., 2022; Yiew and Magee, 2022). The AIS is a
maritime collision-avoidance system in which ships transmit their posi-
tion, speed over ground, course over ground and true heading, among
others. Le Goff et al. (2021) demonstrate that surface currents can be
estimated by subtracting a ship’s speed through water from its speed
over ground. However, since the speed through water is not measured
by a ship, it cannot be broadcast through AIS. Le Goff et al. (2021) cir-
cumvent this problem by combining data from multiple ships within a
spatiotemporal interval, and including each ship’s speed through water
as an unknown in the estimation problem. As a result, the temporal and
spatial resolution are reduced and depend on ship density. Moreover,
an error is introduced as the flow field need not be homogeneous within
such a spatiotemporal interval.

In deep water, a ship’s speed through water uniquely determines the
wavelength pattern in the ship’s Kelvin wake (Gomit et al., 2014; Sun
et al., 2018). A Kelvin wake is the V-shaped wave pattern generated by
a moving pressure distribution, such as a ship. Therefore, by determin-
ing the wavelengths in a Kelvin wake, the speed of a ship through water
can be estimated (Tunaley, 2003; Zilman et al., 2004; Graziano et al.,
2016a,b). By subtracting this variable from the speed over ground of
the vessel obtained from AIS data, surface currents can be estimated
using data from a single ship, as opposed to having to aggregate data
from multiple ships. Hence, this study aims to investigate how accurate
sea surface currents can be estimated by combining optical imagery of
Kelvin wakes with AIS data.

A more detailed explanation of the new measurement principle is
given in the next section. Thereafter, a spectral model for a Kelvin
wake, based on linear wave theory, is given. Section 3 presents an
algorithm to retrieve the ship speed and course relative to water from
optical imagery of Kelvin wakes. In Section 4, the data and methods for
a case study in the Strait of Gibraltar are given. The results of this case
study are presented in Section 5. Finally, the discussion and conclusions
are given in Section 6.

2. Theory

2.1. Measurement principle

The measurement principle is based on the fact that for a given ship,
the ship speed can be defined in two frames of reference. First, the ship
speed can be defined relative to stationary land. The corresponding
magnitude and direction are referred to as the Speed Over Ground
(SOG) and Course Over Ground (COG), respectively. For brevity, we
2 
will denote these variables with 𝑉g, 𝜃g, with the subscript 𝑔 for ground.
Second, the ship speed can be defined relative to the surrounding
current. The Speed Through Water (STW) and Course Through Water
(CTW) represent the magnitude and direction of this ship speed vector.
They will be denoted with 𝑉w and 𝜃w, where 𝑤 represents water. The
difference between the two ship speed vectors is the surface current
at the ship’s location. Hence, the current can be computed as the
vector difference of two independent ship speed vectors. In Fig. 1, the
geometrical relationship between the two ship speed vectors and the
surface current vector is visualized.

From Fig. 1, equations for the components of the current along and
across the sailing line can be derived:

𝑈along = 𝑉g cos
(

𝜃w − 𝜃g
)

− 𝑉w, (1)

across = 𝑉g sin
(

𝜃w − 𝜃g
)

. (2)

Eqs. (1) and (2) contain four unknowns. Two of these unknowns, 𝑉g
nd 𝜃g, can be obtained from AIS data. The ship course through water,
w, cannot be reliably estimated by a ship’s True Heading, although this
ariable is contained in the AIS data, since the heading of the ship may
e influenced by crosswinds. However, 𝜃w can be determined from the
rientation of a Kelvin wake on optical imagery. Finally, 𝑉w is related to
he wavelengths in the Kelvin wake, with faster ships generating longer
aves. In the present study, we will use Sentinel-2 imagery to estimate
w and 𝜃w.

.2. Spectral representation Kelvin wake

Following Gomit et al. (2014), the relationship between 𝑉w and the
avelengths in a Kelvin wake can be derived from the linear dispersion

elation for surface gravity waves in deep water, i.e.,

2 = 𝑔𝑘, (3)

here 𝜔 is the angular frequency of a wave, 𝑔 is the gravitational
cceleration and 𝑘 =

√

𝑘2𝑥 + 𝑘2𝑦 denotes the wavenumber. Now suppose
that the reference frame is fixed to the ship, with the 𝑥-axis aligning
with the sailing line. Then, the reference frame moves with a constant
speed 𝑉w. This introduces a Doppler-shifted apparent frequency that is
given by

𝜔′ = 𝜔 − 𝑉w𝑘𝑥, (4)

where 𝜔′ is the angular frequency in the moving frame of reference.
Substitution of Eq. (4) into Eq. (3) gives

(𝜔′ + 𝑉w𝑘𝑥)2 = 𝑔𝑘. (5)

We assume that the Kelvin waves are stationary with respect to the
ship, hence 𝜔′ = 0. Then, Eq. (5) reduces to

𝑉w = ±

√

𝑔𝑘
𝑘𝑥

. (6)

As the Kelvin waves are travelling in the same direction as the ship,
the negative solution can be ignored. The above expression can be
reordered to obtain an equation for the spectral shape of a Kelvin wake:

𝑘𝑦 = ±𝑘𝑥

√

𝑉 4
w
𝑔2

𝑘2𝑥 − 1. (7)

This equation describes the shape of the Kelvin wave pattern in the
spectral domain and it represents the model that will be fit to observed
data. In Fig. 2a, the model is shown for three different values of a ship’s
𝑉w. It can be seen that by increasing 𝑉w, the model moves radially
inward. This corresponds to waves becoming longer. In Fig. 2b, the
model is numerically rotated to show the spectrum for a ship with a

◦
𝜃w of 45 counter-clockwise with respect to the positive 𝑥-axis.
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Fig. 1. Geometrical relation between the ship speed vectors and the surface current components. Note that the ship speed through water (𝑉w) does not align with the true heading.
The along and across components of the current are thus defined with respect to the sailing line.
Fig. 2. (a) Theoretical shape of the Kelvin wake pattern in the spectral domain. The dotted, dashed and solid lines correspond to a ship speed through water (𝑉w) of 6, 8 and 10 m/s
espectively. The ship is assumed to be moving in positive 𝑥-direction, as indicated by the red arrow. (b) As in (a), but now for a ship with a heading of 45◦ counter-clockwise
ith respect to the positive 𝑥-axis.
S
.3. Lower bound ship speed through water

In Fig. 2, it can be seen that as the ship speed decreases, the model
oves radially outward. At some point, the model is no longer visible

n the spectrum. The boundaries of the spectrum are chosen such
hat they correspond to the maximum wavenumber distinguishable on
entinel-2 imagery. According to the Nyquist criterion, a wave must be
ampled with at least 2 samples per wavelength to be reconstructed. For
3 
entinel-2 imagery, with a ground sampling distance of 10m, the wave-
lengths must be at least 20m, resulting in a maximum wavenumber of
2𝜋∕20 ≈ 0.314 rad∕m.

Given the lower bound on the wavelength above, we can compute
the minimum ship speed through water required to generate such a
wavelength. At a given ship speed, the longest wave in a Kelvin wake is
found along the sailing line, hence they have 𝑘 = 0. This gives 𝑘 = 𝑘 ,
𝑦 𝑥
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Fig. 3. Longest wavelength in the Kelvin wake as a function of the ship speed through
ater (𝑉w) Eq. (8).

such that Eq. (7) can be reduced to

𝐿max = 2𝜋
𝑉 2

w
𝑔

, (8)

where 𝐿max denotes the longest wavelength present in the Kelvin wake.
In Fig. 3 this relationship between 𝑉w and the longest wavelength in
the Kelvin wake is shown. By substituting 𝐿max = 20m into Eq. (8),
we find that the minimum 𝑉w required for detection on Sentinel-2
imagery is about 5.6m s−1. However, this bound was computed for
waves travelling along the sailing line. Waves oblique to the sailing
line are shorter, hence they require a slightly larger ship speed through
water to meet the minimum wavelength requirement. We observed
that a ship speed through water of about 6m s−1 suffices for Kelvin
wake detection on Sentinel-2 imagery. For higher resolution satellite
imagery, such as WorldView or SPOT, a lower ship speed should suffice.

2.4. Sensitivity 𝑈across to ship course

The estimates for 𝑈across are very sensitive to small deviations in a
ship’s course. This can be seen by differentiating Eqs. (1) and (2) with
respect to the angular difference 𝜂 = 𝜃g − 𝜃w. Differentiation of both
equations with respect to 𝜂 yields
𝜕𝑈along

𝜕𝜂
= −𝑉g sin(𝜂), (9)

𝜕𝑈across
𝜕𝜂

= 𝑉g cos(𝜂). (10)

Since 𝜂 ≪ 1, sin(𝜂) ≈ 𝜂 and cos(𝜂) ≈ 1 − 𝜂2

2 . Substitution of these
pproximations leads to
𝜕𝑈along

𝜕𝜂
≈ −𝑉g𝜂, (11)

𝜕𝑈across
𝜕𝜂

≈ 𝑉g

(

1 −
𝜂2

2

)

. (12)

Hence, at a speed over ground of 10m s−1, a deviation of just 1◦

n either 𝜃g or 𝜃w leads to a change of 0.17m s−1 in 𝑈across, while the
hange is negligible for 𝑈along. This illustrates that accurate retrieval of
he across-sailing-line surface current requires a stable ship course and
recise estimation of the ship course through water.

. Retrieval algorithm

.1. Extraction spectral Kelvin wake signal

The ship speed through water vector will be derived from the

pectral Kelvin wake signal. Therefore, this signal needs to be extracted

4 
rom an image containing a Kelvin wake. To that end, we first multiply
he image by a Hann window in order to reduce spectral leakage. Subse-
uently, its Discrete Fourier Transform (DFT) is computed. An example
f a Sentinel-2 image containing a Kelvin wake and its Hann-windowed
FT is given in Fig. 4.

To further isolate the spectral Kelvin wake signal, a radial trend is
ubtracted from the spectrum using least-squares. Subsequently, pixel
alues below 0 dB are removed. In Fig. 5 an example of a filtered
pectrum is given.

.2. Model fitting

Now that the spectral Kelvin wake signal is extracted, the forward
odel for this signal (Eq. (7)) needs to be matched to the observed

pectrum. To that end, the Generalized Radon Transform (GRT) is used.
he GRT of a spectrum 𝑆 with coordinates 𝑘 = (𝑘𝑥, 𝑘𝑦) is given by (e.g.
uengo Hendriks et al., 2005)

{𝑆}(𝑝) = ∫𝐶𝑝

𝑆(𝑘)d𝑘, (13)

where 𝐶𝑝 denotes the curve corresponding to the forward model with
parameters 𝑝 = (𝑉w, 𝜃w).

The goal of the GRT is to find the set of parameters 𝑝 such that the
curve 𝐶𝑝 aligns with the Kelvin wake signal present in 𝑆. To that end,
initial guesses of 𝑝 are first defined. Subsequently, for each candidate
set 𝑝, a line integral along 𝐶𝑝 over 𝑆(𝑘) is computed. In Fig. 5a, the
urves 𝐶𝑝 for three inaccurate guesses of 𝑝 are shown. As can be seen,
he curves do not align with the Kelvin wake signal. Therefore, the
alue of the line integral will be small. On the other hand, Fig. 5b shows
curve 𝐶𝑝 for an accurate guess of 𝑝. Now, the model overlaps with the
elvin wake signal. Therefore, the value of the line integral is large. The
RT computes the line integral over all prescribed initial guesses for 𝑝.
inally, the best fit is given by the set of parameters that maximizes the
ine integral.

In practice, there are only a finite number of pixels in an image.
ence, the line integral in Eq. (13) is discretized which gives

{𝑆}(𝑝) =
𝑁−1
∑

𝑖=0
𝑆(𝑘𝑖), (14)

here 𝑘𝑖 for 𝑖 ∈ {0, 𝑁 − 1} represent the image coordinates of the
ixels located along curve 𝐶𝑝. However, in this application, the curves
roduced by the forward model have different lengths for different
ombinations of parameters. Hence, a bias towards longer curves may
e introduced. Therefore, the GRT is modified to take the average along
curve instead of only summing the relevant pixels. This gives

{𝑆}(𝑝) = 1
𝑁

𝑁−1
∑

𝑖=0
𝑆(𝑘𝑖). (15)

The GRT defines a mapping from the spectral domain to a parameter
domain. The parameter domain, also called the Radon domain, is
spanned by 𝑉w and 𝜃w. Hence, the result of the GRT can also be shown
as a 2D image. An example of this is shown in Fig. 6. Every point in
this parameter domain corresponds to a combination of 𝑉w and 𝜃w. The
intensity at this point is equal to the average power in the spectrum
over the curve produced by this combination of parameters. Hence, a
large intensity means that the model curve is overlapping with a signal
in the spectral domain. Therefore, the location of the maximum in the
parameter domain gives the fitted parameters, i.e.,

�̂� = (𝑉𝑤, �̂�𝑤) = argmax
𝑝

ℛ{𝑆}(𝑝). (16)
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Fig. 4. Example of a Sentinel-2 image of a Kelvin wake (left) and its Hann-windowed Discrete Fourier transform (right).
Fig. 5. (a) Examples of inaccurate guesses of the parameter set 𝑝 that yield model curves 𝐶𝑝 which do not align with the Kelvin wake signal. (b) Example of accurate guess of
the parameter set 𝑝 yielding a model curve that lines up with the observed curve.
Fig. 6. (a) Filtered Fourier spectrum of windowed Sentinel-2 Kelvin wake image. (b) Generalized Radon Transform of (a), normalized to a scale from zero to unity.
3.3. Convergence angle correction

A direction measured in a given map projection is generally not
equal to the direction in a different map projection. Since �̂�𝑤 is mea-
sured in a Sentinel-2 image, it is a direction with respect to the local
Universal Transverse Mercator (UTM) projection. However, 𝜃g reported
by the AIS is given with respect to the WGS84 ellipsoidal coordinate
5 
reference system. Therefore, a transformation is needed to compare the
two directions.

A line of constant 𝑥 in a local projection points to the grid north.
Similarly, a line of equal longitude, i.e., a meridian, points to the true
north. Along the central meridian in a UTM projection, grid north and
true north coincide. The difference between the grid north and true
north increases as the distance from a point to the central meridian
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increases. The angle between the true north and the grid north is called
the grid convergence (Osborne, 2013). For the spherical transverse Mer-
cator projection, the convergence angle is given by (Osborne, 2013)

𝛾(𝜆, 𝜙) = tan−1(tan(𝜆 − 𝜆0) sin𝜙), (17)

where 𝜆 and 𝜙 denote longitude and latitude respectively. The longi-
tude of the central meridian in the local projection is represented by
𝜆0. For example, Sentinel-2 imagery over the Strait of Gibraltar is given
in UTM zone 30N. This zone has the central meridian at −3◦, hence
𝜆0 = −3◦. By substituting the ship’s location into Eq. (17), the relevant
convergence angle is found. Subsequently, the course through water
can be corrected following

𝜃w,global = 𝜃w,local − 𝛾(𝜆, 𝜙). (18)

The importance of the correction depends on the component of
the estimated current. As shown in Section 2.4, the across-sailing-line
component is much more sensitive to small changes in the angular
difference between the two ship speed vectors, i.e., 𝜃g − 𝜃w, than the
along-sailing-line component.

Using Eqs. (11) and (12), we can compute that for a ship speed
of 10m s−1, a typical grid convergence of 2◦ yields changes in the
along- and across-sailing-line currents of about 0.01m s−1 and 0.35m s−1,
respectively. Clearly, the convergence angle needs to be corrected for
especially in the case of the across-sailing-line component.

4. Data and methods

4.1. Study area

The Strait of Gibraltar was selected as a study area for four reasons:
the abundance of ships, infrequent cloud cover, availability of HFR
validation data and the presence of large surface currents. Surface
currents in the strait are induced by several mechanisms, including a
mean flow, barotropic tides, currents induced by internal waves and
meteorological effects.

The density-driven mean flow in the strait consists of inflow of
Atlantic fresh water at the surface and outflow of saltier water from
the Mediterranean Sea at depth (e.g. Tsimplis and Bryden, 2000).
The surface currents corresponding to this mean flow are of order
1 m/s (González et al., 2019). Additionally, barotropic tides contribute
to surface currents, also reaching up to 1 m/s, with amplitudes de-
creasing eastward (e.g. Candela et al., 1990; González et al., 2019).
Another notable feature of the Strait of Gibraltar are large-amplitude
internal waves, generated by the interaction of the barotropic tide
with the bottom topography in the strait (e.g. Vlasenko et al., 2009).
These internal waves can also influence near-surface currents. For
instance, Bruno et al. (2002) find > 0.5m s−1 modulations in eastward
currents at 20m depth. Notably, these internal waves have periods
of less than 30 min (Ziegenbein, 1969; Vlasenko et al., 2009). This
has two potential implications: first, it could introduce disagreement
between validation data and our estimates given the hourly temporal
resolution of the HFR data. Second, it may introduce an error in our
estimates as we assume that the flow field is stationary during Kelvin
wake generation, which takes several minutes.

4.2. Data

4.2.1. Sentinel-2 imagery
All Sentinel-2 level 2A imagery covering the Strait of Gibraltar

during July and August of 2021 was downloaded from the Copernicus
Open Access Hub. This returned a collection of 25 images. For each
image, the red, green and blue bands were averaged to produce a
single greyscale image at 10m × 10m spatial resolution. Since there is
a ∼1 s time delay between the blue and red bands (Binet et al., 2022),
averaging of these bands can blur moving targets such as ocean waves.
The advantage of averaging these bands is that pixel noise is slightly
6 
Fig. 7. Locations of the 81 Kelvin wakes in the Strait of Gibraltar that were visible
on Sentinel-2 imagery during July and August 2021.

reduced, which can aid in the fitting process for weak Kelvin wake
signals. In Appendix B we show that our main results remain unaltered
by performing the analysis on any of the four individual 10 m resolution
Sentinel-2 bands instead of averaging the RGB channels.

Subsequently, all images were manually scanned through to detect
visible Kelvin wakes. A Kelvin wake was deemed visible if a signal
corresponding to the Kelvin wake was visually present in the spectral
domain. In 5 images, no visible Kelvin wakes were found. In the
remaining 20 images, 81 visible Kelvin wakes were distinguished. Their
locations are shown in Fig. 7. The Sentinel-2 images were manually
cropped such that 81 images remained, each with a single Kelvin wake
present.

4.2.2. AIS data
AIS data covering the Strait of Gibraltar during July and August

2021 was provided by the Made Smart Group. The data was filtered
for an interval of 30 min before and after the Sentinel-2 acquisi-
tion time. Subsequently, the data was filtered for ships sailing faster
than 5.6m s−1, which corresponds to the minimum ship speed that
generates Kelvin wakes that can be distinguished on Sentinel-2 im-
agery. Thereafter, the Maritime Mobile Service Identity (MMSI) number
corresponding to each visible Kelvin wake was identified to couple
each Kelvin wake with a time series of longitude, latitude, 𝑉g and 𝜃g.
The mean longitude and latitude of this time series were set as the
representative location of the estimated currents, while the average
timestamp was chosen to be the representative time. These locations
and timestamps were used for interpolation of validation datasets.

4.2.3. HFR data
To validate the estimated surface currents, we used currents derived

from High-Frequency Radar (HFR). An HFR transmits electromagnetic
waves towards the sea surface. Some part of this signal will be scattered
back to the radar through a mechanism called Bragg scattering (Lorente
et al., 2017). The Doppler shift in this return signal is a measure of
the surface current in the radar’s line-of-sight. By measuring line-of-
sight surface currents from multiple HFRs, total surface currents may
be reconstructed. In the Strait of Gibraltar, three HFRs are operated
by Puertos del Estado. Together, they provide hourly estimates of east-
and northward components of surface currents in the Strait of Gibraltar,
with a spatial resolution of approximately 1 × 1 km (Lorente et al.,
2017). Data from July and August of 2021 were downloaded from
EMODnet-Physics. The spatial coverage of these HFRs was not sufficient
to compute a surface current for each of the 81 datapoints. In 24 cases,
the Kelvin wake was located outside of the spatial coverage of the HFR.
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Fig. 8. Example of time series of 𝜃g according to AIS data. The dashed red lines indicate
he mean, while the dashed black lines denote the median level. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version
f this article.)

n another 4 cases, HFR data was missing at that particular day. Hence,
nly in 53 cases could the estimated surface currents be compared to
he HFR-derived current.

In order to compare the HFR currents to the Sentinel-2+AIS esti-
ates, they were linearly interpolated in time while nearest-neighbour

nterpolation was used in space. Thereafter, the east- and northward
omponents were reprojected into the ship’s frame of reference using

𝑈along = 𝑈east cos(𝜃w) + 𝑈north sin(𝜃w), (19)

across = 𝑈east sin(𝜃w) − 𝑈north cos(𝜃w). (20)

.2.4. CMEMS
A second source of validation data is provided by modelled cur-

ents from the Copernicus Marine Environment Monitoring Service
CMEMS). They provide a hydrodynamic model for the Mediterranean
asin with a spatial resolution of 4 km × 4 km, temporal resolution of
5 min and 141 vertical levels (Clementi et al., 2021). Data were
cquired from the Copernicus Marine Service. Since there was no
issing data in space or time, all 81 Sentinel-2+AIS currents could

e compared to the modelled currents. The same interpolation and
eprojection as described for the HFR data was performed.

.3. Methods

.3.1. Computation surface currents
For each Kelvin wake, a single value for 𝑉g and 𝜃g was needed to

ompute the surface currents. The AIS data provides time series of these
ariables. Therefore, representative values had to be extracted from
he time series. In principle, the time series could be interpolated to
he image acquisition time. However, a Kelvin wake is generated over
everal minutes. Therefore, the ship speed and course over this entire
nterval is relevant. AIS data points were selected to be relevant if they
ere spatially contained within the image of the Kelvin wake.

Subsequently, the median values of 𝑉g and 𝜃g were computed. The
edian was chosen over the mean since not all ships had a stationary

peed and course. The median was generally able to capture the domi-
ant speed and course along the length of the Kelvin wake. An example
f a nonstationary time series of ship course is given in Fig. 8. Clearly,
he course of the ship has changed over time, but the median is better
ble to retrieve the dominant direction during generation of the Kelvin
ake.

Next, 𝑉𝑤 and �̂�𝑤 were estimated using the fitting algorithm de-
cribed in Section 3.2. To run the algorithm, candidate parameter sets
7 
or 𝑉w and 𝜃w had to be defined. The 𝑉g and 𝜃g derived from AIS
data were used to narrow the parameter set that had to be considered,
which avoids unnecessary computations. This resulted in the following
settings:

𝜃w,min = 𝜃g − 20◦, 𝑉w,min = max(6, 𝑉g − 2)m s−1,

𝜃w,max = 𝜃g + 20◦, 𝑉w,max = 𝑉g + 2m s−1, (21)
𝛥𝜃w = 0.1◦, 𝛥𝑉w = 0.01m s−1.

The algorithm now returned the final two unknowns needed to
estimate the surface current using Eqs. (1) and (2).

4.3.2. Uncertainty quantification
We now had three independent datasets representing the same vari-

able in space and time, hereafter referred to as the Sentinel-2+AIS, HFR
and CMEMS datasets. For this situation, there exists a statistical tech-
nique called triple collocation to quantify the uncertainty associated to
each individual dataset (Stoffelen, 1998). The method assumes that the
three datasets can be represented as noisy linear transformations from
the truth, i.e.,

𝑦𝑛𝑖 = 𝛼𝑖 + 𝛽𝑖𝑥
𝑛 + 𝜀𝑖, (22)

where 𝑦𝑛𝑖 represents the 𝑛th measurement of dataset 𝑖 for 𝑖 ∈ {1, 2, 3},
the 𝛼’s and 𝛽’s represent calibration coefficients, 𝑥𝑛 denotes the un-
known truth and the 𝜀’s represent additive Gaussian noise. It can be
shown that (Gruber et al., 2016, Eq. 6)

𝜎2𝜀1 = 𝜎21 −
𝜎12𝜎13
𝜎23

= 𝜎21

(

1 −
𝜌12𝜌13
𝜌23

)

, (23)

𝜎2𝜀2 = 𝜎22 −
𝜎12𝜎23
𝜎13

= 𝜎22

(

1 −
𝜌12𝜌23
𝜌13

)

, (24)

𝜎2𝜀3 = 𝜎23 −
𝜎13𝜎23
𝜎12

= 𝜎23

(

1 −
𝜌13𝜌23
𝜌12

)

, (25)

where 𝜎2𝜀𝑖 is the variance of the noise in dataset 𝑖 and 𝜎2𝑖 is the total
variance in dataset 𝑖 for 𝑖 ∈ {1, 2, 3}. 𝜎𝑖𝑗 is the covariance and 𝜌𝑖𝑗 is the
orrelation factor between dataset 𝑖 and 𝑗 for 𝑖, 𝑗 ∈ {1, 2, 3} and 𝑖 ≠ 𝑗.

These equations were used to compute two standard deviations per
dataset; one standard deviation per component of the surface current.

5. Results

5.1. Surface current along sailing line

The correlations among the three datasets of surface currents along
the sailing line are presented in Fig. 9. The strongest correlation is
observed between the Sentinel-2+AIS estimates and HFR currents, with
95% of the variance explained by the linear fit. The corresponding
Root-Mean-Square Error (RMSE) is 0.21m s−1, indicating a relatively
small deviation between the two datasets. In comparison, the corre-
lation between the Sentinel-2+AIS estimates and the CMEMS dataset
explains 88% of the variance, albeit with a larger RMSE of 0.35m s−1. It
s important to note that this comparison benefits from a larger sample
ize, as it is not affected by missing HFR data. Finally, the linear fit
etween the HFR and CMEMS datasets explains 87% of the variance,
ith a RMSE of 0.24m s−1. These results demonstrate a substantial level

of agreement among all three datasets regarding the along-sailing-line
surface currents.

5.2. Surface current across sailing line

In Fig. 10, the correlations between the three datasets for the across-
sailing-line component of the surface current are displayed. The linear
fit between the Sentinel-2+AIS and HFR datasets explains 76% of the
variance, indicating a good level of agreement. However, there are

now larger deviations between the two datasets, as evidenced by the
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Fig. 9. Correlation between three datasets of along-sailing-line surface currents in the Strait of Gibraltar. (a) Sentinel-2+AIS vs. High-Frequency Radar (HFR). (b) Sentinel-2+AIS
s. numerical model CMEMS. (c) CMEMS vs. HFR.
MSE of 0.37m s−1. The correlation between the Sentinel-2+AIS and
MEMS datasets reveals significant outliers, with only 49% of the
ariance explained. The RMSE between these two datasets is 0.46m s−1.

Similarly, the fit between the HFR and CMEMS datasets explains 68%
of the variance, with an RMSE of 0.33m s−1. Although there is still a
clear correlation among all three datasets, these findings demonstrate
that the agreement between the datasets for the across-sailing-line com-
ponent of the surface current is weaker than for the along-sailing-line
currents.

The lower accuracy observed in the across-sailing-line currents can
be attributed to the increased sensitivity of this component to the
angular difference between the ship speed vectors, as discussed in
Section 2.4. In practice, ships do not sail in a straight line. Changes in
ship course introduce uncertainties in 𝜃g, which affect the accuracy of
the across-sailing-line current estimates. To demonstrate the influence
of course variability on the observed difference in accuracy between the
along- and across-sailing-line components, we can filter out data points
with the highest uncertainty in 𝜃g. Here, we define 𝜎𝜃g = 1.4826MAD,
where MAD represents the Median Absolute Deviation in the time series
of 𝜃g and the factor 1.4826 relates 50% of probability density to 68%
of probability density for a normal distribution (e.g., Rousseeuw and
Croux (1993)).

In Fig. 10, the data points corresponding to a 𝜎𝜃g value exceeding
2 degrees are highlighted in red. It can be observed that the red
dots correspond to some of the largest outliers in the top two panels.
However, in Fig. 10c, which contains no Sentinel-2+AIS data, the red
dots no longer correspond to the largest outliers. This shows that the
errors are inherent to the Sentinel-2+AIS dataset and are linked to the
variability in 𝜃g.

Upon removing these data points, the RMSE between the Sentinel-
2+AIS and HFR datasets decreases from 0.37m s−1 to 0.24m s−1. Hence,
fter filtering, the RMSE of the across-sailing-line currents is similar to
he RMSE observed for the along-sailing-line component. A summary
f error statistics before and after filtering out data points is given in

able 1.

8 
Table 1
Error statistics of the estimated across-sailing-line surface currents between all three
datasets.

Dataset 1 Dataset 2 Filter N 𝑅2 [−] RMSE [ms−1] max [ms−1]

S2+AIS HFR – 53 0.76 0.37 0.88
S2+AIS HFR 𝜎𝜃g

< 2◦ 41 0.84 0.24 0.57
S2+AIS CMEMS – 81 0.49 0.46 1.38
S2+AIS CMEMS 𝜎𝜃g

< 2◦ 65 0.48 0.38 0.79
HFR CMEMS – 53 0.68 0.33 0.80
HFR CMEMS 𝜎𝜃g

< 2◦ 41 0.62 0.34 0.56

5.3. Total surface current

In Fig. 11, the estimated surface currents for two Sentinel-2 images
are shown in the spatial domain. The red vectors correspond to the
Sentinel-2+AIS estimates. The black vectors denote the currents derived
from HFR, while the CMEMS modelled vector field is visualized by the
blue vectors. There is generally good agreement in both magnitude and
direction between the Sentinel-2+AIS and HFR currents. However, the
CMEMS currents deviate most from the other two datasets, which is
particularly noticeable in the northeastern part of both panels.

In addition, Fig. 11 also shows a clear limitation of the new mea-
surement principle, i.e., it only produces a few point measurements per
satellite image. In our case study, where 25 images were analysed, a
total of 81 data points were obtained, resulting in an average of only
three measurements per image. This quantity further reduces in regions
with lower ship traffic and increased cloud cover. However, there are
many data scarce regions in the world with dense shipping traffic where
the proposed method could be beneficial.

5.4. Uncertainties

Uncertainties in the estimated along- and across-sailing-line sur-
face currents were estimated using triple collocation, as described in
Section 4.3.2. For the across-sailing-line component, the uncertainties
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Fig. 10. Correlation between three datasets of across-sailing-line surface currents in the Strait of Gibraltar. In all figures, the red dots correspond to datapoints where 𝜎𝜃g
> 2◦.

(a) Sentinel-2+AIS vs. High-Frequency Radar (HFR). (b) Sentinel-2+AIS vs. numerical model CMEMS. (c) CMEMS vs. HFR. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 11. Two examples of surface current fields in the Strait of Gibraltar. The red arrows visualize the estimated Sentinel-2+AIS surface currents, while the black arrows represent
the vector field derived from High-Frequency Radar (HFR). The modelled currents from CMEMS are given by the blue vectors. The black crosses denote the locations of the HF
radars. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
were computed both before and after filtering for datapoints with
𝜎𝜃g < 2◦. The results are given in Table 2. Regarding the along-sailing-
line component, the HFR data exhibited the lowest uncertainty with
a standard deviation of 0.09m s−1. The Sentinel-2+AIS dataset ranked
second with a standard deviation of 0.14m s−1. Finally, the CMEMS
dataset had the largest uncertainty with a 0.23m s−1 standard deviation.

For the across-sailing-line component, the HFR data once again
demonstrated the highest accuracy, with a standard deviation of
0.16m s−1. The uncertainty in the Sentinel-2+AIS dataset increased
considerably to 0.30m s−1, while the CMEMS data had a standard
deviation of 0.28m s−1. However, after excluding the 12 datapoints
with the largest variation in ship course, the standard deviation in
the Sentinel-2+AIS dataset decreased from 0.30m s−1 to 0.16m s−1. This
reduction did not occur for the CMEMS dataset. We conclude that
the Sentinel-2+AIS dataset provides accurate surface current estimates
9 
in the absence of large variations in ship course, outperforming the
modelled currents from CMEMS.

It should be noted that the sample sizes were relatively small,
consisting only of 53 datapoints before filtering and 41 datapoints
after filtering. According to Zwieback et al. (2012), the relative error
in the estimated standard deviations is approximately

√

5
𝑁 , where

𝑁 is the sample size. For 𝑁 = 53, this yields a relative error of
0.31, indicating considerable uncertainty in the estimated standard
deviations themselves. To achieve a relative error of less than 0.1, a
sample size of 500 datapoints would be required.

6. Discussion and conclusion

The goal of this paper was to assess to what extent surface currents
could be estimated using a new measurement principle involving the
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Table 2
Estimated standard deviations for both surface current components using triple colloca-
tion. The right-most column gives standard deviations for the across-sailing-line surface
currents after filtering for datapoints with 𝜎𝜃g

< 2◦.

Dataset Standard deviation [ms−1]

𝑈along 𝑈across 𝑈across, 𝜎𝜃g
< 2◦

S2+AIS 0.14 0.30 0.16
HFR 0.09 0.16 0.16
CMEMS 0.23 0.28 0.29

vector difference between two ship speed vectors. We have shown
that accurate surface current retrieval is possible, especially in the
absence of large variability in ship course. The RMSEs of the along- and
across-sailing-line components with respect to the HFR observations are
0.21 and 0.24m s−1, respectively, after filtering for ships with a large
ariability in ship course. These results demonstrate improved accuracy
o the currents derived from AIS data alone by Le Goff et al. (2021),
here the east- and north currents had RMSEs of 0.38 and 0.28m s−1

ith respect to data from drifting buoys. It is worth noting that their
ethod provides average currents within a spatiotemporal interval of

ypically 1
8 − 1

4
◦

spatial resolution and 1 − 5 days temporal resolution,
aking it suitable to study the average conditions of the flow field. In

ontrast, our method offers localized measurements in space and time,
hich could be valuable for the validation of hydrodynamic models.

Furthermore, our estimates exhibit a similar level of accuracy to
oth HFR and Sentinel-1 derived currents. Lorente et al. (2014) find
MSEs of 0.21 and 0.20m s−1 for the east- and north currents from the
FRs with respect to in-situ data in the Strait of Gibraltar. Radial
urrents derived from Sentinel-1 had RMSEs of ∼0.25m s−1 with respect
o HFR-derived currents along the northern coast of Norway (Moiseev
t al., 2020).

It is important to note that our case study focused solely on the Strait
f Gibraltar. Nevertheless, we anticipate that the achieved accuracies
ould not significantly decline in other regions. In fact, we observed

hat ships in the Strait of Gibraltar exhibit greater variability in both
peed and course compared to other regions. This variability represents
substantial source of error in the estimated surface currents. Conse-

uently, we expect accuracy to potentially improve in regions where
hips display less variability in speed and course.

Another point of discussion concerns the modulation of Kelvin
akes by other surface waves. Linear wave interactions should not

mpact the accuracy of the retrieval algorithm, as these interactions
o not modify the wavelengths of the waves involved. Consequently,
he shape and location of the Kelvin wake signal in the spectrum
emain unaltered. However, as the surface slopes would be modulated,
inear wave interactions do impact the visibility of the Kelvin wake
n satellite imagery (Liu et al., 2019). Nonlinear wave interactions,
hich require very specific wavenumber combinations to occur, would
nly affect a specific direction in the Kelvin wake (Zhu et al., 2008).
ince the proposed method integrates over the entire dispersion curve,
e do not expect nonlinear interactions to alter the accuracy of the
roposed method. Therefore, while ambient waves should not influence
ccuracy, they can have a considerable impact on the visibility of the
elvin wake on satellite imagery.

The pushbroom imaging mechanism of Sentinel-2 could also intro-
uce an error. As Sentinel-2 images are constructed row-by-row, there
s a small time delay between successive rows of pixels. Such a time
elay could elongate or compress dynamic targets such as waves. In
ppendix A we derive an upper bound of 0.025m s−1 for this error

n case of fast ships sailing exactly along the satellite ground track.
he error is even smaller for slower ships sailing at an angle from the
atellite ground track. Hence, we conclude that this error can safely be
eglected.

While our developed method demonstrates good accuracy, there are

ertain considerations regarding the potential measurement frequency.

10 
irst, the method relies on satellite imagery with temporal resolution on
he order of days. Second, since the method relies on optical imagery,
loud cover further reduces the availability of useable imagery. Third,
ot all ships leave a visible Kelvin wake on satellite imagery. In our case
tudy, approximately 25% of ships with 𝑉g > 6m s−1 exhibited a visible
elvin wake. This percentage aligns with the probabilities reported
y Liu and Deng (2018), which range from 20% to 40% depending on
hip type and satellite spatial resolution.

As a result of these limitations, measurements obtained using our
ethod will be sparse in time. Still, the proposed measurement prin-

iple has several favourable features that demonstrate its potential
o complement existing techniques. First, it is able to provide cost-
ffective data in regions that are not covered by traditional measure-
ents such as buoys, surface drifters or HFRs. Specifically, whereas

uoys are typically deployed outside of shipping lanes to avoid colli-
ions, the Sentinel-2+AIS estimates directly provide information within
hese areas of large interest. Second, unlike SAR-based methods, two
omponents of the surface current are provided and no prior knowledge
n ambient waves is required. Third, the proposed method is able
o estimate non-geostrophic currents, which is in contrast to satellite
ltimetry-derived currents.

To enhance the temporal resolution, additional high-resolution op-
ical satellite imagery could be utilized, such as imagery provided by
POT and Pléiades satellites, which offer higher spatial resolution com-
ared to Sentinel-2. This would also decrease the minimum ship speed
equirement of approximately 6m s−1, thereby increasing the number
f visible Kelvin wakes. Additionally, higher resolution imagery might
nable the application of the algorithm to ships navigating in inland
aterways, where speeds are typically lower. In such shallower waters,

t is important to consider local water depth as a factor.
Challenges related to cloud cover could be mitigated by considering

he use of Synthetic Aperture Radar (SAR) imagery instead. Although
elvin wakes have been reported to be visible on SAR imagery (e.g.
yden et al., 1988; Graziano et al., 2016a), the SAR imaging process
auses waves to be distorted, mainly through the velocity bunching
echanism (e.g. Hasselmann et al., 2013). As a consequence, accurate

etrieval of the ship speed may prove challenging as the shape of the
bserved spectral signal can deviate from the theoretical one.

For future work, it is worth considering the automation of Kelvin
ake detection on imagery. In this study, Kelvin waves were manually

dentified and extracted, which is a labour-intensive process. Automat-
ng this step allows for the analysis of larger datasets, enabling the
resented method to generate a significant number of localized surface
urrent measurements. These measurements can complement existing
bservational techniques, particularly in regions with dense shipping
raffic.
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Appendix A. Potential error due to pushbroom mechanism

Sentinel-2’s MultiSpectral Instrument (MSI) is a pushbroom imager.
Therefore, each image is constructed row-by-row as the platform moves
across the scene. Consequently, there is a small time delay between
successive rows of pixels. Such a time delay can distort dynamic targets
such as waves. Here, we will quantify the worst-case error in our
estimated surface currents due to this mechanism.

Suppose a wave with wavelength 𝐿 is travelling exactly along the
satellite ground track. Let 𝑇 denote the time delay between two rows of
pixels, which is approximately 1.57ms according to the ‘‘LINE_PERIOD’’
ariable in the metadata of a Sentinel-2 file. Let 𝛥𝑡 denote the imaging
ime delay between two successive wave crests. We have

𝑡 = 𝐿𝑇
10

, (A.1)

where the factor 10 is due to the pixel resolution. The length distortion
of the wave, 𝛥𝐿, is given by the product of the wave’s phase speed 𝑐,
and the imaging time delay 𝛥𝑡, i.e.,

𝛥𝐿 = 𝑐𝛥𝑡. (A.2)

Now we substitute 𝑐 =
√

𝑔𝐿
2𝜋 and Eq. (A.1) to find

𝛥𝐿 =
√

𝑔𝐿
2𝜋

𝐿𝑇
10

. (A.3)

We are interested in the change in estimated ship speed 𝛥𝑉 due to this
distortion of the wavelength 𝛥𝐿. Let

𝛥𝑉 = 𝑑𝑉
𝑑𝐿

𝛥𝐿, (A.4)

=
𝑔

2
√

2𝜋𝑔𝐿
𝛥𝐿, (A.5)

where we have used that 𝑉 =
√

𝑔𝐿
2𝜋 . Substitution of Eq. (A.3) yields

𝛥𝑉 =
𝑔𝐿𝑇
40𝜋

. (A.6)

Clearly, the error would be largest for long, hence fast waves and for
large time delays between successive rows of pixels. The longest ship
waves in our case study were about 210m. This yields an error in
he ship velocity of 0.025m s−1. This directly translates to a 0.025m s−1

rror in the along-sailing-line current, while it has no impact on the
cross-sailing-line current.

Note that this value provides an upper bound for the error induced
y the pushbroom mechanism. It assumes that waves are travelling
xactly along the satellite ground track, while in practice, most sailing
ines deviate from the satellite ground track. Moreover, most ships in
ur case study generated shorter waves ranging from 40 to 90 m, which
urther reduces the error. Therefore, we conclude that wave distortion
ue to the pushbroom mechanism can safely be ignored to estimate ship

peeds from Kelvin waves on Sentinel-2 imagery.

11 
ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.rse.2024.114400.
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