
Theory Comput Syst
DOI 10.1007/s00224-010-9294-3

The Navigational Power of Web Browsers

Michał Bielecki · Jan Hidders · Jan Paredaens ·
Marc Spielmann · Jerzy Tyszkiewicz ·
Jan Van den Bussche

© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We investigate the computational capabilities of Web browsers, when
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1 Introduction

The Web browser is an indispensable piece of application software for the computer
user. All the popular browsers essentially implement a very basic machinery for navi-
gating the Web: a user can enter a specific Web address as some kind of “source node”
to start his navigation; he can then further click on links to visit other Web nodes; and
he use Back and Forward buttons to go along a stack of already visited nodes.

The question we want to address is the description of the power of the browser
as a tool. We (the authors) still remember the early browsers and appreciate the new
features that have been introduced since, like history in the form of marking already
visited links with a distinctive color, or that the page accessed by the “back” button
is reopened at the same location when we left it. Definitely, they help the human
users of browsers. This immediately raises the question if these improvements can be
given mathematical, precise meaning. This paper offers a precise formulation of this
problem and provides a number of results.

First, we must give the browser a formal meaning.
For computer scientists it is natural to equip a Web browser with a standard finite

automaton, and wonder about the computational capabilities of these automata. We
believe, that these capabilities reflect the power of browser as a tool. After all, a lot
of application software, such as word processors or spreadsheets, allows in addition
to the standard “manual” use of the software, also some kind of “programmed” use,
by allowing the user to write macros which are then executed by the software tool.
Such macros are typically simple programs, which offer the standard test and jump
control constructs; some variables to store temporary information; and for the rest
are based on the basic features offered by the application. This reflects the extremely
common method of creating macros, by recording the actions taken by a human user
and then repeating them, perhaps in a loop. They can also been written in a graphical
programming environment (such as Apple’s Automator) where the user drags actions
into some flowchart.

In this spirit, we introduce in this paper the browser automaton (or just “browser”
for short). This automaton model is simply obtained by equipping a finite-memory
automaton with the basic features offered by a Web browser and already summarized
above: clicking on a link; going “back”; and going “forward”. Here, a finite-memory
automaton [13] is simply an automaton with finite control and a finite number of reg-
isters (which we use to store Web addresses). The model thus obtained can also be
regarded as a restriction of the browser machine model introduced earlier by Abite-
boul and Vianu [2], which has an unlimited Turing tape for storing Web nodes, rather
than just the finite memory plus the back and forward stacks which we have here.

Just like Alan Turing was interested in understanding the problems solvable by
a computer following a formal algorithm, using only pencil and sufficient supply of
paper, we are here interested in the problems solvable by a mechanical browser. We
believe that what is impossible for browser automata is also impossible for human
users of browsers, and that complexity limitations of browser automata apply to hu-
mans as well.

However, while Turing could easily define a “problem” as a function on the natural
numbers, what kind of computational problems over the Web can we consider in our
setting?
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A first, basic, approach to this question would be just to consider these classi-
cal computable functions, by simple analogy to Turing. From this perspective, we
will show that browser automata are actually Turing-complete: they can simulate
any computable function. While this result initially surprised us, such an approach is
clearly not the only one.

Indeed, a more natural approach was taken by Abiteboul and Vianu, as well as
Mendelzon and Milo [17], who considered the Web as a database, and studied the
power of browser machines in answering queries to this database. We will consider
this approach in this paper, and show here that browser automata can answer any Web
query that is computable in logarithmic space.

In this paper, however, we also propose a third approach, which is to focus on
navigational problems. A navigational problem asks the browser to visit a certain
specified set of Web nodes, and no others. Thus, navigational problems formalize
browsing tasks, avoiding “getting lost in hyperspace” [7, 9]. Specifically, we focus
on structural navigational problems only, where the browser has to solve the problem
dependent purely on structural information of the Web graph alone. More advanced
models could also introduce predicates on Web nodes so that the browser can detect
various properties of the nodes, but we feel the basic “uncolored” model remains
fundamental, and resembles quite well what human users of browsers do.

Toward investigating the navigational power of browsers, we introduce a notion
of “data-transfer optimal” browser, in which a node is never downloaded more than
once. We show that this is a real restriction, by exhibiting several natural navigational
problems that cannot be solved in such an optimal manner, and by providing a rather
general necessary condition on the structure of such problems. We also provide con-
crete lower bounds on the number of data transfers a browser has to make to solve
certain simple problems. Our proof employs basic communication complexity the-
ory. Finally, we investigate a new feature for Web browsers: switching the back and
forward stacks. We show that this feature strictly increases the navigational power
of browsers, and that it also allows problems to be solvable with provably less data
transfer.

As discussed in the conclusion, our results also provide a first direction in which
the complexity of user interfaces (in our case user interfaces for browsing the Web)
can be studied.

2 Web Instances and Browser Automata

2.1 Web Instances

Definition 1 A Web graph is a finite, locally ordered directed graph V = 〈V, l,O〉.
Here, V is the finite set of nodes of V (we always use the matching Roman letter for
the set of nodes of any Web graph denoted by a blackboard-font letter), l is the edge
relation (we also call it the link relation), and O is a ternary relation such that for
each node x, the binary relation Ox := {(y, z) | (x, y, z) ∈ O} is a total order of the
nodes linked from x.

Definition 2 A page of a Web graph V is pair (v, S), where v ∈ V and S = t1, . . . , tk
is the ordered sequence of nodes linked from v. We will refer to S as the list of



Theory Comput Syst

Fig. 1 Example of a Web
instance

children of v. We will often depict such a page in the following way:

A Web graph can be equivalently represented by the set of its pages.

Definition 3 A Web instance (V, s) is a Web graph V with a distinguished node s,
and such that all nodes of V are reachable by links from s, which is henceforth called
the source.

The source node is where browsing starts in the Web graph. Obviously, nodes not
reachable from the source are irrelevant to browsing, hence the reachability require-
ment. This formalization of Web instance is similar to earlier formal models of the
Web, e.g., that by Abiteboul and Vianu [2].

A very simple example of a Web instance is shown in Fig. 1. Node 1 is the source.

2.2 Browser Automata

The general idea of the following definitions is to create a model of an automated Web
browser, as a finite state automaton equipped with the principal navigation facilities
offered in common Web browsers such as Internet Explorer, Mozilla Firefox, Opera,
or Safari. A crucial feature of these browsers, which our formalization includes, is
that the back and forward stacks not only remember the addresses of previously vis-
ited web pages, but also the scrolling position on a page at the time of leaving it by
clicking a link or the Back or Forward button. We model the scrolling position by a
tape that contains the list of children (outgoing links) of the current Web page.

Definition 4 A browser automaton (or just “browser” for short) is a finite state com-
puting device equipped with the following ingredients:

1. Components:
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(a) A finite state control.
(b) A read-only tape, which stores a sequence of nodes of a Web graph. The tape

is accessed by a two-way head, and can sense the beginning and the end of the
tape. Note that since Web graphs can have arbitrarily many nodes, there is no
fixed finite tape alphabet as in classical finite automata.

(c) A finite number of registers, each one capable of storing a single node of a
Web graph.

(d) Two stacks, denoted � and �. Each stack will hold pairs (v, i), where v is a
node, and i is a natural number.

The automaton is run on Web instances (V, s). During the run there is always a
current node; the initial current node is s. The tape will invariantly hold the list of
children of the current node. The initial content of the two stacks is empty.

2. The following actions can be undertaken, as ordered by its finite control:
(a) Change the control state.
(b) Move the head left or right on the tape.
(c) Store in a register the identity of the current node, or the node currently seen

by the head on the tape.
(d) Go forward, which consists of pushing the current node and head position on

the � stack, and popping the � stack, yielding a new current node and head
position. This action is impossible if the � stack is empty.

(e) Go backward, which consists of pushing the current node and head position
on the � stack, and popping the � stack, yielding a new current node and
head position. This action is impossible if the � stack is empty.

(f) Click, which causes the following to happen. Let v be the node seen by the tape
head. Then the current node and head position are pushed on the � stack; the
new current node is v (thus producing a new tape content as well); and the
new head position is 1. The � stack is erased.

(g) Halt.
3. The following information determines the next state and the next move of the

machine:
(a) The current control state.
(b) Equalities and non-equalities among the values of registers, the current node,

and the node seen by the tape head.
(c) Information on whether the tape head is at the beginning or the end of the tape

(i.e., the first or the last child of the current node), or whether the current node
has no children at all.

(d) Information on whether any of the stacks is empty.

A more formal definition of a browser automaton, and its computation on an in-
stance, is easily produced and left to the reader.

As an illustration, Table 1 shows an example of a sequence of possible actions
performed on the Web instance of Fig. 1.

Definition 5 A browser automaton with history is like an ordinary browser automa-
ton, with the additional feature that the next state and action of an automaton can
depend additionally on whether the automaton, in its current run, has already visited
the node seen by the tape head.
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Table 1 A sequence of actions a browser automaton might perform on the Web instance of Fig. 1. Note
that registers are not used

Action Current node Tape � �

Initial 1 234 empty empty

Click 2 5 (1,1) empty

Click 5 78 (1,1)(2,1) empty

Right 5 78 (1,1)(2,1) empty

Back 2 5 (1,1) (5,2)

Forward 5 78 (1,1)(2,1) empty

Back 2 5 (1,1) (5,2)

Back 1 234 empty (5,2)(2,1)

Right 1 234 empty (5,2)(2,1)

Forward 2 5 (1,1) (5,2)

Back 1 234 empty (5,2)(2,1)

Vlick 3 6 (1,2) empty

Equivalently, browsers with history are equipped with a perfect recall memory,
which equals the set of all the nodes already visited, and is allowed to test whether
the node under the tape head is in that set.

Under the latter definition each browser can be understood as a browser with his-
tory that never makes use of its memory.

A history mechanism is indeed present in most of the Web browsers used in prac-
tice. We will still study browsers without history as well. Indeed, their theory is very
appealing: much of the computational power of browsers is already exhibited with-
out using the history. Yet, we will also show that history does help to solve more
navigational problems.

We conclude this section with a remark on the use of registers. In the original
finite-memory automata of Kaminski and Francez [13], different registers cannot
store the same node, but transitions can be based only on equalities, not nonequali-
ties. In such a transition model, allowing the same node in different registers leads to
a weaker model in which classical decision problems such as universality or inclu-
sion become decidable [14]. In our work, we are not focused on such decision prob-
lems, and in our browser automaton model, transitions can be based on nonequalities
among registers as well as equalities, so it becomes inconsequential whether or not
different registers can store the same node.

3 Turing-Completeness of Browsers

In this section, we show that browsers can simulate arbitrary Turing machines. With-
out loss of generality, we restrict attention to single-tape Turing machines with the
binary tape alphabet {0,1}.

For the simulation, we need a way to represent binary words as Web instances. So,
let w = w1 · · ·wn ∈ {0,1}∗ be a binary word. We represent w by the Web instance
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(Vw, s), where Vw is as follows:

Here, additionally (not depicted), each link ij points to the node al iff wj = l.
Note the loop between pn and pn−1.

By designating two special output states for 0 and 1, we can easily agree that a
browser B outputs 0 (1) on a given input word w if B , when run on the instance
(Vw, s), halts in the output state 0 (1). We can then further agree that B computes a
boolean function f (i.e., a partial function f : {0,1}∗ → {0,1}), if for every binary
word w, the browser B , when run on the instance (Vw, s), halts in one of the two
special output states iff f (w) is defined, and in that case, the output indeed equals
f (w).

Theorem 1 Every Turing-computable boolean function can be computed by a
browser.

Proof Let f be a boolean function computed by the Turing machine M . We have
assumed that M’s tape alphabet is {0,1}, extended by the blank symbol which, how-
ever, cannot be written by M . Initially the tape contains the input word, with tape
cells after that holding blanks. Each time M enters a blank tape cell for the first time,
it will overwrite it with 0 or 1. We can again assume that M outputs 0 or 1 by halting
in one of two designated output states.

It now suffices to show how the working of M on an input word w can be simulated
by a browser BM working on the input instance (Vw, s). The browser BM works
according to the following instructions:

1. Starting from s, store the addresses of a0 and a1 in two registers. (Here and in the
following, BM identifies links by their order of appearance on the pages. There are
always at most four of them, so all of the necessary information can be encoded
in the finite state control.)

2. Next, follow repeatedly the first link on each page, until a two-page loop is found.
Such loop can be easily detected by comparing the link with the address of the
previous page (which can be kept in a register). When this loop is found, BM must
be in pn, and the � stack content is (s,1), (p1,1), . . . , (pn,1).

3. Memorize pn in a register.
4. Now repeatedly perform the following actions, until we are back at s:

(a) Compare the second link on the page with the stored addresses a0, a1.
(b) If it is a0 (a1), then place the head on the first (second) link on the page.
(c) Go backward once.

5. Presently, the position of the head on each of the pages p1, . . . , pn, as they are
stored on the � stack, indicates the corresponding symbol of M’s input word w.
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6. Now start simulating M , by going backward and forward exactly like the head of
M walks left and right on its tape. When M writes 0 (or 1) on the current tape cell,
place the head on the current page on the first (second) link. In this simulation, the
current page of BM corresponds to the tape cell currently seen by M ; the position
of the head on the current page corresponds to the symbol written on the tape cell;
the � stack corresponds to the portion of M’s tape to the left of the head; and the
� stack corresponds to the portion of M’s tape to the right of the head (as far as
it has already been visited by M). In particular, the distinction between a0 and a1

is at this point no longer relevant.
7. If M wants to go right but the � stack is empty, then simulate the creation of a

new tape cell as follows: (i) memorize in a register the link in the current page that
is currently under the head; (ii) click on the first link of the current page (which
is always pn−1 or pn in this case); (iii) make one backward step; (iv) restore the
head position to the memorized position; (v) make one forward step. We are then
ready to continue the simulation.

8. Halt whenever M does.

Note that when M uses a lot of space, the vast majority of the pages stored on the
stacks during the simulation are copies of pn−1 and pn. However, for different copies
of these pages, the stacks hold different head positions, corresponding to the symbols
written by M on its different tape cells. �

An obvious corollary of the Turing machine simulation exhibited in the proof of
the above theorem is that the halting problem for browsers is undecidable.

We observe that the proof depends crucially on the loop that is present in the
representation of a word as a Web instance. Hence, it is a natural question to ask
what happens if we restrict attention to acyclic Web graphs:

Theorem 2 Restricted to acyclic instances, browsers (even with history) can do only
linear-space computations, and every boolean function computable in space n by
a Turing machine with two-element tape alphabet can be simulated by a browser
working on acyclic instances only.

Proof The linear-space upper bound is clear, given that the number of registers is
fixed, and, in the absence of cycles, the stacks and history never become larger than
the input Web instance. The simulation of space n Turing machines with two-element
tape alphabet is a straightforward adaptation of the proof of Theorem 1: we can omit
the loop between pn−1 and pn in the Web graph Vw simulating a word w. �

Many PSPACE-complete problems are solvable in linear space, [18, Chap. 19].
Using simple padding to allow for encoding of larger tape alphabet, a corollary of the
above theorem is that the data complexity [16, 20] of browsers on acyclic instances
is PSPACE-complete.
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4 Web Queries

So far, we have obtained a first impression of the computational power of browsers,
by having looked at their ability to simulate Turing machines. In a natural next step,
we now give arbitrary Web instances as input to browsers (rather than just special
instances that represent binary words), and look at the ability of browsers to answer
Web queries. Intuitively, a Web query asks to retrieve a certain set of “interesting”
pages. Formally, we define:

Definition 6 A Web query is a mapping Q from Web instances to finite sets of nodes,
such that

• Q(V, s), whenever defined, is a subset of V ; and
• if α : (V, s) → (V′, s′) is an isomorphism, then Q(V′, s′) = α(Q(V, s)).

The second condition is a consistency criterion well established in database the-
ory [4] (often called “genericity” [1]). In our case it essentially says that the precise
identities of the nodes in a web graph are unimportant; only the way they are linked
together, and the order in which the links appear on a page, is important.

By designating a number of states as output states, a browser can be used to com-
pute Web queries. Indeed, whenever, during its run on a given instance, the browser
switches to an output state, we consider the current node to be output. (In practice,
the id of the current node could be written to an output file.) After halting we can then
consider the set of nodes that were output as the output set of the run. We then agree
that a browser B computes a Web query Q if B halts on every Web instance I , with
precisely the set Q(I) as output.

Note that we can regard decision problems about Web instances as a special kind
of Web queries, which could be called “yes/no queries”; such a query either outputs
the empty set (interpreted as “no”) or outputs just the source node (interpreted as
“yes”). Note also that the simulation of boolean functions on strings, as discussed in
the previous section, can be viewed as yes/no Web queries on a special kind of Web
instances. As a consequence, in view of Theorem 1, there is no upper bound (other
than computability) on the computational complexity of Web queries computable by
a browser.

In sharp contrast to Theorem 1, however, certainly not all computable Web queries
are computable by a browser, even with history. Indeed, by the linear-space upper
bound on acyclic instances observed in Theorem 2, any Web query that is not com-
putable in linear space on acyclic instances is not computable by a browser with his-
tory. One can actually do better: there are also linear-space computable Web queries
that are not computable by a browser with history. Consider so-called “simple” Web
instances: instances where the Web graph is a simple path starting in the source.
Simple instances can be identified with unary strings (i.e., strings over a one-letter
alphabet). On simple instances, all a browser can remember are a fixed number of
nodes in the registers, plus the history, but that history is determined by the farthest
node visited so far, and thus can be eliminated at the cost of two additional registers.
So simulating such a browser with a Turing machine we really need only a constant
number of counters for storing node positions, a logarithmic number of bits in total.
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Consequently, any property of unary strings decidable in linear space but not in log-
arithmic space yields an example of a Web query computable in linear space but not
computable by a browser with history.

Our main goal now in this section is to prove the following positive result.

Theorem 3 Every Web query that is computable in logarithmic space by a Turing
machine is also computable by a browser, without history.

Here, by “a Web query computable in logarithmic space”, we mean this in the con-
ventional sense of computability by Turing machines; we assume some standard en-
coding of Web instances as inputs for Turing machines, and we represent the nodes
of the Web graph by the numbers 1 to n, with n the number of nodes.

The proof of Theorem 3 is based on two lemma’s, the second a strengthening of
the first.

Lemma 1 The Web query that simply returns all nodes of the given Web instance is
computable by a browser without history.

Proof Recall that all nodes in a Web instance are reachable from the source. The
desired browser performs a depth-first left-to-right traversal of the graph, starting in
the source, by running the following program. Start by repeatedly clicking on the
first link on the current page, until we reach a page without outgoing links. When this
happens, backtrack by going backward one step, and move the head one position to
the right. If the head was already placed at the end of the page (so that we cannot
move the head to the right), continue to backtrack until we find a tape configuration
where we can move the head one position to the right. Now continue the depth-first
traversal by clicking the link currently under the head, and continue. according to the
previous instructions. When we can no longer backtrack, we are finished. We still owe
an explanation on how to avoid running in a cycle. We do this by avoiding to click
on a link to a node that occurs already on the � stack; instead, we then immediately
move the head one position to the right. Thereto, before actually clicking on a link
to a node v, we examine all tape configurations stored in the � stack, by repeatedly
going backward, and make sure that in each such configuration the head is not placed
on v. To resume the traversal after performing this test, go forward again until we
have returned to the link to v. �

As a corollary to the above proof, we note:

Corollary 1 A browser without history can check for the existence of a cycle.

The browser described in the above proof makes multiple visits to every node that
is reachable from the source by multiple simple paths. We next show that we can
adapt the browser to detect that we have already visited a node earlier, so that we can
make sure every node is output only once.

Lemma 2 There exists a browser (without history) that, on any given instance, out-
puts all nodes without repetitions, in depth-first left-to-right order, and then halts.
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Proof The idea is to refine the basic depth-first traversing browser from the proof of
Lemma 1. So, we refer to that as the basic traversal, and we are now going to define
what we call the refined traversal. The idea is the following. Suppose we are ready to
click on a link to a node v. Before we do this, we test whether we have already visited
v before; if so, v is not visited and we immediately move the head one position to the
right.

We perform this crucial test as follows. Let p be the current page (thus containing
a link to v). We remember p and v in two registers. We now go backward, all the
way back to the source, and restart a basic traversal; we refer to this inner traversal
as the “subtraversal initiated at (p, v)”. Now when, during this subtraversal, we click
on v, we remember this fact. Moreover, the subtraversal is aborted the first time we
find ourselves back at p and ready to click on v. If, at this point, the result is that we
have indeed clicked on v during the subtraversal, the test succeeds (i.e., the refined
traversal will skip v).

To show that this program has the desired behavior, we must show two properties.

1. When an inner traversal is aborted, the � stack has the same contents as at the
point when the refined traversal initiated that inner traversal. This property is fun-
damental, as it guarantees that the refined traversal, after it was interrupted for a
subtraversal, can resume in the same state where it was left.

2. The refined traversal visits each node exactly once, in depth-first left-to-right or-
der.

To show these two properties, we start from the observation that the basic traversal
traces all possibly simple paths that start in the source node. Each time a node v is
visited, the content of the � stack equals one of the possibly many simple paths
from the source to v, and every simple path from the source to every possible node
is followed exactly once. (We are talking here about the basic traversal.) We can
actually order the set of all possible simple paths starting in the source by the depth-
first left-to-right order; this total ordering coincides with the order in which the basic
traversal will follow the paths. In particular, the sequence of final nodes of all those
paths, listed in order, spells out the sequence of visits the basic traversal will make.

We now narrow down property 2 as follows:

2. The refined traversal visits each node v precisely when coming from the first path
to v.

The depth-first left-to-right order of output is then obvious.
Now to the actual proof of the two properties. We will prove them simultaneously

by induction on the number of nodes already visited by the refined traversal (the base
case, where we visit the source, is trivial).

1. Suppose the refined traversal is currently at node p and is going to test whether
it has already visited node v (which is thus a child of p). By induction, we know
that the current content of the � stack equals the first path to p. When the inner
traversal is aborted, it visits p for the first time, and hence the � stack will at this
point again contain the first path to p.

2. Suppose the refined traversal decides to click on v, coming from p. Then we must
show that the first path to v equals πv, where π is the first path to p. So, suppose
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to the contrary that a path π ′v to v smaller than πv would exist. Let q be the last
node of π ′. Note that q �= p, so q is visited before p by the basic traversal. But
then, since v must be a child of q , the subtraversal initiated at (p, v) would visit v,
and hence the refined traversal would not click on v, a contradiction.

Conversely, suppose the refined traversal is at a node p, deciding whether or
not to click on v, and assume that πv is the first path to p, with π the current
content of the � stack, or equivalently, the first path to v. Then we must show
that the refined traversal will indeed click on v. So, suppose to the contrary that
the subtraversal initiated at (p, v) would already visit v. Let π ′v be the path to v

followed for that visit; clearly, π ′v comes before πv in the dept-first left-to-right
order. But πv was assumed to be the first path to v, a contradiction. �

We are now equipped for the

Proof of Theorem 3 We will use a theorem of descriptive complexity theory and finite
model theory [8, 12, 16], due to Immerman [11], stating that every logspace query
about finite ordered relational structures is expressible in deterministic transitive-
closure logic; this logic is denoted by FO(DTC) and its definition will not be re-
peated here. Note that by their very definition, Web instances (V, s) = (V , l,O, s)

are indeed relational structures, over the vocabulary (l,O, s), where l appears as a
binary relation symbol, O as a ternary relation symbol, and s as a constant symbol.
Ordered Web instances then are relational structures (V, s,<), with < an additional
total order relation on V .

Of course a Web query, as we defined it, is defined on ordinary Web instances,
not ordered ones, but we can easily agree that a Web query can be applied also to
ordered Web instances simply by ignoring the given order relation. We then obtain
that for any logspace Web query Q, there exists a FO(DTC) formula ϕ(x) such that
for any Web instance (V, s), any total ordering < of V , and any node v ∈ V , we have
v ∈ Q(V, s) iff (V, s,<) |= ϕ(v).

It therefore suffices to show that browser automata can evaluate FO(DTC) for-
mulas on ordered Web instances, where the order relation is always the depth-first
left-to-right order, which we denote by <dflr.

We start with the following.

Lemma 3 There exists a browser (without history) Bsucc(x) with a register x that,
on any given instance (V, s) and with any initial values of registers and any initial
contents of � and �, outputs the immediate successor of the value of register x

according to the depth-first left-to-right order on (V, s), and then halts. If no such
successor exists, it halts and returns the initial value of x.

Proof Let v be the value of x. We run the browser from Lemma 2 from scratch, com-
paring the nodes it outputs with v and do so until it outputs v, and then continue until
it outputs the next node v′ (i.e., one immediately following v in the enumeration). If
it does so, we output v′, and if it terminates without producing such v′, we output v

and terminate, too. �
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Now, it suffices to show that for every FO(DTC)-formula ϕ(x) there is a browser
Bϕ having a register x that, when started on a Web instance (V, s) in a configuration
where register x contains a node v, irrespectively of the content of � and �, will
determine the truth of ϕ(v) in (V, s,<dflr).

Indeed, we initialize v with s. Each time, we store the present v in a register, run
Bϕ to verify whether ϕ(v) is satisfied, and if so, output v. Then we run Bsucc on v to
get the successor v′ of v. If the output is equal to v we terminate, and otherwise v′
takes over the role of v and the procedure is repeated.

Since the construction of Bϕ is by induction on the structure of ϕ, and subformu-
las of ϕ may have multiple free variables, we will actually consider general formulas
ϕ(x1, . . . , xm) with multiple free variables, and show that there always exists a cor-
responding browser Bϕ with registers x1, . . . , xm, that evaluates ϕ on the tuple of the
nodes stored in those registers. For atomic formulas of one of the three forms xi = xj ;
l(xi, xj ); or O(xi, xj , xk), this is easy. For atomic formulas of the form xi < xj we
can use the browser from Lemma 2.

If ϕ is of the form ψ ∨ χ or ¬ψ , we can use the browsers Bψ and Bχ in the
obvious manner.

If ϕ is of the form ∃xm+1 ψ(x1, . . . , xm, xm+1), we use the browser from Lemma 3
to try all possible nodes xm+1 one by one, and for each of them test using the browser
Bψ whether ψ(x1, . . . , xm, xm+1) is satisfied.

Finally, if ϕ is of the form [DTCψ](x1, . . . , xk, y1, . . . , yk), we work as follows.
Using the browser from Lemma 3, we can run through all possible k-tuples of nodes.
In this way we can also simulate a counter that counts up to nk , with n the number of
nodes of the Web instance. If (y1, . . . , yk) is reachable from (x1, . . . , xk) in the rela-
tion defined by ψ , this is possible in nk steps. So, in a first step, we initialize registers
z1, . . . , zk with the contents of x1, . . . , xk , and look for a tuple ū = (u1, . . . , uk) such
that ψ(z1, . . . , zk, u1, . . . , uk) is satisfied (using Bψ to test this). If we find no such ū,
we report that ϕ is not satisfied. If we do find a suitable ū, and ū is actually equal
to ȳ = (y1, . . . , yk), we report that ϕ is satisfied. Otherwise, we assign ui to zi and
repeat. If after nk repetitions ȳ has still not been encountered, we report that ϕ is not
satisfied. �

We conclude this section with two remarks. First, we notice that on any class of
acyclic instances where there is a fixed upper bound on the depth of the longest path
starting in the source, browsers without history are confined to logarithmic space.
Hence, on these classes, browser automata without history capture precisely logarith-
mic space.

Second, one may naturally wonder about an example of a Web query computable
in polynomial time, but not computable by a browser automaton without history. By
Theorem 3, however, finding such a query would entail separating polynomial time
from logarithmic space, which is a well-known open question from complexity theory
[18].
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5 The Power of History

It is a natural question to ask whether the history mechanism actually makes browsers
more powerful. We answer this affirmatively in this section.

Theorem 4 There exists a yes/no Web query that can be computed by a browser
automaton with history, but not by any browser automaton without history.

The proof, given next, is combinatorial in nature and does not yield a natural exam-
ple of a Web query satisfying the statement of the theorem. Giving such an example
is an interesting open problem.

Proof We will adapt the representation of binary strings by Web instances that we
already used for Theorem 1. Let w = w1 · · ·wn ∈ {0,1}∗ be a binary word. Before, we
represented the letters of w using a linear path p1 · · ·pn of n nodes from the source.
Additionally, there was a cycle between pn and pn−1 for the purpose of simulating
arbitrary computations. Now, we separate the representation of the input word from
the computing cycle; moreover, we add n additional nodes b1, . . . , bn in between.
Concretely, we now represent w by the Web instance (Vw, s), where Vw is now as
follows:

Here, as earlier, each link ij points to the node al iff wj = l.
To every boolean function f : {0,1}∗ → {0,1} we can associate a yes/no Web

query Qf as follows:

Qf (Vw, s) :=
{

∅ if f (w) = 0

{s} if f (w) = 1

For any instance I which is not (Vw, s) for any w ∈ {0,1}∗, we put Qf (I) := ∅.
(Notice that a browser, even without history, can check whether its input instance is
of the form (Vw, s).)

We are going to show:

1. For every computable f , the Web query Qf is computable by a browser automa-
ton with history.

2. There exists a computable f such that Qf is not computable by any browser
automaton without history.

The first claim is a variation on the Turing machine simulation from the proof of
Theorem 1. The added difficulty is in the beginning, where we need to transfer the
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input bits, represented using the p-nodes, to the tape, simulated using the (q1, q2)-
cycle. This transfer happens in two phases: in the first phase, for every i = 1, . . . , n,
we are going to click the link from s to bi iff bit wi = 1. This is easily accomplished,
using registers to remember you are in the p’s and in the b’s. In the second phase,
we then write the bits w1 · · ·wn on the Turing machine tape. Here, we read off the
bits from the links to the b-nodes, using the history mechanism, and we construct and
write on the Turing machine tape as in the proof of Theorem 1. Indeed, since we no
longer need to visit the p-nodes in this phase, the � stack over the nodes q1 and q2,
used to simulate the tape, is left intact when inspecting the b-nodes.

Now to the second claim. Fix an arbitrary natural number n, and consider a
browser automaton B without history working on instances (Vw, s) where the length
of w is n. We refer to such instances as “instances of length n”. When, during its run,
B clicks for the first time on q1, we say that B enters “computational mode”. It leaves
this mode when it clicks on p1. When, later, B clicks on q1 again, it enters computa-
tional mode again, and so on. Thus, during the run, B will be in computational mode
in some periods, and not in the other periods.

Proposition 1 Each time upon either entering or leaving computational mode, the
� and � stacks are empty.

Upon entering computational mode, by the above proposition, B’s configuration
consists of the current state, and the contents of the registers. Every register can hold
either (i) the source; (ii) a b-node; (iii) q1 or q2; or (iv) a p-node.

We thus must distinguish among 1 + n + 2 + n = 2n + 3 possible contents per
register. For n such that 2n + 3 is at least the number of different states, we can
thus represent a configuration upon entering computational mode as a vector in
{1, . . . ,2n + 3}r+1, with r the number of different registers.

Also upon leaving computational mode, by the proposition stacks are empty. Some
registers will have a new value (which can then only be a node of the first three kinds),
and the new state assumed by B is also important. Thus, the configuration after leav-
ing computational mode can be represented as a vector in {1, . . . ,2n + 3}r+1.

In summary, the global behavior of B on instances of length n, as far as computa-
tional mode is concerned, can be fully described by a function

Gn : {1, . . . ,2n + 3}r+1 → {1, . . . ,2n + 3}r+1

that describes how the configuration changes by entering, and leaving again, compu-
tational mode.

Without loss of generality, we may restrict attention to browsers that do their out-
put and halt outside of computational mode. This allows us to regard B , on instances
of length n, as a combination (Gn,B

′), where B ′ is a “reduced” browser B ′ with ac-
cess to Gn as an oracle function. Browser B ′ works not on the full instance (Vw, s),
but on the instance (V′

w, s), where V
′
w is Vw without the nodes q1 and q2. When B

would enter computational mode, B ′ directly invokes the oracle on its current config-
uration.

Going one step further, we can now consider a reduced browser R by itself,
and combine it with different oracle functions G : {1, . . . ,2n + 3}r+1 → {1, . . . ,



Theory Comput Syst

2n + 3}r+1, with r the number of registers of R. So, consider such a pair (R,G),
and consider a boolean function f : {0,1}n → {0,1} on words of length n only.
We can then naturally agree that (R,G) computes f if, on any instance (V′

w, s),
with w ∈ {0,1}n, the combined browser (R,G) outputs “yes” (“no”) if f (w) = 1
(f (w) = 0). Now observe that there are 22n

different boolean functions on words of
length n, whereas there are only (2n + 3)(r+1)(2n+3)r+1 = 2nO(r)

different functions
G : {1, . . . ,2n + 3}r+1 → {1, . . . ,2n + 3}r+1. Hence, for each reduced browser R,
and n sufficiently large when compared to r , there exists a boolean function on words
of length n that cannot be computed by R combined with any oracle function G. We
call f “uncomputable for R”.

The idea now is to combine all those uncomputable boolean functions, for all
possible reduced browsers, and for different input lengths. This combination will
produce the desired computable f : {0,1}∗ → {0,1} such that no browser automaton
without history can compute the Web query Qf . The formal definition of f follows
next.

List all possible reduced browsers in some arbitrary but fixed, computable, enu-
meration: R1, R2, . . . . We now define a sequence (ni)i of natural numbers and a se-
quence (fi)i of boolean functions, where each fi is defined on bitstrings of length ni .
For i = 0, we put n0 := 0. For i > 0, we define ni as the first natural number larger
than ni−1 and large enough so that there exists a function on length-ni bitstrings
uncomputable for Ri . We then define fi as the first such function (in, say, the lexico-
graphic order). We finally define f (w), for an arbitrary w ∈ {0,1}∗, as follows. Let n

be the length of w. If n occurs in the sequence (ni)i just defined, say n = nj , then we
define f (w) := fj (w). If n does not occur in the sequence, we put f (w) = 0. It is
now evident that f is effectively computable and that Qf is not computable by any
browser automaton without history. �

6 Click Complexity

In Web browsers in practice, clicking on a link causes data transfer to happen, even
if the page was already visited earlier. The pages stored on the stacks, however, are
generally cached on the client side, so visiting them again may not cause additional
data transfer. Thus, by measuring how many times a browser clicks during its com-
putation, we can measure the data transfer it generates.

It is an important measure both for the client and the server owner. Using Internet
access over mobile phone networks, the users are often charged for transfer, or there
is a limit on the total transfer quantity in billing periods. So it is desirable for the user
to avoid clicking more than necessary.

On the other hand, for the server owner, each transfer consumes the resources:
bandwidth and server workload. It is therefore desirable to organize his/her site struc-
ture to minimize the need of unnecessary clicks by the users.

Formally, we define:

Definition 7 For a browser B and a Web instance I , we denote by CB(I) the number
of clicks during the run of B on I , and we denote by CB(n) the maximum number of
clicks during the run of B on an instance of size n.



Theory Comput Syst

We observe the following relationship between click complexity and space com-
plexity:

Proposition 2 Each browser B with history can be implemented in space O(n +
CB(n) logn); without history, in space O(CB(n) logn).

Proof Since the total length of the � and � stacks can increase only with every
click, this length can be at most CB(n). Each element on the stack consists of a current
node and a head position for that node; each of these items can be implemented using
a counter up to n requiring logn bits. The fixed number of registers require O(logn)

size. The history requires linear size. �

There is also a relationship between click complexity and communication com-
plexity [15]. A classical setting in communication complexity is the problem
EQUAL, which we recall next.

Let there be two players, Alice and Bob, each of whom possesses a sequence of n

distinct elements from a set � = {σ1, . . . , σt }. Alice does not know Bob’s sequence,
and vice versa, but � is known to both players. We can view the sequences as words
(without repeated letters) over the alphabet �. For the problem EQUAL, the players’
task is to decide if their words are equal, by sending each other messages: these are
again words over �. They do so according to a predefined communication protocol.
This protocol specifies whose turn it is to send the next message, based on the full
history of prior messages. At the end of the protocol, the players must be able to
decide if their subsets are equal.

The following lower bound on the communication complexity of EQUAL is
known [15, Sect. 1.3]: for any protocol that gives the correct answer for every pair of
words of length n, there exists a pair of words for which the total length of exchanged
messages is at least logt

((
t
n

)
n!).

We can simulate EQUAL in the Web browser setting as follows. Consider Web
instances of the following form, which, for any natural number n, we refer to as an
“EQUAL Web-instance of size n”:

Importantly, some of the ai ’s may equal some of the bj ’s; the pages a1, . . . , an, b1,

. . . , bn themselves do not contain any further links. We define the yes/no Web query
QEQUAL as follows. Let I be an EQUAL Web instance as above. Then QEQUAL(I )

equals yes if and only if {a1, . . . , an} = {b1, . . . , bn}. For Web instances I that are not
EQUAL instances, QEQUAL(I ) is empty.

The Web query QEQUAL is easily computable by a browser, even without history,
as follows: go to a; remember a1 in a register; go back and go to b; compare b1 to a1;
remember b2 in a register; go back and go to a again; compare a2 (this is the link
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following a1 on a’s tape) to b2; and so on. The number of clicks here is linear in n,
and it seems impossible to do much better. Indeed, we observe:

Proposition 3 Let B be a browser automaton with history. Let � be a finite alphabet
of size at least the number of states of B . If B computes QEQUAL, then the communi-
cation complexity of EQUAL over � is O(CB(n)).

Proof Let Alice’s (Bob’s) sequence be a1, . . . , an (b1, . . . , bn). Each of the players

converts her/his sequence into a Web page and , respectively.

Together, they now simulate B on the instance of size n formed by these two pages
(and a source node). Whenever B enters a (b, respectively) then only Alice (Bob,
respectively) can continue the simulation, and does so until B enters the other node
from among a and b. At that moment, the current player sends to the other a message
consisting of the current values of the registers and a letter encoding the current state.
Then the other player takes over the simulation, and so on. Note that the players
indeed have all needed information to run B , since at the moment of a switch, the

content of the � stack is invariantly , with the head positioned at the entered

page; the � stack is invariantly empty; and all the remaining information B has are
precisely the values of the registers and the control state, and also the history. The
history now is dealt with as follows. When B is at a and clicks on a link ai , then
Alice sends ai to Bob to communicate this. Similarly, when B is at b and clicks on a
link bj , then Bob communicates this to Alice. In this way both players remain up to
date about the history. It is now clear that the total length of the messages exchanged
during this protocol is linearly proportional to the number of clicks done by B . �

7 Navigational Problems

The concept of Web query does not exhaust the kinds of problems that can be natu-
rally solved using browsers. A central idea of this paper is the concept of navigational
problem as a kind of problem specifically suited to solution by Web browsers. For-
mally, a navigational problem P is a Web query, but what it takes for a browser B

to solve P is totally different from what it would take for B to compute P as a Web
query:

Definition 8 Let P be a Web query, and let B be a browser automaton. We say that
B solves the navigational problem P if for each Web instance I , the set of nodes
clicked on during the run of B on I equals P(I).

If navigational problem P is solvable by a browser automaton (with or without
history), we call P visitable (with or without history).

As a simple example of visitable navigational problems, we can mention the fol-
lowing:
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Proposition 4 The problem Reach: the set of all nodes reachable from the source, is
visitable without history, as is, for each natural number k, the problem Reachk : the
set of all nodes reachable from the source in at most k steps.

Proof Visiting all reachable nodes is immediate from the proof of Lemma 1. The
modification to visit only those at distance k is easy: using different states we can
count up to k, incrementing the count with each click and decrementing it when
going backwards. �

We make two further remarks. First, clearly, a navigational problem P can only
be visitable if P(I) is a union of paths from the source.

Second, we note that every yes/no Web query Q can be modeled as a special kind
of navigational problem. It suffices to add to every instance I an extra node o and
insert it in the beginning of the list of links from the source. The node o itself has no
outgoing links. If we denote the thus modified instance by I ′, we can model Q by the
navigational problem Q′ defined by

Q′(I ′) =
{

all nodes of I ′ if Q(I) = yes

all nodes of I ′ except o if Q(I) = no

Clearly, if Q is computed by a browser B , then an easy modification B ′ of B

(cf. Proposition 4) solves the navigational problem Q′. And conversely, if Q′ is vis-
itable, then Q is computable by a browser.

As a consequence, results about Web queries carry over to the setting of naviga-
tional problems. In particular, by Theorem 1 and the remarks made after Definition 6,
there is no upper bound (other than computability) on the computational complexity
of visitable problems, and by Theorem 4, there exist navigational problems that are
visitable with history but not without.

Click complexity can be applied to navigational problems as well as to Web
queries. We can present a rather general theorem in this respect. The theorem is neg-
ative in the following sense. A browser solving a navigational problem might have
to visit the same page several times. One might hope that the number of times that a
page needs to be revisited can be somehow bounded as a function of the total number
of pages that need to be visited. This hope is in vain, however:

Theorem 5 There exists no function f on the natural numbers such that for every
visitable navigational problem P there exists a browser (even with history) B that
solves P with CB(I) ≤ f (|P(I)|).

Proof Recall the Web query QEQUAL from Proposition 3. We can define a related
navigational problem PEQUAL as follows. Given an EQUAL Web instance I as was
shown in Sect. 6, we define

P(I) :=
{

{a, b, bn} if QEQUAL(I ) = yes

{a, b} if QEQUAL(I ) = no
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A browser solving PEQUAL is readily modified into a browser computing QEQUAL
without any additional clicks. Note also that |PEQUAL(I )| ≤ 3. Hence, CB(I) ≤
f (|PEQUAL(I )|) would imply, by Proposition 3, that the communication complex-
ity of EQUAL is bounded by a constant, which is in contradiction with the lower
bound that was mentioned in Sect. 6. �

8 One Click per Page

The optimal click complexity that a browser can have in solving a navigational prob-
lem is captured by the following definition:

Definition 9 A browser B is called a 1-visitor if in its computation on any Web
instance, B clicks every node at most once.

A navigational problem is called 1-visitable (with or without history) if it is solv-
able by a 1-visitor (with or without history).

So, navigational problems that are 1-visitable can be solved without making any
unnecessary data transfer. In order to understand better what it takes to be 1-visitable,
we will present a characterization of 1-visitability in the next section. In the present
section, we present some general properties.

A simple example of a navigational problem that is 1-visitable without history is
the following: “repeatedly click the first link of every visited page, starting from the
source, but stop when we run in a cycle, and stop also when the link already occurred
as a link (not necessarily the first one) of page already visited.” Indeed, this problem
can be solved by using the � stack to check for earlier occurrences (using registers
to compare them), not requiring any page to be clicked twice. Precisely, the browser
stores the first link on the current page in a register, and then goes back, on each page
checking if it is the same as the one stored in the register, or contains a link to it. It
does so until the � stack is empty, and then go forward until the forward stack is
empty. If the link from then register was found, it stops, and if not, then the browser
clicks on that link when the � stack is empty.

Since a 1-visitor can click, on a Web instance of size n, at most n times, we have
the following corollaries to Proposition 2:

Proposition 5 Every 1-visitor with history can be implemented in space O(n logn).

Corollary 2 Not all visitable navigational problems are 1-visitable, even with his-
tory.

Still, an obvious approach for showing certain navigational problems to be
1-visitable is to start from a browser B , not necessarily a 1-visitor yet, that solves
the problem, and then to try to “optimize” B’s program, making it more “careful” not
to click on a page that has been clicked before. By Corollary 2, putting this idea in
practice in full generality is impossible, the following proposition at least shows that
there are cases where such an approach is successful.
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Proposition 6 Let P be a navigational problem solved by a browser A with history,
such that on every Web instance the trace of clicks of A is a simple path, possibly
with a link from the last node to some earlier one on the path. Then P is 1-visitable,
even without history.

Proof The idea is to simulate A by a browser B that mimics A, except that B avoids
clicking when A clicks on a node that is already in the forward stack; in that case,
B simply moves forward and repositions the tape head at the beginning. If A clicks on
a node that is already in the backward stack (which can be tested by going backward
and using a register), B can halt because, by the assumption about A, this means that
all required nodes have already been visited. In order to do this simulation, B keeps
track of the most distant page from the source visited so far, as well as the current
bottom of A’s forward stack. The latter is necessary because A may already be at
it’s forward stack while this is not the case for B . In that case, a forward move by A

cannot be simulated by a forward move by B , but B must then do what A would do
if the forward stack is empty. �

To conclude this section we note that the above proof would be much easier if B

would be allowed to use history. It is even tempting to believe that if a navigational
problem is visitable at all, then it is 1-visitable with history. Corollary 2 dashes that
temptation, however.

9 Structural Conditions for 1-Visitability

In this section, we give a structural necessary condition for 1-visitability without
history, which is helpful for showing that certain problems are not 1-visitable (without
history), as we will demonstrate. We also complement this necessary condition with
a sufficient one, albeit on the instance level only.

In order to state the result, we first introduce some graph-theoretic definitions.

Definition 10 For G a directed graph and p and q two nodes in G, we call:

• q a close successor of p in G (abbreviated G-cs) if p = q or there is a directed
edge from p to q in G;

• q a far successor of p in G (abbreviated G-fs) if q is not a close successor of p

and there is a directed path from p to q in G.

Moreover, for S a set of nodes in G, we call:

• q a G-cs of S if q is a G-cs of some p ∈ S;
• q a G-fs of S if q is not a G-cs of S, and q is a G-fs of some p ∈ S.

Definition 11 Let T be a tree. A simple path in T is called a trunk if it starts in the
root and ends in a node, all whose children are leafs of T .

The structural notion is now the following.



Theory Comput Syst

Definition 12 Let (W, s) be a Web instance, and let r > 0 be a natural number. We
say that (W, s) is r-coverable if there exists a spanning tree ST of W with root s,
containing a trunk TR such that the number of ST-fs’s of TR in W is at most r .

We now establish r-coverability as a necessary condition for 1-visitability without
history:

Theorem 6 Let B be a 1-visitor with r registers, and without history; let I = (V, s)

be a Web instance; let B(I) be the set of nodes visited by B on I ; and let W be the
subgraph of V induced by B(I). Then (W, s) is r-coverable.

Proof Let p0,p1, . . . , pn be all the nodes of B(V, s), visited (clicked) in that order.
For each m ∈ {0, . . . , n} we define the following sets:

Rm = {p | node p is in a register just after the click on pm}
Sm = the nodes on the � stack just after the click on pm

SV-cs
m = the V-cs’s of Sm

Remark that SV-cs
m ∪Rm contains exactly all nodes whose identities can influence the

next step of B after the click on pm. Informally, they are the nodes B can “see” at
this moment. Hence, we denote that set by Seem. Note that pm ∈ Seem.

Let pj be the last visited node such that Seej contains all pi with i ≤ j . I.e.,
j is the largest index such that Seej = {p0, . . . , pj }. That maximal j exists, be-
cause j = 0 satisfies the condition trivially. Then obviously either j = n or Seej+1 �

{p0, . . . , pj+1}. We claim that Seej then must contain all pi , for i = 0,1, . . . , n, so
indeed j = n.

To prove this claim, suppose for the sake of contradiction that for some k > j

we have pk /∈ Seej . By definition of pj , there exists i < j such that pi /∈ Seej+1.
Between the visits of pj and pj+1, B can only put in its registers nodes that are in
Seej , so pk /∈ Rj+1. Since pk is not in Seej but pj+1 is, we also know k > j + 1.
Furthermore, pk can only be in SV-cs

j+1 if there is an edge from pj+1 to pk (since

pk /∈ SV-cs
j ). We summarize the following:

• i < j < j + 1 < k;
• pi /∈ Seej+1;
• pk /∈ Seej ;
• pk /∈ Rj+1;
• pk ∈ Seej+1 only if pk is a child of pj+1.

In order now to prove the claim, we prove that B cannot be a 1-visitor, thus ob-
taining the desired contradiction. Specifically, we construct an instance (V′, s) on
which B will click node pi twice. We obtain V

′ from V by replacing, for each
q = j + 1, . . . , n, a possible edge (pq,pk) by the edge (pq,pi) in V

′, and a pos-
sible edge (pq,pi) by the edge (pq,pk).

B cannot distinguish between (V, s) and (V′, s) until just before its visit to pj+1,
because the only changes we have made are to nodes pq with q ≥ j + 1. But also
after B has reached pj+1, we have the following property (*):
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B sees pk in V
′ in the same way as it sees pi in V, and vice versa: B sees pi in

V
′ in the same way as it sees pk in V.

Indeed, right after clicking on pj+1, in V, we know that B cannot see pi , and can
see pk only, if at all, as a link; in particular, pk /∈ Rj+1. Hence, in V

′, B cannot see
pk , and can see pi only, if at all, as a link (obtained from the replacement of the link
to pk). Now if property (*) holds right after clicking on pj+1, then it will continue to
hold after that, by construction of V

′. As a consequence, B will click pi on V
′ when

it would click pk on V, but this is the second time because B had already clicked on
pi before arriving in pj . We thus come to the contradiction that B is not a 1-visitor,
as desired.

We are now ready to construct TR and ST . Recall that B is a 1-visitor. Hence,
during the run of B on I , the clicks of B trace out a tree that is a subgraph of V,
the nodes of which constitute precisely B(I). This tree is the original design for
ST , but we will need to modify ST a bit in order for TR := Sj to be a trunk of ST .
Indeed, suppose there would be edges pj → p → q in ST . In particular, q ∈ B(I),
and B(I) ⊆ SV-cs

j ∪Rj , as we know from the above. If q ∈ SV-cs
j , then we can remove

the edge p → q from ST and attach q as a child directly from some node of Sj . If
q ∈ Rj , then we have seen q before the first click on pj , and we can again instead
attach q as a child directly from another page where we saw q earlier. In this way,
ST is a spanning tree of W and TR is a trunk of ST . Moreover, any ST-fs of TR in ST
is, by definition, not an ST-cs of TR, i.e., not in SV-cs

j , and hence in Rj . Since B has
only r registers, the number of ST-fs’s of TR in ST is thus at most r , as desired for
r-coverability. �

As a corollary, we obtain the following counterpart to Proposition 4:

Corollary 3 The problems Reach and Reachk , with k ≥ 2, which we saw in Proposi-
tion 4 to be visitable without history, are not 1-visitable without history.

Proof It is clear that Reach and Reachk with k ≥ 2 do not satisfy the necessary con-
dition for 1-visitability expressed in Theorem 6. �

Note that the problems mentioned in the above corollary are 1-visitable with his-
tory; also, Reach1 is 1-visitable even without history.

It is a natural question whether r-coverability is also a sufficient condition for
1-visitability by a browser automaton with r registers. On the instance level, and
using a slightly technical stronger notion of coverability, we can indeed show that it
is.

Definition 13 Let (W, s) be a Web instance that is r-coverable, as witnessed by
spanning tree ST and trunk TR. In particular, the number m of ST-fs’s of TR in W is
at most r . Let p be the last node of TR.

We now say that (W, s) is r-coverable in the strong sense if either not all siblings
of p in ST are leafs, or if this is the case, then m is at most r − 1 rather than r .

The intuition behind this definition will be provided in the proof of the following
theorem.
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Theorem 7 Let (V, s) be a Web instance, and let W be a subgraph of V such that
(W, s) is r-coverable in the strong sense. Then there exists a 1-visitor B with r reg-
isters and without history, such that B , on (V, s), visits precisely all nodes in W.

Proof Let ST and TR be the spanning tree and trunk that witness r-coverability (in
the strong sense) of (W, s). The basic idea is to make a browser B that simply does
a depth-first traversal of ST , taking care to continue down a node on the trunk only
after all its siblings have been traversed. This is possible because B is allowed to
depend on V, ST , and TR. We use many different states to make sure to click on the
right nodes, identified by their sequence number in the list of links on their parent
page. Also all different backward moves are identified by different states. If B is run
on an instance other than (V, s) and encounters a page that has not enough links as
expected, then B halts.

The problem with this basic idea, however, is that, although B has the desired
behavior on (V, s) and clicks every node only once on that instance, there is no guar-
antee that B will actually be a 1-visitor on all other possible instances, as required by
the definition of 1-visitor. We can augment B , however, by using registers to remem-
ber all ST-fs’s of TR that have been visited so far. (Of course, on an instance other
than (V, s), we do not take ST and TR literally, but work with isomorphic copies.)
Moreover, before we click on a link, we verify whether the node is not already on
the stack; or was not already clicked from a node on the stack (whether a link from a
node on the stack was already clicked can be remembered, using sequence numbers,
by the finite state control); or is not equal to one of the nodes already stored in the
registers. It is then clear that B , thus modified, is a 1-visitor on all possible instances.

The only problem remaining, however, is that, in order to compare the node tested
for clicking with other nodes, as described above, we need to store the test node in
a register as well. In the worst case, we might have already used all r registers to
store ST-fs’s of TR. By r-coverability, this implies that we have already visited all
ST-fs’s of TR. Now if this would already happen before arriving at the last node of
TR, then all siblings of the last node would be leafs in ST , and by the strong sense
of r-coverability, there would be at most r − 1 such ST-fs’s of TR, a contradiction.
Hence, the worst case is only possible at the last node of TR. To cover this case we
modify B still a bit further, to the effect that B will first compare all links for equality
with one of the registers and remember in its finite state control which ones need not
be visited; at that point the registers can be freed and one of them used to compare
the links that survived the first test with earlier clicked links from nodes on the stack,
as before. �

To conclude this section, we note without proof:

Theorem 8 For every fixed r ≥ 1, deciding r-coverability is NP-complete. On acyclic
instances, the problem is solvable in polynomial time.

10 Enhanced Browsers

If we have a look at the navigation mechanism of the common Web browsers, it
appears that they behave very much like Theseus in the maze, in the ancient Greek
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Table 2 The sequence of actions a browser automaton performs to link a and b by stack

Action Current node Tape � �

Initial s ab empty empty

Click a a1a2 · · ·an (s,1) empty

Back s ab empty (a,1)

Swap s ab (a,1) empty

Right s ab (a,1) empty

Click b b1b2 · · ·bn (a,1)(s,2) empty

myth. Theseus was equipped with a roll of string by Ariadne. He set one end of the
veil at the entrance to the maze, and following it, he could find the way back from
the maze after killing the Minotaur. Likewise, Web browsers set one end of the veil
at the entrance to the WWW and, at any time, they can leave the roll at any place and
walk back and forth along the veil. They can also take the roll again and relocate it to
any other place in the maze.

We propose another, more powerful navigation mechanism. We suggest that, in
addition to what they already can do, browsers should be able to relocate the begin-
ning of the veil, too. This is similar to the way professional climbers use their ropes,
reusing them over and over again on their way up. On the level of user interface, it
would amount to giving the user the choice, which of the two stacks � or � should
be reset to empty upon a click. This can be achieved quite easily, by adding a button to
exchange the contents of the two stacks, leaving unchanged the rule that the forward
stack is always discarded. It is a conservative enhancement, i.e., those not interested
can still use their old way of navigating.

We refer to browsers equipped with this additional action to exchange the contents
of the � and � stacks, as enhanced browsers. We can show that enhanced browsers
can be more efficient in terms of click complexity. Recall from Proposition 3 and
the lower bound on the communication complexity of EQUAL, that there is a linear
lower bound on the click complexity of ordinary browsers that compute the Web
query QEQUAL. In contrast, we have:

Proposition 7 QEQUAL can be computed by an enhanced browser, even without his-
tory, with only 4 clicks.

Proof First, we link a and b by a stack by clicking on a, going back, switching the
stacks, and clicking on b; this is illustrated in Table 2. Next, the browser can walk
between a and b on the stack, comparing their children, without any more clicks. �

The general negative result about the click complexity of visitable navigational
problems (Theorem 5) was proven using the linear lower bound on the click complex-
ity of ordinary browsers that compute QEQUAL, which no longer holds for enhanced
browsers, as we have just seen. Nevertheless, an alternative proof still leads to similar
negative result that holds for enhanced browsers, as we will show next:

Proposition 8 Proposition 2 still holds for enhanced browsers.
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Indeed, the proof is the same. As a consequence, we now have the following the-
orem similar to Theorem 5:

Theorem 9 There exists no space-constructible [3] function f on the natural num-
bers such that for every visitable navigational problem P there exists an enhanced
browser (even with history) B that solves P with CB(I) ≤ f (|P(I)|).
Proof We have seen that the computation of arbitrary computable boolean functions,
from Theorem 1, is a special case of Web queries, and that Web queries are a special
case of navigational problems. Consequently, there are arbitrarily complex visitable
navigational problems. In contrast, if a function f as in the statement of the theorem
would exist, since |P(I)| is always at most the size of the instance, every visitable
navigational problem would be solvable in at most f (n) clicks and thus within O(n+
f (n) logn) space. This is in contradiction with the space hierarchy theorem from
computational complexity theory [3, 18]. �

We conclude by showing that enhanced browsers are not only more efficient, but
also more powerful than ordinary ones:

Theorem 10 There exists a yes/no Web query that can be computed by an enhanced
browser automaton without history, but not by any ordinary browser automaton, even
with history.

Proof The proof is a variation of that of Theorem 4. Recall the representation of
binary words by Web instances used there, where the input word was represented
by a chain at the left side of the source, and a cycle gadget (to accommodate the
simulation of arbitrary computations) at the right side of the source. There, we also
had n nodes in the middle to transfer, using the history, the input word from the left
side to the right side. Now, using an enhanced browser, we do not need these middle
nodes anymore. Instead, we can simply go all the way down the chain on the left,
then switch the stacks, and begin the simulation of an arbitrary computation as in the
proof of Theorem 1.

In contrast, on instances of this new form, i.e., without the n middle nodes, ordi-
nary browsers are limited to linear space. Indeed, recall from the proof of Theorem 4
the notion of “computational mode” within a run. Reasoning as in that proof, but
now without the n middle nodes, we see that the global behavior of the browser, as
far as computational mode is concerned, can now be fully described by a fixed finite
function, independent of n. We can incorporate this constant function in the finite
state control of an equivalent reduced browser which works, as in the proof of Theo-
rem 4, on the linear chain only, without the cycle gadget on the right. We are thus left
with an acyclic instance on which browsers are limited to linear space, as we already
observed in Theorem 2. �

11 Conclusion

Since Web browsers are among the most common contemporary software tools,
a good theoretical understanding of their navigational and computational capabili-
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ties seems desirable. In this paper we have initiated such an analysis. We admit that
some of the results we present are a bit diminished by the fact that our proofs rely
on the computational capabilities of browsers which are unlikely to really be used.
However, they are still an intrinsic property of the model of browser automaton. In
other cases, however, we have a strong feeling that the proofs are based on difficul-
ties which are experienced by human users, too, and thus the theorems point out real
problems of navigating the Web.

We have also proposed an extension of the repertoire of navigation tools used by
the browsers, aiming at more efficient and powerful navigation. Interestingly, also
within the Human-Computer Interaction community, a variety of similar enhance-
ments of Web browsers have been proposed [5, 6, 10]. We hope our paper can lead
the way towards a principled study of the formal capabilities of such enhancements,
complementing empirical user studies, which remain of course essential. Another
formal model of Web search has been investigated in a companion paper [19].
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