
Improving Global Optimization Methods for
Low Thrust Trajectories

−0.8−0.6−0.4−0.200.20.40.60.81

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x [AU]
y [AU]

z 
[A

U
]

Jasper Spaans
Delft University of Technology

Faculty of Aerospace Engineering
Section Astrodynamics and Satellite Systems

August 11, 2009

Faculty of Aerospace Engineering
Delft University of Technology
Kluyverweg 1, 2629 HS Delft
The Netherlands



ii



Contents

List of �gures ix

List of tables xiii

List of listings xv

Glossary xvii

Summary xxiii

1 Introduction 1
1.1 Optimization of trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of this report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Introduction to Optimization 5
2.1 Introduction and terminology of optimization . . . . . . . . . . . . . . . . . 5
2.2 Steps in the optimization process . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Global one-shot optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Nested do-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Regular sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Monte Carlo sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Sobol sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Population based evolutionary optimizers . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . 11
2.4.4 Di�erential Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Local optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Golden section search . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Steepest descent method . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 Powell’s quadratically convergent method . . . . . . . . . . . . . . . 13

2.6 Other algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 Interval Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.3 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Selection of optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



iv CONTENTS

3 Evolutionary Computation 21
3.1 History of Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Evolutionary programming . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Evolution strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Convergence of the optimizers . . . . . . . . . . . . . . . . . . . . . 22

3.2 Introduction to evolutionary computing . . . . . . . . . . . . . . . . . . . . . 22
3.3 Representation of a solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Binary coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Gray coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Real coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.5 Probability coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Variation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Crossover operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Additional real-valued crossover operators . . . . . . . . . . . . . . . 26
3.4.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Methods of selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Reproduction operator . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Fitness scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Fitness sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.4 Rank-based allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Selection of representation and operators . . . . . . . . . . . . . . . . . . . . 33
3.6.1 Representation of the solution . . . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Variation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.3 Selection operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Particle Swarm Optimization 35
4.1 Introduction to pso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Basic formulation of the velocity and position of particles . . . . . . . . . . 36
4.3 Tuning optimization parameters in pso . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Varying inertia weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Constriction coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Population size in pso . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Predator-Prey Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Applying bounds on particle velocity and position . . . . . . . . . . . . . . . 42
4.6 Examples of contracting swarms . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Di�erential Evolution 47
5.1 Introduction to Di�erential Evolution . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Mutation vector generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Scheme Tasoulis1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Scheme Tasoulis2 / de1 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.3 Scheme Tasoulis3/de2 . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.4 Scheme Tasoulis4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.5 Scheme Tasoulis5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.6 Scheme Tasoulis6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.7 Alternative naming of the schemes . . . . . . . . . . . . . . . . . . . 50

5.3 Trial vector generation and selection . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Usage of Di�erential Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Selecting Di�erential Evolution strategies . . . . . . . . . . . . . . . . . . . . 51



CONTENTS v

6 Multi-Objective Optimization (moo) 59
6.1 Weighted objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Pareto front ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Classic Pareto front ranking algorithm . . . . . . . . . . . . . . . . . 61
6.2.2 Non-dominated Sorting Genetic Algorithm II (NSGA-II) . . . . . 62

6.3 Ranking individuals inside their front . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Veri�cation of the NSGA-II implementation . . . . . . . . . . . . . . . . . . 63

7 Veri�cation of PSO and DE on mathematical test functions 67
7.1 Mathematical test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Himmelblau function . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.2 Griewank function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.3 Scha�er’s f6 function . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1.4 Deb-Tan function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Verifying pso for optidus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.1 Overview of the tested optimizer implementations . . . . . . . . . . 71
7.2.2 Himmelblau function results . . . . . . . . . . . . . . . . . . . . . . . 71
7.2.3 Griewank function results . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2.4 Scha�er’s f6 function results . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.5 Deb-Tan function results . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.6 Conclusions for the veri�cation . . . . . . . . . . . . . . . . . . . . . 73

8 Improving the Solar Polar Sail Mission Optimization 77
8.1 Introduction to solar sailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Model of the Solar Polar Sail Mission . . . . . . . . . . . . . . . . . . . . . . 79

8.2.1 Geocentric Phase: Departure from Earth . . . . . . . . . . . . . . . . 79
8.2.2 Heliocentric phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3 Optimizing the Geocentric Phase . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3.1 Original results from [Garot, 2006] . . . . . . . . . . . . . . . . . . . 83
8.3.2 Selecting an optimizer for the �rst phase . . . . . . . . . . . . . . . . 83
8.3.3 Improved results using optidus-pso . . . . . . . . . . . . . . . . . . . 83

8.4 Optimizing the complete mission . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4.1 Settings for the optimization runs . . . . . . . . . . . . . . . . . . . . 86
8.4.2 Comparison of the results . . . . . . . . . . . . . . . . . . . . . . . . 86

8.5 Local optimization using random sampling . . . . . . . . . . . . . . . . . . . 87
8.6 Local optimization using Powell’s method . . . . . . . . . . . . . . . . . . . . 90
8.7 Conclusions and recommendations for the Solar polar sail mission . . . . . 94

9 Third Global Trajectory Optimization Competition 97
9.1 Introduction to gtoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2 The gtoc3 problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3 Solutions of the gtoc3 problem . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.4 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.4.1 First order di�erential equations . . . . . . . . . . . . . . . . . . . . . 102
9.4.2 Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.4.3 Thrust direction parametrization . . . . . . . . . . . . . . . . . . . . 104
9.4.4 Thrust magnitude parametrization using Chebyshev polynomials . 104
9.4.5 On/o� switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.5 Launch conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.5.1 First leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.5.2 Other legs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



vi CONTENTS

9.6 Solution vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.7 Constraint handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.8 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.8.1 Global optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.8.2 Local optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.9 Conclusions and recommendations for gtoc3 . . . . . . . . . . . . . . . . . 109

10 Conclusions and recommendations 111
10.1 Ful�llment of objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113

A Test functions 119
A.1 De Jong’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.1.1 De Jong F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.1.2 De Jong F2, aka Rosenbrock . . . . . . . . . . . . . . . . . . . . . . . 119
A.1.3 De Jong F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.1.4 De Jong F4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.1.5 De Jong F4, modi�ed . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.1.6 De Jong F5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Corana’s parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.3 Zimmermann’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B Numerical approximation of derivatives 123

C Parallel Processing in Fortran using OpenMP 125
C.1 What is parallel processing, and why is it needed? . . . . . . . . . . . . . . . 125
C.2 Multithreaded Fortran using OpenMP . . . . . . . . . . . . . . . . . . . . . . 126
C.3 Performance caveats in a multithreaded environment . . . . . . . . . . . . . 127
C.4 Pure functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D api documentation 131
D.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

D.2.1 RaceType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.2.2 Individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
D.2.3 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
D.2.4 Managing the population . . . . . . . . . . . . . . . . . . . . . . . . . 135
D.2.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.2.6 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.2.7 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
D.2.8 Routines for GAVaPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
D.2.9 Other routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.3 PSO/PPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
D.3.1 Predator type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
D.3.2 PSO/PPO routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D.4 Di�erential Evolution methods . . . . . . . . . . . . . . . . . . . . . . . . . . 141
D.5 Multi Objective Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
D.6 Random numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
API index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



CONTENTS vii

API index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



viii CONTENTS



List of Figures

2.1 Example of the objective values for some solutions of a multi-objective
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Distribution of 3000 points picked using a pseudorandom number gener-
ator (left) and using a Sobol sequence (right) . . . . . . . . . . . . . . . . . . 10

2.3 Successive bracketing of a minimum using a golden section search. . . . . . 13
2.4 Successive minimizations along coordinate directions in a long, narrow val-

ley [Press et al., 2007] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Comparison of local optimizers applied to the Himmelblau function. . . . 17
2.6 Comparison of local optimizers applied to the Himmelblau function. (zoomed

in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Example of the bounding intervals for a function . . . . . . . . . . . . . . . 19

3.1 Example of a Gray coded sequence . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Flowchart of a simple genetic algorithm . . . . . . . . . . . . . . . . . . . . . 25
3.3 Example of a single point crossover . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Example of a two-point crossover . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Example of a uniform crossover . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Example of a roulette wheel as used by �tness-proportionate selection. . . . 30
3.7 Example of two selections done using sus . . . . . . . . . . . . . . . . . . . . 30
3.8 Transfer functions for the cases where condition (3.10) is satis�ed (left) and

not satis�ed (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 A �ock of birds in Anchorage . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Flowchart of a PSO algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Fitness as a function of the population size for the Himmelblau function,

using the aggregate results of 100 runs for each population size. . . . . . . . 40
4.4 Fitness as a function of the population size for the Griewank function with

dimensionality N = 7, using the aggregate results of 100 runs for each pop-
ulation size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Fitness as a function of the population size for the Griewank function with
dimensionality N = 50, using the aggregate results of 100 runs for each
population size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Calculating a particle’s position when bouncing against a parameter bound-
ary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Movement of a particle swarm during an optimization of the Himmelblau
function; the optimum is located at the coordinates (3,2). The swarm sized
used was S = 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Movement of a particle swarm during an optimization of the Himmelblau
function, with a predator (indicated by the red dot); the optimum is located
at the coordinates (3,2). The swarm sized used was S = 40. . . . . . . . . . 45

ix



x LIST OF FIGURES

5.1 Flowchart of a basic Di�erential Evolution algorithm . . . . . . . . . . . . . 48
5.2 Movement of a population of solutions during an optimization of the Him-

melblau function using Di�erential Evolution, population size S = 12 and
scheme Tasoulis1; the optimum is located at the coordinates (3,2) . . . . . 52

5.3 Movement of a population of solutions during an optimization of the Him-
melblau function using Di�erential Evolution, population size S = 12 and
scheme Tasoulis2; the optimum is located at the coordinates (3,2) . . . . . 53

5.4 Movement of a population of solutions during an optimization of the Him-
melblau function using Di�erential Evolution, population size S = 12 and
scheme Tasoulis3; the optimum is located at the coordinates (3,2) . . . . . 54

5.5 Movement of a population of solutions during an optimization of the Him-
melblau function using Di�erential Evolution, population size S = 12 and
scheme Tasoulis4; the optimum is located at the coordinates (3,2) . . . . . 55

5.6 Movement of a population of solutions during an optimization of the Him-
melblau function using Di�erential Evolution, population size S = 12 and
scheme Tasoulis5; the optimum is located at the coordinates (3,2) . . . . . 56

5.7 Movement of a population of solutions during an optimization of the Him-
melblau function using Di�erential Evolution, population size S = 12 and
scheme Tasoulis6; the optimum is located at the coordinates (3,2) . . . . . 57

5.8 Average distance of the population to the global optimum as a function of
the generation during an optimization of the Himmelblau function using
several de schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Fitness value of the best individual per generation, during an optimization
of the Himmelblau function using several de schemes. . . . . . . . . . . . . . 58

6.1 Example of the objective values for some solutions of a multi-objective
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Example of a population in which the �rst four Pareto fronts have been
ranked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 The crowding distance calculation [Deb et al., 2001]. . . . . . . . . . . . . . 62
6.4 Analytical solution with the minimal values of f2 from (6.6) . . . . . . . . . 64
6.5 Exploration of the search space and results for optimizing (6.6) using the

�rst NSGA algorithm, from [Deb, 1999] . . . . . . . . . . . . . . . . . . . . . 64
6.6 Movement of a population of solutions while optimizing the problem given

by (6.6). This optimization is done using Di�erential Evolution, and uses
NSGA-II to rank the population. . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Contour plot of the Himmelblau function. . . . . . . . . . . . . . . . . . . . 68
7.2 Plots of Griewank’s function in 1 dimension. . . . . . . . . . . . . . . . . . . 68
7.3 Histogram showing the amount of non-zero coordinates as a function of

dimension i for 100 optimization runs of Griewank’s function. . . . . . . . 69
7.4 Plots of Scha�er’s f6 function in 1 dimension. . . . . . . . . . . . . . . . . . 69
7.5 Plots of the Deb-Tan original and modi�ed function in 1 dimension. . . . 70
7.6 Histograms of the best �tness values of the Himmelblau function found by

the various implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.7 Histograms of the best �tness values of the 50-dimensional Griewank func-

tion found by the various implementations. . . . . . . . . . . . . . . . . . . 75
7.8 Histograms of the the di�erence between the theoretical optimum and best

�tness values of Scha�er’s f6 function in 5 dimensions found by the various
implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



LIST OF FIGURES xi

7.9 Histograms of the di�erence between the theoretical optimum and the best
�tness values of the 3-dimensional Deb-Tan function found by the various
implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.1 A proposed solar sail. (Source: http://www.u3p.net) . . . . . . . . . 77
8.2 Forces acting on a solar sail. (2-dimensional and not to scale) . . . . . . . . 78
8.3 Solar sail cone and clock angle in the local sail reference frame. Source:

[McInnes, 1999] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4 The sailcraft’s orbit in the Earth escape phase is divided into an acceleration,

feathering and drag part. Source: [Garot, 2006] . . . . . . . . . . . . . . . . . 79
8.5 The acceleration phase is divided into six sections. Source: [Garot, 2006] . 80
8.6 Trajectories for the best found solution for the solar polar sail mission in

[Garot, 2006]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.7 Polynomials through the pitch angles that correspond to the shortest �ight

times for the geocentric phase. Source: [Garot, 2006] . . . . . . . . . . . . . 83
8.8 Optimal pitch angles αE as a function of the GTO-orientation ω. The

circles are the outcomes of optimization runs, the black bars denote their
standard deviation and average, and the line is a the �t to the sinusoidal
function (8.17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.9 Comparison of the time of �ight for the historical results (polynomial �t),
free optimization (pso) and optimization using the sine �t for the pitch
angles (sine �t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.10 Average of the best �tness values for each optimizer/population size com-
bination for the complete solar sailing mission. . . . . . . . . . . . . . . . . . 88

8.11 Best of the best �tness values for each optimizer/population size combina-
tion for the complete solar sailing mission. . . . . . . . . . . . . . . . . . . . . 88

8.12 Fitness versus the number of evaluations for the di�erent optimizers used,
and the Pareto-fronts of those points. . . . . . . . . . . . . . . . . . . . . . . . 89

8.13 Histograms of the change in objective function value of the Solar polar sail
mission, when applying a Monte Carlo sampling around the best found so-
lution, using a Sobol random sequence (left) and a pseudo-random number
generator (right) for di�erent sampling area sizes (rows). . . . . . . . . . . . 91

8.14 Distance from the spacecraft to the Moon during the geocentric phase as
found using Powell’s quadratically convergent method. . . . . . . . . . . . . 92

8.15 Trajectories of the spacecraft and the Moon during the geocentric phase as
found using Powell’s quadratically convergent method. . . . . . . . . . . . . 93

8.16 Trajectory of the spacecraft during the heliocentric phase as found using
Powell’s quadratically convergent method. . . . . . . . . . . . . . . . . . . . . 93

9.1 Orbits of the asteroids and Earth around the Sun, as given in the gtoc3
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.2 Leg 1 of the original TUDelft gtoc3 solution (Earth to asteroid 96). . . . . 100
9.3 Leg 2 of the original TUDelft gtoc3 solution (asteroid 96 to 122). . . . . . 100
9.4 Leg 3 of the original TUDelft gtoc3 solution (asteroid 122 to 85). . . . . . 101
9.5 Leg 4 of the original TUDelft gtoc3 solution (asteroid 85 to Earth). . . . . 101
9.6 De�nition of the thrust angles and transformation matrix for the thrust

vector from the spacecraft oriented frame to the heliocentric frame. . . . . 104
9.7 Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.8 Optimal trajectory of the �rst leg for gtoc3 found using de. . . . . . . . . . 110
9.9 Optimal trajectory of the �rst leg for gtoc3 found using de and a successive

local optimization using Powell’s method. . . . . . . . . . . . . . . . . . . . . 110

http://www.u3p.net


xii LIST OF FIGURES



List of Tables

4.1 Comparison of optimal population sizes according to experimental data
and equations (4.11) and (4.12). . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Optimization parameters in PSO and PPO . . . . . . . . . . . . . . . . . . . 42

5.1 Conversion between the de scheme names used in this study and the “Storn”
names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Comparison of two di�erent weights for weighted objective functions . . . 60

7.1 Average best �tness values for the Himmelblau function for as found by
various optimizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Average and standard deviation of the best �tness values for the 50-dimensional
Griewank function as found by various optimizers. . . . . . . . . . . . . . . 72

7.3 Average and standard deviation of the di�erence between the theoretical
optimum and the best �tness values for Scha�er’s f6 function in 5 dimen-
sions as found by various optimizers. . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Average and standard deviation of the di�erence between the theoretical
optimum and the best �tness values for the 3-dimensional Deb-Tan func-
tion as found by various implementations. . . . . . . . . . . . . . . . . . . . . 73

8.1 Limits of the optimization parameters for the geocentric phase . . . . . . . 83
8.2 Values of the coe�cients of the sine-�t of (8.17). All coe�cients are in

degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Optimal parameters for the solar sailing mission as found by the di�erential

evolution runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 Tabulated values of equation (8.18) . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Top-5 of �tness values found by applying a random sampling local optimizer

around the best solution of the solar polar sail mission. . . . . . . . . . . . . 90
8.6 Times of �ight in days for the phases in the heliocentric phase. . . . . . . . 92
8.7 Results of the optimization of the geocentric phase of the solar polar sail

mission using several optimizers. . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.1 GTOC3 Spacecraft properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.2 Cash-Karp parameters for embedded Runge Kutta method, [Press et al.,

2007] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.3 Solution vector, number of evaluations, fuel consumption and constraint

violation of the best solution from the global and local optimizations for
gtoc3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1 Simultaneous addition in a multiprocessor environment without locks. . . . 128
C.2 Simultaneous addition in a multiprocessor environment with locks. . . . . . 128

xiii



xiv LIST OF TABLES

D.1 Execution order for di�erent numbers of threads in a multi-core system.. . 144



Listings

2.1 Example of a nested do-loop optimizer. . . . . . . . . . . . . . . . . . . . . . 8
6.1 Pareto front ranking algorithm from [Sa�pour, 2007] . . . . . . . . . . . . . 64
6.2 nsga-ii Pareto front ranking algorithm . . . . . . . . . . . . . . . . . . . . . . 65
6.3 nsga-ii Crowding distance algorithm . . . . . . . . . . . . . . . . . . . . . . 65
B.1 Calculating the gradient numerically in Python . . . . . . . . . . . . . . . . 123

xv



xvi LISTINGS



Glossary

Symbols and notations

α Ch2: constant
α Ch8: Sail pitch angle [◦]
αdrag Angle of attack in the drag phase [◦]
αE Sail pitch angle in the Earth escape phase
αS Sail pitch angle in the heliocentric phase
β Constant
β Spread factor
δ Ch2: Recency weighted running average coe�cient
δ Ch8: clock angle [◦]
δi Tolerance for equality constraint i
ε Precision/tolerance
θ Sail cone angle [◦]
κ Constant
λ Change in position along gradient
µs Sun’s gravitational parameter,≈ 1.3271 ·1011kg3 s−2

ρ Uniform crossover weight
ρ Ch8: Atmospheric density [kg m−3]
σ f Standard deviation of the �tness value for a population
σshare Sharing distance scale factor
Σ Solution space
τµ Trigonometric operator probability
τ j Stay time at asteroid j [days]
Φ Ch2: Golden ratio conjugate ≈ 0.6180
Φ Ch8: Transformation matrix from local to inertial reference frame
ϕ1,ϕ2 Uniform random number generator, output interval [0,ϕ]
χ Ch2: Constriction coe�cient
χ Ch8: Angle between the velocity vector and the Sun line [◦]
ω Initial gto orientation (with respect to the Sun line) [◦]

xvii



xviii LISTINGS

Symbols and notations (continued)
∂ Partial derivative operator
∇ Gradient operator
AI Interval (for Interval Analysis)
A Solar sail size [m2]
a Acceleration of solution particle
adrag Acceleration due to drag
aMoon Acceleration due to gravitational pull by the Moon
aSun Acceleration due to gravitational pull by the Sun
a Ch2: Starting point golden section search
a Crossover weight
a0...a4 Coe�cients for the sum of sines �t
BI Interval (for Interval Analysis)
b Starting point golden section search
b1...b4 Coe�cients for the sum of sines �t
C Constant
C1 Cost function [Me]
ci Expected number of times a solution may reproduce
c̄ Average reproduction count for a population
cmult Reproduction count for the best solution
cr Position error [m]
c1...c4 Constants
c Testing point golden section search
d Testing point golden section search
d(i, j) Distance between two solutions i and j
d Size of random sampling box
ei Unit vector, along direction i of the coordinate space
F Mutation constant
f (Set of) objective functions(s)
f ′ Derivative of f
f ′′ Second derivative of f
f i Fitness value for solution i
f ∗i Scaled �tness value for solution i
f̄ Average �tness value for a population
fk Objective function k
fmin Minimum reproduction count
fmax Minimum reproduction count
fpred Predator fear constant
G Universal gravitational constant ≈ 6.668 ·10−11[Nm2kg−2]
gi Equality constraint i
hi Inequality constraint i



LISTINGS xix

Symbols and notations (continued)
h Altitude above the Earth [m]
Isp Speci�c impulse [m s−1]
igen Generation number
lk Lower boundary for solution component k
K Dimensionality of objective values
M Number of knapsack items
MEarth Mass of Earth ≈ 5.9737 ·1024[kg]
MMercury Mass of Mercury ≈ 3.3022 ·1023[kg]
MVenus Mass of Venus ≈ 4.8685 ·1024[kg]
m Mutation vector
m Ch8: sail force vector
m f Final mass [kg]
mi Initial mass [kg]
N Dimensionality of solution space
N Ch8: Magnitude of the drag force
n Sail normal vector
ng Number of equality constraints
neval Total number of evaluations
ngen Total number of generations
nh Number of inequality constraints
nm Number of manoeuvres
Pi Point in solution space at iteration i
P Solar radiation pressure
Pi Pro�t of knapsack item i
p Speci�c angular momentum [m2s−1]
p1, p2, p3 Trigonometric weights
p f Predator (fear) probability
pm Mutation probability
pi

r Reproduction probability for solution i
pxover Crossover probability
q Dynamic pressure [N m−2]
r Sun vector [m]
r̂ Unit Sun vector [-]
ri Rank of individual i (based on �tness)
rE Sun-Earth distance [1 AU]
S Population size
Tlaunch Launch date
t f Time of �ight [days]
u() Uniform random number generator
ui Optimization direction vector i



xx LISTINGS

Symbols and notations (continued)
uk Upper boundary for solution component k
V Velocity vector [m s−1 ]
v Velocity of solution particle
vp Velocity of the predator
∆V Speed di�erence [m s−1]
WE Solar �ux at the Earth ≈ 1367.6[W m−2]
Wi Weight of knapsack problem i
wk Weighting function weight k
w Inertia weight
Xi Presence of knapsack item i
x Solution vector
xbest Best solution in the population
xp Position of the predator
x∗i Historical best solution vector for solution i
x∗G Historical best solution vector for the population
∆x Change in x
xi Solution vector component i
xi,n Solution vector component n of solution i
F Augmented objective function

Abbreviations

AU Astronomical Unit ≈ 1.495979 ·1011[m]
BLX Blend Crossover
DE Di�erential Evolution
EA Evolutionary Algorithm
EC Evolutionary Computation
EP Evolutionary Programming
FORTRAN Formula Translating System
GAVaPS Genetic Algorithm with Variable Population Size
GA Genetic Algorithm
GALOMUSIT Genetic Algorithm Optimization of a Multiple Swing-by Interplan-

etary Trajectory
GCC GNU Compiler Collection
GTO Geostationary Transfer Orbit
GTOC Global Trajectory Optimization Competition
IA Interval Analysis
MJD Modi�ed Julian Date
MOO Multi-Objective Optimization
NSGA Non-dominated Sorting Genetic Algorithm
OPTIDUS Optimization Tool for Interplanetary trajectories by Delft University

Students
PPO Predator-Prey Optimization



LISTINGS xxi

Abbreviations (continued)
PSO Particle Swarm Optimization
SA Simulated Annealing
SAPPO Silva Adaptive PPO
SBX Simulated Binary Crossover
SPSO Standard PSO
SUS Stochastic Universal Sampling
TSP Travelling Salesman Problem



xxii LISTINGS



Summary

Optimization of spacecraft trajectories is an interesting area of research,where a lot of devel-
opment takes place: in the past years, an optimizer called optidus was implemented,which is
able to do optimization of trajectories (and other problems) using an evolutionary algorithm
(ea). There are other optimization algorithms available which (according to literature) also
perform well on trajectory optimizations. These are Particle Swarm Optimization (pso) and
Di�erential Evolution (de).

A new version of optidus is implemented, which not only supports evolutionary al-
gorithms, but also several variants of di�erential evolution and particle swarm optimization.
These algorithms are also implemented in a way that can exploit the availability of multiple
processing cores in a computer, which can give a very good improvement in the runtime
of optimizations. Also, a local optimizer using Powell’s quadratically convergent method is
implemented.

This new version of optidus is benchmarked against several pso implementations, and
it is found that performance on several (mathematical) testing functions is comparable to
existing implementations. However, it is not possible to appoint de or pso as the best
algorithm in general, as that is problem dependent.

The software is also applied to improve the optimization of a Solar polar sailing mission.
By comparing the number of function evaluations and the best �tness value found for a
family of optimizers (several variants of ppo and de and an ea), it is found that de gives the
best results, giving an reduction in mission cost almost 4% compared to the original result
found using an ea. The use of a local optimizer on this best result is able to improve it even
further by another 0.15%.

Finally, this software is used to �nd a solution to the gtoc3 problem, where the goal is
to �nd a low-thrust trajectory for a spacecraft to rendezvous with several asteroids. The hard
part of this mission are the rendezvous constraints: upon arrival at an asteroid, the location
and velocity of the spacecraft relative to the asteroids have very low margins, making a very
large part of the solution space infeasible. For that reason, an augmented objective function
which takes these violations into account is used. Both an augmentive function in the form
of a weighted sum (of violations) and a multi-objective function are considered. The multi-
objective variants gives better results, but is not compatible with the local optimizer,Powell’s
method.

Only the �rst part of the mission, from Earth to the �rst asteroid, is optimized. Using de,
a solution is found, which almost satis�es the constraints, but not completely. By applying
Powell’s method to this solution, the constraint violations are further reduced, but still a
small violation of the position remains.

It is found that doing global optimization using de can generate solutions with quite
large constraint violations, but that subsequent application of a local optimizer can reduce
those violations, while not changing the solution considerably.

How the solution of this �rst leg compares to solutions by other teams is not known, as
the per-leg results have not been published.
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Chapter 1

Introduction

1.1 Optimization of trajectories

When sending a spacecraft into space, in most cases it will have to travel to a destination
orbit. For example, the Cassini spacecraft is currently orbiting Saturn, but �rst had to �y
there using an interplanetary transfer trajectory.

These trajectories will have to be optimized to reduce mission cost. This can be done
in several ways: for example, a Hohmann transfer orbit is the trajectory with the lowest ∆V
budget to transfer an object between two coplanar circular orbits around a body using only
impulsive shots at the beginning and end of the orbit. This trajectory can be determined
using an analytical method.

In principle, a Hohmann orbit could be used to send a spacecraft from Earth to an outer
planet, but the travel time will become very long: the travel time for a Hohmann transfer
orbit scales cubically with the sum of the beginning and ending radius. A transfer from the
Earth to Pluto this way will take more than 45 years.1

For this reason, other trajectories are needed. One possibility is to use a more direct
trajectory – but this comes at the cost of requiring a larger ∆V .

For engines that deliver thrust by pushing away matter – this includes chemical rockets
as well as electronically powered engines which shoot out ions and plasma – the ∆V for a
given amount of fuel is proportional to the speci�c impulse (Isp), which is a property of the
propellant and engine.

Thus, by using a propulsion method with a higher speci�c impulse, a higher ∆V can
be attained. According to [Zandbergen, 1997], a chemical rocket using liquid hydrogen and
oxygen has a speci�c impulse in the order of 400 seconds, whereas for example electrostatic
ion thrusters can reach much higher values, in the orer of 2000 seconds: ESA’s SMART-1
mission used a ion engine with Xenon as propellant. This engine had a speci�c impulse of
1640s [ESA, 2004]. There is a drawback: because ion thrusters need electrical power to
generate thrust, the amount of thrust is limited by available power. However, if power can be
supplied over an extended period (for example by a solar cell or radioisotope thermoelectric
generator), the engine can also be operated over a long time.

Another method is to make use of aerogravity-assisted �ybys. This was used in the
Cassini-Huygens mission. By passing a planet at a close distance, momentum will be ex-
changed, and the path of the spacecraft is de�ected. This way, the speed and orientation can
be changed for free (without consuming fuel), but requires that the trajectory brings the
spacecraft close to the planet.

1Actually, this number refers to a transfer between the two circular orbits with equal semi-major-axis as the
Earth and Pluto, and without a di�erence in inclination.
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2 1. introduction

In the case of a Hohmann transfer, the engine is only �red at the beginning and at the
end of the trajectory. It is possible to reduce the time of �ight using so-called “deep space
manoeuvres”, where the engine is also �red at other moments. This can also be used to
reach planets used for gravity-assists.

Finally,Solar sailing uses the radiation pressure from the Sun’s light for propulsion. It does
this by de�ecting incident light using a “sail”. Because the photons,which are de�ected have
momentum, a force is exerted on the sail, which can be used as a propulsion force. Because
no fuel is used, this force can be used over long periods of time – but as the intensity of the
Sun’s light decreases quadratically with the distance from the Sun, its use is limited to the
inner regions of the Solar system.

1.2 Motivation

In the last couple of years, two programs have been written at Delft University of Technology
to enable the optimization of trajectories using the above three techniques. These two
programs are galomusit and optidus.

galomusit (Genetic Algorithm Optimization of a Multiple Swing-by Interplanetary
Trajectory) uses evolutionary algorithms to optimize analytical representations of trajecto-
ries. By using Lambert targeting, this enables it to optimize trajectories with high-thrust
impulsive shots, gravity assists and deep space manoeuvres. An example of the usage of this
software was the optimization of a trajectory from Earth to Neptune [Melman, 2007].

optidus (Optimization Tool for Interplanetary trajectories by Delft University Students)
also uses evolutionary algorithms, but optimizes numerical representations of trajectories.

Because of this numerical representation, it needs to integrate the motion of a spacecraft
over the complete trajectory (instead of only modelling impulsive thrusting or �ybys). This
makes it somewhat slower, but also more �exible: for example, in the past, a Solar sailing
mission has been optimized [Garot, 2006].

optidus was also used to optimize the trajectories for the second Global Trajectory
Optimization Contest (gtoc) problem [GTOC2, 2006]. This problem is the second one
in a series of competitions, with the goal of testing (global) optimizers against each other.
The second gtoc problem is to optimize a multiple asteroid rendezvous mission, where the
participants can select four asteroids from a given set which they have to visit. The spacecraft
to visit these asteroids can only use a low-thrust engine for its propulsion.

Unfortunately, [Evertsz, 2008] was not able to satisfy the mission constraints, especially
the rendezvous constraints: when arriving at an asteroid, the speed di�erence between that
asteroid and the spacecraft should be less than 1 m/s, while the distance between them
should be less than 1000 km. Another constraint was that the mission should not take
longer than 20 years.

optidus was also used by [Orlando et al., 2007] in an attempt to solve the third gtoc
problem [Casalino et al., 2007]. The third gtoc problem is very similar to the second one,
as again the participants are to select a set of asteroids to visit, but this time they have to
return to the Earth at the end of the mission. Also, gravity-assists using the Earth may be
used. The rendezvous constraints are the same as in the second gtoc problem. Again the
rendezvous conditions at the asteroids were not satis�ed.

In [Vinkó et al., 2007], alternatives to evolutionary algorithms are benchmarked, and it
was found that Particle Swarm Optimization (pso) and Di�erential Evolution (de) provide
better optimization speed and robustness.

Finally, recent hardware requires software to make use of multithreading to fully utilize
the capacity of that hardware.2 The old version of optidus is not able to this. Especially

2Almost all current CPUs in computers contain more than one core.
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population-based algorithms can bene�t from this, because the evaluation of multiple indi-
viduals (which is where most of the processing time is spent) in a population can be done
in a parallel way. This decreases the execution time of the optimization.

For the last two reasons, a complete overhaul of the optidus software will be done, and
support for de and pso will also be implemented.

1.3 Thesis Objectives

• This thesis work will try to improve the performance of optidus by implementing
pso and de. These algorithms will be benchmarked to an evolutionary algorithm.

• By making use of parallel computation, calculation time on systems with multiple
cores can be reduced.

• This improvement will be benchmarked against historical results of the Solar polar
sailing mission from [Garot, 2006].

• Also, an attempt will be made to �nd a solution to the third gtoc problem which
does satisfy the constraints.

1.4 Organization of this report

This remainder of this report is organized as follows: chapter 2 introduces the concept
of optimization and the associated terminology. Furthermore, several types of optimiza-
tion algorithms (both evolutionary as well as the more mathematical oriented ones) will
be discussed brie�y. Chapter 3 describes population-based evolutionary algorithms and its
building blocks in more detail. Chapter 4 contains a description of particle swarm optimiza-
tion (pso) and its variants, and introduces a method to restrict the movement of particles
by letting them bounce against the boundaries of the solution space. Next, chapter 5 shows
how di�erential evolution (de) works. In chapter 6, multi-objective optimization is treated.
A method to rank individuals in a multi-objective setting (nsga-ii) is introduced, and a
proof of concept implementation is applied in a di�erential evolution optimization. Next,
in chapter 7, pso, de and an ea are applied to four mathematical test functions, and con-
vergence robustness for those algorithms is compared. In chapter 8, pso, de and an ea are
used to optimize a solar polar sailing mission, for various population sizes. Furthermore,
the solutions of these global optimizers are fed to several local optimizers (Monte Carlo
sampling around the best found solution, and Powell’s method), and the outcomes com-
pared. In chapter 9, de is used in an attempt to �nd solutions to the gtoc3 problem. Finally,
chapter 10 contains the conclusions and recommendations for further research.
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Chapter 2

Introduction to Optimization

This chapter introduces the concept of optimization and the associated terminology. Fur-
thermore, it gives an overview of the di�erent optimization methods that can be used to
perform low-thrust trajectory optimization. Finally, a selection will be made of the algo-
rithms to be implemented, so they can be compared.

2.1 Introduction and terminology of optimization

Optimization is the process of �nding the optimal solution for a given problem. Using a
more formal notation, this process can be described by having to �nd the optimal solution x
in a solution space Σ, that optimizes a set of objective functions fk(x), where k ∈ {1, ...,K}.
These solutions may not violate a set of constraints, usually divided into a set of ng equality
constraints gi(x) = 0 and a set of nh inequality constraints h j(x)≤ 0.

For the case where K = 1, meaning the goal is to optimize just one objective function,
this can be formulated as

min
x∈Σ

f (x) subject to gi(x) = 0 and h j(x)≤ 0 for i∈ {1, ...,ng} and j ∈ {1, ...,nh} (2.1)

where ng is the number of equality constraints and nh the number of inequality constraints.

The following paragraphs will explain the terms in the previous formulation using ex-
amples from trajectory optimization.

First of all, x is an abstract representation of the solution, which is composed of (inde-
pendent) input variables, which might represent launch dates, travel times, spacecraft masses,
initial velocities, etc., depending on the given problem. It is also possible to put discrete
variables into the solution: for example, in the gtoc2 problem, an important part of the
optimization was to determine which asteroids from a given set should be visited.

The components of x are bounded by the search space Σ. For example, the arrival
date might be constrained by the position of the target body1 or the initial velocity should
be within the limits of the launcher.

The objective function(s) fk(x) is what evaluates the solution. This can be an in-
tegration over the complete trajectory of the mission using the input parameters given by
the solution. A typical outcome of an objective function is a mission cost estimate [Garot,
2006] or a fuel mass [Elvik, 2004], both of which can be a target for minimization.

1An example of a body which poses constraints on the arrival date is Pluto, which has an orbital period of
248 years and a rather eccentric orbit (e≈ 0.25). This eccentricity causes it to be more than 1.5 times further
away from the Sun at aphelion than at perihelion. This means that at aphelion, available solar power is much
lower, and sending data back to Earth is also more di�cult.

5
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In such cases, where the outcome is only one number, it is quite clear what the term
optimizes is about: to �nd a mission which satis�es the requirements and has a minimal cost
or fuel consumption.2

It is also possible that a problem has more than one objective. An example of this is
given in [Sa�pour, 2007], where a trajectory around Neptune and Triton was optimized,
using the following objectives:

• Maximize the number of �ybys along the inner moons of Neptune

• Minimize the required ∆V -budget to get into the �nal science orbit

This type of optimization is known as multi-objective optimization (moo). It is,however,
di�cult to determine an optimal solution in this case; suppose we have a two solutions for
the Neptune orbit, one which �ies past 20 moons and costs 1 km/sec and another one
which visits 30 moons but also needs 2 km/sec. The solutions are depicted in �gure 2.1 as
solutions A and B. The arrow points into the direction in which both objective values get
better. Without further information, it is impossible to determine that one of these solutions
is better than the other one.3

However, there are two strategies which allow solutions to be ordered. Suppose a third
solution C exists, which visits 25 moons, and consumes 2.5 km/sec worth of fuel. This
solution is better than solution A for the visited number of bodies, but is worse for fuel
consumption. However, compared to solution B, it is worse on both objective values. For
that reason, it is said to be dominated by solution B. If a solution is not dominated by any
other solution, it is said to be Pareto optimal. The solutions which are Pareto optimal
form the (�rst) Pareto front. If this process is repeated without the solutions of that Pareto
front, a second Pareto front can be found, and so on, until all solutions have been put in a
front.

Members not in the �rst Pareto front are (objectively) worse than those in it. However,
it is not possible to compare the individuals within a single Pareto front with each other,
and extra criteria are required to pick the best one. Chapter 6 contains more details on how
to implement Pareto front ranking.

2It is also possible to state the problem such that f (x) should be maximized, but in this report minimization
will be used.

3This is the same problem as that of complex numbers: it is not possible to order complex numbers, because
the comparison operator is not de�ned for them. [Almering, 1993]
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Figure 2.1 Example of the objective values for some solutions of a multi-objective problem.
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Another method is to collapse the two (or more) objective functions into one using a
weighting function.4 This was done in [Van der Pols, 2006], where the objective function
had two outcomes, the ∆V budget and the number of manoeuvres nm necessary for station
keeping in a halo orbit. These were combined using the following expression:

f =
nm

∆V

Note that this method requires extra knowledge about the problem in the form of the
method in which the objective values are combined, or the weighting factors. This makes
the use of weighting functions subjective.

Finally, the constraint functions gi(x) and h j(x) must be satis�ed. Examples of the
inequality constraints hi(x) are that the total mission lifetime should not exceed 20 years,
or that the spacecraft may not come within a distance of 0.4 AU from the Sun during the
mission. Equality constraints gi(x) are less common in trajectory optimization – an
example can be fabricated for a rendezvous mission with a prolonged stay; upon arrival,
the speed di�erence between the spacecraft and the target should be zero. In practice,
the requirement is made less stringent, and stated as |gi(x)| < δi, making it an inequality
constraint. This has been done in the gtoc3 problem, where the spacecraft should be closer
than 1000 km to the target asteroid, and should have a speed di�erence of less than 1 m/s
upon arrival.

How these constraints are enforced is another issue; a method commonly used is to
create an augmented objective function. [Michalewicz, 1995] lists several options, from
which [Demeyer, 2007] uses the following augmented objective function which was �rst
given in [Joines and Houck, 1994]:

F = F(X)+(C · igen)αcβ
r (2.2)

In this equation, F(X) is the original objective function, and represents the total ∆V budget,
so it has to be minimized. The rest of the right hand side represents the penalty for not
satisfying the constraints, and is in�uenced by igen, the number of the current generation,
and cr, the magnitude of the position-error at the end of the trajectory. The remaining
terms,C, α an β are prede�ned constants. It is apparent from this equation that an increase
in the position error cr leads to an increase of the augmented objective function, and thus
a less �t individual.

An alternative method to handle constraints is by giving members which do not sat-
isfy the constraints the death penalty. This prevents them from entering the population
completely. This might be a too strict method, as a solution which almost satis�es the con-
straints (and might evolve into one which does) can be better in terms of objective values.
The augmented objective function does not su�er from this.

2.2 Steps in the optimization process

The goal of this thesis work is to �nd out if trajectory optimization using evolutionary
methods can be improved. However, such optimizations are usually carried out by applying
several methods sequentially:

According to [Becerra et al., 2005] it is necessary to prune the search space. This means
that the region(s) of the solution space where feasible solutions can be found should be
identi�ed. The easiest way to implement this is by sampling the solution space. Because
the samples taken do not depend on the objective values of the other samples, and explore

4Note that a weighting function would normally be in the form of (6.1): ∑
K
k=1 wk fk, but any function

combining the outcomes of the objective functions into one number is acceptable.
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the complete solution space, the methods used for this are also classi�ed as global one-shot
optimizers. Section 2.3 lists several of these optimizers.

Next, an evolutionary algorithm is to be used. In this thesis, only population-based
evolutionary optimizers have been tested. These work by creating a population of solu-
tions and evaluating their objective functions. The ones with good objective values are then
combined and mutated to generate a new population. By selecting only the good individ-
uals, the process tries to create “good” o�spring, but no guarantees are given that the best
solution will be found. Section 2.4 has a short overview of these optimizers.

The �nal step is to identify the exact optimum. This is necessary, as most evolutionary
algorithms end up near a (local or global) optimum, but do not reach the exact optimum
[Deb, 1995]. By employing local optimizers, which explore the solution space around a
given solution, it is possible to further improve the value of the objective function. Several
local optimizers are listed in section 2.5.

2.3 Global one-shot optimizers

A global one-shot optimizer is a method which tries to �nd an optimum for a function by
evaluating it at multiple locations in the complete solution space. Because the optimizer
does not reuse the output of those evaluations as input for other evaluations, it is called
one-shot.

2.3.1 Nested do-loop

If the solution space is discrete (meaning that the components of the solution vector only
take on discrete values), it is possible to check all possible solutions using a (nested) do-loop
(also called factorial design or enumerative sampling), to determine the optimal value. For
example, a function on a 102 grid can be sampled using listing 2.1.

However, in trajectory optimization, the solution space is either too big to be checked
completely, or is not discrete. Therefore, this method is not used.

b e s t = −1
b e s t _ i = −1
b e s t _ j = −1

do i = 1 , 10
do j = 1 , 10

ob j = o b j e c t i v e _ f u n c t i o n ( i , j )
i f ( ob j > b e s t ) then

b e s t = ob j
b e s t _ i = i
b e s t _ j = j

end i f
end do

end do

Listing 2.1 Example of a nested do-loop optimizer.
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2.3.2 Regular sampling

Regular (or grid) sampling is similar to nested do-loops, but only samples a subset of all
possible solutions. This makes sampling of continuous functions possible, and can also lead
to a big reduction in the number of solutions to be evaluated. The implementation is similar
to the one given above.

Unfortunately, the large number of input parameters for orbit optimization problems
prohibits the successful application of this method too: if a problem has 10 variables x1
... x10, and each variable is sampled in 100 grid points, this means 10010 = 1020 possible
solutions have to be evaluated, which is not doable on current hardware.

2.3.3 Monte Carlo sampling

Monte Carlo (or random) sampling chooses the points to be sampled randomly. This helps
to prevent problems which might be caused by regular sampling.5 Another feature of Monte
Carlo sampling is that the number of samples can be extended, as opposed to grid sampling,
where the layout of the grid determines the number of samples. Because pseudo-random
numbers do not depend on the previous samples taken, generating new solutions is not a
problem.

The downside is that populations generated using Monte Carlo sampling can su�er
from clustering in the generated solutions, as shown in �gure 2.2.

Although it uses a random generator to sample points, experiments are repeatable if
a pseudorandom generator is used. By using a �xed seed value, the same points will be
generated each time.

2.3.4 Sobol sampling

Sobol sampling is similar to Monte Carlo sampling, but instead of using a (pseudo-)random
number sequence to generate the points to be sampled, these points are created using the
Sobol quasirandom sequence. This helps to sample the random space more uniformly than
random numbers [Burkardt, 2006]. Figure 2.2 shows that a set of points generated using a
normal random number generator (left) has lots of clusters, whereas the points generated
using a Sobol sequence (right) are distributed more evenly. Just as normal Monte Carlo
sampling, continuing the sample sequence is possible, and the samples taken are repeatable.

2.4 Population based evolutionary optimizers

Population-based evolutionary optimizers are optimization methods which work by sim-
ulating a population of solutions, which - hopefully - evolve towards an optimal solution.
This evolution takes place by combining and mutating individuals from the population, and
using those to form a new generation. By selecting only the good individuals to form the
next generation, the individuals inside that generation tend to improve.

2.4.1 Genetic Algorithms

Genetic algorithms (gas) are probably the best known evolutionary optimizer; they make
use of a population of solutions, which are allowed to evolve.

5For example, if a launch date is sampled with a resolution of exactly 24 hours, the launch point on Earth will
always have the same orientation towards the Sun. If this orientation in�uences the outcome of the objective
function, the regular sampling has sampled only one value of that orientation.
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These solutions are represented using genomes,which are composed of genes. In genetic
algorithms, these genes are built up from binary numbers, i.e. strings of 0 and 1’s. [Goldberg,
1989].

Of course, it is only possible to optimize a function using this technique if this evolution
process is directed. By evaluating each solution using one or more objective functions, it is
possible to compare those solutions, and determine which ones in the population are good,
resulting in a �tness value.

These good individuals then have a higher chance to procreate than the bad ones. Dur-
ing the process of procreation, several operators can be applied to the individuals: well-
known operators are crossover and mutation. Because of selective pressure (caused by the
chance to procreate), the quality of the solutions has a tendency to get better. Once an
optimum is reached, the optimization is stopped.

There are several methods to determine the moment at which an optimization needs to
be stopped: for example, the user might set a limit on the number of generations. Another
option is to stop the optimization if the best solution has not been improved for the last
couple of generations (where the user can choose how many generations of stagnation are
allowed).

2.4.2 Evolutionary Algorithms

Evolutionary Algorithms (eas) are similar to gas, with the di�erence that they do not use
genes built up from strings of zeros and ones, but instead use a vector of �oating-point
numbers for the genomes. This can allow for a much easier mapping of the problem to
the real world, and allows a lot of extra operators. Because eas are very similar to gas,
they are sometimes (mistakenly) called gas. For example, the original implementation of
optidus uses an algorithm which is called “Genetic Algorithm with Variable Population
Size (GAVaPS)”, however, in reality, it is an ea, as it uses �oating-point numbers.

The main reason for using this GAVaPS algorithm is that the method of applying selec-
tive pressure is di�erent: all solutions have an equal chance of procreating, but when a new
solution has been formed, its lifetime is determined according to its �tness. According to
[Michalewicz, 1996] this leads to faster convergence of the algorithm. In practice however,
[Garot, 2006] encountered problems with explosions of the population size.

Note that because of the similarity between gas and eas, they will both be treated in
chapter 3.
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Figure 2.2 Distribution of 3000 points picked using a pseudorandom number generator (left) and
using a Sobol sequence (right)



2.5 local optimizers 11

2.4.3 Particle Swarm Optimization

Particle Swarm Optimization (pso) is an algorithm which tries to mimic the behavior of a
�ock of birds scavenging for food. Once food has been found, the �ock of birds is attracted
to that food.6

In pso, this is modelled by having solutions �y7 through the solution space. Each solution
remembers its best position, and is attracted to that. Furthermore, the global best position
is also known by each solution, and all solutions are attracted to that to. Finally, an inertia
weight term is used to limit the speed of the solutions, and a random disturbance is applied to
the speed at each generation, to maintain the diversity of the population. pso can su�er from
premature convergence, but methods to counter this (for example, introducing a predator),
are known. pso will be treated in more detail in chapter 4.

2.4.4 Di�erential Evolution

Di�erential Evolution (de) is an algorithm that was introduced in [Storn and Price, 1997]. On
the surface, it looks a lot like an ea as it uses populations of solutions, in which solutions are
combined to give new solutions for the next generation. The big di�erence is in the operator
used for combining individuals. For example,one operator listed in [Tasoulis et al., 2004] uses
the following method: each iteration starts by taking the di�erence between two randomly
selected solutions and adding that di�erence to the best solution in the population. This
way, a mutation vector is generated. This mutation vector is combined with a third random
solution using a two point crossover, giving the trial solution. Next, this trial solution is
evaluated, and if its �tness is better than that of the third random solution, it replaces that.
If not, it is discarded. This process is repeated until convergence is reached or another
termination criterion applies.

See chapter 5 for more information on de.

2.5 Local optimizers

Local optimizers try to �nd the local optimum in the neighbourhood of a given starting
point. [Noomen, 2007], [Deb, 1995] and [Press et al., 2007] are good starting points for
�nding out more about local optimizers.

2.5.1 Newton-Raphson

For a problem that depends on one input parameter, a good method for �nding local optima
is applying the Newton-Raphson method on the derivative of the objective function. If
the derivative is smooth enough, this method will converge quadratically [Almering, 1993].

Writing down the �rst order Taylor expansion of the derivative yields the following:

f ′(xi +∆x) = f ′(xi)+ f ′′(xi)∆x+O(∆x2) (2.3)

At an optimum f ′(xi + ∆x) = 0, so after discarding O(∆x2), the following approximation
for ∆x is found:

∆x =− f ′(xi)
f ′′(xi)

(2.4)

6This might not look like a pure ea, as there is no evolution involved, but because of the similarity with
normal eas (it uses a population of solutions which change over successive generations), it is classi�ed as such.

7Flying in this context means that each solution is modelled as a particle having a position and a velocity in
the solution space, and at each successive generation these are updated.
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and the optimum can be found by iterating over:

xi+1 = xi− f ′(xi)
f ′′(xi)

(2.5)

In general, calculating the derivatives will have to be done numerically using a di�erence
quotient, for example a �rst order central di�erence quotient: [Vuik et al., 2006]:

f ′(x) =
f (x+h)− f (x−h)

2h
+O(h2) (2.6)

[Vuik et al., 2006] also lists a second order central di�erence quotient:

f ′′(x) =
f (x+h)−2 f (x)+ f (x−h)

h2 +O(h2) (2.7)

Because computers only have limited accuracy, care should be taken when determining the
stepsize h in the above equations. Appendix B shows how to do that.

2.5.2 Golden section search

Another method for �nding the optimum of a problem with only one variable is the golden
section search [Deb, 1995]. This method works by contracting a pair of points with the goal
of �nding a minimum.

The theory is as follows: if a (su�ciently smooth) function f (x) is expected to reach
a minimum between x = a and x = b, there should be two testing points x = c an x = d
where

f (c) < f (a) ∧ f (c) < f (b)
f (d) < f (a) ∧ f (d) < f (b)

For the golden section search, the location of points c and d are given by partitioning the
interval [a,b] using the golden ratio conjugate Φ:

Φ =
1

1+
√

5
2

=
2

1+
√

5
= 0.6180... (2.8)

Now, R = 1−Φ = 0.3820... is used to construct the location of the testing points:

c = a+R(b−a) (2.9)

d = b−R(b−a) (2.10)

Now, the function is evaluated in c and d, and both objective values are compared. If
f (c) < f (d), the bracketing interval for the next step is set to [a,d]. If else, the interval is
set to [c,b].

With this new interval, the procedure is repeated. For example, the function in �gure 2.3,
has f (d) < f (c). The new interval is then set to [c,b] with testing points d and e. Because
of the use of the golden section, d is still in the same location, and only one evaluation at e
is needed. This procedure is repeated until the interval reaches a prede�ned minimum size,
speci�ed by the user.

2.5.3 Steepest descent method

The steepest descent optimizer is a method which can be used to optimize a function with
more than one variable. It is given in [Press et al., 2007]. The procedure is as follows:
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Figure 2.3 Successive bracketing of a minimum using a golden section search. See the text for the
meaning of the points a to e.

1. Choose a starting point P0 and set i = 0

2. Determine the gradient of the function at that point: ∇ f (Pi)

3. Determine the point Pi+1 along the line Pi + λ∇ f (Pi) where f is optimal using a
linear local optimizer (such as the Newton-Raphson method or a golden section
search)8

4. Stop if convergence is reached (which occurs when λ is smaller than a tolerance ε

speci�ed by the user), else increase i and repeat from step 2.

This technique is simple to implement, but has a problem which is illustrated in �gure 2.4.
In a point Pi+1, the gradient is orthogonal to the gradient of that in point Pi, because that
was the goal of the optimization. This causes the optimizer to “zig zag” with small steps,
leading to slow convergence. If a good direction can be chosen, a much bigger stepsize is
possible, and less function evaluations are needed, leading to faster convergence.

Figures 2.5(a) and 2.6(a) show the steps this algorithm takes to locally optimize the
Himmelblau function (which will be introduced in section 7.1.1).

2.5.4 Powell’s quadratically convergent method

[Press et al., 2007, section 10.7] describes direction set methods, of which Powell’s quadrat-
ically convergent method is considered to perform the best. It is built on the concept of
conjugate directions, which are de�ned as follows:

Conjugate directions

Given a function f (x), where x ∈RN . If this function is smooth, it can be approximated by
its Taylor series around point P:

f (P+δx) = f (P)+∑
i

∂ f
∂xi

δxi +
1
2 ∑

i, j

∂2 f
∂xi∂x j

δxiδx j + ...

≈ c+b ·δx+
1
2
(A ·δx) ·δx (2.11)

8Even though the function is multi-dimensional, this is possible, because the problem is then reduced to
�nding the optimal value of λ for f (Pi +λ∇ f (Pi))
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Next take some particular point P as the origin of the coordinate system with
coordinates x. Then any function f can be approximated by its Taylor series
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where

c $ f .P / b $ #rf jP ŒA!ij $ @2f

@xi @xj

ˇ̌
ˇ̌
P

(10.7.2)

The matrix A whose components are the second partial derivative matrix of the
function is called the Hessian matrix of the function at P .

In the approximation of (10.7.1), the gradient of f is easily calculated as

rf D A ! x # b (10.7.3)

(This implies that the gradient will vanish — the function will be at an extremum —
at a value of x obtained by solving A ! x D b. We will return to this idea in "10.9!)

Figure 2.4 Successive minimizations along coordinate directions in a long, narrow valley [Press et al.,
2007]

where

c = f (P) b = ∇ f |P [A ]i j =
∂2 f

∂xi∂x j
|P (2.12)

The Taylor expansion of the gradient of f around point P is given by:

∇ f |P+δx = b+A ·δx (2.13)

So the change in gradient after moving along a certain direction δx then equals:

δ(∇ f |P) = A ·δx (2.14)

Now, if the function has been optimized in a direction u, the gradient along that direction
should be 0:

u ·∇ f = 0 (2.15)

If we next wish to move along a (non-zero) direction v to optimize further, we must make
sure that the gradient in the u direction stays 0:

0 = u ·δ(∇ f ) = u ·A ·v (2.16)

If this holds for two vectors u and v, they are said to be conjugate. This property is used in
Powell’s quadratically convergent method.

Powell’s quadratically convergent method

If a set of N mutually conjugate vectors can be found, one pass of N optimizations will
put the optimizer at the (quadratic form) optimum. Thus, if it is possible to create a set of
mutually conjugate vectors, it is possible to locate an optimum.

Powell’s method uses this to �nd an optimum as follows:

1. Initialize the set of directions ui with the unit vectors in the solution space Σ: ui = ei

2. Save the starting position as P0.
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3. Do one round of subsequent linear optimizations along the directions ui for i =
1, ...,N using a linear local optimizer, giving the point PN as the �nal point.

4. Drop u1, and shift all directions ui left, so:

ui = ui +1 for i = 1, ...,N−1

5. Determine a new optimization direction vector: uN = PN−P0.

6. Go back to step 2 unless convergence was reached.

Now, (if the function is smooth), after k iterations of the above algorithm, the last k members
of the set ui will be mutually conjugate, thus, after N of these iterations, all vectors ui are
mutually conjugate, and a �nal round of optimizations then (in theory) is enough to locate
the local minimum. This means, in theory, N(N + 1) linear optimizations are su�cient.
Note that each linear optimization will incur multiple calls of the objective function.

However,problems can occur because similar vectors might appear in the list of direction
vectors. If this happens, these vectors become linearly dependent, and do not span up the
complete solution space anymore, thus making a region of the solution space unreachable.
The heuristic solution proposed in [Press et al., 2007] is to drop the term with the largest
change in f in step 3 of the algorithm instead of u1.

Figures 2.5(b) and 2.6(b) show the steps this algorithm takes to locally optimize the
Himmelblau function (which will be introduced in section 7.1.1). The �rst two iterations
of this particular optimization are worked out here for clarity:

1. The set of directions is initialized with the unit vectors, so u1 = [1,0]T and u2 =
[0,1]T .

2. The starting position P0 = [3.3,3]T with f (P0) = 36.44

3. Now, the function is optimized along u1, giving P1:

P1 = [2.667,3.000]T with f (P1) = 22.57 f (P0)− f (P1) = 13.93

Optimizing along u2 yields the point P2:

P2 = [2.667,2.173]T with f (P2) = 3.05 f (P1)− f (P0) = 19.52

4. The second step caused the biggest drop in �tness value, so u2 is dropped from the
list of direction vectors.

5. P2−P0 = [−0.631,−0.827]T is inserted at the front of the direction vectors.
Now, the new direction vectors are: u1 = [−0.631,−0.827]T and u2 = [1,0]T

6. Go back to step 2 for another iteration:

2b. The new starting point is P0 = [2.667,2.173]T with f (P0) = 3.05

3b. Optimize along u1, giving P1:

P1 = [2.764,2.297]T with f (P1) = 2.21 f (P0)− f (P1) = 0.84

Optimizing along u2 yields the point P2:

P2 = [2.915,2.297]T with f (P2) = 1.46 f (P1)− f (P0) = 0.75
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4b. The second step caused the biggest drop in �tness value, so again u2 is dropped from
the list of direction vectors.

5b. P2−P0 = [0.246,0.124]T is inserted at the front of the direction vectors.
Now, the new direction vectors are: u1 = [−0.246,0.124]T and u2 = [1,0]T

6b. No convergence yet, so iterate again.

This example needs more than the theoretical N(N +1) linear optimizations: this is because
the golden section search implementation used does not grow its bracket by more than a
factor 2, causing the last three rounds of this optimization to return points which are almost
on a straight line.

2.6 Other algorithms

2.6.1 Interval Analysis

Interval Analysis (IA) is somewhat di�erent from the rest of the algorithms in this chapter,
as it does not try to optimize a single solution, but tries to �nd the best solution in the
solution space by evaluating regions of the solution space at once.

It is a mathematical technique that can be used to solve certain classes of optimization
problems. An introduction can be found in [Caprani et al., 2002]. This method works by
replacing numerical analysis by interval analysis, which can be used to calculate the output
interval of a function, when given a certain input interval. An example of an interval
operator is the addition operator:

AI +BI = [a1 a2]+ [b1 b2] = [a1 +b1 a2 +b2] (2.17)

So, for example adding AI = 1±0.05 and BI = 1±0.05 gives:

[0.95 1.05]+ [0.95 1.05] = [1.9 2.1] (2.18)

Subtraction works in a similar manner:

AI−BI = [a1 a2]− [b1 b2] = [a1−b2 a2−b1] (2.19)

However, there are pitfalls: suppose we substract AI from AI . In that case, the expected result
is 0. However, we get

[0.95 1.05]− [0.95 1.05] = [−0.1 0.1] (2.20)

This is called the dependency problem.
By creating interval operators for all numerical functions, a simulation can be recreated

in interval analysis. If this is done, the input interval can be split into several subintervals,
and the output intervals of these subintervals can be determined.

By eliminating the input intervals for which the minimum is above the maximum of
any other interval, the search space can be reduced. For example, in �gure 2.7, it is obvious
that interval I1 cannot contain the minimum, since all solutions in I3 have a lower value.
Therefore, I1 can be eliminated. I2 and I4 can still contain the optimum, and thus are not
eliminated.
After this step, the remaining intervals are divided into smaller intervals, and this proce-
dure can be repeated, hopefully leading to an interval that contains the global maximum
and is small enough that a (non-interval) solution which is close to the optimum can be
determined.
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(a) Local optimization of the Himmelblau function using the steepest descent method
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(b) Local optimization of the Himmelblau function using Powell’s quadratically convergent method.

Figure 2.5 Comparison of local optimizers applied to the Himmelblau function. The upper �gure
shows how the steepest descent method moves through the solution space, the lower
�gure contains Powell’s quadratically convergent method. The contours plotted are the
values of the Himmelblau function.
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(a) Local optimization of the Himmelblau function using the steepest descent method
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(b) Local optimization of the Himmelblau function using Powell’s quadratically convergent method.

Figure 2.6 Zoomed in versions of �gure 2.5 displaying the �nal steps of both local optimizers.
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Figure 2.7 Example of the bounding intervals for a function

In [Chu, 2007], this technique is used to optimize several mathematical test functions
successfully. Optimizing the reentry problem was less successful,with the dependency prob-
lem and the wrapping e�ect mentioned as causes for that.9

Another possible problem can arise from branching: suppose a problem containing the
following pseudo-code is to be executed using interval analysis:10

do while ( . t r u e . )
i f ( a b s ( a n g l e ) < 9 0 ) then

c a l l method1
e l s e

c a l l method2
end i f

end do

If the input angle interval now is [80,100], the algorithm will need to be executed twice,
since there are two branches of execution to follow, one in which method1 is executed and
another one in which method2 is called. This can lead to exponential growth of the number
of branches, and thus also exponential growth of the calculation time. On the other hand,
this branching also causes inherent parallelism in solving the problem (as the two branches
of execution are independent and can be executed simultaneously), and a programming
language which exploits this can pro�t from that.

2.6.2 Simulated Annealing

Simulated annealing (sa) is an algorithm in which (only) one solution is iteratively modi�ed
to �nd the best solution possible.

The idea behind sa is to mimic the annealing of metals. It simulates one individual solu-
tion,which is allowed to move randomly through the solution space, like an atom through a
grid of a heated piece of metal. The distance this solution is allowed to move varies with the
“temperature”, which is gradually decreased as the process goes. The reason this seemingly
random movement can be used for optimization is that in principle, only movements that
increase the �tness value of the solution are accepted. However, to decrease the occurrence
of premature convergence, movements that decrease the �tness of the solution are some-
times accepted - again as a function of the temperature. More information on sa can be

9The wrapping e�ect is caused by the fact that intervals are assumed to be independent, so the space spanned
up by a set of n intervals is an n-dimensional hypercube. In reality, only a small part of this hypercube might be
feasible, causing the input domain to be too large, which can cause the output domain to be too large.

10This pseudo code is inspired by an actual algorithm, namely the method to divide an orbit into intervals
for a steering algorithm in [Elvik, 2004]
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found in [Kirkpatrick et al., 1983], [Lu and Khan, 1994], [Nam and Park, 2000] and [Nam
and Park, 2002].

2.6.3 Hybrid methods

In [Vinkó et al., 2007], a number of optimization methods is compared, including one named
’COOP’.This method combines de and pso,by alternating between N1 iterations of de, and
N2 iterations of pso, passing the �nal population of each algorithm as the initial population
for the following one at each switch. This can lead to faster and more robust optimization.
Of course, other combinations of optimizers are also possible.

2.7 Selection of optimizers

From the optimization method listed in this chapter, the following have been implemented
in the new version of optidus:

Monte Carlo sampling has been implemented as it is a method which can be used to
quickly generate the initial population of any evolutionary optimizer. It can also be
used to generate solutions for local optimizations at the end of a run.

Sobol sampling has been implemented because it is similar to Monte Carlo sampling, and
might provide better coverage of the solution space than Monte Carlo sampling. It
has been compared to Monte Carlo sampling only for local optimizations.

Evolutionary algorithms have also been implemented using �oating point representa-
tion, crossover and mutation. Furthermore, several reproduction/selection schemes
have been implemented. This was done, because it is the baseline optimizer to com-
pare the other evolutionary optimizers against.

Particle Swarm Optimization has been implemented because it is a promising method,
which has been found to work for several trajectory optimizations, [Vinkó et al., 2007]
and by varying the inertia weight, it is possible to have both global exploration as well
as local convergence. [Clerc and Kennedy, 2002]

Di�erential Evolution has been implemented for the same reasons, that is: it has been
found to work for trajectory optimizations [Becerra et al., 2005]. Furthermore, it is
claimed to have good local convergence at the end of optimization. [Storn and Price,
1997]

Powell’s quadratically convergent method has been implemented because it is an ana-
lytical local optimizer which does not need the calculation of gradients, and has good
convergence for smooth functions.

Hybrid methods have not been implemented directly, but by using the same data struc-
tures to store populations for ea, pso and de, it is possible to reuse the current data
structures when constructing an optimizer chaining more than one optimization
method.



Chapter 3

Evolutionary Computation

Evolutionary Computation (ec) is an alternative to the more traditional optimization meth-
ods such as enumeration, random selection (Monte Carlo) and calculus based methods
(steepest descent).

This chapter will give an overview of the main building blocks of ec, such as the
representation of solutions and evolutionary operators. A selection of these operators will
be implemented, and the rationale for that is also given.

3.1 History of Evolutionary Computation

A history of the development of ec is given in [Bäck et al., 1997]. Three groups came up
with three di�erent sets of ideas; in the USA, Fogel started out with evolutionary programming
[Fogel et al., 1966], and Holland developed genetic algorithms [Holland, 1967]. In Europe,
Schwefel was part of a group of students that developed the concept of Evolution Strategies
[Schwefel, 1977].

3.1.1 Evolutionary programming

In evolutionary programming (ep), state machines are constructed which can convert a series
of input values into a series of output values. By comparing the actual output with the
expected output, a �tness can be determined for that machine.

A population of machines is generated, and each generation, o�spring machines are
created by mutating the parents. The parents and o�spring were combined, and the half of
the population with the worst �tness was discarded.

In the mid-1980s the general EP procedure was extended to alternative representations
including ordered lists for the traveling salesman problem, and real-valued vectors for con-
tinuous function optimization [Bäck et al., 1997].

3.1.2 Genetic algorithms

Genetic algorithms (ga) where developed with natural adaptive systems in mind; the key
feature in these systems was the the successful use of competition and innovation to provide
the “ability to dynamically respond to unanticipated events and changing environments”
[Bäck et al., 1997].

The group of Holland developed systems making use of genomes, which evolved using
variation methods borrowed from nature: mutation and crossover. During the following
years, elitism and multi-point crossover were pioneered by this group.

21
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3.1.3 Evolution strategies

The theory of Evolution strategies was developed originally to control a robot which was
to be constructed to minimize the drag of a three-dimensional body in a wind tunnel.

This optimization was �rst done manually by adjusting only one variable at a time, but
that method got stuck in a local minimum. The use of dice to have random changes in the
control variables �nally allowed this optimization to succeed.1

Note that in this case, a population of only one individual was evolving. Later, this
group also used population sizes bigger than one, and also explored self-adaptation of the
optimization parameters.

3.1.4 Convergence of the optimizers

Finally, in the early 1990s, these three groups came into contact with each other during
several conferences and formed the journal Evolutionary Computation. This information
sharing ultimately led to the development Di�erential Evolution (de) [Storn and Price, 1997]
and Particle Swarm Optimization (pso) [Kennedy and Eberhart, 1995].

3.2 Introduction to evolutionary computing

The general idea behind the use of ec is to mimic evolution in nature, by simulating a
population of solutions. In this population, individual solutions combine (mate) with each
other to form new solutions (reproduce). If those new solutions are better than the existing
solutions, they are kept at the expense of worse solutions, thus increasing the general level
of the solutions.

When this process is repeated inde�nitely, this algorithm should – at least in theory –
�nd the best solution to a problem, but this is somewhat hindered by the fact that the size of
the population and the number of iterations are limited by computing power, so the optimal
solution is not always found within a reasonable amount of time.

According to [Fogel and Angeline, 2000], the user has control over at least four aspects
of the approach, and these four aspects will be treated in this chapter: the representation of
the solution (in section 3.3), variation operators (in section 3.4), methods of selection (in
section 3.5) and ordering of multi-objective functions (in chapter 6).

3.3 Representation of a solution

In all known (living) organisms on Earth, nature stores its genetic information in chromo-
somes, which are long strings of amino-acids that can be represented by a 4-letter alphabet.
Genetic Algorithms use a similar coding method, however, using a binary alphabet. eas also
make use of real-coded information, and other representations such as probability based
codings are also available. The choice of a coding (or representation) should depend on the
type of problem to solve. To make this choice easier, this section gives an overview of the
di�erent ways to represent a solution, based on the information in [Goldberg, 1989], [Bäck
et al., 2000a], [Bäck et al., 2000b], [Baluja and Caruana, 1995], and [Michalewicz, 1996].

3.3.1 Binary coding

The best-known coding for gas is binary coding; this coding follows from the minimum
alphabets principle: [Goldberg, 1989]

1And the robot was constructed to execute this optimization!



3.3 representation of a solution 23

The user should select the smallest alphabet that permits a natural expression
of the problem.

According to [Bäck, 2000], this works best for problems whose solutions are binary in nature,
such as pseudo-Boolean optimization problems like the knapsack problem.

The knapsack problem is a combinatorial problem [Whitley et al., 1997]: given n objects
with weight Wi and pro�ts Pi, the goal is to �nd a set of objects with a combined weight
not exceeding the capacity of the knapsack M, which maximizes the sum of the bene�ts:

M

∑
i=1

XiWi ≤M and
M

∑
i=1

XiPi is maximal (3.1)

in which Xi can be 0 or 1, indicating if an object is put into the knapsack.
A simple example: given a set of objects with weights 1, 4, 4, 9, 11, 15, and pro�ts equal

to their weights, Pi = Wi. Furthermore, a knapsack with capacity M = 17 is considered. In
this case, even though there are 26 = 64 possible combinations of objects, there is only one
optimal solution, using the objects with weights: 4, 4 and 9. As the size of the problem
space scales exponentially with the amount of objects to pack, this problem can be quite
challenging.2

However, also for problems which are not binary in nature, such as parameter optimiza-
tion problems, binary codings can be used. For this to work, the user must choose a domain
and precision for the parameters, which then gives the number of bits needed to express
that parameter in binary:

If a parameter falls in an interval [a b], and needs a precision of ε, (b−a)/ε positions
need to be encoded by this number, so ceiling(log2

b−a
ε

) bits are needed to express this.3

For example, if a number can range from 0 to 100, and is stored with a resolution of
0.1, it can take on 1001 values. This means that ceiling(log2 1001) ≈ ceiling(9.97) = 10
bits are necessary to represent that number in binary.

3.3.2 Gray coding

One of the problems that can show up when using binary coding for parameter optimization
problems is referred to as ’Hamming cli�s’. This name is related to the Hamming distance,
which is de�ned as the number of di�ering bits between two numbers. Hamming cli�s
occur when two adjacent numbers have a large Hamming distance, so the mutation from
one value to the other is rather unlikely, for example:

If a binary coded variable has the value 3, its binary representation is 011. It is unlikely
that a mutation will change its value to 4, which has the representation 100, since that
number would require the mutation of 3 bits at once (and hence has a Hamming distance
of 3).

A solution to this problem is to make use of Gray coding. Gray coding is a one-to-one
mapping between binary representations of values, keeping the number of bits (and the size
of the solution space) the same as that of normal binary coding. [Michalewicz, 1996] gives
an implementation of a simple Gray encoder in pseudo-code, [Heitkoetter and Beasley, 2001]
gives an implementation in C. An example of how a 3-bit number can be represented using
Gray coding is given in �gure 3.1

2In fact, the knapsack problem is NP-complete meaning it is not possible to locate the optimum quickly, but it
can be veri�ed quickly. This is the reason the knapsack problem is also used as the basis for some cryptographic
algorithms [Schneier et al., 1996].

3ceiling(X) is a Fortran function which returns the least integer greater than or equal to the number X .
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Gray codes solve the problem above because they have the property that the Hamming
distance between two adjacent values is 1: in the coding given in table 3.1, the number 3 is
represented as 010, which di�ers only one bit from the coding for 4: 110.

3.3.3 Real coding

When taking a closer look at the minimum alphabets principle, it states that a minimum
alphabet should be selected that permits a natural expression of the problem. Thus, in the case
of parameter optimization, the representation does not need to be binary.

[Michalewicz, 1996] states that real coding of �oating point numbers gives better results
than binary (or Gray) coding.4 The reasons given are that on the one hand, �oating point
numbers can represent a large domain with a limited amount of bits, and on the other hand,
that they have a higher precision.

Note that real coding cannot use the traditional binary genetic operators such as crossover
and mutation, but needs custom versions of those.

3.3.4 Permutations

[Whitley, 1997] describes some techniques to code permutations. In this context, a permu-
tation of a set is an arrangement of its elements into a row. Given a set of n objects, n!
permutations of this set exist.

This can be used to solve traveling salesman problems (TSP), which are focused on
�nding the optimal path to visit a given set of locations, where the length of the total path
is minimal. This has a similarity to the gtoc2 and gtoc3 problems, in which the problem
is to �nd an optimal trajectory visiting a subset of a collection of asteroids which can be
chosen by the optimizer.

[Whitley, 1997] contains several methods to map a sequence into an integer, but this is
not natural for a problem like gtoc3: in gtoc3, only 4 asteroids have to be selected, and
they can be indexed by integers. The only important thing is that care has to be taken that
an asteroid does not occur twice in the same sequence.

If problems become much more complicated (for example, because a much larger se-
quence of asteroids is to be visited), use of this methods might become bene�cial.

3.3.5 Probability coding

[Baluja and Caruana, 1995] states that the bits should be replaced by probabilities, and that
the population of each generation should consist of individuals that are represented by bits
(which are chosen based on the probabilities in the probability string). During the repro-
duction operator, the probabilities should be adjusted in the direction of the best individuals
of that generation, and the whole population regenerated based on those new probabilities.

This method is claimed to work best with static problems with relatively small popula-
tions, in which niching is not needed (since only one super-individual exists). The applica-
bility of this coding might be rather limited for trajectory-optimization problems.

4Where better means: smaller variance in the solutions, faster results, and a better ’best’ result for a given
implementation. The metrics of the quality of solutions will be explored further down the road.

Number 0 1 2 3 4 5 6 7
Bit 1 0 0 0 0 1 1 1 1
Bit 2 0 0 1 1 1 1 0 0
Bit 3 0 1 1 0 0 1 1 0

Figure 3.1 Example of a Gray coded sequence [Spaans, 2008]



3.4 variation operators 25

3.4 Variation Operators

The conceptual implementation of an ec algorithm is quite simple: it should consist of a
loop of some operators; the code should then run through this loop, until a termination
condition is met, at which point the iteration stops. Examples of termination conditions
are ones that check if the population is still improving, or one that �res when a (preset)
maximum number of generations has been reached.

According to [Goldberg, 1989], a minimal implementation of a ga should at least con-
tain the operators depicted in �gure 3.2: reproduction, crossover and mutation. Since the
algorithm is that simple, the implementation of the operators is what makes or breaks an
algorithm. For that reason, an overview is given of the di�erent types of genetic variation
operators, in the example of �gure 3.2 the crossover and mutation operators. The reproduc-
tion operator in that �gure is not a variation operator, but a selection operator, and hence
it will be postponed until section 3.5.

start

initialize 
(random) 

population

selectionmutation

termination 
criterium met?

termination

n

y

evaluate 
solutions

crossover

Figure 3.2 Flowchart of a simple genetic algorithm

3.4.1 Crossover operators

The crossover operator is the operator that causes the population to change; by combining
the genes of two parents,5 a pair of new children is created which has features of both
parents. If the good parts of the parents are mixed into the child, it will probably have a
better chance of surviving, so those good features are kept in the gene pool at the cost of
worse individuals, causing the quality of the population to increase.

Single point crossover

[Goldberg, 1989] describes single point crossover; it is the �rst variant of crossover; in this
variant, two parent-strings are placed next to another, a cut is made on a random point
somewhere in the string, and the two ’tails’ are swapped. This is illustrated in �gure 3.3.
This operator can be applied to both binary and real-valued strings, but behaves di�erently:
in the case of binary crossover, the cut lies between the bits, so a gene can be split into
two parts (and cause two new values for the gene which is split to be introduced into the
population). In the case of real-valued genomes, the cuts are on the boundary between two
genes and the genes themselves are not changed.

5 [Eiben et al., 1995] describe multi-parent crossover, where more than two parents are combined, but that
kind of crossover is not used in this thesis.
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Parent 1: a1 a2 a3 a4 a5 a6 a7 a8 a9
Parent 2: b1 b2 b3 b4 b5 b6 b7 b8 b9

⇓
Child 1: a1 a2 a3 a4 a5 a6 a7 b8 b9
Child 2: b1 b2 b3 b4 b5 b6 b7 a8 a9

Figure 3.3 Example of a single point crossover

Multi-point crossover

Multi-point crossover is the logical extension of single-point crossover. It is the repeated
application of single-point crossover in a single generation. For the speci�c case of two-
point crossover, this o�ers the option of only exchanging a small part of the string. An
example is given in �gure 3.4. As with normal crossover, it can be applied to both binary as
well as real-valued genes, with di�erent behavior.

Parent 1: a1 a2 a3 a4 a5 a6 a7 a8 a9
Parent 2: b1 b2 b3 b4 b5 b6 b7 b8 b9

⇓
Child 1: a1 a2 a3 a4 a5 b6 b7 a8 a9
Child 2: b1 b2 b3 b4 b5 a6 a7 b8 b9

Figure 3.4 Example of a two-point crossover

Uniform crossover

[Syswerda,1989] introduces uniform crossover. It is the extreme form of multi-point crossover,
where the genes in the parent-strings have an equal chance of ending up in the child string.
There is no coupling between the individual bit strings, which makes this method less suc-
cessful in binary coded algorithms (since it tends to break up genes irrespective of their
goodness) than in real-coded algorithms.

Parent 1: a1 a2 a3 a4 a5 a6 a7 a8 a9
Parent 2: b1 b2 b3 b4 b5 b6 b7 b8 b9

⇓
Child 1: a1 b2 b3 a4 b5 a6 b7 b8 a9
Child 2: b1 a2 a3 b4 a5 b6 a7 a8 b9

Figure 3.5 Example of a uniform crossover

de uses a variation of this crossover operator, where the chance is biased. This can be
used to control the amount of change in the trial vector.

3.4.2 Additional real-valued crossover operators

The following additional crossover operators are de�ned for real-valued genes. Note that
because they are not usable in de and pso they have not been implemented in the new
optidus.
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Arithmetical crossover

In [Michalewicz, 1996] the arithmetical crossover operator is introduced, which mixes two
real-coded genes by assigning a weighted average of both parents to the children:

xchild1
i =axparent1

i +(1−a)xparent2
i

xchild2
i =axparent2

i +(1−a)xparent1
i

(3.2)

In this equation a is the weight which can be made constant (uniform arithmetical crossover)
or dependent on time (non-uniform arithmetical crossover). a should be between 0 and 1,
and three special cases can be identi�ed easily:

a = 0 Causes the two genes to be swapped.

a = 1 Causes nothing to happen.

a = 0.5 Causes both child genes to get the same value, being the average of the values of
both parent genes.

By letting the value of a increase from 0 to 1 during an optimization, the amount of change
caused by this operator decreases, possibly allowing for better local convergence.

Flat crossover

[Radcli�e, 1991] describes a crossover operator called ’�at crossover’. It essentially is the same
as arithmetical crossover, but the weight a is picked randomly each time.

Simulated Binary Crossover

[Deb and Agrawal, 1995] describe simulated binary crossover (sbx). The general idea be-
hind sbx is that it is an operator which has the same statistical properties as normal binary
crossover, yet can be applied to real-coded genes. The properties taken into account are
keeping the average values of the parents and children equal, and also to have a similar
spread-factor distribution.

The spread-factor is the ratio of the distances of the represented values of the children
and the parents, so if the child-genes are more alike, the spread-factor is < 1, and the crossover
is said to be contracting. In the opposite case, the spread-factor is > 1, and the crossover is
said to be expanding.

For example, if the two parents have values 3 and 7, and the children have values 3.5
and 6.5, the spread factor β = 6.5−3.5

7−3 = 0.75.
The distribution of spread factors for binary cases is derived in [Deb and Agrawal, 1995]

and given as a pair of probability density functions c(β).

c(β) =

{
0.5(n+1)βn for 0 < β≤ 1
0.5(n+1) 1

βn+2 for β > 1
(3.3)

This function depends on a non-negative number n (to be chosen by the user); for increasing
values of n, values of β close to 1 will have a bigger probability, so the change in values
between the parents and children will become lower. Values of n between 2 and 5 mimic
the behavior of real binary genomes the closest.

It can be shown that
R

∞

β=0 c(β)dβ = 1, so random values of β conforming to this distri-
bution can be generated by picking a random number 0≤ r≤ 1 and then �nding the value
of β by integrating (3.3) and equating it with r:

r =
Z

β

x=0
c(x)dx =

{
0.5βn+1 for 0 < β≤ 1
1−0.5β−(n+1) for β > 1

(3.4)
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Now that β has been determined, the values of the child genes are given by:

xchild
1,2 =

xparent
1 + xparent

2
2

±β(xparent
1 − xparent

2 ) (3.5)

Of course, care has to be taken that the values may take on have to be respected.

Blend Crossover

[Deb and Agrawal, 1995] brie�y mention blend crossover (blx). For two parents with values
xi and x j (picked such that xi < x j) a child value is picked randomly (in each direction) from
the range

[xi−a(x j− xi),x j +a(x j− xi)] (3.6)

The best performance is reported for a = 0.5, which is logical, as otherwise the blending
would be biased. A performance comparison between blx and sbx is given in [Deb and
Agrawal, 1995]. The conclusion regarding blx is that it is inferior to sbx when faced with
problems with multiple optimum points.

Crossover probability

[Deb, 2001] notes that it is important to keep part of the population intact when using a
crossover operator that shakes up the strings a lot, such as multi-point and uniform crossovers.
The intention of that is to maintain a good balance between exploration and exploitation,
so that on the one hand, good individuals are not lost by accident, and on the other hand,
no premature convergence occurs. This can be done by keeping the crossover probability
low enough to not break too much of the population. According to [Grefenstette, 1986], the
optimal setting for this probability is linked to the mutation probability and population size.
Reported values range from 0.3 for large populations (S = 80) to 0.9 for small populations
(S = 30).

3.4.3 Mutation

Mutation is the operator which can introduce new features into the gene pool; it does this
by changing the values of individual bits or genes at random. Of course, there are several
ways to do this.

For the binary coded case it is a rather simple operator:

Binary mutation Binary mutation is the mutation-operator of choice for binary repre-
sentations. Most of the time, it is implemented as an operator which has a probability
pm of occurring for a certain bit. If it is applied to a bit, its value is �ipped from 0 to
1 or vice versa.

For real-coded representations, [Michalewicz, 1996] gives the following two mutation oper-
ators:

Uniform mutation In uniform mutation, an element of a chromosome may be replaced
by a completely random value (that is, there is no relation between the value before
and after the mutation).

Suppose an individual is given by a vector xi. Now, its kth element xi
k is chosen to

mutate. After uniform mutation, this element is replaced by a random value chosen
from a uniform distribution between lk and uk, the lower and upper boundaries for
element k.
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Non-uniform mutation In non-uniform mutation, the contents of the element before
and after mutation are related; it works as follows: after an element has been se-
lected for mutation, a coin is �ipped to determine the direction in which the value
will change, after which the amount by which the element changes is determined
according to:

x∗i
k =

{
xi

k +∆(t,uk− vi,k) if direction is up

xi
k−∆(t,vi,k− lk) if direction is down

with lk and uk again the lower and upper bounds for xk. ∆(igen,n) is a random
number generator with output domain [0,n], and a distribution that may vary with
the generation number igen. This can be used to control the amount of mutation
over time – for example, at the end of the optimization, it might be useful to have
mutations which only cause small changes.

3.5 Methods of selection

3.5.1 Reproduction operator

The reproduction operator is the operator that selects which parents are allowed to repro-
duce, and how much children they will get. This operator works in two steps: �rst of all, it
calculates a (non-negative) �tness value for the current generation, and after that, based on
the �tness value and possibly chance, the individuals which will be represented in the next
generation are selected. There are several methods to do this, and they are described below.

Fitness-proportionate selection

Fitness-proportionate selection is described in [Goldberg, 1989] as the “biased roulette
wheel” method. This name comes from the fact that this method can be visualized by
a roulette wheel with slots whose sizes are proportional to the �tness value of the individual
they represent – so an individual whose �tness value is twice the average, will have a chance
twice as large to capture the ball.

A mathematical description of this algorithm is also rather easy: if an individual has a
�tness f i, the chance that it will be selected to reproduce equals

pi
r = f i/

N

∑
n=1

f n (3.7)

An example of a roulette wheel �lled with the relative size of the slots (which equals the
chance the individual will be selected) is given in �gure 3.6.

The expected number of times an individual may reproduce then equals:

ci = N f i/
N

∑
n=1

f n (3.8)

This is the amount of o�spring an individual will probably have in the next generation.

Stochastic Universal Sampling

Stochastic Universal Sampling (sus) is a sampling technique introduced in [Baker, 1987]
which is similar to �tness-proportionate selection, but makes sure that individuals are se-
lected in a fairer way. It starts out similar to �tness-proportionate selection, by setting up
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Figure 3.6 Example of a roulette wheel as used by �tness-proportionate selection.
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Figure 3.7 Example of two selections done using sus

a roulette wheel. Next, a random starting point at the edge is chosen, and from there the
edge of the wheel is divided into N parts of equal size.

Figure 3.7 shows how this method selects individuals graphically. In this case, 4 indi-
viduals are to be selected, so the arrows which indicate the selected individuals are spaced
90 ◦apart. It can be seen that the outcome depends on the position of the starting point: in
the left case, the individual with a 15% chance of being selected is not, and in the right case
it is.

sus guarantees that the amount of times an individual is either floor(ci) or ceiling(ci).6

This makes it more fair than simple roulette wheel selection.

Tournament selection

Tournament selection is described in detail in [Bäck et al., 1997]. In principle, it works as
follows: pick q individuals at random from a population; let the picked individuals duel, and
let the winner reproduce. This process is repeated λ times, giving λ winners.

The main bene�ts of this scheme are that the calculations for this operator can be
carried out quickly, and that it is does not need scaling functions, since rank is compared
and not the value of the �tness functions. Another bene�t is that no global comparison of
the population is needed, so this operator is well suited for parallelization.

Note that increasing q will reduce the diversity of the population, as the chance that a
(winning) high-ranking individual is picked gets higher if q increases.

6floor and ceiling are the functions which round a real number to a normal number, in the downward and
upward direction respectively.
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3.5.2 Fitness scaling

One of the problems with a simple biased roulette wheel implementation is that when a
population has been evolving for some time, it will probably consist of individuals with
�tness values that are in the same range. In that case, ci will be close to 1 for all individuals,
and selective pressure will be too low, which means that evolutionary speed is also low. One
way to resolve this is to use a method called �tness scaling.

This scaling is done by applying a linear transformation to the �tness function which
satis�es the constraints that the average reproduction count c̄ = 1 and ci ≥ 0 ∀i. The �rst
constraint causes the population size to be constant; the second one prevents the occurrence
of negative probabilities which would give problems with �tness proportionate selection, as
the slots in the roulette wheel would have negative sizes.

The applied transformation is given in [Goldberg, 1989] as:

ci = a f i/ f̄ +b (3.9)

When the user chooses the (expected) reproduction count for the best individual cmult ,
the parameters a and b can be calculated as follows: �rst, it is tested if the population satis�es
the following condition:

f̄ − fmin <
fmax− fmin

cmult
(3.10)

If this is satis�ed, then the minimal �tness is high enough to allow the expected reproduction
count of the worst individual to be positive if cmax = cmult . In that case, a and b follow from:

a = (cmult −1)
f̄

fmax− f̄

b = f̄
( fmax− f̄ cmult)

fmax− f̄

(3.11)

If (3.10) is not satis�ed, the following alternative is given:

a =
f̄

f̄ − fmin

b =
− fmin f̄
f̄ − fmin

(3.12)

A graphical example of this scaling function is shown in �gure 3.8.

fmin favg fmax

cmult

f

cavg=1

c

fmin
f

fmaxfavg

cavg=1

cmult

c

Figure 3.8 Transfer functions for the cases where condition (3.10) is satis�ed (left) and not satis�ed
(right)

Other methods are described in [Bäck et al., 1997,C2.2.2]: the �rst one is a time-varying
linear transformation, for example:

f ∗i = f i−β(igen) (3.13)
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where β(igen) is the worst value seen in the past generations. However, this might be prob-
lematic when there have been bad individuals in the population, which cause the value of
β to be too low for the whole optimization run.

One method to prevent this is by de�ning β as a recency-weighted running average:

βi = δβi−1 +(1−δ) fmin (3.14)

with, for example, δ = 0.1. This will cause the value of βt to be representative of more
recent values of fmin, so a bad individual will be smoothed out of β over time.

Normal tournament selection can then be performed on the scaled �tness values f ∗i.

Sigma scaling

Another method mentioned in [Goldberg, 1989] is sigma scaling, which uses the following
transformation:

f ∗i =

{
f i− ( f̄ − cσ f ) if f i > f̄ − cσ f

0 otherwise
(3.15)

in which σ f is the standard deviation of the �tness values of the population, and c is a
constant which can be selected by the user, with a suggested value of c = 2. This kills o�
individuals that score below cσ f from the average of the population. The idea is that f̄ −cσ f

represents a lower threshold for any reproducing individual. As the population improves,
this statistic tracks the improvement, yielding a level of selective pressure that is sensitive to
the spread of performance values in the population [Bäck et al., 1997].

3.5.3 Fitness sharing

Fitness sharing is one of the niching methods, and is explained in [Bäck et al., 1997, C6.1].
What �tness sharing does is to penalize the �tness value of an individual, when it is too
close to other individuals. The formula given is:

f ∗i =
f i

∑
S
j=1 sh(d(i, j))

(3.16)

in which sh() is the sharing function, which is a function with the constraints sh(0) = 1,
and decreases to 0 as the distance increases. A common sharing function is:

sh(d) =

{
1− (d/σshare)α if d < σshare

0 otherwise
(3.17)

Typically, α = 1 and σshare should be small enough to allow discrimination between local
optima - so it should be less than half the distance between two local optima. This distance
is not known beforehand, so some experimentation is needed per problem.

d(i, j) is the distance between two individuals. For binary coded individuals,the Ham-
ming distance is a good distance metric. For real-valued individuals, the Euclidian distance
of the two vectors can be taken: d(i, j) = |xi−x j|

The e�ect is that there is selective pressure against getting individuals that are too close
to eachother, and increases diversity in the population.
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3.5.4 Rank-based allocation

The opposite of too low selective pressure is premature convergence; this can happen when a
population contains a lot of so-called “super-individuals” that eat up all space of the roulette
wheel, and force the solution into the direction of a (local) optimum. One way to get around
this problem is to use rank-based allocation, introduced in [Baker, 1985] and improved upon
in [Whitley et al., 1989].

Rank-based allocation is a relatively simple concept: the individuals are sorted on the
�tness value, and then the reproduction count is determined according to the rank of the
individual.

[Whitley et al., 1989] claims that this is good because �tness values are not an exact
measure of �tness, so using that value directly to calculate a reproduction count is not the
way to go. Their argument for this is that �tness-proportionate allocation can lead to super-
individuals.

Furthermore, ranking removes the need for scaling algorithms, and its inherent need
for custom parameters, however, the implementer of rank-based allocation must also pick
a method to convert rank to probabilities. The advice is to use a linear method to map
between rank and reproduction count; a method to do this is given in [Bäck et al., 1997,
C2.4]:

f ∗i =
α+ ri/(N−1)(β−α)

N
(3.18)

where α = 2−β if the population size is to be kept constant; α is the expected number of
o�spring for the worst individual. ri is the (base zero) rank of individual i, so it runs from 0
to N−1.

An example of an exponential ranking function is also given, for example:

f ∗i = α(1−α)N−1−ri
(3.19)

3.6 Selection of representation and operators

The new version of optidus makes use of the following structures and operators.

3.6.1 Representation of the solution

Real coding is used because of two reasons. The �rst one is that the parameters de�ning
the solutions are best represented using real numbers, and the second one is that pso
and de require real coding.

3.6.2 Variation operators

Single point crossover has been implemented because it is one of the standard operators
in gas, and allows for quick distribution of information between individuals.

Multi point crossover has been implemented because it is one of the standard operators
in gas. It allows for information sharing between individuals, but might cause less
bad individuals as it can also swap smaller pieces of genomes.

Uniform crossover has been implemented as it is needed for de. It has not been used in
any of the other optimizers.

Non-uniform mutation has been implemented as it is the mutation operator used in
the original version of optidus. It is used in most of the operators, as it allows the
amount of mutation to be controlled, so that the optimizer can converge.
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3.6.3 Selection operator

Roulette wheel selection has been implemented because it is the standard operator which
has also been used in the previous version of optidus.

Stochastic universal sampling has been implemented as it is a variant of the roulette
wheel, which is supposed to be more fair, which should have a positive e�ect on the
optimization process, as good individuals are guaranteed to survive.

Rank based allocation has been implemented as it is a selection operator which should
provide some resistance against solution getting dominated by super-individuals,which
might lead to premature convergence.

Tournament selection has also been implemented – with two restrictions: the amount
of duels is equal to the size of the population, and in each duel, two individuals
participate.



Chapter 4

Particle Swarm Optimization

This chapter contains general information about Particle Swarm Optimization (pso) which
is an evolutionary algorithm for optimizing non-linear problems. It was introduced by
[Kennedy and Eberhart, 1995], and is modelled after the �ocking of birds searching for food.
This chapter contains an introduction to pso, the tuning of the parameters in pso, and
how to handle constraints with pso. Also, a variant using a “predator” called Predator-Prey
Optimization (ppo) is shown, and a sample optimization using both pso and ppo is shown.

4.1 Introduction to PSO

Particle Swarm Optimization (pso) is modelled after �ocks of birds: the behavior modelled
is that inside �ocks, information is communicated regarding the position where food has
been found, and that birds can remember where they found good food themselves. During
the search for food, individual birds are then attracted to the (overall) best place where food
has been found, and the best places where they have found food themselves.

Figure 4.1 A �ock of birds in Anchorage, Alaska. Based on
http://flickr.com/photos/johnblumenberg/2331700365/
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This model can also be applied to optimization problems: replace birds by solutions, and
food by �tness. A �owchart of this is given in �gure 4.2.

4.2 Basic formulation of the velocity and position of particles

This section handles two boxes from �gure 4.2 which are characteristic for pso: the boxes
labeled “calculate new velocities” and “calculate new positions”. These velocities and posi-
tions are associated with solutions, and will vary over time. These solutions act as particles,
which obey Newtonian mechanics: The velocity of the particles is in�uenced by several
accelerating forces acting on it:

dvi

dt
= ∑a (4.1)

and the position of a particle over time is related to its velocity by

dxi

dt
= vi (4.2)

The velocity of a particle is in�uenced by three factors: �rst of all, a friction factor w′ is
introduced to limit the speed of the particles. This term can be modelled as:

af r =−w′vi (4.3)

However, this term is usually written as an inertia weight w:

af r = (w−1)vi (4.4)

Typical values of w lie between 0.8 and 1.2 (see section 4.3.1 for more details on this value).
From this it can be seen why it is called an inertia term: if w = 1, the friction term is zero,
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Figure 4.2 Flowchart of a pso algorithm.
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and the particle will keep on moving in its current direction. If w < 1, this term will cause a
deceleration in the current direction, and the particle will slowly come to a stop, as if there
is less inertia. For w > 1, the opposite happens.

The second acceleration is the attraction by the best position a particle has seen before,
denoted by x∗i . The magnitude of this acceleration is proportional to the distance between
the current and the best position, and is scaled by a constant c1 and a number coming form
a random number generator u():

apb = c1 ·u() · (x∗i −xi) (4.5)

The third acceleration is caused by the attraction by the best position the �ock has seen
before, denoted by x∗G. The model is similar to the one for the particle’s best position:

Fgb = c2 ·u() · (x∗G−xi) (4.6)

In pso literature, the accelerations from equations (4.1) and (4.4)-(4.6) are then summed and
added to the current velocity, giving the new velocity [Kennedy and Eberhart, 1995]:

vi,new = w ·vi + c1 ·u() · (x∗i −xi)+ c2 ·u() · (x∗G−xi) (4.7)

In the same way, equation (4.2) can be integrated1 giving:

xi,new = xi +vi (4.8)

With formulas (4.7) and (4.8) the behavior of the particles is determined.

4.3 Tuning optimization parameters in PSO

Equation (4.7) contains 3 parameters which can be tuned, being w, c1 and c2. The values of
these parameters have a profound in�uence on the speed and robustness of the optimiza-
tion.This section will highlight some of the schools of thought regarding the choice of these
parameters.

4.3.1 Varying inertia weight

[Shi and Eberhart, 1998b] use the original form of (4.7), and analyze the e�ect of choosing
w on the robustness of the algorithm. It was found that pso performs best for their test
problems if 0.9 < w < 1.2. For lower values of w, the number of evaluations before �nding
the global optimum (per run) was lower, but during a lot of runs no optimum was found.
For higher values of w, the number of evaluations was higher, as was the number of runs in
which no optimum was found.

When looking at the behavior of the swarm for di�erent values of w, it follows that a
high value of w increases the velocities of particles, which means that more space will be
explored, and that the opposite holds for low values of w. This inspired the authors to try
an experiment in which the value of w is set to 1.4, and is decreased during the run, called
the varying inertia weight. This gave good results: all runs converged to the optimum result,
and the average number of evaluations was lower than that for w = 0.9,which was the lower
bound for robust results.

[Shi and Eberhart, 1998a] did an analysis of the performance of pso for Scha�er’s f6
function (treated in more detail in section 7.1.3) when setting an upper limit on the velocity

1In both cases, no real integration takes place, as the integration period is conveniently set to 1, and the
accelerations and velocity are assumed constant over the integration. If these particles really would have been
obeying Newton’s laws of motion, these equations would be di�erent.
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of particles. This leads to some recommendations on the selection of w: if the maximum
speed is small, w≈ 1 is a good choice; if the maximum speed is not small, w = 0.8 is a good
choice.

In this recommendation, the value of “small” depends on the problem. The advice in
general is to set the maximum speed equal to the size of the parameter domain (vmax = xmax),
and w = 0.8.

Another observation in this paper was that when performing the optimization with a
decreasing inertia weight, that the variance of iterations required to �nd the global optimum
is smallest, even when no maximum velocity is applied.

4.3.2 Constriction coe�cient

In [Clerc and Kennedy, 2002], another notation for the velocity adjustment (4.7) is suggested,
based on an analysis of the motions of a particle around a stationary best solution in a one-
dimensional space. This led to the following formulation:

vi,new = χ(vi +ϕ1(x∗i −xi)+ϕ2(x∗G−xi)) (4.9)

In this form, ϕ1 and ϕ2 are picked randomly from a uniform distribution [0,ϕ] at each
evaluation.

For the analysis of the one-dimensional case, the value of ϕ determines the behavior of
the particle:

0 < ϕ < 4 causes the solution to oscillate around the “optimal” point (which is the center
of attraction, in real a normal pso the point halfway the best global and best individual
solutions)

ϕ > 4 does not show cyclic behavior, and instead causes the solution to move away from
the optimal point.

ϕ = 4 is a special case, where the solution will (ultimately) move away from the optimal
point.

According to [Clerc and Kennedy, 2002], this analysis for the values of ϕ also holds for the pso
formulation. This mean the user can select a value for ϕ, but special care should be taken
when ϕ > 4. This is done using the constriction coe�cient χ, which can be calculated
using:

χ =


κ∣∣∣∣1− ϕ

2−
√

ϕ(ϕ−4)
2

∣∣∣∣ for ϕ > 4

κ otherwise
(4.10)

with 0 < κ < 1, with a suggested value of κ = 0.8.
This formulation has the advantage that it only needs two coe�cients, namely κ and φ,

to be chosen by the user, as opposed to the three (w,c1 and c2) in the case of the formulation
of (4.7).

4.3.3 Population size in PSO

[Clerc, 2008a] gives the following rule of thumb for determining the population size (S) for
optimizing a problem using pso where the number of variables to be optimized is N:

S = ceiling(10+2
√

N) (4.11)
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Dimensionality N Optimal population size S
Experimental Clerc1 (4.11) Clerc2 (4.12)

2 6 13 7
7 16 16 13
50 24 25 23

Table 4.1 Comparison of optimal population sizes according to experimental data and equations
(4.11) and (4.12).

In [Clerc, 2008b], another rule is given:

S = ceiling

(
ln(1−0.51/N)

ln(1−α)

)
with α = 0.17 (4.12)

These rules of thumb seem to have some credibility: for example, the Himmelblau function
(given in 7.1.1) was optimized using pso while varying the population size between 1 and
30 individuals. Figure 4.3 shows the results of these optimizations. For each population
size, 100 runs where done with a maximum number of function evaluations of 180 per
run.2 From each run, the best �tness value was taken and is shown as a red circle in that
�gure. Also, from the best �tness values, the average values (per population size) are taken
and plotted with the green line. Finally, the best of the best �tness values are plotted by the
blue line.

The same procedure was repeated for the Griewank function,with dimensionality N = 7
and N = 50, however, this time with 1800 evaluations per run. The results of these runs are
shown in �gures 4.4 and 4.5.

The metric used to determine the optimum population size in this case is the average
of the best �tness values. The best of the best �tness values is not discriminating enough,
because it is in�uenced too much by luck: if one of the 100 runs per population size hits a
good value, and the rest of the runs return bad solutions, that population size should not be
considered good.

This e�ect is most noticeable in �gure 4.3, where the blue line is almost horizontal, but
the green line reaches a clear minimum for S = 6 (and S = 7 and S = 8 as runners-up).

For both Griewank functions, this e�ect is less noticeable, as the blue lines have much
more resemblance to the shape of the green lines. For N = 7, the optimal population size
is found at S = 16 (with S = 14 and S = 17 in second and third place), and for N = 50, at
S = 24 (and S = 25 and S = 21 as runners-up).

For easy comparison, these numbers, and the outcome of equations (4.11) and (4.12) are
shown in table 4.1. From this, it can be seen that both equations give reasonable estimates
of the optimal population size. Because of its simplicity, (4.11) is used in chapter 7.

4.4 Predator-Prey Optimization

In [Silva et al., 2002], Predator-Prey Optimization (ppo) is introduced as a variant of pso to
help avoid premature convergence.

2Normally, the optimization would be terminated at the end of each generation, so the amount of evaluations
would be a multiple of the population size. This would not be fair: a population of 29 individuals is stopped
after 7 generations (for a total of 203 evaluations) whereas a population of 30 individuals is stopped after 6
generations (for a total of 180 evaluations). In this implementation, this was �xed, by returning invalid �tness
values after 180 evaluations have been executed, thus causing the results of the extra solutions not to be used.
As we are only interested in the best individual encountered during the run, this does not impact the results
negatively.
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Figure 4.3 Fitness as a function of the population size for the Himmelblau function, using the
aggregate results of 100 runs for each population size.
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Figure 4.4 Fitness as a function of the population size for the Griewank function with dimensionality
N = 7, using the aggregate results of 100 runs for each population size.



4.4 predator-prey optimization 41

0 10 20 30 40 50
Population size S

5

10

15

20

Fi
tn

es
s 

va
lu

e

Best fitness

Average fitness

Fitness values

Figure 4.5 Fitness as a function of the population size for the Griewank function with dimensionality
N = 50, using the aggregate results of 100 runs for each population size.

This works by introducing a predator into the population. This predator tries to hunt
down the best particle in the population, and scares away any particle that comes close.
This keeps those good individuals moving, and should lower the occurrence of premature
convergence. According to [Silva et al., 2002], this allows lower values for the inertia weight
w, thus forcing a faster convergence, while relying on the predator to maintain population
diversity.

This predator is also modelled as a particle, but uses another set of equations of motion:

{
vp,new = c4 ·u() · (x∗G−xp)
xp,new = xp +vp

(4.13)

where c4 is a constant that controls how fast the predator is able to catch up with the best
individual.

This predator would be useless if it did not in�uence the motion of the normal particles.
This is done by adding a term D(d) to the equations of motion of the normal solutions,
with a probability p f . This term D(d) is given in [Silva et al., 2002] as:

D(d) = ae−bd (4.14)

where a can be tuned to set the maximum amplitude of the predator e�ect and b in�uences
the distance at which the e�ect is still signi�cant. d is the (Euclidean) distance between the
prey and the predator in solution space.

This term D(d) is put into equation (4.7) by modifying it for a randomly chosen direc-
tion k:

vi,k,new = wvi,k + c1 ·u() · (x∗i,k− xi, j)+ c2 ·u() · (x∗G,k− xi, j)+ c3 ·u() ·D(d) (4.15)
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(a) Global parameters

Constant Value
c1 2.0
c2 2.0
c3 1.0
c4 0.1
wmax 0.9 / 0.7
wmin 0.4 / 0.0

(b) Per-function parameters

Function a b p f

f1 2.0xmax 10/xmax 0.001
f2 2.0xmax 10/xmax 0.001
f3 0.1xmax 10/xmax 0.04
f4 0.1xmax 10/xmax 0.06
f5 0.1xmax 10/xmax 0.04
f6 2.0xmax 10/xmax 0.06

Table 4.2 Optimization parameters in pso and ppo (source: [Silva et al., 2002])

whereas the position update function is not modi�ed.
Table 4.2 lists the values of the optimization parameters as used in [Silva et al., 2002]

for various problems. These values are based on knowledge of the optimized functions and
experiments done by the authors.

[Silva et al., 2002] benchmark normal pso against ppo, and show that given equal popu-
lation size and inertia weight factors, ppo arrives at better solutions, and converges faster for
5 out of 6 selected problems, and has a worse solution for 1 out of 6 selected problems.

In the conclusions of that paper, the authors mention the intention to develop a multi-
predator variant of this algorithm,however,no follow-up studies were published. This could
be used in the case of moo (see chapter 6) as in that case, multiple best solutions can be
identi�ed. A number predators could then be added to the population, chasing the Pareto
optimal individuals. Which of these individuals each predator then chases can then be
determined using the distance between the predator and the solutions, or any other random
factor. However, if the goal is to have the individuals spread out evenly over the Pareto front,
using an algorithm such as nsga-ii gives the same result.

4.5 Applying bounds on particle velocity and position

When the new position of a particle is determined in pso, bounds on the search space are
(in general) not taken into account. This leads to the situation in which parameters which
are impossible or forbidden (for example, payload having a negative weight or a launch date
outside the permitted launch window) might appear as part of a solution. To prevent this,
a method to apply bounds to solutions is proposed here:

Consider a parameter xi j that is bound by the interval [l j,u j]. If it is moved outside of
those bounds its speed and position should be adjusted as if it had bounced elastically against
a wall. For the lower bound, this situation is depicted in �gure 4.6.

When looking at this �gure, the position of the particle after it has bounced equals

x′i j,new = l j + f ·d

where f is an elasticity factor (with 0≤ f ≤ 1) which determines how much of the velocity
(momentum) is kept during the bounce. d is the distance the particle would have travelled
if no bounce would have occurred, and is given by

d = l j− xi j,new

Combining these two equations and repeating this procedure for the upper bound then
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x′i j,new

l j

d
f ·d

xi j,new xi j

Figure 4.6 Calculating a particle’s position when bouncing against a parameter boundary.

gives the following formula for the bound position x′i j,new:

x′i j,new =


xi j,new if l j ≤ xi j,new ≤ u j

(1+ f )l j− f · xi j,new if xi j,new < l j

(1+ f )u j− f · xi j,new if xi j,new > u j

(4.16)

Of course, in case of a bounce, the velocity also should be adjusted:

v′i j,new =

{
vi j,new if l j < xi j,new < u j

− f · vi j,new otherwise
(4.17)

Thus, by applying (4.16) and (4.17), particles can be kept inside the bounds of the solution
space. In optidus, a default value of f = 0.8 is used, but it might be interesting to investigate
the in�uence of this parameter. (4.16) shows that when f decreases, particles will end up
closer to the bounds. This is logical, as a lower value of f causes the particle to lose more
of its momentum.

4.6 Examples of contracting swarms

This section shows an example how a swarm moves through the solution space from gen-
eration to generation, and how it reaches the global optimum after several generations.

The function optimized here again is the Himmelblau function (given in section 7.1.1)
with a swarm size S = 40. Figure 4.7 shows how the swarm moves: in the �rst generation, the
particles are spread out randomly over the solution space. Already in the second generation,
some clustering seems to be happening, and in the 10th generation it is apparent that the
position near (3,2) is attracting the particles. In generation 40, almost all particles are near
the optimum.

Figure 4.8 shows what happens when a predator is introduced. In that case, the popu-
lation does contract, but every now and then, an individual is scared away along one of the
axes. This behavior can be observed very clearly in generation 40, where the population
takes the form of a cross with the optimum location as its center. This is the result of the
individuals getting close to the optimum, where the predator lives, and then being scared
away along one of the axes.3 This also shows that using ppo for a unimodal problem like
the Himmelblau function is overkill.

3The solution at approximately (2,1.5) probably got scared twice.
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Figure 4.7 Movement of a particle swarm during an optimization of the Himmelblau function; the
optimum is located at the coordinates (3,2). The swarm sized used was S = 40.
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Figure 4.8 Movement of a particle swarm during an optimization of the Himmelblau function, with
a predator (indicated by the red dot); the optimum is located at the coordinates (3,2). The
swarm sized used was S = 40.
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Chapter 5
Differential Evolution

This chapter treats Di�erential Evolution (de), an evolutionary algorithm which was �rst
introduced in [Storn and Price, 1997]. The general idea behind de is to simulate a population
of solutions, which can combine to produce o�spring using several mathematical formulas.
If such an interaction produces an individual which is better than the one from which
it descends, it will replace its parent. By repeating this process for several generations, an
optimal solution can be found.

5.1 Introduction to Di�erential Evolution

Di�erential Evolution (de) is a population based evolutionary algorithm �rst proposed in
[Storn and Price, 1997]. Just as with other evolutionary algorithms, a population of solutions
is simulated which explore the population space. This is done by combining the values of
several solutions to form a mutation vector, which is then combined with a solution using a
crossover operator to form the trial vector.

A implementation detail was discovered after this step: it was necessary to apply the
bounding algorithm from section 4.5 to make sure that all parameters are within the solution
space. Even though this algorithm was designed for pso, it can be applied to a de problem
when assuming all velocities are zero.

This trial vector is then compared with the original vector, and if its �tness value is
better, it replaces that vector. This is summarized in �gure 5.1.

Because of this comparison, de can only be used when there is a way to sort solutions.
This means that special methods will have to be applied in the case of moo.

The following notation is used to represent a solution (which is a vector of parameters):

xi = [xi,0 xi,1 ... xi,N ]T with i ∈ {1, ...,S} (5.1)

in which S is the size of the population, and N the number of parameters from which the
vector is built up.

5.2 Mutation vector generation

This section contains several methods for �lling in the step “generate mutation vector” in
�gure 5.1.

5.2.1 Scheme Tasoulis1

The �rst scheme listed in [Tasoulis et al., 2004] is called Tasoulis1. For each individual xi in
the population, it randomly picks two (distinct) individuals from the population, giving the

47
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individuals xr1 and xr2 . These are combined with the best solution, xbest , to form a mutation
vector:

mi = xbest +F(xr1−xr2) (5.2)

where F is a real parameter, called mutation constant, which controls the ampli�cation of
the di�erence between two individuals so as to avoid the stagnation of the search progress.
Based on the values given in [Tasoulis et al., 2004], optidus uses F = 0.7 by default.

The movement of a population of solutions through the solution space for an optimiza-
tion of the Himmelblau function can be seen in �gure 5.2.

5.2.2 Scheme Tasoulis2 / DE1

The second scheme listed in [Tasoulis et al., 2004] is the same as the �rst scheme listed in
[Storn and Price, 1997], and is rather similar to Tasoulis1. The di�erence lies in the function
used to generate the mutation vector, which uses a randomly picked individual instead of
the best individual.

mi = xr1 +F(xr2−xr3) (5.3)

The generation of the trial vector is the same.
The movement of a population of solutions through the solution space for an optimiza-

tion of the Himmelblau function can be seen in �gure 5.3.
Because a randomly chosen individual is used as the basis of the mutation vector instead

of the best individual, the chance that the trial vector is rejected is bigger. This leads to
slower movement, which is evident when comparing �gures 5.3 and 5.2.

start

initialize 
(random) 

population

generate mutation 
vector

select 
members to 

mutate

create trial 
vector

!tness better than
original solution?

replace 
original 
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y

n

termination 
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termination

n

y

apply bounds

Figure 5.1 Flowchart of a basic Di�erential Evolution algorithm
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5.2.3 Scheme Tasoulis3/DE2

The scheme DE2 is mentioned in [Storn and Price, 1997] and uses the following method to
construct the mutation vector:

mi = xri +λ(xbest −xri)+F(xr1−xr2) (5.4)

In this equation, λ is a parameter like F which can be used to enhance the greediness of the
algorithm. According to [Storn and Price, 1997], this feature can be useful for non-critical
objective functions. Note that setting λ = 1 results in the same mutation vector as Tasoulis1.

By increasing λ, solutions tend to move in the direction of the best individual in the
population, which might lead to premature convergence, as the diversity of the population
then decreases. Setting λ to zero yields a scheme similar to Tasoulis2, except that a random
individual ~xr1 is picked as the basis of the mutation vector, instead of the original solution
~xri .

In [Tasoulis et al., 2004], λ is given the value of F , yielding the scheme Tasoulis3:

mi = xri +F(xbest −xri +xr1−xr2) (5.5)

Figure 5.4 shows how a population subjected to Tasoulis3 explores the Himmelblau func-
tion.

5.2.4 Scheme Tasoulis4

Tasoulis4 is given in [Tasoulis et al., 2004] and combines the parameters of 4 individuals to
form a mutation vector using the following solution:

mi = xbest +F(xr1−xr2 +xr3−xr4) (5.6)

Figure 5.5 shows how this scheme optimizes the Himmelblau function.

5.2.5 Scheme Tasoulis5

Tasoulis5 is almost the same as Tasoulis4, but uses a �fth random individual instead of the
best to base the mutant individual upon.

mi = xr1 +F(xr2−xr3 +xr4−xr5) (5.7)

Figure 5.6 shows how this scheme optimizes the Himmelblau function. When comparing
the location of the individuals in generation 20 for the di�erent schemes, this one is the
least converged.

5.2.6 Scheme Tasoulis6

The �nal scheme mentioned in [Tasoulis et al., 2004] is Tasoulis6,which is also known as the
trigonometric mutation. It was �rst introduced in [Fan and Lampinen, 2003]. This scheme
uses a method which randomly chooses one of two methods for calculating mutation vec-
tors.

With probability τµ it uses the trigonometric mutation operator, which is de�ned as:

mi = (xr1 +xr2 +xr3)/3+(p2− p1)(xr1−xr2)+ (5.8)

(p3− p2)(xr2−xr3)+(p1− p3)(xr3−xr1)

where the weights p1, p2, p3 have the following values:

pi = | f (xri |/p′ i = 1,2,3

p′ =
3

∑
i=1
| f (xri)|
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This trigonometric mutation results in a sort of weighted average over the three individuals.
There is a di�erence: the generated points do not need to lie within the triangle spanned up
by the original individuals in the solution space, so some exploration of the solution space
is possible.

The other possibility (with probability (1− τµ) ) is using the mutation strategy from
Tasoulis2.

[Fan and Lampinen, 2003] suggests setting τµ = 0.05, which was chosen as the default
setting for optidus.

Figure 5.7 shows the evolution of a population optimizing the Himmelblau function
using this scheme.

5.2.7 Alternative naming of the schemes

[Storn and Price, 1997] introduces another naming method, in which algorithms are named
as DE/x/y/z.

x speci�es the vector to be mutated which can be rand (a randomly chosen population
vector) or best (the vector of lowest cost from the current population) or self (the
vector against with which the mutation vector will be combined)

y is the number of di�erence vectors used.

z denotes the crossover scheme. For example “bin” for uniform crossover.

Table 5.1 shows the names of the schemes listed in this chapter according to this naming
method. Note that Tasoulis6 cannot be named as it does not use di�erence vectors, and that
the crossover �eld is not �lled in.

5.3 Trial vector generation and selection

This section describes how the step “create trial vector” in �gure 5.1 is implemented.
The trial vector u is generated by combining the mutation vector mi generated in the

previous step and the original solution vector xi using a crossover operator.
[Storn and Price, 1997] uses uniform crossover to generate the trial vector. Each element

of the trial vector is determined at random, having a chance of ρ of being copied from the
mutation vector, and a chance of (1−ρ) of being copied from the original solution vector.
Values given for ρ vary from 0.3 to 0.5. optidus uses a value of ρ = 0.5.

Once the trial vector is computed, the objective function is then evaluated for it. If its
outcome is better than that of the original vector xi, the original vector in the population
is replaced by the trial vector.

Tasoulis Stone
Tasoulis1 DE/best/1/...
Tasoulis2 DE/rand/1/...
Tasoulis3 DE/self/2/...
Tasoulis4 DE/best/2/...
Tasoulis5 DE/rand/2/...

Table 5.1 Conversion between the de scheme names used in this study and the “Storn” names.
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5.4 Usage of Di�erential Evolution

In [Storn and Price, 1997] the schemes DE1 and DE2 are compared to Adaptive SA and
the Annealed Nelder & Mead approach, using 9 test functions, amongst which the 5 De
Jong’s functions, Corona’s parabola, Zimmermann’s problem (all listed in appendix A) and
Griewank’s function (see 7.1.2). Di�erential Evolution is able to �nd good solutions for all
cases,but needs more function evaluations than the other two algorithms for some problems.

In [Tasoulis et al., 2004], all 6 schemes are compared by performing an optimization
of several mathematical test functions including Griewank’s function (described in section
7.1.2). Tasoulis1 performed best for all tested functions.

In [Vinkó et al., 2007], a comparison of several optimization methods was performed,
including de, ea and pso. The problems benchmarked were multiple gravity assist missions
with the possibility of deep space manoeuvres. The conclusion was that using a method
combining several algorithms led to the best results, but de was the best individual algorithm.
The strategy used was Tasoulis2 with uniform crossover.

5.5 Selecting Di�erential Evolution strategies

The following pages (containing �gures 5.2-5.7) show how the populations of a de optimizer
applied to the Himmelblau function evolve, when using the six schemes from section 5.2.
The convergence speed is plotted in �gures 5.8 and 5.9.

As can be seen, all 6 schemes reach the global optimum at (3,2), but the speed with
which this happens di�ers. Tasoulis1 and Tasoulis3 both have reached convergence around
generation 30, giving the best performance. This is in accordance with the results from
[Tasoulis et al., 2004], where the Sphere test function (De Jong F1, see A.1, which like the
Griewank function is a unimodal function) was optimized quickest by these two algorithms.

For this reason, Tasoulis1 was selected for solving the Solar polar mission, which will
be treated in chapter 8.

Tasoulis6 was also selected, even though it did not perform very well on the Himmel-
blau function. However, it shows good results on the functions from [Tasoulis et al., 2004].
Finally, it was selected because it is quite di�erent from Tasoulis1.

The other schemes have not been selected; according to [Tasoulis et al., 2004], Tasoulis
schemes 2,4 and 5 perform badly. Also,because scheme Tasoulis3 is quite similar to Tasoulis1,
it has not been included.

Tasoulis1 and Tasoulis6 will also be used in the veri�cation tests in the next chapter.
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Figure 5.2 Movement of a population of solutions during an optimization of the Himmelblau
function using Di�erential Evolution, population size S = 12 and scheme Tasoulis1; the
optimum is located at the coordinates (3,2)
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Figure 5.3 Movement of a population of solutions during an optimization of the Himmelblau
function using Di�erential Evolution, population size S = 12 and scheme Tasoulis2; the
optimum is located at the coordinates (3,2)
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Figure 5.4 Movement of a population of solutions during an optimization of the Himmelblau
function using Di�erential Evolution, population size S = 12 and scheme Tasoulis3; the
optimum is located at the coordinates (3,2)
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Figure 5.5 Movement of a population of solutions during an optimization of the Himmelblau
function using Di�erential Evolution, population size S = 12 and scheme Tasoulis4; the
optimum is located at the coordinates (3,2)
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Figure 5.6 Movement of a population of solutions during an optimization of the Himmelblau
function using Di�erential Evolution, population size S = 12 and scheme Tasoulis5; the
optimum is located at the coordinates (3,2)
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Figure 5.7 Movement of a population of solutions during an optimization of the Himmelblau
function using Di�erential Evolution, population size S = 12 and scheme Tasoulis6; the
optimum is located at the coordinates (3,2)
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Chapter 6

Multi-Objective Optimization
(MOO)

This chapter treats multi-objective optimization (moo). moo is a technique to handle prob-
lems which have more than one objective to be optimized. For example, consider the op-
timization done in [Sa�pour, 2007]: in that thesis, a trajectory around Neptune and Triton
was optimized with two objectives:

• Maximize the number of �ybys n f along the inner moons of Neptune

• Minimize the required ∆V -budget to get into the �nal science orbit

Three (�ctional) solutions for this problem have been plotted in �gure 2.1,which is repeated
below. The question is if it is possible to identify the best of these solutions.

What can be seen in this �gure, is that solution A is the best when only considering the
required ∆V budget, and B is the best when only considering the number of bodies visited.
The comparisons using each objective thus contradict each other.

What cannot be disputed is that solution C is worse than B on both objectives, and thus
cannot be the best solution.

This chapter will explore two methods to handle multi-objective optimization. The �rst
one makes use of a weighted objective function, the second one uses Pareto front ranking.
The Pareto front ranking will be extended with intra-front ranking using an algorithm
called nsga-ii, which acts as a sort of �tness sharing to make sure solutions are spread out
over the solution space [Deb et al., 2001].
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Figure 6.1 Example of the objective values for some solutions of a multi-objective problem.
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60 6. multi-objective optimization (moo)

6.1 Weighted objective function

One possible method to solve moo problems is to construct a function which reduces the
multiple objectives into one function.

An example of this is using a weighted objective function, for example:

f =
K

∑
k=1

wk fk (6.1)

This function combines K di�erent objective functions are combined to give one grand
total. The only problem with this is that the weights wk have to be determined by the user.

An example of how this can be used is making use of a cost (or bene�t) function. For
example, in the problem of [Sa�pour, 2007], the ∆V parameter could be given a cost of
20 Me/(km/s), and visiting an extra moon a value of 2.5Me. This translates into a cost
function of:

C1 = 20[Me/(km/s)]∆V −2.5[Me]n f (6.2)

However, if the valuation of extra �ybys is much lower, for example only 1Meper �yby, the
cost function changes to:

C2 = 20[Me/(km/s)]∆V −1[Me]n f (6.3)

These two cost functions were applied to the three solutions, giving the costs in table 6.1.
From this, the in�uence of the weights is apparent: when using the weights of C1, solution
B has the lowest cost, but when using the weights of C2, solution A has the lowest cost.

This illustrates the problem with using weights: if they can be chosen arbitrarily, the
outcome of the optimization can be in�uenced.

Of course, a function to combine objective values is not restricted to linear combinations
of the multiple objective values. For example, in [Van der Pols, 2006], the objective function
used two numbers: the ∆V budget and the number of manoeuvres nm necessary for station
keeping around in a halo orbit. The were combined using the following expression:

f =
nm

∆V

Another example, using both a division and a weight, can be found in the gtoc3 problem
de�nition [Casalino et al., 2007]:
“Objective of the optimisation is to maximise the nondimensional quantity

J =
m f

mi
+K

min j=1,3(τ j)
τmax

where mi and m f are the spacecraft initial and �nal mass, respectively; τ j, with j = 1,3,
represents the stay-time at the j-th asteroid in the rendezvous sequence and min j=1,3(τ j) is
the shortest asteroid stay-time; τmax = 10 years is the available trip time, and K = 0.2.”

Solution ∆V [km/s] n f [-] C1 [Me] C2 [Me]
A 1.0 20 −30.0 0.0
B 2.0 30 −35.0 10.0
C 2.5 25 −12.5 25.0

Table 6.1 Comparison of two di�erent weights for weighted objective functions
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6.2 Pareto front ranking

Pareto front ranking is a method to make it possible to give an objective ranking of results
in moo problems – where objective means that the ranking cannot be in�uenced by tuning
weights or other factors.

Pareto front ranking is based on the concept of domination: if two solutions are com-
pared, one is said to dominate the other if the outcomes of not all objective functions are
equal, and all the outcomes of solution A are equal or better then those of solution B. In a
more mathematical form:

When comparing a solution i and a solution j with objective values fi and f j respectively,
it is said that i≺ j if:1

∀k ∈ {1, ..,K} : fi,k ≤ f j,k (6.4)

and

∃k ∈ {1, ...,K} : fi,k 6= f j,k (6.5)

This domination is then used to group the solutions into so-called Pareto fronts; ranking of
the solutions (for example to assign reproduction probabilities, or to make use of elitism) is
then based on the rank of the Pareto front the solutions are in.

Figure 6.2 shows an example of a population of solutions, trying to minimize two
objective values. The �rst four Pareto fronts have been ranked and the solutions which
make up those fronts have been connected by lines.2

6.2.1 Classic Pareto front ranking algorithm

In [Sa�pour, 2007],moo support was introduced in optidus. There were two variants intro-
duced; the “Classic” one is able to determine the front for all individuals in the population

1Following the notation from [Deb et al., 2001], i≺ j means solution i dominates solution j
2Note that the lines crossing each other is not an error – curved lines could also have been used to connect

members of the same front, and can be drawn not to cross each other as the number of crossings is even.
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Figure 6.2 Example of a population in which the �rst four Pareto fronts have been ranked
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using an algorithm which is given in condensed form in listing 6.1. This algorithm does not
perform optimal; it needs O(KS2) comparisons per ranked front (where K is the number of
objectives and S the population size). The other variant given is the “Modern” one, which
basically uses the same algorithm. The only di�erence is that it is limited to ranking no
more than 5 fronts.

6.2.2 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

In [Deb et al., 2001], a faster algorithm is proposed, requiring O(KS2) comparisons for
the initialisation step, and O(S) operations for each front generated. It is called the “Non-
dominated Sorting Genetic Algorithm II” (nsga-ii)3 and is given in condensed form in
listing 6.2.

This listing is in pseudo-code,which di�ers fundamentally from the Fortran implemen-
tation; because Fortran95 does not have built-in support for lists, the algorithm has been
rewritten to make use of a domination matrix. Because of this, it requires O(S2) operations
per ranked front.

Comparing the Fortran implementation of nsga-ii with the classic implementation
shows that the nsga-ii one needs a factor K less comparisons in the per-front loop, and
should be faster. Another speed improvement can be found in the initialization of the
domination matrix: this loop can be executed in parallel, so on a system with more than
one core available, it should give faster results.

6.3 Ranking individuals inside their front

To be able to order the solutions inside a Pareto front (for example to compare two individ-
uals in the same front for de), an additional ordering method is provided in [Deb et al., 2001],
based on the concept of crowding. This is done by calculating a crowding distance, which
is the sum of the sides of the box around the solution in which no neighboring solutions
are found. Figure 6.3 shows what the box looks like.

The algorithm used to calculate this box is given in listing 6.3. In that listing, the
solutions at the extremities of the front get a crowding distance of in�nity. This is to make
sure that those solutions are ranked higher than the other solutions.

Now, to increase chances of the solutions being spread out evenly over the solution
space, when a choice is to be made between two members of the same Pareto front, the one
with the biggest crowding distance is selected.4

3Despite its name, this algorithm is also usable for other optimization methods than genetic algorithms.
4 [Deb et al., 2001] does not tell us what happens when two individuals with the same crowding distance are

i+1

i-1

i

cuboid

Figure 6.3 The crowding distance calculation [Deb et al., 2001].
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6.4 Veri�cation of the NSGA-II implementation

To make sure the implementation of the nsga-ii implementation works, it was used in
the optimization of a (mathematical) 2-objective function using di�erential evolution. This
function was used in [Deb, 1999] to show the performance of the �rst NSGA algorithm.

The objective functions f1 and f2 are de�ned as:

f1 = x1

f2 = g ·h
g = 1+10x2

h = 1− (x1/g)2− (x1/g)sin(2π ·4x1)

(6.6)

with the input domain

x1,x2 ∈ [0,1]

Writing out the expression for f2 yields:

f2 = g− x2
1/g− x1 sin(2π ·4x1)

From this, it is clear that g must be minimized to minimize f2, so it is reasonable to expect
that the �rst Pareto front should be on the line where g is minimal. This line is plotted in
�gure 6.4.

Furthermore, two adjacent points in the �rst Pareto front should be connected by a
line which goes from top-left to bottom-right, because else the objectives of one of these
solutions is worse in both directions, and that solution becomes dominated. Thus, the points
of the Pareto front are located on the parts of the line in �gure 6.4 which move downward
and are lower than the lowest point reached yet when going from left to right.

Figure 6.5 shows the �rst Pareto front found by an implementation of the �rst NSGA
algorithm [Deb, 1999], with a population size S = 200 and 300 generations, using a normal
ga.

Figure 6.6 shows how the evolution of a population of solutions using de(Tasoulis1) and
nsga-ii, after only 40 generations with a population size S = 100. It has already developed
a Pareto-front which looks a lot like the front described above, and the points are spread
out evenly over the front.

This shows that the NSGA-II method works, and that the implementation in Fortran
also works correctly. Furthermore, the ga implementation needs much more generations
and a bigger population than the de implementation to reach a good result - ga uses a factor
15 more evaluations in this case.

chosen to battle each other, but this should not happen often. If it does happen, picking the winner at random
will su�ce.
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Figure 6.4 Analytical solution with the minimal values of f2 from (6.6)

Multi-Objective GAs

5.1.3 Discontinuous Pareto-optimal Front

As mentioned earlier, we have to relax the condition for being a monotonically decreasing
function of to construct multi-objective problems with a discontinuous Pareto-optimal
front. In the following, we show one such construction where the function is a periodic
function of :

(13)

The parameter is the number of discontinuous regions in a unit interval of . By choosing
the following functions:

and allowing variables and to lie in the interval [0,1], we have a two-objective opti-
mization problem which has a discontinuous Pareto-optimal front. Since the (and hence

) function is periodic to (and hence to ), we generate discontinuous Pareto-optimal
regions.

Figure 9 shows the 50,000 random solutions in - space. Here, we use
and . When NSGAs (population size of 200, of 0.1, crossover probability of
1, and no mutation) are applied to this problem, the resulting population at generation
300 is shown in Figure 10. The plot shows that if reasonable GA parameter values are
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Figure 9: 50,000 random solutions are
shown on a - plot of a multi-objective
problem having discrete Pareto-optimal
front.
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Figure 10: The population at genera-
tion 300 for a NSGA run is shown to have
found solutions in all four discontinuous
Pareto-optimal regions.

chosen, NSGAs can find solutions in all four discontinuous Pareto-optimal regions. In
general, discontinuity in the Pareto-optimal front may cause difficulty to multi-objective
GAs which do not have an efficient way of implementing diversity among discontinuous
regions. Function-space niching may have difficulty in these problems because of the
discontinuities in the Pareto-optimal front.

5.2 Hindrance to Reach True Pareto-optimal Front

It is shown earlier that by choosing a difficult function for alone, a difficult multi-objective
optimization problem can be created. Some instances of multi-modal and deceptive multi-
objective optimization have been created earlier. Test problems with standard multi-modal

Evolutionary Computation Volume 7, Number 3 219

Figure 6.5 Exploration of the search space and results for optimizing (6.6) using the �rst NSGA
algorithm, from [Deb, 1999]

f o r f r o n t i n { 1 , . . . , number o f f r o n t s }
f o r e ach p i n p o p u l a t i o n

i f p not r anked y e t
s e t p%domina ted = 0
f o r e ach q i n p o p u l a t i o n not r anked y e t

i f q ≺ p
s e t p%domina ted = 1

i f p%domina ted == 0
s e t p%f r o n t = f r o n t

e x i t i f a l l i n d i v i d u a l s have been r anked

Listing 6.1 Pareto front ranking algorithm from [Sa�pour, 2007]
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% i n i t i a l i z e domina ted_by l i s t s and d o m i n a t o r s c o u n t e r s
f o r e ach p i n p o p u l a t i o n

f o r e ach q i n p o p u l a t i o n
i f p ≺ q

append q to domina ted_by ( p )
i f q ≺ p

i n c r e a s e d o m i n a t o r s ( p ) by 1
i f d o m i n a t o r s ( p ) == 0

f r o n t ( 1 ) . append ( p )
s e t f = 1
% main loop
do

i f f r o n t s ( f ) i s empty
e x i t

f o r e ach p i n f r o n t s ( f )
f o r e ach q i n domina ted_by ( p )

d e c r e a s e d o m i n a t o r s ( q ) by 1
i f d o m i n a t o r s ( q ) == 0

s e t q%f r o n t = f +1
append q to f r o n t ( f +1)

i n c r e a s e f by 1

Listing 6.2 nsga-ii Pareto front ranking algorithm

f o r e a ch m i n o b j e c t i v e s
s o r t p o p u l a t i o n u s i n g key m
p o p u l a t i o n (1 )% d i s t a n c e = i n f i n i t y
p o p u l a t i o n ( S )% d i s t a n c e = i n f i n i t y
f o r i n d i v i d u a l = 2 to S−1

i n c r e a s e d i s t a n c e ( i n d i v i d u a l ) by
( f (individual +1)k− f (individual−1)k )

Listing 6.3 nsga-ii Crowding distance algorithm
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Figure 6.6 Movement of a population of solutions while optimizing the problem given by (6.6). This
optimization is done using Di�erential Evolution, and uses NSGA-II to rank the
population.



Chapter 7
Verification of PSO and DE on

mathematical test functions

This chapter contains the results of optimizing 4 mathematical test functions using several
particle swarm optimization schemes, and the Tasoulis1 and Tasoulis6 schemes of de. This
was done to make sure that the various parameters which can be tuned in pso and ppo are
set to the right values. First, the mathematical functions will be introduced, and later the 6
optimizers which are compared. Finally, these optimizers are applied to test functions, and
the outcomes discussed.

7.1 Mathematical test functions

This section contains the details of the four mathematical test functions chosen and opti-
mized in the rest of this chapter.

7.1.1 Himmelblau function

The Himmelblau function is one of the well-known functions for testing optimizers. It has
a 2-dimensional domain and a single output value and is given as:

f (x,y) = (x2 + y−11)2 +(x+ y2−7)2 (7.1)

A contour plot of this equation is given in �gure 7.1. This function reaches a global
minimum at f (3,2) = 0 and has no other optima for x,y ≥ 0. For the other quadrants,
[Wikipedia, 2008b] locates the following optima:

f (−3.779310,−3.283186) = 0

f (−2.805118,3.131312) = 0

f (3.584428,−1.848126) = 0

Because it is not possible to discriminate between these four function values, optimizers
could end up in any of these four points. To prevent this, the requirement that x,y ≥ 0 is
used in the benchmarks in this chapter.

7.1.2 Griewank function

The Griewank function was �rst proposed in [Griewank, 1981] and is a popular function for
benchmarking pso algorithms. The dimensionality of the domain can be set to any value,
but it does have a single output value. For the n-dimensional case, it is given as:

f (x) =
1

4000

n

∑
i=1

(xi)
2−

n

∏
i=1

cos
(

xi√
i

)
+1 (7.2)

67
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Two plots showing the behavior of the 1-dimensional version of this function are shown in
�gure 7.2. As can be seen clearly, it globally behaves like a parabola with a single optimum.
Locally it has lots of optima due to the cosine term. The two combined give a global
optimum f (0) = 0.

Note that the
√

i in the denominator of this cosine term lowers the frequency of this
disturbance function for higher values of i, which will make it easier to �nd the optimum
function value for those terms. This can be seen when looking at the output of high-
dimensional optimization runs, where more errors are found in the lower-dimensional co-
ordinates. Figure 7.3 shows a histogram of the occurrence of non-zero (and non-optimal)
coordinates as a function of i, and clearly demonstrates this behavior.
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Figure 7.1 Contour plot of the Himmelblau function.
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Figure 7.2 Plots of Griewank’s function in 1 dimension.
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7.1.3 Scha�er’s f6 function

Scha�er’s f6 function was �rst given in [Scha�er et al., 1989] and is a function that has an
n-dimensional domain and a single valued result. It is given as:

f (x) = 1+

(
n

∑
i=1

x2
i

)0.25
sin2

50

(
n

∑
i=1

x2
i

)0.1
+1

 (7.3)

A plot of this function (with a 1-dimensional domain) is shown in �gure 7.4. Just as the
Griewank function, it has a global trend showing a global optimum, and lots of local optima.
The global optimum is given by f (0) = 1.

7.1.4 Deb-Tan function

The Deb-Tan function is based on a function shown in [Deb, 1999], and was modi�ed and
made multidimensional in [Tan et al., 2003]. The (modi�ed) 1-dimensional version is given
as:

f (x) = 2− e−(
x−0.1
0.004 )

2

−0.8e−(
x−0.9

0.4 )2

(7.4)
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Figure 7.3 Histogram showing the amount of non-zero coordinates as a function of dimension i for
100 optimization runs of Griewank’s function.
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Figure 7.4 Plots of Scha�er’s f6 function in 1 dimension.
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The multidimensional version can be constructed by taking the product of this function
evaluated for the values in each dimension:

f n(x) =
n

∏
i=1

f (xi) (7.5)

A plot of the one-dimensional version is shown in �gure 7.5(a). In that plot, it is clearly
visible that for this domain the function has two optima: a global optimum at approximately
f (0.1) = 1 and a local optimum at approximately f (0.9) = 1.2.

[Tan et al., 2003] states that the optima are at exactly these locations, but that is an error.
This can be shown by evaluating the derivative of the function in the supposed extremes,
which is

d f
dx

= 2
x−0.1
0.0042 e−(

x−0.1
0.004 )

2

+1.6
x−0.9

0.42 e−(
x−0.9

0.4 )2

At the given points, one of these terms will be zero, but the other will not, thus the optima
cannot lie there. However, an optimizer does not care about this, and should �nd the real
optimum.

The big challenge when optimizing this function is that the optimizer needs to �nd
the basin of attraction of the global optimum, which is very small and surrounded by high
values.

However, when considering a solution which starts in the region left of the global
minimum, the curve to the (global) optimum is a monotonic decreasing function, which in
principle can be found by “sliding down the path”. To prevent this, the following function
is proposed, with boundaries [−1,1]. This function is plotted in �gure 7.5(b).

f (x) = 2− e−
( |x|

0.004

)2

−0.8e−
( |x|−0.9

0.4

)2

(7.6)
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Figure 7.5 Plots of the Deb-Tan original and modi�ed function in 1 dimension.

7.2 Verifying PSO for OPTIDUS

Because the control parameters of the psoimplementation need to be tuned, a benchmark
was done comparing the result of this implementation with other psoimplementations and
two de schemes. Finally,a ea was also tested,but this failed to converge at the global optimum
for 2 out of 4 problems.
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7.2.1 Overview of the tested optimizer implementations

In this chapter, the following optimizer implementations where compared:

spso-07 is is the reference implementation that can be found at [Clerc, 2008a]. This ver-
sion was tested without modi�cations. This is an implementation which has been
speci�cally made available to benchmark against.

spso-07* is a modi�ed variant of this implementation. The only modi�cation in this vari-
ant was that it has the parameter p = 1. This parameter controls the chance of an
information link existing between two particles. By setting it to 1, all particles inform
each other, which in practice means that all particles will be in�uenced by the global
best individual.

optidus-pso mimics the behavior of spso-07*, except for the fact that it contains and a
slightly modi�ed formula for the determination of the speed.

optidus-ppo is the same as optidus-pso, but adds a predator to the simulation to keep the
swarm moving.

optidus-de1 is an implementation of the Tasoulis1 di�erential evolution scheme in op-
tidus.

optidus-de6 is an implementation of the Tasoulis6 di�erential evolution scheme in op-
tidus.

optidus-ea is an implementation of a ea in optidus. It uses immigration, crossover, muta-
tion and stochastic universal sampling.

pso is the baseline pso algorithm used in [Silva et al., 2003]. No source code was available,
and only one function from the set in section 7.1 was tested in that paper.

sappo is the improved algorithm presented in [Silva et al., 2003]. It is a ppo algorithm
which tries to adapt the control parameters in the optimization.

These tests were run on a MacBook with a CoreDuo processor running OSX 10.5.5,
using GCC 4.0.1 (Apple Inc. build 5484) and GNU Fortran 4.4.0 20080909 (nightly build)
as the compilers for the C and Fortran sources.

7.2.2 Himmelblau function results

No external Himmelblau results are known for pso; therefore, the Himmelblau problem was
added to the spso-07 program and optidus. The swarm size was set to 12, in accordance
with (4.11) and because it’s a simple problem, a maximum of 15 generations (180 function
evaluations) are allowed. The results of this are shown in table 7.1 and �gure 7.6.

optidus-de1 is the clear winner, with the rest trailing behind.
Note that both optidus-pso and optidus-ppo both

7.2.3 Griewank function results

In [Silva et al., 2003], the Griewank function has been optimized for a 50-dimensional search
space bounded by −300 < xi < 300 ∀ i∈ {1, ...,50}. The reported number is the average
value of the best �tness taken over 100 runs, with 5000 generations each. The swarm size
was set to 30, giving a total of 150000 function evaluations. The results of these runs are
summarized in table 7.2 and �gure 7.7.
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Implementation f̄best σ

Theoretical 0.000000 -
spso-07 0.036606 0.042298
spso-07* 0.023834 0.024082
optidus-pso 0.010954 0.013596
optidus-ppo 0.011321 0.014809
optidus-de1 0.002818 0.008319
optidus-de6 0.069907 0.155670
optidus-ea 1.237943 1.453268

Table 7.1 Average best �tness values for the Himmelblau function for as found by various optimizers.

As expected, the spso-07* and optidus-pso implementations are quite close, but the
spso-07 implementation scores much better. This seems to falsify the statement in [Clerc,
2008a] that the information links topology does not in�uence the outcome of the optimization.
The optidus-ppo optimizer shows another interesting thing: it does not reach the optimum
anytime, but all of its results are close to another.

The genetic algorithm implemented in optidus failed to converge for the used popu-
lation size. Therefore, several larger population sizes were tested, also giving bad results.

The results given in [Silva et al., 2003] are a lot better, so it might be worthwhile to
investigate what caused that. Note that sappo also scores a lot worse than the normal pso
variant, just as in the optidus case. The Griewank function was the only function to exhibit
this phenomenon in [Silva et al., 2003].

Finally,optidus-de6 managed to �nd a near-optimal solution in all 100 runs, doing even
better than pso (Silva), but optidus-de1 is the worst performer for this function.

Implementation f̄best σ

Theoretical 0.000000 -
spso-07 0.013305 0.023714
spso-07* 0.146576 0.143635
pso (Silva) 0.001115 n/a
sappo 0.004752 n/a
optidus-pso 0.236207 0.413423
optidus-ppo 0.016518 0.019077
optidus-de1 1.176597 1.091798
optidus-de6 0.000000 0.000000
optidus-ea[S = 30] 142.371821 16.2646647996
optidus-ea[S = 90] 111.4192414 15.172419042
optidus-ea[S = 300] 89.3277521 11.3099994644
optidus-ea[S = 3000] 111.2387651 9.60405051626

Table 7.2 Average and standard deviation of the best �tness values for the 50-dimensional Griewank
function as found by various optimizers.

7.2.4 Scha�er’s f6 function results

Just as with the Himmelblau function, no public test results were found for Scha�er’s f6
function, so they were added to spso-07 and optidus. For this test, a 5-dimensional variant
was chosen, and according to (4.11), this problem should then be run with a swarm size of
14. Allowing a maximum of 1500 generations gives the results of table 7.3 and �gure 7.8.
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The results of spso-07 and optidus-de6 stand out, with both good average values and
a low standard deviation, with optidus-ppo in third place. spso-07* and optidus-pso have
comparable results, and �nally optidus-de1 performed disappointing.

Implementation f̄best σ

Theoretical optimum 1.000000 -
spso-07 0.001496 0.003411
spso-07* 0.285879 0.644234
optidus-pso 0.276903 0.606626
optidus-ppo 0.089222 0.442588
optidus-de1 1.040333 1.691922
optidus-de6 0.003274 0.003787
optidus-ea 3.317412 0.898857

Table 7.3 Average and standard deviation of the di�erence between the theoretical optimum and the
best �tness values for Scha�er’s f6 function in 5 dimensions as found by various optimizers.

7.2.5 Deb-Tan function results

No public benchmarks were found for the Deb-Tan function, so it was added to spso-07
and optidus. In accordance with (4.11), the used swarm size was 13. Each run was allowed
to run for 10000 generations or 130000 function evaluations.

Running these functions yielded the results summarized in Table 7.4 and Figure 7.9:
Only the optidus-ppo implementation was able to reach the global optimum, and did so
in all runs. The rest of the algorithms got stuck in the local optimum near x = 0.9 (in 1 or
more dimensions). This is re�ected by the big peak near f = 0.8 in the histograms. The
fact that optidus-ppo did not get stuck can be attributed to the prey, which was introduced
to reduce the occurrence of premature convergence.

As expected, the results of the reference implementation and optidus-pso are compa-
rable.

Implementation f̄best σ

Theoretical optimum 0.956683 -
spso-07 0.644944 0.050996
spso-07* 0.640366 0.065898
optidus-pso 0.752771 0.073407
optidus-ppo 0.000000 0.000000
optidus-de1 0.763800 0.086564
optidus-de6 0.746423 0.087297
optidus-ea 0.499936 0.187404

Table 7.4 Average and standard deviation of the di�erence between the theoretical optimum and the
best �tness values for the 3-dimensional Deb-Tan function as found by various
implementations.

7.2.6 Conclusions for the veri�cation

Looking at the results from these test-functions does not give a clear winner, as the best
algorithm depends on the problem:

• optidus-pso does not perform outstanding,but is in second place for the Himmelblau
function. It also does not perform very badly.
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• optidus-ppo is the clear winner in the Deb-Tan function, and also scores a second
place in the Griewank optimization.

• optidus-de1 is the winner for the Himmelblau function, but scores really badly for
the Griewank and Scha�er’s f6 function.

• optidus-de6 on the other hand did win the Griewank and had a shared victory on
Scha�er’s f6 function with spso-07, and performs satisfactory for the other functions.

• spso-07 had a shared victory on Scha�er’s f6 function with optidus-de6, and quite
good results overall.

• spso-07* as expected had results similar to optidus-pso.

• spso-07 and spso-07* do have di�erent results, so maybe the use of a better form of
information link topology might improve the results of the pso even further.

Because no clear winner arises, all of de1, de6, pso and ppo will be used to optimize the
Solar Sailing Mission.
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Figure 7.6 Histograms of the best �tness values of the Himmelblau function found by the various
implementations.
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Figure 7.7 Histograms of the best �tness values of the 50-dimensional Griewank function found by
the various implementations.
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Figure 7.8 Histograms of the the di�erence between the theoretical optimum and best �tness values
of Scha�er’s f6 function in 5 dimensions found by the various implementations.
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Figure 7.9 Histograms of the di�erence between the theoretical optimum and the best �tness values
of the 3-dimensional Deb-Tan function found by the various implementations.



Chapter 8

Improving the Solar Polar Sail
Mission Optimization

In [Garot, 2006] the optimal trajectory for a solar polar sail mission was determined using
an old version of optidus. This version of optidus made use of a GAVaPS, which gave
good results, but because it was expected that pso and de will perform better than regular
gas, it was proposed to redo the optimization of this problem using those algorithms. This
chapter contains a description of the problem,and a comparison between the original results
found using optidus, and the results found using di�erential evolution and pso/ppo. Next,
random sampling using both pseudo-random numbers and Sobol sequences were applied
to improve the best solution found. Finally, Powell’s quadratically convergent method was
applied as a local optimizer.

8.1 Introduction to solar sailing

Solar sailing is a propulsion method which has some similarities to conventional sailing as
done on the Earth. Just as with a ship, a spacecraft (making use of solar sailing) has a big sail
attached to it, an example of which is shown in �gure 8.1. Unlike a sail on a ship, it is not
powered by aerodynamic forces from the wind blowing by, but instead works by re�ecting
photons colliding on its surface. Because photons have momentum, the change in their
direction causes a small force to be exerted on the spacecraft. This force can be used to
propel the spacecraft. The big advantage of this method of propulsion is that it does not
consume fuel aboard the spacecraft, and can therefore be used for longer periods, as the
spacecraft will not run out of fuel.

Figure 8.1 A proposed solar sail. (Source: http://www.u3p.net)
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Figure 8.2 Forces acting on a solar sail. (2-dimensional and not to scale)

2.3 Solar sail force model 7

Figure 2.4 Sail efficiency η for the non-perfect solar sail used in this study.

2.3.3 Three-dimensional force vector representation

As found in the previous section, the force direction can be given by the solar sail cone
angle θ. To include force components perpendicular to the orbital plane, the orientation
of the solar sail force vector will also be defined through the clock angle δ. The clock
angle is defined to be the angle between the projection of the sail force vector and some
reference direction onto a plane normal to the Sun line (figure 2.5).

Figure 2.5 Solar sail cone and clock angle in the local sail reference frame. [McInnes, 1999]

Using the definitions of the cone and clock angle and resolving into the radial (r̂) direction
and the normal (p̂) and transverse (p̂ × r̂) directions in the plane normal to the Sun line,
it is found that the sail normal and force vector can be written as

n = cos α r̂ + sinα sin δ p̂× r̂ + sinα cos δ p̂ (2.9)
m = cos θ r̂ + sin θ sin δ p̂× r̂ + sin θ cos δ p̂ (2.10)

The local coordinate system of the solar sail is dependent on the chosen reference direc-
tion that defines the clock angle. This will be defined in section 2.3.5.

Figure 8.3 Solar sail cone and clock angle in the local sail reference frame. Source: [McInnes, 1999]

Just as with regular sailing, the magnitude and the direction of the force on the sail
depend on the orientation of the sail. The basic geometry of the forces acting on a solar
sail in 2D is depicted in �gure 8.2. The pitch angle α is the angle between the incident ray
of sunlight r and the vector perpendicular to the sail, n. Figure 8.3 shows the de�nition
of the clock angle δ: it is the angle between the vectors p and n. This vector p is equal
to the speci�c angular momentum of the spacecraft, and is given by r×V. The vector θ

is the cone angle, and determines the direction of the force vector m. Note that there is a
di�erence between m and n, because the sail is not 100% e�cient, because not all of the
photons are re�ected.

The vectors m and n can be expressed using the previous vectors and the angles:

m = cosθ r̂+ sinθsinδ p̂× r̂+ sinθcosδ p̂ (8.1)

n = cosα r̂+ sinαsinδ p̂× r̂+ sinαcosδ p̂ (8.2)
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8.2 Model of the Solar Polar Sail Mission

The goal of the solar polar sail mission is to get a spacecraft into a polar orbit around the
Sun, using only solar sailing for propulsion. This mission can be split into 2 distinct phases,
the geocentric phase and the heliocentric phase. These are modelled separately.

8.2.1 Geocentric Phase: Departure from Earth

After launch, the spacecraft is put into a geostationary transfer orbit (gto) with a perigee
height of 185 km, an apogee height of 35885 km and zero inclination. From this orbit,
the spacecraft spirals the Earth while accelerating towards escape velocity. An example of a
spiraling trajectory is given in �gure 8.6(a) on page 82.

Each orbit in this phase can be split into three parts, as shown in �gure 8.4. These
three parts are the acceleration part, feathering part, and the drag part, which occur all three
during each revolution.

This separation is made to ease the control and modelling of the spacecraft. The equa-
tions of motion in this phase are given by:

d2r
dt2 =−µE

r
r3 +

f
m

[Φ ·m]+adrag +aSun +aMoon (8.3)

In this (and the following equations) Φ is a 3x3 transformation matrix given by:

Φ =
[
r̂ [r̂× V̂]× r̂ r̂× V̂

]
(8.4)

in which r̂ is the normalized Sun line, and V̂ the normalized velocity vector of the spacecraft.
This transformation matrix is used to transform the vectors m and n (which are in a

coordinate system attached to the orbit of the satellite) into a heliocentric coordinate system.
f is the value of the solar radiation pressure force given by

f = 2PA(r̂ · n̂)2 (8.5)

where n is the unit vector normal to the sail given below, and r̂ is the normalized Sun line.
A is the surface area of the sail, and P is the local solar radiation pressure given by

P =
W
c

=
WE
( rE

r

)2

c
(8.6)

in which WE is the solar �ux at the Earth, WE = 1367.6 W/m2, and rE is the Sun-Earth
distance (equal to 1 AU.)

24 Simulation characteristics and models

Figure 3.6 The sailcraft’s orbit in the Earth escape phase is divided into an acceleration, feathering and drag
phase.

Figure 3.7 The acceleration phase is divided into six subsections.

3.3.4 Equations of motion

Taking into account the disturbing forces that have been discussed in the previous sec-
tions, the equation of motion for a non-perfect sail in the geocentric phase is given by

d2r
dt2

= −µE
r
r3

+
f

m
[Φ · m] + adrag + aSun + aMoon (3.12)

where r is the distance between the Earth’s centre and the sailcraft, µE the Earth’s gravi-
tational parameter and f the value of the solar radiation pressure force given by equation
2.8, if the sailcraft is not in Earth’s shadow. The disturbing forces acting on the sailcraft
during the Earth escape phase are atmospheric drag and gravitational attractions from
the Sun and the Moon.

Since the distance between the sailcraft and the Earth is much smaller than the
distance between the sailcraft and the Sun, the solar radiation pressure P can be taken
constant during the Earth escape phase. The solar radiation pressure force is expressed
in the geocentric reference frame by multiplying the local force direction m (equation
2.10) by the transformation matrix Φ (equation 2.15).

In section 2.5.3 it was given that the atmospheric force N (equation 2.29) is directed in
the normal direction of the sail in the orbital plane. The sail normal n (equation 2.10)
should also be multiplied by the transformation matrix Φ to obtain the drag forces in the
geocentric reference frame. The acceleration due to the atmosphere can now be written
as

adrag =
N

m
[Φ · n] (3.13)

In section 2.5.2 it was found that the third-body effects due to the Sun’s and Moon’s

Figure 8.4 The sailcraft’s orbit in the Earth escape phase is divided into an acceleration, feathering
and drag part. Source: [Garot, 2006]
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The accelerations caused by the gravitational pull from the Sun and the Moon (relative
to the motion of the Earth) are given by:

aSun = GMS

(
rsail−Sun

r3
sail−Sun

− rSun

r3
Sun

)
(8.7)

aMoon = GMMoon

(
rsail−Moon

r3
sail−Moon

− rMoon

r3
Moon

)
(8.8)

Feathering phase

When the angle between the velocity vector and the Sun line, χ, is above 90◦, the solar
pressure can only decelerate the spacecraft. For that reason, during this phase the sail is
positioned such that it is parallel to the Sun angle and no force is exerted on the sail. Because
the altitude is high enough, no drag force is present, so only the gravitational pulls by the
Sun, Earth and Moon need to be taken into account.

Acceleration phase

When the angle between the velocity vector and the Sun line, χ, is below 90◦, the solar
pressure can accelerate the spacecraft. This can be achieved by setting the clock angle
δ = 90◦, and the pitch angle α can be chosen by the user: 0◦ ≤ α ≤ 90◦. According to
[Garot, 2006] splitting this acceleration phase into 6 subsections provides a good way to
control the pitch angle. This division is shown in �gure 8.5. This leads to a total of six pitch
angles to be optimized, but this can be reduced to three by imposing a symmetric set of
pitch-angles: α1 = α6, α2 = α5 and α3 = α4.

24 Simulation characteristics and models

Figure 3.6 The sailcraft’s orbit in the Earth escape phase is divided into an acceleration, feathering and drag
phase.

Figure 3.7 The acceleration phase is divided into six subsections.
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tions, the equation of motion for a non-perfect sail in the geocentric phase is given by

d2r
dt2

= −µE
r
r3

+
f

m
[Φ · m] + adrag + aSun + aMoon (3.12)
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Figure 8.5 The acceleration phase is divided into six sections. Source: [Garot, 2006]

Drag phase

When the altitude is lower than 1500 km, atmospheric drag starts to in�uence the �ight.. In
that case, the sail is positioned such that it is parallel to the velocity, to minimize drag. The
acceleration due to drag can be modelled as

adrag =
N
m

[Φ ·n] (8.9)

In [Garot, 2006] the following expressions are derived for this force:

N = 2qAsin2(αdrag) (8.10)

in which A is the surface of the sail, αdrag the angle of attack, and q = 1
2 ρV 2 is the dynamic

pressure. For the atmospheric density ρ as a function of altitude h, the following relation is
assumed:1

ρ(h) = 35
(

243352h−7.2305 +4537152h−5.6305(1.49− h
11000 )

)
(8.11)

1This relation is a �t made in [Foekema, 2004] based on data given in [Wertz and Larson, 1999]
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In the ideal case, αdrag would be zero, and no drag would be present. However, in reality
some drag will occur. To add some drag to the model, the simulated angle of attack is set
to 3 degrees.

8.2.2 Heliocentric phase

After the escape velocity has been reached, the heliocentric phase starts. During this phase,
only the gravitational pull of the three inner planets of the solar system and the Sun and the
force from the solar sail need to be taken into account so the equations of motion are given
by:

d2r
dt2 =−µS

r
r3 +

f
m

[Φ ·m]+aMercury +aVenus +aEarth (8.12)

with

aMercury = GMMercury

(
rsail−Mercury

r3
sail−Mercury

− rMercury

r3
Mercury

)
(8.13)

aVenus = GMVenus

(
rsail−Venus

r3
sail−Venus

− rVenus

r3
Venus

)
(8.14)

aEarth = GMEarth

(
rsail−Earth

r3
sail−Earth

− rEarth

r3
Earth

)
(8.15)

This phase is split into four phases, which will be given below. A complete trajectory
comprising of these four phases is given in �gure 8.6(b).

Inward spiral

After the spacecraft has left the Earth’s sphere of in�uence, it needs to decrease its distance
to the Sun. This is done by maximizing the component of the solar radiation pressure force
in the negative direction of the velocity vector. The sail clock angle is equal to the velocity
vector clock angle of 90 degrees and only the pitch angle needs to be optimized. For inward
spiraling the pitch angle needs to be negative: −90◦ ≤ αS(1) < 0◦. This phase ends when
the distance R1 is reached. R1 needs to be between 0.3AU and 0.7AU.

Orbit Circularization

After reaching the distance R1, the spacecraft continues to spiral towards the Sun, but with
a di�erent pitch angle, which is allowed to vary between −90◦ ≤ αS(2)≤ 90◦. The clock
angle remains the same. This phase ends when the distance R2 to the Sun is reached. R2
needs to be between 0.26AU and min(R1,0.4AU).

Even though the distance to the Sun will be increased again in the �nal phase to 0.4AU,
the spacecraft is forced to get closer to the Sun than that, as the orbit cranking phase takes
much less time if the distance to the Sun is lower. [Garot, 2006] did an optimization in
which cranking was done at 0.4AU, and �ight time was almost one year longer.

Orbit Cranking

After reaching the distance R2, the cranking phase starts. During this phase, the sail is
rotated over 180◦ every half orbit, to make sure that the force vector points above or below
the orbital plane. This gives the following rule for the clock angle:

δ =

{
0◦ if ż≥ 0
180◦ if ż < 0

(8.16)
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6.4 Minimising total mission cost 65

The optimisation runs show that the circularisation distance R1 is often close to the
cranking distance R2, as was also seen in section 6.3.2. The cranking distance converges
to a value between 0.29 AU and 0.32 AU.

Appendix D.2 shows plots of the distribution of the optimisation parameters for
the final population for the best found solution. From these plots it follows that a large
range of possible values for the optimisation parameters produce similar good results,
implying that the solution space is flat around the optimal solution.

6.4.3 Geocentric trajectory

The best found trajectory spends 424 days in the geocentric phase until it reaches the
Earth escape velocity and leaves the Earth with a velocity of 531 m s−1. Figure 6.13
shows the trajectory in the Earth escape phase.

Figure 6.13 Geocentric trajectory for the best found solution for the solar polar sail mission.

Appendix D.3 shows more figures about the geocentric phase of the optimal trajectory.
Similar to the Earth escape trajectory discussed in section 5.4.2, it is found that the
eccentricity initially decreases because the perigee is raised faster than the apogee. The
velocity cone angle χ shows a long-term periodical behaviour due to the movement of
the Sun above and below the ecliptic plane.

In figure 6.13 an unusual sharp curve is seen in the sailcraft trajectory. This can be
explained with figure 6.14, which shows that for this trajectory the distance to the Moon
becomes so small, that the sailcraft enters the Moon’s sphere of influence after 300
days. Due to the gravitational assist of the Moon, the sailcraft’s velocity is suddenly
changed. A second fly-by occurs 22 days later, which causes the sailcraft to reach Earth
escape velocity while the sailcraft is still in the feathering phase, and fly towards the Sun
when leaving the Earth. Without the Moon’s gravitational assist, it is not possible to
reach escape conditions in the feathering phase, because there is usually no significant
acceleration besides the Earth’s gravity in this flight phase (no solar radiation pressure
force). The plots in appendix D.3 also clearly show that the Moon fly-by causes sudden
leaps in the sailcraft velocity, orbit eccentricity and inclination.

Figure 6.15 shows the solar radiation pressure force during the escape trajectory.
Here it can be seen that the sailcraft has actually reached the escape velocity after 322
days instead of 424 days, because the solar force remains zero and the sailcraft stays in

(a) Geocentric
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In the heliocentric phase the consecutive flight phases are dependent on the dis-
tance to the Sun, rather than on the velocity cone angle χ, as was the case in the
geocentric phase. Figure 6.17 shows the distance of the sailcraft to the Sun during the
heliocentric phase. It can be seen from the figure, that during the cranking phase the
perihelion and aphelion do not change. This implies that the orbit eccentricity and the
semi-major axis are constant during this flight phase.

Figure 6.16 Heliocentric trajectory for the best found solution for the solar polar sail mission.

Figure 6.17 Distance of the sailcraft to the Sun during the heliocentric trajectory.

In figure 6.18 it can be seen that the solar radiation pressure force increases at first,
because the sailcraft approaches the Sun. Then it shows a periodical behaviour, because
the sailcraft orbit during cranking is slightly elliptical. After an inclination of 90◦ is
reached, the sailcraft spirals outward with a less favourable pitch angle, decreasing the
solar radiation pressure force. If the sailcraft arrives at the final orbit, the pitch angle is
set to 90◦ and the solar radiation pressure force becomes zero.

Figures 6.19 and 6.20 show the pitch and clock angle during the flight phases of
the heliocentric trajectory. From figure 6.19 it can be seen that the circularisation distance

(b) Heliocentric

Figure 8.6 Trajectories for the best found solution for the solar polar sail mission in [Garot, 2006].

The pitch angle can be chosen freely between 0◦ < αS(3) ≤ 90◦. This phase ends when
the inclination reaches 90◦.

Outward spiral

The last phase is used to increase the distance from the Sun again. This is done to decrease
the heat-load on the spacecraft, so that it may operate longer.

Just as with the inward spiral and circularization phases, the clock angle is �xed to 90◦,
but now the pitch angle needs to be positive: 0◦ ≤ αS(4) ≤ 90◦. When the spacecraft
reaches a distance of 0.4AU from the Sun, this phase ends.

8.3 Optimizing the Geocentric Phase

The goal of the �rst phase of the mission is to let the spacecraft reach escape velocity as
quickly as possible. This trajectory is controlled by 5 variables: �rst of all, the launch date
Tlaunch, the initial gto-orientation ω and the pitch angles αE(1), αE(2) and αE(3). The
objective function outputs the time of �ight until escape velocity is reached. The limits for
these parameters are listed in table 8.1.



8.3 optimizing the geocentric phase 83

50 Optimisation of the Earth escape phase

nomials are plotted in figure 5.14 and their coefficients were found to be

c2
1 =

[
0.0002 −0.0033 −0.0132 0.0476 0.1116 0.5149

]
(5.3a)

c2
2 =

[−0.0022 0.0124 0.0229 0.2288
]

(5.3b)

c2
3 =

[
0.0054 0.0008 0.0742

]
(5.3c)

The maximum residuals with respect to the best found pitch angles for the second set of
polynomials are ∆αE = (5.4◦, 0.8◦, 2.4◦).

Figure 5.14 Polynomial set 2 through all found solutions from the optimisation runs.

From just comparing the pitch angles, it was not clear which one of the sets of polynomi-
als was a better representation of the relation between pitch angles and GTO-orientation.
Therefore, the sets of polynomials were implemented into the model and their flight times
calculated and compared to the best flight times found in the optimisation runs, see fig-
ure 5.15.

Figure 5.15 Comparison of flight times for the Earth escape phase for different sets of polynomials and the
best found flight times in the optimisation runs.

Figure 8.7 Polynomials through the pitch angles that correspond to the shortest �ight times for the
geocentric phase. Source: [Garot, 2006]

8.3.1 Original results from [Garot, 2006]

In [Garot, 2006], a model was created that allows one to calculate pitch angles αE as a
function of the gto-orientation ω. This was done by running several optimizations for 8
values of ω. These sets of pitch angles where next �tted to three polynomials (of 5th, 4th and
3rd order for αE(1), αE(2), αE(3) respectively), to get a continuous function. Figure 8.7
shows a plot of the pitch angles determined in those optimizations and the �tted functions.
According to [Garot, 2006], better trajectories can be found by using other Earth escape
pitch angles. For that reason, the �rst phase has been re-optimized.

8.3.2 Selecting an optimizer for the �rst phase

To determine the best optimizer to use for this mission phase, a set of preliminary runs was
done using optidus-pso, optidus-ppo, optidus-de1 and optidus-de2. These results, and
the original results found by [Garot, 2006] are listed in table 8.7. Based on these results,
optidus-pso was chosen as the optimizer to use for the rest of this mission phase.

8.3.3 Improved results using optidus-pso

Using optidus-pso, the same procedure was repeated, but for a much larger number of
GTO-orientation values, 72 (spaced 5 degrees apart), and 10 separate runs per GTO-
orientation.2 Also another function was chosen to �t the data; because a GTO-orientation
is an angle, a periodical function should be used to �t the data against. It was chosen to use

2This is a 30-fold increase of the number of optimizations,but the number of evaluations per run is on average
a factor 6 less with pso, when compared to the original runs, so only 5 times as many function evaluations were
needed.

Symbol [unit] Lower limit Upper limit
αE(1) [◦] 0 90
αE(2) [◦] 0 90
αE(3) [◦] 0 90
ω [◦] 0 360

Table 8.1 Limits of the optimization parameters for the geocentric phase
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a 4th order sum of sines:

αE(i)(ω) = ai,0 +
4

∑
n=1

ai,n sin(nω+bi,n) (8.17)

The average pitch angles from the optimization runs were �tted to this function using the
�t functionality of [Gnuplot, 2009], which does an iterative �t to reduce the residuals.

The αE values found by the optimization runs, the mean values, standard deviation and
the sine �t are shown in �gure 8.8. The coe�cients which correspond to the �t are listed
in table 8.2.

Using the coe�cients and the sine-function, pitch angles were calculated for the whole
range of GTO-orientation angles ω. Next, the geocentric phase was simulated using these
sets of pitch angles, and the resulting time of �ight was determined. These values have been
plotted in �gure 8.9. In that �gure, the original times of �ight as found in [Garot, 2006] are
also plotted.

Figure 8.9 shows that the pitch angles from the sinusoidal �t give better times of �ight
than the original polynomial �t; the biggest improvement was found at ω = 135◦ where the
time of �ight decreased by 14.2% from 355.8 to 305.3 days, and the smallest improvement
was found for ω = 0◦ where the time of �ight decreased by 3.8% from 278.4 to 267.8 days.

8.4 Optimizing the complete mission

The next step in the optimization process is to do a run of the complete mission. Table 8.3
lists the parameters which were optimized, and the limits used.

Because one of the goals of this thesis is to �nd out what the best optimizer is, and be-
cause those optimizers still need tuning,a batch of runs was done using 5 di�erent optimizers
and 7 population sizes. The population sizes initially used were 20+32i, for i ∈ {0,1,2,3},
but as the best and average �tness values as a function of population size still showed an
upward trend, another set of optimizations was done for i ∈ {4,5,6}.

For each optimizer and population size, 5 runs were executed using 5 seed values for
the random generator. This means 5 ∗ 5 ∗ 7 = 175 runs were executed, resulting in a total
of 3,288,206 function evaluations. The total (wall)time needed to run these two batches
was 4.5 days (on a machine with two Intel Xeon (X5355) processors having 4 cores each,
running at 2.66GHz).3

3Wall time is the amount of time which has elapsed on a clock on the wall – as opposed to cpu-time, which
is the sum of the time spent by each processor core. For example, on an 8-core system, 8 seconds of cpu-time
are available every wall-time second.

Coe�cient αE(1) αE(2) αE(3)
a0 35.1325 15.4344 5.58173
a1 9.49108 2.84364 0.795391
a2 -4.28024 -0.573209 0.559949
a3 -1.97354 -0.105089 -0.238481
a4 0.97202 0.26879 -0.200426
b1 -30.41 -44.55 -49.59
b2 54.26 48.66 130.54
b3 -36.30 127.64 89.82
b4 93.59 139.02 68.04

Table 8.2 Values of the coe�cients of the sine-�t of (8.17). All coe�cients are in degrees.



8.4 optimizing the complete mission 85

0 45 90 135 180 225 270 315 360
ω[ ◦ ]

20

30

40

50

60

70

α
E

(1
)[
◦
]

PSO results
sine fit

0 45 90 135 180 225 270 315 360
ω[ ◦ ]

0

5

10

15

20

25

30

35

40

α
E

(2
)[
◦
]

PSO results
sine fit

0 45 90 135 180 225 270 315 360
ω[ ◦ ]

0

5

10

15

20

25

α
E

(3
)[
◦
]

PSO results
sine fit

Figure 8.8 Optimal pitch angles αE as a function of the GTO-orientation ω. The circles are the
outcomes of optimization runs, the black bars denote their standard deviation and average,
and the line is a the �t to the sinusoidal function (8.17).
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Figure 8.9 Comparison of the time of �ight for the historical results (polynomial �t), free
optimization (pso) and optimization using the sine �t for the pitch angles (sine �t).

8.4.1 Settings for the optimization runs

The �ve optimizers used for these runs were the optidus implementations of de1, de6, pso,
ppo and a ea. For these optimizers, the parameters were set as follows:

DE1 and DE6 both used a static mutation constant F = 0.7, which is the only tunable
parameter besides the population size. (See section 5.2 for how this constant is used.)

PSO and PPO both used the constricted formulation of [Clerc and Kennedy, 2002], with
χ = 3.9 and φ = 1. No bounds were set on the velocity, but the position was limited
using the method of section 4.5 to the bounds laid out in [Garot, 2006].

For the predator-prey optimizer (see section 4.4),c4 from (4.13) (also known as f_pred)
was set to 0.5, and the fear probability p f or p_fear was set to 0.01.

EA is a evolutionary algorithm which makes use of a roulette selection based crossover
operator,normal mutation, immigration and the stochastic universal sampling to weed
out bad individuals during each generation. Additionally, elitism is applied to keep
the best individual inside the population.

Two stop criteria were used: �rst of all, there was a limit on the total number of evalu-
ations of 30000 per run. Secondly, if a population’s best individual did not change over 90
generations, the optimization was stopped.

The outcome of the objective function for this optimization problem is a total mission
cost estimate, which must be minimized.

8.4.2 Comparison of the results

The results of these runs are shown in �gures 8.10 and 8.11,which show the average and best
found �tness for each of the 5 runs which were done for each combination of optimizer and
population size. From these �gures, it is clear that for this problem, the di�erential evolution
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algorithms give the best average �tness for all population sizes, with the de1 version just a
bit better than the de6 version. For small population sizes, pso and ppo (on average) perform
better than ea, but for large population sizes, the results are in the same league.

Looking at �gure 8.11, the best �tness still seems to be rising with the population size.
Due to lack of time,no bigger populations have been simulated; future research might check
if this trend continues for even bigger populations.

The pso, ppo and ea results are worse than the 3 results found by [Garot, 2006], which
were 231.7, 228.3 and 232.8. For these results, 14266, 10047 and 14518 evaluations where
needed respectively.

If the best �tness values are considered, the di�erential evolution algorithm again gives
the best results, with the absolute best results found by de1 for the population sizes 116
and 212, with �tness scores 220.91 and 220.92 respectively, which used 30048 and 30110
evaluations respectively.

The parameters found in those two runs are listed in table 8.3. One thing that raises
attention is the di�erence in values for ω0; the value of 115.9◦ found by [Garot, 2006] is
very bad, according to �gure 8.9 – this choice makes the geocentric phase more than 80
days longer than in the trajectories found using de1. This accounts for the di�erence of
almost half a year between the launch date found in [Garot, 2006] and the one from de.4

Finally, a plot using Pareto front ranking was generated from the outcomes of these runs.
This was possible by considering the process of optimizing optimization as a dual-objective
problem, with the objective value of the solar polar sail mission as the �rst objective, and
the amount of function evaluations as the other. Figure 8.12 shows a plot of the number of
evaluations versus the �tness value reached for all optimization runs done, and in this plot,
the Pareto fronts have also been drawn.

What is interesting is that in this plot, the �rst front contains four out of �ve optimization
methods, so the Pareto fronts by themselves cannot tell which optimizer is the best. However,
when looking at the reached �tness values, only the de1 algorithm has reached �tness values
above −225.

8.5 Local optimization using random sampling

Using the results from the previous section, a test was conducted to see if it is possible to
improve the results by sampling the neighborhood (of the solution space) of the best solution.
This was done using a normal pseudo-random generator and using numbers picked from a
Sobol sequence.

4Table 8.6 shows that there is almost no di�erence in total time of �ight for the heliocentric phase.

Symbol DE1 best DE1 (Powell) DE1 runner up Garot best Limits
Tlaunch 2014-11-15 2014-11-15 2014-11-16 2014-05-17 [2010-01-01,

2018-07-01]
ω0 1.44 9.98 303.17 115.9 [0,360]
αS(1) −40.22 −40.25 −35.15 −46.0 [−50,−20]
αS(2) −17.26 −17.25 −6.29 −12.3 [−90,90]
αS(3) 36.97 37.14 40.62 37.3 [20,50]
αS(4) 54.48 54.42 45.29 59.3 [10,65]
R1 0.3030 0.2970 0.2982 0.29 [0.26,0.50]
R2 0.2600 0.2600 0.2894 0.29 [0.26,0.50]
Fitness −220.915 −220.671 −220.923 −228.3 –

Table 8.3 Optimal parameters for the solar sailing mission as found by the di�erential evolution runs.
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Figure 8.10 Average of the best �tness values for each optimizer/population size combination for the
complete solar sailing mission.
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Figure 8.11 Best of the best �tness values for each optimizer/population size combination for the
complete solar sailing mission.
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Figure 8.12 Fitness versus the number of evaluations for the di�erent optimizers used, and the
Pareto-fronts of those points.

run d
1 0.02512
2 0.01585
3 0.01000
4 0.00631
5 0.00398

Table 8.4 Tabulated values of equation (8.18)

For this experiment, 5 runs were executed for both sequences, consisting of 5000 sam-
ples each. For each run, the range from which the samples were taken was controlled by
the following formula:5

d = 0.12+0.2(run−3) (8.18)

which is tabulated in table 8.4 Using the limits from table 8.3, the random points for each
solution vector value i were picked uniformly from the interval

[xi−0.5 ·d · (ui− li),xi +0.5 ·d · (ui− li)]

so for example in run number 3, the value of ω0 was allowed to vary between

(ω0)best ±0.5 ·drun=3 · (uω0− lω0) = 1.44±0.5 ·0.01 ·360 = [−2.16,5.04]

Histograms of the change in objective value relative to the best solution found using a global
optimizer have been plotted in �gure 8.13. This shows that for run = 1 and run = 2, the

5An initial run was done to determine the range of d; �rst, d = 0.1run was used, which gave the best results
for run = 2; using this formula, d runs from 0.11.6 to 0.12.4.
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sampling area is too large, as almost no individuals were found which matched the original
values.

The best �tness value found using the Sobol sequence was found for run = 3, having the
value −220.5327, whereas the random sequence found its best value in run 5, with value
−220.6796. This Sobol number seems to be an outlier though, as the runner-up value is
−220.6904. The top-5 for each algorithm is listed in table 8.5,which shows that the 3rd-5th

positions have better values for the pseudo-random sequence.
run = 3 means that the solutions are picked randomly from a box with a size of 1% of

the solution space (in all directions).
For run = 4 and run = 5, the distribution of the �tness values becomes more concen-

trated around the original value,which is logical, as the size of the box from which solutions
can be chosen decreases.

In �gure 8.13, the shape of the histograms for both sequences is roughly the same. This,
combined with the fact that the top-5 �tness values found by both number generators
(except for 1 lucky outlier) have the same values makes it impossible to conclude that either
one is better than the other, for this problem.

Position Sobol Random
1 −220.5327 −220.6796
2 −220.6904 −220.6942
3 −220.7325 −220.7012
4 −220.7709 −220.7117
5 −220.7833 −220.7569

Table 8.5 Top-5 of �tness values found by applying a random sampling local optimizer around the
best solution of the solar polar sail mission.

8.6 Local optimization using Powell’s method

Finally, the results found in section 8.4 where put into a local optimizer using Powell’s
method (as introduced in section 2.5).

This optimization needed 5840 evaluations, and resulted in an optimized �tness value of
220.6709. This is an absolute improvement of 0.24 (or 0.11%) relative to the best solution
found using a global optimizer.

Compared to the solutions found using random sampling, this result reaches compara-
ble �tness levels, but needs only a quarter of the number of evaluations. There is one issue
though: Powell’s method requires that all objective function evaluations are done sequen-
tially, which means this algorithm cannot exploit multiple processor cores.6 This means that
on the system on which these optimizations were executed, the (wall)time needed for the
Powell optimization was almost twice as long as for the random sampling case.

The geocentric trajectory found using Powell’s method is shown in �gures 8.14 and
8.15. A big di�erence is directly seen when comparing this trajectory with the one found in
[Garot, 2006]: this trajectory does not make use of �ybys near the Moon. The required time
of �ight in the new case is 277.5 days, which is a lot shorter than the 424 days reported
in [Garot, 2006]. The reason for this extraordinary long time is that the escape velocity
was reached while the spacecraft was travelling towards the Sun - so the sail was put in the
feathering position, and could not be used to accelerate.

The heliocentric trajectory is plotted in �gure 8.16. The times of �ight for these two
optimizations are summarized in table 8.6. Note that for the heliocentric phase, the di�er-

6Unless single evaluations of the objective function can be written to make use of multiple cores.
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Figure 8.13 Histograms of the change in objective function value of the Solar polar sail mission, when
applying a Monte Carlo sampling around the best found solution, using a Sobol random
sequence (left) and a pseudo-random number generator (right) for di�erent sampling area
sizes (rows).
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Figure 8.14 Distance from the spacecraft to the Moon during the geocentric phase as found using
Powell’s quadratically convergent method.

ence is only 8 days, on a total of almost 1800. This shows again that the total time of �ight
was primarily in�uenced by the geocentric phase.

Another noteworthy thing about the outcome of Powell’s method is that the �nal condi-
tions of the optimization better matched the requirements: the �nal eccentricity was 0.004,
the inclination 90.0◦, and the semi-major axis 0.40AU. The values reported in [Garot, 2006]
for the semi-major axis and the inclination are both of the same order, but the eccentricity
was worse in both cases.

Phase Garot de1 Powell
Inward spiral + 768 826
Circularization
Cranking 861 812
Outward spiral 166 149
Total 1795 1787

Table 8.6 Times of �ight in days for the phases in the heliocentric phase.
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Figure 8.15 Trajectories of the spacecraft and the Moon during the geocentric phase as found using
Powell’s quadratically convergent method.
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Figure 8.16 Trajectory of the spacecraft during the heliocentric phase as found using Powell’s
quadratically convergent method.
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8.7 Conclusions and recommendations for the Solar polar sail
mission

From the optimizations done for this problem, the following can be stated:

• Using particle swarm optimization to optimize the geocentric phase yielded the best
results of all optimizers.

• A 4th order sine polynomial can be used as a �tting function for the pitch angles
as a function of the GTO-orientation, and gives a much better �t than the original
polynomial function.

• The total mission was best optimized using di�erential evolution. This way, an im-
provement of 7.38 [no unit] of �tness value was made possible, which is an improve-
ment of 3.24% over the best result found previously. There is one drawback: this
result required almost thrice as many function evaluations as the original optimiza-
tion. Furthermore,most of the reduction in �tness value was caused by a better timed
geocentric phase.

• Increasing population sizes while keeping the maximum number of iterations the
same tends to improve the results of all optimizers.

• Local optimization using random sampling is not sensitive to the random genera-
tor used: the samples generated using a pseudo-random number generator and the
samples generated using a Sobol-sequence gave comparable results.

• Local optimization using Powell’s method gives (for this problem) results which are
comparable to those found using local optimization by random sampling. It does
however need only a quarter of the number of evaluations.

• Local optimization (using either method) improves the �tness values found.

• Local optimization is a good tool to reduce the violation of constraints; all �nal con-
ditions were better met after using Powell’s method than in any of the other runs.

Also, some possible questions for future research:

• Right now, the maximum population size used was 212 individuals. What happens
if this number is increased even further?

• Can the solution be improved by not using a �t for the pitch angles in the geocentric
phase, and instead letting them be optimized as independent variables?

• Can the use of hybrid algorithms further improve the convergence speed of the op-
timization?
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Optimizer ω [◦] t f [days] ngen neval αE(1) [◦] αE(2) [◦] αE(3) [◦]
optidus 0 276.2 36 2209 28.4 13.6 2.3
optidus-de1 270.5 48 615 28.53 11.52 4.50
optidus-de2 271.0 36 615 27.57 14.86 2.18
optidus-pso 270.9 47 615 24.04 12.80 4.21
optidus-ppo 270.9 30 615 32.19 13.33 5.21
optidus 45 289.9 44 5926 32.2 15.3 2.8
optidus-de1 273.0 16 618 33.58 19.89 2.32
optidus-de2 273.0 32 618 35.46 12.50 7.45
optidus-pso 271.5 39 618 25.28 18.57 7.93
optidus-ppo 271.9 49 615 34.00 13.71 3.16
optidus 90 338.7 20 4949 47.7 16.0 5.2
optidus-de1 328.5 2 688 59.32 3.52 0.00
optidus-de2 328.3 48 688 57.40 0.00 0.00
optidus-pso 328.7 39 656 53.08 27.87 −11.51
optidus-ppo 344.5 42 656 47.76 24.21 8.57
optidus 135 336.5 32 2993 41.6 18.8 5.6
optidus-de1 329.7 0 676 43.60 38.48 11.48
optidus-de2 328.2 30 676 56.25 6.04 0.00
optidus-pso 329.2 28 640 44.97 10.47 23.92
optidus-ppo 344.7 48 640 47.83 18.35 3.47
optidus 180 319.4 36 5632 39.0 20.3 9.6
optidus-de1 325.0 15 638 34.15 17.44 8.59
optidus-de2 324.6 40 638 38.56 19.94 4.93
optidus-pso 324.3 46 635 37.05 19.75 5.76
optidus-ppo 324.5 50 635 37.23 20.23 5.32
optidus 225 306.0 50 4329 31.3 14.8 4.4
optidus-de1 301.6 11 623 28.96 13.87 0.00
optidus-de2 301.5 30 623 36.31 11.04 3.08
optidus-pso 301.5 49 616 26.99 13.64 3.24
optidus-ppo 300.4 11 616 42.45 10.95 −4.69
optidus 270 293.7 34 3039 27.1 12.8 3.3
optidus-de1 284.9 5 615 29.00 12.60 11.02
optidus-de2 284.0 38 615 36.71 12.36 4.55
optidus-pso 284.7 50 614 22.31 19.33 2.30
optidus-ppo 284.2 43 614 20.99 12.34 2.45
optidus 315 281.5 50 5713 29.2 12.9 3.7
optidus-de1 279.1 6 615 27.65 18.61 0.00
optidus-de2 277.9 44 615 23.88 13.36 3.57
optidus-pso 277.3 45 614 30.84 9.68 2.77
optidus-ppo 277.4 50 614 32.08 11.09 2.01

Table 8.7 Results of the optimization of the geocentric phase of the solar polar sail mission using
several optimizers. optidus is the original version used by [Garot, 2006].
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Chapter 9

Third Global Trajectory
Optimization Competition

This chapter contains an overview of the third Global Trajectory Optimization Competition
(gtoc3) which was held at the end of 2007. A team from Delft also participated, but was
not able to come up with a satisfactory result. This chapter uses some of the results which
the other teams submitted, and tries to �nd a good solution using de and Powell’s local
optimizer.

9.1 Introduction to GTOC

The Global Trajectory Optimization Competition (gtoc) is a series of worldwide com-
petitions in which the goal is to �nd the best trajectory for a given problem. The �rst
competition was organized in 2005 by the Advanced Concepts Team at ESA, and has since
then been held annually by the winners of the previous edition [GTOC1, 2005]. The �rst
edition was won by the Outer Planets Mission Analysis Group of the Jet Propulsion Labo-
ratory, who organized the second contest in 2006 [GTOC2, 2006]. In December 2007, the
third edition was organized by the Dipartimento di Energetica of the Politecnico di Torino
[Casalino, 2007]. This competition was won by CNES, who have organized the fourth edi-
tion, which took place in March 2009, and which was won by a team from Moscow State
University [GTOC4, 2009].

In each of the 4 gtoc contests, the goal is to optimize a proposed space mission, while
adhering to the given boundary conditions. For example in gtoc2, the goal was to optimize
a multiple asteroid rendezvous mission. The participants were given four groups of asteroids,
and the trajectory had to visit one asteroid from each of these four groups. The spacecraft
to visit these asteroids can only use a low-thrust engine for its propulsion. This problem has
been analyzed in detail in [Evertsz, 2008].

9.2 The GTOC3 problem

In gtoc3, a mission similar to the one from gtoc2 has to be optimized: this time, three
asteroids from one group of 140 asteroids have to be visited, and the spacecraft must return
to Earth at the end of the mission. At each of these three asteroids, the spacecraft should
stay for a period of at least 60 days, but preferably longer: the performance metric of each
solution is a weighted sum of the �nal mass of the spacecraft and the minimum stay time at
the three asteroids (see (9.1)). Again, this mission must make use of a low-thrust engine, but
it may also use gravity assists from the Earth. [Casalino et al., 2007] is the o�cial problem
description for gtoc3, and some parts will be repeated here for clarity.

97



98 9. third global trajectory optimization competition

Symbol Description [unit]
mi Initial mass 2000 [kg]
Isp Speci�c impulse 3000 [s]
Tmax Maximum thrust 0.15 [N]

Table 9.1 GTOC3 Spacecraft properties

The launch is at the Earth in the MJD interval [57388,61041].1 After launch, the
spacecraft can be given a hyperbolic excess velocity of up to 0.5 km/s, in any direction.
From then on, only electronic propulsion and gravity assists can be used to in�uence the
orbit of the spacecraft.

The spacecraft has to rendezvous with 3 asteroids, while staying at each asteroid for a
minimum duration of 60 days. Finally, the spacecraft must return to Earth within 10 years
after departing. During this �ight, the spacecraft is allowed to perform Earth �ybys, when
it is at a minimal distance of 6871 km from the center of the Earth.

The properties of the spacecraft and its engine are given in table 9.1.
The objective function of the optimization is given by the nondimensional quantity J:

J =
m f

mi
+K

min j=1,3(τ j)
τmax

(9.1)

where mi and m f are the spacecraft initial and �nal mass, respectively; τ j, with j = 1,3,
represents the stay-time at the j-th asteroid in the rendezvous sequence and min j=1,3(τ j) is
the shortest asteroid stay-time; τmax = 10 years is the available trip time, and K is a weighting
factor set to K = 0.2.

For the Earth and all asteroids, a set of Kepler elements are given, and these bodies are
assumed to follow elliptical orbits without any perturbations.

Finally, the conditions for rendezvous are also prescribed: the spacecraft is considered
to be in the same orbit as the asteroid when the position di�erence between the spacecraft
and the asteroid is less than 1000 km, and when the speed di�erence is less than 1 m/s.

The orbits of these asteroids and that of the Earth are shown in �gure 9.1; the semi-
major axis of these asteroids vary from 0.90 to 1.10 AU, the inclination from 0 to 10◦ and
the eccentricity from 0.0 to 0.9 (with 133 out of 140 asteroids having an eccentricity below
0.6).

9.3 Solutions of the GTOC3 problem

Almost all teams attacked this problem by splitting the problem in two subtasks: the �rst
task was to identify good sequence(s) of asteroids to visit. This was generally done by
determining the required ∆V for trajectories using high thrust manoeuvres between using
Lambert targeting. Some teams used deep space manoeuvres and reduced the number of
possible combinations by only considering a subset of the asteroids, based of their orbital
elements.

The second step then was to �nd the best low-thrust trajectory for a given sequence,
mostly done using a local optimizer.

In the end, the best solution was found by the team from CNES. Their solution used
the sequence E E E 49 E 37 85 E E - their spacecraft was launched from Earth, then passed
it two times for gravity assists, visited asteroid number 49, once again did a �yby past Earth,
then visited asteroids 37 and 85, did another �yby, and returned home. This resulted in a
�nal mass m f = 1733[kg] with a minimum stay-time τmin = 60[days].

1This MJD interval corresponds to the interval 2016-01-01 and 2026-01-01.
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Figure 9.1 Orbits of the asteroids and Earth around the Sun, as given in the gtoc3 problem. The
asteroids chosen by the winning team (CNES, using 49, 47, 85) and the asteroids used in
the best solution without �ybys (88, 19, 49) have been highlighted.

The �rst three runners-up visited the same sequence of asteroids, but had variations in
the gravity assists. There were only small di�erences in the �nal mass, with #4 having a �nal
mass m f = 1717[kg], which is less than 1% di�erence. The top four all had τmin = 60[days].

The �rst team not making use of gravity assists was lead by the University of Glasgow,
and ranked 10th. They used the sequence E 88 19 49 E. Their �nal objective results were
m f = 1606[kg] and τmin = 62[days].

The Delft University’s team submitted a solution using the sequence E 96 122 85 E,
with a �nal mass m f = 1130kg stay time τmin = 94d.

This solution was produced in a two step-process: �rst, the feasible asteroids to visit
where selected on the basis of their orbital elements. Next, the ∆V needed for impulsive
transfers were calculated using galomusit, and a further reduction in the set of feasible
asteroids was made. Finally, low-thrust orbits between these asteroids where determined
using a de algorithm and a (rather slow) local (steepest descent) optimizer.

The resulting solution was not ranked because it violated the rendezvous constraints.
For example, the arrival at asteroid 122 in leg 2 had a large velocity error, as can be seen in
�gure 9.3. Figures 9.2-9.5 contain plots of the 4 legs of the solution which was submitted.

A complete overview of the results submitted for gtoc3 can be found at the competi-
tion’s website [Casalino, 2007].
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Figure 9.2 Leg 1 of the original TUDelft gtoc3 solution (Earth to asteroid 96).
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Figure 9.3 Leg 2 of the original TUDelft gtoc3 solution (asteroid 96 to 122).
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Figure 9.4 Leg 3 of the original TUDelft gtoc3 solution (asteroid 122 to 85).
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Figure 9.5 Leg 4 of the original TUDelft gtoc3 solution (asteroid 85 to Earth).
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9.4 Simulation Model

9.4.1 First order di�erential equations

The spacecraft is only subjected to two forces: the gravitational pull by the Sun and the
thrust T generated by the engine. Thus, the second derivative of the position r of the
spacecraft is given by the following equation:

r̈ =−µS
r
|r|3 +

T
m

(9.2)

In this equation, m is the instantaneous mass of the spacecraft, and µS ≈ 1.3271 ·1011kg3 s−2

the Sun’s gravitational parameter.
The spacecraft’s mass decreases as fuel is consumed, and the fuel �ow depends on the

magnitude of the thrust:

ṁ =
|T|

g0Isp
(9.3)

In this equation, g0 = 9.80665ms−2 is the standard gravity acceleration and Isp the speci�c
impulse of the spacecraft’s engine, having a value of 3000s.

To be able to generate a trajectory, the state variables must be integrated. In this case,
this is done using a �rst order di�erential equation using the state derivatives in the form

ẋ = f(t,x)

The state vector x can be de�ned as

x = (x y z ẋ ẏ ż m)T

. The coordinates and velocities are given in the J2000 heliocentric reference system.
The derivatives of this state vector are given by a set of �rst-order di�erential equations

following from (9.2) and (9.3):

ẋ =



ẋ
ẏ
ż
ẍ
ÿ
z̈
ṁ


=



ẋ
ẏ
ż

−µS
x
r3 + Tx

m
−µS

x
r3 + Ty

m
−µS

x
r3 + Tz

m|T|
g0Isp


(9.4)

in which x, y, z are the components of r, Tx, Ty and Tz are the components of the thrust
vector T.

9.4.2 Integrator

The used integrator is a �fth-order Runge-Kutta integrator with adaptive stepsize h. The
general form of a �fth-order Runge Kutta formula is: [Press et al., 2007]

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6) (9.5)
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i ai bi j ci c∗i
j 1 2 3 4 5

1 37
378

2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
595

13525
55296

5 1 −11
54

5
2 −70

27
35
27 0 277

14336
6 7

8
1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table 9.2 Cash-Karp parameters for embedded Runge Kutta method, [Press et al., 2007]

with k1 to k6 are given by

k1 = h f (t,yn)
k2 = h f (t +a2h,yn +b21k1)
k3 = h f (t +a3h,yn +b31k1 +b32k2)

...

k6 = h f (t +a6h,yn +b61k1 + . . .+b65k5)

(9.6)

The adaptive stepsize is determined by estimating the error of each integration step using
an embedded fourth-order formula:

y∗n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 +O(h5) (9.7)

In these equations, ai, bi j, ci and c∗i are constants. [Press et al., 2007] recommends the use
of Cash-Karp parameters, which are repeated in table 9.2. These values have been used.

Now, the di�erence between these to integrations is an estimate of the error:

∆ = yn+1− y∗n+1 =
6

∑
i=1

(ci− c∗i )ki +(h−1)O(h5) (9.8)

This term can be used to estimate the required stepsize to integrate with a certain error.
This desired error is the scale vector xscale, and is calculated as the product of a tolerance ε

(which can be chosen by the user) and the absolute values of the terms in the state vector:

xscale = |x|ε
To prevent problems with near-zero values of terms in x, which would cause the stepsize
to become too small, [Press et al., 2007] recommends adding the product of hf to this term,
giving the following expression for the scale vector:

xscale = |x|ε+h|f|
The choice of the value of ε was based on the work done in [Garot, 2006]. Even

though this is a problem-dependent choice, the orbits used are quite similar: the orbit used
for determining the optimal value of ε was an elliptical orbit with perihelion at 0.4AU and
aphelion at 1.0AU, whereas the asteroids to be visited by the gtoc3 spacecraft orbit the Sun
in (elliptic) orbits with semi-major axes between 0.8 and 1.2AU.

In [Garot, 2006] it was found that ε = 10−9 resulted in a maximum error of 3.74 km
for the semi-major axis, when integrating the motion of the spacecraft over a period of 10
years. 3.74km might seem to be a big error, but the constraints allow for an error of 1000
km, so this is an acceptable compromise between error and computation time. Note that
for other values of ε, the magnitude of the error scales approximately linear with this local
tolerance.
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Figure 9.6 De�nition of the thrust angles and transformation matrix for the thrust vector from the
spacecraft oriented frame to the heliocentric frame.

9.4.3 Thrust direction parametrization

The thrust vector T used in the previous section is written in the inertial reference frame,
but according to [Yam and Longuski, 2006] it is desired to specify the thrust using angles in
reference frame coupled to the spacecraft. Figure 9.6 shows how this coupling is made.

In this case, a reference frame coupled to the position and velocity vectors of the space-
craft relative to the Sun is used, of which the axes are de�ned by:

e1 = r̂

e3 = r̂× ˆ̇r
e2 = e3× e1

(9.9)

The thrust vector in this reference frame Tsc is determined by two angles α and β which
determine the direction, and the magnitude Tmag:

Tsc = Tmag

cosβcosα

cosβsinα

sinβ

 (9.10)

Now the thrust vector in the inertial reference frame is calculated with:

T = [e1e2e3]Tsc (9.11)

9.4.4 Thrust magnitude parametrization using Chebyshev polynomials

In the Chebyshev formulation, both the magnitude and direction angles of the thrust are
modelled using Chebyshev polynomials. This is done to have a smooth, continuous thrust
pro�le with a low number of variables.

This, then, gives the following formula for the magnitude of the thrust over time:

Tmag(x) = Tmax

k

∑
i=0

ciTi(x) (9.12)

where Ti is the ith order Chebyshev polynomial, which can be de�ned using:

T0(x) = 1 (9.13)

T1(x) = x (9.14)

Tn(x) = 2xTn−1(x)−Tn−2(x) (9.15)
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Figure 9.7 Chebyshev polynomials

The formulas for the thrust angles are similar:

α(x) = π

k

∑
i=0

aiTi(x) (9.16)

β(x) = π/2
k

∑
i=0

biTi(x) (9.17)

More information on Chebyshev polynomials can be found in [Demeyer, 2007, Ap-
pendix A] and [Press et al., 2007]. The �rst 6 Chebyshev polynomials are plotted in �g-
ure 9.7.

Using these polynomials in the thrust model is done by putting the ck terms in the
solution vector, instead of putting in the raw values of the thrust magnitude and direction
at certain moments in time.

A set of 5th-order Chebyshev polynomials have been used in the current implementa-
tion; no research has been done to identify the optimal number of parameters.

Of course, care has to be taken that the magnitude of the thrust does not exceed the
maximum allowed thrust. This is done by clipping the thrust to the maximum allowed
value if it is too high.

9.4.5 On/o� switching

[Yam and Longuski, 2006] suggests using on/o� switching for the thrust arcs, to be able to
coast. This has been implemented by adding a list of switching moments to the solution
vector. During the execution of the objective function, at each integration step it is checked
if the thrust is in the on state, and only then is it allowed to thrust. Five switching moments
are used in this case.

Because the thrust must be non-zero when the spacecraft leaves the Earth or an asteroid,
the thrust is put into the on state at the start of a leg. After the �rst time interval, it is the
deactivated. At the start of the third interval, it is reactivated again, and so on, until after the
�fth the engine is shut down again.

At this moment, the spacecraft should be near the target asteroid: because the rendezvous
conditions prescribe that the position and velocity of both the spacecraft and the target body
should match, the spacecraft will only stay in the same orbit when no thrust is applied.
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9.5 Launch conditions

9.5.1 First leg

The spacecraft has a launch date t0 which lies between MJDs 57388 and 61041; at some
moment between these dates, it is launched with a hyperbolic excess velocity V0 with a
maximum of 0.5 [km/s].

Because the direction of this heliocentric velocity can be chosen by the optimizer, two
angles α0 and β0 are introduced to control this direction. By applying the same transfor-
mation as for the thrust (see �gure 9.6, but this time using the velocity and position of the
Earth as the basic velocity, the direction of the hyperbolic excess velocity can be determined
in the heliocentric reference system.

9.5.2 Other legs

For the remaining legs, instead of an absolute date, a stay-time is used. After the spacecraft
has been observing the asteroid for some time, the engine is started again, and the next leg
begins. Because no excess velocity can be given at this stage, the solution vector does not
contain the three terms determining the excess velocity.

9.6 Solution vector

The complete solution vector for a leg has been described in the previous sections; it contains
the following 24 terms:t0 α0 β0 V0︸ ︷︷ ︸

Initial velocity

a1 a2 a3 a4 a5︸ ︷︷ ︸
Chebyshev coe�cients α

b1 b2 b3 b4 b5︸ ︷︷ ︸
Chebyshev coe�cients β

c1 c2 c3 c4 c5︸ ︷︷ ︸
Chebyshev coe�cients T

t1 t2 t3 t4 t5︸ ︷︷ ︸
Switching moments


For the subsequent legs, the parameters describing the initial velocity can be left out, so only
21 terms are left to optimize in that case.

9.7 Constraint handling

gtoc3 was quite di�cult to optimize; during the �rst attempts in 2007 the big issue was
in satisfying the constraints for rendezvous. Because it was impossible to �nd solutions
satisfying these constraints, use was made of augmented objective functions. This way, non-
satisfying solutions are allowed to exist, but selective pressure tries to improve the solutions
so that the violations are reduced from the solution.

The violations of the individuals are given as ∆r and ∆v, which are the position and
velocity of the spacecraft relative to the target body, at the end of the leg. These are satis�ed
if ∆r < 1000 [km] and ∆v < 0.001 [km s−1].

Several methods to augment the �tness function with these violations have been tested;
the simplest one is a weighted sum of the deviations (with static weights):

F (i) = f (i)+w1 max(∆r−1000,0)+w2 max(∆v−0.001,0) (9.18)
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The second one used the Euclidian distance of the (scaled) deviations:

F (i) = f (i)+
√

(w1 max(∆r−1000,0))2 +(w2 max(∆v−0.001,0))2 (9.19)

Also, a product-form was used:

F (i) = f (i)+(1+w1 max(∆r−1000,0))∗ (1+w2 max(∆v−0.001,0)) (9.20)

These three forms did not lead to satisfying results: in all three cases, it was impossible to
�nd a solution satisfying either of these constraints.

For that reason, the optimization was also done using multi-objective optimization
(moo). Both violations were considered as objectives, and the optimizer was allowed to
run with this, so the augmented objective functions are given by:

~F (i) =

 f (i)
max(∆r−1000,0)
max(∆v−0.001,0)

 (9.21)

This also did not result in satisfying solutions, but the results where found using less function
evaluations.

Note that this moo variant cannot be used for local optimization using Powell’s method,
because an actual �tness value is used. In this case, the third formulation was used,with w1 =
1 and w2 = 1000000. This resulted in a solutions which satis�ed the velocity constraint,
and still had a position error of approximately 160 · 103[km]. As an experiment, w2 = 0
was also optimized, and this did yield a solution which satis�ed the position constraint,
but the velocity error increased from 40.1 to 46.4ms−1. For that reason, consecutive local
optimization runs for each constraint where not considered.

9.8 Optimization

9.8.1 Global optimization

The global optimization was done using the optidus implementation of de, using the
scheme Tasoulis6. As a �rst attempt, only the �rst leg of the proposed trajectory was done,
from the Earth to asteroid 88, the �rst asteroid targeted by the highest ranking solution not
making use of gravity assists.

The population size was set to 100 individuals, and the population was initialized with
100 randomly chosen solutions, allowed to violate the rendezvous distance constraint by
3 ·106.

However, after numerous attempts, no solution matching the constraints were found
using de. The best solutions that were found violated one or both constraints. The best
solution (in terms of augmented �tness value) is given in table 9.3.

9.8.2 Local optimization

Only at this moment, a problem in the code was found; because an adaptive stepsize was
used, the simulation �ew past the asteroid at the end of the run. This was �xed by testing if
the end of the simulation was closer than the previous stepsize, and if so, manually calling a
non-adaptive version of the integrator.

After applying this �x, no time was left for doing another de run. However, the best
global solution was optimized using Powell’s method. This was done three times: once for
only satisfying the positional constraints, once for satisfying the velocity constraint, and once
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Parameter Value found by de Powell 1 Powell2 Powell 3
t0 [mjd] 59456.68 59455.72 59456.83 59456.82
α0 [rad] −0.31336 −0.22437 −0.32780 −0.32402
β0 [rad] 1.39964 1.39942 1.39957 1.39961
V0 [km/s] 0.366 0.36465 0.36627 0.36627
a1 [-] 0.79943 0.79613 0.79868 0.79919
a2 [-] −0.58037 −0.58037 −0.58039 −0.58038
a3 [-] −0.41105 −0.41104 −0.41155 −0.41111
a4 [-] 0.60793 0.60787 0.60793 0.60793
a5 [-] 0.52894 0.52587 0.52594 0.52594
b1 [-] −0.57154 −0.56802 −0.57161 −0.57154
b2 [-] 0.74460 0.75138 0.74343 0.74350
b3 [-] −0.23721 −0.23266 −0.23810 −0.23753
b4 [-] −0.86592 −0.86839 −0.86597 −0.86592
b5 [-] −0.85234 −0.87357 −0.85282 −0.85234
th1 [-] 0.54810 0.54859 0.54795 0.54810
th2 [-] 0.86279 0.85368 0.86149 0.85698
th3 [-] 0.12228 0.11981 0.12215 0.12228
th4 [-] −0.07070 −0.06932 −0.07108 −0.07068
th5 [-] 0.02496 0.02658 0.02458 0.02496
t1 [days] 192.89 193.23 192.82 192.89
t2 [days] 19.16 19.12 19.18 19.17
t3 [days] 177.63 177.63 177.63 177.63
t4 [days] 21.28 21.28 21.28 21.28
t5 [days] 27.94 27.94 27.94 27.94
neval - 7867 3031 12980
mi−m f [kg] 69.915 69.649 69.881 69.712
∆r [km] 157598 < 1000 169131 159577
∆v [m/s] 40.1 46.4 < 1 < 1

Table 9.3 Solution vector, number of evaluations, fuel consumption and constraint violation of the
best solution from the global and local optimizations for gtoc3.

for satisfying both constraints. (This was done by ignoring the constraint violations not to
be satis�ed in the augmented objective function.)

The result of these optimizations can also be found in table 9.3. As can be seen, opti-
mizing for one of both constraints was successful, yet trying to match both constraints did
not succeed.

The trajectory of the solution found using the global optimizer and the solution from
Powell 3 are plotted in �gures 9.8 and 9.9.

Note that the local optimization only considered 1 individual. The fuel consumption
(which is the term in�uencing the �tness function) is not changed considerably by the local
optimization. For that reason, doing a global optimization with loosened constraints and
assuming that a local optimizer will �nd a solution which does satisfy the original constraints
seems to be a working method.

Unfortunately, only the �nal mass (after the complete mission has ran) has been pub-
lished, so it is not possible to compare the found result to the competition.
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9.9 Conclusions and recommendations for gtoc3

Conclusions:

• A global optimizer using de is unable to satisfy the constraints for the gtoc3 mission
when modelling the thrust pro�le using Chebyshev polynomials and on/o� switch-
ing.

• Using moo to optimize the satisfaction of the constraints for the gtoc3 mission yields
better results than augmented �tness functions which are weighted sums.

• A local optimizer improves the violations of the constraints, but still was unable to
satisfy both constraints of the �rst leg of the gtoc3 mission.

• For the gtoc3 mission, running a local optimizer does not have a signi�cant impact
on the original �tness value, or the values inside the solution vector. Therefore, doing
a global optimization with loosened constraints to explore the solution space is a good
strategy, as the found solutions can be patched to satisfy the constraints better.

Recommendations:

• Investigate whether better solutions can be acquired by having the legs consist of
multiple thrusting arcs, each with separated Chebyshev polynomials.

• Investigate other thrust modeling options; Chebyshev polynomials of 5th order might
not give enough control. Also, increasing the number of on/o� switching moments
might improve the optimization.

• Investigate if alternative thrust modelling options give better results.
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Figure 9.8 Optimal trajectory of the �rst leg for gtoc3 found using de.
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Figure 9.9 Optimal trajectory of the �rst leg for gtoc3 found using de and a successive local
optimization using Powell’s method.



Chapter 10

Conclusions and
recommendations

10.1 Ful�llment of objectives

As stated in the introduction, the objectives of this thesis work are:

1. This thesis work will try to improve the performance of optidus by implementing
pso and de.

2. By making use of parallel computation, calculation time on systems with multiple
cores can be reduced.

3. This improvement will be benchmarked against historical results of the Solar polar
sailing mission from [Garot, 2006].

4. Also, an attempt will be made to �nd a solution to the third gtoc problem which
does satisfy the constraints.

The �rst three objectives have been ful�lled; the �nal objective has been ful�lled partially.

10.2 Conclusions

Regarding the �rst objective, a new version of optidus has been developed, which is ca-
pable of doing pso and de optimizations, both using single as well as multi objective func-
tions. There is also support to do local optimizations using Powell’s quadratically convergent
method.

Regarding the second objective, the use of parallel programming vastly improves the
performance of the optimizer; by using the OpenMP library, it was possible to write an
optimizer in which the number of objective function evaluations per second scales almost
linearly with the amount of cores allocated. This does come at a cost: the objective function
must be written in the form of pure functions, which do not have global state. This might
pose a strain on the programmer.

Regarding the third objective, improving the optimization of the solar polar sailing
mission, the following can be concluded:

• Using particle swarm optimization to optimize the geocentric phase yielded the best
results of all optimizers.

• A 4th order sine polynomial can be used as a �tting function.

111



112 10. conclusions and recommendations

• The heliocentric phase was better optimized using di�erential evolution.

• Increasing population sizes while keeping the maximum number of iterations the
same tends to improve the results of all optimizers.

• Local optimization using random sampling is not sensitive to the random generator
used: solutions sampled using numbers from a uniform random number generators
and solutions sampled using numbers from Sobol sequences where rather similar.

And for gtoc3, the following:

• A global optimizer using de is unable to satisfy the constraints for the gtoc3 mission
when modelling the thrust pro�le using Chebyshev polynomials and on/o� switch-
ing.

• Using moo to optimize the satisfaction of the constraints for the gtoc3 mission yields
better results than augmented �tness functions which are weighted sums.

• A local optimizer improves the violations of the constraints, but still was unable to
satisfy both constraints of the �rst leg of the gtoc3 mission.

• For the gtoc3 mission, running a local optimizer does not have a signi�cant impact
on the original �tness value, or the values inside the solution vector. Therefore, doing
a global optimization with loosened constraints to explore the solution space is a good
strategy, as the found solutions can be patched to satisfy the constraints better.

10.3 Recommendations

Regarding the �rst objective, implementing sa and hybrid optimizations might improve
the software package even further. Making these methods available in the form of a C++
library will also prove helpful.

Regarding the second objective, it is interesting to investigate if the use of the forall
statement available in Fortran95 instead of OpenMP is easier on the programmer; by having
the compiler check for purity of functions, potential bugs can be identi�ed. Support in the
GCC Fortran compiler is bad, but other compilers might give much better results.

Regarding the Solar polar sailing mission:

• Right now, the maximum population size used was 212 individuals. What happens
if this number is increased even further?

• Can applying a local optimizer like Powell’s method be applied as a �nal step?

• Can the solution be improved by not using a polynomial �t for the pitch angles in
the geocentric phase, and instead letting them be optimized as independent variables?

Recommendations regarding gtoc3:

• Investigate whether better solutions can be acquired by having the legs consist of
multiple thrusting arcs, each with separated Chebyshev polynomials.

• Investigate other thrust modeling options; Chebyshev polynomials of 5th order might
not give enough control. Also, increasing the number of on/o� switching moments
might improve the optimization.

• Investigate if alternative thrust modelling options give better results.

And a last but not least, a �nal word of advice: do not start working at your job before all
thesis work has been done, as this has a really bad impact on the �nal convergence speed of
your thesis.
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Appendix A
Test functions

This chapter lists some of the test functions encountered in other literature, but not used
directly in this thesis work.

A.1 De Jong’s functions

The De Jong functions are given in [De Jong, 1975,appendix A] and form a set of 5 functions.
They are considered a standard set of test functions, and are used throughout the literature
as such. An examples of usage includes [Storn and Price, 1997]. They are de�ned as follows:

A.1.1 De Jong F1

The F1 function is a 3-dimensional parabola, and as such continuous, convex, unimodal and
low-dimensional. It has a mininum of 0 at the origin.

f1 =
3

∑
i=1

x2
i (A.1)

with boundaries −5.12≤ xi ≤ 5.12 and resolution ∆xi = 0.01.

A.1.2 De Jong F2, aka Rosenbrock

The F2 function is a 2-dimensional function that is continuous, non-convex, unimodal. It
has a minimum of 0 at (1,1). This function is also appears as the Rosenbrock function in
the literature.

f2 = 100(x2
1− x2)2 +(1− x1)2 (A.2)

with boundaries −2.048≤ xi ≤ 2.048 and resolution ∆xi = 0.001.

A.1.3 De Jong F3

The F3 function is a 5-dimensional, piece-wise constant, discontinuous unimodal de�ned
as follows:1

f3 =
5

∑
i=1

�oor(xi) (A.3)

with boundaries −5.12≤ xi ≤ 5.12 and resolution ∆xi = 0.01.

1 [De Jong, 1975] uses the notation [xi] to denote the operator that represents the greatest integer less than
or equal to xi. In modern programming languages, this function is named floor, which is the notation used in
this report.
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A.1.4 De Jong F4

The F4 function is a 30-dimensional continuous, convex, unimodal function with added
Gaussian noise, de�ned as:

f4 =
30

∑
i=1

ix4
i +gauss(0,1) (A.4)

with boundaries −1.28≤ xi ≤ 1.28 and resolution ∆xi = 0.01.

A.1.5 De Jong F4, modi�ed

[Storn and Price, 1997] gives a modi�ed version of this function, in which the Gaussian
random noise is replaced by a random variable from a uniform function, and this noise is
then placed inside the summation loop, so the modi�ed f4 then looks like:

f4m =
30

∑
i=1

(ix4
i +uniform(0,1)) (A.5)

A.1.6 De Jong F5

The F5 function is a 2-dimensional continuous function with 25 local minima. The global
minimum is found at coordinates (a11,a21). The function is de�ned by:

1
f5

= 1
K +∑

25
j=1

1
f j(x)

(A.6)

where f j(x) = c j +∑
2
i=1(xi−ai j)6

where the constants ai j are given by the elements of matrix A:

A =
[−32−16 0 16 32 −32−16 . . . 0 16 32
−32−32−32−32−32−16−16 . . . 32 32 32

]
and c j = j and K = 500.
The boundaries are given by −65.536≤ xi ≤ 65.536 and the suggested resolution is given
as ∆xi = 0.001.

A.2 Corana’s parabola

This function is a bimodal function with 4 inputs. It is de�ned as:

f =
3

∑
j=0

{
0.15(z j−0.05sgn(z j))2d j if |x j− z j|< 0.05
d jx2

j otherwise
(A.7)

where sgn is the sign function,2 and

z j = 0.2sgn(x j)
[∣∣∣ x j

0.2

∣∣∣+0.49999
]

and

d j = 1,1000,10,100

and boundaries x j ∈ [−1000,1000] for j = 0,1,2,3. It has a lot of local minima near the
global minimum, so downhill optimizers will get captured in those holes.

The minimum f6 = 0, when |x j| < 0.05. This function is mentioned in [Storn and
Price, 1997].

2 The sign function maps negative values to −1, is 0 for 0 and maps positive numbers to 1
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A.3 Zimmermann’s problem

Zimmermann’s problem is de�ned in [Storn and Price, 1997] as �nding the minimum for
the function:

f (x) = 9− x0− x1 (A.8)

constrained by

(x0−3)2 +(x1−2)2 ≤ 16 (A.9)

x0x1 ≤ 14 (A.10)

x0,x1 > 0 (A.11)

The optimum is located at a corner of the (constrained) search space, namely f (7,2) = 0.
The fact that this is at the corner of a search space, makes it di�cult.
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Appendix B
Numerical approximation of

derivatives

The calculation of numerical derivatives is a delicate problem, since (machine) rounding
errors occur if the stepsize is too small, and no real derivatives are calculated if the stepsize
is too big.

According to the listing in [Press et al., 2007, section 10.9.1], the stepsize should be equal
to the square of the machine precision. Then, the gradient of a function can be calculated
as in listing B.1.

EPS = 1e−8 # s q r t ( machine p r e c i s i o n ) , f o r IEEE−754 d o u b l e s
d e f num_der iv ( x , f unc ) :

# c a l c u l a t e t h e l o c a t i o n s o f t h e p o i n t s x+h and x−h e x p l i c i t l y ,
# so we can d i v i d e by t h e i r d i f f e r e n c e

h = max ( EPS ∗ a b s ( temp ) , EPS )
x p l u s = x + h
xminus = x − h

f p l u s = func ( x p l u s )
fm inu s = func ( xminus )

r e t u r n ( f p l u s − fm inu s ) / ( x p l u s − xminus )

Listing B.1 Calculating the gradient numerically in Python
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Appendix C
Parallel Processing in Fortran

using OpenMP

The frequency at which people predict the end of Moore’s law
doubles every 18 months. – Lerc1

This chapter contains some theoretical backgrounds of parallel programming, and practical
guidelines for writing Fortran algorithms that can be ran on more than one processor.
Making use of more than one processor can give a large performance boost for population-
based evolutionary optimization.

C.1 What is parallel processing, and why is it needed?

Parallel processing is programming technique to make use of more than one processor at
the same time. In general, this is done by splitting the workload into several work units, and
then distributing them over the available processors.

Recent processors come in the dual core variant: they contain more than one core. Each
core in a processor is able to process instructions independently of the other core, so a
processor with more 2 cores can run 2 programs at the same time.2

If 2 cores is not enough, quad core chips are also available. In these chips, 2 processors are
combined on one piece of silicon, giving a total of 4 cores.3

Finally, if that still is not enough power, it is possible to put more than 1 chip inside a
computer, or to build a cluster: a network of several computers which are used to perform
calculations. No use of clusters was made for this thesis work.

[Patterson, 2006] lists some of the reasons why parallel processing is necessary. The most
important one is that the limits for power dissipation per chip have been reached.

Because power dissipation is roughly proportional to the square of the operating fre-
quency of a processor, it is desirable to lower this frequency. However, this also lowers the
amount of operations which can be performed. If one wants to keep the same amount or
grow the number of operations, this means more processors are needed.

In numbers: the number of operations per second (ops) by a processor with c cores
running at a frequency f roughly equals

ops = c f /k1 (C.1)

1Found on http://www.reddit.com/r/programming/comments/8i9h7/someone_
has_told_me_that_this_may_take_several/c09e9z0

2The two cores do share cache memory, and memory bandwidth, so for memory intensive workloads (like
video encoding or encryption) the performance gain will probably be less than a factor two.

3These quad core chips really contain two processors, each with its own cache memory. Memory bandwidth
is shared between the processors though.
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in which k1 is a parameter which represents the number of clock cycles used per operation.
Advances in chip technology such as increasing the cache size will make this number smaller.

One of the metrics of processor power usage is the “speed-power ratio”, rs/p, which is
usually given in [MHz/W]. The total dissipated power (tdp) for a processor operating at a
frequency f is given by:

tdp = c f rs/p (C.2)

[Wikipedia, 2008a] lists values for rs/p for a wide range of processors. As can be seen, on that
page, a modern chip of the Core 2 Duo variant has a rs/p of approximately 100, whereas
an older chip, the classical Pentium, only reaches 10. This increase can be attributed to
improvements in chip design and manufacturing.

However, a Core 2 Quad chip running at the same frequency as the Core 2 Duo can
reach up to 130.4 This means that it can execute 30% more instructions at the same heat
cost. This shows that the best way to improve processing power is by going the multi-core
way.

At the time of writing (Q3 2008), according to [Tweakers.net, 2008], a standard system
has a single processor with 2 cores, and systems with a single processor with 4 cores are
becoming common. In high end workstations, two processors with 4 cores each can be
�tted, giving a total of 8 cores available for performing calculations. Thus, the trend is
clearly to increase the number of cores avaible, instead of increasing the processing speed
of individual cores. Not making use of these multi-core systems would be a big waste of
resources.

C.2 Multithreaded Fortran using OpenMP

One programming interface to parallel processing in Fortran is available in most compilers,
namely OpenMP. OpenMP is an open industry standard and is widely supported: it can be
used with (amongst others) gfortran5, IBM’s XL Fortran compiler6 and the Intel Fortran
compiler7. The homepage for OpenMP is the website http://openmp.org/, where
the standard and reference documentation can be found.

When a problem is to be run in parallel, it is necessary to split the problem into several
independent sub-problems, which can then be solved in parallel. An example can be found
in the pso implementation: adjusting the speed and position of each particle and the subse-
quent calculation of the �tness is only dependent on the particle itself and the position of
the best particle in the swarm ever, which does not change during a generation.

This means that each particle forms its an independent work packet. By distributing
these work packets over the cores, the work can be executed in parallel, leading to substantial
reduction of the time needed to run an optimization.

A trivial example of a loop which can be run in parallel is given here:

PROGRAM d e m o _ m u l t i t h r e a d i n g
!$OMP PARALLEL DO

DO i = 1 , 4
WRITE ( ∗ ," ( I 2 ) " ) , i

END DO
!$OMP END PARALLEL DO

4The cited values for the C2D/C2Q chip are from the Wolfdale-6M(E0) chip family; this means they share
the same chip design and manufacturing process.

5http://gcc.gnu.org/fortran/
6http://www.ibm.com/software/awdtools/fortran/
7http://www.intel.com/cd/software/products/asmo-na/eng/compilers/

282048.htm

http://openmp.org/
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http://www.ibm.com/software/awdtools/fortran/
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/282048.htm
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END PROGRAM

The lines starting with !$OMP are a signal to the compiler that OpenMP code is to be
found here. However, if OpenMP support is absent, the lines starting with !$OMP are seen
as a comment. In this case, the compiler is told that the DO loop may be run in parallel.
It might split the problem in two parts, such that on one core, the loop is running for i =
1,2 and on another core, the loop is running for i=3,4.

For a complete introduction to OpenMP, please see [Chapman et al., 2007].

C.3 Performance caveats in a multithreaded environment

Under some circumstances, running a multithreaded version of an optimization can be
slower than the singlethreaded version. An example of this is the small optimization run
done to determine the optimal swarm size (see 4.3.3). Running this simulation with only
one thread took 0.57[s] of CPU-time,using one CPU completely. The eight-thread version
took 13.78[s] of CPU-time, but what was even worse was that it took 6.67[s] of wall time,
meaning it was only able to make use of two out of eight cores. 8

The explanation for this is straightforward: for a simple problem such as the Himmelblau
function, only a very small amount of time is spent doing the calculation of the �tness. After
this is done, the outcome of this calculation has to be reported to the other processor cores
which are also doing calculations. This reporting takes a (relatively) large amount of time
as data exchange between di�erent cores is slow. This is the main cause of the increase of
CPU-time.

Another consequence of this reporting of outcomes is that after a unit of work has been
completed by a thread, it has to wait until the rest of the threads also have �nished their
work. This leads to the low saturation of the cores.

A third e�ect, which is closely tied to the reporting problem is lock contention. This
happens when two threads try to access a shared resource which is guarded by locks, as in
the following Fortran fragment:

! $OMP CRITICAL
i nd%r a c e%n _ e v a l = ind%r a c e%n _ e v a l + 1
! $OMP END CRITICAL

The CRITICAL pieces are locks, and are needed to prevent so-called concurrent writes
to the same variable. An example of what is meant by that is given in table C.1. In that
example, two cores try to increment the value of a value somewhere in memory at the
same time. However, because they need to load the data to the core �rst, the increment
operation will be on data inside that core only. If the data is stored in main memory again
directly afterwards, both cores will store the same value again, and its value will only have
been incremented once instead of twice.

This can be prevented by adding locks to the problem; in that case, the �ow over the two
cores is more like that shown in table C.2. Because (by de�nition) only one core can own
a lock at a time, this problem is prevented. If a core tries to acquire a lock which another
core already owns, that core will have to wait until it is released before it can continue.

By placing code inside a critical block, the compiler adds code that acquires and releases
locks at the start and end of such a block respectively.

This locking thing does make the program slower though, as the second thread has to
wait for the �rst one to complete before it can enter the critical block. This can be clearly

8However, at the time this benchmark was run, the system was busy running another simulation, so only
four out of eight cores were available – meaning that on an unloaded system, wall time would have been half
of the current one.
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seen, as the non-locked version only takes only 4 + 4 clock cycles, and the version with
locks takes 6 + 11 for the “same” operation. (This can be reduced to 6 + 6 cycles if the
second core is allowed to do other work while it is waiting for a lock.)

Note however that when doing optimizations with complex objective functions, the
overhead cost is negligible, and the optimization will bene�t from having the possibility to
use more than one core.

C.4 Pure functions

As outlined in the previous section, special care has to be taken when there data which is
shared and modi�ed between multiple threads. This can be done by adding locks around
code which modi�es shared data, but there is another way called pure functions.

This is a term coming from functional programming. Functional programming is a concept
in which the goal is to make everything a function (hence the name), and getting rid of
shared state. This might sound a bit abstract however it is not; in Fortran it can be done by
abandoning the use of shared, save and intent(inout) variables. The reason for getting rid of
shared state is that a function call then becomes a transformation, and a function that obeys
these rules is called a pure function.9

Several languages exist which o�er good support for functional programming, and
some well-known examples are Haskell, Erlang and F#. Interested readers are referred
to [O’Sullivan et al., 2008] for a good introduction to functional programming in general
and Haskell in particular.

So, why is the concept of pure functions interesting for this solving optimization prob-
lems? For one good reason: Because pure functions do not depend on modifying any shared

9Note that a pure function may not call impure functions, as that would compromise the purity of the caller.

Clock Shared core 1 core 2
cycle data instruction data instruction data
1 3 start - start -
2 3 load data 3 load data 3
3 3 add 1 to data 4 add 1 to data 4
4 4 store data 4 store data 4

Table C.1 Simultaneous addition in a multiprocessor environment without locks.

Clock Shared core 1 core 2
cycle data instruction data instruction data
1 3 start - start -
2 3 acquire lock - (acquire lock) -
3 3 load data 3 wait for lock -
4 3 add 1 to data 4 wait for lock -
5 4 store data 4 wait for lock -
6 4 release lock 4 wait for lock -
7 4 ... - acquire lock -
8 4 ... - load data 4
9 4 ... - add 1 to data 5
10 5 ... - store data 5
11 5 ... - release lock 5

Table C.2 Simultaneous addition in a multiprocessor environment with locks.
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data, they can be executed in parallel without locks. Thus to be sure that an optimization
can be done in parallel, it is necessary to implement the routine that calculates the objective
value as a pure function – thus it may not write to variables de�ned at the module scope,
or make use of save and intent(inout) variables, and it may only call pure functions.

Therefore, the programmer has to take special care that the functions called are all
pure. Not doing this may give rise to really subtle problems, which are di�cult to debug.
Starting with Fortran95, purity is a thing that should be checked by the compiler, but not all
compilers support this out of the box. Therefore, it is recommended that the programmer
does this check.
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Appendix D

API documentation
OPTIDUS-2009

This appendix contains an overview of the design behind optidus-2009, and the data struc-
tures and functions provided by it.

D.1 Design

optidus-2009 is a complete overhaul of the original optidus optimizer. A fundamental
change is that the original optidus was written originally as a monolithic program to do
optimizations, in which problem-speci�c routines have to be added.

The 2009 version is a library of functions, which are to be used in problem-speci�c
programs. This allows the independent development of multiple problem-solvers at the
same time.

Another big change is the use of the object-oriented features available since Fortran90:
most data is stored in special data types.

Finally, the methods operating on the population may make use of parallelism. If this is
used, the objective function implementation must be able to be run in parallel.

D.2 Evolutionary Algorithms

The module genes contains several data structures and functions which help in imple-
menting eas.

D.2.1 RaceType

First of all, the format of the solution vector need to be declared. As this format is shared
between all members of the population, this data structure is called the RaceType, and isRaceType
de�ned in the module genes as follows:

TYPE RaceType
REAL , KIND=(KPR) , DIMENSION( GeneLength ) : : Minimum , Maximum
CHARACTER(LEN=GeneDe s c r i p t i onLeng t h ) ,DIMENSION( GeneLength ) : : d e s c r i p t i o n
CHARACTER(LEN=RaceLength ) : : i d
INTEGER : : i g e n
INTEGER : : n_pa r
INTEGER : : n _ e v a l
REAL(KIND=KPR) , DIMENSION ( 1 0 ) : : e x t r a _ s t a t e

END TYPE RaceType
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The attribute extra_state is provided to pass extra state data to the objective function.
For example, in the gtoc3 optimization, this was used to pass the origin and target bodies,
which were parameters not to be touched by the optimizer.

An instance of this type can be instantiated easily by calling the function NewRace, whichNewRace
accepts the name and the number of elements in the solution vector as parameters. After
calling this function, a new race will be returned. The calling signature is as follows:

TYPE( RaceType ) FUNCTION NewRace ( id , n _ p a r _ a r g ) RESULT( r )
CHARACTER( ∗ ) , INTENT( IN ) : : i d
INTEGER , INTENT( IN ) , OPTIONAL : : n _ p a r _ a r g
INTEGER : : n_pa r

The next thing to do is to set the names and the bounds on the elements of the solution
vector. This is done using the subroutine RaceSetGene.RaceSetGene

SUBROUTINE RaceSetGene ( r a c e , n , min , max , d e s c )
TYPE( RaceType ) , INTENT(INOUT) : : r a c e
INTEGER , INTENT( IN ) : : n
REAL(KIND=KPR) , INTENT( IN ) : : min , max
CHARACTER( ∗ ) , INTENT( IN ) : : d e s c

Finally, the de�nition of a race can be con�rmed by printing it after running. This can be
done by calling the subroutine RacePrint, which has the following calling signature:RacePrint

SUBROUTINE RaceP r i n t ( r a c e )
TYPE( RaceType ) , INTENT( IN ) : : r a c e

A complete example of a program de�ning a race and printing it is shown here:

PROGRAM t e s t _ r a c e
USE g en e s
USE prec i s ion
IMPLICIT NONE
TYPE( RaceType ) : : myrace
myrace = NewRace ( ’ Himmelblau ’ , 2 )
CALL RaceSetGene ( myrace , 1 , 0 ._KPR , 5 ._KPR , ’x1 ’ )
CALL RaceSetGene ( myrace , 2 , 0 ._KPR , 5 ._KPR , ’x2 ’ )
CALL RaceP r i n t ( myrace )

END PROGRAM

SUBROUTINE E v a l u a t e F i t n e s s ( i nd )
USE g en e s
IMPLICIT NONE
TYPE( I n d i v i d u a l ) , INTENT(INOUT) : : i nd

END SUBROUTINE

Compiling and running this program gives the following output, which is what was ex-
pected:

[ o p t i d u s−t ng s p a a n s ] ./ t e s t _ r a c e
Himmelblau
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n D e s c r i p t i o n Mininum Maximum
1 x1 0 .0 0 5 .0 0
2 x2 0 .0 0 5 .0 0

D.2.2 Individual

The second type to be de�ned is the type Individual. This type can be used to storeIndividual
the data of individuals, and is heavily used in optidus. This datatype is composed as follows:

TYPE I n d i v i d u a l
REAL(KIND=KPR) , DIMENSION( GeneLength ) : : v a l u e s , &

v e l o c i t i e s , b e s t v a l
TYPE ( RaceType ) , POINTER : : r a c e
REAL , DIMENSION( F i t n e s s L e n g t h ) : : f i t n e s s , b e s t f i t
INTEGER : : f r o n t , f r o n t r a n k
LOGICAL : : f e a s i b l e = .FALSE . , &

f i t n e s s v a l i d = .FALSE . , &
v e l o c i t i e s v a l i d = . FALSE .

INTEGER : : age , l i f e t i m e
END TYPE I n d i v i d u a l

The simplest way to create a new individual is by calling the function NewIndividual,NewIndividual
which has the following signature:

TYPE( I n d i v i d u a l ) FUNCTION NewInd iv i dua l ( r a c e ) RESULT( i )
TYPE( RaceType ) , INTENT( IN ) , TARGET : : r a c e

When this function is called, a new individual is created by picking one randomly from
the solution space given by the race de�nition. Because this function can also be used to
initialize pso and ppo individuals, not only the values of the solution vector but also the
values of the velocity vector are initialized.

If an individual needs to be terminated (for example because its age has exceeded its lifetime),
this can be done by calling the DestroyIndividual function. This resets the raceDestroy-

Individual property. It has the following signature:

SUBROUTINE D e s t r o y I n d i v i d u a l ( i nd )
TYPE( I n d i v i d u a l ) , INTENT(INOUT) : : i nd

Individuals can be printed using the function IndividualPrint. It has the followingIndividual-
Print signature:

SUBROUTINE I n d i v i d u a l P r i n t ( i nd )
TYPE( I n d i v i d u a l ) , INTENT( IN ) : : i nd

To make the implementation of de and pso-like algorithms easier, three operators have
been de�ned which can be applied to individuals. The �rst one is the IndividualAddIndividualAdd
function, which takes two individuals and adds their values. This is not a standard addition,
as it does take the situation into account when the lower boundary of the element to be
added is nonzero: if the lower boundary is l, adding the two values x1 and x2 means the
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two o�sets x1− l and x2− l are added, which then gives the o�set from the lower boundary.
This means the sum, taking this lower boundary into account equals:

s = (x1− l)+(x2− l)+ l = x1 + x2− l (D.1)

The call signature is the following:

TYPE( I n d i v i d u a l ) FUNCTION I n d i v i d u a l A d d ( ind1 , i nd2 ) RESULT ( n ind )
TYPE( I n d i v i d u a l ) , INTENT( IN ) : : ind1 , i nd2

In a similar fashion, the function IndividualSubstract is de�ned, which subtractsIndividual-
Substract the second from the �rst individual. This also takes a nonzero lower bound into account,

using the following formula:

s = (x1− l)− (x2− l)+ l = x1− x2 + l (D.2)

The call signature is the following:

TYPE( I n d i v i d u a l ) FUNCTION I n d i v i d u a l S u b s t r a c t ( ind1 , i nd2 ) RESULT ( n ind )
TYPE( I n d i v i d u a l ) , INTENT( IN ) : : ind1 , i nd2

Thirdly, a special method to scale an individual is de�ned, which can be used to multiply
all the values in a vector by a given scalar. It is called IndividualMult. This functionIndividualMult
also needs to take the nonzero lower bound into account, and uses the following formula
for that:

s = (x− l)∗ f + l = x∗ f +(1− f )∗ l (D.3)

The call signature is the following:

TYPE( I n d i v i d u a l ) FUNCTION I n d i v i d u a l M u l t ( ind , f a c t o r ) RESULT ( n ind )
TYPE( I n d i v i d u a l ) , INTENT( IN ) : : i nd
REAL , INTENT( IN ) : : f a c t o r

Note that these last three functions are also accessible using the standard notation, so
the following works as expected:

i nd1 + ind2 ! Adds t h e tw o i n d i v i d u a l s
i nd1 − i nd2 ! S u b t r a c t s o n e i n d i v i d u a l f r o m t h e o t h e r
i nd1 ∗ 0 .5 ! M u l t i p l i e s t h e v a l u e s o f an i n d i v i d u a l by 0 .5

The following listing shows how these functions can be used together:

PROGRAM t e s t _ r a c e
USE g en e s
USE prec i s ion
IMPLICIT NONE
TYPE( RaceType ) : : myrace
TYPE( I n d i v i d u a l ) : : myinds ( 3 )
myrace = NewRace ( ’ Himmelblau ’ , 2 )
CALL RaceSetGene ( myrace , 1 , 0 ._KPR , 5 ._KPR , ’x1 ’ )
CALL RaceSetGene ( myrace , 2 , 0 ._KPR , 5 ._KPR , ’x2 ’ )
CALL RaceP r i n t ( myrace )

myinds ( 1 ) = NewInd iv i dua l ( myrace )
myinds ( 2 ) = NewInd iv i dua l ( myrace )
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myinds ( 3 ) = ( myinds ( 1 ) + myinds ( 2 ) ) ∗ 0 .5 + &
( myinds ( 1 ) − myinds ( 2 ) ) ∗ 0 .5

CALL I n d i v i d u a l P r i n t ( myinds ( 1 ) )
CALL I n d i v i d u a l P r i n t ( myinds ( 2 ) )
CALL I n d i v i d u a l P r i n t ( myinds ( 3 ) )

END PROGRAM

SUBROUTINE E v a l u a t e F i t n e s s ( i nd )
USE g en e s
IMPLICIT NONE
TYPE( I n d i v i d u a l ) , INTENT(INOUT) : : i nd

END SUBROUTINE

Running this program gives the following output, and it can be seen that individual 1
and 3 both have the same values for the coordinates, which is as expected.

Himmelblau
n D e s c r i p t i o n Mininum Maximum
1 x1 0 .0 0 5 .0 0
2 x2 0 .0 0 5 .0 0
1 x1 1 .6 3
2 x2 2 .7 4

L i f e t i m e : 500 Age : 0 F i t n e s s : . . .
1 x1 4 .3 9
2 x2 0 .6 6

L i f e t i m e : 500 Age : 0 F i t n e s s : . . .
1 x1 1 .6 3
2 x2 2 .7 4

L i f e t i m e : 0 Age : 0 F i t n e s s : . . .

D.2.3 Population

Finally,a type to hold a population of individuals is de�ned. This type is called Population,Population
and is de�ned as follows:

TYPE P o p u l a t i o n
TYPE ( I n d i v i d u a l ) , DIMENSION( MaxPopSize ) : : members
TYPE ( I n d i v i d u a l ) : : b e s t
INTEGER : : s i z e = 0

END TYPE P o p u l a t i o n

No constructors for this type exist.

D.2.4 Managing the population

At the start of an optimization run, the population will need to be built up from individu-
als. To do this e�ciently, a routine called FillPopulation is provided, which has theFillPopulation
following signature:

SUBROUTINE F i l l P o p u l a t i o n ( pop , r a c e , n_new )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( RaceType ) , INTENT( IN ) : : r a c e
INTEGER , INTENT( IN ) ,OPTIONAL : : n_new

Calling this function adds n_new individuals of the given race to the population. This
is done by randomly creating individuals using the NewIndividual function, and the
evaluating those functions. If a suggested individual does not meet the constraints (it is
marked as infeasible), it is discarded, and a new one is constructed. This function can make
use of parallelism.
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To add an individual to the population, the function ImportIndividual is supplied,Import-
Individual with the following call signature:

SUBROUTINE I m p o r t I n d i v i d u a l ( pop , pa r , i nd )
TYPE( I n d i v i d u a l ) , INTENT(INOUT) : : i nd
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop

This function does two things: it adds the individual to the list of individuals in the popu-
lation, and sets its velocity vector to the average velocity of the swarm.

The function which does the opposite of this function is named ExportIndividual,Export-
Individual and has the following call signature:

TYPE( I n d i v i d u a l ) FUNCTION E x p o r t I n d i v i d u a l ( pop , i )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
INTEGER , INTENT( IN ) : : i

This routine accepts a population and the number of the individual inside the population
to be exported. After running, it returns this individual, which has been removed from the
population.

These two functions can be used to “teleport”individuals between multiple populations.

D.2.5 Mutation

To mutate a single individual, the function DoSingleMutation is provided, with theDoSingle-
Mutation following call signature:

SUBROUTINE DoS ing l eMut a t i on ( ind , p a r )
TYPE( I n d i v i d u a l ) , INTENT(INOUT) : : i nd
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

This function iterates over the elements of the solution vector, and for each element, there
is a chance (de�ned in par) that it will mutate. If it mutates, the element is subjected to
non-uniform mutation (see section 3.4.3). Next, the objective function is called, to see if
the mutated individual is feasible. If it is not, the process is repeated.

To mutate a whole population, the function MutatePopulation is provided, with theMutate-
Population following call signature:

SUBROUTINE M u t a t e P o p u l a t i o n ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

This function calls DoSingleMutation for each member of the population pop. This
function can make use of parallelism.

D.2.6 Crossover

To do single-point crossover with two individuals, the routine DoSingleCrossover isDoSingle-
Crossover supplied, which has the following call signature:

SUBROUTINE D o S i n g l e C r o s s o v e r ( i nd1_ in , i nd2_ in , ind1_ou t , i nd2_ou t )
TYPE( I n d i v i d u a l ) , INTENT( IN ) : : i nd1_ in , i n d 2 _ i n
TYPE( I n d i v i d u a l ) , INTENT(OUT) : : i nd1_ou t , i nd2_ou t
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This routine chooses a point to execute crossover randomly, and then combines the two
input individuals, applying crossover at the right place, to form the two output individuals.
No check is done to make sure the resulting individuals are feasible.

To crossover all individuals in a population, two functions are provided. The �rst one is
CrossoverPopulation, which has the following call signature:Crossover-

Population
SUBROUTINE C r o s s o v e r P o p u l a t i o n ( pop , pa r , xovers_numb )

TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
INTEGER ,INTENT( IN ) ,OPTIONAL : : xovers_numb

The optional parameter xovers_numb can be used to control the amount of individual
pairs that will be sent to the DoSingleCrosssover function. During execution of
this function, parent pairs are selected at random, and crossover is applied. If the resulting
children are feasible, they are appended to the population. If not, the children are discarded.
This is repeated until the desired amount of children is generated. This function can make
use of parallelism.

The second function provided for doing crossover is the function RouletteCrossover-Roulette-
Crossover-
Population

Population, which has a similar call signature:

SUBROUTINE R o u l e t t e C r o s s o v e r P o p u l a t i o n ( pop , pa r , xovers_numb )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
INTEGER , INTENT( IN ) , OPTIONAL : : xovers_numb

This function works the same as the previous one, but does not pick the parents at random;
it uses roulette wheel selection (see section 3.5) to do a weighted selection of the parents,
based on their �tness. This function can make use of parallelism.

D.2.7 Selection

For doing roulette wheel selection (see section 3.5), some functions are provided. First of
all, the roulette wheel needs to be initialized. This is done using the function Setup-SetupRoulette-

Wheel RouletteWheel. It has the following call signature:

SUBROUTINE Se tupRou l e t t eWhee l ( pop , pa r , wheel )
TYPE( P o p u l a t i o n ) , INTENT( IN ) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
REAL(KIND=KPR) , DIMENSION ( : ) , INTENT(OUT) : : wheel

This function sets up the roulette wheel using the �tness values (which need to be precal-
culated); �rst, it determines the smallest �tness value fmin, and then scales the roulette wheel
slots by subtracting this minimum value from the �tness values of the individuals.

Once the wheel has been set up, individuals can be picked using the function Roulette-RouletteWheel
Wheel. This function has the following call signature:

INTEGER FUNCTION Roule t t eWhee l ( pop , pa r , wheel ) RESULT( pos i t ion )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
REAL(KIND=KPR) , DIMENSION ( : ) , INTENT( IN ) : : wheel
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This function simulates throwing a roulette ball using the biased wheel, and returns the
index of selected individual in the population.

To reduce the size of a population using selection, some methods are provided. The �rst one
uses the aforementioned roulette wheel selection, and is called RouletteSelection.Roulette-

Selection This method has the following call signature:

SUBROUTINE R o u l e t t e S e l e c t i o n ( pop , pa r , p o p s i z e )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
INTEGER , INTENT( IN ) : : p o p s i z e

This creates a new population by sampling the old population (with replacement) popsize
times. This method takes care of setting up and destroying a roulette wheel by itself.

Another method to select individuals from the population can be done using Tournament-Tournament-
Selection Selection. This function has the following call signature:

SUBROUTINE Tou rn amen t S e l e c t i on ( pop , pa r , p o p s i z e )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
INTEGER , INTENT( IN ) : : p o p s i z e

This method picks two individuals from the input population (with replacement), and puts
the best of the two into the new population. It repeats this procedure until the new popu-
lation reaches size popsize.

The third method to select a given number of individuals from a population can be done us-
ing the routine StochasticUniversalSampling. It has the following call signature:Stochastic-

Universal-
Sampling

SUBROUTINE S t o c h a s t i c U n i v e r s a l S a m p l i n g ( pop , pa r , p o p s i z e )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
INTEGER , INTENT( IN ) : : p o p s i z e

This method is described in section 3.5. It does a variant of roulette wheel selection,with the
guarantee that each individual is selected either floor(ci) or ceiling(ci) times exactly, where
ci is the relative size of the roulette wheel slot of individual i compared to the average size
of the slots. This means that a good individual (which will have ci > 1) will not disappear
from the population due to bad luck.

D.2.8 Routines for GAVaPS

The genes module also contains some building blocks that can be used to implement a
GAVaPS. These routines deal with setting the lifetime of individuals, and removing individ-
uals which are too old from the population.

The simplest way to assign lifetimes to individuals is to give them all the maximum
allowed lifetime. This is done by the routine AssignLifetimeStatic, which has theAssign-

LifetimeStatic following call signature:

SUBROUTINE A s s i g n L i f e t i m e S t a t i c ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
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Another method to assign lifetimes to individuals in the population is by sorting the new
individuals in order of �tness value, and assigning lifetimes according to their rank. This is
done using the routine AssignLifetimeRanked, which has the following call signa-Assign-

LifetimeRanked ture:

SUBROUTINE A s s i g n L i f e t i m e R a n k e d ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

After the new individuals have been ranked from 1 to nnew, the lifetimes are assigned ac-
cording to the following formula:1

Li = round(
ri−1

nnew−1
(Lmin−Lmax)+Lmax) (D.4)

The individual with ri = 1 will be assigned the maximum lifetime Lmax, whereas the indi-
vidual with rank ri = nnew is assigned the minimum lifetime Lmin, and individuals in between
are given lifetimes which follow from linear interpolation between those two points.

Finally, the method AssignLifetime is provided which assigns lifetimes that are pro-AssignLifetime
portional to the �tness of an individual. This function has the following call signature:

SUBROUTINE A s s i g n L i f e t i m e ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

This routine uses the following �tness scaling algorithm:

Li = round(Lmin +
fi− fmin

fmax− fmin
(Lmax−Lmin)) (D.5)

In this equation, fmin is the worst and fmax is the best �tness value in the population.

For debugging the assigned lifetimes, the function DebugLifetime is provided, with theDebugLifetime
following call signature:

SUBROUTINE DebugL i f e t ime ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT( IN ) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

This routine prints the distribution of the assigned lifetimes of the fresh individuals in the
population.

During each generation, the age of all individuals needs to be increased once. This can be
done using the routine BumpAge, which has the following call signature:BumpAge

SUBROUTINE BumpAge ( pop )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop

After calling this procudure, the age of all individuals will have been increased by 1.

Finally, the individuals that are too old need to be removed from the population; this is done
using the routine KillOverAgeIndividuals, which has the following call signature:KillOverAge-

Individuals

1round is the operator which rounds a real to the nearest integer
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SUBROUTINE K i l l O v e r A g e I n d i v i d u a l s ( pop )
! S o y l e n t G r e e n i s made o f G e n e p o o l !
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop

This routine removes all individuals from the population whose age is bigger than their
assigned lifetime, and compacts the population so that no holes remain between the indi-
viduals.

D.2.9 Other routines

One of the procedures which is called quite often by the other procedures is Wrapped-Wrapped-
Evaluate-
Fitness

EvaluateFitness. This routine checks if the current �tness value of an individual is
still valid, and if that is the case, returns that value. If not, it will call the (user supplied)
EvaluateFitness, and stores that value. It has the following call signature:

SUBROUTINE W r a p p e d E v a l u a t e F i t n e s s ( i nd )
TYPE( I n d i v i d u a l ) , INTENT(INOUT) : : i nd
EXTERNAL E v a l u a t e F i t n e s s

For some algorithms like pso and ppo, an individual might move outside of the problem
space. To make sure this does not happen, those individuals can be kept inside the solution
space using the algorithm from section 4.5. This algorithm is implemented in the routine
BindValues, which has the following call signature:BindValues

SUBROUTINE B indVa l u e s ( ind , p a r )
TYPE( I n d i v i d u a l ) , INTENT(INOUT) : : i nd
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

To �nd the best individual in a given population, the function FindBest is supplied,FindBest
which iterates over the members of the population and sets the best member to point to
the current best individual. Its call signature is as follows:

SUBROUTINE F i n d B e s t ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

A related routine is the Elitism routine. This can be called to make sure that the bestElitism
individual from the population does not disappear. This is useful in case the best individual
is mutated, and becomes a new individual which has a worse �tness value. The call signature
is as follows:

SUBROUTINE F i n d B e s t ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

For keeping track of the number of generations which has passed, another method is
supplied which increases the generation counter for RaceTypes. This method is called
BumpGen, and has the following call signature:BumpGen

SUBROUTINE BumpGen ( r )
TYPE( RaceType ) , INTENT(INOUT) : : r
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D.3 PSO/PPO

D.3.1 Predator type

The module genes de�nes the type Predator. This can be used to store the positionPredator
and velocity vectors of the predator, in case of ppo. It is de�ned as follows:

TYPE P r e d a t o r
REAL(KIND=KPR) , DIMENSION( GeneLength ) : : pos i t ion , v e l o c i t i e s

END TYPE P r e d a t o r

No methods are provided to directly modify instances of this type; this is handled by the
pso code itself.

D.3.2 PSO/PPO routine

The module ppso contains the subroutine PSO. It has the following call signature:PSO

SUBROUTINE PSO( pop , pa r , p r ed )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r
TYPE( P r e d a t o r ) , INTENT(INOUT ) , OPTIONAL : : p r ed

This method implements one step of a pso (and ppo) algorithm. It starts out by identifying
the members of the 1st Pareto front, using the nsga-ii algorithm.

Next, for all members in the population, the components of the solution vectors are
iterated over, and the particle velocities are adjusted according to (4.7):

vi,new = w ·vi + c1 ·u() · (x∗i −xi)+ c2 ·u() · (x∗G−xi) (D.6)

If the optional predator argument is given, each component has a chance of being a�ected
by the predator. If the predator a�ects the particle, the velocity is updated using a variant of
(4.15):

vi,k,new = wvi,k +c1 ·u() ·(x∗i,k−xi, j)+c2 ·u() ·(x∗G,k−xi, j)+sgn(xi−xpred)D(d) (D.7)

in which

D(d) = ae−bd (D.8)

and

d = |xi− xpred | (D.9)

and sgn is the sign function2.
After updating all the components of the velocity vector, the position vectors are up-

dated, and the �tness (and feasibility) of the individuals are determined by calling the objec-
tive function. If the new individual is valid, it is accepted, if not, the procedure is repeated.

After all individuals have been updated, the speed and position of the predator are also
updated (if it is given as an argument).

D.4 Di�erential Evolution methods

For doing di�erential evolution, 6 functions are supplied, in the module diffevo, which
are called Tasoulis1 to Tasoulis6. All these six functions share the same call signature,Tasoulis1
being:

2 The sign function maps negative values to −1, is 0 for 0 and maps positive numbers to 1
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SUBROUTINE T a s o u l i s 1 ( pop , p a r )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
TYPE( E v o l u t i o n a r y P a r a m e t e r s ) , INTENT( IN ) : : p a r

These functions generate mutation vectors using the schemes given in section 5.2. This
mutation vector is combined with the original vector using a two-point crossover, and the
�tness is evaluated. If it has improved, the new solution is saved, or else the old one is kept.
This is done S (the population size) times

Note that test_gtoc3.f90 contains an ad hoc implementation of a Tasoulis1
function which can also be applied to moo problems. In the future, this should be imple-
mented for all 6 schemes and backported to the diffevo module.

D.5 Multi Objective Routines

The module nsga2 and constant_parameters contain some routines which are
helpful for dealing with multi-objective optimization problems (moo).

The �rst function of use is the function InitEvolDir. This function allows theInitEvolDir
direction of the optimization to be set separately for each objective function. This allows
for problems in which the �rst objective value should be maximized and the second one
to be minimized to be written down in their natural form. This function has the following
call signature:

SUBROUTINE I n i t E v o l D i r ( n , d i r , d i r s )
INTEGER , INTENT( IN ) , OPTIONAL : : n
REAL , INTENT( IN ) , OPTIONAL : : d i r
REAL , INTENT( IN ) , DIMENSION ( : ) , OPTIONAL : : d i r s

Despite this seemingly chaotic de�nition (as everything is de�ned optional), only two forms
should be used. If all directions are the same, a shortcut can be used, by only supplying n
and dir, for example by calling InitEvolDir (3, −1) to set up the system to have 3 objective
functions which should be minimized.

To support the scenario written above, it is also possible to give an array as an argument.
This then takes the form InitEvolDir ((/ 1, −1 /)).

Note that these directions are stored in an array in the global namespace, which means
only one set of directions can be used at the same time.

Once these optimization directions have been set, it is possible to test if one solution is
better than the other one using the dominates function, which has the following calldominates
signature:

LOGICAL FUNCTION dom in a t e s ( f1 , f 2 , a l t e v o l d i r )
REAL , INTENT( IN ) , DIMENSION ( : ) : : f 1 , f 2
REAL , INTENT( IN ) , OPTIONAL : : a l t e v o l d i r

The use of the argument altevoldir is deprecated. This function returns .TRUE. if
the solution f1 dominates solution f2, as described in chapter 6, or .FALSE. otherwise.

To support moo variants of de, the function DoMOOTournament is supplied. This func-DoMOO-
Tournament tion has the following call signature:

TYPE( I n d i v i d u a l ) FUNCTION DoMOOTournament ( pop , p1 , t r i a l )
TYPE( P o p u l a t i o n ) , INTENT( IN ) : : pop
TYPE( I n d i v i d u a l ) , INTENT( IN ) : : t r i a l
INTEGER , INTENT( IN ) : : p1
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This function checks if the individual trial dominates the p1th individual in the popula-
tion. If it does, it returns the trial solution, if it does not, it returns the original solution.

This can be used as follows in code:

newpop ( i ) = DoMOOTournament ( pop , i , t r i a l )

fastNondomSort is a function to rank all individuals in a population. It has the followingfastNondomSort
call signature:

SUBROUTINE f a s tNondomSor t ( pop , n )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
INTEGER , INTENT( in ) , OPTIONAL : : n

This function ranks the individuals in the �rst n fronts, using the algorithm nsga-ii.

Once all individuals have been ranked, the order inside the ranks can be determined using
the routine fnnrankFronts. This function calls the routine rankFrontByLCD for all fronts
in the population. It has the following call signature:

SUBROUTINE r a n k F r o n t s ( pop )
TYPE( P o p u l a t i o n ) , INTENT( inout ) : : pop

The function rankFrontByLCD can be used to rank the individuals inside one front,rankFrontByLCD
using the local crowding distance as de�ned in chapter 6.

SUBROUTINE rankFrontByLCD ( pop , f r o n t )
TYPE( P o p u l a t i o n ) , INTENT(INOUT) : : pop
INTEGER , INTENT( IN ) : : f r o n t

Note that this function can also be called by the end-user code.

Finally,PickFromFront is a function for picking a random individual from a front. It isPickFromFront
provided to help in the implementation of pso, and has the following call signature:

TYPE( I n d i v i d u a l ) FUNCTION PickFromFron t ( pop , f )
TYPE( P o p u l a t i o n ) , INTENT( IN ) : : pop
INTEGER , INTENT( IN ) : : f

It returns a random member from the population pop which is in front f.

D.6 Random numbers

Generating random numbers is treated extensively in [Press et al., 2007]. However, no
random number generator (rng) which yields consistent results in a multi-threading envi-
ronment is given.

For that reason, a rng which does give reproducible results, even in a multi-threading
environment has been implemented for optidus-2009.

Normally, rngs are initialized by setting a seed,and subsequent calls then yield a sequence
of numbers with a random-like distribution. In between calls, the state of the rng is saved.

This might lead to problems when executing this program on a multiple processor
machine: the order of execution can vary when multiple threads are running in parallel. A
program to demonstrate this behavior is shown in below, with the output in table D.1.
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PROGRAM d e m o _ m u l t i t h r e a d i n g
! $OMP PARALLEL DO
DO i = 1 , 4

WRITE ( ∗ , " ( I 2 ) " ) , i
END DO
! $OMP END PARALLEL DO

END PROGRAM

The solution to this problem is to give each work unit its own random generator. In
the random_mp module, this is done using the following functions:

When the number of work units is known, the random generators can be initialized with a
call to the function random_init, which has the following call signature:random_init

SUBROUTINE r a n d o m _ i n i t ( n , s )
INTEGER , INTENT( IN ) : : n
INTEGER , INTENT( IN ) , OPTIONAL : : s

The parameter n is the amount of random generators to initialize. These random generators
are seeded with a value from the master prng,which in turn can be seeded using the optional
argument s.

Then, when a certain random generator is needed, a thread can select one by calling
random_set_block. It has the following call signature:random_set_-

block
SUBROUTINE r a ndom_ s e t _b l o ck ( i )

INTEGER ,INTENT( IN ) : : i

The parameter i should be set to the number of the work unit. Then, subsequent calls to
the random() function from within the same thread will return numbers from that rng.

Finally, random numbers can be generated by calling the function random, which has therandom
following call signature:

REAL FUNCTION random ( idum )
INTEGER(KIND=K4B ) , INTENT( IN ) , OPTIONAL : : idum

Note that the argument idum should only be set by the code in this module.

A routine demonstrating the proper use of these functions is given below:

SUBROUTINE P o p F i t n e s s ( pop , f i t )
TYPE( P o p u l a t i o n ) , INTENT( IN ) : : pop ( : )
TYPE( F i t n e s s ) , INTENT(OUT) : : f i t ( SIZE ( pop ) )

1 thread 2 threads
1 1
2 3
3 2
4 4

Table D.1 Execution order for di�erent numbers of threads in a multi-core system..
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INTEGER : : i
CALL r a n d o m _ i n i t ( SIZE ( pop ) ) ! F i r s t , i n i t i a l i z e t h e r n g
!$OMP PARALLEL DO SHARED( pop , f i t )
DO i = 1 , SIZE ( pop )

CALL r a ndom_ s e t _b l o ck ( i ) ! S e l e c t t h e s u b− r n g a c c o r d i n g t o t h e b l o c k
CALL E v a l u a t e F i t n e s s ( pop ( i ) , f i t ( i ) )

END DO
! $OMP END PARALLEL DO

END SUBROUTINE
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