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1. Introduction 

Data-driven methods collectively referred to as Artificial 
Intelligence (AI) continue to transform a wide range of 
industrial applications due to novel Machine Learning 
architectures for recognizing patterns in complex data, 
widespread digitalization of data, availability of powerful 
computational hardware, and user-friendly application 
programming interfaces (APIs) to support implementation. 

In engineering design, as in many fields, the initial tasks to 
be integrated with AI were focused problems with well-defined 
system boundaries. These include AI-based predictive tasks 
such as forecasting electric loads on a factory floor by learning 
from machine tool, building, and weather features [1] or 
predicting differences between 3D design models and 
fabricated components to establish benchmarks for tolerancing 
[2]. AI-based image recognition has been applied to quality 
control, such as classification of lithium-ion batteries to 

identify defects [3] and identification of process deviations in 
additively manufactured parts [4]. AI-based statistical language 
modeling has also been applied to textually described 
information retrieval in the context of engineering design [5]. 

The introduction of the Transformer neural network 
architecture [6] by Google in 2017 enabled a shift in general 
language understanding resulting in the development of Turing 
test-passing [7] generative conversational models such as 
ChatGPT. Since then, demand for integrated computational 
models capable of conversation, reasoning, and universal 
knowledge retrieval has grown. These criteria require models 
to not just map inputs to outputs for a well-defined task, but to 
acquire a deep understanding of the structure and semantics of 
a field in order to perform any requested function with minimal 
instruction or domain-specific training. Emulating the function 
of internet search engine, the information technology sector has 
developed so-called foundation models such as 
Gemini [8  [9  [10] meant 
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for application to a diverse range of use cases within general 
information retrieval.  

Despite reporting high scores on general language 
understanding benchmarks, such foundation models exhibit 
limitations when performing quantitative tasks. Given the bulk 
of their training is web-mined corpora from the internet, these 
foundation models tend to demonstrate better performance 
when having to estimate likelihood of words in a sequence 
compared to computing simple arithmetic.  Foundation models 
are trained to behave as an average human internet user rather 
than a source of truth [11].  

In this work, we examine how to train a foundation model 
in the general understanding of engineering design. Like 
existing foundation models, one for design would need to be 
conversant and able to perform a wide range of tasks. However, 
in contrast to those models, it would require technical rigor 
which comes from a deep understanding of the meaning and 
structure of requirements, solutions, and fabrication processes 
which constitute the engineering design process.  

We approach this task from the perspective of modeling 
the design process itself as a form of language; a sequence of 
functionality, geometric form, and production. We develop a 
framework for training such a model, constructing the 
necessary dataset for this training, and demonstrate it through 
a case study on the design of absorbent products.  

2. Related Work 

Here, prior work towards the development of a foundation 
model for engineering design is reviewed, considering both 
theoretical frameworks and efforts to implement a working 
computational tool. 

2.1. Design representation methods 

Prior to the advent of widespread digitalization, 
practitioners of engineering design worked to develop a 
universal framework for guiding better and repeatable 
engineering design. Even without a computational 
implementation, these illuminate the structure and semantics of 
design into core axioms and are a useful basis for modeling the 
language of engineering design. 

The Theory of Inventive Problem-Solving (TRIZ) [12] 
distills engineering design into a set of 40 principles for 
invention. As an example, one principle 
one physical component can serve multiple functions in order 
to reduce the number of total parts. This set of principles strives 
to provide a structured repository of elemental design solutions, 
but attempting to address every design problem becomes 
challenging as societal needs evolve over time.  

Axiomatic Design [13] condenses engineering design into 
just two principles relating to (1) maintaining functional 
independence by avoiding the same requirement being coupled
to multiple solutions, and (2) minimizing complexity as 
measured by density of information content. Axiomatic Design 
also provides a framework for hierarchically representing 
functional (what), physical (how), and process domains as a 
tree-structure which is easily adapted for computational 
purposes. 

Principles of product design and development [14] 
represents engineering design as a sequential process. By 
representing the process as an iterating sequence, design is 
extended to the early stage of identifying societal needs as well 
as to the late stage of the product lifecycle to usage and re-use 
or end-of-life. 

These frameworks seek to define structure and semantics for 
engineering problem-solving, which is a critical step in 
developing a general foundation model of design. However, for 
a field as complex as engineering design, it is difficult to 
construct a rule-based system applicable to any unseen case. 
For this reason, we explore how to train a learning-based 
system on such design understanding.  

2.2. Training computational models on design understanding 

With the availability of foundation AI models for general 
usage, research has been conducted integrating engineering 
design knowledge into the intelligence of the AI model. For a 
case study in vehicle maintenance, a language model was fine-
tuned on a dataset of aircraft maintenance record logbooks to 
integrate a hierarchically structured aircraft design ontology 
with an AI [15]. The fine-tuned model was able to recommend 
semantically similar maintenance actions to the ground truth 
labels. 

In the domain of additive manufacturing, a knowledge base 
of best practices accessible by a user-friendly interface was 
connected to Computer Aided Design (CAD) software to 
embed both automated geometric modification and feedback 
for quality control into the design process [16]. Despite 
reporting long runtimes interrupting the design workflow, this 
concept demonstrated how a structured repository of 
established principles could be utilized in real time to guide 
design decision-making. 

In the space of representing design knowledge for 
computational understanding, our previous work has sought to 
discover latent problem-solving structure by extracting 
functional requirements from documentation [17]. We applied 
language model-based question answering to semantically 
identify valuable design information buried in unstructured 
texts without relying on keyword matching. We also applied 
language model-based chat completion to extract 
undocumented design information conversationally from 
human experts [18]. Both these methods are integrated into the 
dataset construction system in this presented work and are 
applied to construct the dataset used in the case study. 

3. Methodology 

In this section we present a framework for training a 
foundation model in general engineering design understanding. 
First, the assumptions for modeling design as a sequence are 
introduced. Next, the training routine is presented. Finally, an 
integrated method for collecting training examples from 
multimodal and undocumented sources of design information 
is overviewed. 
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3.1. Sequence modeling of engineering design 

The objective is to develop a training routine that will allow 
a foundation model to learn the semantics and structure of 
engineering design. Thus far, existing foundation models are 
trained in general understanding of the semantics of natural 
language. For this purpose, language is modeled as a sequence, 
with the meaning of each word highly influenced by context 
being the words preceding and following. This is the basis of 
the cloze test in language understanding [19]. Given a word 
sequence, a language model attempts to estimate the probability 
of any given word wt occupying a position t in the sequence 
given neighboring context. For such a context window of size 
1, this probability can be expressed as: 

The language model gains the ability to accurately compute 
such a probability distribution over all words in a vocabulary 
by learning a multidimensional feature space within which 
words occupy a position represented by a vector. When a 
machine learning model is trained, the loss used for parameter 
updates corresponds to a measure of vector similarity between 
the actual word in the training example and the maximum 
likelihood prediction given by the model. This system of 
working through an existing sequence and attempting to predict 
words based on context is known as masked language 
modeling. This is an efficient training routine because 
otherwise unlabeled language data with no additional 
annotations can serve as a labeled dataset for supervised 
machine learning simply by masking an item in the sequence 
and then revealing the unmasked identity as the ground truth to 
guide a parameter update during learning. 

Fig. 1. Design represented as a sequence of function, form, and fabrication 

For the domain of engineering design, this masked sequence 
modeling routine is relevant for two key reasons. First, design 
data is rarely labeled consistently, so such a sequence modeling 
framework can transform the learning process into a supervised 
task with no further manual intervention required, which is a 
significant challenge to constructing datasets at scale. Second, 
design, like language, can also be modeled as a sequence, as 
overviewed in Section 2.1. At a high level, this design sequence 
consists of identifying a societal need, followed by the mapping 
to a functional requirement, followed by embodiment through 
a physical design parameter, finally produced through a process 
variable. For the purposes of this work, we can simplify this 
sequence to a triplet representing function, form, and 
fabrication, or functional requirements (FRs), design 
parameters (DPs), and process variables (PVs), to borrow 
terminology from Axiomatic Design theory. To adapt masked 
sequence modeling to design, we can mask a random portion of 
this sequence as illustrated in Figure 1. Next, the core learning 
task of the model can be formalized as estimating the 

probability of the identity of the masked design element, given 
the context, expressed as: 

By training on a dataset of sequences of these design 
elements, a model can learn from context the semantic meaning 
of function, form, and fabrication. 

3.2. Training Framework 

The following framework is presented for training a 
foundation model on general engineering design understanding 
through masked sequence modeling. In order to facilitate 
compatibility with existing design practices and minimize 
introduction of novel terminology, the overarching 
representation scheme is based on theory from established 
Axiomatic Design principles [13]. The objective of this training 
is to learn from prior sequences of functions, physical solutions, 
and fabrication processes the meaning of each of such design 
elements as they exist within these design sequences. 

This input for this routine is the hierarchical tree 
representation described in Axiomatic Design of functional 
requirements, design parameters, and process variables. The 
first step involves restructuring the training data into a sequence 
by flattening each tree. Next, the three resulting sequences are 
concatenated to form a longer sequence upon which the masked 
prediction task will be performed. At random, 10  20% of the 
design elements in the sequence have their identities masked; 
this ratio being based on typical procedures for masked 
language modeling [20].  

The baseline model and parameters utilized for training can 
be either an existing pre-trained foundation model or an un-
trained model with an architecture appropriate for sequence 
modeling such as a recurrent neural network (RNN) or a 
transformer. This model is then implemented to predict each 
masked design sequence element by taking the non-masked 
elements as inputs, and outputs a prediction. After the 
prediction is made, the masked elements are unmasked, and the 
predictions are compared to the actual labels, and a 
measurement of accuracy (or loss) is computed and used as 
feedback to update the model weights. This training routine is 
illustrated in Figure 2 and described in a pseudo-code Table 1.  

Fig. 2. Training framework integrating masked sequence modeling with 
hierarchical representations of the design process 
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Table 1. Masked sequence modeling for learning semantics of design 
Data 
preparation

1. Extract structured tree representations of functional 
(FR), physical (DP), and process (PV) domains from 
design documentation 

2. Flatten FR, DP, PV trees into three lists 
3. Concatenate lists into a single sequence 

Sequence 
learning 

4. Mask 10% - 20% of items in the sequence 
5. Take unmasked items as input context window 
6. With sequence modeling architecture, compute 

probability distribution for masked identity 
7. Measure similarity score between maximum likelihood 

identity and ground truth identity to compute loss 
8. Update model weights 
9. Repeat training process with another sequence 

After training is completed, the model should have learned a 
collection of weights for representing the total vocabulary of 
design elements as embedded feature vectors.   

3.3. Extracting multimodal design elements 

A dataset must be constructed for the design repository used 
in the training framework. Here we describe a system to 
aggregate such elements in structured form from multimodal 
artifacts including textual, graphical, and undocumented 
knowledge. 

The first mode of design data artifacts considered is 
documentation of prior designed products and systems. To 
extract a structured representation of functional information as 
needed to input to the training framework in Section 3.2, 
recursive question answering [17] is the proposed method. In 
this routine, a language model is given a document as context 
and prompted to initialize a functional decomposition by 
identifying the highest-level functional requirement (FR0). 
Next, this obtained answer is used to inform a more detailed 
question mapping FR0 to the physical domain to identify how it 
is addressed by the highest-level design parameter DP0. 
Subsequently, both these elements are used to inform a more 
detailed prompt extracting the requirements needed for the 
solution DP0 to address the problem FR0. This results in a 
decomposition of the highest-level what-how pair into a set of 
sub-requirements. The process recurses until termination 
conditions are met.  

The next mode of design data considered is undocumented 
forms of knowledge which may only exist in the memory of 
expert engineers. For this mode, the interactive chat completion 
module of a Push-Pull Digital Thread for manufacturing 
systems [18] is the proposed method. In this method, a similar 
extractive functional decomposition process is performed but 
now in a conversational format to flexibly pursue domains of 
design and process knowledge which connect to knowledge of 
the interviewee.  

The final mode of data considered encompasses design 
processes being presently conducted. To avoid requiring 
additional data acquisition systems, a computational solution to 
transform a passive real-time documentation system, such as a 
closed-circuit video record, into structured functional 
information is used. Unedited video footage of a fabrication  

Fig. 3. System for extracting design information from multimodal artifacts 

process is segmented into frames. In regular intervals, an image 
frame is passed to a multimodal language model accompanied 
by a prompt asking the model to infer, from the image, a process 
variable relating to a functional requirement previously 
extracted from documentation or expert knowledge sources. 
The algorithm is a nested loop, performing this task for each 
image frame and for each functional requirement. 

If the aggregated results of the three modes of design data 
extraction result in sufficient size of data points, K-means 
clustering methods can be implemented to organize the 
hierarchy according to functional similarity. The integration of 
the structured extractions is illustrated in in Figure 3.  

4. Case Study 

This framework for training a foundation model in 
engineering design understanding is demonstrated with a case 
study in the design of absorbent products. Bio-based 
alternatives to single-use petroleum-derived plastics can be 
manufactured using byproducts of the agro-food industry. In 
this case, absorbent materials intended for use in sanitary 
products are produced using gluten powder discarded when 
wheat is processed into flour [21]. The gluten is processed 
using a heated extrusion machine to form a porous absorbent 
material.  

WP2 uses optimization and characterization documentation of biomass 
recipes developed at KTH to support the AI-driven recommendations for 
increasing flexibility of biomaterials development. Keratin protein, 
fibers, and PHA will be used as raw materials in the formulations. The 
technology is based on waste recycling using biocatalysis from food waste 
and the WPs scope of analysis that includes a life-cycle perspective is 
represented by Figure 4. The materials will be processed in a pilot-scale 
extruder provided by KTH. The formulations will be selected where 
bioplastics were produced as porous structures with highly absorbing 
properties (Federico et al. 2022). The selected absorption properties and 
processing parameters will be used for the WP3 to feed the critical 
processing parameters towards the targeted functionality (liquid 
absorbency for sustainable sanitary articles). The absorbent porous 
materials will be processed as porous cylinders (Fig.3a), porous films 
(Fig.2b), and porous filaments (Fig.3c). The liquid spreading and 
swelling characteristics will be studied using blood and saline 
solutions, critical liquids in sustainable absorbents for hygiene 
applications (Fig.1d). The structural features of the porous protein 
matrix structures with and without fillers will be related to the liquid 
absorption characteristics and used in WP3 to determine the critical 
processing parameters for future production of these absorbent materials. 
Task 2.1 Reactive extrusion of bio-based materials at varying conditions. 
Task 2.2 Pre-and post-processing of the raw materials with varying 
conditions according to results from AI study. Task 2.3 Chemical 
structure analysis of the extruded materials by SS-NMR, FTIR, TEM-EELS. 
Task 2.4 Biodegradability assessment. Porous extruded materials based on 
proteins (gluten and zein) were obtained as industrial biomass. The 
materials have been processed as cylindrical porous network, porous 
films, and fluffy filaments. The spreading and absorbent properties of 
the porous pellets, pressed porous pellets, and fluffy filaments are 
demonstrated by adding defibrinated blood, mimicking the properties of 
synthetic structures. Illustration of the suggested matrix extrudate 
microstructure based on porous industrial biomass and different protein 
biopolymers such as gluten as a binder for cohesive extrudates. The 
expected improved porosity by adding foaming agents producing gas pores. 
Developing models and relationships between absorption parameters related 
to the microstructure of the materials could lead to an all-in-one 
material allowing for a complete configuration of an absorbent item made 
of biodegradable protein biomass.

prompt: What is the aim?

document: Develop sustainable 
absorbent materials for hygiene 
applications

prompt: How does it <Develop 
sustainable absorbent materials for 
hygiene applications>

document: Use a combination of 
keratin protein, fibers, and PHA as 
raw materials

Fig. 4. Question-answering used to extract functional requirements from text 

4.1. Dataset construction

To construct the training and validation datasets for the case 
study, three information sources were considered 
corresponding to the system for multimodal design element 
extraction in Section 3.3. The first source is a textual project 
description. The second is a human subject-matter expert 
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experienced with the design problem and fabrication process. 
The third is a sequence of image artifacts from a video of the 
fabrication process. From each of these sources, functional 
requirements, design parameters, and process variables were 
extracted to construct example sequences for learning the 
semantics of design. The textual information source was 
processed using recursive question answering and yielded 23 
FRs and 1 DP, an example of which shown in Figure 4. The 
interactive chat completion with the human subject-matter 
expert, an example of which shown in Figure 5,  yielded 2 FRs, 
10 DPs, and 4 PVs.  

prompt: That's interesting! So it comes down to 
balancing the size and distribution of pores for 
effective absorption. How did you manage to control 
the pore size and distribution? Also, what measures 
did you take to ensure that creating a balance did 
not compromise the internal structure of the 
material or product?

subject-matter expert: Controlling porosity is very 
limited. We mix in foaming agents to create 
porosity, water (which modifies porosity of 
material), temperature, extrusion speed in the 
machine, introduce gases, but it's a bit limited.

Fig. 5. Generative chat-completion used to interact with subject-matter expert 

The fabrication video inference yielded 23 PVs. These 
artifacts were extracted by taking a video of the extrusion 
process, and then segmenting the video shot at 30 frames per 
second into a sequence of images taken as every 300th frame 
from the video (each image corresponding to a snapshot every 
10 seconds). Given the video was of the process domain, the 
key goal was to extract process variables based on the 
functional requirements previously extracted from the textual 
artifacts. For this purpose, a multimodal input was provided to 
the Gemini-Pro-Vision model first including the image frame 
and next including a prompt to identify process variables 
related to a particular functional requirement. The image 
frames were iterated through once for each high-level 
functional requirement. An example of the prompt and outputs 
for frame number 6600 corresponding to midway (3 minutes 
and 40 seconds) into the process is shown in Figure 6. The 
resulting constructed dataset includes design elements 
constituting functional-form-fabrication triplets for the case 
study, which can be used for training. 

prompt: Name one process variable 
relating to <mechanical properties> 
that can be inferred from this image. 

response: The image shows a person 
using an extruder to create a strand 
of material. One process variable 
relating to mechanical properties 
that can be inferred from this image 
is the extrusion temperature. The 
extrusion temperature can affect the 
mechanical properties of the final 
product, such as its strength and 
flexibility.  

Fig. 6. Process variables extracted from image frames of a fabrication video 
using a multimodal language-vision model  

4.2. Training 

The training procedure was performed as outlined in the 
Table 1 pseudo-code. Google Gemini Application 
Programming Interface (API) was used to process the training 
data as JSON Lines object format. The training took place over  

Functional 
Requirement 

 Design 
Parameter 

 Process 
Variable 

Processability and 
scalability

Use miniaturized 
versions of 
commercial 
equipment to 
facilitate 
scaling up

The melt flow rate 
is an important 
process variable 
because it 
indicates how 
easily the polymer 
can be processed

Fig. 7. Example function-form-fabrication triplet from training data 

20 epochs. A learning rate of 1.0 was used, representing the rate 
at which new training data overrides previously seen examples. 
An adapter size of 4 relating to the number of trainable 
parameters was used. The masked sequence learning routine 
involved presenting function  form  fabrication triplets, such 
as the example shown in Figure 7, with one element randomly 
masked to the model, and instructing the model to make a 
prediction as to its masked identity. The loss and fraction of 
correction predictions measured over the training steps are 
illustrated in Figure 8. 

Fig. 8. Model performance through progress of training 

5. Results and Discussion 

Two metrics can be primarily used to quantitatively 
evaluate the results. The first is a metric of understanding the 
structure of the design process. This relates to the ability of the 
trained model to identify the type of design element missing 
from the triplet. Each training triplet contained a functional 
requirement, a design parameter, and a process variable. The 
ability to know if, given function and form, that fabrication 

understanding of the structure of the design process. The model 
correctly identified the general type of masked design element 
at a rate of 100%. 

The second metric relates to the semantic design 
understanding, or comprehension of meaning, of the model. 
Through statistical natural language processing, textual data is 
represented as vectors in a high dimensional space where 
position corresponds to language meaning. We can estimate the 
functional similarity between the predicted design element FRp

and the ground truth FRt as the cosine distance between these 
two vectors. This is computed as the dot product divided by 
vector length, as expressed below. 

On average, over the validation dataset, the average 
functional similarity of the trained model predictions was 
67.2%. The ability of the trained model to consistently identify 
the category of the masked design domain suggests 
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effectiveness in learning structure of the design process. 
Semantic similarity as a metric of functional similarity suggests 
opportunities to improve performance.  

The presented method illustrates a generalized training 
framework intended for application to engineering design. A 
limitation of the case study was the small scale at which data 
was extracted. This was likely a factor in performance and 
limits the applicability of the trained model beyond this study. 
However, the training framework is such that through future 
community-sourced effort to expand the repository, others may 
share more data to scale available design knowledge. 

Another limitation of this work relates to the methods for 
extracting functional requirements, physical design parameters, 
and process variables. This framework only includes textual, 
graphical, and undocumented knowledge. However, design 
data can exist in other modes such as tabulated and 3D models. 
Functional information must be extracted from all forms of 
multimodal data. Also, methods for latent representations of 
design sequences beyond natural language descriptions must be 
developed. Representing with text requires a statistical 
language model to embed their meaning into vector space, 
allowing an opportunity for information loss in the process.  

The proposed framework is based on design 
representations from Axiomatic Design theory. However, the 
methods could be adapted to other heuristic-based methods 
such as TRIZ for integration into existing design practices. 
Many design theories share an emphasis on language 
descriptions of function and graphic representations of form, 
presenting an opportunity for future work to develop 
compatibility with a wider range of design methodologies 
through sequence learning for collective societal benefit. 

Finally, the ethical and pedagogical aspects of developing 
a so-called foundation model in the field of engineering design 
must be discussed. The benefits of training an AI-based model 
on aggregated knowledge include leveraging prior collective 
problem-solving information to design for novel engineering 
challenges. However, drawbacks include subverted usage of 
such a model as justification for ill-conceived designs as well 
as a shortcut for decision-making. Prior to widespread 
deployment of such models in engineering design, it is 
advisable to develop a code of best practices for utilizing AI to 
make critical decisions. 

6. Conclusion 

As AI applications shift from dedicated well-defined tasks 
to general purpose knowledge sources, the need for such a 
foundation model in engineering design to leverage prior 
problem-solving experience for future decision-making. In this 
work we present a framework for training such a model on the 
structure and semantics of design. We also present a method 
for constructing the required datasets for such training. We 
demonstrate this on a case study of absorbent product design 
and share initial results on a small scale for the trained model. 
Future directions of this work will focus on validating the 
recommendations provided by the model for unseen design 
tasks in order to establish metrics for reliability, as well as 
performing training on larger scale repositories of prior 
examples across varied domains of engineering design. 

Acknowledgments: This work was supported by a Digital 
Futures Postdoc Fellowship (Data-driven design for climate 
action), the KTH Sustainability Office (Environment and 
sustainability without boundaries grant, and the Swedish 
Research Council (BioRESorb project).  

References 

[1]  Walther, J., Spanier, D., Panten, N., Abele, E., 2019. Very short-term 
 load forecasting on factory level  A machine learning approach. 
 Procedia CIRP 80, 705 710. 
[2] Zhu, Z., Anwer, N., Huang, Q., & Mathieu, L. 2018. Machine learning in 

tolerancing for additive manufacturing. CIRP annals, 67(1), 157-160. 
[3] Huber, J., Tammer, C., Krotil, S., Waidmann, S., Hao, X., Seidel, C., 
 Reinhart, G., 2016. Method for Classification of Battery Separator 
 Defects Using Optical Inspection. Procedia CIRP 57, 585 590. 
[4]  Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. 

2019. Machine learning-based image processing for on-line defect 
recognition in additive manufacturing. CIRP annals, 68(1), 451-454. 

[5] Gammack, J., Akay, H., Ceylan, C., & Kim, S. G. 2022. Semantic 
knowledge management system for design documentation with 
heterogeneous data using machine learning. Procedia CIRP, 109, 95-100. 

[6] Vaswani, A., Shazeer, H., Parmar, N., Uszko, J., Jones, L., Gomez, A., 
tention is all you need. In Advances 

in Neural Information Processing Systems, pages 5998 6008. 
[7] Jones, C., & Bergen, B. (2024). Does GPT-4 pass the Turing test?. 

In Proceedings of the 2024 Conference of the North American Chapter 
of the Association for Computational Linguistics: Human Language 
Technologies (Volume 1) (pp. 5183-5210). 

[8] Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J. B., Yu, J., & Ahn, 
J. 2023. Gemini: a family of highly capable multimodal models. arXiv 
preprint arXiv:2312.11805. 

[9] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., et al. 2020. 
Language Models Are Few-Shot Learners. Advances in Neural 
Information Processing Systems 33: 1877 1901. 

[10] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., 
Lacroix, T., et al. 2023. Llama: Open and efficient foundation language 
models. arXiv preprint arXiv:2302.13971. 

[11] Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On 
meaning, form, and understanding in the age of data. In Proceedings of 
the 58th annual meeting of the association for computational 
linguistics (pp. 5185-5198). 

[12] Altshuller, G. S., & Shapiro, R. B. 1956. Psychology of inventive 
creativity. Issues of Psychology, 6, 37-49. 

[13] Suh, N. P. 1997. Design of systems. CIRP Annals, 46(1), 75-80. 
[14]  Ulrich, K. T., & Eppinger, S. D. (2016). Product design and 

development. McGraw-hill. 
[15] Wang, P., Karigiannis, J., & Gao, R. X. (2024). Ontology-integrated 

tuning of large language model for intelligent maintenance. CIRP annals, 
73(1), 361-364. 

[16] Ellsel, C., & Stark, R. (2024). A knowledge-driven, integrated design 
support tool for additive manufacturing. Proceedings of the Design 
Society, 4, 1747-1756. 

[17] Akay, H., Yang, M., & Kim, S. G. 2021. Automating design requirement 
extraction from text with deep learning. In International Design 
Engineering Technical Conferences and Computers and Information in 
Engineering Conference (Vol. 85390, p. V03BT03A035). American 
Society of Mechanical Engineers. 

[18] Akay, H., Lee, S. H., & Kim, S. G. 2023. Push-pull digital thread for 
digital transformation of manufacturing systems. CIRP annals, 72(1), 
401-404. 

[19] Taylor, W. L. 1953. Cloze procedure: A new tool for measuring 
readability. Journalism quarterly, 30(4), 415-433. 

[20] Kenton, J. D. M. W. C., & Toutanova, L. K. (2019, June). Bert: Pre-
training of deep bidirectional transformers for language understanding. 
In Proceedings of naacL-HLT (Vol. 1, p. 2). 

[21] Jugé, A., Moreno-Villafranca, J., Perez-Puyana, V. M., Jiménez-Rosado, 
M., Sabino, M., & Capezza, A. J. (2023). Porous thermoformed protein 
bioblends as degradable absorbent alternatives in sanitary 
materials. ACS Applied Polymer Materials, 5(9), 6976-6989. 


