
Delft Center for Systems and Control

Predicting Processing Time of
Stochastic Switching Max-Plus
Systems

Samuel Hoogerwerf

Th
es

is

Predicting Processing Time of
Stochastic Switching Max-Plus

Systems

Thesis

Samuel Hoogerwerf

May 30, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright ©
All rights reserved.

Abstract

The goal in this thesis is to make a prediction on the total processing time for logistical
systems to complete their tasks. For simple systems that can be described using a regular
max plus state space model this is done by calculating the systems eigenvalue and multiplying
that by the number of iterations required. But, for more complex systems that can only be
described using a switching max-plus state space model such as a production line that can
change during production, or a rail network where some rail segments become unavailable
at times. If these changes to the system are fully within control of the operator they are
easily accounted for when predicting the total processing time. But, if the system switches
stochastically then one would need to simulate all possible permutations of operation to know
the average processing time of the system. Alternatively, one might approximate this average
processing time using some simplified model.

We found three main methods to predict the total processing time. Firstly, we can fit a
generalized extreme value distribution to a histogram of the systems performance and then
extrapolate this distribution function. Secondly, we can fit a marginal cost model to a limited
simulation of the system and then extrapolate based on that model. Lastly, we can rewrite
the expectation of how long the system might take to go through N iterations to an inequality
by adding an arbitrary diagonal matrix S, which if minimized can be used to approximate
total processing time.

All three prediction methods can, when fitted properly predict at least within 15% accuracy
with the fitted extreme value distribution generally performing best. We also found that it is
possible to save total processing time using a controller based on the marginal cost model if
it is possible to exert some limited control over the mode switching process.

Thesis Samuel Hoogerwerf

ii

Samuel Hoogerwerf Thesis

Table of Contents

1 Introduction 1
1-1 Problem Definition . 1
1-2 Case Study . 2
1-3 Outline . 2

2 Max-Plus Basics 5
2-1 Basic Definitions . 5
2-2 Matrix Operations . 6
2-3 Notation Conventions . 7
2-4 State Space Models . 7
2-5 Basic System Properties . 17
2-6 Max-Plus Linear Scheduling . 20
2-7 Switching Max-Plus Linear Systems . 24
2-8 Expected processing time for stochastic SMPL systems 26

3 S-Matrix Approach 29

3-1 Approaching E
[
Γ(N)

]
with Sequential Quadratic Programming 31

3-1-1 Calculation Time and Memory Concerns 38

3-2 Approaching E
[
Γ(N)

]
with Linear Programming 39

3-2-1 Memory Concerns . 41

4 Estimating E
[
Γ(N)

]
using a Marginal Cost Model 43

4-1 Higher Order Approximation . 44
4-1-1 Enabeling extrapolation beyond Nfit . 46

4-2 Problematic systems . 50

Thesis Samuel Hoogerwerf

iv Table of Contents

4-3 Dropping the upperbound requirement when estimating E
[
Γ(N)

]
. 51

4-3-1 Higher Nfit through incomplete b . 51
4-3-2 Linear Regression . 52

4-4 Methods To Reduce Calculation Time . 52
4-5 Memory Concerns . 54
4-6 Scheduling . 54

4-6-1 Effect of Control . 55

5 Estimating E
[
Γ(N)

]
using a Probability Distribution 59

5-1 Inherent imprecision to extrapolating beyond Nfit 60
5-2 Fitting the Generalised Extreme Value distribution 61

5-3 Estimating E
[
Γ(N)

]
. 65

5-4 A note on non-smooth systems . 65
5-5 Calculation time and Memory Concerns . 66

6 Comparison of methods 69
6-1 Correlation . 71
6-2 Applications . 72

7 Conclusions and Recommendations 73
7-1 Conclusions . 73
7-2 Recommendations . 74

7-2-1 Better Buffer sorting Algorithm . 74
7-2-2 Stochastic elements in A . 75
7-2-3 Relationship between S matrix and prediction accuracy 75
7-2-4 Predicting on a 95% interval . 75
List of Acronyms . 79

Samuel Hoogerwerf Thesis

Chapter 1

Introduction

Complex logistical systems can be modeled using max-plus algebra. This is a system of
algebra with slightly altered rules the maximum function is used in the place of addition and
addition in place of multiplication. Using this system of algebra it is possible to compactly
describe simple logistical systems in state space form. An example of such a simple system
might be a factory line that always produces the same product, or a public transport system
that never changes it’s schedule.

But then, what if the factory can produce a variety of products by mixing production lines over
the course of the day. Or, what if you want to model the public transport system including
possible backup lines if the ones in the official schedule fall through due to accidents or
other circumstances. In these cases can also be described using max-plus algebra by using a
switching state space model. In the case of the factory the owner presumably has full control
over what is produced when and on which lanes, this we might call controlled switching. On
the other hand accidents could hardly be planned, but the odds of them happening can be
approximated. In such a case we would talk about stochastic switching.

1-1 Problem Definition

With simple non switching max-plus linear systems it is trivially simple to calculate total
processing time, the same can be said for Switching Max-Plus-Linear (SMPL) systems that
are fully controllable. The difficulty is found in stochastic SMPL systems, as to predict the
total processing time for these systems requires simulating every permutation of package order
and calculating the odds for that particular permutation to occur. As the number of possible
permutations grow exponentially for every linear increase in prediction horizon this method
quickly becomes untenable. As such the main question we want to answer is:

Can we approximate the mean total processing time over N iterations for a stochastic SMPL
system? At the very least the difficulty of calculating this approximation should scale sub-
exponentially with increasing N while being at most 10% off the actual mean processing time.

Thesis Samuel Hoogerwerf

2 Introduction

To calculate such an approximation we need a simplified model of the system that will allow
extrapolation without increasing the calculation load. This simplified model should only
consider the stochastic distribution of the possible operation modes. It should not require a
list of all upcoming modes. In our example that would be a list of packages with incoming
lane and outgoing lane included.

Secondly if we were to have such a model it might be possible to invert it and use it as a
controller. Say in the case of the package sorter example we could manage a buffer of 5
packages before entering them in the machine and then every iteration pick the fastest to
process package out of that buffer. Using this limited level of control, as we still don’t control
which package enters our buffer, we could reduce total processing time and thus process more
packages per day.

Can we exert some limited control over a stochastic SMPL system by using buffered modes in
some way that is faster than simulating all possible permutations of inputting the buffer?

1-2 Case Study

Throughout especially the second part of this thesis we will use an ongoing example of a very
simple arbitrary stochastic SMPL system. We could have chosen anything ranging from a
railway network to an automotive production line. We chose this arbitrary system as it is
simple and useful when visualizing the mathematics since every package is an iteration and
every possible package path is a mode.

Our example system can only be modeled using a stochastic SMPL model is the machine in
Figure 1-1. Let’s say this is a package sorting machine of some kind, clearly it can operate in
four possible modes of operation:

1. A package comes in on lane 1 and needs to go to outgoing lane A.

2. A package comes in on lane 2 and needs to go to outgoing lane A.

3. A package comes in on lane 1 and needs to go to outgoing lane B.

4. A package comes in on lane 2 and needs to go to outgoing lane B.

Every single one of these modes of operation on their own can be described with a simple
Max-Plus-Linear (MPL) model but we require switching MPL algebra to describe the system
as a whole.

1-3 Outline

In the first few sections of Chapter 2 we go through how the basics of MPL algebra and how to
write state space models. Then in the last few sections of Chapter 2 we extend this to SMPL
systems and lay out the foundations for the actual research questions. With these basics
resolved we can attempt to create some prediction models the first of which is Chapter 3
where we rewrite the approximation problem as an inequality. Another model is discussed

Samuel Hoogerwerf Thesis

1-3 Outline 3

Sorting Platform 1 Sorting Platform A

Sorting Platform 2 Sorting Platform B

Incoming Lane 1

Incoming Lane 2

Outgoing Lane A

Outgoing Lane B

Central
Sorting Platform

Sorting Robot 1 Sorting Robot 3

Sorting Robot 2 Sorting Robot 4

Figure 1-1: a top down overview of the sorting system

in Chapter 4 where we fit a marginal cost model that can be used for approximating total
processing time. Within this chapter in Section 4-6 we discuss how a fitted marginal cost
model can be used to reduce the total processing time for the same number of packages, if we
presort the input. The third and last method of predicting total processing time is discussed
in Chapter 5 where we fit extreme value distributions to a simulation of the system. Lastly,
in Chapter 6 we run a large Monte-Carlo simulation to evaluate the relative accuracy of the
different models.

Thesis Samuel Hoogerwerf

4 Introduction

Samuel Hoogerwerf Thesis

Chapter 2

Max-Plus Basics

Max-Plus-Linear (MPL) algebra is based on a fundamentally different set of operations than
regular Linear Algebra. As such we will explain all the basic operations and definitions in this
chapter. These basics are discussed in many overview papers and books like [1][2][3][4][5].

2-1 Basic Definitions

In MPL algebra the basic operators of linear algebra are in a sense all shifted down one order.
This Below we convert basic MPL expressions (left) to their conventional equivalent (right).
The notation we use in this thesis as defined here can be found in [2].

a⊕ b = max(a, b) (2-1)
a⊗ b = a+ b (2-2)

a⊗
b = a · b (2-3)

n⊕
i=1

ai = max(a1, a2, . . . , an) (2-4)

n⊗
i=1

ai = a1 + a2 + · · ·+ an (2-5)

ε = −∞ (2-6)

Remark 2-1.1. Inverse Operations
A point to note is that ⊕ has no inverse.[2] There is no way to reverse engineer 2 out of
2 ⊕ 5 = max(2, 5) = 5. Higher order MPL operations do have their respective inverses but
these won’t be used in this thesis.

These different operators are used on an extended spectrum of numbers relative to the set R
in conventional algebra. With the defining difference being the inclusion of −∞ which will
be referred to in this paper as ε as is convention.

Thesis Samuel Hoogerwerf

6 Max-Plus Basics

Definition 2-1.1. Extended Real Numbers
As such the set of real numbers used in regular algebra is increased in scope for MPL algebra
as can be seen in Eq. (2-7)

Rε
def= R ∪ −∞ = R ∪ ε (2-7)

In MPL algebra ε functions effectively the same way 0 does in regular algebra. As has
been discussed in Definition 2-4.2 ε is used in those A matrix elements where there is no
corresponding edge in the graph.

a⊗ ε def= ε⊗ a def= ε (2-8)

2-2 Matrix Operations

When only considering scalar operations one would be right to wonder what MPL algebra
has to add other than some new notation. The answer to this question are the interesting
parallels between conventional- and MPL algebra. We again used the notation defined in [2].

Definition 2-2.1. Matrix Addition
Paralleling conventional algebra for addition to take place, matrices need to be of the same
size. Thus, for A,B ∈ Rm×nε addition is extended in the following way:

(A⊕B)ij = aij ⊕ bij = max(aij , bij) (2-9)

Example 2-2.1. Matrix Addition
A Matrix MPL addition example.1 4 3

9 6 1
3 2 5

⊕
4 2 3

4 6 6
1 1 3

 =

1⊕ 4 4⊕ 2 3⊕ 3
9⊕ 4 6⊕ 6 1⊕ 6
3⊕ 1 2⊕ 1 5⊕ 3

 =

4 4 3
9 6 6
3 2 5

 (2-10)

Definition 2-2.2. Matrix Multiplication
Max-plus multiplication has the same requirements conventional matrix multiplication has:
A ∈ Rm×rε and B ∈ Rr×nε

(A⊗B)ij =
r⊕

k=1
Aik ⊗Bkj (2-11)

Example 2-2.2. Matrix Multiplication
An example of MPL multiplication.

[
6 ε 2
4 5 7

]
⊗

2 7
7 4
2 9

 =
[
6⊗ 2⊕ ε⊗ 7⊕ 2⊗ 2 6⊗ 7⊕ ε⊗ 4⊕ 2⊗ 9
4⊗ 2⊕ 5⊗ 7⊕ 7⊗ 2 4⊗ 7⊕ 5⊗ 4⊕ 7⊗ 9

]
=
[

8 13
12 16

]
(2-12)

Definition 2-2.3. Matrix Exponentials
Max-plus Exponentials can be most easily defined recursively. For an exponential the matrix
needs to be square so let A ∈ Rn×nε

A⊗
k = A⊗

k−1 ⊗A (2-13)

Samuel Hoogerwerf Thesis

2-3 Notation Conventions 7

2-3 Notation Conventions

This section is still based off [2].

Definition 2-3.1. Zero Matrix
MPL algebra also has a notation convention for the a matrix filled with ε. In this case an
n×n square zero matrix would be notated as En and an m×r sized version would be notated
as Em×r.

Definition 2-3.2. Alternative zero notation
In some literature e is written in stead of 0. In this thesis 0 will be used in the conext of
conventional algebra and e in the context of MPL algebra.

e
def= 0 (2-14)

Definition 2-3.3. Unit Matrix
The unit matrix is defined as a square E matrix with 0 on the diagonal. So an n × n unit
matrix would be notated as En

Example 2-3.1. Unit Matrix
This means E3 would work out as:

E3 =

0 ε ε
ε 0 ε
ε ε 0

 (2-15)

Definition 2-3.4. Unit Vector
The unit vector η is defined as a column vector with only 0 valued elements. So a height n
unit vector would be:

ηn = En×1 ⊕ 0 =


0
0
...
0

 (2-16)

Definition 2-3.5. Vector Sum
In some literature the maximum element of a vector is notated as ||x(k)||⊕. This will be done
in this thesis as well.

||x(k)||⊕
def=

n⊕
i=1

xi(k) (2-17)

2-4 State Space Models

MPL algebra is mainly used for describing Discrete Event Systems (DES). DES can be mod-
eled using MPL algebra in a way that parallels a conventional state-space description. With
the main difference being that DES don’t deal in physical quantities like speed, temperature
or acceleration but rather in time. So the state contains a time instance of arrival and the
next calculation step is not some discrete time step, like say a second, but rather the next
’event’ in the DES. Definition 2-4.1 through Definition 2-4.3 are based on [2] and everything
after that can be found in [6].

Thesis Samuel Hoogerwerf

8 Max-Plus Basics

Definition 2-4.1. Autonomous State Space Model
The simplest system is autonomous without an output. A(k) might vary over events which
is something that has been discussed in Section 2-7. Up to that chapter it can be assumed
that A(k) is constant so A(k) = A ∀k.{

x(k + 1) = A(k)⊗ x(k)
x(0) = x0

(2-18)

With A ∈ Rn×nε .
Definition 2-4.2. Graph A matrix relationship
Any weighted directed graph has a correspondingAmatrix. For a graph with vertices 1, 2, ..., n
the corresponding matrix is size A ∈ Rn×nε . With aij equal to the edge-weight from vertex j
to vertex i. Wherever there is no connection aij = ε.

1 2

a21

a11 a22

a12

Figure 2-1: Graph corresponding to A: G (A)

A =
[
a11 a12
a21 a22

]
(2-19)

Example 2-4.1. A simple autonomous system
In order to illustrate how one might construct such a system lets look at a simple train line.
Say we have two train stations, station 1 and 2 that both have a connection to a third station.
From this station 3 a train departs to station 4, but this train can only depart after both
trains from station 1 and 2 have arrived to provide a crossover connection. This system is
shown in Figure 2-2 along the edges of the graph travel-time is notated in hours.

1

2

3 4

2

9

3

Figure 2-2: A simple system

It is possible to construct A from this graph using Definition 2-4.2. Doing so results in the A
matrix shown in (2-20).

A =


ε ε ε ε
ε ε ε ε
2 9 ε ε
ε ε 3 ε

 (2-20)

Samuel Hoogerwerf Thesis

2-4 State Space Models 9

In order to see how this system develops over time we need to set an initial state. Lets say
there are only two trains in the initial state. One train in station 1 that leaves after 4 hours
and one in station 2 that leaves immediately.

x(0) =


4
0
ε
ε

 (2-21)

With such a simple system we can now reason that the first train will arrive at station 3 after
4 + 2 = 6 and the second after 0 + 9 = 9. Since the train for station 4 can only depart after
both have arrived the next train will only arrive in station 4 after max(4 + 2, 0 + 9) + 3 = 12.
We can do the same calculation using (2-18) to find x(1) and x(2).

x(1) =


ε ε ε ε
ε ε ε ε
2 9 ε ε
ε ε 3 ε

⊗


4
e
ε
ε

 =


ε
ε
9
ε

 , x(2) =


ε ε ε ε
ε ε ε ε
2 9 ε ε
ε ε 3 ε

⊗

ε
ε
9
ε

 =


ε
ε
ε
12

 (2-22)

As can be seen from the example the state vector x(k) contains time instances at which
processes begin. So in the case of x(0) the first train could start driving 4 hours after t0
whereas the other could leave immediately. And k does not signify time but rather counts
events. There is no constant distance between events and in the case of x(0) one event can
contain two trains leaving 4 hours apart in time. But in the context of the DES both trains
had to arrive at station 3 before the next possible event could happen, namely the connecting
train leaving from station 3.

Definition 2-4.3. Input Dependent State Space Model
The system definition given in (2-18) can be extended with an input and output. Both u(k)
and y(k) can be drawn in the graph as extra vertices. With u(k) signifying time instances at
which new input is given to the system, and y(k) signifying time instances at which finished
product leaves the system.

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k)
y(k) = C(k)⊗ x(k)
x(0) = x0

(2-23)

With A ∈ Rn×nε , B ∈ Rn×mε , C ∈ Rl×nε where m is the number of edges connected to the
vertex u(k) and l is the number of edges connected to y(k)

Algorithm 2-4.1. Deriving a State Space Model for JIT systems with production
times

1. Set n equal to the number of non-input -output vertices in the graph. Set m equal
to the number of input vertices. Set l equal to the number of output vertices. Then
number the input vertices as the set U = {u1(k), u2(k)..., um(k)}, and do the same for
Y = {y1(k), y2(k), ..., yl(k)}.

2. Create empty matrices A ∈ Rn×nε , B ∈ Rn×mε , C ∈ Rl×nε

Thesis Samuel Hoogerwerf

10 Max-Plus Basics

3. Start a counter at l = 1

4. Find a vertex vl that only has an incoming edge eU,l from input vertices U . Set all = pi
and al• = ε with • = {1, 2, ..., n}4{l}. For all ug(k) ∈ U set blg = tg,l. Remember that
when there is no directed edge ei,j travel-time is by definition ti,j = ε. Increase counter
l = l + 1 and repeat if there are more vertices that meet the first criterion.

5. Set V = {v1, ..., vl−1}. Find a vertex vl that only has incoming edges from U ∪V . Then:

aij =
l−1⊕
m=1

pm ⊗ tm,l ⊗ amj , blg = tg,l ⊕
l−1⊕
m=1

pm ⊗ tm,l ⊗ bmg

Increase counter l = l + 1 repeat if l ≤ n.

6. Set cij = pj ⊗ tj,yi

Example 2-4.2. Just In Time Production System
Throughout later sections in this chapter we will discuss system properties that can be derived
using the state-space model. In the examples given going forward we will refer to the systems
shown in Figure 2-3 and Figure 2-5. The first of which is a DES that does not contain any
circuits. Often these types of DES describe Just In Time (JIT) production and as such they
have an input, time instances at which raw materials are fed, and an output, time instances
when finished product comes out. Say that we have a list of machines containing what they
produce and require like Table 2-1. And something like a factory floor plan which would give
an indication of travel time between machines. Then that information can be used to produce
a graph like Figure 2-3. Generally travel time is notated next to edges and processing time
next to vertices as can be seen in Figure 2-3.

Machine Input Output Processing Time
1 Raw Mat. Widget A 3 min
2 Raw Mat. Widget B 5 min
3 Widget A, -B Widget C 8 min
4 Widget C Widget D 5 min
5 Widget C, -D Final Prod. 1 min

Table 2-1: Production system machine dependencies

A point of note here is that processing- and transportation capacity are not explicitly consid-
ered in this model. In example, say the conveyor belt between machine 1 and 3 can transport
only 10 widgets per hour but machine 1 produces 20 widgets per hour equaling the amount
machine 3 needs to run at full capacity. In that case the output buffer of machine 1 will fill
up, resulting in real world delays that are invisible to the MPL model.

Machine production capacity can be represented through processing time. In the case of this
example machine 3 provides for both machine 4 and 5 if both were to need one widget C
that would mean that machine 3 really produces 1 widget per 4 minutes but since it has to
produce 2 total processing time is set to 8 minutes. This modeled holding back of production
in some outputbuffer until enough is produced for the next event makes the model simple but
has a downside. It is clear that if the first widget produced by machine 3 was sent to machine
4 and the second to machine 5 the total wait time from input to output would decrease by

Samuel Hoogerwerf Thesis

2-4 State Space Models 11

4 minutes. This optimization of sending to machine 4 first, could be modeled by decreasing
travel time from machine 3 to machine 4 by 4 minutes. However there is of yet no good way
to model such an optimization if travel time between machines is shorter than the time gained
by optimization.

M1

p1 = 3

M2

p2 = 5

M3

p3 = 8

M4

p4 = 5

M5

p5 = 1

u(k) y(k)

tu,1 = 5

tu,2 = 9

t1,3 = 2

t2,3 = 1

t3,4 = 7

t3,5 = 4
t4,5 = 2
t5,y = 4

Figure 2-3: The graph corresponding to the production system

In this case it is possible to use Algorithm 2-4.1 to find the A,B and C matrix, however for
the sake of the example we will work it out in detail. Before the first two machines can start
operating they require raw materials tu,i⊗u(k) and completion of any previous task pi⊗x(k).

x1(k) = 3⊗ x1(k − 1)⊕ 5⊗ u(k)
x2(k) = 5⊗ x2(k − 1)⊕ 9⊗ u(k)

Machines after that require completion of previous tasks xi(k − 1)⊗ pi and finished product
of all previous machines

⊕J xj(k)⊕ pj ⊕ tj,i with J the set of all nodes with a directed edge
pointing to vertex i.

x3(k) = 3⊗ 2⊗ x1(k)⊕ 5⊗ 1⊗ x2(k)⊕ 8⊗ x3(k − 1)
= 8⊗ x1(k − 1)⊕ 11⊗ x2(k − 1)⊕ 8⊗ x3(k − 1)⊕ 15⊗ u(k)

x4(k) = 8⊗ 7⊗ x3(k)⊕ 5⊗ x4(k − 1)
= 23⊗ x1(k − 1)⊕ 26⊗ x2(k − 1)⊕ 23⊗ x3(k − 1)⊕ 5⊗ x4(k − 1)⊕ 5⊗ u(k)

x5(k) = 8⊗ 4⊗ x3(k)⊕ 5⊗ 2⊗ x4(k)⊕ 1⊗ x5(k − 1)
= 30⊗ x1(k − 1)⊕ 33⊗ x2(k − 1)⊕ 30⊗ x3(k − 1)⊕ 12⊗ x4(k − 1)⊕ 1⊗ x5(k − 1)⊕ 45⊗ u(k)

y(k) = 1⊕ 4⊗ x5(k)

This set of equations can then be written in state space form (2-24).

Thesis Samuel Hoogerwerf

12 Max-Plus Basics

Aps =


3 ε ε ε ε
ε 5 ε ε ε
2 11 8 ε ε
8 26 23 5 ε
23 33 30 12 1

 , Bps =


5
9
15
30
45

 , Cps =
[
ε ε ε ε 5

]
(2-24)

Definition 2-4.4. Schedule Dependent State Space Model
Another system that can be modeled using MPL algebra are schedule driven systems. These
systems don’t have an input u(k) or output y(k) in a physical sense. Rather their input is
usually some kind of schedule d(k). Logistic systems considered in this paper have static
schedules. Static schedules repeat every event and thus are commonly defined d(k) = d(0)⊗
T⊗

k with T the time period over which the schedule repeats. Logistic system output is arrival
times at some set of vertices selected through C.


x(k + 1) = A(k)⊗ x(k)⊕ d(k + 1)
y(k) = C(k)⊗ x(k)
x(0) = x0

(2-25)

With A ∈ Rn+r×n+r
ε , C ∈ Rl×n+r

ε . To note here is the difference of x(k) spanning n+r instead
of just n as is the case in Definition 2-4.3. In logistic systems n counts (logistical) connections,
whereas r counts auxiliary variables, see Algorithm 2-4.3, that exist to make sure that the
schedule is realistic, see Definition 2-6.3.

Definition 2-4.5. Transportation and Transfer Matrices
In a logistic system where transfer time qi needs to be considered it is not possible to simply
use Definition 2-4.2. One way is to just add the line specific transfer time to the line specific
traveltime ti for a total delay until the next event. Another way of doing the same calculation
that allows for greater flexibility down the road is splitting up transfer time and travel time
into two separate matrices N ∈ Rn×nε , M ∈ Rn×nε . N is defined as nii = qi with all other
elements ε. M is defined with mji = ti for all vertices where some line j has to wait for line
i before it can leave. All other elements of M , meaning those that do not correspond to any
vertex on the graph, are set mji = ε.

N ⊗M =


q1 ε . . . ε
ε q2 . . . ε
...

...
ε ε . . . qn

⊗

m11 m12 . . . m1n
m21 m22 . . . m2n
...

...
mn1 mn2 . . . mnn

 = A (2-26)

Theorem 2-4.1. Order-p Model
For some systems, mostly those with travel-times in excess of T , not all trains manage to make
it to their required station within one event. In reality this often means that some connection
is so long that there are multiple trains travelling on one piece of track that depart in one
event and arrive two or more events later. This can be done by splitting up the original M
into some set M1 through Mp with p the order of said system [6]. These M1 through Mp can
be found using Algorithm 2-4.2.

Samuel Hoogerwerf Thesis

2-4 State Space Models 13



x(k + 1) =
⊕p
l=1N ⊗Ml ⊗ x(k − l + 1)⊕ d(k + 1)

y(k) = C(k)⊗ x(k)
x(0) = x0

...
x(1− p) = x1−p
d(k) = d(0)⊗ T⊗k

(2-27)

It is possible for there to be gaps in the numbering from M1 through Mp, nevertheless the
order of the model is that of p which can thus be higher than the number of Ml matrices.

Algorithm 2-4.2. Finding M1 through Mp

Start with the given matrices M ∈ Rn×nε and N ∈ Rn×nε

1. Create a E matrix L of size n× n.

2. For every element of N ⊗M that is not ε calculate di(0)− dj(0)− (N ⊗M)ij and then
pick l ∈ N such that −l · T ≤ di(0) − dj(0) − (N ⊗M)ij < (1 − l) · T is true. Set Lij
equal to the l found for every element of (N ⊗M)ij .

3. For all unique values in L that are not ε create an E matrix Ml ∈ Rn×nε .

4. For every element of Lij 6= ε set (MLij)ij = Mij

This results in some set of matrices M1 through Mp that can be used to put the system into
the form described in Theorem 2-4.1. It is possible that one finds some −l · T ≤ di(0) −
dj(0)− (N ⊗M)ij < (1− l) ·T for which l ≤ 0 in this case the system has failed the condition
that no vehicle is to wait for more than T time units. And just as any value l − 1 indicates
the number of vehicles short, −(l − 1) indicates the number of vehicles in excess.

Algorithm 2-4.3. Finding Auxiliary Variables
In order to simplify an order-p system one step, meaning to go to an order-(p− 1) system we
will need to expand Mp−1 with auxiliary variables.

1. Define a set N(l) containing the collumcounts for all columns of Ml with some element
not equal to ε.

N(l) def= {j ∈ {1, ..., n}|∃i ∈ {1, ..., n} such that (Ml)ij 6= ε} (2-28)

2. Calculate the number of auxiliary variables required r∗l . Where we set l = p−1. Which
means |N(l)| is equal to the number of columns in Ml with some element not equal to
ε.

r∗l = (l − 1) · |N(l)| (2-29)

3. Expand d(k), N and M1 through Mp−1 as follows

d̂(k) =
[
d(k)
E1×r

]
N̂ =

[
N En×r
Er×n Er

]
, M̂l =

[
Ml En×r
Er×n Er×r

]
∀ 1 ≤ l ≤ p− 1 (2-30)

with r = r∗l

Thesis Samuel Hoogerwerf

14 Max-Plus Basics

4. Start a counter s = 1

5. Set t to be equal to item s from the set N(p). Set ̂(Mp−1)t,n+s = T − v and set
̂(Mp−1)n+s,1...n = (Mp)s,1...n − (T − v) and lastly ̂d(k)n+s = d(k)t − v. Here v = 0

can always be chosen, but this may result in negative elements in ̂(Mp−1) so for human
legibility it can be useful to shift ̂(Mp−1)t,n+s back in time some amount v. If s < |N(p)|
do s = s+ 1 and repeat step 5.

6. with the system now decreased by one order set p to be equal to the order of the new
highest order matrix ̂(Mp−1). If p > 1 go to step 1.

Example 2-4.3. Simple Railway Network
Let us say we have a rail network that spans five cities, city A through D. This network
connects all five cities together with seven train lines. The scheduling is hourly as such
departure times are the same modulo T = 60 minutes. All of the rail network properties can
be found in Table 2-2.

Train From To Departure modulo 60 Travel Time ti Changeover Time qi
1 A B 27 45 2
2 B C 15 36 2
3 B D 20 42 2
4 C A 25 79 1
5 D C 17 50 2
6 D E 06 47 2
7 E C 55 24 3

Table 2-2: Train line travel time and dependencies

Figure 2-4 shows what a simplified map of Table 2-2 this system might look like. However it
should not be confused with the graph for the MPL system.

A

B

C

D

E

t2 = 36

t7 = 24

t6 = 47t1 = 45

t3 = 42

t4 = 79

t5 = 50

Figure 2-4: Simplified Map of Stations and Connections

Using Definition 2-4.5 and the information from Table 2-2 we can find M and N to calculate
A as is done in (2-31)

Samuel Hoogerwerf Thesis

2-4 State Space Models 15

N ⊗M =



2 ε ε ε ε ε ε
ε 2 ε ε ε ε ε
ε ε 2 ε ε ε ε
ε ε ε 1 ε ε ε
ε ε ε ε 2 ε ε
ε ε ε ε ε 2 ε
ε ε ε ε ε ε 3


⊗



ε ε ε 79 ε ε ε
45 ε ε ε ε ε ε
45 ε ε ε ε ε ε
ε 36 ε ε 50 ε 24
ε ε 42 ε ε ε ε
ε ε 42 ε ε ε ε
ε ε ε ε ε 47 ε


(2-31)

=



ε ε ε 81 ε ε ε
47 ε ε ε ε ε ε
47 ε ε ε ε ε ε
ε 37 ε ε 51 ε 25
ε ε 44 ε ε ε ε
ε ε 44 ε ε ε ε
ε ε ε ε ε 50 ε


= A? (2-32)

The actual graph for the system has the train connections as vertices not the stations. And
crossover time added to travel time between before the next train in the circuit can leave is
written next to the edges. This graph can be seen in Figure 2-5.

1

2 4

3

56 7

47

47

37

51
25

4444

81
50

Figure 2-5: Actual System Graph

But we do not yet know if this system is realistic. In order to test this, and do many other
types of analysis discussed in Chapter ??, we have to make sure the system is of p-order 1.
This is done by applying Algorithm 2-4.2 to N and M . If we find that all elements of L are
equal to ε or 1 the system was already of P order 1.

−l · T ≤ di(0)− dj(0)− (N ⊗M)ij < (1− l) · T
A?14 = 81, −120 ≤ 12− 45− 81 = −114 < −60, L14 = 2
A?21 = 47, −60 ≤ 11− 12− 47 = −57 < 0, L21 = 1

...
A?76 = 50, −60 ≤ 55− 6− 50 = −1 < 0, L50 = 1

(2-33)

With the first part of the algorithm done we can already see that the system is not of P order
1 yet. We find two Ml matrices are required to adequately describe the system:

Thesis Samuel Hoogerwerf

16 Max-Plus Basics

M1 =



ε ε ε ε ε ε ε
45 ε ε ε ε ε ε
45 ε ε ε ε ε ε
ε 36 ε ε ε ε 24
ε ε 42 ε ε ε ε
ε ε 42 ε ε ε ε
ε ε ε ε ε 47 ε


, M2 =



ε ε ε 79 ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε 50 ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε


(2-34)

Using Algorithm 2-4.3 we can now find the required auxiliary variables to simplify M1 and
M2 into some M̂ . We will only need to loop through the algorithm once since we only require
one simplification step.

There are two columns in M2 that contain a non ε element namely (M2)14 and (M2)54 so
|N(l)| = 2. We can use (2-29) to calculate that 2 dummy trains are required.

r∗l = (l − 1) · |N(l)| = (2− 1) · 2 = 2 (2-35)

Now that we know how many dummy trains are required we can implement them in a new
M̂ . The goal with these dummy trains is to allow for 2 different trains of the same line to be
on one rail track at the same time. Since for example the track from Station C to Station A
is 79 minutes of driving it is not possible for one train to make it within one schedule cycle
T = 60 minutes. This should be fine as there will just be 2 trains on the track for 79−60 = 19
minutes as the second train departs from station C before the first one arrives at station A.
However we can’t model this in a p order 1 model without some alterations. The trick that
will solve this issue is to add a non-existent station somewhere along the track between station
A and station C. With this dummy station placed somewhere between minute 19 and minute
60 it is possible to simulate two trains on the station A to station C track. With the dummy
station included we model the one longer track as two shorter tracks which never have two
trains on them at the same time.

d̂8(k) = d1(k) = 12⊗ 60⊗k

M̂48 = T = 60
M̂81 = (M2)14 − T = 79− 60 = 19

(2-36)

The first auxilliary variable (2-36) could be introduced without trouble. However the second
does require a shift of 15 minutes in order to prevent negative elements in M̂ . The model
would work fine leaving them in, but it is counterintuitive for a train to travel back in time
over the course of an event step. Thus it is better to shift the dummy train back down the
line by 15 minutes so it can drive for 5 minutes before arriving at its destination rather than
driving back in time 10 minutes.

d̂9(k) = d4(k)− 15 = 30⊗ 60⊗k

M̂59 = T − 15 = 45
M̂94 = (M2)14 − (T − 15) = 50− 45 = 5

(2-37)

Samuel Hoogerwerf Thesis

2-5 Basic System Properties 17

Completing M̂, d̂(k) with the dummy variables and expanding N̂ with 0 minute transition
times for the dummy stations, gets us the required matrices for a P-order model of order 1.

N̂ =
[
N En×r
Er×n Er

]
, M̂ =



ε ε ε ε ε ε ε 19 ε
45 ε ε ε ε ε ε ε ε
45 ε ε ε ε ε ε ε ε
ε 36 ε ε ε ε 24 ε 5
ε ε 42 ε ε ε ε ε ε
ε ε 42 ε ε ε ε ε ε
ε ε ε ε ε 47 ε ε ε
ε ε ε 60 ε ε ε ε ε
ε ε ε ε 45 ε ε ε ε


, d̂(k) =



27
15
20
25
17
6
55
27
10


⊗ 30⊗k

(2-38)

We can then Simplify N̂ ⊗ M̂ = Als and define a Bls and Cls to put the system into regular
MPL state-space form found in Definition 2-4.4.

Als =



ε ε ε ε ε ε ε 21 ε
47 ε ε ε ε ε ε ε ε
47 ε ε ε ε ε ε ε ε
ε 37 ε ε ε ε 25 ε 6
ε ε 44 ε ε ε ε ε ε
ε ε 44 ε ε ε ε ε ε
ε ε ε ε ε 50 ε ε ε
ε ε ε 60 ε ε ε ε ε
ε ε ε ε 45 ε ε ε ε


, dls(k) =



27
15
20
25
17
6
55
27
10


⊗ 30⊗k

Cls =
[
En En×r

]
with n = 7 and r = 2

(2-39)

1

2 4

3

5

6 7

8
9

47

47

37

45

25

4444

60

50
21

6

Figure 2-6: System Graph with auxiliary variables 8 and 9 included

2-5 Basic System Properties

Again everything discussed in this section can also be found in [6].

Thesis Samuel Hoogerwerf

18 Max-Plus Basics

Definition 2-5.1. Paths and Circuits
A path is a route through some directed graph which is denoted by naming the vertices
passed: ρ = v1 → v2 → ... → vl. A circuit is a path that contains no vertex twice and loops
back on itself: c = v1 → v2 → ...→ vl → v1

Definition 2-5.2. Path and Circuit properties
Paths and circuits have certain properties that can be used for analysis. First is weight |ρ|w
which is defined as the sum of edge- and vertex-weights, including the starting vertex and
excluding the final vertex, along a path or circuit. Secondly, there is length |ρ|l which is
defined as the number of edges in any path. Using these two a mean weight can be calculated
|ρ|w
|ρ|l = |ρ|m.

For circuits weight |c|w is calculated using all edge- and vertex-weights included in the circuit
as there are no start- or final vertices. Similarly for circuit length |c|l which is found by
counting all edges included in the circuit. Both circuit weight and circuit length can then be
used to calculate circuit mean |c|m in the same way as described for paths.

Definition 2-5.3. Irreducibility
If in G (A) a path exists between any two vertices that graph is called strongly connected
and its corresponding matrix A is irreducible. Alternatively using conventional algebra, if
there exists no transformation matrix P such that P TAP is an upper-triangular matrix, A is
irreducible as well.

Example 2-5.1. Irreducibility
Figure 2-3 is clearly not strongly connected as there is no way to reach any other vertices
from v5. Which we can confirm using conventional algebra:

P TAnlP =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




3 ε ε ε ε
ε 5 ε ε ε
2 11 8 ε ε
8 26 23 5 ε
23 33 30 12 1




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 =


3 ε 2 8 23
ε 5 11 26 33
ε ε 8 23 30
ε ε ε 5 12
ε ε ε ε 1


(2-40)

Figure 2-6 however, is irreducible as there is a path from every vertex to every vertex. This
is easily shown by looking at the three intersecting circuits that loop through v1, v4 and v8.

c1 = v1 → v2 → v4 → v8 → v1 → ...
c2 = v1 → v3 → v5 → v9 → v4 → v8 → v1 → ...
c3 = v1 → v3 → v6 → v7 → v4 → v8 → v1 → ...

(2-41)

Definition 2-5.4. Critical Circuit
The circuit with the maximum circuit mean contained within the graph G (A) of some sytem
is to be denoted as the critical circuit c? of the system. There can be multiple critical circuits
if more than one circuit has the same circuit mean equal to the maximum circuit mean. This
value is also referred to as maximal circuit mean like in [7].

Definition 2-5.5. Eigenvalues
If for a square matrix A there is some vector v 6= ε and scalar value λ for which A⊗v = λ⊗v
then λ is an eigenvalue for A and v an eigenvector.

Samuel Hoogerwerf Thesis

2-5 Basic System Properties 19

Theorem 2-5.1. Irreducibility and Eigenvalues
If the A matrix is irreducible it has a unique eigenvalue. This eigenvalue is equal to the mean
of the critical circuit of the system.

Algorithm 2-5.1. Eigenvalue Power Algorithm
This method [8] for finding eigenvalues λ and corresponding eigenvectors v can only be applied
to irreducible A matrices.

1. Take an arbitrary vector x0 6= En×1, in most cases x0 = ηn is easiest.

2. start counter i = 1

3. Find x(i) by calculating x(i) = A⊗ x(i− 1)

4. start counter j = i− 1

5. Test if x(i) − x(j) = ηn ⊗ λ⊗
i−j . If it is possible to express the difference between the

two x vectors this way go to step 8.

6. If j > 0 do j = j − 1 and go to step 5.

7. Increase counter i = i+ 1 and go to step 3.

8. The unique eigenvalue of the system is the λ found with j = k0. These values can then
be used to calculate A⊗k+c = λ⊗

c ⊗A⊗k as discussed in Theorem 2-5.1.

There are more algorithms for finding eigenvalues like the policy iteration algorithm [7], or
ones optimized for special eigenvalue problems [9].

Example 2-5.2. Eigenvalue Power Algorithm and Critical Circuit
We can’t apply the eigenvalue power algorithm to the JIT production example system as it
is not irreducible. However since the railway network example is irreducible we can calculate
x(1) through x(12) using (2-39) with x0 = η9.

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12)
0 21 81 118 165 200 247 283 330 365 412 448 495
0 47 68 128 165 212 247 294 330 377 412 459 495
0 47 68 128 165 212 247 294 330 377 412 459 495
0 37 84 119 166 202 249 284 331 367 414 449 496
0 44 91 112 172 209 256 291 338 374 421 456 503
0 44 91 112 172 209 256 291 338 374 421 456 503
0 50 94 141 162 222 259 306 341 388 424 471 506
0 60 97 144 179 226 262 309 344 391 427 474 509
0 45 89 136 157 217 254 301 336 383 419 466 501

We can find the first case for which x(i) − x(j) = ηn ⊗ λ⊗
i−j is true at step i = 10 for the

Thesis Samuel Hoogerwerf

20 Max-Plus Basics

sake of showing the periodicity we show up to x(14).

x(9)− x(6) x(10)− x(6) x(11)− x(6) x(12)− x(6) x(13)− x(6) x(14)− x(6)
118 165 201 248 283 330
130 165 212 248 295 330
130 165 212 248 295 330
118 165 200 247 283 330
118 165 200 247 283 330
118 165 200 247 283 330
129 165 212 247 294 330
129 165 212 247 294 330
129 165 212 247 294 330

Working out x(10) − x(6) = η9 ⊗ λ⊗
10−6 gets us λ = 165

4 = 41.25 Looking at the 3 circuits
contained in G (Als) defined in (2-41) we find:

Circuit Weight (|c|w) Length (|c|l) Mean Weight (|c|m)
c1 165 4 411

4
c2 223 6 371

6
c3 247 6 411

6

With c1 = c? as |c1|m = λ and as expected the first j that worked was j = 6 = k0 which
makes intuitive sense looking at max(|c1|l, |c2|l, |c3|l) = 6 and as expected i− j = 4 = |c?|l

Theorem 2-5.2. System Periodicity
The eigenvalue of an irreducible A matrix can be used for calculating MPL exponentials. If
A ∈ Rn×nε , k0 ∈ N, c ∈ N ∪ {0} then for ∀k ≥ k0

A⊗
k+c = λ⊗

c ⊗A⊗k (2-42)

Where the periodicity is equal to the length of the critical circuit c = |c?|l. And the minimum
number of events before the system can be used is equal to the longest circuit of the system:
k0 =

⊕C
i |ci|l witch C a set containing all unique circuits of the system.

In systems with multiple critical circuits periodicity depends on how and if they intersect.
Two intersecting periodic circuits can have a lower periodicity than the length of either one.
In any case periodicity is always the longest critical circuit.

2-6 Max-Plus Linear Scheduling

With the basics out of the way we can now look at MPL system properties that are useful
for scheduling. Everything discussed in this section can be found in [6].

Definition 2-6.1. Minimum Production Time
The minimum production time is how long it takes to go from input to output assuming
empty buffers. Assuming empty buffers means x0 = ε which means that y(1) = C ⊗ x(1)
simplifies to y(1) = C ⊗ B ⊗ u(1). In this case for u(1) = 0, y(1) is equal to the production
time starting with empty buffers.

Samuel Hoogerwerf Thesis

2-6 Max-Plus Linear Scheduling 21

Definition 2-6.2. Bottleneck
In imperfectly balanced production systems one or more machines are the bottleneck [10].
This means that the overall performance of the system can only be improved by improving
the performance of these machines.

Algorithm 2-6.1. Finding Bottlenecks
In schedule driven systems the bottleneck is the critical circuit. But in systems without any
circuits we can find the bottleneck by looking for where synchronization occurs. Imagine
one were to feed a factory line like the JIT production system like Example 2-4.2 an infinite
amount of raw material and perform no synchronization. You would see half finished product
heaping up in one or more buffers with empty buffers in front of the machines after the
bottleneck. With an MPL model this can be simulated by performing two event steps and
seeing which machines are constantly occupied with work. Those machines are where the
synchronization takes place since all machines in front of it have to wait for its buffer to
empty out before starting another round of processing.

Definition 2-6.3. Realistic Schedule
For a schedule to be realistic it has to be possible to arrive on time for the next schedule when
leaving in time relative to the current schedule. A system that conforms to this requirement
is sometimes called a realistic system.

A⊗ d(k) ≤ d(k + 1), ∀k ≥ 0 (2-43)

Example 2-6.1. Realistic Schedule
When we apply Definition 2-6.3 to our railway network example (2-39) we can calculate:

Als ⊗ dls(0) =



ε ε ε ε ε ε ε 21 ε
47 ε ε ε ε ε ε ε ε
47 ε ε ε ε ε ε ε ε
ε 37 ε ε ε ε 25 ε 6
ε ε 44 ε ε ε ε ε ε
ε ε 44 ε ε ε ε ε ε
ε ε ε ε ε 50 ε ε ε
ε ε ε 60 ε ε ε ε ε
ε ε ε ε 45 ε ε ε ε


⊗



27
15
20
25
17
6
55
27
10


=



48
74
74
80
64
64
56
85
62


≤



87
75
80
85
77
66
115
87
70


= dls(1)

(2-44)
We find the schedule to be realistic when applied to this system.

Definition 2-6.4. Delay State Space
Since we know actual departure times x(k) and the scheduled departure times d(k) we can
calculate the system delay as follows:

z(k) def= x(k)− d(k) (2-45)

Thesis Samuel Hoogerwerf

22 Max-Plus Basics

Which evolves along:

z(k + 1) = x(k + 1)− d(k + 1)
= (A⊗ x(k)⊕ d(k + 1))− d(k + 1)
= A⊗ x(k)− d(k + 1)⊕ d(k + 1)− d(k + 1)
= A⊗ x(k)− d(k + 1)⊕ ηn+r

substituting x(k) = z(k) + d(k)
= A⊗ (z(k) + d(k))− d(k + 1)⊕ ηn+r

= A⊗ (z(k) + d(0))− d(1)⊕ ηn+r

substituting d(k + 1) = d(k)⊗ T
= A⊗ (z(k) + d(0))− d(0)⊗ T ⊕ ηn+r

Which means we can formulate a delay state-space model:


z(k + 1) = A⊗ (z(k) + d(0))− d(0)⊗ T ⊕ ηn+r
ỹ(k) = C ⊗ z(k)
z(0) = x0 − d(0)

(2-46)

The largest delay in the system can then be written as.

‖z(k)‖⊕ (2-47)

Definition 2-6.5. Settling Time
The settling time of a system is the number of event steps ks until ‖ỹ(k)‖⊕ = 0 ∀k ≥ ks. It is
important not to depend on ‖ỹ(k)‖ to check if the system has settled if r > 0 since the auxiliary
component of x(k) can still contain them. However if you only have access to ỹ(k) and you
know the p-order of the original system, it is still possible to calculate the settling time within
a p sized margin. In this case going from the first case where ỹ(k), ỹ(k + 1), ..., ỹ(k + p − 1)
are all equal to zero the system settled somewhere between k and k + p− 1.

Example 2-6.2. Settling Time
We can simulate an initial delay of 25 minutes on train 3 by setting:

x0 = d(0) + z(0) =



27
15
20
25
17
6
55
27
10


+



0
0
25
0
0
0
0
0
0


=



27
15
45
25
17
6
55
27
10


Samuel Hoogerwerf Thesis

2-6 Max-Plus Linear Scheduling 23

Then calculating x(1) through x(3):

x(1) =



87
75
80
85
89
89
115
87
70


, z(1) =



0
0
0
0
12
23
0
0
0


, x(2) =



147
135
140
145
137
126
175
147
134


, z(2) =



0
0
0
0
0
0
0
0
4


, x(3) =



207
195
200
205
197
186
235
207
190


, z(3) =



0
0
0
0
0
0
0
0
0


This results in ‖ỹ(0)‖⊕ = 25, ‖ỹ(1)‖⊕ = 23, ‖ỹ(2)‖⊕ = 0, ‖ỹ(3)‖⊕ = 0 this means ks = 2.
In this case it might seem like there is no need to look at z(k) since the delay that shows up
in the auxiliary variables does not later become visible in ỹ(k). Had the initial delay on train
three been 70 minutes then ‖ỹ(2)‖⊕ = 0 would still be the case, but since z9(2) = 49 the
delay propagates to z4(3) = 4 and even z8(4) = 2 until finally ‖z(5)‖⊕ = 0. However z8(k) is
auxiliary and as such ‖ỹ(4)‖⊕ = 0 putting ks = 4.

Theorem 2-6.1. Meta-Stability
Equation (2-43) can be written as:

n+r⊕
j=1

Aijdj(k) ≤ di(k + 1) (2-48)

Which rewrites to:

Aij ≤ di(k + 1)− dj(k) (2-49)

If we take the maximum delay from the delay state space model (2-46). We can use the
previous relation to substitute Aij .

‖z(k + 1)‖⊕ = ‖x(k + 1)− d(k + 1)‖⊕
= ‖(A⊗ x(k)⊕ d(k + 1))− d(k + 1)‖⊕
= ‖A⊗ x(k)− d(k + 1)‖⊕ ⊕ 0

= 0⊕
n+r⊕
i=1

n+r⊕
j=1

Aij + xj(k)

− di(k + 1)

Here substitute Aij

≤ 0⊕
n+r⊕
i=1

n+r⊕
j=1

di(k + 1)− dj(k) + xj(k)

− di(k + 1)

= 0⊕
n+r⊕
i=1

n+r⊕
j=1

xj(k)− dj(k)

+ di(k + 1)− di(k + 1)

= 0⊕
n+r⊕
i=1

n+r⊕
j=1

xj(k)− dj(k)


= ‖z(k)‖⊕

(2-50)

Thesis Samuel Hoogerwerf

24 Max-Plus Basics

Thus a realistic schedule guarantees meta-stability. If there is no delay in the system it will
not increase. And if the system is perturbed such that some delay is introduced, the maximum
delay in the system will not increase.

Theorem 2-6.2. Stability
A schedule driven system is stable if all delays can be resolved within a finite number of
events. This requires:{

‖z(k + h)‖ < ‖z(k)‖ ∀‖z(k)‖ > 0, h <∞
‖z(k + 1)‖ = 0 ∀‖z(k)‖ = 0 (2-51)

The second is guaranteed for systems with a realistic schedule as is shown in Theorem 2-6.1
this same theory also at least guarantees that ‖z(k+ 1)‖⊕ ≤ ‖z(k)‖⊕. But to guarantee that

T − λ > 0 (2-52)

Also assume we have an irreducible system with periodicity c and we use some k ≥ k0. Which
means we can use (2-42). If we then substitute for λ we find:

A⊗
k+c = λ⊗

c ⊗A⊗k

< T⊗
c ⊗A⊗k

(2-53)

‖z(k + c)‖⊕ = ‖x(k + c)− d(k + c)‖⊕
=
∥∥∥(A⊗k+c ⊗ x0 ⊕ d(k + c)

)
− d(k + c)

∥∥∥
⊕

=
∥∥∥(λ⊗c ⊗A⊗k ⊗ x0 − d(k + c)

)
⊕ (d(k + c)− d(k + c))

∥∥∥
⊕

=
∥∥∥(λ⊗c ⊗A⊗k ⊗ x0 − d(k + c)

)
⊕ 0

∥∥∥
⊕

By definition ‖z(k)‖⊕ ≥ 0 so we can write:

<
∥∥∥T⊗c ⊗A⊗k ⊗ x0 − T⊗

c ⊗ d(k)
∥∥∥
⊕

=
∥∥∥(T⊗c − T⊗c)⊗A⊗k ⊗ x0 − d(k)

∥∥∥
⊕

= ‖x(k)− d(k)‖⊕
= ‖z(k)‖⊕

(2-54)

With a realistic schedule guaranteeing the maximum delay doesn’t increase, this guarantees
that over one system period the delay will decrease. Thus some finite delay will disappear from
the system within a finite number of events for irreducible systems with a finite periodicity.
All systems without a period have a trivial solution since A⊗n = 0.

2-7 Switching Max-Plus Linear Systems

Up to this point we have only considered systems with static state space matrices. More com-
plex systems can be described by having multiple state space matrices and actively switching
between them [11]. For example if you have a production system with machines that can
perform two types of operations you might have two A matrices: one for the multipurpose
machines switched to operation type 1 and one for operation type 2.

Samuel Hoogerwerf Thesis

2-7 Switching Max-Plus Linear Systems 25

Definition 2-7.1. Operation Mode
Systems can be in some set of operation modes l(k) ∈ {1, ..., nL}. Matrices of in different
modes are generally denoted: A(l(k)).

Definition 2-7.2. Switching Input Dependent State-Space Model
We can rewrite the input dependent state-space model (2-23) to be switching:

x(k) = A(l(k))(k)⊗ x(k − 1)⊕B(l(k))(k)⊗ u(k)
y(k) = C(l(k))(k)⊗ x(k)
x(0) = x0

(2-55)

With A(l(k)) ∈ Rn×nε , B(l(k)) ∈ Rn×mε , C(l(k)) ∈ Rl×nε .

Definition 2-7.3. Switching Schedule Dependent State-Space Model
We can rewrite the schedule system state-space model (2-25) to be switching:

x(k) = A(l(k))(k)⊗ x(k)⊕ d(k)(l(k))

y(k) = C(l(k))(k)⊗ x(k)
x(0) = x0

(2-56)

With A(l(k)) ∈ Rn+r×n+r
ε , C(l(k)) ∈ Rl×n+r

ε .

Definition 2-7.4. Switching Variable
A system may switch operation mode for various reasons. Operation mode l(k) can be found
by calculating the switching variable z(k). This switching variable may be a function of some
previous state, the previous mode the input or some other control input v(k):

z(k) = Φ(x(k − 1), l(k − 1), u(k), v(k)) ∈ Rnzε (2-57)

In the case of stochastic switching systems v(k) can be a stochastic variable. If you then
partition the scope of the Φ function Rnzε into nm not overlapping subsets L (i) with i =
{1, ..., nm}. Then you can say that when z(k) ∈ L (i) that l(k) = i.

Definition 2-7.5. Alternative Switching Variable Notation
There is another notation for calculating the switching variable more commonly used for
stochastic systems [12]. Here we set L(k) = {1, 2, ..., nL} to be the set containing all possible
operation modes. This notation also allows for the possibility to consider external conditions
like l(k − 1), x(k − 1), u(k), v(k).We can then note the odds that l(k) will be equal to one
specific operation mode in the set as:

P [l(k) = L(k)|l(k − 1), x(k − 1), u(k), v(k)] (2-58)

Since this describes the odds that the switching variable is in a particular mode it is subject
to:

0 ≤ P [l(k) = L(k)|l(k − 1), x(k − 1), u(k), v(k)] ≤ 1
nL∑

l(k)=1
P [l(k) = L(k)|l(k − 1), x(k − 1), u(k), v(k)] = 1 (2-59)

To describe fully deterministic switching using this style of notation another condition is
required:

P [l(k) = L(k)|l(k − 1), x(k − 1), u(k), v(k)] ∈ {0, 1} (2-60)

Thesis Samuel Hoogerwerf

26 Max-Plus Basics

Example 2-7.1. Extending the railway network example to be switching
Let us say that the original description of the rail network was incomplete. For some 10% of
the rides from station D to station E or (A(1)

ls)76 = 50 instead of it taking 3 minutes crossover
and a 47 minute drive the drive suddenly takes 78 minutes as a railway bridge is open forcing
the train to wait. This means that every event step there is a 0.1 chance that the system
operation mode is set l(k) = 2 with (A(2)

ls)76 = 3 + 78 = 81 and all other elements being the
same (A(1)

ls)ij = (A(2)
ls)ij ∀i 6= 7 ∧ j 6= 6.

When we apply the eigenvalue power algorithm (Algorithm 2-5.1) to Als(2) we find that the
system has a different eigenvalue in the second operation mode.

x(7)− x(6) x(8)− x(6) x(9)− x(6) x(10)− x(6) x(11)− x(6) x(12)− x(6)
21 81 118 187 231 278
47 68 128 165 234 278
47 68 128 165 234 278
37 106 150 197 218 278
44 91 112 172 209 278
44 91 112 172 209 278
69 113 160 181 241 278
60 97 166 210 257 278
69 113 160 181 241 278

Working out x(12)− x(6) = En×1⊗ λ⊗
12−6 gets us λ = 278

6 = 461
3 . If we look at the 3 circuits

contained in G (A(2)
ls) we find:

Circuit Weight (|c|w) Length (|c|l) Mean Weight (|c|m)
c1 165 4 411

4
c2 223 6 371

6
c3 247 6 461

3

Introducing the extra travel-time in (A(2)
ls)76 changed the circuitweight of c3 to such a degree

that it is the critical circuit for Als(2) which also changes the periodicity of the system from
4 to 6.

2-8 Expected processing time for stochastic SMPL systems

In this chapter some new notation and predefined matrices are necessary for compactness and
readability. These are the following:

B = max
i,j

[B]ij

[E]ij = 0 ∀i, j

Using the definition of a Switching Max-Plus-Linear (SMPL) system (2-55) it is possible to
calculate upcoming states in larger intervals than k + 1 through substitution:

Samuel Hoogerwerf Thesis

2-8 Expected processing time for stochastic SMPL systems 27

x(k) = A(`(k)) ⊗ x(k − 1)

= A(`(k)) ⊗
(
A(l(k−1)) ⊗ x(k − 2)

)
=
(

N⊗
m=1

A`(k+1−m)
)
⊗ x(k −N)

If we know all upcoming modes `m of the system in order we can write this max-plus matrix
product more compactly on its own as:

Γ(N) =
N⊗
m=1

A(`m) (2-61)

The upperbound Γ(N) of Γ(N) will give a useful indication of y(k) in most SMPL systems
including the hypothetical sorting system. However since the systems we will consider are
stochastic switching we do not know the exact mode for every step `m, only the odds distribu-
tion {p1, ..., p`m , ..., pL}. As such we are more interested in the expectation E

[
Γ(N)

]
, which

can only be calculated by taking the odds weighted mean over the set of all permutations
L ∈ {`1, ..., `m, ..., `N}:

E
[
Γ(N)

]
=

L q∑(
N∏
m=1

p`m

)
·

 N⊗
m=1

A(`m)

 (2-62)

Thesis Samuel Hoogerwerf

28 Max-Plus Basics

Samuel Hoogerwerf Thesis

Chapter 3

S-Matrix Approach

First we have to define the arbitrary matrices:

S = diag⊕(s1, ..., sn) s.t. Sii = si ∀i, Sij = ε ∀i 6= j

S− = diag⊕(−s1, ...,−sn) s.t. S ⊗ S− = S− ⊗ S = I
(3-1)

We can then use these arbitrary S when we expand (2-61):

Γ(N) = max
i,j

[
A(`1) ⊗A(`2) ⊗ ...⊗A(`N)

]
= max

i,j

[
S ⊗ S− ⊗A(`1) ⊗ S ⊗ S− ⊗A(`2) ⊗ ...⊗ S ⊗ S− ⊗A(`N)S ⊗ S−

] (3-2)

But in this form the order of modes still matters, we can however simplify the objective
function to make it order independent. We can do this by substituting the matrices with
scalars. To get to this scalar form we can substitute:

α(`m, S) = max
i,j

[
S− ⊗A(`) ⊗ S

]
= max

i,j

[
−si +

[
A(m)

]
ij

+ sj

]
, ∀1 ≤ i, j ≤ n

SES− = max
i,j

[si − sj] , ∀1 ≤ i, j ≤ n

(3-3)

Γ(N) ≤ max
i,j

[
S ⊗ S−A(`1)S ⊗ E ⊗ S−A(`2)S ⊗ E...E ⊗ S−A(`N)S ⊗ E ⊗ S−

]
= max

i,j

[
S ⊗ α(`1, S)⊗ E ⊗ α(`2, S)⊗ E ⊗ ...⊗ E ⊗ α(`N , S)⊗ E ⊗ S−

]
Since α(`, S)is just a one value scalar we can move it out of the max statement.
= max

i,j

[
S ⊗ E ⊗ ...⊗ E ⊗ S−

]
+ α(`1, S) + α(`2, S) + ...+ α(`N , S)

= SES− +
N∑
k=1

α(`k, S)

(3-4)

Thesis Samuel Hoogerwerf

30 S-Matrix Approach

Example 3-0.1. Information loss

f(A,S) = max
[
S− ⊗A(`1) ⊗ S ⊗ S− ⊗A(`2) ⊗ S

]
= max

[[
s1 ε
ε s2

]
⊗
[
a11 a12
a21 a22

]
⊗
[
−s1 ε
ε −s2

]
⊗
[
s1 ε
ε s2

]
⊗
[
b11 b12
b21 b22

]
⊗
[
−s1 ε
ε −s2

]]

= max
[[

a11 a12 + s1 − s2
a21 − s1 + s2 a22

]
⊗
[

b11 b12 + s1 − s2
b21 − s1 + s2 b22

]]

= max
[

a11 + b11 ⊕ a12 + b21 a11 + b12 + s1 − s2 ⊕ a12 + b22 + s1 − s2
a21 + b11 − s1 + s2 ⊕ a22 + b21 − s1 + s2 a21 + b12 ⊕ a22 + b22

]
= max [a11 + b11, a12 + b21, a21 + b12, a22 + b22, a11 + b12 + s1 − s2

, a12 + b22 + s1 − s2, a21 + b11 − s1 + s2, a22 + b21 − s1 + s2]

We can then make this order independent by splitting up the max statement through substi-
tuting: maxi,j

[
S− ⊗A(`) ⊗ S

]
= α(`, S)

f(A,S) = max
[
S ⊗A(`1) ⊗ S− ⊗ S ⊗A(`2) ⊗ S−

]
≤ max

[
S ⊗A(`1) ⊗ S−

]
+ max

[
S ⊗A(`2) ⊗ S−

]
= max [a11, a22, a12 + s1 − s2, a21 − s1 + s2] + max [b11, b22, b12 + s1 − s2, b21 − s1 + s2]
= max [a11 + b11, a11 + b22, a12 + b21, a21 + b12, a22 + b11, a22 + b22, a11 + b12 + s1 − s2

a11 + b21 − s1 + s2, a12 + b11 + s1 − s2, a12 + b12 + 2s1 − 2s2

a12 + b22 + s1 − s2, a21 + b11 − s1 + s2, a21 + b21 − 2s1 + 2s2

a21 + b22 − s1 + s2, a22 + b12 + s1 − s2, a22 + b21 − s1 + s2]

Information is lost in this simplification step as the second max statement has more than
double the entries.

In the case of an Switching Max-Plus-Linear (SMPL) system with random switching we can
write an expectation of α(`, S) if we know the odds of randomly switching into any particular
mode m ∈ L. The odds are denoted P[`(k) = m] = pm such that

∑L
m=1 pm = 1.

E [α(`, S)] =
L∑

m=1
α(m,S) · pm (3-5)

We can use the expectation of α(`, S) to write an expectation for Γ(N)

E
[
Γ(N)

]
≤ E

[
SES− + α(`1, S) + α(`2, S) + ...+ α(`N , S)

]
= SES− + E [α(`1, S)] + E [α(`2, S)] + ...+ E [α(`N , S)]

= SES− +N ·
L∑

m=1
α(m,S) · pm

(3-6)

Samuel Hoogerwerf Thesis

3-1 Approaching E
[
Γ(N)

]
with Sequential Quadratic Programming 31

Alternatively we could write the same thing using conventional algebra in example SES− =
maxi,j [si − sj]. However for every maxi,j

[
S− ⊗A(`) ⊗ S

]
= α(`, S) we need to cycle through

i and j independently. To denote this independent cycling through all possible permutations
of these max statements trough i and j we use two arbitrary sets I = {i0, i1, ..., iL} and
J = {j0, j1, ..., jL}.

E
[
Γ(N)

]
≤ max

i0,j0
[si0 − sj0] +N ·

L∑
m=1

pm · max
im,jm

[
−sim +

[
A(m)

]
imjm

+ sjm

]

= max
I,J

[
si0 − sj0 +N ·

L∑
m=1

pm ·
(
−sim +

[
A(m)

]
imjm

+ sjm

)] (3-7)

We have already proven that we can pick any values for the diagonal of S and the result
will still be an upperbound on E

[
Γ(N)

]
. However if we were to just pick some completely

arbitrary S we don’t know if the resulting upperbound is much higher or quite close to the
actual E

[
Γ(N)

]
and therefore won’t help us much. But since we know that the last line

of (3-6) and (3-7) are always larger or equal to E
[
Γ(N)

]
we can approach E

[
Γ(N)

]
by

minimizing it over the arbitrary matrix S or it’s diagonal elements {s1, ..., sn}. Which is a
minimization problem that can be defined:

min
S

[
SES− +N ·

L∑
m=1

α(m,S) · pm

]
Or using conventional notation:

min
s1,...,sn

[
max
I,J

[
si0 − sj0 +N ·

L∑
m=1

pm ·
(
−sim +

[
A(m)

]
imjm

+ sjm

)]] (3-8)

3-1 Approaching E
[
Γ(N)

]
with Sequential Quadratic Programming

Another method for attempting to find some S that minimizes (3-8) would be to use type of
nonlinear programming. A crude and slow attempt can be made using a genetic algorithm
or any other method that only requires no further information about the objective function.
Alternatively one can apply sequential quadratic programming, but this requires both the
gradient function and hessian to be known. A gradient function is proposed in: (??) but for
numerical purposes this definition can be improved upon. Problems start when we try to
convert the maximum statement in to a differentiable form:

max(a, b) = lim
p→∞

p
√
ap + bp

When using a numerical approximation the best we can do is just pick a large p. However
if p is uneven and b is a negative value such that a < |b| then p

√
ap + bp < 0 � a which is

far from correct as in that situation max(a, b) = a. Additionally for the same a and b but
with the added condition p ≥ 3 we find that Im

[
p
√
ap + bp

]
> 0 which is definitely unwanted.

Thesis Samuel Hoogerwerf

32 S-Matrix Approach

These problems can seemingly be resolved by just always picking an even p. However if we
pick an even p we run into a new problem where if b is a negative value such that a < |b| then
|b| < p

√
ap + bp � a which is also incorrect.

Luckily we know that in our case the objective function (3-8) should never take on a negative
value. As a negative total sorting time implies that our hypothetical package-sorter finishes
sorting packages before it starts. Using this property we can rewrite the maximum statement:

If: f(s) = max[mq(s), ...,mq(s)] ≥ 0, ∀i ∈ I, j ∈ J
Then: f(s) = max [max[mq(s), 0], ...,max[mq(s), 0]] ∀i ∈ I, j ∈ J

= lim
p→∞

p

√√√√∑
I,J

(|mq(s)|+mq(s)
2

)p

For notation purposes we will use: n(s, i, j) = 1
2 (|mq(s)|+mq(s)) going forward. If you know

that the optimal solution to the objective function always has to be equal or larger than some
constant C you can improve the precision of your approximation by subtracting it from your
objective function:

If: f(a, b) = max[a, b] ≥ C ≥ 0, ∀a, b

Then: f(a, b)− C = lim
p→∞

p

√(|a− C|+ a− C
2

)p
+
(|b− C|+ b− C

2

)p
∀a, b

This is advantageous as it improves the relative difference between entries:

max[a− C, 0]
max[b− C, 0] ≥

max[a, 0]
max[b, 0] , ∀a ≥ b ≥ C > 0

And allows us to choose a greater value for p without running into a floating point overflow
error. Both improve the precision with which the numerical approximation of the objective
function tracks the shape of the exact objective function. For readability purposes we will
assume C = 0 going forward. We can calculate the gradient of this new objective function
using the relationship:

∂|f(x)|
∂x

= f(x)
|f(x)| ·

∂f(x)
∂x

≈ sign[f(x)] · ∂f(x)
∂x

We use the sign function instead of f(x)
|f(x)| as it is not undefined for f(x) = 0 which is mathe-

matically incorrect but more useful for a numerical approximation. This means the numerical
approximation of the gradient function described in (??) comes out as:

Samuel Hoogerwerf Thesis

3-1 Approaching E
[
Γ(N)

]
with Sequential Quadratic Programming 33

[g(s)]k = ∂f(s)
∂sk

=

∑
q∈Q

(
mq(s) + |mq(s)|

2

)p
1−p
p

·
∑
q∈Q

(
mq(s) + |mq(s)|

2

)p−1
· 1

2 ·
∂ (mq(s) + |mq(s)|)

∂sk

≈

∑
q∈Q

(
mq(s) + |mq(s)|

2

)p
1−p
p

·
∑
q∈Q

(
mq(s) + |mq(s)|

2

)p−1
· 1

2 ·
∂mq(s)
∂sk

· (1 + sign[mq(s)])

(3-9)

The sign function differentiates as the dirac delta function: ∂ sign[x]
∂x = δ(x). However for

calculating a numerically useful hessian it is more useful to define it as: ∂ sign[x]
∂x ≈ 0. With

that simplification it is possible to calculate a numerically usable approximation to the Hessian
that is never undefined.

However we know that for all f(s) considered in this thesis f(s) is the maximum over a set of
linear sub-functions. This means that the actual gradient of f(s) is defined by a contiguous
step-functions with its steps at those places where two or more linear sub-functions define
the maximum of f(s). This means that the real hessian of f(s) is defined only by dirac delta
functions for every step in the gradient function. For the purposes of non-linear programming
these dirac delta spikes in the Hessian are not relevant. As such we can more simply define
the hessian as a Rn×n matrix containing zero for every element.

Example 3-1.1. Finding a numerically useful gradient
Say we start with a function:

f(x) = max
[
35− (x− 1)4 ,−10x− 10,

(
x

2 −
1
2

)3
+ 30

]

Then we can calculate the approximation functions:

fsimple(x) ≈ p

√√√√(35− (x− 1)4)p + (−10x− 10)p +
((

x

2 −
1
2

)3
+ 30

)p

fimproved(x) ≈

(−5x+ |10x+ 10|
2 − 5

)p
+


(
x
2 −

1
2

)3

2 +

∣∣∣∣(x2 − 1
2

)3
+ 30

∣∣∣∣
2 + 15


p

+

−(x− 1)4

2 +

∣∣∣(x− 1)4 − 35
∣∣∣

2 + 35
2

p
1
p

Which when plotted allows us to see the problems with the simple approximation method.
In Figure 3-1 you can see how the simplified method fails. In the case of this example this is
mostly due to 35− (x− 1)4 becoming deeply negative.

Thesis Samuel Hoogerwerf

34 S-Matrix Approach

-4 -2 0 2 4
0

10

20

30

40

50
f1

f2

f3

Actual max Function

Basic approximation at p=4

Real part of basic approximation at p=3

Improved Approximation at p=3

Improved Approximation at p=15

Figure 3-1

Using a subgradient

Due to the nature of the maximum function it is however not necessary to calculate one large
differentiable approximation function and derive its gradient. If we expand (3-8) to a single
maximum function with r = (n2)L+1 = n2L+2 elements we get:

f(s) = max [f1(s), f2(s), ..., fr(s)] (3-10)

For most S the entire maximum function is defined by just one of its elements fm. This means
that in order to find the gradient at these points we need only consider the gradient of fm:

g(s) = ∂fm(s)
∂s

, ∀f(s) = fm(s) 6= {f1(s), ..., fm−1(s), fm+1(s), ..., fn(s)} (3-11)

However there are also places where two or more elements of the maximum function have
equal values that are the highest out of all elements. If these fm1(s) and fm2(s) do not have
equal gradients where fm1(s) = fm2(s) = f(s) then that leaves the gradient of f(s) undefined.
But we can define boundaries on the gradient of f(s) as it clearly should never be steeper
than the steepest positive and steepest negative slope defined by all elements that define the
maximum function in that point.

∂fm1(s)
∂s

≤ g(s) ≤ ∂fm2(s)
∂s

, ∀fm1(s) = fm2(s) = f(s) (3-12)

Example 3-1.2. Subgradient for simple system
Let us define a system: f(x) = max [−8x− 20,−x, 0.5x, x, 2x− 2]. Then for say x = 1.5 we
have no issues as f(1.5) = max[−32,−1.5, 0.75, 1.5, 1] = 1.5 has only one element defining
f(x) in this case fm(x) = x so the gradient of f(x) is 1 for x = 1.5. However at x = 0 we
find f(0) = max[−20, 0, 0, 0,−2] as three elements define f(x) we have an undefined gradient.
The three gradients that will span the boundary are −x → −1, 0.5x → 0.5, x → 1 which
means we are free to pick any g(0) so long as: −1 ≤ g(0) ≤ 1 as can be seen in Figure 3-2.

Samuel Hoogerwerf Thesis

3-1 Approaching E
[
Γ(N)

]
with Sequential Quadratic Programming 35

-4 -2 0 2 4
-2

0

2

4

6
f(x)

Valid Possible Gradient

Figure 3-2: Some possible gradients for f(x) in x = 0

Since we have freedom to choose the gradient for every intersection of f(x) so long as it stays
between it’s predecessor and successor we can simply always pick the upper boundary of that
range. This would result in the gradient working out as:

g(x) = −8 + 7u(x+ 20
7) + 2u(x) + u(x− 2) =


−8, x < −20

7
−1, −20

7 ≤ x < 0
1, 0 ≤ x < 2
2, 2 < x

This means the Hessian would work out as H(x) = 7δ(x + 20
7) + 2δ(x) + δ(x − 2). However

since we use a numerical approach no algorithm will ever hit those dirac delta function spikes
exactly, neither do they provide any useful extra information to any nonlinear programming
algorithm. Therefore only in the context of this particular optimization problem we can define
H(x) ≈ 0.

-4 -2 0 2 4
-10

-8

-6

-4

-2

0

2

4 Gradient of f(x)

Hessian of f(x)

Figure 3-3: Gradient function g(x) of f(x)

Since f1(s) through fr(s) are all linear we can rewrite them as:

fh(s) = ch,0 + ch,1 · s1 + ...+ ch,n · sn

Finding the gradient of any fh(s) does not require any calculation as it is just:

gh(s) =
[
ch,1 ch,2 ... ch,n

]T
The goal then is to find a way to first find which fh(s) defines f(s) for that particular set of
s and then return the corresponding gradient gh(s). Since this function will be called many

Thesis Samuel Hoogerwerf

36 S-Matrix Approach

times during sqp optimization it needs to be efficient. Since we use the Octave mathematics
environment this is best achieved by vectorizing the problem so that BLAS can be used for
calculations. This means finding a way to rewriting (3-10) to the maximum of a single matrix
vector product. Then the index for which the vector matrix product has its maximum value
can be used to find the gradient.

g(s) =


ci,1
ci,2
...
ci,n


Such that:
max
i

[C · v]i

(3-13)

It is simplest to define v as a collumn vector starting with 1 followed by all elements on the
diagonal of S: v =

[
1 s1 s2 s3 ... sn

]T
. Then we define C such that each row multiplied

by v results in a unique f1(s) through fr(s). We observe that every element of S− ⊗ A ⊗ S
can be defined as: A(m)

ij − si + sj . for S ⊗ E ⊗ S− the pattern it the same but negative:
0 + si − sj . This pattern allows us to construct a matrix D ∈ Rn×n2

D =



11 0 ...
12 0 ...
...

... . . .
1n 0 ...
0 11 ...
...

... . . .
0 1n ...
...

... . . .
0 0 ... 11
...

...
0 0 ... 1n



−



11 0 0 ... 0
0 11 0 ... 0
0 0 11 ... 0
...

...
...

0 0 0 ... 11
12 0 0 ... 0
...

...
...

1n 0 0 ... 0
0 1n 0 ... 0
0 0 1n ... 0
...

...
...

0 0 0 ... 1n



Then using this matrix D we can construct DSES such that: S ⊗ E ⊗ S− = max [DSES · v].
Then reshaping A(m) to a column vector with the rows of −D matching the elements of A
such that A(m)

ij − si + sj is still observed. We can create L variants of D(m)
SAS such that:

S− ⊗A(m) ⊗ S = max
[
D

(m)
SAS · v

]
.

Samuel Hoogerwerf Thesis

3-1 Approaching E
[
Γ(N)

]
with Sequential Quadratic Programming 37

DSES =

0
... D
0

 , D
(m)
SAS = N · pm ·



A
(m)
1,1

A
(m)
1,2
...

A
(m)
1,n −D

A
(m)
2,1

A
(m)
2,2
...

A
(m)
n,n



Using DSES and every mode of DSAS we can now calculate C by summing every possible
permutation of the rows of DSES through D(L)

SAS which gets us a row for each possible f1(s)
through fr(s). Therefore if all elements of A > ε for all modes C has r = n2L+2 rows. However
if A is sparsely populated for one or more modes the size of C can be decreased. This can be
done by removing all rows from every D(m)

SAS for which the first column is equal to ε. This can
be done since summing any real value with ε returns ε and any row in C containing ε in the
first column returns ε when multiplied by v. With less rows in D(m)

SAS the number of possible
permutations decreases factorially.

C =


c1,0 c1,1 ... c1,n
c2,0 c2,1 ... c2,n
...

...
cr,0 cr,1 ... cr,n

 =



[DSES]1,∗ +
[
D

(1)
SAS

]
1,∗

+ ...+
[
D

(L)
SAS

]
1,∗

[DSES]2,∗ +
[
D

(1)
SAS

]
1,∗

+ ...+
[
D

(L)
SAS

]
1,∗

[DSES]1,∗ +
[
D

(1)
SAS

]
2,∗

+ ...+
[
D

(L)
SAS

]
1,∗

...
[DSES]1,∗ +

[
D

(1)
SAS

]
n2,∗

+ ...+
[
D

(L)
SAS

]
n2,∗


(3-14)

It is worth noting that max [C · v] is equivalent to the objective function (3-10). This way
(3-13) can be used both to replace the symbolic objective function as well as the gradient
function. However there is also a way to calculate the sub-gradient without expanding the
summed max functions like we do in (3-10). We leave the separate max functions described
in (3-8) as they are, and calculate the subgradient for each max statement separately. Since
the objective function just consists of maximums of linear functions we can then just sum
the sub-gradients of every separate max function. That way all we need is L + 1 matrices:{
DSES , D

(1)
SAS , ..., D

(L)
SAS

}
∈ R(n+1)×n to describe the same thing as defined in (3-13).

Thesis Samuel Hoogerwerf

38 S-Matrix Approach

g(s) = [DSES]i0,∗ +
L∑

m=0

[
D

(m)
SAS

]
im,∗

=



[DSES]i0,1 +
[
D

(1)
SAS

]
i1,1

+ ...+
[
D

(L)
SAS

]
im,1

[DSES]i0,2 +
[
D

(1)
SAS

]
i1,2

+ ...+
[
D

(L)
SAS

]
im,2

...
[DSES]i0,n +

[
D

(1)
SAS

]
i1,n

+ ...+
[
D

(L)
SAS

]
im,n


Such that:

max
i0

[DSES · v]i0 +
L∑

m=1
max
im

[
D

(m)
SAS · v

]
im

(3-15)

This method for calculating g(s) saves on both memory usage and calculation steps for larger
systems but cannot be solved as a simple matrix vector product. It must be noted that this
method of calculating s1 through sn does not resolve the fact that the inequality is under
defined. So the resulting optimal solution can be any possible s1 so long as it has the right
linear ratio to s2 through sn.

3-1-1 Calculation Time and Memory Concerns

2 10 20 30 40 50 60 70 80
1

5

10

15

20

maximum number of states n

m
a
xi

m
u
m

 n
u
m

b
e
r

o
f
m

o
d
e
s

L 16 GB RAM

128 GB RAM

10% populated 16 GB RAM

10% populated 128 GB RAM

Figure 3-4: Free available RAM required to store C

Since the SQP algorithm itself is not memory intensive it is the objective function and the
(sub)gradient function that are the limiting factors. The expanded version of both are most
efficiently described by (3-13) which means the size of C is the limiting factor for memory.
Defining tm as the fraction of elements in A(m) > ε then if every element of C is defined by
a double the size of C in bytes can be calculated:

(1 + n) · n2 ·
L∏

m=1
tm · n2 ≤ (1 + n) · n2+2L · tLaverage

However if we do not construct the expanded matrix C we can store the gradient- and objective
function more compactly as is described in (3-15). Storing DSES and D(1)

SAS through D(L)
SAS

Samuel Hoogerwerf Thesis

3-2 Approaching E
[
Γ(N)

]
with Linear Programming 39

as arrays of doubles would take: 2 ·n2 · (n+ 1) · (L+ 1) bytes. This could be less if some rows
of D(1)

SAS through D(L)
SAS can be removed because some elements of A(m) = ε. The downside

is that (3-15) can not be reduced to the maximum of one BLAS-2 operation like is possible
with (3-13). This means that subsequent calculations of the objective- and gradient function
can not be as easily or efficiently pipelined. Nevertheless the decrease in calculation steps
and memory requirements should be worth it for all but the smallest systems.

2 100 200 300 400 500

1

1000

2000

3000

4000

5000

maximum number of states n

m
a
x
im

u
m

 n
u
m

b
e
r

o
f
m

o
d
e
s
 L

16 GB RAM

32 GB RAM

64 GB RAM

128 GB RAM

Figure 3-5: Free available RAM required to store DSES and D(1)
SAS through D(L)

SAS

3-2 Approaching E
[
Γ(N)

]
with Linear Programming

In order to minimize optimization function (3-8) using linear programming we again define a
column vector s ∈ Rn with:

sm = [S]mm
Which allows us to rewrite equation (3-8) as a linear programming problem.

min
s
σ0 +N ·

L∑
m=1

σm · pm

s.t.
σ0 ≥ SES− = si − sj , ∀i, j

σm ≥ α(m,S), ∀m = −si +
[
A(m)

]
ij

+ sj , ∀i, j,m

(3-16)

In order to apply the simplex algorithm we need to restate the problem in the form:

min
z
C · z

such that:
E · z ≥ b

And even though the optimization variable s only appears in the boundary equation and not
the objective function, there is a way to rewrite (3-16). This done by just having both σ and

Thesis Samuel Hoogerwerf

40 S-Matrix Approach

s in the optimization variable z. This is possible since you can just disregard s by setting
{cL+2, ..., cL+1+n} = 0.

C =
[
1 Np1 ... NpL 01 02 ... 0n

]
z =

[
σ0 σ1 ... σL s1 s2 ... sn

]T
With x in this form we can also easily rewrite the boundary conditions by moving both σ and
s to the same side of the inequality. Starting with the first boundary condition concerning
σ0:

σ0 ≥ si − sj , ∀i, j
σ0 − si + sj ≥ 0, ∀i, j

Since the boundary condition is true for all i and j one part of the final A matrix needs
to contain a row for every possible permutation of that statement. Since i and j cycle
independently that is n · n permutations. However a number of these permutations are
superfluous. There are n cases of i = j which brings the number of relevant permutations to
n2 − n+ 1. For the sake of clarity these n− 1 superfluous rows of E1 are not left out below:

E1 =



1 01 ... 0L −1 + 1 02 ... 0n
1 01 ... 0L −1 1 ... 0n
1 01 ... 0L 1 −1 ... 0n
1 01 ... 0L 01 −1 + 1 ... 0n
...

...
...

...
...

...
...

...
1 01 ... 0L 01 02 ... −1 + 1


, b1 =



0
0
0
0
...
0


Then moving on to the second set of boundary conditions concerning {σ1, ..., σL}. Again we
can move all σ and s to one side of the inequality leaving the known elements of the SMPL
system’s A on the other:

σm ≥ −si +
[
A(m)

]
ij

+ sj , ∀i, j,m

σm + si − sj ≥
[
A(m)

]
ij
, ∀i, j,m

Again we have to cycle through all permutations of i and j, but now all modesm as well which
means n2 ·L permutations. This time all i = j after the first are not necessarily superfluous as
σm ≥

[
A(m)

]
ii
still needs to be met. But if one wanted to minimize the number of rows in A2

at any cost one could search for maxi
[
A(m)

]
ii
for every mode and leave out all other elements

on the diagonal of A(m). Doing so would decrease the number of rows in A2 by L · (n− 1).
Also since any number in R is always greater than ε and σm + si − sj ∈ R, ∀i, j,m all rows
for which

[
A(m)

]
ij

= ε are also superfluous. Accounting for this fact reduces the number of

rows in E2 by the sum total of ε elements in A(m) across all modes of the SMPL system.

Samuel Hoogerwerf Thesis

3-2 Approaching E
[
Γ(N)

]
with Linear Programming 41

E2 =



00 1 02 ... 0L 1− 1 02 ... 0n
00 1 02 ... 0L 1 −1 ... 0n
00 1 02 ... 0L −1 1 ... 0n
00 1 02 ... 0L 01 1− 1 ... 0n
...

...
...

...
...

...
...

...
...

00 1 02 ... 0L 01 02 ... 1− 1
00 01 1 ... 0L 1− 1 02 ... 0n
...

...
...

...
...

...
...

...
...

00 01 1 ... 0L 01 02 ... 1− 1
...

...
...

...
...

...
...

...
...

00 01 02 ... 1 01 02 ... 1− 1



, b2 =



[
A(1)

]
11[

A(1)
]

12[
A(1)

]
21[

A(1)
]

22...[
A(1)

]
nn[

A(2)
]

11...[
A(2)

]
nn...[

A(L)
]
nn


However this leaves z under defined as E1 and E2 only constrain s1, ..., sn relative to each
other, leaving one degree of freedom. In order to reduce the infinite number of combinations
of s1, ..., sn that can fulfill this constraint we can add one arbitrary constraint. The simplest
would be to just set an arbitrary element of s equal to zero say s1 = 0. But for future purposes
it is more useful to set the sum of s equal to zero as this will allow us to more easily see how
far the different elements of s deviate from the mean, which would in this case be 0. This
means we have to introduce one more row to E:

Eequal =
[
00 01 ... 0L 11 12 ... 1n

]
, bequal = 0

Most linear programming libraries allow for you to define the type of constraint by row of the
constraint matrix. For our purposes we can set the first row to force equality and all rows
after to greater than or equal.

E =

EequalE1
E2

 , b =

bequalb1
b2



3-2-1 Memory Concerns

The memory bottleneck in the case of this optimization problem will be the E matrix in all
non-trivial cases. The height of E1 is n2 − n as the diagonal of SES− does not contain any
useful information. The height of E2 is L · n2 bringing the height of E to n2 · (1 − 1

n + L).
The width of E is equal to the number of items in the x vector: 1 + L + n. Then assuming
the elements of E are stored as floating point doubles the size of the array in bytes would be:

2 · n2 ·
(

1− 1
n

+ L

)
· (1 + n+ L) = 2L2n2 + 2Ln3 + 4Ln2 − 2Ln+ 2n3 − 2n

Thesis Samuel Hoogerwerf

42 S-Matrix Approach

2 100 200 300 400 500

0

1000

2000

3000

4000

5000

maximum number of states n

m
a
x
im

u
m

 n
u
m

b
e
r

o
f
m

o
d
e
s
 L

16 GB RAM

32 GB RAM

64 GB RAM

128 GB RAM

Figure 3-6: Free available RAM required to store E

As can be seen in Figure 3-6 n is the more limiting factor as the size of the E matrix always
grows at a slower rate than max

[
O(L2n2),O(Ln3)

]
. For a system 2 modes we can find the

optimal solution for at most n = 2200 if we have 64 gigabytes of RAM available. Using the
same amount of RAM we can apply this method to a system of size n = 2 with at most
L = 89440 modes again showing the number of modes to be less limiting than the size of A.

Samuel Hoogerwerf Thesis

Chapter 4

Estimating E
[
Γ(N)

]
using a Marginal

Cost Model

The simplest method for finding an upper bound on E[Γ(N)] is to just calculate:

E
[
Γ(N)

]
≤ N ·

L∑
m=1

pm ·A(m)

This method can be slightly improved by recognizing that there is a way to get closer to
E[Γ(N)] since in some Switching Max-Plus-Linear (SMPL) systems a new cycle needn’t always
wait at the same bottleneck if the mode switches. We could write something similar to this
using a mode specific delay dm. In this simple first order approximation dm will be somewhere
between the actual eigenvalue of the mode or marginal processing time of the mode and the
largest element in A(m) or λm ≤ dm ≤ A(m) such that we can still write:

E
[
Γ(N)

]
≤ d0 +N ·

L∑
m=1

pm · dm (4-1)

With d0 the start-up cost if the bottlenecking cycle can contain more than one package. As
an example: in the case of a duplex printer multiple pages are in different stages within the
bottlenecking print cycle at the same time. Thus when starting up this whole cycle needs to
be filled which takes more time than the marginal delay per sheet of paper after this initial
start-up cost. This marginal delay is then denoted as dm ≈ A(m) it must be noted that
this approximate relationship only holds for a first order approximation. To get as close to
E[Γ(N)] as possible we want to pick the smallest values d for which (4-1) is still valid. This
can be written as a linear programming problem where you minimize:

min
d
d0 +N ·

L∑
m=1

pm · dm

Thesis Samuel Hoogerwerf

44 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

With the boundary condition that noN length permutation of max
[
A(`1) ⊗A(`2) ⊗ ...⊗A(`N)

]
should ever be larger than d0 + d`1 + ... + d`N . Critically the values of d obtained through
this method are only guaranteed to give you an upperbound on E[Γ(N)] for exactly the
N at which the minimization was done. As for example A(1) ⊗A(1) ⊗A(1) · 2

3 needn’t be
equal to A(1) ⊗A(1). Because if the bottleneck is a circuit containing more than one edge
c1 → ...→ cn → c1 and not all of these edges have equal delay we find that:

N⊗
A(1) −

N−1⊗
A(1) ∈ {c1, ..., cn}

Which means that d1 will vary depending on the value of N for which the minimization is
done. However as N increases the d1 found gets closer to the asymptotic d1 found if the
minimization is performed to the limit N →∞. The same can be said for all other elements
of d.

4-1 Higher Order Approximation

This estimate can be improved by taking more information into account. In example if
two modes have mostly independent paths through your system it can be much more ef-
ficient to switch between these two modes rather than continuously working through one
mode and then the other. This kind of savings can’t be shown in a first order approxima-
tion as it does not consider switching costs. However we can introduce d`k−1,`k denoting
the marginal cost or savings for switching from `k−1 to `k. Meaning a marginal cost for
d`k−1,`k > 0 and a marginal savings for d`k−1,`k < 0 in a case where d`k−1,`k = 0 both modes
presumably share the same bottleneck. This means the boundary condition now writes as:
maxij

[
A(`1) ⊗A(`2) ⊗ ...⊗A(`N)

]
≤ d0 + d`1 + d`1,`2 + d`2 + ...+ d`N−1 + d`N−1,`N + d`N .

Introducing this second order switching cost means the minimization works out to:

min
d
d0 +N ·

L∑
m=1

pm · dm + (N − 1) ·
L∑

m1=1

L∑
m2=1

pm1 · pm2 · dm1,m2

Such that:

A(`1) ⊗A(`2) ⊗ ...⊗A(`N) ≤ d0 +
N∑
k=1

d`k +
N∑
k=2

d`k−1,`k , ∀1 ≤ ` ≤ L

(4-2)

In order to formulate this into a linear programming problem that we can solve using the
simplex algorithm we need to rewrite it to the form:

minC · z
such that:
E · z ≥ b

Where we define the column vector z containing all marginal delays, and weighting row vector
C such that C · z is equivalent to the minimization function in (4-2). The size of z and C

Samuel Hoogerwerf Thesis

4-1 Higher Order Approximation 45

depends on the order of the approximation which can be calculated: 1 +
∑Order
i=1 Li. We use

a second order approximation which means z ∈ R1+L+L2×1 and C ∈ R1×1+L+L2 .

z =
[
d0 d1 ... dL d1,1 d1,2 ... d2,1 d2,2 ... dL,L

]T
C =

[
1 Np1 ... NpL (N − 1)p1p1 (N − 1)p1p2 ... (N − 1)p2p1 (N − 1)p2p2 ... (N − 1)pLpL

]
Similarly we have to rewrite the boundary conditions of (4-2) to a matrix vector prod-
uct E · z that is always greater or equal than the vector b. We can find b by calcu-
lating every permutation of maxij

[
A(`1) ⊗A(`2) ⊗ ...⊗A(`N)

]
. That is LN permutations

which means b ∈ RLN×1. Then every element in any row of E denotes the number of
marginal delays {d0, d1, ..., dL, d1,1, ..., dL,L} involved for the corresponding permutation
of maxij

[
A(`1) ⊗A(`2) ⊗ ...⊗A(`N)

]
. This means that for any row of E the first element

should always be 1 since d0 is always involved. Then element 2 through 1 +L should sum N
since there are N A`k matrices for every permutation. And element 2 +L through 1 +L+L2

should sum N − 1 since there N − 1 spaces between every A`k ⊗A`k+1 for every permutation.
These attributes can be useful to quickly check if the E matrix was constructed correctly. We
can also check this by calculating the sums of the columns of E. Trivially the first column
should sum LN since every element of that column should be 1, then column 2 through 1 +L
should sum N ·LN−1 and lastly column 2 +L through 1 +L+L2 should sum (N − 1) ·LN−2.

b =



A(1) ⊗ ...⊗A(1) ⊗A(1)

A(1) ⊗ ...⊗A(1) ⊗A(2)

A(1) ⊗ ...⊗A(1) ⊗A(3)

...
A(1) ⊗ ...⊗A(1) ⊗A(L)

A(1) ⊗ ...⊗A(2) ⊗A(1)

...
A(L) ⊗ ...⊗A(L) ⊗A(L−1)

A(L) ⊗ ...⊗A(L) ⊗A(L)



, E =



1 N 0 0 ... 0 0 N − 1 0 0 ... 0 0
1 N − 1 1 0 ... 0 0 N − 2 1 0 ... 0 0
1 N − 1 0 1 ... 0 0 N − 2 0 1 ... 0 0

...
1 N − 1 0 0 ... 0 1 N − 2 0 0 ... 0 L
1 N − 1 1 0 ... 0 0 N − 3 1 0 ... 0 0

...
1 0 0 0 ... 1 N − 1 0 0 0 ... 1 N − 2
1 0 0 0 ... 0 N 0 0 0 ... 0 N − 1


(4-3)

Example 4-1.1. Working out the linear optimization matrices for a simple problem
To clarify we will work through a simple example system. Let’s say we want to predict three
operations out into the future N = 3 and the system only has two modes L = 2 with unequal
odds at occurring:

p1 = 0.7, p2 = 0.3, A(1) =
[
3 ε
7 9

]
, A(2) =

[
5 3
8 ε

]
Then we define z and can calculate all entries to C:

z =
[
d0 d1 d2 d1,1 d1,2 d2,1 d2,2

]T
C =

[
1 3 · 0.7 3 · 0.3 2 · 0.72 2 · 0.7 · 0.3 2 · 0.3 · 0.7 2 · 0.32

]
=
[
1 2.1 0.9 0.98 0.42 0.42 0.18

]
Thesis Samuel Hoogerwerf

46 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

Then since N = 3 and L = 2 we have to go through LN = 8 permutations which means
b ∈ R8×1 and E ∈ R8×7. Then we populate all entries of E as described in (4-3):

b =



A(1) ⊗A(1) ⊗A(1)

A(1) ⊗A(1) ⊗A(2)

A(1) ⊗A(2) ⊗A(1)

A(1) ⊗A(2) ⊗A(2)

A(2) ⊗A(1) ⊗A(1)

A(2) ⊗A(1) ⊗A(2)

A(2) ⊗A(2) ⊗A(1)

A(2) ⊗A(2) ⊗A(2)


=



27
26
20
22
21
20
20
19


, E =



1 3 0 2 0 0 0
1 2 1 1 1 0 0
1 2 1 0 1 1 0
1 1 2 0 1 0 1
1 2 1 1 0 1 0
1 1 2 0 1 1 0
1 1 2 0 0 1 1
1 0 3 0 0 0 2



4-1-1 Enabeling extrapolation beyond Nfit

We should note that since the number of rows in b scales with LN calculating further out into
the future N > 10 quickly becomes totally infeasible. However it is possible to rewrite the
optimization problem such that a zNfit once fitted can be used to project out beyond the Nf it
for which it was fitted. If we were to take the original optimization problem limit N →∞:

min
d

lim
N→∞

d0 +N ·
L∑

m=1
pm · dm + (N − 1) ·

L∑
m1=1

L∑
m2=1

pm1 · pm2 · dm1,m2

≈min
d

lim
N→∞

(N − 1) ·
L∑

m=1
pm · dm + (N − 1) ·

L∑
m1=1

L∑
m2=1

pm1 · pm2 · dm1,m2

Clearly at lim
N→∞

any startup cost defined in d0 is negligible and lim
N→∞

N − 1 ≈ lim
N→∞

N . This
results in a new linear optimization problem:

min
d
N ·

L∑
m=1

pm · dm +N ·
L∑

m1=1

L∑
m2=1

pm1 · pm2 · dm1,m2

Such that:

A(`1) ⊗A(`2) ⊗ ...⊗A(`N) ≤ +
N∑
k=1

d`k + N

N − 1 ·
N∑
k=2

d`k−1,`k , ∀1 ≤ ` ≤ L

(4-4)

Again we can redefine this problem in matrix form with:

z =
[
d1 ... dL d1,1 d1,2 ... d2,1 d2,2 ... dL,L

]T
C =

[
Np1 ... NpL Np1p1 Np1p2 ... Np2p1 Np2p2 ... NpLpL

]
Cmarginal =

[
p1 ... pL p1p1 p1p2 ... p2p1 p2p2 ... pLpL

]
Samuel Hoogerwerf Thesis

4-1 Higher Order Approximation 47

It should be noted that all elements of C can be divided by N to calculate Cmarginal which can
then be used for projecting beyond the Nfit for which zNfit was fitted. We can calculate an
approximation to the expectation on the total processing time E

[
Γ(N)

]
for some N simply:

E
[
Γ(N)

]
≤ N · Cmarginal · zNfit

with:
N ≥ Nfit

(4-5)

Then b is calculated in exactly the same way as described in (4-3) however with the differently
sized C and z and differently weighted C E also needs to be adjusted. Firstly the first column
of the Eoriginal described in (4-3) needs to be removed. Then with this first column removed
column 1 through L of Enew should still sum N for every row, these are thus exactly the
same as for Eoriginal. Assuming a second order approach that leaves us to fill columns 1 + L
through L+ L2 in Enew which correspond to columns 2 + L through 1 + L+ L2 in Eoriginal.
However every row of this section of Enew should sum N while it sums N − 1 in Eoriginal
this is rectified by simply multiplying every element of this section of Eoriginal by N

N−1 before
copying it over to Enew. This process can be repeated for higher order approximations, in a
third order approximation we would have to copy column 2 +L+L2 through 1 +L+L2 +L3

of Eoriginal and scale it by N
N−2 and so on for fourth order and beyond.

This new calculation overweights the marginal switching costs relative to the marginal mode
cost by a factor N−1

N and the lack of d0

Example 4-1.2. Rewriting to the limit of N to ∞ style fit
To clarify, we take the exact same system as described in the previous example and now want
to write z, C, b and E such that they can be used for minimizing (4-4). There are only slight
changes to z and C:

z =
[
d1 d2 d1,1 d1,2 d2,1 d2,2

]T
C =

[
3 · 0.7 3 · 0.3 3 · 0.72 3 · 0.7 · 0.3 3 · 0.3 · 0.7 3 · 0.32

]
=
[
1 2.1 0.9 0.98 0.42 0.42 0.18

]

Of course one side of the boundary conditions b need not be changed at all. However E does
need to be adjusted. The first column that corresponded to d0 is to be removed as d0 is
also removed from z. And elements in E need to be scaled such that the summed weight of
every section is N for every order. This can be achieved by multiplying each element of these
sections with with their respective scalar N

N−Order+1 . In our case that means multiplying the
columns corresponding to d1 and d2 with 3

3−1+1 = 1 and the columns corresponding to d1,1
through d2,2 with 3

3−2+1 = 1.5.

Thesis Samuel Hoogerwerf

48 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

E =



3 0 3
2 · 2

3
2 · 0

3
2 · 0

3
2 · 0

2 1 3
2 · 1

3
2 · 1

3
2 · 0

3
2 · 0

2 1 3
2 · 0

3
2 · 1

3
2 · 1

3
2 · 0

1 2 3
2 · 0

3
2 · 1

3
2 · 0

3
2 · 1

2 1 3
2 · 1

3
2 · 0

3
2 · 1

3
2 · 0

1 2 3
2 · 0

3
2 · 1

3
2 · 1

3
2 · 0

1 2 3
2 · 0

3
2 · 0

3
2 · 1

3
2 · 1

0 3 3
2 · 0

3
2 · 0

3
2 · 0

3
2 · 2


=



3 0 3 0 0 0
2 1 1.5 1.5 0 0
2 1 0 1.5 1.5 0
1 2 0 1.5 0 1.5
2 1 1.5 0 1.5 0
1 2 0 1.5 1.5 0
1 2 0 0 1.5 1.5
0 3 0 0 0 3



Then the question is: L for what N do you need to fit an approximation such that it has
good predictive properties? To answer this question we did Monte Carlo simulations using
randomly generated systems. None to all elements of every mode could be set to ε the values
of all non-ε elements of the matrices ranged between 0 and 10. The size of the systems ranged
n = 2 and n = 6, and the number of modes ranged L = 2 through L = 5. The use of such
small systems was necessary to run many different Monte Carlo iterations, already indicating
the calculation time problem this method quickly runs into when applied to larger systems.
But as will be discussed later the results of these simulations can most likely be extrapolated
for larger systems.

For every randomly generated system we calculated a bNfit with Nfit ranging from 2 to 7.
Then fitted a respective zNfit for every respective bNfit . Then we simulated each system for
8 steps effectively calculating a b8. Similarly we generate an E8 but as we are not fitting
but actually predicting there is no need to overweight switching costs to consider the case
lim
N→∞

which means we construct E8 using the method discussed in (4-3). Then we either
remove the first column of this E8 or add a zero at the start of every fitted zNfit . Then we
multiply E8 · zNfit to calculate an estimate for all permutations. We also calculate a vector
P8 containing the odds for every permutation.

P8 =



p1 · p1 · p1 · p1 · p1 · p1 · p1 · p1
p1 · p1 · p1 · p1 · p1 · p1 · p1 · p2

...
p1 · p1 · p1 · p1 · p1 · p1 · p1 · pL
p1 · p1 · p1 · p1 · p1 · p1 · p2 · p1

...
pL · pL · pL · pL · pL · pL · pL · pL


(4-6)

This allows us to calculate a weighted absolute error in the following way:

ErrorNfit = P T8 ·
(
E8 · zNfit − b8

)
(4-7)

In Figure 4-1 we plot this absolute error out for all Nf it. This is done for 10 randomly
generated systems where the error drops asymptotically.

Samuel Hoogerwerf Thesis

4-1 Higher Order Approximation 49

2 3 4 5 6 7

0

10

20

30

40

50

60

N for which z was fitted

T
o
ta

l
O

v
e
re

s
ti
m

a
ti
o
n

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

Figure 4-1: Absolute error for every fit on an N=8 simulation

However to generalize these outcomes it is more useful to define a relative error. Ideally one
might want to define this error elementwise before weighting. This can be defined using a
Hadamard division: Cij = Aij

Bij
→ C = A�B

RelativeErrorNfit = P T8 ·
((
E8 · zNfit − b8

)
� b8

)
· 100 (4-8)

This method would probably work for most normal systems, but for these randomly generated
systems modes mcrit can occur where nearly all elements are set to ε and any elements larger
than ε can still be very near to 0. In such cases one element of b8 for the permutation
containing only that one critical mode [b8]icrit =

⊗8A(mcrit) will then also be zero or near
zero. In such cases the elementwise relative error will explode to near infinity. This does not
confer much useful information as the absolute error is usually still small en when we calculate
the relative error again removing the critical element [b8]mcrit from b8 and the corresponding
row in E8 and element in P8 as well as rescaling this new P8 such that it still sums 1 by
multiplying with the scalar: 1

1−p8
mcrit

. Then the result once again clusters with those systems
that do not have near zero modes. But in order to still allow for these rare cases in the
simulation we calculated relative error after applying weights. Of which the results correlate
strongly with the element wise approach for normal systems.

RelativeErrorNfit =
P T8 ·

(
E8 · zNfit − b8

)
P T8 · b8

· 100 (4-9)

Thesis Samuel Hoogerwerf

50 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

2 3 4 5 6 7
0

20

40

60

80

100

120

N for which z was fitted

O
ve

re
st

im
a
tio

n
 E

rr
o
r

in
 p

e
rc

e
n
t A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

Figure 4-2: Relative Error for every fit on an N=8 simulation

4-2 Problematic systems

It must be noted that in a larger monte carlo simulations we found there were some randomly
generated systems for which both the absolute and relative error did not asymptotically
decrease to zero. These systems generally had sparse A-matrices with low value entries, but
at least two modes for which a mode switch caused a large marginal delay. Which explains
why these systems have such high relative error scores to their fairly regular absolute error.
In Figure 4-3 and Figure 4-4 we ran a Monte Carlo where we purposefully generated systems
with at least 80% of elements set to ε leaving all other variables the same as for Figure 4-1
and Figure 4-2. Clearly this method is unfit for predicting processing time for such systems.

2 3 4 5 6 7

0

10

20

30

40

50

N for which z was fitted

T
o
ta

l
O

v
e
re

s
ti
m

a
ti
o
n

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

Figure 4-3: Absolute error for every fit on an N=8 simulation

Samuel Hoogerwerf Thesis

4-3 Dropping the upperbound requirement when estimating E
[
Γ(N)

]
51

2 3 4 5 6 7
0

500

1000

1500

2000

N for which z was fitted

O
ve

re
st

im
a
tio

n
 E

rr
o
r

in
 p

e
rc

e
n
t A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

Figure 4-4: Relative Error for every fit on an N=8 simulation

4-3 Dropping the upperbound requirement when estimating E
[
Γ(N)

]
Up to this point we have worked under the assumption that our prediction of processing time
always needs to be larger or equal to the actual expectation E

[
Γ(N)

]
. However if this is

not a requirement we can improve calculation time and decrease the absolute error on our
predictions.

4-3-1 Higher Nfit through incomplete b

So far we have always calculated all permutations to find the constraint vector b and constraint
matrix E. This means that for systems with a high number of modes L we can only fit z for a
relatively small Nfit as the number of possible permutations LNfit quickly explodes. But for
a reasonable quality fit we needn’t have nearly so many constraints as statistically every new
permutation contains marginally less new information than the previous as we go through
all permutations. This is due to the simple fact that the constraint defines a minimum. If
we were to imagine that we were throwing two regular dice and keeping track of the highest
number rolled. Say after rolling 20 times the highest total we noted down is 10, for our
next roll the odds we find a higher value is just 1

12 and if we roll an eleven the chance of
finding a new even more constraining roll is just 1

36 . If we only needed to know the maximum
possible roll at 95% certainty with a 20% error margin we could have stopped rolling at 35
rolls however it would take 107 rolls for a 95% certainty of a 12 showing up. Similarly if we
accept some error margin on our estimate of z we needn’t have nearly as long a b vector for
the same Nfit. However knowing ahead of time how many rolls it takes to empirically find
the maximum sum of two dice means you already have a working model of these dice. In the
case of deciding what is an acceptable length for b we do not have such a model, as this model
is what we are trying to find out by solving this minimization problem in the first place.

There are three approaches to this problem. The first and simplest is to just generated a
vector b of arbitrary length stochastically weighted by p. If b is long enough this will work
fine, but there is no way to know this outside of fitting z and comparing the fit to real

Thesis Samuel Hoogerwerf

52 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

world data. The second is to systematically generate permutations such that every mode
and mode switch is represented in b at least some arbitrary number of times. With that
prerequisite fulfilled b can then be extended to arbitrary length stochastically weighted by p.
This method for generating b has the same downsides as the first. Except that if the system
has a rare mode or mode switch that is critically slow it is guaranteed to be represented in
the constraints. Lastly we can define a starting number of permutations b(1) and every step
add some arbitrary number of unique permutations resulting in b(2). At the start of every
step we solve b(k) ≤ E(k) · z(k) for the minimal possible z(k). Based on these intermittently
solved z(k) a stopping condition can be defined: if

∑
z(k) does not increase by some arbitrary

percentage relative to z(k − 1) then the new elements in b(k) did not constrain significantly
more than b(k− 1) and we can solve the minimization problem with b(k) and E(k) otherwise
add unique permutations to find b(k + 1) and repeat.

4-3-2 Linear Regression

If we don’t require our estimate to fulfill E
[
Γ(N)

]
≤ C ·z but are instead merely interested in

E
[
Γ(N)

]
≈ C · z we can get a better estimate using a weighted least squares approach. With

the previously defined vector P as the weights all we need to solve is this regression problem:

min
z

length(b)∑
i=1

[
Pi · (bi − Ei,∗ · z)2

]

4-4 Methods To Reduce Calculation Time

Calculating all permutations of b and the corresponding rows of E is the calculation time
bottleneck of solving the minimization problem. Therefore it is worth writing the function
to calculate both in C such that it can be called in Octave. This is easily done as the only
operations required are maximization and addition in nested for-loops with as the input one
integer N and a three dimensional array containing A.

A second way to save calculation time is to calculate b in a more efficient way. Say we have
a system where L = 3 and we want to fit on N = 4 that means three matrix max plus
products per permutation. With LN = 34 = 81 permutations that makes 243 matrix max
plus products to calculate it conventionally. However if we first calculate all 9 permutations
for N = 2 and then go through all permutations of those nine max plus multiplied by itself
we get the same b4 in the end:

b̃2 =


A(1) ⊗A(1)

A(1) ⊗A(2)

...
A(3) ⊗A(3)

 =


A(1,1)

A(1,2)

...
A(3,3)

 , b4 =


A(1) ⊗A(1) ⊗A(1) ⊗A(1)

A(1) ⊗A(1) ⊗A(1) ⊗A(2)

...
A(3) ⊗A(3) ⊗A(3) ⊗A(3)

 =


A(1,1) ⊗A(1,1)

A(1,1) ⊗A(1,2)

...
A(3,3) ⊗A(3,3)


Yet doing it this way it only takes 9 + 81 = 90 matrix max plus products, a 63% reduction.

Samuel Hoogerwerf Thesis

4-4 Methods To Reduce Calculation Time 53

length(bN) # of ⊗
conventional

Optimal
Permutation

of ⊗ optimal Relative Savings for
L = 3

length(b2) = L2 L2 · (2− 1) b2 =
[
b̃1, b̃1

]
L2 9−9

9 = 0%

length(b3) = L3 L3 · (3− 1) b3 =
[
b̃2, b̃1

]
L3 + L2 54−36

54 = 33.33%

length(b4) = L4 L4 · (4− 1) b4 =
[
b̃2, b̃2

]
L4 + L2 243−90

243 = 62.96%

length(b5) = L5 L5 · (5− 1) b5 =
[
b̃3, b̃2

]
L5 + L3 + L2 972−279

972 = 71.30%

length(b6) = L6 L6 · (6− 1) b6 =
[
b̃3, b̃3

]
L6 + L3 + L2 3645−765

3645 = 79.01%

length(b7) = L7 L7 · (7− 1) b7 =
[
b̃4, b̃3

]
L7 +L4 +L3 +L2 13122−2304

13122 = 82.44%

length(b8) = L8 L8 · (8− 1) b8 =
[
b̃4, b̃4

]
L8 + L4 + L2 45927−6651

45927 = 85.52%

Table 4-1: Max-Plus matrix product savings as N increases for L = 3

The number of max-plus products required for the optimal method of calculating all permu-
tations is as follows:

1. Start a counter k = 1 and set the first entry in a 1 dimensional array fk of unspecified
length f1 = N .

2. If fk is even go to step 3 if fk is uneven go to step 4.

3. Set fk+1 = fk
2 and increase the counter k = k + 1 go to step 5.

4. Set a = 1+fk
2 and set b = fk−a. If a is even set fk+1 = a and fk+2 = b else set fk+1 = b

and fk+2 = a. increase the counter k = k + 2.

5. If fk 6= 2 AND fk−1 6= 2 go to step 2.

6. The number of max-plus products required to calculate bN is calculated:
∑k
i=1 L

fi

This means that the number of max plus products is limited:
∑k
i=1 L

fi ≤ LN + O
(
L
N+2

2
)

such that we can write:

lim
N→∞

LN · (N − 1)−
(
LN +O

(
L
N+2

2
))

LN · (N − 1)

= lim
N→∞

LN · (N − 2)−O
(
L
N+2

2
)

LN · (N − 1)

= lim
N→∞

N − 2−
O
(
L
N+2

2
)

LN

N − 1 = 1

(4-10)

Which means that for higher N and L the relative savings can simply be described by N−2
N−1 .

This slightly underestimates the denominator and thus overestimates the savings but we take
N = 8 we find 8−2

8−1 = 85.74% ≈ 85.52%.

Thesis Samuel Hoogerwerf

54 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

4-5 Memory Concerns

While this method is mostly constrained by the CPU it is nevertheless quite memory intensive
aswell. Firstly to calculate bNfit we need to calculate at least all full matrices of the intermedi-
ate b vectors that have to be multiplied to save on calculationtsteps as described in Table 4-1.
In the worst case that means storing b̃Nfit+1

2
and b̃Nfit−1

2
as arrays of full n × n matrices.

Storing these two three dimensional arrays as doubles takes:
(
L
Nfit+1

2 + L
Nfit−1

2

)
· n2 · 2

bytes. These arrays can be deleted once bNfit is calculated which is only 2 ·LNfit bytes when
stored as doubles as we only store the maximum value instead of the whole n× n matrix.
Alternatively the limiting factor could be the RAM required to solve the minimization problem
as we have to store bNfit and ENfit . Assuming we are fitting the second order extrapolatable z
as described in (4-4) these two arrays when stored as doubles take

(
1 + L+ L2) ·LNfit bytes.

If we define Ofit as the order for which we want to fit z we can find a generalized formula in
bytes:

2·max

LNfit · Ofit∑
i=0

Li, n2 ·
(

(1−mod(Nfit, 2)) · L
Nfit

2 + mod(Nfit, 2) ·
(
L
Nfit+1

2 + L
Nfit−1

2

))
(4-11)

Which just shows that in any case where calculating bNfit is the limiting factor by a small
margin choosing an even Nfit one integer above the current uneven value may resolve the
issue.

4-6 Scheduling

When we solve z on a second or or higher order these higher order marginal delays are useful
for scheduling the input of a system. Imagine for example our package sorter. What if instead
of the order of the packages being entirely stochastic we implemented a buffer that could hold
four packages. Every action step one package is chosen from the buffer to be processed and
a new package flows into the buffer putting our count back at four. If we define R to be the
set of packages currently in the buffer we could model this:

r(k − 1) = The last package to have entered the system
r(k) = The next package to be insterted into the system from the buffer

r̃(k + 1) = The package second in line projected to be insterted from the buffer
...

r̃(k + |R| − 1) = The package N th in line projected to be insterted from the buffer
r̃(k + |R|) = The next package to enter the buffer once r(k) leaves

Since all packages will need to go through the system eventually there is no use in consid-
ering the marginal delay of any individual package dr(k) for deciding the order of insertion.

Samuel Hoogerwerf Thesis

4-6 Scheduling 55

Instead we should consider if marginal switching costs can be minimized. This is something
that can be done especially well using this model of marginal delays and marginal switching
costs. The S matrix approach is effectively a first order approach and by definition cannot
consider marginal switching costs of a second order or beyond. And a fitted probability model
approach is by definition agnostic to specific modes as it is effectively fitted to the probability
distribution of modes. Or phrased differently a fitted probability distribution by definition
does not have the information fidelity to inform us on what order of modes would be more
optimal.

If we previously modeled the system to the second order that means we would consider
dr(k−1),r(k) but if we fitted to the the third we should consider dr(k−1),r(k) + dr(k−2),r(k−1),r(k)
and so on. Secondly, with an inflow-outflow buffer should consider that only r(k) is really
going to be decided upon r̃(k+1) and further out are merely projections as r̃(k+1) 6= r(k+1).
Therefore we define a vector w with w1 = 1 ≥ w2 ≥ w3 ≥ ... ≥ w|R|+1 such that we take
into account this increasing uncertainty. If a system works by filling the buffer completely
followed by emptying the entire buffer in some order, then these weights should be weighted
w1 = 1 = w2 = w3 = ... = w|R|+1 needing only one calculation every full buffer or |R|
packages. For a second order controller the minimization function would work out as:

min
r(k)...r(k+|R|)

|R|∑
i=1

wi · dr(i−1),r(i) + w|R|+1

L∑
i=1

pi · dr(k+|R|−1),r(k+|R|)

such that:
{r(k), r(k + 1), ..., r(k + |R| − 1)} = R

(4-12)

We do not see an elegant way to convert this into a optimization problem. As such R probably
needs to be searched by going through all possible permutations for every step. For systems
with relatively small buffers and few modes this is hardly a problem. For systems with large
buffers and many modes and relatively equally distributed odds this search space quickly
explodes as it is all possible unique permutations of the packages currently in the buffer.
In such cases a heuristic, such as a genetic algorithm, or simply randomly attempting 1000
permutations and picking the best one, may be able to find an acceptable local optimum
sufficiently quickly.

4-6-1 Effect of Control

In order to asses if controlling systems this way is in any way effective we preformed a Monte
Carlo Simulation. Systems were randomly generated with: L ∈ {2, 3, 4}, n ∈ {2, 3, 4, 5, 6} and
between 0% to 60% of elements equal to ε. Non-ε elements were calculated as the minimum
of two independent random variables X ∈ [0, 10] that are uniformly distributed. This way of
generating elements was done so as to generate systems that are more likely to have higher
marginal switching costs making the ordering of the modes more significant. For every system
we also generate random elements in p such that

∑L
i=1 pi = 1 and then a 25 item integer array

m ∈ Z1×25 of modes with every element m(i) ∈ {1, 2, ..., L} weighted according to p.

For every random system we then calculate a vector y ∈ R1×25 with y(k) =
⊗k

i=1A
(m(i)) as the

base not controlled case. Then for the 5 item buffer second order case we feed the scheduling

Thesis Samuel Hoogerwerf

56 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

algorithm described in (4-12) m(1) through m(5) as a startup for simplicity sake we choose
a uniform weighting wi = 1, ∀i. During this first sort we cannot consider any r(i− 1) as the
buffer was empty up to this point which means the first part of the optimization function is∑|R|
i=2wi ·dr(i−1),r(i) uniquely for this first sort. We then take the first item from the initialized

sorted buffer R and set it to m2ndOrder5Buffer(1) and append the buffer R back up to five
items with m(6). We once again sort that buffer according to (4-12) take the first item again
and set it to m2ndOrder5Buffer(2) and append the buffer with m(7). We continue this process
until m(25) has been added to the buffer at which point we sort it one last time now not
considering the second part of the minimization function w|R|+1

∑L
i=1 pi · dr(k+|R|−1),r(k+|R|)

as there will be no m(26) added. We then perform the same process but now with a buffer
size of |R| = 10 so as to find m2ndOrder10Buffer.

We apply nearly the same process to calculate the effects of third order control with some
differences. Firstly, since a third order process considers not only the one package before the
current one but two packages before the current one we need to feed the optimization function
r(i − 1) as well as r(i − 2). Secondly, we have to rewrite (4-12) to actually be third order
(4-13). Thirdly, this third order minimization function takes a third order vector d which
needs to be fitted to the system before any scheduling can be done.

min
r(k)...r(k+|R|)

|R|∑
i=1

wi · dr(i−1),r(i) + w|R|+1

L∑
i=1

pi · dr(k+|R|−1),r(k+|R|)

such that:
{r(k), r(k + 1), ..., r(k + |R| − 1)} = R

(4-13)

Then using all four controlled arrays m?(k) we can calculate all y?(k) =
⊗k

i=1A
(m?(i)) so as

to be able to compare them to the no control base case y(k). An example of one Monte Carlo
simulation can be found in Figure 4-5.

0 5 10 15 20 25
0

50

100

150

200

Packages Processed

T
o
ta

l T
im

e
 S

p
e
n
t

No Control

Second Order Control 5 item Buffer

Third Order Control 5 item Buffer

Second Order Control 10 item Buffer

Third Order Control 10 item Buffer

Figure 4-5: Example of a single Monte Carlo simulation

In this case control saves somewhere between 18% to 22% of sorting time and one would
expect a second order small buffer approach is less effective than a large buffer third order
approach. However in some rare cases this is not the case. Presumably this is due to the
relatively low number of simulation steps or phrased differently low number of packages as

Samuel Hoogerwerf Thesis

4-6 Scheduling 57

we only simulated up to N = 25 which is only 2.5 buffers worth in the case of the large
buffer. Secondly, we only fitted the models to Nfit = 7 and fitting higher orders effectively
requires higher Nfit for a quality fit as such the third order fits are presumably marginally
less precise. Nevertheless, as can be seen in Figure 4-6 the five item second order scheduling
function generally performs worst and the third order large buffer approach performs best.

P
e
rc

e
n
ta

g
e
 o

f
S

im
u
la

tio
n
s

Relative Percentage of Time Saved

-10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

Second Order Control 5 item Buffer

Third Order Control 5 item Buffer

Second Order Control 10 item Buffer

Third Order Control 10 item Buffer

Figure 4-6: Histogram of the relative effect of scheduling

The histogram in Figure 4-6 was generated by simply calculating the relative savings in percent
s? =

(
1− y(25)

y?(25)

)
·100. If we defineM to be the set of all simulations such that |M| = 250 we

can calculate the average relative time saves: m? = 1
|M|

∑M s? m2ndOrder5Buffer = 4.6451,
m3rdOrder5Buffer = 6.0716, m2ndOrder10Buffer = 5.5101 andm3rdOrder10Buffer = 7.1426. This
again confirms that a higher order approach and larger buffer will probably perform best on
Nfit →∞ and N →∞. But there are diminishing returns and the calculation load explodes
superexponentially as you increase buffersize and the Order of the control function.

It would be useful if one could estimate whether and to what extend a system will be fit for
scheduling without having to do simulations. One might think that the larger the relative
switching costs relative to the unavoidable marginal cost per package as described in (4-14)
would be a good predictor.

w2ndOrder =
∑L
i=1,j=1 |di,j |
L ·
∑L
i=1 |di|

, w3rdOrder =
L ·
∑L
i=1,j=1 |di,j |+

∑L
i=1,j=1,k=1 |di,j,k|

L2 ·
∑L
i=1 |di|

(4-14)

However if we scatter plot w2ndOrder against m2ndOrder5Buffer and do the same for the other
three simulations we get Figure 4-7. And one can immediately see that there is no significant
correlation there which is confirmed by the actual correlation coefficients that range from
-0.04 to 0.07.

Thesis Samuel Hoogerwerf

58 Estimating E
[
Γ(N)

]
using a Marginal Cost Model

0 0.5 1 1.5 2
-20

0

20

40

60

80

Relative Switchingcost Weighting

R
e
la

tiv
e
 P

e
rc

e
n
ta

g
e
 o

f
T

im
e
 S

a
ve

d

Second Order Control 5 item Buffer

Third Order Control 5 item Buffer

Second Order Control 10 item Buffer

Third Order Control 10 item Buffer

Figure 4-7: Relative Error for every fit on an N=8 simulation

However a second point to consider is that if all the switching cost options are equally slow
meaning d1,1 ≈ d1,2 ≈ d2,1 and so forth scheduling hardly makes a difference. So what we
presumably really want is high variance in the switching costs and for them to still be weighted
heavily relative to the inescapable marginal mode cost. In order to express this we can adjust
(4-14) to also include variance as we do in (4-15).

v2ndOrder =
∑L2
i=1,j=1

(
di,j − d?,?

)2
·
∑L
i=1,j=1 |di,j |

L3 ·
∑L
i=1 |di|

v3rdOrder =
L2 ·

∑L2
i=1,j=1

(
di,j − d?,?

)2
·
∑L
i=1,j=1 |di,j |+

∑L2
i=1,j=1,k=1

(
di,j,k − d?,?,?

)2
·
∑L
i=1,j=1,k=1 |di,j,k|

L5 ·
∑L
i=1 |di|

(4-15)
If we then again scatter plot relative error against this new v2ndOrder and v3rdOrder we get
Figure 4-8. In which we surprisingly find there is still no significant correlation at all as such
we find no easy predictor for how effective control might be.

0 2 4 6 8 10
-20

0

20

40

60

80

Relative Switchingcost Weighting

R
e
la

tiv
e
 P

e
rc

e
n
ta

g
e
 o

f
T

im
e
 S

a
ve

d

Second Order Control 5 item Buffer

Third Order Control 5 item Buffer

Second Order Control 10 item Buffer

Third Order Control 10 item Buffer

Figure 4-8: Relative Error for every fit on an N=8 simulation

Samuel Hoogerwerf Thesis

Chapter 5

Estimating E
[
Γ(N)

]
using a Probability

Distribution

Another way to describe these systems is to just fit an extreme value model and extrapolate
on that model. This method does not give any guarantees such as that your estimation
will always be larger or equal to E[Γ(N)]. However all previously discussed models only
estimate E[Γ(N)] which lies at in the middle of the probability distribution with 50% chance
of overshoot or undershoot of any specific Γ(N). If one wanted to know the maximum time
that any process could take with a 95% certainty E[Γ(N)] is of little use. However when you
have a fitted probability distribution these questions can be answered.

In order to find a probability density function for some Nfit we need to calculate a bNfit which
is probably most efficiently done using the method described in Section 4-4. Secondly, we
need to know the odds for every element in this bNfit this is described by:

PNfit =



P (`1 = 1, `2 = 1, ..., `Nfit−1 = 1, `Nfit = 1)
P (`1 = 1, `2 = 1, ..., `Nfit−1 = 1, `Nfit = 2)

...
P (`1 = 1, `2 = 1, ..., `Nfit−1 = 1, `Nfit = L)
P (`1 = 1, `2 = 1, ..., `Nfit−1 = 2, `Nfit = 1)

...
P (`1 = L, `2 = L, ..., `Nfit−1 = L, `Nfit = L)


=



p1 · p1 · ... · p1 · p1
p1 · p1 · ... · p1 · p2

...
p1 · p1 · ... · p1 · pL
p1 · p1 · ... · p2 · p1

...
pL · pL · ... · pL · pL


Say we randomly generate a system such that we can calculate bNfit :

A(1) ≈

6.29 7.07 1.82
1.42 ε 0.79
9.90 1.45 ε

 , A(2) ≈

5.93 4.36 4.21
ε 3.31 ε

8.22 8.34 5.24

 , A(3) ≈

 ε 0.15 ε
0.97 6.51 ε
5.33 7.89 9.13

 , p ≈
0.41

0.39
0.20


T

(5-1)

Thesis Samuel Hoogerwerf

60 Estimating E
[
Γ(N)

]
using a Probability Distribution

Using this system we calculate out to Nfit = 7 such that we optain b7 and P7. with these two
we can plot two histograms: once unweighted and once with every element of b7

7 weighted by
by its corresponding element in P7. We scale by 1

7 such that we again get to the marginal
delay for each step rather than the total processing time. In most systems the difference
between the weighted and unweighted histograms is relatively subtle, the height of the peak
may differ by 10% and the location of the peak may differ by 15%. The same is the case for
our example system as can be seen in Figure 5-1.

5.68 5.86 6.05 6.23 6.41 6.59 6.78 6.96 7.14 7.32 7.5 7.69 7.87 8.05 8.23 8.42 8.6 8.78 8.96 9.14
0

0.05

0.1

0.15

0.2

0.25

Unweighted

Weighted

Figure 5-1: Histogram counting the occurrence of entries in b and then the occurrence of those
same elements by weighted by odds

5-1 Inherent imprecision to extrapolating beyond Nfit

It should be noted that this method of calculating the marginal delay by definition risks
underestimating switching costs. For example in the case of Nfit = 7 we consider 7 modes
but therefore only 6 mode-switches. This is fine if you want to make a prediction for processing
time on a number of packages exactly equal to Nfit and no packages will precede or follow
the section you are attempting to predict. But if you wanted to make a prediction for some
section of length Nfit in the middle of the processing sequence, packages will come after and
have come before the section you are estimating. Alternatively if one wanted to predict 2·Nfit

or 0.5 ·Nfit number of packages one would also underweight switching costs.

In the first case since we know the predicted section is in the middle of a queue we would either
have to consider the switching cost from the package before our first considered package, or
the switching costs beyond our last considered package. If we do not we underweight switching
costs by a factor 1− Nfit−1

Nfit
= 1

Nfit
.

In the second case if we estimate short of Nfit we overestimate switching costs and if we
estimate beyon Nfit we underestimate them. Say Nfit = 4 that means we fitted 4 marginal
mode delays but only 3 mode switches. If we were to estimate for N = 2 scaling the model
gets us 2 marginal modes and 1.5 switches which is 0.5 too many. The other way around if
we extrapolate to N = 8 we consider only 6 mode switches where we should consider 7.

And that is assuming there are only interactions on the second order, in many systems there
will be interactions on the third order and beyond. Therefore if the marginal delays of

Samuel Hoogerwerf Thesis

5-2 Fitting the Generalised Extreme Value distribution 61

modes themselves do not dominate the total processing time, this method is highly unfit
for calculating E[Γ(N)] especially when fitting at a low Nfit and extrapolating the resulting
model to N >> Nfit.

5-2 Fitting the Generalised Extreme Value distribution

We use the Generalised Extreme Value (GEV) distribution to fit this data. This model has 3
special cases, the Fréchet distribution, the Gumbell distribution or the Weibull distribution.
If the generalised fit consistently overlaps with those of any of these three special cases and
its shape parameter ξ signals a special case we can assume it is safe to use this particular
special case going forward.

We could either fit the Probability Density Function (PDF) of these models to the histogram in
Figure 5-1 of course we would first have to scale this histogram such that the sumtotal surface
area of these bars equals 1. Alternatively we could fit the Cumulative Density Function (CDF)
in (5-2) to a scatterplot of every element in bNfit . The latter seems like the better method as
creating a histogram by definition loses information when grouping the datapoints, which can
only result in a lower quality fit. Secondly the PDF formula’s are more complex to calculate
for every one of the models, so fitting on the CDF should save us calculation time as well.

CDFGeneralized(x, ξ, σ, µ) =

 e−max[0,1+ξ·(x−µσ)]−
1
ξ
, ξ 6= 0

e−e
−x−µσ ξ = 0

with: ξ ∈ (−∞,∞) shape, σ ∈ (0,∞) scale, µ ∈ (−∞,∞) minimum

CDFFréchet(x, α, s,m) = e−(x−ms)−α , Special case for: ξ � 0
with: α ∈ (0,∞) shape, s ∈ (0,∞) scale, m ∈ (−∞,∞) minimum

CDFGumbel(x, β, µ) = e−e
−x−µ

β
, Special case for: ξ = 0

with: β ∈ (0,∞) scale, µ ∈ (−∞,∞) location peak of density function

CDFWeibull(x, k, λ,m) =
{

1− e−(x−mλ)k , x−m ≥ 0
0, x−m < 0

, Special case for: ξ � 0

with: k ∈ (0,∞) shape, λ ∈ (0,∞) scale, m ∈ (−∞,∞) minimum
(5-2)

In order to create the scatterplot we can fit the CDF’s to we first need to sort bNfit →
b̂Nfit such that [b̂Nfit]1 ≤ [b̂Nfit]2 ≤ ... ≤ [b̂Nfit]LNfit−1 ≤ [b̂Nfit]LNfit . Next we also reorder
PNfit → P̂Nfit to the same order such that we preserve match between the elements of b and
P : P

(
x =

[
b̂Nfit

]
i

)
=
[
P̂Nfit

]
i
. Then we need to sum

[˜̂
PNfit

]
i

=
∑i
j=1

[
P̂Nfit

]
i
such that:

P
(
x ≤

[
b̂Nfit

]
i

)
=
[˜̂
PNfit

]
i
. If we then create a scatterplot with the coordinates of every

dot at
([
b̂Nfit

]
i
,
[˜̂
PNfit

]
i

)
using b7

7 and P7 calculated from the system described in (5-1) this
results in the blue dots of Figure 5-2.

Thesis Samuel Hoogerwerf

62 Estimating E
[
Γ(N)

]
using a Probability Distribution

We can then set the minimum m and in some cases the location µ parameter before fitting.
As m =

[
b̂Nfit

]
1
and µ such that it corresponds to the steepest section of the scatterplot.

This means we have to pick µ such that:

µ =
[
b̂Nfit

]
i

such that:

max
i∈[s+1,LNfit−s]

[[
b̂Nfit

]
i+s
−
[
b̂Nfit

]
i−s

] (5-3)

We can arbitrarily pick an integer s ∈ [1,∞) such that we consider a wider difference between
dots to minimize the effect of noise in the scatterplot. This works with fairly low s for
reasonably smooth systems such as the one in Figure 5-2 but in some cases systems are
highly non-smooth such as the one to be discussed in Figure 5-7. These systems are generally
not wel described by any CDF but if one still wanted to fit such a system it is better to fit µ
instead of predefining it.

We then fit the scale and shape parameters q1 and q2 and in some cases the location parameter
q3 such that we minimize the squared error:

etype = min
q1∈{ξ,α,−,k},q2∈{σ,s,β,λ},q3∈{µ,m,µ,m}

LNfit∑
i=1

([˜̂
PNfit

]
i
− CDFtype

([
b̂Nfit

]
i
, q1, q2, q3

))2

LNfit


(5-4)

For the system described in (5-1) the fitted CDF’s are plotted alongside the raw scatter data
in Figure 5-2.

6 7 8 9

0

0.2

0.4

0.6

0.8

1

Simulation

Generalized

Frechet

Gumbel

Weibull

Figure 5-2: Fitting cumulative extreme value distributions to the simulation

In the case of this specific system the squared errors are eGeneralized = 2.2189 ·10−5, eFréchet =
7.6790 · 10−4, eGumbel = 1.3813 · 10−4, eWeibull = 5.2665 · 10−4 with ξ = −0.1207. But we can’t
say much based on 1 system thus we did a Monte Carlo simulation over 100 randomly gener-
ated systems for which the mean errors worked out as: eGeneralized = 2.6967 · 10−4, eFréchet =

Samuel Hoogerwerf Thesis

5-2 Fitting the Generalised Extreme Value distribution 63

1.2487 · 10−2, eGumbel = 3.4464 · 10−3, eWeibull = 1.1624 · 10−2. These average errors would
suggest no special case with even the gumbel distribution scoring almost an order of magni-
tude worse than the generalized distribution. This a spread on mean errors would lead one
to think ξ is uniformly distributed with perhaps a slightly higher density around ξ = 0. But
if we plot a histogram for all ξ found in Figure 5-3 we see it clusters around E[ξ] ≈ −0.3.
Which would suggest the Weibull distribution should fit best in contrast to the high mean
error.

-1.5 -1 -0.5 0 0.5

0

5

10

15

20

25

30

Figure 5-3: Histogram of ξ based on Monte Carlo simulations

To resolve this apparent paradox we plot every system’s fitted ξ out against the error for
every probability model as is done in Figure 5-4. At a first glance it looks as though the
Weibull distribution and to a lesser extend the other two are performing much better than
the average error would suggest. But at closer inspection we find a large difference between
the mean and median error due to extreme outlier errors of orders larger than O(10−2). If
we look at these outlier systems in detail we find they are all non-smooth like the system in
Figure 5-7 with some pm � {p1, ..., pm−1, pm+1, .., pL}.

-1.5 -1 -0.5 0 0.5
10-5

10-4

10-3

10-2

10-1

100

xi

S
q
u
a
re

d
E

rr
o
r

Generalized

Frechet

Gumbel

Weibull

Figure 5-4: Scatterplot of ξ vs etype based on Monte Carlo simulations

If we then exclude these problematic systems and calculate the mean errors over the remaining

Thesis Samuel Hoogerwerf

64 Estimating E
[
Γ(N)

]
using a Probability Distribution

92 smooth simulations we find that the Weibull distribution performs closest to the generalized
distribution as can be seen in Table 5-1. Secondly, we now find both the Frechet and Gumbel
distribution correlate negatively with ξ which is expected as for almost all datapoints ξ < 0.
The Generalized an Weibull distribution do not correlate with ξ significantly. We conclude
that one should fit to the generalized distribution as it still clearly outperforms the Weibull
distribution on the domain containing 95% of the fitted systems ξ ∈ (−0.75,−0.1).

Type Mean Error etype Correlation ξ etype Correlation eGeneralized
Generalized 2.6186 · 10−4 1.5716 · 10−2 1
Frechet 2.3488 · 10−3 −5.5418 · 10−1 3.1654 · 10−1

Gumbel 1.0080 · 10−3 −6.3560 · 10−1 4.7524 · 10−1

Weibul 3.8469 · 10−4 1.6181 · 10−1 8.6544 · 10−1

Table 5-1: Mean Error and Correlations excluding outlier systems

Using the distribution parameters we can also create the probability density distributions
described in (5-5) for every system and compare it to its weighted histogram.

t(x, ξ, σ, µ) =

 max
[
0, 1 + ξ ·

(
x−µ
σ

)]− 1
ξ , ξ 6= 0

e−
x−µ
σ , ξ = 0

PDFGeneralized(x, ξ, σ, µ) = t(x, ξ, σ, µ)ξ+1 · e−t(x,ξ,σ,µ)

σ

PDFFréchet(x, α, s,m) = α

s
·
(
x−m
s

)−1−a
· e−(x−ms)−α

PDFGumbel(x, β, µ) = e
−x−µ

β
−e

x−µ
β

β

PDFWeibull(x, k, λ,m) =
{

k
λ ·
(
x−m
λ

)k−1 · e−(x−mλ)k , x−m ≥ 0
0 , x−m < 0

(5-5)

If we do this for the system defined in (5-1) we get Figure 5-5.

Samuel Hoogerwerf Thesis

5-3 Estimating E
[
Γ(N)

]
65

5.68 5.86 6.05 6.23 6.41 6.59 6.78 6.96 7.14 7.32 7.5 7.69 7.87 8.05 8.23 8.42 8.6 8.78 8.96 9.14

0

0.2

0.4

0.6

0.8

1

1.2
Simulation

Generalized

Frechet

Gumbel

Weibull

Figure 5-5: Fitting cumulative extreme value density functions to the simulation

5-3 Estimating E
[
Γ(N)

]

Since we fit on
bNfit
Nfit

we can just extrapolate the mean of the CDF’s as P (x ≤ E[Γ(N)]
N) =

CDF(x ≤ E[Γ(N)]
N) ≈ 0.5. This 50th percentile can just be calculated by taking the mean of

the cumulative density function:

expectationGeneralized(x, ξ, σ, µ) =


µ+ σ·(

∫∞
0 (xξ·ex)dx−1)

ξ ξ 6= 0, ξ < 1
µ+ σ ·

∫∞
1

(
− 1
x + 1

bxc

)
ξ = 0

∞ ξ ≥ 1

expectationWeibull(x, k, λ,m) = λ ·
∫ ∞

0

(
x

1
k · ex

)
dx

(5-6)

As this involves some symbolic math which can be quite slow we used a different method for
approximating E

[
Γ(N)

]
during Monte Carlo simulations.

5-4 A note on non-smooth systems

Up to this point we have noted that some systems created outlier errors and as such were
disregarded with the note that these systems should not be modelled using probability distri-
butions. These systems are generally recognizable by two features. Firstly they have a highly
uneven distribution of odds for modes to arise with generally one or two modes having more
than 70% chance. Secondly this one or few modes have a marginal delay or switching cost
that is either significantly higher or lower than that of the other low probability modes. This
has as the result that he distribution function starts to look more like a staircase function
and in the worst possible case like a step function. We can already somewhat achieve this
effect by taking the system described in (5-1) and changing p such that p = [0.19, 0.01.0.9].
The unweighted Histogram in Figure 5-6 stays the same as the one in Figure 5-1 but when

Thesis Samuel Hoogerwerf

66 Estimating E
[
Γ(N)

]
using a Probability Distribution

weighting by odds you can already see how none of the PDF’s in (5-5) could ever take on
that shape.

5.68 5.86 6.05 6.23 6.41 6.59 6.78 6.96 7.14 7.32 7.5 7.69 7.87 8.05 8.23 8.42 8.6 8.78 8.96 9.14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Unweighted

Weighted

Figure 5-6: Histogram counting the occurrence of entries in B and then the occurrence of those
same elements by weighted by odds

If we look at Figure 5-7 we can see the staircase like shape that is typical for the distribution
scatterplot of these systems. And we can see the fitted distributions fit poorly eGeneralized =
1.8786 · 10−3, eFrechet = 4.0674 · 10−3, eGumbal = 2.7005 · 10−3, eWeibull = 2.1696 · 10−3.

6 7 8 9

0

0.2

0.4

0.6

0.8

1

Simulation

Generalized

Frechet

Gumbel

Weibull

Figure 5-7: Fitting cumulative extreme value distributions to the simulation

5-5 Calculation time and Memory Concerns

Since we fit based on the same vector bNfit that we use in Chapter 4 most memory and
calculation time considerations can be applied here as well. Firstly if we are going through
all permutations we can calculate bNfit according to the algorithm described in Section 4-4 to
reduce the number of max plus matrix products required, significantly reducing calculation
time. Secondly as we want to fit with the highest possible Nfit so as to reduce the under-
weighting of switching costs on limN→∞ E

[
Γ(N)

]
we can generate an incomplete bNfit as

Samuel Hoogerwerf Thesis

5-5 Calculation time and Memory Concerns 67

discussed in Section 4-3-1. All we need to do is multiply all elements of PNfit with some
scalar g such that g ·

∑
PNfit = 1 such that

[˜̂
PNf it

]
end

= 1 as this is required for fitting a
CDF. And lastly this method runs into one of the two memory bottlenecks mentioned in
Section 4-5 we do not need to ENfit so the memory bottleneck in bytes is calculated slightly
differently in (5-7) than in (4-11):

2·max
[
LNfit , n2 ·

(
(1−mod(Nfit, 2)) · L

Nfit
2 + mod(Nfit, 2) ·

(
L
Nfit+1

2 + L
Nfit−1

2

))]
(5-7)

One point specific to this method is fitting the distribution parameters. Since these are fitted
using a non-linear optimization algorithm like Sequential Quadratic Programming (SQP) we
want to minimize the number of iterations required to get an adequate fit. The first way
to do this is to predefine m and µ as discussed in Section 5-2. If the system is non-smooth
and µ can’t be easily defined in advance then we can at least set the boundary conditions in
the optimization options such that max

[
bNfit

]
≤ µ ≤ max

[
bNfit

]
and set the seed for µ at

0.5 ·
(
min

[
bNfit

]
+ max

[
bNfit

])
. Secondly, if you already have a good idea of what the other

parameters should be one might consider limiting the search space and setting some seeding
for these parameters. For example, if we were to do another Monte Carlo simulation like the
one required for Figure 5-4 we might set the boundary conditions −1.5 ≤ ξ ≤ 0.5 and seeded
at ξ = −0.3.

Thesis Samuel Hoogerwerf

68 Estimating E
[
Γ(N)

]
using a Probability Distribution

Samuel Hoogerwerf Thesis

Chapter 6

Comparison of methods

To estimate the precision of different prediction methods we ran Monte Carlo simulations
using randomly generated systems. None to 60 percent of elements in every mode could be
set to ε the values of all non-ε elements of the matrices range between 0 and 10. The size of
the systems range n = 2 and n = 6 with this limit mostly set to limit calculation time so as to
allow for more simulations. The number of modes range L = 2 through L = 5 for mostly the
same reason. The fact that such relatively simple systems were required to allow for many
Monte Carlo iterations, already indicates the calculation time problem some methods run
into when applied to larger systems. Nevertheless these results should extrapolate fairly well
to larger systems with more modes except for the fact that higher L may require higher Nfit

in some methods for the same quality prediction.

The first three items in the legend labeled "Action Counting1" through "Action Counting3"
are approximations using the method described in Section 4-1-1 fitted to the first through
third order respectively. The third order fit only begins at Nfit ≥ 3 instead of Nfit ≥ 2 as the
Nfit always needs to be greater or equal to the order at which this method is fitted. We use
the previously defined equation (4-7) to calculate the error for every Monte-Carlo simulation
at every Nfit for all three orders of action counting predictions.

Secondly, as every method using the S matrices produce the same prediction, as they are just
different methods for fitting the same S matrix, and the linear approach is fastest for small
systems we only applied this method in the Monte-Carlo simulations. As the S matrix based
approach is not fitted based on any Nfit the dots and dashed line labeled "Linear" have the
exact same total error for every Nfit. We calculate this error by just taking the simulated total
processing time substracted by the estimated total processing time: Error = E [Γ(8)]−P T8 ·b8.

Lastly as the generalized extreme value distribution still significantly outperformed theWeibull
distribution we only included a generalized distribution fit extrapolation. For which the error
was calculated: ErrorNfit = E [Γ(8)]− P T8 · p8 with E [Γ(N)] as defined in (5-6).

For the These separate Monte-carlo simulations are represented by the dots in Figure 6-1. The
dots do not fully align with the Nfit ticks on the x-axis so as to prevent different methods

Thesis Samuel Hoogerwerf

70 Comparison of methods

from overlapping making the figure more readable as only integer Nfit are possible. The
dashed line represents the mean of all simulations using that method at that particular Nfit.

1 2 3 4 5 6 7 8
-60

-40

-20

0

20

40

60

80

N for which z was fitted

T
o
ta

l O
ve

re
st

im
a
tio

n

Action Counting1

Action Counting2

Action Counting3

Linear

Generalized

Figure 6-1: Histogram counting the occurrence of entries in b and then the occurrence of those
same elements by weighted by odds

We can again use the previously defined equation (4-8) to calculate the relative error for the
action counting approaches in Figure 6-2. For the S matrix approach and generalized extreme
value distribution extrapolation we use:

RelativeErrorNfit =

∣∣∣E [Γ(8)]− P T8 · b8
∣∣∣

P T8 · b8
· 100

This results in Figure 6-2 where we can mostly see what would be expected. Higher order
approximations using the action counting method start out performing worse but for Nfit ≥ 6
the fits of second and third order begin to outperform. The first order fit performs worse than
an S matrix based approach for Nfit ≤ 6 but begins to outperform from that point forward.
Lastly, the generalized extreme value distribution outperforms all alternatives at least up to
Nfit ≤ 7 with the lowest variance on its relative error as well.

It must be noted however, that the parameters for generating random systems for this Monte-
Carlo simulation were set to minimize the odds of generating non-smooth systems. While the
other two methods do not have the same problems dealing with such systems. If we were to
generate this error data including non-smooth systems there would be extreme outlier errors
in the generalized extreme value distribution fit that would not get better at higher Nfit as
discussed in Section 5-4. The action counting approach can run into a similar problem as
described in Section 4-2 but this is rare and would affect the average less.

Samuel Hoogerwerf Thesis

6-1 Correlation 71

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

N for which z was fitted

O
ve

re
st

im
a
tio

n
 E

rr
o
r

in
 p

e
rc

e
n
t Action Counting1

Action Counting2

Action Counting3

Linear

Generalized

Figure 6-2: Histogram counting the occurrence of entries in b and then the occurrence of those
same elements by weighted by odds

6-1 Correlation

The first order action counting approach and S matrix approach are very similar as they both
effectively attempt to converge on the marginal delay of every mode. Which means that one
would generally expect:

dm ≈ S⊗ −A(`m) ⊗ S ,∀m ∈ [1, L]

What makes it more interesting is that as Nfit increases, the correlation between the two
becomes asymptotically less steep as can be seen in Figure 6-3, The slope first drops below
one at Nfit = 7 the exact point at which the first order action counting method begins to
outperform the S matrix based approach. Checking this correlation may be a quicker way
to determine which of the two has better predictive capabilities than running a Monte-Carlo
simulation to test which has the lower relative error.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

S Am S

F
ir
st

 O
rd

e
r

A
c
tio

n
c
o
u
n
tin

g
 d

m N=2

N=3

N=4

N=5

N=6

N=7

data1

Figure 6-3: Histogram counting the occurrence of entries in b and then the occurrence of those
same elements by weighted by odds

Thesis Samuel Hoogerwerf

72 Comparison of methods

6-2 Applications

For large systems the S matrix approach is optimal. Especially so if it is required that
the prediction is always greater than E [Γ(N)]. At some very large L the better memory
efficiency of the subgradient method described in (3-15) will allow it to fit faster than the
linear approach. In all other cases the linear approach is faster to fit.

Simpler systems with less modes can be fitted using an action counting approach. The optimal
fit is to pick the highest order fit that the chosen Nfit allows for. This has to be done as there
is a trade off where higher order fits have a worse initial error but approach 0 more rapidly.

Alternatively using the methods described in Section 4-3 will mean the prediction may not
always be larger or equal to E

[
Γ(N)

]
. But, implementing them will drop the relative error

and they are therefore worthwhile if the specific relation is not relevant.

Lastly if the goal is to schedule the input of the system as discussed in Section 4-6 the only way
to do so is using the action counting approach. Either fitted just as described in Section 4-1-1
or also including the methods described in Section 4-3. One should keep in mind though that
the buffer always needs to be larger or equal to the order of the fit used for scheduling, and
that at least a second order fit must be used.

Lastly, in any usecase where a prediction of some other percentile than the mean is wanted
a generalized extreme value distribution can be fitted. As this method by definition cannot
guarantee that its 50 percentile prediction is greater or equal to E

[
Γ(N)

]
fitting at a higher

Nfit with an incomplete bNfit as discussed in Section 4-3-1 will most likely result in a better
fit.

Samuel Hoogerwerf Thesis

Chapter 7

Conclusions and Recommendations

Coming around to the final chapter of this thesis we can look back at the research questions
posed in the introduction. The first was wether we could predict the behaviour of a Switching
Max-Plus-Linear (SMPL) system out into the future with an acceptable error:

Can we approximate the mean total processing time over N iterations for a stochastic SMPL
system? At the very least the difficulty of calculating this approximation should scale sub-
exponentially with increasing N while being at most 10% off the actual mean processing time.

And the second was whether we could possible invert any of these models and use them as a
controller to reduce total processing time.

Can we exert some limited control over a stochastic SMPL system by using buffered modes in
some way that is faster than simulating all possible permutations of inputting the buffer?

7-1 Conclusions

As Figure 6-2 shows the first research question can be answered yes for every method discussed
in this Thesis as long as it is properly fitted. Which leads to the question: which method
should be applied under what circumstances?

The simplest method to apply is fitting the S matrix approach using linear programming as
discussed in Section 3-2. This method is very fast as solving a linear programming problem
is a computationally easy when compared to the other methods. The sub-gradient based
approach to fitting the S matrix discussed in Section 3-1 is only useful in the rare cases where
a system has so many modes that the linear approach will not work. The only advantage
of that approach is that it allows one to formulate the optimization function much more
compactly, in all other ways it is more computationally intensive while still getting the same
result as the linear approach at best.

In order to fit the other two methods we need to simulate all permutations of the system for
some limited Nfit so as to generate BNfit and PNfit . Doing this quickly becomes infeasible

Thesis Samuel Hoogerwerf

74 Conclusions and Recommendations

for higher Nfit as the calculation steps to find BNfit scales exponentially with Nfit. There
are some methods to reduce the number of calculation steps as described in Section 4-4, these
should be applied when possible.

If the best possible Nfit is limited due to little computational power or the system having
many possible modes fitting a Generalised Extreme Value (GEV) distribution is best. If
an upperbound for E

[
Γ(N)

]
is wanted the approximation found using a GEV distribution

is unfit as it is just an approximation and not an upperbound. Secondly, if the system is
non-smooth as described in Section 5-4 the fitted distribution will be unreliable.

For a sufficiently large Nfit it is possible to fit a sufficiently high order marginal cost model
that can outperform a fitted GEV distribution. When fitting this model there is a trade
off between Nfit and model order that needs to be tuned for the best fit. With the added
benefit that the marginal cost model can be fitted to guarantee an upperbound on E

[
Γ(N)

]
rather than only estimating it. Secondly, having this model gives insights like what order of
modes is more or less efficient which can be used for controlling the system inputs. Lastly, if
the order of modes is not statistically independent this can be accounted for explicitly when
extrapolating using this model.

As shown in Section 4-6 scheduling mode changes by exerting limited control on the inputs
can be done. But, to answer the second research question we also need that limited control to
decrease total processing time. Using at least an inverted second order marginal cost model it
is possible to reduce total processing time in at least some systems as can be seen in Figure 4-
6. In order to maximize the effect of control it is needed to first fit the highest order marginal
cost model at the best Nfit possible and then use it to control the largest manageable buffer.
Both are limited by the ability to solve the optimization problems within an acceptable time
window.

7-2 Recommendations

In this section we will go through some recommendations for future research that might make
the results found in this thesis more complete and applicable.

7-2-1 Better Buffer sorting Algorithm

In this thesis we set out to have some limited control over the mode switching process using
an inverted marginal cost model as described in Section 4-6. In order to find the optimal
feeding order for this buffer we just search the entire search space of possible feeding orders.
This is perfectly manageable in for the purposes of this thesis as the worst case search space in
those monte carlo simulations would be something like 10!

2!2!3!3! = 25200 which would be quite
rare to happen and even then was perfectly manageable. However in systems with many
modes applying large buffers could in the worst case mean the search space scales factorially
to buffer size.

These potentially large buffers probably can’t reasonably be searched in their entirety as
such it would be useful to find some heuristic to find acceptable buffers quickly. One way to
attempt this might be to format the search space as a decision tree rather than a list of all

Samuel Hoogerwerf Thesis

7-2 Recommendations 75

permutations, and abandon branches that do not seem promising when walking out from the
stem to the leaves. There are probably many more ways to search the possible buffer feeding
order and it might be useful to see which perform best.

7-2-2 Stochastic elements in A

In this thesis we have always considered the delays defined in the A matrices to be deter-
ministic. In real applications this is almost never the case, as such it would be interesting to
see if some of the prediction methods described in this thesis could be adapted to consider
normally distributed elements in A.

7-2-3 Relationship between S matrix and prediction accuracy

When testing the code for doing the monte carlo simulations of the different S matrix based
methods it seemed like there was a relationship between the elements on the diagonal of the
S matrix and the accuracy of the predictions. Further research on whether there is such a
relationship and whether we can estimate the relative prediction error based of just the S
matrix would be useful.

7-2-4 Predicting on a 95% interval

For the most part we kept to estimating E
[
Γ(N)

]
which is equivalent to a 50th percentile

certainty estimate of total processing time. But in some applications one might want more
certainty than that, if for example one might want 2 sigma certainty that would require a
97.7th percentile certainty estimate. This can of course already be calculated using the fitted
extreme value distributions, but these become less reliable at the edges of their distributions.

Further research might be done to fit these distributions in such a way that they are more
reliable at their extremes and which systems can be fitted such that they are sufficiently
reliable. Secondly, it might be possible to adapt the marginal cost model such that it is not
fitted to estimate mean processing time but instead an nth percentile certainty estimate.

Thesis Samuel Hoogerwerf

76 Conclusions and Recommendations

Samuel Hoogerwerf Thesis

Bibliography

[1] B. Heidergott, G. J. Olsder, and J. van der Woude, Max Plus at work: modeling and
analysis of synchronized systems: a course on Max-Plus algebra and its applications.
Princeton University Press, 2014, vol. 48.

[2] B. De Schutter and T. J. van den Boom, “Max-plus algebra and max-plus linear discrete
event systems: An introduction,” in 2008 9th International Workshop on Discrete Event
Systems, IEEE, 2008, pp. 36–42.

[3] M. Akian, R. Bapat, and S. Gaubert, “Max-plus algebra,” Handbook of linear algebra,
vol. 39, 2006.

[4] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, “Synchronization and linearity:
An algebra for discrete event systems,” 1992.

[5] R. A. Cuninghame-Green, Minimax algebra. Springer Science & Business Media, 2012,
vol. 166.

[6] J. G. Braker, “Algorithms and applications in timed discrete event systems.,” 1995.
[7] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat, “Numer-

ical computation of spectral elements in max-plus algebra,” IFAC Proceedings Volumes,
vol. 31, no. 18, pp. 667–674, 1998.

[8] J. G. Braker and G. J. Olsder, “The power algorithm in max algebra,” Linear Algebra
and its Applications, vol. 182, pp. 67–89, 1993.

[9] M. Umer, U. Hayat, F. Abbas, A. Agarwal, and P. Kitanov, “An efficient algorithm
for eigenvalue problem of latin squares in a bipartite min-max-plus system,” Symmetry,
vol. 12, no. 2, p. 311, 2020.

[10] C. Roser, M. Nakano, and M. Tanaka, “A practical bottleneck detection method,” in
Proceeding of the 2001 Winter Simulation Conference (Cat. No. 01CH37304), IEEE,
vol. 2, 2001, pp. 949–953.

[11] T. J. van den Boom and B. De Schutter, “Modelling and control of discrete event systems
using switching max-plus-linear systems,” Control engineering practice, vol. 14, no. 10,
pp. 1199–1211, 2006.

Thesis Samuel Hoogerwerf

78 BIBLIOGRAPHY

[12] ——, “Modeling and control of switching max-plus-linear systems with random and
deterministic switching,” Discrete Event Dynamic Systems, vol. 22, no. 3, pp. 293–332,
2012.

Samuel Hoogerwerf Thesis

BIBLIOGRAPHY 79

List of Acronyms

MPL Max-Plus-Linear
SMPL Switching Max-Plus-Linear
DES Discrete Event Systems
JIT Just In Time
GEV Generalised Extreme Value
PDF Probability Density Function
CDF Cumulative Density Function
SQP Sequential Quadratic Programming

Thesis Samuel Hoogerwerf

	Front Matter
	Cover Page
	Title Page
	Table of Contents

	Main Matter
	Introduction
	Problem Definition
	Case Study
	Outline

	Max-Plus Basics
	Basic Definitions
	Matrix Operations
	Notation Conventions
	State Space Models
	Basic System Properties
	Max-Plus Linear Scheduling
	Switching Max-Plus Linear Systems
	Expected processing time for stochastic SMPL systems

	S-Matrix Approach
	Approaching E[(N)] with Sequential Quadratic Programming
	Calculation Time and Memory Concerns

	Approaching E[(N)] with Linear Programming
	Memory Concerns

	Estimating E[(N)] using a Marginal Cost Model
	Higher Order Approximation
	Enabeling extrapolation beyond Nfit

	Problematic systems
	Dropping the upperbound requirement when estimating E[(N)]
	Higher Nfit through incomplete b
	Linear Regression

	Methods To Reduce Calculation Time
	Memory Concerns
	Scheduling
	Effect of Control

	Estimating E[(N)] using a Probability Distribution
	Inherent imprecision to extrapolating beyond Nfit
	Fitting the Generalised Extreme Value distribution
	Estimating E[(N)]
	A note on non-smooth systems
	Calculation time and Memory Concerns

	Comparison of methods
	Correlation
	Applications

	Conclusions and Recommendations
	Conclusions
	Recommendations
	Better Buffer sorting Algorithm
	Stochastic elements in A
	Relationship between S matrix and prediction accuracy
	Predicting on a 95% interval

	Appendices
	Back Matter
	List of Acronyms

