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Delft University of Technology

Delft, The Netherlands
Email: axelle.vire@tudelft.nl

Bo T. Paulsen
Deltares

Delft, The Netherlands
Email: @deltares.nl

Niels G. Jacobsen
Deltares

Delft, The Netherlands
Email: niels.jacobsen@deltares.nl

Floating offshore wind platforms may be subjected to se-
vere sea states, which include both steep and long waves.
The hydrodynamic models used in the offshore industry are
typically based on potential-flow theory and/or Morison’s
equation. These methods are computationally efficient, and
can be applied in global dynamic analysis considering wind
loads and mooring system dynamics. However, they may not
capture important nonlinearities in extreme situations. The
present work compares a fully nonlinear wave tank (NWT),
based on the viscous Navier-Stokes equations, and a second-
order potential-flow model for such situations.
A validation of the NWT is first completed for a moored
vertical floating cylinder. The OC5-semisubmersible float-
ing platform is then modelled numerically both in this non-
linear NWT and using a second-order potential-flow based
solver. To validate both models, they are subjected to non-
steep waves and the response in heave and pitch is compared
to experimental data.
More extreme conditions are examined with both models.
Their comparison shows that if the structure is excited at its
heave natural frequency, the dependence of the response in
heave on the wave height and the viscous effects cannot be
captured by the adjusted potential-flow based model. How-
ever, closer to the inertia-dominated region, the two models
yield similar responses in pitch and heave.

∗Address all correspondence to this author.

1 INTRODUCTION

Floating wind turbines (FWTs) are proposed as a method to
harness the significant wind energy resource in deep water.
International research efforts have led to the development of
coupled numerical global analysis tools for FWTs in order
to understand their behaviour under wind and wave actions.
Examples of these are the series of projects that the Interna-
tional Energy Agency (IEA) has facilitated in order to im-
prove offshore wind modelling tools. The Offshore Code
Comparison Collaboration project (OC3, [1]), its Continua-
tion (OC4, [2]), and with Correlation (OC5, [3]), aim to ver-
ify and validate the accuracy of complex engineering tools
through code-to-code and code-to-data comparisons. The
latest one deals with the dynamic analysis of the DeepCWind
semisubmersible floating wind platform [4], on which the
5MW-NREL wind turbine is mounted [5]. The hydrody-
namic models in such tools are usually based on first- (and
second-) order potential-flow theory, sometimes also includ-
ing Morison’s equation.
To model highly nonlinear waves, understand their interac-
tion with a floating platform, and obtain estimates of the
resulting loads on the structure, other approaches that ac-
count for higher-order phenomena are generally needed. For
instance, Bachynski and Moan [6] studied the third-order
high-frequency loads on a Tension Leg Platform (TLP) wind
turbine. Here the potential-flow based Faltinsen-Newman-
Vinje (FNV) formula (Faltinsen et al. [7]) was used. Chan
et al. [8] applied the fluid-impulse theory (FIT) to calculate
the nonlinear surge diffraction force on the MIT/NREL TLP
turbine. This theory allows the evaluation of second- and



higher-order nonlinear effects using compact force expres-
sions, applied as time derivatives of impulses. Whereas the
named approaches are based on potential-flow theory, com-
putational fluid dynamics (CFD) account for the fully non-
linear terms of the Navier-Stokes equations. CFD was used
by Benitz et al. (2014) [9] to evaluate the wave loads on the
OC4-semisubmersible. At a later stage, in [10], the geome-
try factors to be considered when defining drag coefficients at
the heave plates of the OC5-semisubmersible were studied.
The findings were applied to a less computationally expen-
sive potential-flow based tool.
In the current study, two different numerical approaches were
applied: a fully nonlinear Navier-Stokes/VOF solver (re-
ferred to as Navier-Stokes model from here on) and a second-
order potential-flow theory solver (referred to as potential-
flow model). The fully nonlinear Navier-Stokes/VOF numer-
ical wave tank was developed within the open-source CFD
toolbox OpenFOAM R© framework (version 1606+) [11]. To
model the motions of the floating structure, together with the
generation and absorption of the waves, the interDyMFoam
solver was extended with the waves2Foam package (Jacob-
sen et al. [12]). Additionally, the potential-flow model of the
OC5-semisubmersible floating platform was generated with
the DNV-GL software tools Wadam and SIMO-RIFLEX.
Once both models were validated, they were compared in
order to assess the performance of the potential-flow model
in two different conditions where nonlinearities are of rele-
vance.
Sections 2 and 3 describe the two numerical models used
throughout the current work, respectively. The validation of
the nonlinear numerical wave tank for a floating cylinder is
detailed in Section 4, whereas the validation of both numer-
ical models of the OC5-semisubmersible platform, and their
comparison and performance are detailed in Section 5. The
conclusions are presented in Section 6.

2 NAVIER-STOKES MODEL
The governing equations for an incompressible Newtonian
fluid are based on the continuity and the momentum conser-
vation laws, which expressed in their differential form, yield:

∇ ·u = 0; (1)

∂ρu
∂t

+∇ ·ρuuT =−∇p∗+(g ·x)∇ρ+∇ ·µtot∇u, (2)

where ∇ = (∂x,∂y,∂z) is the three-dimensional gradient op-
erator, u the velocity field in Cartesian coordinates, g the
vector of acceleration due to gravity, x = (x,y,z) the Carte-
sian coordinate vector and p∗ the excess pressure, equal to
p∗= p−ρ(g ·x), where p is the total pressure. The local den-
sity ρ and the total dynamic viscosity µtot , defined in terms
of the water and air volume fraction α (subscripts a and w,
respectively), with φ = ρ,µtot are formulated as:

φ = αφw +φa(1−α). (3)

To solve these equations, OpenFOAM R© uses the volume of
fluid (VOF) method, developed by Hirt & Nichols [13], in
which the scalar function α ∈ [0,1] represents the phase of
the fluid in each cell (0 is air, 1 is water). This field is ad-
vanced in time once the velocity is known, following the
modified transport equation, formulated by Rusche [14]:

∂α

∂t
+∇ ·uα+∇ ·urα(1−α) = 0. (4)

The additional convective term keeps the interface sharp,
even with the step-like nature of α. ur is an artificial ve-
locity field suitable to compress the interface. It exists if
0 < α < 1, i.e. in the vicinity of the interface, and its mag-
nitude is proportional to the instantaneous velocity, see e.g.
Berberović et al. (2009) [15] for details. To ensure bounded-
ness of the solution, a multidimensional flux limited scheme,
namely the Multidimensional Universal Limited for Explicit
Solution (MULES), was used.

2.1 Boundary conditions
To solve the integral form of the incompressible Navier-
Stokes equations at every point of the numerical domain,
boundary conditions were imposed on all the surfaces.
The velocity and the α field boundary conditions at the inlet
and outlet surfaces were given by the applied wave theory.
At the seabed, a slip condition was imposed, which directly
implies that the viscous boundary layer effects, such as the
shear stresses, were neglected. At the front and back walls
a slip condition was applied. At the upper wall boundary,
the total pressure was set equal to zero, and an atmospheric
boundary condition was set for α and the velocity. This
means that air and water are allowed to leave the numeri-
cal domain, while only air is allowed to flow back in. The
total pressure at the atmosphere boundary is equal to zero.
At the surface of the body a no slip condition was applied.
This implies that the effect of viscosity and turbulence gen-
eration is not neglected at the walls, and phenomena such as
wave breaking or splashing near the structure are included.
However, the viscous boundary layer is not resolved, since
the grid is not fine enough, and no turbulence models were
implemented in this work. Their use may influence the prop-
agation of the free surface (see Brown et al. [16]), so the
research on more appropriate models for these applications
is still on-going. A schematic view of the domain, including
the relaxation zones, is depicted in Fig. 1.

2.2 Relaxation zones
The open-source wave generation and absorption toolbox
waves2Foam utilises relaxation zones, to avoid reflections
from the boundaries. The relaxation zones can have an ar-
bitrary shape, although for the cases treated here the shape
was always rectangular in the horizontal plane. The relax-
ation zone at the inlet is used to generate the incoming waves.
Since the exact hydrodynamic conditions in the experimen-
tal cases are not exactly known, its reproduction is usually
not possible. Therefore the fully nonlinear stream function
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theory (see Fenton [17]), was applied for every regular wave
case. The relaxation zone at the outlet was set as a still cur-
rent with no velocity.

Fig. 1. Schematic overview of the boundary conditions imple-
mented at the computational domain in the Navier-Stokes solver,
where I and II correspond to the relaxation zones.

2.3 Domain discretisation
OpenFOAM R© uses the finite volume (FV) method of dis-
cretisation, based on the application of the conservation prin-
ciples applied to a finite region in space known as control-
volume. Here the spatial discretisation is based on the num-
ber of points per cylinder diameter (p.p.c.d.) or per wave-
length (p.p.w.l.), measured at the free surface. For the back-
ground domain discretisation the utility blockMesh was used,
whereas for the refinement of the mesh around the body,
snappyHexMesh was applied. For the temporal discretisa-
tion the Courant-Friedrichs-Lewy (CFL) condition, with a
maximum Courant number of 0.25, was used.

2.4 Temporal and spatial discretisation schemes
Differential schemes are implemented for the numerical ap-
proximation of the terms in the governing equations. The
treatment of the advective term of the Navier-Stokes equa-
tion (Eq. 2) is done based on the conclusions presented by
Bruinsma et al. [18]. Here a first-order upwind and a second-
order MUSCL scheme (TVD) were compared, and the for-
mer was used throughout the current numerical analysis. An
overview of the discretisation schemes applied throughout
this work is given in Tab. 1.
Stability of the numerical model can be ensured by two
different pressure-velocity coupling stability methods: the
under-relaxation or the predictor-corrector method. The
under-relaxation method applies a relaxation factor fa to the
computed acceleration from the forces and moments, as:

a∗i = faai +(1− fa)a∗i−1, (5)

where a∗i is the under-relaxed acceleration of the center of
gravity (COG) at the instantaneous time step. In this case, the
acceleration is treated as a total variation diminishing (TVD)
property. This avoids high frequency oscillations from the
time integration, by applying a monotonicity criterion. Al-
though it increases the stability, a diffusive term is intro-
duced, which may affect the convergence rate of the solution.
The predictor-corrector method implies an initial step of pre-
dicting the displacement of the body based on the forces act-
ing on it. During the correcting steps the pressure field is
updated and the corrected displacement of the body is ap-
plied. To achieve a smooth convergence, the pressure is re-
laxed with the relaxation factor fp, as:

p∗i = fp pi +(1− fp)p∗i−1, (6)

where p∗i is the under-relaxed pressure at the instantaneous
time step. In this work, a constant under-relaxation factor
fp, equal to 0.5, was applied during all the iteration loops,
except for the last one, in which fp was set to 1.0, to ensure
time consistency.

Table 1. Numerical schemes used.

Term Discretisation

Spatial domain FV method.

Temporal derivative:
d
dt

Euler. First-order.

Gradient: (∇u, ∇α) Gauss linear.

Divergence: ∇ · (ρφu) Gauss upwind.

∇ · (φα) Gauss upwind.

∇ · (ρφrbα) Gauss interface compression.

Laplacian: ∇2 Gauss linear corrected.

3 SECOND-ORDER POTENTIAL-FLOW THEORY
MODEL

Potential-flow solvers, also known as diffraction solvers, pre-
dict wave-induced motions and loads on large volume struc-
tures at zero velocity. The main assumption of potential-flow
theory is that the fluid is inviscid and incompressible. The
velocity field u can thus be defined by the velocity potential
φ(x, t) as:

u = ∇φ =

(
∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

)
. (7)

If the continuity equation for incompressible flows is in-
voked, the velocity potential has to satisfy Laplace’s Equa-
tion (Eq. 8) in the fluid domain, as:

∇
2
φ(x, t) = 0. (8)

The number of unknowns is reduced from four, namely the
three velocity components and the pressure, to just the scalar
velocity potential φ. The pressure p is then computed by
the unsteady Bernoulli’s equation. Together with the bound-
ary conditions, the Boundary Value Problem (BVP) is de-
fined, and solved by one of the most widespread methods:
the Boundary Element Method (BEM), also known as panel
method [19]. The boundary conditions include all the terms
up to the second-order, based on a perturbation approach,
see [20]. The equation of motion of a rigid floating body with
six degrees of freedom in a regular wave in the frequency-
domain ω is given by:

X(ω)
[
−ω

2
(

M+A(ω)
)
+ iωB(ω)+C

]
= Fexc(ω), (9)



where M is the inertia matrix, A the added mass force ma-
trix, B the potential damping force matrix, C the stiffness
matrix and Fexc the excitation force vector. In this work,
the frequency-dependent elements were solved with Wadam
[21], which evaluates the unsteady hydrodynamic pressure
on the body, loads and motions of the body, as well as the in-
duced pressure and velocity in the fluid domain. The Gauss
direct-solver was used and the irregular frequencies that lead
to numerical inaccuracies were removed [20].
To carry out the time-domain simulations RIFLEX-SIMO,
developed by SINTEF Ocean, was used. Here, the
frequency-dependent hydrodynamic properties are trans-
formed by means of a retardation function k(t), based on
the convolution theory. Expressed in terms of the infinite-
frequency limit added mass A∞, and the retardation function,
Eq. (9) in the time-domain reads:(

M+A∞

)
ẍ(t)+

∫ t

0
k(t−τ) ẋ(τ)dτ+C x(t) = fexc(t). (10)

The time convolution of the radiation impulse-response func-
tions with the platform velocities allows accounting for the
linear memory effects within the time-domain hydrodynamic
model. The time-domain integration in the current case was
done using the third-order accurate Runge-Kutta numerical
method.
For cylindrical structures with small diameters, viscous
forces and flow separation have to be taken into account
when severe sea states with long waves and high wave
heights take place. In these cases, the potential-flow solution
for large volume bodies is combined with Morison’s equa-
tion [22], which includes a drag term in addition to the iner-
tial forces one.
Relevant second-order hydrodynamics effects were mod-
elled, which include the difference-frequency quadratic
transfer function and mean drift forces. The latter are based
on Newman approximation [23], which depends on first or-
der computations.

4 CASE-STUDY 1: VALIDATION OF THE NAVIER-
STOKES MODEL

The validation of the Navier-Stokes numerical model for a
floating cylinder, based on the 6DOF (degree of freedom)
solver waveDyMFoam, was done according to the experi-
mental data from Palm et al. [24]. The structural properties
of the cylinder are the same as in the experimental model, see
Table 2. The dimensions of the numerical domain are shorter
than the ones of the physical model. However, these were
ensured to be long enough to avoid any reflections. The nu-
merical set-up is the same for all the cases that are presented
here, i.e. for the decay tests and the cylinder subjected to
waves. These are indicated in Figure 2.

4.1 Decay tests in heave and pitch
The responses in heave and pitch, normalised by the respec-
tive initial displacements, are depicted in Figure 3. In order

Table 2. Floating cylinder structural properties.

d [m] Draft [m] Mass [kg] KG [m] Ixx [kgm2]

0.515 0.172 35.85 0.0758 0.9

Fig. 2. Numerical domain set-up, with the dimensions indicated with
letters in meters, cylinder diameters (D) and wave lengths (w.l.): a =
3 m = 5.80 D; b = 6 m = 11.65 D = c; d = 9 m = 17.50 D; e = 1.8 m; f
= g = 0.9 m. The width of the domain is 5 m.

to ensure convergence in heave, three different background
mesh lengths were used: 10, 15 and 20 points per cylinder
diameter (p.p.c.d.). Whereas the background mesh was con-
tant along the numerical wave tank, a refinement around the
cylinder was applied. The coarsest mesh presents a large dif-
ference in damping, and also in natural period, with an error
six times larger than the finest grid. The difference in period
of the latter with respect to the experiments is 0.08%.
Due to the low difference between the 15 and 20 p.p.c.d.
meshes, the former was used for the pitch decay test. In this
case, for the structural properties as indicated in the work
of Palm et al. (see Table ??), the damping is properly cap-
tured, but the difference in period is of more than 6% with
respect to the experimental data. The reason may be found
in the structural properties of the cylinder. A sensitivity anal-
ysis on those is depicted in Figure 3, bottom. For an inertia
of 0.95 kgm2 and a KG of 0.0818 m the error decreases to
1.7%.
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Fig. 3. Decay tests in heave (top) and pitch (bottom). The displace-
ments are normalised by the maximum initial values, 0.076 m and
8.88◦, repectively, and the time by the experimental natural periods,
which are 1.11 s in heave and 1.17 s in pitch.
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The natural periods in heave and pitch are close to each other,
which yields a cross-coupling between these modes. The
exchange of energy between these is depicted in Figure 4,
which corresponds to the response in heave and pitch for the
pitch decay test. Please note that the response is not nor-
malised in this case. Whereas the pitch response dampens
out, the response in heave increases.
The pitch motion, decoupled from surge, is described as:

(I55 +A55)
d2x5

dt2 +B55
dx5

dt
+C55(t)x5 = 0, (11)

with C55 equal to ρgV (GMT m +δGMT sin(ωet)), where
δGMT m, ωe and β are, respectively, the amplitude of the
time oscillations of the transverse metacentric height GMT ,
its frequency and its phase. These oscillations are caused in
the current case by the heave and pitch motions. GMT m is
the mean transverse metacentric height, associated with the
mean restoring coefficient in pitch. If Equation 11 is divided
by (I55 +A55), it yields:

d2x5

dt2 +2ξωn
dx5

dt
+ω

2
n

[
1+

δGMT

GMT m
sin(ωet)

]
x5 = 0, (12)

where ξ = B55/[2(I55 +A55)ωn] is the fraction of the damp-

ing relative to the critical one and ωn = 2π

√
C55

(I55 +A55)
.

Equation 12 is known as Mathieu’s (damped) equation,
which is a specific case of the second-order ODE Hill’s
equation. The condition of instability may be identified
using a parametric plane, shown in Figure 4 (bottom), also
known as Strutt diagram. Its derivation is based on the
solution of the Hill’s equation with the Mathieu parameters
α and δGMT/GMT m [25]. In the current case, α and
δGMT/GMT m are approximately equal to unity (green point
in the figure). The damping of the system, as well as the
increment of α, reduce the area of instability. However, in
this case, the damping ξ is calculated and proven to not be
high enough to avoid the region of instability.

The identification of this instability arising confirms that the
numerical model is able capture these type of instabilities,
arising from nonlinearities. This, together with the low er-
ror when reproducing the decay tests in period and damping,
serves as the first validation of the numerical wave tank.

4.2 Wave-structure interaction
The second validation concerning the vertical floating cylin-
der was done based on the response of the body to incoming
regular waves. These were generated at the inlet (see Fig. 1)
as a stream function, with the parameters indicated in Tab. 3.
Prior to placing the body in the numerical wave tank, the
surface elevation computed with waveFoam was compared
to the stream function analytical solution, as presented in
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Fig. 4. Top: heave response for the pitch decay test. Bottom: sta-
bility diagram for the undamped Mathieu’s equation.

Fig. 6. A multi-grading meshing technique was applied to
these cases, to be as efficient as possible. The number of cells
per wave height in the z-direction at the free-surface region
is 400. This number decreases linearly in the positive and
negative z-direction. In the x-direction, the number of cells
per wavelength is 67, or 15 p.p.c.d., upstream of where the
body is placed. Downstream the number of cells decreases
linearly in the positive x-direction. In the y-direction the cells
are uniformly distributed. The background mesh is depicted
in Figure 5. The amplitude of the first harmonic of the gener-
ated wave is in good agreement with the analytical solution
of the stream function (Fig. 6), with a wave amplitude at-
tenuation caused by numerical diffusion of less than 3% at
x/D = 0, where the COG of the cylinder is to be placed.

Fig. 5. Overview of the background mesh for the floating cylinder.

Table 3. Regular waves (stream function) parameters.

f [Hz] T [s] H [m] λ [m]
d

gT 2
H

gT 2

0.83 1.2 0.04 2.23 0.063 0.00283

Figure 7 presents the motions of the moored cylinder as a
result of the regular incoming waves for four wave periods
at the end of the simulation. The previous ones were dis-
carded to avoid the ramping-up of the wave and the initial
impact on the body. The response was computed for the two



pressure-velocity coupling stability methods previously dis-
cussed. The vertical motions are in good agreement, with a
crest-to-trough difference of less than 8% in heave and 9%
in pitch, compared to the experimental data.

Fig. 6. First harmonic amplitude a1, normalised by the first har-
monic amplitude of the analytical solution a1,SF .

Fig. 7. Response of the floating cylinder due to an incoming regular
wave in heave (top) and pitch (bottom). The heave time series is nor-
malised by the wave height. The time is normalised by the incoming
wave period.

5 CASE-STUDY 2: OC5-SEMISUBMERSIBLE
FLOATING WIND PLATFORM

The Offshore Code Comparison, Collaboration, Continued,
with Correlation (OC5) project is run under the IEA Wind
Research Task 30 and is focused on validating the tools used
for modelling offshore wind systems through the compari-
son of simulated responses of several designs to physical test
data. As part of the TO2 Floating Wind research project, a
series of 1:50 scale model tests were completed in the con-
cept basin at MARIN, see [26]. Here the hydrodynamics of
the moored semisubmersible platform DeepCWind (or OC5-
semisubmersible) were investigated. The full-scale dimen-
sions and structural properties of the platform are presented
in [3].
To model the first- and second-order hydrodynamics in the
potential-flow solver, a hybrid formulation that considers
both a potential-flow solution and a viscous drag from the
strip-theory (Morison’s Equation) solution was applied. The

Fig. 8. OC5-semisubmersible models in the two numerical frame-
works: the potential-flow model (left) and the Navier-Stokes model
(right). In the potential-flow model, the main columns, the central
column and the heave plates are depicted in light blue.

former was used for the large-volume members and the lat-
ter for the slender elements. Since the model is symmet-
ric around the OXZ plane, just half of it was modelled and
meshed uniformly with 5300 elements. Based on the values
obtained from the experimental decay tests’ data, the non-
linear viscous drag contribution from the main and slender
members was implemented in the frequency-domain anal-
ysis. The mooring lines’ effects were modelled by an ad-
ditional stiffness matrix for the hydrodynamic calculations.
This approach is static (and linear), as opposed to the non-
linear quasi-static one applied in the Navier-Stokes model
mooring system. Figure 8 shows the OC5-semisubmersible
potential-flow and Navier-Stokes models.

5.1 Heave and pitch moored decay tests
To validate the potential-flow model, moored decay tests
were computed and compared against the experimental data
and the Navier-Stokes model. Note that all the values are pre-
sented in full-scale, unless otherwise specified. For the heave
decay test an initial displacement of 1 m was applied. The re-
sponse is presented in Fig. 9 (top). The natural period is well
captured by both numerical models (Tab. 4). However, the
damping is larger after t/T = 2. The linear-plus-quadratic
damping coefficients b1 and b2 are obtained based on estab-
lishing the loss of energy slope at each cycle, see [27]. The
coefficients are shown in Tab. 5 for the experimental and the
potential-flow models. Despite the difference in damping,
the numerical models show good correspondence.
The pitch unforced response (Fig. 9, bottom) of the potential-
flow model, with an initial rotation angle of 3.34◦, is in
agreement with the Navier-Stokes model. The quadratic
damping is better captured, whereas the overall damping
seems to be better reproduced after t/T = 1. Even though
the natural period of the numerical solutions is shorter, the
difference is a mere 1%. It can thus be concluded that both
the numerical models are able to reproduce the behaviour of
the floating platform.

Table 4. First natural periods in heave and pitch for the experimental
(subscript e), Navier-Stokes (NS) and potential-flow (p f ) models.

DOF Te [s] TNS [s] Tp f [s]

Heave 17.5 17.5 17.5

Pitch 33.1 33.0 32.8



Fig. 9. Moored decay tests in heave (top) and pitch (bottom). The
displacements are normalised by the maximum initial values, and the
time by the experimental natural periods, which are 17.50 s for heave
and 33.1 s for pitch.

Table 5. Damping coefficients calculated based on the results up to
t/T = 17 for heave and t/T = 10 for pitch.

DOF b1,e [m-1] b1,p f [s-1] b2,e [rad-1] b2,p f [s-1]

Heave 0.0055 0.0063 0.074 0.126

Pitch 0.0039 0.0049 0.025 0.028

5.2 Wave-structure interaction
Besides the validation of the numerical models based on de-
cay tests, the structure was subjected to a regular incoming
wave whose characteristics are presented in Tab. 6. The di-
mensions of the computational domain for the Navier-Stokes
model are indicated in Fig. 10.

Table 6. Regular wave (stream function) parameters.

f [Hz] T [s] H [m] λ [m]
d

gT 2
H

gT 2

0.08 12.1 7.1 231.0 0.139 0.005

Fig. 10. Overview of the OC5-semisubmersible numerical set-up,
without moorings, for the wave-structure validation cases against the
experimental data. The dimensions, in model-scale, are denoted with
letters, which correspond to: a = b = 4.65 m = 1.6 w.l.; c = d = 6.5 m;
e = 5.2 m; f = 1.2 m; g = 4 m. The width of the domain is 4 m.

A mesh convergence study for both the undisturbed surface
elevation and the structure response in heave and pitch is
presented in Fig. 11. The free surface elevation was mea-
sured at the same x-coordinate where the COG of the body
was placed. It is seen that the solution of the Navier-Stokes
model converges, with a difference between the highest and
the lowest grid refinements in average crest-to-trough ampli-
tude of less than 2% in heave and 5% in pitch. Consequently,
a mesh refinement of 50 p.p.w.l. was used for the successive
cases, unless otherwise specified.
Figure 12 presents the time series of the wave elevation for
the potential-flow and the Navier-Stokes models, together
with the response of the moored structure in heave and pitch,
for the finest grid. The surface elevation is in good agree-
ment. A higher crest and smoother trough are observed in
the Navier-Stokes model, since the wave cannot be described
as fully linear anymore. From t/T = 6, the amplitude com-
plies with the experimental data for both numerical mod-
els. The ramping-up process is depicted in the experimental
data time series and the Navier-Stokes model response. The
potential-flow model response in heave matches both the ex-
perimental and the nonlinear Navier-Stokes model. A lower
frequency component is identified in the latter at 0.028 Hz,
which indicates that the pitch is excited around its first natu-
ral frequency by the third harmonic of the wave. Due to the
crossed-coupling between modes, it shows up in the heave
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Fig. 11. Mesh convergence study for the free surface elevation
(top), heave (mid) and pitch (bottom) responses of the moored OC5-
semisubmersible to an incoming regular wave of 12.1 s period.

motion. Both responses present an almost negligible phase
shift in heave with respect to the wave elevation. For the
pitch response, a good agreement with the experimental data
is observed. Both the experimental and the Navier-Stokes
models show again a lower frequency component, around the
pitch natural frequency.

5.3 Response in heave resonance conditions
The natural periods of the semisubmersible floating platform
treated here in pitch and roll are over 30 s. At these peri-
ods the wave energy is expected to be small, and therefore
large resonant motions are not likely to take place in these
modes. However, the heave natural period is lower than 20 s,
which can be excited by waves with similar periods, espe-
cially swell waves. The response under swell conditions was
studied by subjecting the semisubmersible to the regular in-
coming wave defined in Tab. 7. To estimate the length of
the domain given such a large wave length, a propagation
study of the wave without the presence of the structure in the
numerical wave tank was done, to verify that no reflections
from the boundaries occurred. After several iterations, the
minimum length of the numerical domain required to avoid
any disturbances is 22 m (in model scale), with the absorp-
tion zone of at least one wave length long. The dimensions
of the numerical wave tank for this case are: a = 0.2 w.l., b
= 1.1 w.l., c = 0.3 w.l. and d = 2.0 w.l., where the letters are
shown in Fig. 10. Dimensions e, f and g, as well as the width,
did not change. The same multi-grading meshing strategy as
for the floating vertical cylinder was followed: in the posi-
tive x-direction, from the wave generation zone up to one di-

0 1 2 3 4 5 6 7 8 9 10 11

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9 10 11

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11

-4

-2

0

2

4

Fig. 12. Comparison of the free surface elevation (top), heave (mid)
and pitch (bottom) response of the moored floating platform with the
experimental data to an incoming regular wave of 12.1 s period.

ameter length downstream the body, the cells have constant
aspect ratio equal to unity, which yielded 100 p.p.w.l. This
leads to a wave amplitude attenuation, caused by numeri-
cal diffusion, of less than 4% at the point where the struc-
ture was to be placed. Downstream the body, the number of
points decreases linearly in the positive x-direction. The re-
sponse of the structure to the 17.4 s wave period is presented
in Fig. 13. The undisturbed free surface elevation at the gen-
eration zone, as well as its phase, is in complete agreement
for the two models.

Table 7. Regular wave (stream function) parameters.

f [Hz] T [s] H [m] λ [m]
d

gT 2
H

gT 2

0.06 17.4 3.0 472.70 0.0673 0.001

Due to the small potential damping at this excitation fre-
quency, the resonant motion is governed by nonlinear drag
forces on the platform. The amplitude of the Navier-Stokes
model heave response increases up to t/T = 6, from where it
seems to reach a steady-state. The response of the potential-
flow model is 40% lower. In these conditions the vertical
velocities are larger, which have an effect on the Keulegan-
Carpenter and Reynolds numbers, and therefore on the drag
coefficient, as shown by Sumer & Fredsøe [28]. Further-
more, the wave height affects the transfer function in heave,
particularly close to resonance, as investigated by Kirk in
[29] for the specific case of semisubmersibles. Therefore, the
difference in amplitude between the models does not imply



that the potential-flow model is not able to capture the heave
resonant response, but that the adjustment of the model in
these conditions should be dependent on the relative veloc-
ities, and studied for different wave heights. Note that the
heave plates’ effects on the drag forces should be investi-
gated more precisely in the Navier-Stokes model, by imple-
menting a higher grid refinement around these, or by study-
ing the physical effects they imply separately.
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Fig. 13. Free surface elevation (top), heave (mid) and pitch (bottom)
response of the moored floating platform to an incoming regular wave
of 17.4 s period.

5.4 Response to waves of increasing steepness
To investigate the numerical models response to a regular
wave with a steepness ratio of H/Hmax = 0.60, two wave pe-
riods were considered: 8 s (0.79 rad/s) and 12.1 s (0.52 rad/s).
The maximum wave height Hmax was calculated according to
Williams’ [30] and Fenton’s work [31]. The wave parameters
for the two cases are presented in Tab. 8. The dimensions of
the numerical set-up of the Navier-Stokes model are the same
ones as indicated in Fig. 10.
The response in heave at 8 s excitation period is inertia dom-
inated, which implies that the viscous forces are not as rele-
vant. On the contrary, the second one lies in a region where
the viscous forces play a relatively important role. This is
illustrated in Fig. 14, where the Response Amplitude Oper-
ator (RAO) obtained from experimental data and from the
potential-flow model is depicted. The latter is computed
from the frequency-domain model, in which the contribution
of all the elements to viscous effects is included. However,
the heave plates explicit effect is included at a later stage
in the time-domain simulation. Therefore the difference be-

tween the two models in the heave RAO at the so-called
cancellation frequency (0.42 rad/s) is due to the disregard of
the explicit heave plates effect in the drag in the frequency-
domain analysis.

Table 8. Regular waves (stream function) parameters.

T [s] H/Hmax [-] H [m] λ [m] kA [-]

12.1 0.60 25.90 249.47 0.33

8.0 0.60 8.45 108.77 0.24
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Fig. 14. Response amplitude operator in heave and pitch for the
experimental and the potential-flow models.

The responses in heave and pitch for 8 s and 12.1 s wave pe-
riods and an incident wave height ratio of H/Hmax = 0.60
are presented in Fig. 15. The free surface elevation shows
the same difference between the models for both cases. It
presents a higher crest and a smoother trough in the Navier-
Stokes model, since the wave is not linear anymore.
Regarding the vertical motions, both models show a transient
response up to t/T = 6, from where steady-state is reached.
In the first case the motions are lower compared to the incom-
ing wave height, which complies with the RAO. The non-
linearity of the wave is identified in the response in heave
of the Navier-Stokes model. The smoother trough yields a
lower amplitude of the motion, compared to the potential-
flow model. The mean difference between the two models
in crest-to-trough amplitude |x̄i|, calculated based on the last
ten periods, is presented in Tab. 9. In the pitch time series of
the Navier-Stokes model a low-frequency component is ob-
served. It corresponds to the natural frequency in this same
mode, which may be excited by the fourth harmonic of the
wave.
In the second case, the response in heave is lower for the
Navier-Stokes model. The reasons behind are, firstly, the
shape of the nonlinear wave, and, secondly, the viscous ef-
fects. The latter were modelled based on lower relative ve-
locities than the ones that take place in the current case.
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Fig. 15. Free surface elevation (top), heave (mid) and pitch (bottom) response of the moored floating platform for 8 s (left) and 12.1 s (right)
regular waves period.

Since the damping is higher, the motion in the Navier-Stokes
model is lower. The pitch mode is excited by the third har-
monic of the wave at its natural frequency (0.18 rad/s), the
same way as it was observed in the wave-structure interac-
tion validation case. This component is not captured by the
potential-flow solver, and therefore the potential-flow model
response presents a lower amplitude.

Table 9. Mean crest-to-trough amplitude of the motions for both
models and the difference in percentage. The values in heave motion
are in meters per wave height.

Twave DOF |x̄i,NS| |x̄i,p f | ∆|x̄i| [%]

8.0 s
Heave [m/m] 0.12 0.16 25

Pitch [deg] 1.25 1.60 22

12.1 s
Heave [m/m] 0.50 0.58 17

Pitch [deg] 7.40 6.20 16

6 CONCLUSION

The current work studied two numerical models for eval-
uating the response of floating structures: a Navier-Stokes
and a potential-flow model. As a first step, the fully nonlin-
ear Navier-Stokes model was validated for a vertical moored
floating cylinder subjected to regular waves. The stability of
the numerical solution was ensured by two different meth-
ods: the acceleration-relaxation and the predictor-corrector
methods. Both yielded stable results and in agreement with
the experimental data.
At a second stage, the hydrodynamics of the OC5-
semisubmersible was modelled based on the nonlinear
Navier-Stokes and the potential-flow model. Both numeri-
cal responses were validated against experimental data. The
decay tests in heave and pitch showed good agreement in
both the natural periods and damping. Concerning the wave-
structure interaction, both models were capable of reproduc-
ing the response of the structure to non-steep regular waves.
However, the potential-flow model is less computationally
expensive.
Lastly, the OC5-semisubmersible response was investigated
for two more extreme conditions: waves with a period
close to heave resonance and waves with a higher steep-
ness. For the first case, the response in heave of the
potential-flow model showed an amplitude 40% lower than
the Navier-Stokes model. The main considered reason be-
hind is related to the transfer function dependency on the
wave height, which is not implemented in the potential-flow
model. Moreover, the fluid-structure relative velocities un-
der these conditions are different to the ones used to adjust
the quadratic damping of the potential-flow model, i.e. with



decay tests. Therefore closer results between the models
could be achieved if the following recommendations were
followed. Firstly, by adjusting the drag in the potential-flow
model based on the relative velocities, and secondly, by a
better investigation of the heave plates effects in the Navier-
Stokes model and their implementation in the potential-flow
model. The response in pitch for both numerical mod-
els showed a higher level of correspondence, which was in
agreement with the RAO.
For the second case, the response in heave and pitch of
the OC5-semisubmersible was investigated for waves with
H/Hmax = 0.60, and for two periods. The response in heave
for both cases was slightly lower in the Navier-Stokes model.
In the case of the 8 s wave period, the difference was caused
by the nonlinearity of the wave, which presented a higher
crest and a smoother trough in the Navier-Stokes model.
Consequently, the amplitude in heave was lower. In the case
of the 12.1 s wave period this reason applied equally. More-
over, the viscous effects played a role in the response, and
although they were included in the potential-flow model, the
adjustment was done for different relative velocities. The re-
sponse in pitch presented a difference in the same order of
magnitude as in heave. Therefore even though a higher cor-
respondence between the models could be achieved if the
quadratic drag were better investigated and adjusted, both
numerical models presented a good agreement.
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