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A B S T R A C T

Thermal InfraRed (TIR) image data at high temporal and spatial resolution are required to monitor the rapid
development of crops during the growing season, taking into account the fragmentation of most agricultural
landscapes. Moreover, integrating high-resolution satellite TIR data to calibrate hydrological models is a pow-
erful information to efficiently monitor crop water use. Conversely, no single sensor meets these combined
requirements in the TIR spectral region. Data fusion approaches offer an alternative to exploit observations from
multiple sensors, providing image data to meet the combined requirements on spatial and temporal resolution.

A novel spatio-temporal data fusion workflow based on a multi-sensor multi-resolution algorithm was de-
veloped and applied to generate TIR synthetic image data at high temporal and spatial resolution. The workflow
includes two steps: in the first step, synthetic daily radiance images at Top of Atmosphere (TOA) and 30-m
spatial resolution (at the ground) are generated using TIR radiometric data at TOA collected by the Moderate
Resolution Imaging Spectroradiometer (MODIS) daily 1-km and Landsat 8/TIRS 16-day 30-m. This procedure is
applied to two image pairs on different dates. The workflow yields an estimator to generate TIR TOA radiance
data on any given date, provided a MODIS radiance image is available. The next step applies constrained un-
mixing of the 30m (now considered as low-resolution) TIR images using the information about sub-pixel land-
cover obtained from co-registered images at higher spatial resolution in the VNIR (Visible Near InfraRed)
spectrum. In our case study, the L8/TIRS synthetic image data were unmixed to the Sentinel 2/MSI with
10m×10m spatial resolution. Two geographically diverse experiments were carried out using the same pro-
cedure: one in The Netherlands to evaluate the procedure and other in Puglia (Italy) to generate a time series of
the 10-m×10-m TIR image data product. The validation experiment, where an actual TIRS image was applied
as a reference, gave a RMSE value of 35.3W/(m2 μm sr), which corresponds to a relative value of 8.5% against
the TIRS reference values. The results confirm the feasibility of the proposed methodology, which yields a
synthetic thermal band to integrate with the multi-spectral data provided by the S2/MSI at 10m resolution.

1. Introduction

Thermal InfraRed (TIR) data is critical to model surface energy
balance (Alfieri et al., 2013), evapotranspiration and surface moisture
(Carlson, 2007) and climate change (Weng, 2009). Biophysical vari-
ables, such as water stress, grain yield (Smigaj et al., 2017; Elsayed
et al., 2017; Guo et al., 2016) and land-cover changes (Ning et al.,
2017) can be retrieved from TIR radiometric data alone or in combi-
nation with other spectral bands such as visible (Zhong et al., 2017). A
recent effort has been focused on using remotely sensed Land Surface
Temperature (LST) to calibrate hydrological models by modifying soil

parameters, such as hydraulic conductivity and improving the under-
standing of the model internal variables (Corbari and Mancini, 2014).
LST image data can be used for the calibration of distributed hydro-
logical models (Corbari and Mancini, 2014). A combined calibration
based on satellite LST and in-situ measurements of flow-rate (Fig. 1) is
potentially an effective way to estimate flow-rates over time and spa-
tially distributed maps of representative equilibrium temperature and
evapotranspiration. Retrieval of LST from TIR radiometric data is well
established and alternate algorithms are well documented (Sobrino and
Jiménez‐Muñoz, 2005). Moreover, the relationship between LST and
diverse spectral indexes suggests an opportunity to improve spatial and
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temporal resolution of current TIR image data (Yue et al., 2007; Julien
et al., 2011).

Due to technical and financial constraints, no single sensor provides
TIR data with both high spatial and temporal resolution (Price, 1994).
Frequent temporal sampling is essential to detect rapid surface changes,
very relevant in crop-growth monitoring and intra-seasonal ecosystem
disturbance (Shabanov et al., 2003). High spatial resolution is com-
pulsory in land-oriented applications to minimize the impact of mixed
pixels in mapping land cover and interpret its spatial variations. For
example, a minimum sample size of three pixels was deemed necessary
to obtain reliable TIR measurements of river temperatures (Handcock
et al., 2006), which implies that the water temperature in rivers nar-
rower than 180m cannot be measured with Landsat ETM+ (given that
the original product has a 60-m spatial resolution).

Data-fusion models can be applied to generate synthetic data by
integrating high spatial and temporal resolution data acquired by di-
verse sources and sensors (Herrero-Huerta et al., 2016). Data fusion
must preserve the radiometry of the data being combined to meet the
requirements of applications. This applies to e.g. quantitatively derive
radiometry changes caused by phenology (Stathopoulou and Cartalis,
2009), determine soil freeze-thaw status in critical ecological areas
(Kou et al., 2017) and determine the presence and severity of urban
heat islands (Mukherjee et al., 2017).

The remote-sensing community has developed two well-docu-
mented approaches to do spatial and temporal data fusion from two
sensors, respectively. The Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM) proposed by Gao et al. (2006) is widely ap-
plied to generate synthetic daily Landsat image data by combining
several pairs of concurrent Landsat and MODIS images and one MODIS
image on the day of each synthetic image, towards temporal data fu-
sion. This approach was originally designed for reflectance images in
the visible and near infrared (NIR) bands, which are highly correlated
with the surface type (Richter et al., 2006). To apply the same approach
to thermal infrared data, the Annual Temperature Cycle (ATC) and even
the daily temperature cycle (Weng et al., 2014), need to be determined
when correlating data acquired at different times. Regarding spatial
data fusion from satellite images from the same date, existing thermal

sharpening techniques disaggregate at-sensor radiance by capturing
spatial patterns with image data at shorter wavelengths and higher
spatial resolution (Dominguez et al., 2011). These multi-resolution
image fusion techniques use various deterministic or statistical pre-
dictors (Zhukov and Oertel, 1996) and use VNIR (Visible Near InfraRed)
bands as a reference Bangira et al. (2017a), e.g. L8/OLI at 30m and for
S2/MSI at 10–20m (Kim et al., 2013). When the focus is set on the TIR
band and the incorporation of LST from one sensor to the VNIR bands of
a different sensors, fewer works can be found. (Wu et al., 2015) pro-
posed a method able to fuse the LST from arbitrary sensors in an unified
framework. Specifically, a spatio-temporal integrated temperature fu-
sion model for the retrieval of high temporal and spatial resolution LST
from multi-scale polar-orbiting and geostationary satellite observations
was developed. Mukherjee et al. (2014) analyzed different downscaling
methodologies, based on regression models between LST and NDVI
(Normalized Different Vegetation Index) as auxiliary data. The differ-
ence between methodologies stays in the regression models used, from
2nd order polynomial (DisTrad (Kustas et al., 2003)) to least mean
square regression (LMSDS). For each thermal image from a satellite
sensor, images in different spectral bands from the same sensor are used
to calculate NDVI and applied to downscale. In addition to NDVI, other
parameters can be used for downscaling, provided they present a linear
relation with LST; their selection depends on the application. This way,
(Bechtel et al., 2012) applied 29 parameters, including topography
from SAR measurements (Synthetic Aperture Data), Mean Annual
Surface Temperature and land cover data, to downscale LST for urban
monitoring applications. In contrast, (Pan et al., 2018) developed a new
parameter, Normalized Sand Difference Index, to downscale LST data in
desert areas. Thus, the regression methodologies work based on the
assumption that RGB and NIR channels present finer spatial resolution
than TIR channel, for every satellite sensor. Thus, the regression with
LST is calculated at coarse resolution and then applied to the compu-
tation of the new fine-resolution pixels. A review of existing methods to
downscale LST to subpixel level and allow its use in applications re-
quiring high both spatial and temporal resolutions can be found in
(Zaksek and Ostir, 2012).

In this study a new data fusion algorithm was developed to generate

Fig. 1. Conceptual approach to the calibration of a coupled water and heat balance model using observations of LST.
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synthetic TIR data at TOA at 10-m and high temporal resolution. In the
first step, L8/TIRS (Thermal Infrared Sensor) and MODIS/TIR data,
both at TOA, are blended to obtain TIR data at 30-m and high temporal
resolution. The method applies an adaptive radiative model based on
spectral similarity, i.e. the Linear Spectral Mixture Analysis (LSMA).
After that, the spatial resolution is improved to 10-m, using the visible
bands of S2/MSI as reference to apply spatial unmixing: their use is
direct, with no intermediate computation of parameters. We designed
our methodology to be applicable to TOA radiometric data acquired by
different sensors and satellites to avoid the impacts of variable atmo-
spheric conditions in the data fusion. Retrieval of LST is carried out
once the synthetic TIR images at high spatial and temporal resolution
are generated. This last step is not addressed in this paper.

The paper is organized as follows: after this brief introduction, the
proposed methodology is described in Section 2. Next, the results and
their evaluation are presented in Sections 3 and 4, respectively. Section
5 includes a discussion of the results. Finally, the conclusions are
highlighted.

2. Methods and materials

2.1. Methods

The proposed approach was designed to generate high temporal and
spatial resolution synthetic TIR data based on a multi-sensor multi-re-
solution technique (MMT). Fig. 2 summarizes the workflow and the
data products generated by the method proposed, explained in detail
below. At the top of Fig. 2, step 1 shows the construction of the blender
algorithm using two pairs of MODIS and L8 / TIRS images at t1 and t2 to
generate a synthetic L8 / TIRS image at t3; at the bottom, step 2 illus-
trates the unmixing of the synthetic L8 / TIRS image at t3 using a S2 /
MSI; the bottom panels shows on the left a color composite of MSI
Bands 842 nm, 560 nm and 490 nm and on the right the synthetic 10m
TIR image.

Our methodology includes two different steps: the first one deals
with the temporal resolution, while the second one with the spatial
resolution. In the first step, MODIS and Landsat radiometric data have
been used in this study, but any other image data could be used. TIR
radiometric data at TOA on two different dates (t1 and t3 in Fig. 2) are
used, i.e. MODIS/TIR daily 1-km and L8/TIRS 16-day sampled at 30-m
resolution. Specifically, the L8/TIRS data are acquired with an IFOV of
142 μrad, which gives a footprint of approximately 100*100m, as L0R/
L1R data with irregularly shaped and spaced pixels and resampled by

cubic convolution to L1G, L1GT and L1 T data products with 30*30m
pixels. Thus, individual measurements are done with a footprint
100*100m but the L1G, L1GT and L1 T data products are generated by
interpolating (cubic convolution) the L1R data and terrain corrected
using 30*30m DEM. L1 T data product we used has a spatial resolution
of 30*30m. In consequence, synthetic thermal radiance images at TOA
at 30-m spatial resolution on any required date (t2 in Fig. 2) between t1
and t3 are generated. The evolution of thermal conditions between t1
and t3 must be parameterized. The maximum time interval tested with
accurate results between t1 and t3 is 4 months. In this step, an estimator
(Eq. 2) of L8/TIRS radiance is constructed by using two pairs of MODIS
and TIRS image data on two different dates, which can be rather far
apart. In other words, the estimator is assumed invariant in between
these two dates. To correct for the annual evolution of TOA radiance,
we have applied first the algorithm HANTS to model the yearly time
series. These values are then subtracted from the MODIS TOA ob-
servations to give a time series where temporal signals are due to short
term variations in atmospheric forcing and surface conditions. The es-
timator reconstructs the spatial pattern in the TIRS data using the
MODIS/TIR data as a predictor. If applied to BOA radiance or LST
image data, both the model of the yearly time series obtained with
HANTS and the estimator constructed with STARFM depend on the
evolution of atmospheric conditions. This problem is mitigated if our
method is applied to TOA radiance data limiting the challenge of at-
mospheric correction to the retrieval of LST for the final very high
spatial resolution thermal infrared image.

Concretely, step 1 (see Fig. 2) can be described as follows:

• TIR data acquired by different sensors at different times, are
radiometrically calibrated and geometrically rectified so that all
TOA radiometric data are consistent spatially and temporally
(Masek et al., 2006). Nevertheless, factors as acquisition time,
bandwidth, orbit parameters, geolocation errors, effective pixel
coverage and spectral response function, generate random and sys-
tematic differences in data acquired by different sensors. An extra-
filter is applied to remove poor quality observations and to retain
cloud-free pixels.

• TIR data at lower and higher spatial resolution are acquired at dif-
ferent times and need to be corrected for intra-annual variability to
make the radiometric measurements comparable. To do that, the
yearly cycle in TOA radiance is modelled by reconstructing a full
yearly MODIS/TIR time series of daily observations. This is done by
applying the HANTS algorithm (Menenti et al., 1993; Zhou et al.,

Fig. 2. Conceptual workflow of the proposed temporal and spatial data fusion algorithm.
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2016) to daily MODIS/TIR data from 2016. The TOA cycle gives the
yearly evolution of TIR radiance for each pixel. Because of the image
size, the reconstruction is done for all pixels within a moving
window at the same time. The algorithm combines harmonic ana-
lysis with curve fitting in iterative steps. For each pixel, the signal is
modelled using a Fourier series:

∑= + +y(t) a (a cos(2πf t) b sin(2πf t))0 1

n
i i i i

f
(1)

where nf is the number of frequencies, a0 is the average of the series and
t the time of observation. The coefficients a and b are the coefficients of
trigonometric components functions at the frequency i, calculated for
each pixel.

• Linear Spectral Mixture Analysis (LSMA) is applied to the TOA
radiometric data to represent MODIS radiometric data as a linear
combination of L8/TIRS radiometric data (within each MODIS
pixel), weighted by the fractional abundance, based on land cover,
of each pixel component (Zurita-Milla et al., 2008). We estimate the
temporal variation in radiance within the MODIS data as the
weighted sum of L8/TIRS radiance changes for each land cover type
within each MODIS pixel. The procedure to blend the MODIS and
L8/TIRS radiometric data is detailed below, following the STARFM
approach (Gao et al., 2006):

a) L8/TIRS images at t1 and t3 are used to search for pixels with ra-
diance value similar to the value of a central pixel in a local window.
The size of the moving window size is defined by the radiance
homogeneity in the L8/TIRS data, i.e. a smaller window may be
applied in a relatively homogenous scene. A window size of 15*15
pixels in L8/TIRS data was found as an accurate compromise be-
tween the processing time and the homogeneity in radiance for this
sensor in the tested areas. A threshold is estimated on the basis of
the standard deviation in the L8/TIRS scene and the number of land
cover classes within the search window applied to the L8/TIRS
mages. In this way, only values from similar pixels within the L8/
TIRS local window are used to build the estimator.

b) Next, a normalized weight function that expresses the contribution
of the similar pixels to the central pixel within the local window is
calculated. It is determined by the relative location of similar pixels
and radiance value between L8/TIRS and MODIS data and by the
temporal variation of MODIS radiance. This function is determined
under the assumption that the fractional abundance of each land
cover component within a MODIS pixel does not vary between t1
and t3.

c) Lastly, the synthetic L8/TIRS image at 30-m spatial resolution is
obtained by constructing the estimator defined by Eq. 2 to each
central pixel of the moving window to the MODIS data at the re-
quired date:

∑ ∑= +

−

=

=

=
L x y t W L x y t M x y t

M x y t

( , , ) *( ( , , ) ( ( , , )

( ( , , )

s s k i

P

i

N
ik i i k i i

i i k

/2 /2 2

2

1 2

(2)

where L denotes TIRS radiometric data, M by MODIS, Wik is the nor-
malized weight function, s represents the size of the moving search
window, being x y t( , , )s s/2 /2 2 the coordinates of the central pixel at the
prediction time, P defines the number of paired TIRS/MODIS images (2
in our case study), N is the total number of similar TIRS pixels within
the moving window and i is the index.

Eq. 2 prescribes that at each pixel of the synthetic TIRS image, the
estimated TOA radiance at t2 equals the observed TIRS radiance in-
terpolated between t1 and t3, plus the sum with sign of the differences
between t2 and t1, and t2 and t3, respectively, observed by MODIS for all
similar pixels within the window in the MODIS image.

Step 2 (see Fig. 2) is now performed once the synthetic TIRS image
on the required date is obtained. It consists in generating a second

synthetic image at higher spatial resolution by estimating sub-pixel
values. A linear unmixing algorithm is applied to the 30-m synthetic
TIRS radiometric data using the information about the sub-pixel land-
cover determined from co-registered images at higher spatial resolu-
tion. In our case study, the synthetic TIRS data at 30-m spatial resolu-
tion were unmixed to S2/MSI 10m resolution. Thereby, our MMT al-
gorithm yields 10m spatial resolution synthetic data on the required
date.

We assume that thermal infrared existence correlates with land
cover and spectral reflectance in the VNIR region. Accordingly, clusters
of pixels with similar VNIR reflectance are obtained by applying an
unsupervised classification of the bands 2, 3 and 4 of S2/MSI in the
entire area of study (Zhukov et al., 1999). The ISODATA (Iterative Self-
Organizing Data Analysis Technique) classification algorithm (Ball and
Hall, 1965) is applied by specifying the maximum number of clusters
only. In order to avoid the occurrence of unclassified pixels, an adaptive
search was implemented, where the class of each unclassified pixel is
assigned as the most abundant class in its 3*3 pixel-neighborhood.

The 10-m TIR radiances are estimated within each 30-m TIRS pixel
using a moving window. The main limitation is that same class pixels
within the moving window are given the same TIR radiance at TOA and
consequently some spatial variability in TIR radiance is lost for pixels in
the same cluster within the moving window. On the other hand, the size
of the moving window determines the maximum number of clusters
that can be identified and applied to estimate the high resolution TIR
radiance. Consequently, the size of the moving window affects the
characterization of thermal variability. A 5-pixel moving window was
found to be a good compromise between acceptable spatial averaging of
LST within each high-resolution class and a sufficient number of low
resolution pixels for a stable inversion of the system of equations (Xu
et al., 2015). It should be noted that the function of the moving win-
dows in step 1 and step 2 is completely different, thus their size have to
be set independently because in step 1 the window is applied to con-
struct the estimator in Eq. 2, while in step 2 is applied to classification
and linear unmixing. Our unmixing algorithm assumes linearity of
thermal radiance to calculate the contribution of each class to the low-
resolution pixels. That is, for every 30-m resolution pixel the radiance is
a linear combination of the radiances of the classes of the high-re-
solution pixels within the moving 5-pixel window (Nash and Sutcliffe,
1970) (Fig. 3 and Eqs. 3 and 4). This is another advantage to use TOA

Fig. 3. Visualization of the 5-pixel moving window used for the unmixing step.
As stated in the text, d1 and d2 are both equal to the pixel size, i.e. the 10-m of
S2/MSI in our case study.
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radiance in our approach, since linearity cannot be assumed for surface
temperature values. Since all pixels in the 5-pixel moving window are at
the same distance to the central pixel (except for the central pixel itself)
due to their lateral adjacency to it (Fig. 3), the system is solved through
unweighted least squares estimation.

Analytically, the 10-m resolution radiance values within each 30-m
pixel are calculated by solving a linear system by least squares esti-
mation (Eq. 3):

∑=P r c f r c cl P cl( , ) ( , ; ) ( )j
cl

i i i i
*

i (3)

where P r c( , )j is the pixel radiance value r c( , ) for the central pixel in
the moving window (a 30-m TIRS pixel in our case study), P cl( )i i

* is the
radiance of class cli to be estimated and f r c cl( , ; )i i is the fractional
abundance of class cli in the 10-m pixels within each 30-m resolution
pixel, calculated as in Eq. 4.

∑ ∑=
∈ ∈

f r c cl n n( , ; ) /i i
f g r c

f g cl
f g r c

f g
( , ) ( , )

, ;
( , ) ( , )

,i
(4)

where nf g cl, ; i is the number of high resolution pixels of class cli within
the moving window and nf g, is the total number of high resolution
pixels within the moving window.

In Eq. 3, the resolution error of the linear combination is neglected.
Thereby, the energy balance is maintained for the central pixel of the
moving window, which is the one to be solved for each position of the
window. For this reason, the unmixing algorithm used in among the
“constrained” unmixing algorithm group.

2.2. Materials: case studies

Two geographically diverse case studies were carried out to test the
proposed methodology, characterized by different climatic conditions,
water availability, crop types, irrigation techniques and water

distribution rules (Fig. 4). One case is an 11,500 km2 area of The
Netherlands where the approach was validated (Section 3.1). The other
is a synthetic image time series during the irrigation season over a crop
area in the north of Puglia (Italy) as a practical case to demonstrate the
power of the methodology to calibrate hydrological models (Section
3.2).

In The Netherlands, the predominant wind direction is South-West,
which causes a moderate climate with warm summers and cold winters
and typically high humidity. The case study area is complex area with
many different land cover types, including farmland, forest, bare soil,
urban land, wetlands and water as identified by the Netherlands
Environmental Assessment Agency (PBL). Dominant crops are grassland
and maize and dominant arable crops are potatoes and sugar beet.
Large parts are occasionally irrigated by sprinkling in response to drier
spells, while subsurface drainage has been recently introduced with a
rapid extension of its use. Water supply reaches the area via a system of
channels with several inlets. Cropland patches are small and show
distinct temporal patterns based on planting and harvest schedules and
local environmental conditions such as soil water content, fertility and
health. In this context, monitoring this crop growth requires high spa-
tial resolution imagery to isolate particular fields and high temporal
resolution imagery to track development.

In contrast, Puglia (Italy) has a typically Mediterranean climate with
hot summers and warm winters and typically low humidity (water
scarcity). The land cover is basically crops and urban lands, but bare
soil, forest and water are as well included. The main crops are cereals
and vegetables for fresh consumption. Asparagus, Swiss Chard, Leaf
Beet, Savoy Cabbage, Fennel, Spinach among others are cultivated
between September and April avoiding the hottest season. Vineyards
and olive orchards are also present. Water is withdrawn from the deep
aquifer with wells and stored in reservoirs. Irrigation is performed by
drip or sprinkler methods. It is regulated by the Consortium for the
Reclamation of the Capitanata which operates on 44,000 ha (from the

Fig. 4. Location of the two case studies carried out in Europe: validation in The Netherlands and demonstration in Italy (based on FreeMapTools source).
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Saccione stream, which marks the border with Molise to the River
Ofanto that delimits the province of Foggia from that of Bari).

3. Results

3.1. Validation case: The Netherlands

The proposed approach was tested over an area of 115*100 km2 in
the South-East of The Netherlands. It is mainly flat, with gentle slopes
from the south to the north.

L8/TIRS level 1 T geotiff product, band 10, at 30m resolution and
MODIS level-1 MOD021KM from collection 6, band 31, at 1000-m re-
solution were employed. No time correction was applied for the sensor
overpass time, choosing the MODIS acquisition time at 10:00 a.m. and
Landsat 8 overpasses at 10:33 a.m. The image data chosen to determine
the blender (see Fig. 2) were acquired on 14th March 2016 and 20th July
2016. MODIS/TIR and L8/TIRS images were geometrically co-regis-
tered and resampled to the same pixel size and area and radiometrically
calibrated, to ensure radiometric consistence. To this end, MODIS data
were re-projected into WGS84 UTM projection system, the same as
Landsat data products, using the MODIS Reprojection Tools and a bi-
linear resampling method. Moreover, a shared cloud mask was created
for L8/TIRS and MODIS/TIR data on the selected dates to remove poor
quality pixels.

The date chosen for the generation of the 10-m resolution image
data was May 1st 2016. Accordingly, MODIS data on this date was used
to apply the estimator and calculate the synthetic TIRS data resolution.
Next, the unmixing algorithm was applied to estimate TIR radiance at

10-m spatial resolution. To generate the cluster map according to their
VNIR reflectance, S2 MSI bands 2, 3 and 4 (corresponding to the visible
range) on the required date (i.e. May 1st 2016) were used.

In addition, on May 1st 2016 a real L8/TIRS image was available,
which was used to validate the proposed methodology. Fig. 5 illustrates
the following images on May 1st 2016: the 1000-m resolution MODIS/
TIR (Fig. 5a) and the L8/TIRS image at 30-m resolution used for vali-
dation (Fig. 5c). The final result (Fig. 5d) that is the synthetic 10-m
resolution shows how well the higher spatial resolution captures the
heterogeneity of the clouds. Overall, the shape of clouds in the synthetic
30-m and 10-m TIR image (Fig. 5b and c) is similar to the shape in the
real 30-m resolution TIRS image (Fig. 5b), but many spatial details
appear in the 10-m image only. In the visual evaluation of the synthetic
10-m resolution image, it should be taken into account that the un-
mixing in Step 2 is done by classifying both the L8/TIRS and the S2/MSI
images within a small search window and then, assigning to the 10-m
pixels within the window the TOA radiance values retrieved with L8/
TIRS data for each class.

The stepwise improvement in the spatial resolution are evident
when comparing the original MODIS TIR image (Fig. 5a) with the
synthetic L8/TIRS image generated by Step 1 (Fig. 5b). The quality of
the latter is clearly worse than the actual L8/TIRS image (Fig. 5c),
which however is available on average once a month taking cloudiness
into account, while a synthetic L8/TIRS image can be generated on any
date required by users. Finally, the benefit of the linear un-mixing (Step
2) is evident in the synthetic MSI/TIR image at 10m spatial resolution
(Fig. 5d). It is worth nothing that the pixelized appearance of Fig. 5b is
removed by the un-mixing, since the spatial patterns come from the

Fig. 5. TIR images of the test-site in The Netherlands on May 1 st 2016: a) MODIS/TIR at 1000-m resolution; b) synthetic L8/TIRS at 30-m resolution; c) actual L8/
TIRS at 30-m resolution and d) synthetic TIR image data at 10-m resolution; (DL coordinates: 599960, 5,690,007; UR coordinates: 708046, 5,799,876; EPSG 32,631).
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multispectral MSI image at 10m resolution, while the synthetic L8/
OLI+TIRS image serves the purpose of providing estimates of the TOA
radiance for each MSI pixel. The differences in spatial resolution be-
tween the images in Fig.5 become even clearer when magnifying the
entire figure.

3.2. Demonstration case study: Northern Puglia (Italy)

A time series of synthetic TIR images at 10m spatial resolution was
generated for the period April to October 2016 over an area of 22× 41
km2 in the vicinity of Foggia in Northern Puglia (Italy) (Fig. 6).

To generate time series of synthetic TIR, we used (Table 1) the same
combination of image data as in the previous case, with MODIS images
acquired at 10:00 a.m., TIRS images at 9:40 a.m. and S2 MSI VIS bands
at 9:54 am.

4. Result validation

4.1. Validation: The Netherlands

The observed MODIS/TIR image at 1000-m resolution (Fig. 7a) and
L8/TIRS image at 30-m resolution (Fig. 7b) clearly contain different
information, particularly the intermediate values of MODIS/TIR ra-
diance seem to be due to spatial averaging of the radiance values
captured by L8/TIRS, characterized by a bi-modal distribution. Three
modes appear in the synthetic HR TIR image (10-m) (Fig. 7c), where the
number of pixels in the lower radiance range, i.e. < 600, is under-
estimated when compared with the actual TIRS image. It is worth
mentioning that MODIS radiances are higher than TIRS values due to
different atmospheric conditions at acquisition time.

To validate the methodology, different tests have been performed.
The synthetic 30-m TIRS image was compared first with the TIRS image
observed on the same date (Fig. 8). Overall, the correlation was very
high, i.e. 89%, showing a good similarity. To understand the differences
between the two images, we generated the absolute difference image by
subtracting the synthetic image from the real one (Fig. 8a) and the
relative difference image (Fig. 8c). The distributions of absolute
(Fig. 8b) and relative differences (Fig. 8d) show that differences are
rather small in most pixels.

The distribution of absolute differences shows that the deviations
are< 50W/(m2·μm·sr) for 59.33% of the pixels present a below
and< 200W/(m2·μm·sr) for 95% of the pixels. The mean absolute error
is 35.32W/(m2·μm·sr) and the mean relative error 8.51%, while the
maximum error is less than 34% of the real value. Focusing on the
spatial distribution of the differences, the larger errors may be ex-
plained by the different position of the clouds in the MODIS/TIR image
and in the real L8/TIRS image (Fig. 5), which were acquired within
33min, a time sufficient for the clouds to move a few kilometers. In
addition, the larger MODIS pixel size, i.e. 1000m vs the 30m sampled
L8/TIRS data increases the footprint of the clouds in the MODIS/TIR
image compared with the L8/TIRS image, i.e. the larger pixel size works
as a majority filter on the 30-m pixels. This leads to the appearance of

Fig. 6. Time series of synthetic TIR images at 10-m resolution in Northern Puglia (Italy) (DL coordinates: 511439, 4,590,240; UR coordinates: 568912, 4,619,213;
EPSG 32,633).

Table 1
Dates of acquisition of image data applied to generate the time series of syn-
thetic TIR images at 10m resolution; Northern Puglia (Italy).

MODIS/TIR & L8/TIRS (t1 and t3)
(YYMMDD)

MODIS/TIR & S2 MSI (t2)
(YYMMDD)

160331
160416

–
160406

160502 160424
160518 160513
160603 160523
160619 160613
160705 160702
160721 160712
160806 160801
160822 160821
160907 160831
160923 160920
161009 160930
161025 161010
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cloud pixels in the synthetic image generated by applying the estimator
to the MODIS data on the selected date. Pan et al. (2018) and Zaksek
and Ostir (2012) performed a similar analysis of the constrained

unmixing algorithm, showing a mean standard deviation of 8.5% in the
first case, and 2.22 K (7.4%) in the second. It should be noted that the
latter estimates of errors apply to the unmixing step only, while our

Fig. 7. Histogram of the observed MODIS/TIR band (a), of the observed L8/TIRS band-10 (b) and of the synthetic HR TIR image (10-m) (c) on the selected date (May
1st, 2016).

Fig. 8. Absolute difference radiance image in radiance values of the observed L8/TIRS image and the synthetic one (30-m) (a); histogram of absolute difference
image (b); relative difference image (c); histogram of relative difference image (d).
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errors apply to the full procedure (see Fig. 2), i.e. the generation of the
TIRS image on the selected data, followed by unmixing.

We have also evaluated the synthetic HR TIR image (10-m) against
the synthetic TIRS image (30-m). The correlation coefficient was 0.99,
showing a complete similarity. A more detailed evaluation was carried
out by comparing the diagonal pixel profile (from lower-left to upper-
right) of both images. The evaluation is performed by extracting the
diagonal pixels of the 30-m resolution image and one every three di-
agonal pixels of the 10-m resolution image. The correlation coefficient
of the these samples was 99.4% and the scatter plot (Fig. 9) shows that
radiance values were quite close to the 1:1 line.

We have evaluated our procedure under cloudy and not-cloudy
conditions. In the evaluation of the entire area in The Netherlands,
there are some clouds. The sub-areas A and B indicated in Fig. 10 by
yellow frames are cloud free. For these areas, we have evaluated several
error metrics (Table 2) by comparing the synthetic 30-m TIRS image

with an actual L8/TIRS image on the same date. The Mean Bias Error
(MBE), the Absolute Mean Bias Error (AMBE), the Root Mean Square
Error (RMSE), the Relative Error (RE) and the Absolute Error (AE) were
computed as follows (Eqs. (5)–(9)):
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where xsint
i is the i-th radiance value of the synthetic image, xobs

i is the i-
th radiance value of the observed L8/TIRS image used as a reference
and n is the number of pixels of the selected zone on the selected date.

In addition, the Nash and Sutcliffe index, η, is also computed ac-
cording to Zhou et al. (2016) (Eq. 10); used in hydrological modelling
to characterize the error related to the spatial heterogeneity:

Fig. 9. Scatter plot of the diagonal profiles (DL to UR) from the synthetic HR TIR image (10-m) in x axis against the synthetic L8/TIRS image (30-m) in y axis.

Fig. 10. Evaluation of the 30-m synthetic TIR
image in The Netherlands: (a) Color composite
of the L8/OLI at 30-m resolution; (b) zones A
(upper panel) (DL coordinates: 626688,
5765164; UR coordinates: 634414, 5759892;
EPSG 32631) and B (lower panel) (DL co-
ordinates: 671780, 5699330; UR coordinates:
681992, 5706577; EPSG 32631) from the
synthetic 30-m TIRS.

Table 2
Absolute error metrics in (W/(m2·μm·sr) evaluated in zones A and B selected in
the synthetic 30-m TIRS image of The Netherlands versus the actual L8/TIRS
image on the selected date (May 1st, 2016).

Zone MBE AMBE RMSE RE AE η

A −21.72 22.54 25.46 −2.77 2.88 0.055
B −14.17 16.86 21.72 −1.75 2.09 0.549
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where xōbs is the radiance value of the averaged observed image.
Zone A and B correspond to agricultural areas surrounded by rural

regions, where thermal radiation is not influenced by complex terrain
or by water bodies. In addition, these zones were chosen avoiding

clouds at t1, t2 and t3 (see yellow frames in Fig.10).
Table 2 shows the values of these absolute error metrics in (W/

(m2·μm·sr) evaluated for zones A and B. An 86% confidence level ap-
plies to these estimated errors. The radiance average within zone A is
780.129W/(m2·μm·sr), while within zone B is 793.415W/(m2·μm·sr).

To finalize with the discussion, in practice, the proposed metho-
dology delivers an additional thermal band consistent with S2/MSI

Fig. 11. TIR images on July 27th 2016: L8/TIRS at 30-m resolution (a) and synthetic TIR image data at 10-m resolution (b); (DL coordinates: 548307, 4591196; UR
coordinates: 567863, 4606403; EPSG 32633).

Fig. 12. Scatter plot of the diagonal pixels (Lower Left to Upper Right) in the original L8/TIRS image (Fig. 11a) against the diagonal pixels in the synthetic HR TIR
image (Fig. 11b).

Fig. 13. Radiance time series for 2016 irrigation season for selected targets in Northern Puglia on the dates listed in Table 1: (a) MODIS/TIR (t1, t3 and t2); (b) L8/
TIRS (t1 and t3) and the synthetic HR TIR images (t2) alternatively.
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bands at 10-m spatial resolution.

4.2. Demonstration: case study in Northern Puglia (Italy)

The time series images of Northern Puglia (Italy) from April to
October 2016 was also evaluated. We have applied the proposed
method and evaluated the radiometric performance of our downscaling
procedure by selecting a cloud-free area of the image from 12/07/2016
in this time series, with a proper zoom to visually distinguish the im-
provements. Fig. 11 illustrates the following images on July 12st 2016:
L8/TIRS image (Fig. 11a) and the synthetic 10-m TIR image (Fig. 11b).
We compared the TOA radiance determined with our synthetic HR
image (10-m) with the TOA radiance deterimed with an actual L8/TIRS
image on this same date (12/07/2016) (Fig. 12). After that, a water
body (549722, 4601341; EPSG 32633) and 3 different crops were
chosen: crop 1 (556233, 4601437; EPSG 32633) and crop 2 (559794,
4605931; EPSG 32633) are vineyards while crop 3 (549319, 4605670;

EPSG 32633) is cereals. These areas were chosen to avoid urban areas.
We calculated the mean radiance for each target and date (see Table 1).
The TOA radiance values measured by MODIS/TIR (Fig. 13a), L8/TIRS
and synthetic HR TIR image (Fig. 13b) were rather similar in July and
August, with the TIRS radiance somewhat lower from March through
June. The seasonality was also clearer in the TIR observations at higher
spatial resolution. As expected, differences acros targets were larger in
the higher resolution images.

4.3. High spatial resolution details

A third evaluation focused on the synthetic HR TIR image (10-m). In
the case of The Netherlands, the land-water boundary is delineated
more accurately in the synthetic HR TIR image (Fig. 14a) than in the
synthetic 30-m TIRS image (Fig. 14b). The histograms show that the HR
image captures a mode around 700W/(m2·μm·sr), which is not visible
in the 30-m resolution image. Similar comments apply to the details

Fig. 14. High spatial resolution improvements in water-land transitions (The Netherlands).

Fig. 15. High spatial resolution improvements in crop differentiation and delineation of irrigation channels (Northern Puglia, Italy).
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(Fig. 15) captured by the synthetic TIR image of Northern Puglia (Italy),
where the crop differentiation and delineation of irrigation channels is
better defined in the synthetic HR image.

A detail of the coastline (see Fig. 16) shows the improvement in
spatial resolution achieved in Step 2.

To compare the radiance values in the images shown in Fig. 13 we
sampled again the diagonal pixels (Lower Left to Upper Right) in the
30-m TIRS and 10-m TIR images. The data points sampled in the image
of The Netherlands are rather close to the 1:1 line (Fig. 17).

5. Discussion

When the results are compared to those of other techniques, we find
that most techniques are directly applied to the LST product, making
the comparison difficult due to the different units of the error: Celsius
degrees versus W/(m2·μm·sr).

In comparison with methods where the regression models for the
computation of the high spatial resolution TIR channel are based on the
RGB and NIR channels from the same satellites, their advantage re-
garding the methodology proposed in this paper, is that the atmo-
spheric correction is similar for all images, given that the acquisition
hour is the same. For all downscaling techniques based on spectral in-
dices such as NDVI, the regression with LST is calculated at coarse re-
solution and then applied to the computation of the new fine-resolution
pixels. In addition, all techniques present a mean error around 2 °C for
the downscaling of Landsat LST and 1.2 °C for downscaling MODIS LST,
which, for the images under study, represent errors of 8% and 4.6%
respectively. Results of the methodology presented in this paper are
within the state of the art, with a mean error of 8.51% including both
the generation of a synthetic image to increase temporal resolution and
its downscaling. Last, it should be highlighted that methodologies based
on NDVI are adequate for agricultural and vegetated scenes, while their

Fig. 16. Zoom in the study areas to illustrate the improvements from the step 2: (a) HR synthetic image (10-m), water-land transitions (The Netherlands), (b)
Synthetic image (30-m), water-land transitions (The Netherlands).

Fig. 17. Scatter plot of the diagonal pixels (Lower Left to Upper Right) sampled in the synthetic 30-m L8 TIRS image against the diagonal pixels in the synthetic 10-m
TIR image (sample are from The Netherlands).
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accuracy is reduced in mixed land cover regions, especially when water
bodies are present.

For areas with water bodies, downscaling techniques for LST can
rely on topographic data as their auxiliary source of information (Li
et al., 2013), as topography can establish spatial limitations to the
water extension. Spectral index such as NDWI (Normalized Different
Water Index) are also useful in cases with water scenarios (Xiao et al.,
2018). However, these techniques present average errors of 53%. This
high value can be due to the difference between coarse and fine spatial
resolutions (downscaling was performed for MODIS data from 500-m to
30-m resolution), but also due to the high uncertainty of the NDWI
index used as auxiliary data. Similar results are obtained in (Bangira
et al., 2017b) for downscaling MERIS data from 300-m to 30-m spatial
resolution, where both NDWI and NDVI are combined in order to re-
duce the number of bands required as auxiliary data. In this case, the
selection of pure pixels to determine the reflectance value of the end-
members for the unmixing algorithm has great influence in the results.

The advantage of the methodology presented in this paper regarding
the previous techniques is that it is based on an unsupervised image
classification, where classes are created from the radiance values pre-
sent in the image, so it is adaptable to all scenes and consequently there
is no limitation regarding admissible land covers.

However, existing downscaling methods only focus on the increase
of spatial resolution, while the temporal resolution is not modified. This
limitation implies that, for applications with need for high temporal
resolution, downscaling has to be applied to images from satellites with
high temporal resolution, which usually implies very low spatial re-
solution in all bands, limiting the final spatial resolution of the down-
scaling procedure. As an example, MODIS data presents the higher
temporal resolution between open-access satellite data: the thermal
band has 1000-m spatial resolution, while the RGB and NIR bands
present a finest spatial resolution of 240m, much higher than the 10-m
spatial resolution obtained by the proposed methodology thanks to its
multi-source nature (combination of data from different satellites).

6. Conclusions

The proposed methodology makes it feasible to generate TIR data
products with both high spatial resolution and frequent coverage by
combining radiometric data acquired by different imaging radiometers
on different satellites, MODIS/TIR, L8/TIRS and S2/MSI in our study.
Our method generates synthetic TIR images at the same spatial re-
solution as the target in the second stage of the approach, S2/MSI in our
study. Such a capability is vital to monitor crop development during the
growing season, given the fragmentation of most agricultural land-
scapes.

The synthetic TIR image and the observed L8/TIRS image gave a
correlation coefficient of 0.89 and rather small absolute and relative
errors on TOA radiance.

This approach has a few limitations. Features and temporal changes
that are missed due to clouds or are not captured by the MODIS image
on the selected date cannot be estimated and captured by the synthetic
high resolution TIR image. The performance of the spatial unmixing
algorithm depends on the quality of the clustering map, essentially on
the separability and stability of classes mapped by the unsupervised
procedure. The use 5-pixel moving window slightly reduces spatial
variability in TOA radiance, since the unmixing procedure assigns the
same radiance value to all pixels of the same cluster within the 5-pixel
window.

Further studies will address how to fill up the missing values caused
by clouds to generate the estimator (step 1). The effect of different
moving window sizes and the extension of the clustering map from the
unmixing algorithm (step 2) to multi-source data fusion with different
spectral bands will be considered. Additionally, if the acquisition time
between satellites considerably differs, short-term variations in TOA
will need to be corrected for.

The method as described is applicable to any roughly similar com-
bination of platforms and sensors as demonstrated in this study. What is
needed is a platform providing daily or better thermal infrared image
data, such as SUOMI/VIRS or Sentinel 3/SLSTR, one platform providing
multispectral, including thermal infrared, data at higher spatial re-
solution occasionally concurrent with the lower resolution data such as
ASTER or HJ-1 and one platform providing multispectral image data at
very high spatial resolution such as GAOFEN-1.
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