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Abstract

Power analysis can be used to retrieve key information as secure systems leak data-
dependent information over side channels. A proposed solution to break the correlation
between side channel information and secret information was to replace a vulnerable
part of the cryptography implementation with a neural network. This uses the inherent
properties of a neural network to disrupt the correlation by breaking the linear power
characteristics assumed by leakage models.

To test this neural network without physically creating a hardware implementation
a simulation must be performed that provides both the data and the power information.
Currently neural network simulators do not generate a power trace and analog circuit
simulators generate more information traces than required increasing the simulation
time.

This thesis describes the creation of a complete SystemC spiking neural network
model that generates both data and power information. The information generated by
this model was compared and verified with results acquired by the Cadence Spectre
analog circuit simulation platform. The results indicate that the created SystemC SNN
model works and generates comparable data and power traces as the Spectre simulator.
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Introduction 1
This chapter introduces the subjects discussed in this thesis, the motivation, and con-
tribution. Section 1.1 will address the motivation behind this thesis, section 1.2 will
cover the contribution of this thesis, and finally section 1.3 will show the thesis outline.

1.1 Motivation

Generally clocked sequential logic is used in modern day digital electronics but with the
rise of artificial neural networks (ANNs) other alternatives start to become possible.
An ANN emulates the behaviour of the neurons found in the brain and uses this to
compute complex systems. A branch of ANNs is spiking neural networks (SNNs).
These SNNs communicate with spikes between neurons instead of digital signals as
this is closer to bio-physical reality of the brain. Spikes are short pulses that the
neurons in the brain use to communicate with each other that emulate the transfer of
neurotransmitters. In figure 1.1 a schematic overview of a SNN and the operation of a
single neuron can be seen.

Figure 1.1: Overview spiking neural network[27]:(a)Operation of a SNN network.
(b)Operation of a SNN neuron.

Much research has been done on SNNs and its applications. Different spike
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sequences have been discovered in the brain and this has resulted in many different
neuron models to emulate them. Some of these model were designed to be as close
to bio-physical reality as possible while others are designed to be computationally
efficient. As SNNs uses spikes the traditional learning algorithms used in the teaching
of an ANN will not be compatible for more complex networks. For example because
of the time dependency of the spikes the back-propagation method is unfeasible for
networks with two or more layers. This resulted in different learning algorithms for
SNNs.

The author of this master thesis[26] studies the application of neural networks in
cryptography. The author mitigates the effect of power based side-channel analysis
in the Advanced encryption standard (AES)[22] by modifying one of its four main
operations, the subByte operation. In this operation the substitution box (sbox) was
replaced with an ANN, the author called a s-net in this thesis. This s-net was trained
in order to produce the correct substitutions and verified that it indeed mitigated the
effects power based side-channel analysis but this was only tested FPGA board.

1.2 Contribution

To test this proposed neural network without physically creating a hardware imple-
mentation a simulation must be performed that provides both the data and the power
information. Currently neural network simulators do not generate a power trace and
analog circuit simulators generate more information traces than required increasing
the simulation time. Furthermore, instead of choosing for the creation of a model for
artificial neural networks, a model for spiking neural networks was chosen. This leads
us to the research question of this thesis: The validity of a SystemC spiking neural
network model set with power trace generation for the use in power analysis.

Therefore, the aim of this master thesis is to create a set of models that can
speedily and accurately simulate a spiking neural network of any size. This set
of models needs to both provide the data trace and the power trace reasonably
comparable to a more mature circuit simulator. Furthermore, a spiking neural net-
work constructed using these models should be faster than the mature circuit simulator.

1.3 Outline

The remainder of master thesis is organized as followed. First a chapter to provide the
background knowledge required for the rest of the thesis. Followed by a chapter that
describes the process by which the SystemC models were designed. Next chapter these
models are put to the test with bigger neural networks. The final chapter concludes
this thesis. Following are more detailed descriptions of the chapters.
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Chapter 2 gives a brief background of spiking neural networks, power analysis,
and circuit simulation. The first section will discuss the different parts of a spiking
neural network, possible neuron models that can be used, and the learning algorithms
that are in use to train these networks. The next section will give a brief overview
of power analysis and its uses, but mainly focuses on its uses in side-channel attacks
against secure systems and potential countermeasures. The final section will give a
brief overview of the circuit simulators that will be used during master thesis, the
SPICE based Cadence Spectre simulation engine and the C++ based SystemC library
and its extension SystemC-AMS.

Chapter 3 will describe how the different components of a spiking neural network
were modeled. This chapter will first show the attempt to create a transistor model
for use in SystemC simulation and the models failure to simulate a circuit. The next
section describe the creation of the model for the synapse, neuron, and multiplier
required for the design of a neural network. The final section sees these model
integrated into a neural network based on the Iris dataset.

Chapter 4 will test the SystemC models created in the previous chapter by
creating bigger neural networks and comparing the data-, current-, and power trace
with the Spectre simulation counterpart. Two neural networks based on the MNIST
dataset were chosen for this simulation comparison.

Chapter 5 will summarise and conclude this master thesis and present possible
improvements on the models created.
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Background 2
This chapter will give an overview of the required knowledge for this thesis report.
Section 2.1 will discuss neural networks and focuses on spiking neural networks. The
next section 2.2will discuss power analysis, specifically power based side-channel attacks
to break data security. Finally section 2.3 will discuss the simulation tools that were
used in this thesis.

2.1 Neural Networks

The brain is a biological neural network and is the most complex and efficient
computational system currently known. It is a comprehensive network of connected
neural cells (neurons) using chemical signals, known as neurotransmitters. Neurons
are connected to other neurons via synapses that transform the chemical signals into
electrical signals. Based upon this computer engineers created the artificial neural
network (ANN), which is a network of connected artificial neurons that loosely model
the actual neurons in the brain[8]. This simplified representation of a biological neural
network can be used to study the human brain, but it is also used in machine learning
systems. Machine learning approaches have been applied to many fields, for example
image recognition[20], speech recognition[24], and language translation[7].

A spiking neural network (SNN) [17] is a third generation artificial neural network
(ANN) that instead of only modelling the structure of the brain, it also models the
brains signals. In SNNs neurons transfer data to each other using spikes, which are a
boolean type of signal that represents the neuron depositing neurotransmitters in the
synaptic gap towards the next neuron. A neuron produces a spike when its membrane
potential reaches a threshold, after which the potential resets. In hardware implemen-
tations spikes would characterized as a square voltage pulse between the ground (Vss)
and the voltage source (Vdd), that is received by the synapses of connected neurons.
Upon receiving a spike the synapse transforms the spike into a weighted current sig-
nal that a neuron uses to charge its membrane potential, which can be seen in figure
2.1. Using spikes and synaptic currents as primary signals in SNNs also introduces
a property not normally present in previous generation ANNs, which is time. While
the introduction of time makes SNNs more powerful, it also prevents the use of all
established supervised neural network training methods. Currently no training method
exists that makes SNNs more effective than other ANNs.
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Figure 2.1: Overview biological neural network[1]:(a) Neuron (b) Artifical neuron (c) Mem-
brane potential

2.1.1 Neuron

A neuron is a type of nerve cell that provides the information processing capabilities
of the brain, a biological neural network. These neurons would be responsible for the
transfer of information using electro-chemical signals within the body. The function of
a neuron is the transmission of nerve impulses towards the next neurons based on the
previous neurons. These electrical signals (voltage pulses) used between neurons are
also known as spikes. The neuron cell has three main parts: dendrites, cell body, and
axon. The dendrites are responsible for receiving signals from previous neurons, while
the axon would be for sending signals towards the next neurons. Finally the cell body
function would be to maintain the neuron and keep it operating efficiently[11]. In
figure 2.2 a Schematic overview of two connected neurons can be seen. Furthermore,
the junctions between axon and dendrite, known as synapses, will be discussed in
section 2.1.2.

In a SNN the neuron receives weighted current signals from all connected sending
neurons via its synapses. These weighted current signals charge the membrane potential
of the neuron and when the threshold is reached generates a voltage pulse, a spike, and
this would be received by the synapses of the receiving neurons. Upon the generation of
a spike the membrane potential resets and can be charged again. This behaviour that
was just described would be dependent on the neuron model that is in use. Different
models can produce different types of spikes train that can occur inside a biological
neural network and are designed using various methodologies.

2.1.1.1 Models

The spiking behaviour of biological neurons can be modeled in various different
ways[14]. The first method that could be looked at would be computational efficiency,
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Figure 2.2: Schematic overview of two connected neurons[11]

which would be useful in the testing in huge SNN as it would require less computa-
tional resources and time. A second method would be biological accuracy. This method
focuses on the different spike trains generated by the models and would be useful in
neuroscience and could create networks that fully exploit the usefulness of spiking be-
haviour. The last method to be discussed is representative parameters. This would
mean that the model parameter have a physical counterpart within a biological neu-
ron, which could be used in neuroscience. Following are three different examples of
neuron models out of the many possible options.

• Hodgkin–Huxley The Hodgkin–Huxley model would be an example of a neuron
model that uses physiological data as parameters. While this minimizes the dif-
ference between a real biological network and a SNN using this model, it increases
the computational complexity of the SNN a lot. This increase would be so severe
that only small networks can be simulated or it would only be useful when there
are no constraint on simulation time.

• Leaky Integrate-and-Fire (LIF) This model would be an example of a model
with great computational efficiency and can be used to create sizable neural net-
works. Unfortunately, because of this computational simplicity it cannot represent
a real biological network and therefore would only be useful as a machine learning
tool. This model charges the membrane potential based on the incoming synaptic
current (Integrate) and when the potential reaches a threshold generates a spike
and resets the potential (Fire). During this process a constant drain would be
applied that slowly decreases the potential (Leaky).

• Izhikevich model[13] This model was designed to be computational simple and
still capable of exhibiting complex spiking patterns present in biological neurons.
The model represents a middle ground between the previous two models as it
contains some of the biophysical accuracy of the Hodgkin–Huxley model, while
also contains some of the computational simplicity of the LIF model. This results
in a model that can be used to simulate sizable neural networks that also posses
biophysical relevance.
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2.1.2 Synapse

A synapse would be the junction between two different neurons that allows signals to
be transmitted from one neuron to the next in the form of neurotransmitters. This
connection consists of the axon of the pre-synaptic neuron, the synaptic gap, and the
dendrite of the post-synaptic neuron. Neurotransmitters would be deposited from
the pre-synaptic neuron into the synaptic gap upon a spike and the post-synaptic
neuron absorbs those neurotransmitters to generate a synaptic current. After the spike
signal has been sent the pre-synaptic neuron would be required to gather another
dose of neurotransmitters in order to be able to spike again, called a refractory
period. The refractory period makes it impossible for the neuron to fire at high rate
continuously[12]. In figure 2.3 this process can be observed.

In a SNN a synapse receives a voltage spike form the pre-synaptic neuron instead of
a chemical signal as in a biological neural network and upon receiving the spike send a
weigthed current signal to the post-synaptic neuron. Because no chemical are required
to be gathered between spikes, no refractory period inherently exists and thus needs to
be added if biophysical accuracy is a requirement.

Figure 2.3: Schematic overview of synapse junction during transfer of neurotransmitters
(spike)[12]

2.1.3 Multiplier

The synapse can be divided into to parts. The first part transforms the incoming spike
signal into an outgoing synaptic current signal. The second part would be a multiplier
that multiplies the synaptic current with a corresponding factor from the SNNs weight
set creating the weighted current signal the neuron receives. In SNNs these two parts
can be separated into their own components, the synapse (spike to current conversion)
and the multiplier (weight multiplication). The resulting multiplier component was
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therefore the easiest component to define of a SNN. It becomes a linear component
that multiplies the incoming current with a scalar weight factor. Because of that this
component of the SNN is the least mathematically and computationally complex.

2.1.3.1 Training

The SNN weight set used by the multipliers has to be created by training the SNN with
a labeled version of the expected data set. Because SNNs introduce a time dependency
by using discrete data signals (spikes), the supervised training algorithms formulated
for other ANNs cannot be used, as they use continuous data signals [23]. The lack of
mature supervised training methods causes that the more powerful and efficient SNNs
do not outperform the weaker ANNs. Following are a few examples of SNN training
methods.

• Spike Timing Dependent Plasticity (STDP) This is a unsupervised training
method where upon the scalar weight are dependent on the pre- and post-synaptic
neuron. The weight is adjusted based on the relative spike times within a cer-
tain interval, tens of milliseconds. This means that if a pre-synaptic neurons
spikes before the post-synaptic neuron the weight is increased and if it fires after
the weight is reduced. An advantage of STDP equipped neurons was the faster
response times for specific input patterns, which is useful for recognition type
networks.

• SpikeProp Back-propagation would be the main supervised training method
used by ANNs. Back-propagation methods adjust the networks weights based
on a gradient descent on a cost function comparing the observed and desired
network outputs. Because SNNs use discrete data signals and introduce synapse
currents, no partial derivative for the cost function was possible. Without a
correct cost function, back-propagation became unusable with a few exceptions
for SNNs. SpikeProp was the first SNN training method that successfully uses
back-propagation and that was possible because the cost function accounted for
spike timing.

• ANN conversion [21] Another method of training SNNs was the conversion
of an equivalent already trained ANN. The goal of this conversion method was
matching of the spike firing rate with graded activations of the artificial neu-
ron. This was achieved by transforming the input layer into a spike encoder and
performing a normalization on the weight and biases of the ANN generating an
equivalent weight set for the SNN. With these two primary changes the artificial
neurons can be converted into spiking neurons.

2.2 Power Analysis

Hardware implementations of systems leak valuable information about the system in
its side-channels. These side-channels could be the power consumption, heat produced,
sound generated, or time lapsed. Power analysis is the discipline that analyzes this
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power based side-channel information. These results can determine the power that
the system consumes and the subsequent heat generation. This data can be used to
increase efficiency of an implementation and determine the cooling a system requires.
Unfortunately this information can also be used to extract key information from the
main data-channel. This can be achieved by using statistical models that can link
power consumption to certain vulnerable intermediate values within the system.

The rest of this section focus on the power based side-channel attacks part of power
analysis used in breaking trough cryptography systems. This information was based
upon this master thesis [26] by Pradeep which introduces artificial neural networks as a
valid countermeasures against side-channel attacks and also provides a good background
on power analysis for use in side-channel attacks.

2.2.1 Side-channel attacks

Power analysis can also be used to perform a power based side channel attacks on
electronic systems to acquire key information. This is achieved by recording the power
traces of a device and applying certain techniques in order to acquire information about
the system. These techniques can be roughly divided into two categories: non profiled
and profiled power analysis. When which technique is used depends on the amount of
access one has to the system.

2.2.1.1 Non profiled

Non profiled power analysis techniques require access to the power supply of the system
and allow the attacker to provide his own chosen inputs. Next to these requirements
the attacker is required to have an understanding of the implementation of the system
to be attacked.

1. Simple power analysis (SPA) This technique is a visual inspection of the power
traces recorded and is sometimes enough to get the key but it can also indicate
which part of the power trace is usable and what other method can be used.

2. Differential power analysis (DPA) In this technique the attacker creates a
model for the power consumption based on a certain hypothesis of an intermediate
value that is linked to the key. This model is then compared with the recorded
power traces.

3. Correlation power analysis (CPA) An advanced version of DPA, it instead
compares a proposed leakage model based on a hypothesis to the recorded power
traces and uses the correlation between the model and the power trace to deter-
mine the best hypothesis.

4. High order differential power analysis (HoDPA) This method is the same
as standard DPA but multiple intermediate variables within the system are mon-
itored. This allows it to reconstruct masked data.
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2.2.1.2 Profiled

Profiled power analysis techniques require full access to a system to be performed and
thus the attacker requires a clone of the to be attacked system. With this the attacker
can record power traces for every possible key and many different plaintexts. With all
these power traces a template for the system can be constructed and with this template
from the targeted system a correct key can be acquired with one power trace.

1. Multivariate Distribution Template Attacks With this attack the attacker
creates a template by compiling a covariance matrix and a mean vector for every
possible input and key.

2. Deep Learning Template Attacks This attack is similar to the previous attack
but uses a neural network trained with the power traces of every input and key
as template.

2.2.2 Countermeasures

As power analysis depends on the information that can be acquired from the power
traces in order to acquire key information. Changes can be made to system to prevent
an attacker from getting this key. There is currently no definitive countermeasure that
guarantees that a power based channel attack fails. Furthermore, these countermeasures
change the system and can have negative effects on the performance and latency of the
system.

2.2.2.1 Masking

The first possible countermeasure is masking important variables by adding or multi-
plying it with a random constant. This mask can be countered by using higher order
DPA and a system can thus require multiple different mask to prevent a key from being
acquired.

2.2.2.2 Hiding

With this countermeasure the system designer tries to hide the effect the important
data has on the overall power trace. This can be done by adding extra operation in
between valid operation that use random data and at random intervals. Another option
to hide this data is to power balance the components in such a way that the power
signature is the same for every input. If the changes made to the system are not done
properly an attacker can recover the original power trace by preprocessing the acquired
power trace.

2.2.2.3 Confusion

This is introduced in a master thesis and substitutes an important vulnerable part of
the system with a neural network. As hardware implementation knowledge is required
to successfully perform a side channel attack, implementing a fully connected neural
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network of which the weight set is unknown for the attackers can increase the difficultly
of of determining the statistically relevant part of the power trace. This is process
works because the previously mentioned side-channel attacks assume standard power
consumption models and they do not account for neural networks and profiled attacks
can have a harder time learning the power characteristic of a neural network especially
if different weight set result in the same functional network.

2.3 Simulation

Analytically solving electronic circuits becomes more difficult as more components are
added to a circuit. Furthermore, adding non-linear electrical components, like a diode
or a transistor, requires the solving of higher order differential equations depending on
the amount of components in the circuit. Finally, these analytical solutions may not
even perfectly match the built circuit, as non-ideal components are used that can be a
few percent off the actual value and other external influences can introduce noise, like
the temperature.

Therefore, electronic circuit simulation tools are used to solve these complex circuits
without the need to actually built the circuits. Simulation tools use mathematical
models to replicate the behaviour of a electronic circuit. These models can contain
a number of real life conditions in order to increase the accuracy of the result, like
temperature and component tolerances.

The rest of this section will discuss the simulator platforms that were used in this
thesis report. The Spectre simulator to generate the data required to built my own
SystemC models and to verify the outputs and power trace of the neural networks
created using those SystemC models.

2.3.1 Spectre

The Cadence Spectre simulation platform is an analog circuit simulator[15] and con-
tains the simulation capability for SPICE, RF, FastSPICE, and various mixed signal
simulators. Simulation Program with Integrated Circuit Emphasis (SPICE) [18] is an
open-source analog electronic circuit simulator that was created to reduce the need
for the creation of hardware implementations for prototype verification. The high cost
associated with the manufacturing of integrated circuitry made SPICE a necessity for
the industry. Because its open-source and ability to predict the behaviour of an inte-
grated circuit under different operating conditions and component variations made it
the industry standard for analog circuit simulation.

2.3.2 SystemC

SystemC has been created by the Open SystemC Initiative (OSCI) and Accellera
Systems Initiative to fill the need for a design and verification language that spans
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both hardware and software [19]. This need arose with the introduction of the system
on a chip (SoC), which is the inclusion of embedded software into integrated circuits.
SystemC is a design language built in the programming language C++ by extending
the language using extensive class libraries. This language allows the design and
verification at the system level without any detailed knowledge about the hard-
software used. Because this high-level approach allows faster verification, design,
and redesign than more detailed design languages. Furthermore, the resulting design
acquired with this language when certain requirements are met can be synthesized
and the resulting implementation can be verified on hardware. The standardization of
SystemC can be found in the IEEE records[3].

SystemC analog/mixed signal (AMS) adds system-level design and modeling of
embedded Analog/Mixed-Signal systems to the SystemC standard[25]. SystemC-AMS
extends the C++ libraries of SystemC to include among other things the ability as a
analog circuit simulator. This circuit simulator only allows for electrical linear networks
and thus incapable of simulating non-linear components, like semiconductors. The
standardization of SystemC-AMS can be found in the IEEE records[2].
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Model 3
This chapter will explain how the SystemC spiking neural network model was designed,
created, and verified. First in section 3.1 the transistor model is designed, tested,
and how it ultimately failed to be used. In the sections 3.2, 3.3, 3.4 the individual
components used in SNNs will be modeled and verified. Finally in section 3.5 the
individual components discussed in the previous sections will be integrated into a Iris
spiking neural network to verify that they can form correct network layouts.

3.1 Transistor

The transistor is a semiconductor component that can act like a voltage controlled
switch, which would be used in digital systems, or a non linear voltage controlled
current source, which are common in many complex analog circuits. To create a
SystemC SNN model from the transistor-level the use of its SystemC-AMS extension
is required. But the SystemC-AMS simulator is only able to simulate ideal electrical
linear components and thus not able to directly simulate any transistors.

Therefore in order to simulate the neural network components a transistor model,
consisting of ideal electrical components, needed to be chosen. The model that was
chosen for this was the BSIM transistor model[6] and the circuit can be seen in figure
3.1. Because this model accounts for more effects than required for the final neural
network model some parts can be simplified, as seen in figure 3.2. In this simplified
model it is assumed that the source and bulk of the transistor are connected and thus
all bulk effects can be ignored. Furthermore in order to reduce the parts required for
the model the parallel gate capacitors can be combined into one capacitor.

The last part required for creating this model is the mathematical equations for
current characteristic of the transistor for gain of the voltage controlled current source
in the BSIM model. Furthermore, because of the low voltages used the transistors in
the circuit can also be in operating in the sub-threshold region. The equations of the
used model, the N-Power transistor model with the sub-threshold addition[9], can be
seen in equation set 3.1. The parameters of the current model can be extracted from
the current trace of the NMOS- and PMOS transistor using the models complementary
parameter extraction method[28].
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Figure 3.1: Circuit diagram of a BSIM transistor model

Figure 3.2: Circuit diagram of a simplified BSIM transistor model

VTh = VT0 + α ·Ns

VDSAT = K(Vgs − VT0)
m

IDSAT = I0e
(
Vgs−VT0

Ns
), Vgs < VTh

IDSAT = I0e
α(
Vgs − VT0

α ·Ns
)α, Vgs ≥ VTh

ID = IDSAT (1 + λ0VDS), VDS ≥ VDSAT

ID = IDSAT (2−
VDS

VDSAT

)
VDS

VDSAT

, VDS < VDSAT

(3.1)

In figures 3.3 and 3.4 the current characteristic of a tsmc 28nm PMOS and
NMOS transistor spectre simulation. These are the transistors that are used in the
synapse and neuron circuits described in further sections. The Spectre netlist of
these transistor was provided by the Circuit and Systems Group of TU Delft EWI
Department of Microelectronics and can be seen in appendix A.2. In table 3.1 the
parameters that were used in the model can be seen. In figures 3.5 and 3.6 can the
resulting SystemC-AMS model be seen created using the extended N-Power model and
the simplified BSIM transistor model. The SystemC code for the transistor models
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NMOS PMOS

VT0 0.5V 0.5V
α 0.862 0.752
Ns 3.60 ∗ 10−2 3.60 ∗ 10−2

K 0.776 0.725
m 0.453 0.561
I0 4.642 ∗ 10−6A 5.98 ∗ 10−6A
λ0 0.0542 0.0826

Table 3.1: Extracted extended N-Power model parameters of NMOS and PMOS transistor

can be found in appendix A.2.
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Figure 3.3: Drain-source current of the Spectre NMOS transistor
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Figure 3.4: Drain-source current of the Spectre PMOS transistor

Unfortunately when this SystemC-AMS model was used in the creation of an
CMOS inverter, a subpart of the neuron, the electrical linear simulation engine failed
to simulate this circuit using the SystemC transistor models. This meant that it was
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Figure 3.5: Drain-source current of the SystemC NMOS transistor

Figure 3.6: Drain-source current of the SystemC PMOS transistor

impossible to perform transistor level SystemC simulations of the neural network
components. Based on this result it was determined that circuit level model would be
used instead of circuit using the transistor model for the creation of a SystemC model
of a SNN.

3.2 Synapse

The first component of the neural network that was modeled was the synapse. The
synapse implementation chosen for this model was a variation on the differential-pair
integrator (DPI) synapse described by this paper by bartolozzi and inverci [5]. In
figure 3.7 the circuit diagram of the to be modeled synapse is shown. The additional
PMOS transistor at the output side of the synapse acts as a current limiter and thus
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decreases the current swing of the synapse current. This modification as a result
decreases the energy requirements of the synapse circuit.

Figure 3.7: Circuit diagram of modified differential pair synapse

The capacitor Cmem in the synapse circuit is the only component in the synapse
with memory-like properties, as capacitor cannot instantly change its charge. As the
spike input signal only has two states, off and on, and thus the capacitor has two
discrete operation modes, the charging or discharging of Cmem. Because of these two
operation modes the resulting synapse current can be easily defined. The standard
equation for the charge and discharge the voltage of a capacitor is the exponential
equation Vc = V0e

−t/τ . This exponential behaviour in the voltage on the gates of the
output transistors causes that the synapse current also exhibits same exponential trend
and corresponds with the equation set in the DPI synapse paper. These trends can
be seen in figure 3.8, which shows a spectre simulation of the modified DPI synapse.
This also shows the square wave behavior of the ground current. In Appendix B.1 the
Spectre netlist that was used is available and it shows the values for all parameters in
the synapse.

To create the data trace part of the model first the charge and discharge time
were determined form the Spectre results, charge:1ms and discharge:4ms. Next
the voltage limits were set at Vupper = 0.71V and Vlower = 0.54V . These values
resulted in the following equations, for charging: Vc = 0.71e−t/0.01 and for discharging:
Vd = 0.54e−t/0.05. In order to implement these equation in the SystemC model they
were rewritten as Vc+ = 0.01(0.71− Vc) ∗∆t and Vd+ = 0.05(0.54− Vd) ∗∆t. As the
synapse current became a linear translation of the synapse voltage, only the upper and
lower bound of the synapse current were required. These were Ilower = 3.8 ∗ 10−12A
and Iupper4.6 ∗ 10−10A. This resulted in the following equation for the synapse current,
Is = (0.71 − Vmem)/(∆V ∗ ∆I) + 3.8 ∗ 10−12 with ∆V and ∆I being the difference
between the upper and lower bound of the synapse voltage and current. Finally, the
ground current was modeled was modeled without an equation and was set as when
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Figure 3.8: Spectre simulation results of a modified differential pair synapse

the synapse receives a spike Ignd = 4.1 ∗ 10−11V and otherwise Ignd = 1.510−9V .
The resulting model can be seen in figure 3.9, which shows a SystemC model simu-
lation of the modified DPI synapse and in appendix B.2 the SystemC code can be found.

Figure 3.9: SystemC model simulation results of a modified differential pair synapse

3.3 Neuron

The neuron model selected to be modeled for the SystemC SNN model was the leaky
ingrate and fire model with a built in refractory period. This neuron model was chosen

20



as this was a model with the least input variables because for this SNN model the
accuracy in representing a real brain was not of interest, only its computational power.
The implementation of this neuron model was a variation of the differential-pair
integrator neuron by P. Livi and G.Indiveri[16] but without the frequency adaptation
module. Another change was made to the input of the of the neuron removing the
rest input current and adding a current mirror. This current mirror was introduced in
order to reduce the load effects on the multipliers. This neuron model circuit diagram
can be seen in figure 3.10.

Figure 3.10: Circuit diagram of modified differential LIF neuron

The membrane potential of the neuron is represented by the capacitor Cmem.
The synaptic input current Iin determines the charge speed of this capacitor, as the
synaptic current isn’t a discrete signal like the spike signal a complex exponential
equation for the capacitor charging behaviour, unlike the synapse. Furthermore,
during the Spectre simulations it was determined that an input current below 50pA
was unable to overcome the current leak of Cmem to charge the capacitor to the
spiking threshold. When the membrane potential reaches 0.5V the neuron starts
generating a spike. The duration of this spike (4.18nS) would also be the moment
Cmem discharges and Cref charges. The capacitor Cref represents the refractory
period of the neuron model and while it has a charge Cmem would be unable to be
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charged. The discharge duration of Cref acts as the refractory period of the neuron
model. In figure 3.12 this behaviour can be seen in a Spectre simulation of this neuron
circuit. From these simulation results, it can be seen that only during a spike the
neurons ground current changes. The used spectre netlist can be found in appendix C.2.

Figure 3.11: Spectre simulation of LIF neuron with a 100pA input current from 1ms

In order to create a SystemC model from these simulation results complex expo-
nential equation was required to model the charging behaviour of the capacitor Cmem,
but the charging and discharge behaviour of Cref could modeled using a timer. The
complex equation was created using the results of a curve fitting function of the python
programming language on the simulation results of the different input currents. The
ground current for the SystemC model was modeled as a linear function, instead of
the exponential behaviour it had shown, with the same average power as the Spectre
simulation. The resulting model can be found in appendix C.2 and the simulation
results for the same input current as the spectre simulation can be seen in figure 3.12.
In table 3.2 a comparison between the Spectre and SystemC results can be seen at
different synaptic input currents.

3.4 Multiplier

The final neural network component that was modeled was the weight multiplier. In
this thesis an ideal current multiplier was chosen the represent this part of the neural
network. This is implement with a zero volt source in order to accurately read to
incoming current and a current controlled current source connected to either Vdd for
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Figure 3.12: SystemC simulation of LIF neuron with a 100pA input current from 1ms

positive multiplication factors or ground for the negative ones. This circuit diagram
can be seen in figure 3.13.

Figure 3.13: Circuit diagram of ideal current controlled current multiplier

This multiplier implementation was chosen because it provide a perfect linear mul-
tiplication between input and output current and thus trivial to model. This results in
the following equations for the output current: Iout = g ∗ Iin, and the ground current
equation: Ignd = Iin + Iout. Furthermore, it disconnects the the synapses from the
neuron and thus reducing the any possible feedback effects different types of multipli-
ers can have. This makes this multiplier ideal for this SystemC neural network model
because this meant that both the synapse and neuron can be modeled separately.
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Spectre

Iin(pA) 100 150 200 250 300 350 400 450 500 550

# Spikes 6 9 11 14 16 17 19 20 22 23

Spike Interval (mS) 0,641 0,435 0,341 0,287 0,251 0,226 0,207 0,193 0,180 0,171

PowerAvg (uW) 0,104 0,135 0,166 0,209 0,233 0,243 0,274 0,276 0,304 0,315

Iin(pA) 600 650 700 750 800 850 900 950 1000
# Spikes 24 25 26 27 28 29 29 30 31
Spike Interval (mS) 0,163 0,156 0,150 0,145 0,140 0,136 0,133 0,130 0,127
PowerAvg (uW) 0,332 0,344 0,357 0,372 0,383 0,400 0,395 0,399 0,420

SystemC

Iin(pA) 100 150 200 250 300 350 400 450 500 550

# Spikes 6 9 12 14 16 18 20 21 22 24

Spike Interval (mS) 0,650 0,455 0,359 0,304 0,267 0,240 0,220 0,205 0,193 0,183

PowerAvg (uW) 0,075 0,111 0,148 0,173 0,197 0,221 0,246 0,258 0,270 0,295

Iin(pA) 600 650 700 750 800 850 900 950 1000
# Spikes 25 26 27 28 28 29 30 31 31
Spike Interval (mS) 0,174 0,167 0,161 0,156 0,156 0,147 0,144 0,140 0,137
PowerAvg (uW) 0,307 0,319 0,331 0,344 0,345 0,356 0,368 0,380 0,380

Table 3.2: Comparison between Spectre and SystemC simulation results for different input
currents

3.5 Iris Network

Finally, in order to verify the SystemC modeled components of the previous sections
can be integrated into a neural network that mirrors its Spectre counterpart, a small
neural network was chosen to test the differences between the simulations. The neural
network that was chosen was an neural network based on the data from the Iris dataset
created by R. Fisher[10]. This dataset contains 50 measurements of four different
physical properties for three different species of the iris flower. For this network only
the sepal and petal length of the species Iris versicolor and Iris virginica were used to
reduce the size of the neural network. This results in a neural network with two inputs
and one output, in figure 3.14 the resulting neural network layout can be seen.

Figures 3.15 and 3.16 show a fragment of the data and current trace results of
the Spectre simulation as the complete traces the graphs become unreadable. The
multiplication factors used in this SNN were 0.025 and 0.0875 and were provided by
the Circuits and Systems group and were generated using the conversion SNN training
method. What was observed was that integrated into a SNN the synapse produces up
to 50 times more current than tested on its own. This observation resulted in that the
weight set used in the SystemC simulation was divided by 50 and a 50 times increase
in that part of the multiplier ground current. This resulting SystemC Iris simulation
results can be seen in figures 3.17 and 3.18.
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Figure 3.14: Schematic layout of Iris spiking neural network

Figure 3.15: Fragment of the Spectre simulation results - data signals

In table 3.3 a comparison is shown of the average power consumption for all the
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Figure 3.16: Fragment of the Spectre simulation results - ground currents

Spectre SystemC

POutNen 2.94275 ∗ 10−7 1.98164 ∗ 10−7

PMul0 4.04905 ∗ 10−9 1.46713 ∗ 10−10

PMul1 2.76836 ∗ 10−9 3.04311 ∗ 10−10

PSyn0 3.02626 ∗ 10−9 4.49722 ∗ 10−11

PSyn1 1.92229 ∗ 10−9 4.11144 ∗ 10−11

PInNen0 1.97246 ∗ 10−7 1.29961 ∗ 10−7

PInNen1 1.2588 ∗ 10−7 9.0290210−8

Table 3.3: Comparison of power consumption Iris SNN between spectre and SystemC

components between the Spectre and SystemC results. Most power consumed within
SNNs happens in the neurons and specifically during spiking. This accounts for over
95% of the total power consumed. The SystemC model consumes around 33% less
power that the Spectre model. This can be explained as the SystemC model SNN
has a lower Spike density that the Spectre model. Furthermore, this decrease in spike
density is also around 33%.

These simulation results show that the SNN SystemC component component
models can be integrated into a complete and working SNN model. The Spectre and
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Figure 3.17: Fragment of the SystemC simulation results - data signals

SystemC simulation files of the Iris SNN can be found in appendix D. In the next
chapter this model will be used in the analysis of bigger networks.
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Figure 3.18: Fragment of the SystemC simulation results - ground currents
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Result 4
In this chapter the models that had been described in the previous chapter were tested.
This was done by integrating them into larger and more complex neural networks
and comparing the results with a SPICE simulation. The neural networks that were
chosen for these tests are based on the modified national institute of standards and
technology (MNIST)[4] dataset. This is a dataset of 60000 examples of handwritten
digits that are widely used in the training of visual image recognition systems, including
neural networks. In figure 4.1 a few examples of the 28*28 pixel digits in the MNIST
dataset can be seen. The neural networks discussed in this chapter were trained in the
same manner as the IRIS network in the previous chapter. The Spectre and SystemC
simulation files of these MNIST SNNs can also be found in appendix D.

Figure 4.1: Example images of MNIST dataset

4.1 Quarter MNIST

The first network to be tested was the quarter MNIST SNN with 49 inputs and 10
output signals and no hidden layers, a schematic layout can be seen in figure 4.2.
Instead of using the full 28*28 pixel digits, A quarter MNIST network uses 7*7 pixel
digits. These digits were generated by summing 4*4 pixel parts of the original 28*28
pixel digits and assigning current values based on certain thresholds for use as the
SNN input currents.

The resulting neuron output spike trains of the Spectre simulation can be seen in
figure 4.3. The expected result for a MNIST SNN would have been to have a output
neuron only generate a spike train when the appropriate digit is provided at the input
neuron and this would have resulted into a diagonal line in this figure. In this case
digit 2 is missing and digits 3 and 9 fire outside their corresponding digit. The ground
currents per layer corresponding to this SNN are in figure 4.4 and similarly as the
previous IRIS SNN most of the power consumed by the network happens in the neuron
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Figure 4.2: Schematic layout of quarter MNIST 49*10 spiking neural network

layers, specifically during spiking.

Figure 4.3: SPECTRE simulation results of QMNIST SNN (Neuron outputs)

The neuron output spike trains generated by the SystemC simulation can be seen
in figure 4.5, while the corresponding layer ground currents can be seen in figure 4.6.
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Figure 4.4: SPECTRE simulation results of QMNIST SNN (Layer ground currents)

Spectre SystemC

Sim.T ime(s) 147(1033) 31

POut Neurons(W ) 2.69 ∗ 10−7 1.49 ∗ 10−7

POut Multipliers(W ) 1.20 ∗ 10−7 2.47 ∗ 10−8

POut Synapses(W ) 1.34 ∗ 10−7 1.93 ∗ 10−9

PIn Neurons(W ) 5.52 ∗ 10−6 3.54 ∗ 10−6

PQMNIST (W ) 6.04 ∗ 10−6 3.72 ∗ 10−6

Table 4.1: Comparison of power consumption and simulation time QMNIST, spectre and
SystemC

The SystemC model generates a similar result as the spectre simulation even the
missing and double digits, the main difference between the two results is that the
SystemC model has less dense spike train in comparison to the spectre simulation.
This difference can also be seen in the ground layer currents and would result in that
the SystemC model consumes less energy that the spectre equivalent.

In table 4.1 a in depth comparison is made between the spectre and SystemC results,
in regards to power consumption and simulation time. While the neuron outputs of
the SystemC model generated a comparable data trace with Spectre simulation, the
power consumption of the SystemC simulation was 38% lower than that of the Spectre
simulation. Upon further investigation this power discrepancy was caused by the lower
spike density of the SystemC simulation results.
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Figure 4.5: SystemC simulation results of QMNIST SNN (Neuron outputs)

4.2 Half MNIST

The second network to be tested was the half MNIST SNN with 196 inputs and 10
output signals and one hidden layer. This network uses a 14*14 pixel digits, instead of
the 7*7 pixel digits used by the QMNIST. This change in digit size also increases the
required input neurons to 196 from 49.

The resulting neuron output spike trains of the Spectre simulation can be seen in
figure 4.8. The expected neuron output result for a this HMNIST SNN would be the
same as QMNIST network. In this SNN result only digit 3 fires an extra time during
digit 5. The ground currents per layer corresponding to this SNN are in figure 4.9
and similarly as the previous two SNNs most of the power consumed by the network
happens in the neuron layers, specifically during spiking.

The neuron output spike trains generated by the SystemC simulation can be seen
in figure 4.10, while the corresponding layer ground currents can be seen in figure 4.11.
The SystemC model generates a similar result as the spectre simulation after an extra
multiplication factor was added of 3.5 to compensate for the lower spike density the
SystemC model generates as a result of the introduction of the hidden layer that was not
present in the previous SNNs, while the SystemC models produce less spikes than their
Spectre counterpart. This result was even closer to the Spectre result than QMNIST
results. The HMNIST implementation shows the same difference in spike density as
the QMNSIT.
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Figure 4.6: SystemC simulation results of QMNIST SNN (Layer ground currents)

Figure 4.7: Schematic layout of half MNIST 196*50*10 spiking neural network

In table 4.2 a in depth comparison is made between the spectre and SystemC results,
in regards to power consumption and simulation time. While the neuron outputs of
the SystemC model generated a comparable data trace with Spectre simulation, the
power consumption of the SystemC simulation was 30% lower than that of the Spectre
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Figure 4.8: SPECTRE simulation results of HMNIST SNN (Neuron outputs)

Figure 4.9: SPECTRE simulation results of HMNIST SNN (Layer ground currents)
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Figure 4.10: SystemC simulation results of HMNIST SNN (Neuron outputs)

Spectre SystemC

Sim.T ime(s) 1243(8265) 491

POut Neurons(W ) 2.55 ∗ 10−7 2.11 ∗ 10−7

POut Multipliers(W ) 4.17 ∗ 10−8 6.76 ∗ 10−8

POut Synapses(W ) 6.62 ∗ 10−8 1.75 ∗ 10−9

PHid Neurons(W ) 1.60 ∗ 10−6 1.33 ∗ 10−6

PHid Multipliers(W ) 3.90 ∗ 10−7 1.23 ∗ 10−6

PHid Synapses(W ) 3.98 ∗ 10−7 7.23 ∗ 10−9

PIn Neurons(W ) 1.41 ∗ 10−5 9.19 ∗ 10−6

PHMNIST (W ) 1.69 ∗ 10−5 1.18 ∗ 10−5

Table 4.2: Comparison of power consumption and simulation time HMNIST, spectre and
SystemC

simulation. This is the same Upon power discrepancy that was seen in the QMNIST
results and was also caused by the lower spike density of the SystemC simulation results.
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Figure 4.11: SystemC simulation results of HMNIST SNN (Layer ground currents)
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Conclusion 5
This chapter provides a summary of the work done in the thesis and a conclusion based
on the results acquired and a discussion on possible future improvements on the design.

5.1 Summary

Hereby a summary of what was discussed in every chapter of this thesis report.

Chapter 1 of this thesis introduces the motivation behind the creation of the
SystemC model of the spiking neural network. Furthermore, It provides the research
question and an overview on the layout of the thesis.

Chapter 2 gives a brief background of spiking neural networks, power analysis,
and circuit simulation. The first section discusses the different parts of a spiking neural
network and how they relate to a organic brain, possible neuron models that can be
used, and the learning algorithms that are in use to train these networks. The next
section gave a brief overview of power analysis and its uses, but mainly focused on its
uses in side-channel attacks against secure systems and potential countermeasures. The
final section gave a brief overview of the circuit simulators that were used during this
thesis report, the SPICE based Spectre simulation engine and the C++ based SystemC
library and its extension SystemC-AMS.

Chapter 3 described how the different components of a spiking neural network
were modeled. This chapter had shown the attempt to create a transistor model for
use in SystemC simulation and the models failure to simulate a circuit with more than
one transistor. The next sections described the creation of the model for the synapse,
neuron, and multiplier required for the design of a neural network and the comparison
against their Spectre counterpart. The final section saw these models integrated into a
complete neural network based on the Iris dataset. The resulting data was compared to
the spectre simulation results and based on this data the models were further refined.

Chapter 4 tested the SystemC models created in the previous chapter by creating
bigger neural networks and comparing the data-, current-, and power trace generated
with their Spectre simulation counterpart and the simulation time it took. The two
neural networks that were used were based on the MNIST dataset that was chosen for
this simulation comparison. The results of both MNIST networks show a high degree
of similarity in the neuron output results between the Spectre and SystemC models,
but the power trace of the SystemC model is lower and this was caused by reduction
in spike train density in the SystemC model simulation results.
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5.2 Future Work

This section provides possible further improvements that can be implemented on the
models that were created during this master thesis.

• Parallelism. The biggest simulation speed boost that can be implemented into the
model is to introduce parallelism as is already the case with the Spectre simulator.
As neurons in the same layer are independent from each other parallelism can be
easily introduced within layers.

• Complex equations. A possible method to increase the accuracy of the models,
in particular the neuron, is to use more complex equations to characterize the
charging and discharging of the capacitors to be more in line with reality. A
consequence of such a change could be an increase of simulation time.

• Optimization. In order to reduce simulation time further the networks could be
optimized by the removal of zero multiplier and the merging multipliers with the
same multiplication factors. This would have no effect on the data trace and a
negligent effect on the power trace as the least amount of power is consumed in
the multiplies layers.
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Transistor A
A.1 Spctre model

1 include "/opt/eds/DesignKits/MUSE-TSMC28/PDK/TSMC_iPDK/tsmcN28/../models/

spectre/toplevel.scs" section=top_tt

MK6 ( VDD VGN VDN25 VSS ) nch_mac l=90n w=200n multi=1 nf=1 sd=100n \
ad=1.5e−14 as=1.5e−14 pd=550.0n ps=550.0n nrd=2.828877 \
nrs=2.828877 sa=75.0n sb=75.0n sa1=75.0n sa2=75.0n sa3=75.0n \

6 sa4=75.0n sb1=75.0n sb2=75.0n sb3=75.0n spa=100n spa1=100n \
spa2=100n spa3=100n sap=91.9776n sapb=120.93n spba=123.531n \
spba1=127.44n dfm_flag=0 spmt=1.11111e+15 spomt=0 \
spomt1=1.11111e+60 spmb=1.11111e+15 spomb=0 spomb1=1.11111e+60

Spectre netlist of NMOS transistor

1 include "/opt/eds/DesignKits/MUSE-TSMC28/PDK/TSMC_iPDK/tsmcN28/../models/

spectre/toplevel.scs" section=top_tt

MNa1 ( VDP18 VGP VDD VDD ) pch_mac l=90n w=300n multi=1 nf=1 sd=100n \
ad=2.25e−14 as=2.25e−14 pd=750.0n ps=750.0n nrd=0.844444 \
nrs=0.844444 sa=75.0n sb=75.0n sa1=75.0n sa2=75.0n sa3=75.0n \

6 sa4=75.0n sb1=75.0n sb2=75.0n sb3=75.0n spa=100n spa1=100n \
spa2=100n spa3=100n sap=91.9776n sapb=120.93n spba=123.531n \
spba1=127.44n dfm_flag=0 spmt=1.11111e+15 spomt=0 \
spomt1=1.11111e+60 spmb=1.11111e+15 spomb=0 spomb1=1.11111e+60

Spectre netlist of PMOS transistor

A.2 SystemC model

1 #ifndef CMOSCR H
#define CMOSCR H

#include <systemc . h>
#include <systemc−ams . h>

6
#define e 2.7182818
#define Ns 3 .60 e−2

#define de l t a 1
11

#define r o x va l 1e−18
#define c ox va l 1e−15

SCA_TDF_MODULE ( cmoscrctrln ) {
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16 sca_tdf : : sca_in<double> vgs , vds ;
sca_tdf : : sca_out<double> r ;

double I_dsat , I_d , V_t , V_th , l , tmpvt , V_dsat , R_new ;

21 double V_t0 , W , L , WL ;
double l_0 = 0.054213865 ;
double alpha = 0.862794416 ;
double m = 0.452952364 ;
double K = 0.775626887 ;

26 double I_0 = 4.64219019e−6;

double R_in = 1e6 ;

cmoscrctrln ( sc_core : : sc_module_name nm , double V_t0_ = 0 .5 , double

W_ = 200 , double L_ = 90) : vgs ("vgs" ) , vds ("vds" ) , r ("r" ) , V_t0 (
V_t0_ ) , W (W_ ) , L (L_ ) {

31 does_attribute_changes ( ) ;
accept_attribute_changes ( ) ;

}

void change_attributes ( ) {}
36

void set_attributes ( ) {
r . set_delay (1 ) ;

}

41 void initialize ( ) {
r . initialize (1e6 ) ;
V_t = V_t0 ;
V_th = V_t + alpha ∗ Ns ;
l = l_0 ;

46 }

void processing ( ) {
double vgs_tmp = vgs . read ( ) ;
double vds_tmp = vds . read ( ) ;

51
V_dsat = K ∗ pow ( ( vgs_tmp − V_t ) , m ) ;

WL = (W / L ) / 2 . 222222 ;

56 if ( vgs_tmp < V_th )
I_dsat = I_0 ∗ WL ∗ pow (e , ( vgs_tmp − V_t ) / Ns ) ;

else

I_dsat = I_0 ∗ WL ∗ pow (e , alpha ) ∗ pow ( ( vgs_tmp − V_t ) /(
alpha ∗ Ns ) , alpha ) ;

61 if ( vds_tmp < V_dsat )
I_d = I_dsat ∗ (2 − ( vds_tmp/V_dsat ) ) ∗ ( vds_tmp / V_dsat ) ∗

(1 + l ∗ vds_tmp ) ;
else

I_d = I_dsat ∗ (1 + l ∗ vds_tmp ) ;
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66 if ( vds_tmp != 0) {
R_new = vds_tmp/I_d ;
r . write ( R_in + delta ∗ ( R_new − R_in ) ) ;
R_in = R_in + delta ∗ ( R_new − R_in ) ; }

else

71 r . write ( sca_util : : SCA_INFINITY ) ;
}

} ;

SC_MODULE ( NMOSCR ) {
76

sca_eln : : sca_terminal gate , source , drain ;

sca_eln : : sca_node oxide ;

81 sca_eln : : sca_tdf : : sca_vsink v_gs , v_ds ;
sca_eln : : sca_tdf : : sca_r r_ds ;
sca_eln : : sca_c c_ox ;
sca_eln : : sca_r r_ox ;

86 NMOSCR ( sc_core : : sc_module_name nm , double V_t0_ = 0 .5 , double W_ =
200 , double L_ = 90) : gate ("gate" ) , source ("source" ) , drain ("
drain" ) , v_gs ("v_gs" ) , v_ds ("v_ds" ) , r_ds ("r_ds" ) , cctrl ("cctrl" ,
V_t0_ , W_ , L_ ) , c_ox ("c_ox" , c_ox_val ) , r_ox ("r_ox" , r_ox_val ) {
v_gs . p ( gate ) ;
v_gs . n ( source ) ;
v_gs . outp ( vgs ) ;

91 v_ds . p ( drain ) ;
v_ds . n ( source ) ;
v_ds . outp ( vds ) ;

cctrl . vgs ( vgs ) ;
96 cctrl . vds ( vds ) ;

cctrl . r (r ) ;

r_ds . p ( source ) ;
r_ds . n ( drain ) ;

101 r_ds . inp (r ) ;

c_ox . p ( gate ) ;
c_ox . n ( oxide ) ;

106 r_ox . p ( oxide ) ;
r_ox . n ( source ) ;

}

111 cmoscrctrln cctrl ;

private :
sca_tdf : : sca_signal<double> vgs , vds , r ;
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} ;
116

SCA_TDF_MODULE ( cmoscrctrlp ) {
sca_tdf : : sca_in<double> vgs , vds ;
sca_tdf : : sca_out<double> r ;

121 double I_dsat , I_d , V_t , V_th , l , tmpvt , V_dsat , R_new ;

double V_t0 , W , L , WL ;
double l_0 = 0.082565568 ;
double alpha = 0.75241249 ;

126 double m = 0.560959403 ;
double K = 0.725456727 ;
double I_0 = 5.9817151e−6;

double R_in = 1e6 ;
131

cmoscrctrlp ( sc_core : : sc_module_name nm , double V_t0_ = 0 .5 , double

W_ = 300 , double L_ = 90) : vgs ("vgs" ) , vds ("vds" ) , r ("r" ) , V_t0 (
V_t0_ ) , W (W_ ) , L (L_ ) {
does_attribute_changes ( ) ;
accept_attribute_changes ( ) ;

}
136

void change_attributes ( ) {}

void set_attributes ( ) {
r . set_delay (1 ) ;

141 }

void initialize ( ) {
r . initialize (1e6 ) ;
V_t = V_t0 ;

146 V_th = V_t + alpha ∗ Ns ;
l = l_0 ;

}

void processing ( ) {
151 double vgs_tmp = −vgs . read ( ) ;

double vds_tmp = −vds . read ( ) ;

V_dsat = K ∗ pow ( ( vgs_tmp − V_t ) , m ) ;

156 WL = (W / L ) / 3 . 33333 ;

if ( vgs_tmp < V_th )
I_dsat = I_0 ∗ WL ∗ pow (e , ( vgs_tmp − V_t ) / Ns ) ;

else

161 I_dsat = I_0 ∗ WL ∗ pow (e , alpha ) ∗ pow ( ( vgs_tmp − V_t ) /(
alpha ∗ Ns ) , alpha ) ;

if ( vds_tmp < V_dsat )
I_d = I_dsat ∗ (2 − ( vds_tmp/V_dsat ) ) ∗ ( vds_tmp / V_dsat ) ∗
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(1 + l ∗ vds_tmp ) ;
else

166 I_d = I_dsat ∗ (1 + l ∗ vds_tmp ) ;

if ( vds_tmp != 0) {
R_new = vds_tmp/I_d ;
r . write ( R_in + delta ∗ ( R_new − R_in ) ) ;

171 R_in = R_in + delta ∗ ( R_new − R_in ) ; }
else

r . write ( sca_util : : SCA_INFINITY ) ;

}
176

} ;

SC_MODULE ( PMOSCR ) {
181

sca_eln : : sca_terminal gate , source , drain ;

sca_eln : : sca_node oxide ;

186 sca_eln : : sca_tdf : : sca_vsink v_gs , v_ds ;
sca_eln : : sca_tdf : : sca_r r_ds ;
sca_eln : : sca_c c_ox ;
sca_eln : : sca_r r_ox ;

191 PMOSCR ( sc_core : : sc_module_name nm , double V_t0_ = 0 .5 , double W_ =
300 , double L_ = 90) : gate ("gate" ) , source ("source" ) , drain ("
drain" ) , v_gs ("v_gs" ) , v_ds ("v_ds" ) , r_ds ("r_ds" ) , cctrl ("cctrl" ,
V_t0_ , W_ , L_ ) , c_ox ("c_ox" , c_ox_val ) , r_ox ("r_ox" , r_ox_val ) {
v_gs . p ( gate ) ;
v_gs . n ( source ) ;
v_gs . outp ( vgs ) ;

196 v_ds . p ( drain ) ;
v_ds . n ( source ) ;
v_ds . outp ( vds ) ;

cctrl . vgs ( vgs ) ;
201 cctrl . vds ( vds ) ;

cctrl . r (r ) ;

r_ds . p ( source ) ;
r_ds . n ( drain ) ;

206 r_ds . inp (r ) ;

c_ox . p ( gate ) ;
c_ox . n ( oxide ) ;

211 r_ox . p ( oxide ) ;
r_ox . n ( source ) ;

}
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cmoscrctrlp cctrl ;
216

private :
sca_tdf : : sca_signal<double> vgs , vds , r ;

221
} ;

#endif // _CMOSCR_H_

SystemC model of NMOS- and PMOS transistor
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Syanpse B
B.1 Spctre model

1 include "/opt/eds/DesignKits/MUSE-TSMC28/PDK/TSMC_iPDK/tsmcN28/../models/

spectre/toplevel.scs" section=top_tt

// Library name: Char_HPCPLUS

// Cell name: Synapse_ckt

// View name: schematic

6 subckt Synapse_ckt Isyn SpkIn VDD VSS Vtau Vthr Vw

M3 ( VDD Vthr net010 VSS ) nch_mac l=60n w=100n . . .

M26 ( net011 net011 net010 VSS ) nch_mac l=60n w=100n . . .

11 M25 ( net010 Vw net025 VSS ) nch_mac l=90n w=100n . . .

M24 ( net025 SpkIn VSS VSS ) nch_mac l=60n w=100n . . .

M6 ( net011 Vtau VDD VDD ) pch_mac l=60n w=100n . . .
16

M30 ( Isyn net011 net026 VDD ) pch_mac l=90n w=300n . . .

C1 ( VDD net011 ) capacitor c=250f
M27 ( net026 net011 VDD VDD ) pch_uhvt_mac l=30n w=100n . . .

21 ends Synapse_ckt

// End of subcircuit definition.

Spectre netlist of synapse with transistor declarations truncated

B.2 SystemC model

#ifndef SYN H
#define SYN H

3
#include <systemc . h>
#include <systemc−ams . h>

/* upper and lower bound syn current (spectre) */

8 #define lowerd 3.78336 e−12
#define upperd 4.58275 e−10
#define dd ( upperd − lowerd )

/* upper and lower bound gnd current (spectre) */

13 #define l owerc 4 .06079 e−11
#define upperc 1 .45457 e−9
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/* upper and lower bound syn voltage (spectre) */

#define lowerv 0 .54318
18 #define upperv 0.705036

#define dv ( upperv − lowerv )

// Synapse component declaration //

23 SC_MODULE ( synapse ) {

sc_in < bool > clk {"clk" } ;
sc_in < bool > spk {"spk" } ;

28 sc_out < float > cur {"cur" } ;
sc_out < float > gnd {"gnd" } ;

sc_time clock_period ;

33 float volt = upperv ;

void simulate ( ) ;

SC_HAS_PROCESS ( synapse ) ;
38

synapse ( sc_module_name nm ) : sc_module (nm ) {

SC_CTHREAD ( simulate , clk . pos ( ) ) ;

43 }

} ;

// Synapse behaviour

48 void synapse : : simulate ( ) {

// Clock period

sc_clock ∗clk_p = dynamic_cast < sc_clock ∗ >(clk . get_interface ( ) ) ;
clock_period = clk_p−>period ( ) ;

53
cout << "Syn called: " << clock_period << endl ;

// Tau

sc_time tau (1000 , SC_NS ) ;
58

// DeltaT

float deltaT = clock_period / tau ;

while ( true ) {
63

// behaviour synapse

if ( spk . read ( ) == true ) {

gnd . write ( upperc ) ;
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68 volt += 0.05 ∗ ( lowerv − volt ) ∗ deltaT ;

} else {

gnd . write ( lowerc ) ;
73 volt += 0.01 ∗ ( upperv − volt ) ∗ deltaT ;

}

// syn current

78 cur . write ( ( ( upperv − volt ) /dv∗dd + lowerd ) ) ;

// cout << volt << endl;

wait ( ) ;
83

}

}

88
#endif // _SYN_H_

SystemC model of synapse
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Neuron C
C.1 Spctre model

1 include "/opt/eds/DesignKits/MUSE-TSMC28/PDK/TSMC_iPDK/tsmcN28/../models/

spectre/toplevel.scs" section=top_tt

// Library name: Char_HPCPLUS

// Cell name: INV

// View name: schematic

6 subckt INV In Out VDD VSS

M0 ( Out In VSS VSS ) nch_mac l=30n w=100n . . .
M1 ( Out In VDD VDD ) pch_mac l=30n w=200n . . .

ends INV

// End of subcircuit definition.

11
// Library name: Char_HPCPLUS

// Cell name: AER_Delay

// View name: schematic

subckt AER_Delay AER_IN AER_OUT VDD VSS

16 I53 ( AER_IN net22 VDD VSS ) INV

I57 ( net22 AER_OUT VDD VSS ) INV

ends AER_Delay

// End of subcircuit definition.

21 // Library name: Char_HPCPLUS

// Cell name: Neuron_ckt2_withleak

// View name: schematic

subckt Neuron_ckt2_withleak Iin VDD VSS Vlk Vref Vthr nReq

MK6 ( Vmem VGMK6 VSS VSS ) nch_mac l=90n w=200n . . .
26

MNa4 ( VSMNa3 VSMNa3 VSS VSS ) nch_mac l=60n w=100n . . .

MK5 ( VSMK4 Vref VSS VSS ) nch_mac l=90n w=100n . . .

31 MK4 ( VGMK6 nReq VSMK4 VSS ) nch_mac l=60n w=100n . . .

MNa3 ( nReq Vmem VSMNa3 VSS ) nch_mac l=60n w=100n . . .

ML3 ( Vmem Vlk VSS VSS ) nch_mac l=180.0n w=100n . . .
36

MCM2 ( net04 Iin VDD VDD ) pch_mac l=120.0n w=300n . . .

MNa1 ( Vmem nReq VDD VDD ) pch_mac l=90n w=300n . . .

41 MK3 ( VGMK6 nReq VSMK3 VDD ) pch_mac l=60n w=100n . . .
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MNa2 ( nReq Vmem VDD VDD ) pch_mac l=60n w=500n . . .

MK2 ( VSMK3 VSMK3 VDMK1 VDD ) pch_mac l=60n w=100n . . .
46

MK1 ( VDMK1 nAck VDD VDD ) pch_mac l=60n w=100n . . .

ML2 ( Vmem Vmem net04 VDD ) pch_mac l=120.0n w=200n . . .

51 M55 ( Iin Iin VDD VDD ) pch_mac l=120.0n w=300n . . .

ML1 ( VSS Vthr net04 VDD ) pch_mac l=120.0n w=200n . . .

CR ( VGMK6 VSS ) capacitor c=200.0f
56

CM ( Vmem VSS ) capacitor c=100f

I1276 ( nReq nAck VDD VSS ) AER_Delay

ends Neuron_ckt2_withleak

61 // End of subcircuit definition.

Spectre netlist of neuron with transistor declarations truncated

C.2 SystemC model

#ifndef NEN H
#define NEN H

4 #include <systemc . h>
#include <systemc−ams . h>

SC_MODULE ( neuron ) {

9 sc_in < bool > clk {"clk" } ;
sc_out < bool > spk {"spk" } ;

sc_vector < sc_in < float > > cur {"cur" } ;
sc_out < float > gnd {"gnd" } ;

14
sc_time clock_period ;

float volt = 0 . 1 3 6 ;
float refc = 0 . 0 ;

19
bool CD = false ;

bool Vout ;
float Ignd , Iin , _in , _bias ;

24 float alpha , beta , TY ;

void simulate ( ) ;

SC_HAS_PROCESS ( neuron ) ;
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29
neuron ( sc_module_name nm , float in , float bias = 0) : sc_module (nm ) ,

_in (in ) , _bias ( bias ) {

cur . init (in ) ;

34 SC_CTHREAD ( simulate , clk . pos ( ) ) ;

}

} ;
39

void neuron : : simulate ( ) {

while ( true ) {

44 Ignd = 1.96e−9;
Vout = false ;
Iin = _bias ;

for ( uint16_t i = 0 ; i < _in ; i++)
49 Iin += cur [ i ] . read ( ) / 1e−12;

if ( Iin >= 50) {
alpha = 1.33 ∗ pow (Iin , −0.0240) ;
beta = 0.254 ∗ pow (Iin , 0 . 1670) ;

54 TY = 10.200 ∗ pow (Iin , −0.7260) ;
} else {

alpha = 0.140 / 0 . 1 6 3 ;
beta = 0 . 1 6 3 ;
TY = 1.699 / 10 ;

59 }

if (CD == true ) {
if ( refc > 7 .4e−5) {

CD = false ;
64 refc = 0 ;

} else {
if ( refc > 4 .18e−6) {

volt = 0 ;
} else {

69 Ignd = 1.96e−9 + 7 ∗ refc ; // 5.714

}
}
refc += 1.0e−7;

}
74

if (CD == false ) {
volt = beta ∗ ( ( volt / beta ) + ( alpha − ( volt / beta ) ) ∗ ( (1

e−4) / TY ) ) ;
}

79 if ( volt > 0 .5 && CD == false ) {
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volt = 0 . 8 ;
CD = true ;
Ignd = 8e−6;

}
84

if ( volt > 0 . 8 )
Vout = true ;

else

Vout = false ;
89

spk . write ( Vout ) ;
gnd . write ( Ignd ) ;

wait ( ) ;
94

}

}

99
#endif // _NEN_H_

SystemC model of neuron
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SNN networks D
The Iris and MNISTs models for both the Spectre and SystemC
simulations can be found at: https://drive.google.com/file/d/

1r-WAClQJRudDOs7XrW4kVllejCZG1PK4/view?usp=sharing. These code fragments
were to big to add to this thesis report themselves. Furthermore, the simulation results
are not included in these files a they were to big to upload and thus it is required to
run the simulations to acquire them.
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