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Abstract

DMD (Duchenne muscular dystrophy) is a genetic disorder characterized by
progressive muscle weakness, leading to the eventual loss of muscle function.
After losing lower extremity function, DMD patients lose the ability to use
their arms. To assist individuals with DMD, an upper extremity exoskeleton
is being developed to provide support.

The device is required to provide proper weight compensation for the
weight of both the user and the support system. Previous literature review
has highlighted three strategies for achieving compensation: Model, Calibra-
tion dynamic and Calibration static. However, the review lacks a conclusive
understanding of the differences between these strategies. Thus, this study
aims to validate a weight compensation model by comparing the joint torque
with two different measurements: Calibration static and Calibration dynamic
on non-disabled participants with a one DOF (Degree of freedom) elbow sup-
port system.

The weight compensation model was designed to accurately account for
the weight of the user’s arms and the exoskeleton device itself. It incorpo-
rates multiple inputs, including shoulder flexion, shoulder abduction, elbow
joint angle, arm mass, and arm center of mass to calculate the required com-
pensation torque for the motor located at the elbow joint.

The model was validated by a dead weight experiment. The weight com-
pensation model was validated by comparing the joint torque measurements
from Calibration dynamic and Calibration static results. Afterwards, exper-
iments were performed on 12 male non-disabled participants. The weight
compensation model results does not align well with the measurements from
non-disabled participants. Analysis suggests that joint impedance caused
these discrepancies. However, even after accounting for joint impedance, the
weight compensation model still exhibits a tendency to overestimate the re-
quired compensation torque. A fitted model was used to decrease the product
value of mass and center of mass to decrease overestimation. Furthermore,
the comparative analysis indicates that dynamic and static measurements
yielded similar mean values for joint torque.
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While the weight compensation model demonstrates accuracy in a dead
weight experiment under the assumption of an accurate estimation of its
mass and center of mass, its performance is sub-optimal during the human
experiment. This is attributed to the absence of joint impedance consider-
ation and the overestimation of the forearm plus hand mass and center of
mass for the user. Comparison between dynamic and static measurements
the mean difference between dynamic and static measurements obtained from
non-disabled participants indicates no substantial disparity in terms of joint
torque.

Future plans for this research involve expanding the current one DOF
configuration to a four DOF configuration and incorporating an inertial mea-
surement unit (IMU) for more accurate angle measurements. Additionally,
different compensation strategies will be compared in terms of task perfor-
mance using metrics such as external interaction force or sEMG (surface
electromyography). Lastly, the overestimation of forearm plus hand mass
and center of mass will be further investigated.
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Chapter 1

Introduction

1.1 DMD

DMD (Duchenne muscular dystrophy) is a heritable genetic disorder affects
mainly males (Bushby et al., 2010a). It is a X-linked disorder which leads to
deletion of dystrophy gene (DMD;Locus Xp21.2). Biopsy results have shown
that clusters of regenerated fibers with fibrosis and fatty infiltration in the
muscle fibers (Mercuri et al., 2019). DMD Patients are unable to maintain
contraction due to fiber degeneration (Angelini and Tasca, 2012).

Life expectancy of DMD patients have increased in recent years (Ellis
et al., 2013), thanks to improvements in healthcare and related technologies
like tracheotomy (Landfeldt et al., 2015). However, this also means DMD
patients live longer time with arm disability and unable to perform routine
task independently. Moreover, DMD patients were found to use more muscle
capacity than healthy subject, leading to more frequent fatigue (Janssen
et al., 2017). This highlights the emerging importance of providing proper
support for DMD patients.

Upper extremities device provides weight compensation for both the user’s
arm and the device. After compensation, it eliminates the need for users to
contract for weight compensation. It can be achieved by using a passive
support, it uses spring or elastic band for compensation, has been used in
DMD patients (Arakelian, 2015; Estilow et al., 2014). However in the late
stage of DMD, patients are insufficient to maintain proper muscle contrac-
tion (Kumar and Phillips, 2013; Rahman et al., 2001). This means passive
compensation is not enough to provide proper support. Therefore, an active
compensation which has external power (Arakelian, 2015) is useful for late
stage DMD users (Lobo-Prat et al., 2014).

The project (Wearable robotics project 7) aims to develop a wearable 4
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CHAPTER 1. INTRODUCTION

DOF upper extremities support for DMD patients.

1.2 Literature review

A literature review was conducted to investigate implementation of weight
compensation on upper extremities dynamic support device, which provides
active support for users with upper extremities disabilities had been con-
ducted. Three weight compensation strategies were identified: Model, Cali-
bration dynamic and Calibration static.

The Model uses a mathematical model to estimate compensation. Most
studies were found to use Lagrange model. In addition, most studies consider
user’s arm and device as an integrated object which shares a common mass
and center of mass. The mass and center of mass of the body segment is
estimated based on biometric table approximation, determined by ratio of
body weight and arm length (Winter, 2009).

Calibration dynamic and Calibration static use the sample principle by
utilizing pre-measured data to map system behavior (Lobo-Prat et al., 2016a).
This approach requires two steps: First, the measurement phase records the
relation between two variables like torque and angle position. Afterwards,
in the execution phase, the measured data is used to perform task execution
(McPherson et al., 2020). The difference between these two approaches is
that during the measurement phase, the former measures the entire range
of motion at low velocity (Lobo-Prat et al., 2016b, 2014), while the latter
measures from several static postures (Just et al., 2020; Kooren et al., 2016).

The review concludes that it is not clear to find the best compensation
strategy for the device among the three approaches. Thus, an experiment
should be conducted to compare the differences between these strategies on
non-disabled participants experimentally.

1.3 Research Question

This study aims to validate a weight compensation model by comparing the
joint torque measurements using two different methods: Calibration dynamic
and Calibration static, in non-disabled participants using a one DOF elbow
support system.
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Chapter 2

Compensation strategy

2.1 Model

The majority of studies in literature used mathematical model to estimate
torque required for compensation. The most cited equations was the La-
grange equation (Spong et al., 2006) or Newton-Euler formula (He et al.,
2005):

τ = D(q)q̈ + C(q, q̇)q̇ + g(q)

q represents the angular position of each joint, q̇ is the angular velocity and
q̈ represents the angular acceleration. D(q) represents the inertia component
and C(q, q̇) represents the centrifugal term. g(q) is the gravitational force
and τ is the resultant net force or torque required to balance the gravitational
and dynamics effect of the system (Liu et al., 2009; Rosen et al., 2005).

We made several assumptions to simplify modeling of the system: Firstly,
friction between motors since a disturbance observer was available to compen-
sate for friction internally. Secondly, the user’s arm and the elbow support
system were considered as two rigid links connected by a revolving joint at
the elbow. Thirdly, a series elastic actuator was assumed to minimizes effect
of acceleration term and centrifugal terms (Oliveira et al., 2019). Addition-
ally, since the system operated at a low velocity of 0.05rad/s, the influence
of these terms were negligible. Therefore, only the gravity term was in the
model:

τ = M ∗X ∗ g ∗ sin(β + θ) ∗ cos(α)

M = Marm +Mdevice

X =
Marm ∗Xarm +Mdevice ∗Xdevice

M
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CHAPTER 2. COMPENSATION STRATEGY

Figure 2.1: The model output is contingent upon several factors,
this include mass and center of mass of the forearm plus hand; Mass
and center of mass of the support system; Joint angle; Shoulder
abduction and shoulder flexion.
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CHAPTER 2. COMPENSATION STRATEGY

The M is the combined weight of the arm and the support system and X
is the shared center of mass between user arm and the support system. β is
the elbow flexion/extension, α is the shoulder abduction and θ is the joint
angle (Figure 2.1).

The mass and center of mass of the forearm plus hand were estimated
based on methods in literature (Winter, 2009). The support system center of
mass was approximated by finding the balance point of each individual seg-
ment, while the mass of the support system was measured by disassembling
it and measuring each part of the segment separately. Details can be seen in
Appendix.

2.2 Calibration dynamic

To perform calibration dynamic measurement, the system moves at low ve-
locity over the full range of motion. In our experiment, we designed the
system to move at a constant low velocity within a defined range of motion
with several repetitions. Details of the code can be seen at Appendix.

2.3 Calibration static

Calibration static measurement, the system were taken by moving between
several static postures. In our experiment, the measurements were obtained
while the system was moving between several stationary positions. This part
of the code was created by my partner Kynricaos Papa and can be seen at
Appendix.
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Chapter 3

Dead weight experiment

Before conducting experiments on non-disabled participants, the weight com-
pensation model were validated by comparing it with the measured data from
an external dead weight that was attached to the support system. The dead
weight mass and center of mass were accurately measured, providing an accu-
rate input to the model, thereby validating the weight compensation model.

3.1 Method

3.1.1 Dead weight configuration

In the dead weight experiment, a mass holder was used exclusively to this
experiment. It securely hold the external weight attached to the support
system (Fig 3.1).

3.1.2 Measure protocol

A 1kg dead weight was attached to the support system at a distance of
0.138m from the elbow rotating center. Measurements were taken using
both the Calibration static and Calibration dynamic methods. A diagram is
shown in (Fig 3.2).

For Calibration dynamics, the abduction angle was set at 0 deg. It moved
at a constant velocity (0.05 rad/s) within the lower bound and upper bounds
with 10 repetitions.

For Calibration statics, the abduction angle was also set at 0 degree.
The system moved and paused at each designated static position interval for
measurement. A total of 24 intervals were recorded.

7



CHAPTER 3. DEAD WEIGHT EXPERIMENT

Figure 3.1: The mass holder with 1kg dead weight attached at
0.138cm mark. It was installed beneath the force sensor and consisted
of a plastic structure with a length mark for accurate measurement.
A metal bolt was inserted beneath the plastic structure to support
the attached dead weight.

3.1.3 Data processing

The force data obtained from force sensors underwent several processing steps
with included filtering, rotation and transformation of the data into elbow
joint torque. After calculating the joint torque, the RMS (root-mean-square)
and coefficient of determination were computed to assess the model’s output
against the measured result. Details about data processing can be seen in
Appendix: Dead weight data processing.

3.2 Result

3.2.1 Model result vs Dead weight experiment mea-
surement

The Result indicates that the difference between measurements and the
model results is small as shown in Fig 3.3, Fig 3.4 and Table 3.1: The average
difference is less than 0.1 Nm with a high coefficient determination. However,
there are some discrepancies: The model is different to the measurement re-
sult at high and low joint angle. In addition, the maximum peak of the
measured result is shifted to the right by 5.92 deg for dynamic measurement
and 5.11 deg for static measurement while it was expected to be located at

8
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Figure 3.2: The system moved between lower and upper bound, Cal-
ibration dynamic moves at constant velocity while Calibration static
moves between several static positions.
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Figure 3.3: The plot contains result of two curves: The blue line
represents the model result and the red one represents the measured
dynamic result.
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Figure 3.4: The plot contains result of two curves: The blue line is
the model result; The red one is the measured static result.

90 deg.

Type Comparison RMS (Nm) R2

Dynamic Model vs dead weight measurement 0.0810 0.953
Static Model vs dead weight measurement 0.0975 0.931

Table 3.1: This table presents the value of root means square error
and coefficient of determination between model output and measured
result from the dead weight experiment.

3.2.2 Fitted model vs Dead weight experiment mea-
surement

In Fig 3.3 and Fig 3.4, result indicates that the measurements have peak shift
and the value between the measured data and the model output is different.
To address this, a fitted model was used to shift the model to match the
maximum peak and adjusted the product value of the dead weight’s mass

11



CHAPTER 3. DEAD WEIGHT EXPERIMENT

Figure 3.5: The plot contains result of three curves: The blue line
represents the model result after shifting its maximum to the mea-
sured result , the red one represents the measured dynamic result and
the orange line represents the fitted model which not only shifts the
maximum but also adjusts the product value of the dead weight’s
mass and center of mass to fit to the measured result.
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CHAPTER 3. DEAD WEIGHT EXPERIMENT

Figure 3.6: The plot contains result of three curves: The blue line is
the model result after shifting its maximum ; The red line is the mea-
sured static result. The orange line is the fitted model which shifts
the maximum and fits to the measured result and it is overlapped
with the model curve.
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CHAPTER 3. DEAD WEIGHT EXPERIMENT

and center of mass so that the fitted model is aligned with the measurements:

min
a
error =

√∑n
n=1(Tmodeln − Tmeasuren)2

n

The Tmodel is the estimated value from model based on parameter, Tmeasure is
the interpolated measure data with n samples so that the sample size between
measured data and model is matched to calculate mean error, while ”a” is
the product value of mass and center of mass. The cost function used Matlab
function ”fmincon” to optimize by changing the product value of the forearm
plus hand’s mass and center of mass.

After shifting and fitting, the resulting plot shows a better alignments, as
seen in Fig 3.5 and Fig 3.6. Furthermore, the RMS is reduced by a factor of
eight time lower and the coefficient of determination also increases compared
to the original result (Table 3.2).

Type Comparison RMS (Nm) R2

Dynamic Model vs dead weight measurement 0.0190 0.997
Static Model vs dead weight measurement 0.0212 0.997

Table 3.2: This table presents the value of root means square error
and coefficient of determination between the fitted model output and
measured result from the dead weight experiment.

3.2.3 Dead weight measurement Calibration dynamic
vs Calibration static

Result shows that the difference between Calibration dynamic and Calibra-
tion static is small, the averaged torque difference between two measurements
are 0.078Nm (Fig 3.7).

3.3 Interpretation

In this dead weight experiment, a dead weight with known mass and center
of mass was attached to the support system. The measurements were per-
formed based on the principles of Calibration dynamic and Calibration static
measurement. Measured results were compared with output of the weight
compensation model.

The comparison between the model and two measurements shows a low
RMS with a high coefficient of determination. Therefore, it can be concluded

14
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Figure 3.7: The plot contains result of two curves: The blue line
represents the Calibration dynamic result and the red line is the Cal-
ibration static result. The static result is re-interpolated to the same
joint angle as the dynamic measurement.
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that under dead weight condition, assuming there is an accurate measurement
of input parameters, the model was validated.

16



Chapter 4

Human experiment

After validating the model in the dead weight experiment. The weight com-
pensation model was compared with the measured result from non-disabled
participants.

4.1 Method

4.1.1 Initial measurement and parameter estimation

On Aug 2022, 12 male participants volunteered to participate in the exper-
iment. Each participant had signed the consent and this experiment was
approved by the Human research Ethics Committee (HREC).

Prior to the experiment, various initial measurements were taken for each
participant, including their body weight, body height and arm length. Water
displacement method was used to measure arm and hand’s volume. Following
the protocol described by Winter(2009), the mass and center of mass of the
forearm plus hand were estimated based on previous measurements (Winter,
2009). Details about parameter approximation is available in Appendix:
Initial measurement and Parameter estimation of the human experiment.

4.1.2 Human configuration

An arm cuff was designed to fit the participant’s right forearm was installed
on the system. To ensure the participant’s comfort, filling material was added
to the cuff and its weight was taken into account in the weight compensation
model. Furthermore, two EMG sensors were attached to participant’s right
forearm, one at the tricep and the other one at the bicep (Fig 4.1).

17
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Figure 4.1: Participant’s right arm attached to the elbow support
system.
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CHAPTER 4. HUMAN EXPERIMENT

4.1.3 Measure protocol

The participant was strapped onto the system and was asked to move its
arm to the maximum extension and flexion position within its comfort range
and these two angle positions were recorded. The measurable range was
determined by considering only 80% of the range in between these two angles.

After determining the measurable range of the participant, two measure-
ment session were taken: one for Calibration dynamic and one for Calibration
static. Both measurements were taken at 15 deg abduction angle, this was
different from the dead weight experiment since during pilot experiment we
observed that at 0 deg abduction, the participant’s arm was impeded by its
leg, thereby effecting measurement values.

Furthermore, the calibration matrix was different for each participant.
As a result, each measurement had an individual calibration trial. Before
each measure attempt, a position signal was sent to the system, it kept the
joint angle at 90 deg position and measured the calibration data for the
measurement.

In dynamics, a calibration measurement was taken to obtain calibration
matrix for the force sensor. The system kept the participant’s arm at 90 deg
position for 30 seconds. Then, starting from the lower bound, the system
moved with the participant’s arm at a constant velocity (0.1 rad/s) and
returned to the lower bound from the upper bound position. This cycle was
repeated for eight times.

In statics, a calibration measurement was taken to obtain the calibration
matrix for the force sensor. The system kept the participant’s arm at 90 deg
position for 30 seconds. Then, the device moved and paused at each record
interval position for 10 seconds. Each static measurement had 24 intervals.

During the measurements, a camera was used for recording. The face of
the participant was blurred to protect its privacy. Simultaneously, data from
EMG and force sensor was extracted, processed and saved. All data and
experiment notes were saved in Elabjournal.

4.1.4 Data processing

After data was collected, further processing was required. Similar to the
dead weight experiment, the process involved calculation of joint torque, as
well as the averaging and calculation of RMS and coefficient of determination
between the model and measured results.

Moreover, an additional exclusion procedure was implemented: First, the
first and the last cycle were automatically excluded. Second, exclusion based
on EMG to remove any cycles in which the participant’s muscle activity
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was deemed too high. Third, the exclusion based on video inspection if
participant had behavior which effected force measurement. Details about
human experiment data processing can be seen in Appendix: Human data
process.

4.1.5 Outlier exclusion

After data processing, each participant force data was plotted under the same
scale for comparison. Result showed that the deviation of Subject 03 and
Subject 10 was obvious to be outliers thus in the following result section does
not exhibit result from Subject 03 and Subject 10. Detailed explanation can
be seen in Appendix: Data exclusion of Subject 03 and Subject 10.

4.2 Result

4.2.1 Model result vs Human experiment measurement

Type Comparison RMS (Nm) R2

Dynamic Model vs Human measurement 0.757±0.096 0.414±0.192
Static Model vs Human measurement 0.494±0.209 0.692±0.265

Table 4.1: This table presents the value of RMS and coefficient
of determination between model output with measured joint torque
result calculated from participant force data.

The results from the dynamic measurement in the human experiment
showed a substantial difference between the model and the measurement
from the participant. The averaged difference between the model and the
dynamic measurement is illustrated in Fig 4.2 and Fig 4.3. At lower joint
angles, the measured joint torque was lower than the model prediction and
was below zero, while at higher joint angles, the measured joint torque was
higher from the model prediction, this lead to a higher RMS and a lower
coefficient of determination than those obtained from the measurement in
dead weight experiment (Table 4.1).

4.2.2 Effect of joint impedance in Human experiment
measurement data

One of the crucial factors that differ between difference between a measured
joint torque from the dead weight and a participant is joint impedance. Dur-

20
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Figure 4.2: The plot exhibits the mean and standard deviation dif-
ference between the weight compensation model and the dynamic
measurement vs the joint angle.
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Figure 4.3: The plot exhibits the mean and standard deviation dif-
ference between the weight compensation model and the dynamic
measurement vs the joint angle.
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ing the experiment, a measurement was taken at an abduction angle at 90
deg which was not mentioned during the as it was not directly relevant to
the topic of gravity compensation since at 90deg abduction, the compensa-
tion plane was not affected by gravity. In our model, at 90 deg abduction
angle, the output was zero regardless of other parameter values. Hence, this
measurement showed how other forces like joint impedance beside gravity
contributes to shaping of the measured torque curve.

Figure 4.4: This plot shows the averaged result of joint impedance
of Subject 01, calculated based on the averaged extension and flexion
measurement while measured at 90 deg abduction angle.

The measurement of Subject 01 at 90 deg abduction had a value below
zero at lower angles, as seen in Fig 4.4.

Assuming the subject has the same joint impedance while measuring at 90
deg and 15 deg abduction, the curve could be refit and re-interpolated from
these two measurements to the same data size, making a subtraction possible.
The effect of 90 deg abduction measurement subtraction is illustrated in Fig
4.5 for dynamic measurement and Fig 4.6 for static measurement. After
subtraction, the model output is higher than the measurement, the difference
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between model and the measurement peaks around 90 deg, then decreases
af higher joint angle. Results of RMS and coefficient of determination is
illustrated in Table 4.2. The RMS error did not substantially change after
joint impedance subtraction. The coefficient of determination, on the other
hand, was substantially higher.

Type Comparison RMS (Nm) R2

Dynamic Model vs Human measurement 0.705±0.340 -3.184±2.277
Static Model vs Human measurement 0.590±0.346 -1.661±1.860

Table 4.2: This table represents the value of RMS and coefficient of
determination between model output and measure joint torque after
joint impedance subtraction.

Figure 4.5: The plot presents the mean and standard deviation
difference between a 15 deg dynamic measurement with 90 deg mea-
surement subtraction(Right) or one without (Left).

4.2.3 Fitted model vs Human experiment measure-
ment

In the dead weight experiment, the model was validated by assuming a correct
approximation of the attached weight’s mass and center of mass. However, in
human experiment, it was found that the model substantially overestimated
the joint torque even after accounting for joint impedance. This suggests
that there is an overestimation of the participant’s forearm plus hand mass
and center of mass in the model.
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CHAPTER 4. HUMAN EXPERIMENT

Figure 4.6: The plot presents the mean and standard deviation
difference between a 15 deg static measurement with 90 deg mea-
surement subtraction(Right) or one without (Left).

To address this issue, a fitted model was used to find the best match
between model and the measured result by minimizing the error function:

min
a
error =

√∑n
n=1(Tmodeln − Tmeasuren)2

n

The Tmodel is the estimated value from model based on parameter, Tmeasure is
the interpolated measure data with n samples so that the sample size between
measured data and model is matched to calculate mean error, while ”a” is
the product value of mass and center of mass. The cost function used Matlab
function ”fmincon” to optimize by changing the product value of the forearm
plus hand’s mass and center of mass.

The effect of fitted model is illustrated in Fig 4.7 for dynamic and (Fig
4.8) for static correspondingly. The mean of the difference between fitted
gravity model and measured result become much smaller after fitting the
curve, especially between joint angles of 40 to 100 deg. However, the fitted
model still exhibits high standard deviation of error at lower and high joint
angle. Overall, result showed a decrease in RMS and a increase in coefficient
of determination (Table 4.3). In addition, the fitted model decreased the
original product value of mass and center of mass, thereby decreasing the
overall value of joint torque output (Table 4.4).
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Figure 4.7: The plot presents the mean and standard deviation
difference between a 15 deg dynamic measurement subtracts 90 deg
measurement with fitted model (Right) and without (Left).

Figure 4.8: The plot presents the mean and standard deviation
difference between a 15 deg static measurement subtracts 90 deg
measurement with fitted model (Right) and without (Left).

Type Comparison RMS (Nm) R2

Dynamic Fitted model vs Human measurement 0.111±0.042 0.842±0.228
Static Fitted model vs Human measurement 0.142±0.058 0.739±0.301

Table 4.3: Group result of the fitted model vs Measured results with
90 deg joint impedance subtraction.
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Table of Mass∗Center of Mass(kg∗m) after joint impedance subtraction
Change of parameter in dynamic Change of parameter in static
0.084±0.041 0.067±0.045

Table 4.4: This table shows the fitted model decrease the product
value of mass times center of mass. As a result, the fitted model has
a lower joint torque than the model.

4.2.4 Calibration dynamic measurement vs Calibra-
tion static measurement

The measurement result of Calibration dynamic and Calibration static was
compared for each participant, as illustrated in Fig 4.9.

Result shows that Calibration dynamic and Calibration static has similar
mean and standard deviation distribution. This similarities also applies after
joint impedance subtraction, the mean difference between dynamic and static
0.0832±0.0063 Nm without joint impedance subtraction and 0.1141±0.0496
Nm with joint impedance subtraction.

Figure 4.9: The plot presents the mean and standard deviation of
measured Calibration dynamic and Calibration static result at 15 deg,
with joint impedance subtraction (Right) and without (Left).
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Chapter 5

Discussion

5.1 Dead weight experiment

The result show that both the dynamic measurement and the static mea-
surement have a low RMS (0.081 Nm for dynamic and 0.0975 Nm for static),
relative to the overall range of measured torque which is 5% and a high coef-
ficient of determination. This indicates that the model closely approximates
the measured data and has a similar shape.

However, a slight 5 deg maximum peak shift to the right direction are
observed in both measurement conditions which may be due to changes in
the calibration matrix during the experiment. As the calibration was not
performed immediately before the dead weight experiment, the rotation of
the system might had slightly changed due to factors such as hardware re-
assembling. The model was improved by using a fitted model to shift the
model and adjusted the product value of the mass and the center of mass.
This suggests that if the angle shift is resolved, the model could achieve bet-
ter estimation. Therefore, it is essential to perform a calibration trial before
measure experiment to ensure accuracy of the measurements.

Comparison between the dynamic and the static measurement exhibits
an averaged of 0.078Nm difference in the 1kg dead weight condition, which is
4% of the overall range. This suggests that there are no substantial difference
between the dynamic and static measurement.

Overall, the validation of the weight compensation model is successful
and it demonstrates that the model can accurately the weight compensation
at different joint angles, provided that the input parameters, such as the
forearm plus hand’s mass and center of mass are accurately measured.
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5.2 Human experiment

5.2.1 Model vs Human experiment measurement

In contrast to the dead weight experiment, the results of the human experi-
ment are different. The RMS increase ten-fold, relative to the overall range
of measured torque is around 23% for dynamic and 20% for static. These val-
ues are much higher than those reported in a similar study (Xie et al., 2021).
The coefficient of determination also substantially decreases comparing to
the dead weight experiment, indicating that the model does not match the
shape of the measurement. These values are also much lower than reported
in the similar study Guidali et al. (2013). Furthermore, error plot (Fig 4.2)
(Fig 4.3) shows that the difference between model and measurement are in-
fluenced not only by gravity, otherwise the plot should exhibit shape like a
”bell” curve.

The discrepancies between the dead weight experiment and the human
experiment may be attributed to factors such as inertia and joint impedance.
Inertia could vary due to different of mass while joint impedance could be
attributed to intrinsic properties of the joint, tissues, muscles and connective
tissues (Kearney and Hunter, 1990). The effect of inertia is expected to be
minimal due to low velocity (0.1 rad/s) and presence of a series elastic actua-
tor (Oliveira et al., 2019). Joint impedance, on the other hand, is expected to
have a greater impact on the measurements. Previous study suggested that
at low bandwidth movements, the major components are gravity and joint
impedance. However, it remains unclear whether joint impedance affects the
overall measurement (Kooren et al., 2016).

After subtracting assumed joint impedance from the 90-deg measurement,
comparison (Fig 4.5) (Fig 4.6) of error plot shows that the difference between
model and the measurement exhibits like a ”bell” curve after subtracting 90
deg measurement, which peaks around 90 deg. This result suggest that
overall, the model overestimates the measurement after subtracting 90 deg
measurement. The coefficient of determination was substantially worse than
the joint impedance subtraction. This suggests that the method was used
to subtract joint impedance has several flaws, including the fact that the
90 deg measurement and 15 deg measurements were taken at different time.
In addition, the elongated metal bar that connected to the elbow had bent
down due to non-disabled participant’s arms weight was observed during the
90 deg measurement, resulting in the gravity component being present in the
90 deg measurement.

In the literature review, most of the studies that used a model did not
consider joint impedance. Therefore, it was assumed the joint impedance
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was not an factor in the gravity measurements for non-disable participants,
as they does not have any muscle fiber lesions like those found in patients with
DMD (Bushby et al., 2010b). However, based on the experiment result, the
effect of joint impedance had substantially impacted measured joint torque
at 15 deg even from non-disabled participants.

Overall, these results suggest that joint impedance is an important com-
ponent in the measurement, even for a non-disable participant. Therefore,
using a weight compensation model alone is not sufficient to represent the
overall dynamics of the forearm at low velocity.

5.2.2 Fitted model vs Human experiment measure-
ment

After joint impedance subtraction, the model value still overestimated the
measured values, suggesting an overestimation of parameters.

The fitted gravity model was observed to be more aligned to the measured
results as illustrated in Fig 4.7 and Fig 4.8, the difference between the fitted
model and the measurement substantially decrease, in addition, the standard
deviation of the difference substantially decreases. However, the fitted model
does exhibits increase on joint torque standard deviation at low and high
end joint angle, where the system turned direction, this might causes a lot
of variability.

Further analysis reveals a decrease in the product value of participant
forearm plus hand’s mass and center of mass, under condition at 15 deg ab-
duction, when joint angle is at 90 deg where the maximum gravity effect is
present, the average change of the model output is 0.798 Nm for dynamic
and 0.634 Nm static, indicating the fitted model substantially decreases over-
estimation.

One factor of uncertainty in the mass estimation was the assumption of a
constant density for all participants, despite variations in muscularity due to
differences in sport intensity, sport type and diet. It is known that muscles
have a higher density than fat, thus a more masculine participants tends
to have higher forearm density. Therefore, the use of a literature value for
density estimation may lead to errors in the model.

Similarly, the estimation of the center of mass based on literature review
from biometric table estimation using segment length can also introduce
errors, as the density estimation may not be accurate. Additionally, the
estimation of center of mass can vary among different subjects and can change
during movement (Winter, 2009).

Overall, the finding suggest that the bio metric approximation leads to
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overestimation of joint torque, thus the current way to estimate mass and
center of mass needs reconsideration. It is unclear whether mass or center of
mass has a greater impact on the overestimation, and further investigation
is needed.

5.2.3 Human experiment Calibration dynamic mea-
surement vs Calibration static measurement

As illustrated in the left of Fig 4.9, dynamic and static measurements ex-
hibit similar mean and standard deviation value. Comparison between orig-
inal dynamic measurement and static measurement indicates that the mean
difference is small. The difference value however is different from the dead
weight experiment (Fig 3.7) as dynamic is higher than the value of static.
This is opposite for the human experiment. Possible factor could be due to
the calibration matrix used in the dead weight experiment and addition of
joint impedance.

As illustrated in the right of Fig 4.9, dynamic and static measurements
exhibits similar mean and standard deviation value. However, after joint
impedance subtraction, the mean and standard deviation difference slightly
increase. This indicates that the 90 deg subtraction leads to this differences.
As discussed before, possible factor could be joint impedance change be-
tween measurement. Nevertheless, the mean difference is 5% relative to the
overall range of the measured torque thus the value discrepancies after joint
impedance subtraction is acceptable.
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Conclusion & Future work

6.1 Conclusion

In Chapter 1, we introduced various weight compensation strategies to com-
pensate for the weight component of the user’s upper extremities and one
DOF elbow support system, including a weight compensation model, Cal-
ibration dynamic and Calibration static. We define the research question:
This study aims to validate a weight compensation model by comparing the
joint torque measurements using two different methods: Calibration dynamic
and Calibration static, in non-disabled participants using a one DOF elbow
support system.

In Chapter 2, we explain how each compensation strategy was imple-
mented in our experiment.

In Chapter 3, we validate the model based on measured results by at-
taching an external dead weight with confirmation of its mass and center of
mass. We demonstrate that the model could predict measured data with a
correct estimation of input parameters.

In Chapter 4, we employ the same methodology as in Chapter 3 to evalu-
ate the model’s performance with 12 non-disabled participants. Unlike results
in Chapter 3, the model exhibited poor match with the measured results. We
attribute joint impedance and parameter overestimation lead to this discrep-
ancies. We implemented a fitted model to address these issues.

In Chapter 5, we discussed that the result from the dead weight exper-
iment validates the model. However, we observed a maximum peak shift,
which could be attributed to calibration matrix issues. This could be fixed
by using the fitted model to realign the maximum peak.

In addition, we concluded that two factors lead to the discrepancies be-
tween the model and the measurements:
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� Joint impedance had a substantial effect on measurement, even for
non-disabled participants.

� The product value of the participant’s forearm plus hand’s mass and
center of mass approximation was overestimating.

6.2 Future work

For the future work on this topic, there are several areas for improvement:

� Expansion of the exoskeleton to cover the full upper extremities from a
single arm by increasing the degrees of freedom to a 4 DOF setup and
developing a corresponding gravity compensation model.

� Installation of IMU to determine shoulder abduction and elbow ex-
tension angle. This was originally planned but was abandoned due to
issues with the data algorithm. Usage of IMU could provide more accu-
rate measurements of abduction angle and solve the metal bar bending
issue at the 90 deg measurement by determining the actual abduction
angle at the elbow and thereby eliminating effect of gravity at the 90
deg measurement.

� The weight compensation model is not sufficient to represent the overall
dynamics of the forearm. Thus, an accurate muscle model addition is
required.

� Comparison of different compensation strategies by asking participants
to perform task like position tracking, Metrics like external force and
EMG activity could be used to compare and identify the best compen-
sation strategy that is most suitable for users and DMD patients in the
future.
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Appendix

7.1 Dead weight data processing

This section explains detailed procedure on how force data were processed,
this include various steps: torque calculation, data selection, flexion extension
identification, interpolating and averaging, stats calculation as illustrated in
flow chart Fig 7.1.

7.1.1 Torque calculation

In data output, the SEA torque was recorded as ”data.Actuator Joint Torque Nm”,
not any initial process is required.

For force sensor, the raw data were recorded in six analog channels in
unit of counts, then transformed into units of volts:

Analog volt =
Analog bitcount ∗Max volt

Bit counts

Analog bitcount is 216/2 due to 16 bits, it starts from -32768 to 32767,
Max volt is 10 V due to range is from -10 V to 10 V, this equation and note
was taken from ”fun FScalibrationsimulinkblock.m”.

To transform data from voltage to force and torque units, a working
matrix documented in ”FS copymanual of DAQ FT manual calculations.xls”
was used:

Forcetorque Forcesensor = Workingmatrix ∗ Analogout volt
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Figure 7.1: The work flow of processing joint torque subject data in
the dead weight experiment.
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Force sensor had bias in six directions: FxFyFzMxMyMz, in respect to the
force sensor local coordinate, the value was measured in April by Kyriacos
Papa. By subtracting the calibration matrix, the force sensor value was
calibrated, assuming the value was consistent for all measurements:

Forcetorque Forcesensor = Forcetorque Forcesensor−Calibration Matrix

The calibrated data was based on coordinate of the force sensor, which
was located around the elongated superstructure of the exoskeleton, thus
to get torque from the elbow motor, rotation and translation matrix was
implemented to transfer to the elbow coordinate, as illustrated in Fig 7.2:

Figure 7.2: The coordinate starts from the force sensor and ends at
the elbow joint.

Forcetorque elbow = Transformation matrix∗Rotation matrix∗Forcetorque Forcesensor
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The final Force torque elbow is expected to have 6 strains of data which
corresponds to FxFyFzMxMyMz repspectivily, My is the elbow torque.

7.1.2 Data selection

First, a screen showing the object position over time will pop up, it ask users
to define points, this helps system to recognize flexion and extension.

The dynamic measurement needs to define three points: Start of the
cycle; First peak; End of the cycle (Fig 7.3). This part of code was in fun
GetGinputInput.m created by Suzanne Filius.

(a) Before selection cycles.

(b) After selection.

Figure 7.3: The plot is showing joint angle position vs samples. The
users needs to select three locations: Start of cycle; First peak; End
of the cycle. This helps the function identify flexion and extension
peak.

The static measurement needs to define two points: Start ot cycle; End of
the cycle (Fig 7.4). This part of code was in fun GetGinputInput.m created
by Suzanne Filius.
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(a) Before selection cycles.

(b) After selection.

Figure 7.4: The plot is showing joint angle position vs samples. The
users needs to select two locations: Start of cycle; End of the cycle.
This helps the function identify flexion and extension peak.
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7.1.3 Flexion Extension identification

Then, based on selection, the function will identify each flexion and exten-
sion movement in the cycle (Fig 7.5), each cycle data are collected, filtered
and stored as struct array. This part of the code is achieved by function
”make flex ext struct” created by Suzanne Filius.

Figure 7.5: The function separate data based on number of cycles
and flexion/extension directions

7.1.4 Interpolation and averaging

After obtaining filtered raw data from each cycle, an important process is
interpolate each cycle from filtered data so that each cycle is down sampled to
the same size, this makes averaging possible: By calculating averaged polyfit
equation of flexion and extension curve (Fig 7.6).
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Figure 7.6: After interpolation, the mean among the cycles for each
direction and measuring source are calculated.
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7.1.5 Stats calculation

The root mean square error between model/adaptive model and measured
data calculated:

RMSE =

√∑n
n=1(Tmodeln − Tmeasuren)2

n

In addition, the coefficient of determination (also called R sqaure) be-
tween model/adpative model and measured result are calculated:

R2 = 1 −
∑n

n=1(Tmeasuren − Tmodeln)2∑n
n=1(Tmeasuren − Tmeasure mean)2

7.2 Initial measurement and Parameter esti-

mation of the human experiment

This section describes how the initial measurements was taken before the
experiment and how the parameter estimation was calculated from those
measurements. Since unlike dead weight experiment, two model parameters:
Forearm Mass and center of mass could not be measured directly, but only
through approximation: The mass and center of mass of the forearm and
hand.

7.2.1 Initial measurement

First, Each participant was asked to answer information about its basic pro-
file: Height, Age, Body weight, Sport frequency, Dominant arm.

Moreover, the participant was asked to stand straight and kept its arm at
a neutral comfortable position, then the length of forearm and forearm with
hand were measured. We followed the measured protocol described by Winter
(2009) : The forearm is the distance between ”elbow axis to ulunar styloid”;
The forearm with hand is the distance between ”elbow axis to second knuckle
middle finger” (Winter, 2009).

Last, the participant was asked to stand in front of a cylinder-shaped
water bucket and immersed its forearm into a cylinder water tank, the subject
stopped when its ulnar styloid was immersed to record change of water level,
this measured the hand volume. Afterwards, the participant fully immersed
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its forearm up to the level of its elbow axis, this measured the volume of
forearm with hand.

7.2.2 Mass estimation

From initial measurement, the forearm volume was calculated by change of
water level in the tank with 0.0082 m2 bottom area :

V olumeForearm = 0.082 ∗ ∆

V olumeHand = 0.082 ∗ ∆

V olumeForearmwithhand = 0.082 ∗ ∆

∆ represents changes of water level. The mass of the forearm was es-
timated by multiplying the volume of the forearm and used an assumed
density of the forearm (1.09 kg/L); 1.12 kg/L for hand only and 1.14 kg/L
for Forearm with hand from the bio metric table (Winter, 2009):

MassForearm = 1.09 ∗ V olumeForearm

Masshand = 1.12 ∗ V olumeHand

Massforeamwithhand = 1.14 ∗ V olumeForearmandhand

7.2.3 Center of mass estimation

The center of mass was estimated from proportion of segment length mea-
surements: From the proximal direction, the center of mass of the forearm
is located at 0.506 for hand and 0.403 for forearm. By knowing individual
center of mass from hand and forearm segment, hence the shared center of
mass with forearm and hand is:

Xforearmwithhand =
MassForearm ∗ 0.403 ∗ LForearm +MassHand ∗ (0.506 ∗ Lhand + Lforearm)

MassForearm +MassHand

7.3 Human data process

The force data from human has similar procedure us the dead weight ex-
periment. There is one discrepancy: Additional step to exclude data based
on EMG activity and video record, note that this process only applies on
dynamic measurement only since it has multiple samples to start with. The
whole processing diagram is shown in (Fig 7.7).

43



CHAPTER 7. APPENDIX

Figure 7.7: The work flow of processing joint torque subject data
in this experiment.It’s similar to the dead weight data procedure, but
requires additional step on data exclusion (marked in red block).
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7.3.1 Data exclusion

Data from human dynamic experiment are excluded under three seclusion
criteria: Start and end exclusion, EMG exclusion and video record exclusion.

For each measurements, the first and the last cycle are excluded (Cycle
1 and Cycle 8) since these data are the starting and ending point of the
measurement which might have abnormal measurements when measurement
initiates or ends.

During the measurement, the participant was required to keep its arm
slack for whole measurement in order to measure passive force accurately.
This exclusion is evaluated by synchronized ENG data. A upper threshold
was calculated based on ther result from participant relaxed EMG measure-
ment:

Thereshold = EMGmean + 3 ∗ EMGstd

For each flex/ext cycle from each sensor, it detects percentage of data ex-
ceeds the threshold, once a sensor cycle exceed 5% is considered generating
voluntary force thus the corresponding force data is excluded, one example
in between plot of EMG is illustrated in (Fig 7.8), this part of the code was
written by Kyriacos Papa.

Furthermore, from video record, force data is excluded if participant was
found to have behaviors that effect force measurement like moving its arm,
moving its body, turning its head, touch objects, etc. One of the example is
illustrated in (Fig 7.9).

7.4 Data exclusion on Subject 03 and Subject

10

After data processing, all the averaged joint torque is reinpterpolated under
same data size and plotted together in a group plot, as illustrated in (Fig 7.10.
Subject 03 data is substantially higher than the value of other measurements
in both static and dynamic measurements.

After subtracting the presumed impedance by utilizing data from 90 deg
abduction measurement, the torque vs joint angle can be seen in Fig 7.11.
Beside Subject 03, value of Subject 10 is also exhibits different shape among
other measurements in both static and dynamic measurements, even though
it does not exhibit as an outlier before joint impedance subtraction, this
suggests that its 90 deg measurements are substantially different among other
measurements.

Overall, it’s obvious that the measurement from Subject 03 and Subject
10 are outlier as its shape or magnitude is substainlly different among others,
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Figure 7.8: In this exmpale from Subject 09, cycle 7 flexion is ex-
cluded based on sensor 5 measurement. In addition, cycle 1 flexion
also exceeds thereshold in sensor 8 measurement but it is already be-
ing excluded automatically due to auto exclusion rule of cycle 1 and
cycle 8. Excluded cycles are marked in red while the rest are marked
in green.
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(a) Participant finger touches obstacle at
cycle 05 extension.

(b) In-between plot shows that the cycle
is excluded.

Figure 7.9: Since the participant Subject 09 finger touched the
obstacle on extension cycle 05, this cycle is excluded. Cycle 07 flx
was excluded due to EMG activity as mentioned in (Fig 7.8).
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thus the conclusion is to exclude these two data in further calculation.

(a) Averaged Dynamic measurement vs
Joint angle

(b) Averaged Static measurement vs Joint
angle

Figure 7.10: Subject 03 data is substantially higher than the value
of others from both dynamic and static measurements.
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(a) Averaged Dynamic measurement vs
Joint angle after joint impedance subtrac-
tion.

(b) Averaged Static measurement vs Joint
angle after joint impedance subtraction.

Figure 7.11: Subject 03 data is substantially higher than the value of
others from both dynamic and static measurements. Subject 10 data
value is also different from other measurements after joint impedance
subtraction.
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