
Robust Plan Inference in the Keys and Doors
Problem

Creating Robust Plans using Replanning

Koen van der Knaap1

Supervisors: Sebastijan Dumančić1, Issa Hanou1,
Reuben Gardos Reid1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Koen van der Knaap
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Issa Hanou, Reuben Gardos Reid, Merve Gürel

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Planning is very important in everyday life, whether it would be creating schedules
for planes or plans for manufacturing. These domains contain uncertainties requiring
plans that are robust. However, there is a need for an approach which creates ro-
bust plans regardless of the domain and without changing its planning agent. Here, a
replanning approach is proposed akin to the Metropolis-Hastings algorithm and its per-
formance is compared to the performance of importance sampling. Replanning works
by iteratively trying to improve the previously generated plan. The performance is
compared by means of the Keys and Doors problem. It is found that replanning per-
formed better than importance sampling in the two analysed problems. Furthermore,
changing the parameter, σ, used in the replanning approach showed a significant differ-
ence in its corresponding performance. While the replanning approach has only been
tested on the Keys and Doors problem, the results show that replanning is a promising
approach which could work irrespective of the domain at hand.

1 Introduction
Planning is something which is very important in day-to-day life, whether it would be
creating schedules for planes in airports or manufacturing. Unfortunately, the problems that
need to be tackled each day often involve a lot of uncertainties. In the case of manufacturing,
some processes could take longer than expected and possibly even fail. A plan consists of a
sequence of actions that aim to achieve an end goal. Naturally, one would re-plan if an issue
arises during plan execution in order to fix the errors which have just occurred. However,
when there is no feedback after executing a step, because e.g. a sensor broke, we would not
be able to use replanning. That is why the plans need to be made robust. Robustness in a
plan will give us a lower chance of failure, even when there are conditions that deviate from
what is expected.

The methodology in this paper has been inspired by Gardos Reid [1]. In his work, a rail
network simulator was used in combination with a probabilistic programming language to
infer robust plans for the train unit shunting problem. Probabilistic programming allows
the programmer to express a model probabilistically [2]. The problem can be formalised
using the probabilistic model and the model can be solved using a planner without modi-
fications. The methods Gardos Reid used to infer robust plans were importance sampling
and Metropolis-Hastings [3]. In his Metropolis-Hastings approach, a new plan is proposed
based on where the previous plan failed. In the train unit shunting problem, it is possible to
know if a plan has failed, i.e. a delay has occurred, before executing the entirety of a plan.
In other domains it may not be possible to know if a plan failed at an intermediate step,
making it hard to generalize this method.

The question this research aims to answer is whether the Metropolis-Hastings approach
can be modified to be applicable in general domains. To be more specific, this research aims
to answer whether a modified replanning approach could be used to create robust plans for
the Keys and Doors problem, which is used as a case study. First, the uncertainties that
might exist in the real-world version of the Keys and Doors problem need to be explored.
Furthermore, this research investigates the performance difference between the modified re-
planning approach and importance sampling. Lastly, it also aims to answer what parameter
settings achieve the best performance in replanning.

This research aims to solve these questions by using a Probabilistic Programming Lan-
guage (PPL) to create robust plans for the probabilistic version of the Keys and Doors

1



problem provided by [4]. The Keys and Doors problem serves as an indicator for the per-
formance of the inference techniques. In the PPL, a probabilistic model of the Keys and
Doors problem will first be created. Two different inference techniques called importance
sampling and replanning, which is inspired by Metropolis-Hastings approach proposed by
Gardos Reid in [1], will then be used to infer robust plans. Importance sampling and re-
planning are subsequently compared based on the robustness of their proposed plans in two
example scenarios of the Keys and Doors problem.

Showing that robust plans can be made without looking into the current state of the
problem, could create new possibilities for domains where robust planning is critical, espe-
cially in domains in which it is either hard or even impossible to sense the environment. In
the future, robust plans could enable planning in domains where sensing is too demanding
or replanning is not possible during plan execution. For example, chemical plants could
operate on a single plan without having to watch temperatures, pressures, volumes, and still
be able to synthesize chemicals.

The paper is structured as followed. Section 2 outlines previous uses of probabilistic
programming. In Section 3, the Keys and Doors problem is defined and its uncertainties
are explored. Furthermore, the inference techniques are described in Section 4. The results
of the experiments are highlighted in Section 5. Next, the reproducibility of the results
and ethical implications of this research are laid out in Section 6. In Section 7, the results
are analysed and discussed. The research questions are answered in Section 8. Moreover,
directions for future research are also explored.

2 Background
Probabilistic programming makes it easier for the programmer to define probabilistic models
and reason about the models [2]. Before probabilistic programming, creating a probabilistic
model would require manually computing the likelihoods and other relevant metrics of the
model. The probabilistic programming language helps the programmer by automatically
calculating the relevant statistical metrics. Moreover, changing a probabilistic model is less
cumbersome as only the model parameters and the associated code, calculating the metrics,
have to be altered. Furthermore, these probabilistic programming languages often embed
inference algorithms, such as importance sampling and Markov Chain Monte Carlo, within
themselves allowing people to apply these inference algorithms more conveniently.

Probabilistic programming has already been applied to facilitate probabilistic inference in
various domains. Gardos Reid used probabilistic programming to infer robust plans for the
train unit shunting problem (TUSP) [1]. In his master’s thesis, he applied the Metropolis-
Hastings algorithm to TUSP. In each iteration of the Metropolis-Hastings approach, a new
plan would be proposed based on where the previous plan failed. A major advantage of
this method is that it does not require modifying the planning algorithm or simulator. It is
therefore able to take advantage of previous research on the TUSP. However, his approach
is not able to be generalized to other domains, because it may be impossible to determine
at what step a plan failed in other domains. Furthermore, in [5] by Semenova et al. a
probabilistic programming language has also been used to create a Bayesian Neural Network
which predicts the toxicity of chemical compounds. Moreover, Deng et al. introduce a
system to identify different driving styles [6]. To this end, a probabilistic model was used to
better categorize driving styles using probabilistic models. These examples highlight that
probabilistic programming is already prevalent in numerous domains.

2



A probabilistic model in a probabilistic programming language can be used to infer pos-
terior distributions given observations. An observation is a measurement of the realization
of a random variable. Monte Carlo methods can be used to perform probabilistic inference.
Importance sampling is one of the most basic Monte Carlo methods. It works by sampling
from a non-target distribution and scaling the weight of the samples based on the target
distribution. Another Monte Carlo method is Markov Chain Monte Carlo (MCMC). A spe-
cial case of MCMC is the Metropolis-Hastings (MH) algorithm introduced by Hastings in
[3]. The main idea of MH is to propose new samples based on the previous sample. The
new sample is either accepted or rejected based on the weight of the newly proposed sample
and the weight of the previous instance.

3 Methods
This section outlines the Keys and Doors problem and the possible uncertainties therein.
First, a detailed description of the original Keys and Doors problem, without uncertainties,
is given. Using the description, different possible uncertainties are provided and analysed.

3.1 The Keys and Doors Problem
The Keys and Doors problem has been taken from the pddlgym library1 and slightly modified
such that uncertainties have a more substantial effect [4]. In the original problem, a player
needs to reach a square by picking up keys in order to unlock rooms to reach its final
destination. An example instance of the Keys and Doors problem can be found in Figure 1.

The Keys and Doors problem is formally defined using a Planning Domain Definition
Language (PDDL). A PDDL allows us to define different domains formally in a human
readable format [7]. PDDL was first introduced in 1998 by Ghallab et al. in [8]. It separates
the definition of the domain and problem. The domain contains predicates (logical facts)
and actions. Actions have preconditions, which must be met before the actions can be
applied. Actions also have effects, which change the current predicates.

The Keys and Doors problem is similar to a normal pathfinding problem, where a player
needs to reach a goal position. In contrast to a normal pathfinding problem, there exist
rooms which the player is not able to enter unless it picks up the corresponding key which
unlocks the locked room.

The player is able to modify the scenario by executing an action. Here, the problem
differs from the definition given in the pddlgym library. In the pddlgym library, the player
is able to teleport from one square to another, i.e. the squares do not have to be adjacent.
However, to make the problem more realistic, in our version of the problem, the player is
only able to move to adjacent squares. All the possible moves the player can make are:

• l, Moving left

• r, Moving right

• u, Moving up

• d, Moving down

• p, Picking up a key at the current position
1https://github.com/tomsilver/pddlgym

3



Figure 1: Example of the Keys and Doors problem containing four rooms and corresponding
keys. Squares with the same colour as a key, are opened by picking up that key. The starting
location is located in the top left. The goal location is located in the top right.

The player is able to achieve the goal position in a scenario by executing a plan. A plan
consists of a finite number of actions. Each of the actions in the plan will be applied to
the problem sequentially. If an action in the plan is not able to be executed, the state of
the scenario will remain the same, i.e. the action will not be executed and no error will
be raised. A plan is defined to reach the goal if, all of the actions in this plan have been
executed sequentially and the player is at the goal position afterwards. The plans are created
using Fast Downward2, a planner for PDDL problems. An example solution to the problem
in Figure 1 would be:

[r, r, r, p, r, p, d, l, l, l, p, r, r, r, r, r, d, d, d, d, d, d, p, u, u, u, u, u, u, u, r]

3.2 Uncertainties
In order to test the effectiveness of inference techniques, the Keys and Doors problem needs
to contain uncertainties. It would be too simple to generate robust plans otherwise, as using
the plan for the original problem would always be robust. The problems including their
uncertainties are modelled using a probabilistic programming library for Julia called Gen3,
developed by Cusumano-Towner et al. [9]. Gen allows us to write models and use them to
implement probabilistic inference more easily.

Adding uncertain starting positions for the player, makes the player unsure what its
current position is in the scenario. The player is able to alleviate the uncertainties by
making moves which are not allowed. One example of this would be moving into a wall. If
the player were to either be right next to the wall, or one space away from the wall, the
player could make a move towards the wall. After executing the move, the player is at the
exact same position regardless of starting position.

Unlocking a portion of the initially locked rooms, could help the player create plans which
are shorter. However, the shorter plans created may not be robust, as the room may still be
locked. When giving a chance larger than 50% to rooms being unlocked, the player should

2https://www.fast-downward.org/latest/
3https://www.gen.dev/

4



skip picking up keys if it would use the most likely scenario to create its plan. Unfortunately,
we cannot lock rooms which were unlocked in the original version of a scenario since this
would likely lead to the modified scenario becoming impossible.

Making the location of the keys uncertain, would force the player to try to pick up the
keys at multiple locations. This does, however, increase the length of the plans. The player
could also choose to not pick up the key in its entirety by devising a plan which does not
move into the corresponding room. Still, in some problems, the player may be required to
move into a room whose key’s position may be uncertain. In that case, the player should
always prefer picking up the key.

An uncertain goal position is an uncertainty which does not help to discover the efficiency
of inference techniques. An uncertain goal position makes it impossible to create robust plans
in certain scenarios. As mentioned in Section 3.1, the player must stand on a goal after all
of the moves have been executed. Since it is impossible for the player to know which square
it needs to reach, it is impossible for a plan to exist which would work in a relatively high
proportion of the uncertain scenarios. In other words, an uncertain goal position would
make the problem too difficult.

4 Inference Techniques
Given the probabilistic model for the Keys and Doors problem, we can start to use inference
techniques to infer robust plans. The used methods are importance sampling and replanning.
The goal of these methods is to create plans which are robust. The robustness of a plan is
defined as the percentage of uncertain problems the plan is able to solve.

4.1 Importance Sampling
Importance sampling creates plans for random realizations of the original problem. Gen has
a method to implement importance sampling more easily, named importance_sampling4.
This method accepts a generative model, and runs this model n times in a loop. It subse-
quently outputs the traces, their weights, and the marginal likelihood of the observations.
Before actually running importance sampling, m random problems are first sampled. The
random problems allow us to estimate the robustness of plans.

The generative model used in importance sampling contains three core steps. First, a
random problem is sampled from the original problem. Second, a plan is created for the
randomly sampled problem. Lastly, an estimate for the robustness of the plan is given by
running the created plan on the collection of m randomly sampled problems. The code used
to run importance sampling can be found in Listing 1.

4https://www.gen.dev/docs/stable/api/inference/importance/#Gen.importance_sampling

5



1 @gen function solve_kad(domain, problem, generated_problems, planner)
2 # Generate random plan
3 random_plan ~ create_random_plan(domain, problem, planner)
4 # Rank the plan
5 plan_rank = rank_plan(random_plan, generated_problems)
6

7 # Generate bernoulli random variable
8 {:robustness} ~ Gen.normal(plan_rank.robustness, 0.05)
9 return plan_rank

10 end
11

12 generated_problems = [create_random_problem(problem) for _ in 1:m]
13 traces, log_norm_weights, lml_est = Gen.importance_sampling(
14 solve_kad,
15 (domain, problem, generated_problems, Planner.planner),
16 choicemap(:robustness => 1),
17 n
18 )

Listing 1: Generative function and its use in importance sampling

4.2 Replanning
Replanning tries to improve the plans slightly in each iteration of the Metropolis-Hastings
loop. It is inspired by the Metropolis-Hastings approach proposed in [1] by Gardos Reid and
sought to be generalized to all possible problem domains. Moreover, it uses a modified ver-
sion of Gen’s Metropolis-Hastings function5. The metropolis_hastings method normally
executes one step of the Metropolis-Hastings algorithm loop, returns a trace and returns
whether the newly generated trace was accepted.

Similar to importance sampling, m random problems are first created to estimate the
robustness of the plans. In addition to the random problems, an initial trace is generated,
which serves as a basis to generate new plans from. The Metropolis-Hastings loop is now
entered, in which we will generate new plans. This loop is executed n times, generating n
plans. There are three main parts in each step of the loop. The code used for proposing
a new plan is located in Listing 2. First, a random problem is generated. We then check
whether the previous plan would have reached the goal in this random problem. If it does
not, a random prefix of the previous plan is selected and a plan is appended in order to
succeed in the randomly generated plan. Next, we rank the robustness of this new plan. A
weight is assigned to this plan based on a normal distribution. The weight is equal to the
probability density of a normal distribution at 1.0. The normal distribution is defined with
the mean equal to the robustness of the proposed plan and standard deviation σ, named sd
in Listing 2. σ can be modified to alter the behaviour of replanning.

5https://www.gen.dev/docs/stable/api/inference/mcmc/#Gen.metropolis_hastings

6



1 @gen function propose_new_plan(
2 prev_trace, problem, problems, sd, domain, planner
3 )
4 prev_plan = prev_trace.retval.plan
5 random_problem ~ create_random_problem(problem)
6 new_plan = prev_plan
7 if !execute_plan(random_problem, prev_plan)
8 # Random prefix from the previous plan
9 r_index ~ Gen.uniform_discrete(1, length(prev_plan))

10 partial_plan = prev_plan[1:r_index]
11

12 curr_state = execute_plan_state(random_problem, partial_plan)
13 # Plan from that point onward
14 additional_plan = planner(domain, curr_state_python)
15 new_plan = vcat(partial_plan, additional_plan)
16 end
17

18 plan_rank = rank_plan(new_plan, problems)
19 {:robustness} ~ Gen.normal(plan_rank.robustness, sd)
20 return plan_rank
21 end

Listing 2: Generative function used to propose new plans. First a random problem is
generated, and a new plan is proposed for this problem if the goal is not reached using the
old plan.

5 Results
This section displays the results of running importance sampling and replanning. The
experimental setup is explained first, where the parameters used for the experiments are
laid out. Secondly, the results of running importance sampling and replanning on two vastly
different problem instances are described.

5.1 Experimental Setup
The experiments were run on a computer with a Ryzen 5 5600X processor6 and 16 gi-
gabytes of RAM. No specific timeout has been set for the experiments. The inference
techniques have been run on one custom problem and one problem taken from the pddlgym
library1. Plans were created using the Fast-Downward planner located in the accompanying
pddlgym_planners library7.

The location of the player, the location of the keys, and whether the rooms are unlocked
were made uncertain by modifying the problem. The player’s starting location was modified
both in horizontal and vertical offsets. In both directions, the chance of staying on the
same block is 0.4. The probability of moving in the positive or negative direction is 0.2
if moving one block, and 0.1 if moving two blocks. The location of the keys was modified

6https://www.amd.com/en/products/processors/desktops/ryzen/5000-series/amd-ryzen-5-5600x.html
7https://github.com/ronuchit/pddlgym_planners

7



in an analogous way but with different probabilities. There is a probability of 0.8 to stay
on the same block and a chance of 0.1 to move one block in either the positive or negative
direction. The keys must stay in their original room. If a certain target square was infeasible,
its probability was set to 0.0 and redistributed among the other remaining valid options. A
previously locked room has a probability of 0.5 of being unlocked in its uncertain version.
Figure 2 shows the possible new starting and key locations and their probabilities.

(a) Player location uncertainty (b) Key location uncertainty

Figure 2: Two of the uncertainties in the Keys and Doors problem and their corresponding
probabilities

Both experiments have been run with the same settings. For both importance sampling
and replanning, a total of 1000 random problems were generated based on the original
problem. These problems are used to estimate the robustness of a proposed plan. Moreover,
the total number of iterations in both importance sampling and replanning was set to 1000,
meaning that a total of 1000 traces were generated. The σ’s used in replanning are: 0.2,
0.25, 0.5 and 1.0. These values are chosen because the robustness will always be between 0
and 1 and less robust plans should still be able to be accepted using these values.

5.2 Experimental Results
In order to analyse the performance of the importance sampling approach and the replanning
approach, we compared the robustness of plans in different problem scenarios. First, their
performance was compared in a simple problem, which was a straight line and did not
include any keys or rooms. Afterwards, we will visit the example given in Figure 1, which
was used in the definition of the Keys and Doors problem.

5.2.1 A Problem without Rooms

The goal of this simplified problem is to show why replanning could be a promising strategy.
The problem at hand, shown in Figure 3, cannot be solved with a robustness of 100%
using importance sampling. This robustness cannot be achieved since there does not exist
a random instance of this problem, whose plan will directly work for all random problem
instances.

8



Figure 3: Custom problem forming a straight line without any keys and rooms

Changing the σ parameter influenced the results slightly. In Figure 4, we see the number
of occurrences of each robustness except σ = 1.0. The results for σ = 1.0 are left out for
brevity and can be found in Appendix A. σ = 0.25 produced plans with the overall highest
robustness. When σ increased, the overall robustness of plans tended to decrease. Especially
the number of plans with a robustness ≤ 0.35 increased when increasing σ. σ = 0.2 primarily
generated plans with robustness equal to 0.4, but did not generate plans with robustness
≥ 0.5. In every case replanning performed better than importance sampling.

(a) Replanning, σ = 0.2 (b) Replanning, σ = 0.25

(c) Replanning, σ = 0.5 (d) Importance Sampling

Figure 4: Robustness of plans in the straight-line scenario

9



5.2.2 Revisiting the Example Problem

The problem analysed here is the same as the example problem given in Figure 1. This
problem could be considered harder than the straight-line problem analysed in the previous
section, since there is a larger number of uncertain scenarios. However, this problem has
more possible options where the player might be able to correct itself by trying to execute
moves which are not allowed.

The results demonstrate a correlation between the σ parameter and the robustness of
plans, similar to the previous problem. Figure 5 displays the cumulative distributions of plan
robustness. Again, assigning 0.25 to σ produced the most robust plans, as the cumulative
density function (CDF) shows a sharp increase when the robustness is greater than 0.75.
Changing σ to 0.2, decreased the robustness of the proposed plans. Similarly, increasing σ
above 0.25 shifted the CDF left, showing a lowering in the overall robustness of the plans. In
comparison, importance sampling performed significantly worse than all of the replanning
variants. The plans produced by importance sampling generally had a low robustness value,
signified by the sharp increase at low robustness values.

There is a strong correlation between the lengths of proposed plans and the robustness
of the proposed plans, as can be seen in Figure 6. The results for replanning with σ = 1.0
are left out for brevity. Those results can be found in Appendix B. Furthermore, increasing
σ corresponded to plans of shorter lengths being generated. However, the shorter plans did
have a lower robustness than the longer plans.

Figure 5: Cumulative distribution of robustness of plans in the example problem

10



(a) Replanning, σ = 0.2 (b) Replanning, σ = 0.25

(c) Replanning, σ = 0.5 (d) Importance Sampling

Figure 6: Length of proposed plans plotted against the robustness of proposed plans

6 Responsible Research
The research conducted during this research project is reproducible within the confines of
the Keys and Doors problem. One does need to keep in mind that the results are based
on random simulations and may therefore not produce the exact same results each run.
Furthermore, due to time constraints and memory limits, only 1000 iterations of both re-
planning and importance sampling were used. For the same reason only 1000 problems were
used to estimate the robustness of the plans, which could create variance in the calculated
robustnesses of the plans. A seed is used to make sure that each run of the experiment would
produce the exact same results if simulated on another computer. The experiments were
run with different seeds as well to make sure that the results were similar across different
runs. The code for this project is also available at [10].

No ethical concerns were raised during the research. All of the information used in this
research is available online and the data does not include any personal information nor
information that could neither harm people nor animals. Because of these reasons there is
no risk for privacy violations, nor ethical harm, making this research ethically neutral.

11



7 Discussion
In the experiments, two different scenarios were used to gather results on the robustness
of plans generated by importance sampling and replanning. First, these results will be
analysed, and an explanation will be given. Afterwards, the limitations of the experiments
are laid out.

7.1 Findings
Replanning performed better than importance sampling in both the straight-line problem
and the example problem. It was especially noticeable in the case of the example problem.
In general, the mean robustness of the plans increased as the value of σ decreased.

In the straight-line problem, using replanning with σ set to 0.2, did not produce plans
with a robustness as high as larger σ’s. One of the causes could be that a less robust plan
would need to be accepted before a plan can be generated that has a robustness of 70%.
Since σ is set to a smaller number, we have a much smaller probability of accepting a plan
with a lower robustness. Conversely, the results of the straight-line problem demonstrate
that increasing σ above 0.2 allows plans with higher robustness to be generated. Adjusting
σ to a value larger than 0.25 resulted in less robust plans being generated. The less robust
plans have a larger probability of being accepted when σ is lower. Setting σ equal to 0.25
produced the most plans with a 70% robustness. Furthermore, it also produced the highest
overall mean robustness. This shows that 0.25 is likely close to the ideal value σ. Comparing
the replanning approach to importance sampling, we see that every instance of replanning
outperformed importance sampling.

Replanning also showed improved performance on the larger problem. It created more
robust plans when using a lower σ as well. However, similar to the smaller scenario, less
robust plans were made when σ was set to 0.2. The same cause for this could be given as
in the smaller problem. In order to reach plans with a higher robustness, we would first
need to accept less robust plans. The less robust plans have a significantly lower likelihood
to be accepted when σ is decreased. However, in the unlikely case that a non-robust plan
is accepted and a very robust plan is subsequently generated, the robust plan is almost
always retained over succeeding alternatives. Likewise, configuring σ to values larger than
0.25 again resulted in plans with lower robustness being generated. Moreover, we similarly
observed that σ set to 0.25 gave us the most robust plans. Again, we also perceived that
every instance of the replanning approach performed better than importance sampling.

The plans made by replanning were significantly longer than the plans made by impor-
tance sampling. The plans generated using importance sampling are of optimal length for a
random problem instance, but the amalgamation of different plans in replanning makes the
plans longer. In general, the more robust a plan is, the longer the plan becomes. There are
two reasons for this occurrence. The more robust plans are longer, because the plans need
more actions to resolve uncertainties. Additionally, the shorter, less robust plans are likely
created from rare problem cases where most rooms are already unlocked.

In conclusion, replanning consistently outperformed importance sampling regarding ro-
bustness. Especially in the case of the larger problem, we observed that replanning per-
formed much better than importance sampling. Moreover, in these two problems, setting
σ to 0.25 yielded the best results. The modification of σ also shares a similarity to the
exploration-exploitation dilemma commonly seen in machine learning. If σ was set too low,
replanning did not frequently change its current plan. If σ was set too high, it accepted too
many plans which were not robust.

12



7.2 Limitations
Only two problems have been thoroughly investigated. The first problem is an extremely
specific case and not representable of the possible challenges a traditional Keys and Doors
problem may possess. There are only two directions the player could move, left and right.
In addition, no keys and rooms were present in the first problem. However, this problem
still shows the power that replanning has, since it is able to generate more robust plans than
importance sampling by updating the plan for a problem where the previous plan failed.
Other problems in the Keys and Doors domain may be so different from the two instances
analysed, that replanning could show a much smaller or much greater performance difference.

8 Conclusions and Future Work
This research has aimed to answer whether the method in [1] by Gardos Reid can be gen-
eralized to work in different domains. The Keys and Doors problem has been used as the
domain to explore the performance of the modified replanning approach. Several uncer-
tainties were introduced in the problem, namely: start location, key location and unlocked
rooms. The research has shown that the modified method, replanning, has a significantly
better performance than importance sampling. The parameter σ made a substantial dif-
ference in the performance of replanning and assigning σ to 0.25 provided optimal results.
Despite not being able to generate plans of 100% robustness, replanning has shown to be a
promising technique to create robust plans, especially compared to importance sampling.

There are several areas in which research on replanning can be extended. First, a different
probability distribution could be used instead of the currently employed normal distribu-
tion. The distribution could have a significant effect on performance, possibly even more
substantial than tweaking σ. Second, simulated annealing can also be applied to replanning.
Starting with a larger σ and subsequently reducing it could solve the exploitation-exploration
dilemma currently seen in the replanning approach. Third, it may be of interest to have
plans of a maximum length. By adding a new random choice based on the length of the
proposed plan, we can influence the length of proposals made by replanning. Lastly, the
performance of replanning should be analysed in other domains, to validate and possibly
improve its performance.

13



References
[1] R. Gardos Reid, “Inferring robust plans with a rail network simulator”, Master Thesis,

Delft University of Technology, Delft, 2023, 62 pp. [Online]. Available: https://
repository.tudelft.nl/record/uuid:209608e8-9fa7-4e03-aad8-e973ad22cde9.

[2] J.-W. v. d. Meent, B. Paige, H. Yang, and F. Wood, An Introduction to Probabilistic
Programming. arXiv, Oct. 19, 2021. doi: 10.48550/arXiv.1809.10756. arXiv: 1809.
10756[stat]. [Online]. Available: http://arxiv.org/abs/1809.10756 (visited on
05/21/2025).

[3] W. K. Hastings, “Monte carlo sampling methods using markov chains and their ap-
plications”, Biometrika, vol. 57, no. 1, pp. 97–109, Apr. 1970, issn: 0006-3444. doi:
10.1093/biomet/57.1.97. [Online]. Available: https://doi.org/10.1093/biomet/
57.1.97.

[4] T. Silver and R. Chitnis, PDDLGym: Gym environments from PDDL problems, Sep. 15,
2020. doi: 10.48550/arXiv.2002.06432. arXiv: 2002.06432[cs]. [Online]. Available:
http://arxiv.org/abs/2002.06432 (visited on 04/24/2025).

[5] E. Semenova, D. P. Williams, A. M. Afzal, and S. E. Lazic, “A bayesian neural network
for toxicity prediction”, Computational Toxicology, vol. 16, p. 100 133, Nov. 1, 2020,
issn: 2468-1113. doi: 10.1016/j.comtox.2020.100133. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2468111320300438 (visited on
06/02/2025).

[6] Z. Deng, D. Chu, C. Wu, et al., “A probabilistic model for driving-style-recognition-
enabled driver steering behaviors”, IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, vol. 52, no. 3, pp. 1838–1851, 2022. doi: 10.1109/TSMC.2020.
3037229.

[7] A. Green. “What is PDDL?”, Planning.wiki - The AI Planning & PDDL Wiki. (n.d.),
[Online]. Available: https : / / planning . wiki / guide / whatis / pddl (visited on
06/19/2025).

[8] M. Ghallab, A. Howe, C. Knoblock, et al., “PDDL | The Planning Domain Definition
Language”, Yale Center for Computational Vision and Control, Tech. Rep. CVC TR-
98-003 / DCS TR-1165, 1998.

[9] M. F. Cusumano-Towner, F. A. Saad, A. K. Lew, and V. K. Mansinghka, “Gen: A
general-purpose probabilistic programming system with programmable inference”, in
PLDI 2019: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Phoenix, Arizona: ACM, 2019, pp. 221–236.

[10] K. van der Knaap, Robust plan inference in the keys and doors problem: Code, Jun.
2025. doi: 10.5281/zenodo.15711792. [Online]. Available: https://doi.org/10.
5281/zenodo.15711792.

14

https://repository.tudelft.nl/record/uuid:209608e8-9fa7-4e03-aad8-e973ad22cde9
https://repository.tudelft.nl/record/uuid:209608e8-9fa7-4e03-aad8-e973ad22cde9
https://doi.org/10.48550/arXiv.1809.10756
https://arxiv.org/abs/1809.10756 [stat]
https://arxiv.org/abs/1809.10756 [stat]
http://arxiv.org/abs/1809.10756
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.48550/arXiv.2002.06432
https://arxiv.org/abs/2002.06432 [cs]
http://arxiv.org/abs/2002.06432
https://doi.org/10.1016/j.comtox.2020.100133
https://www.sciencedirect.com/science/article/pii/S2468111320300438
https://www.sciencedirect.com/science/article/pii/S2468111320300438
https://doi.org/10.1109/TSMC.2020.3037229
https://doi.org/10.1109/TSMC.2020.3037229
https://planning.wiki/guide/whatis/pddl
https://doi.org/10.5281/zenodo.15711792
https://doi.org/10.5281/zenodo.15711792
https://doi.org/10.5281/zenodo.15711792


A Custom Problem Replanning, σ = 1.0

Figure 7: Distribution of robustness of plans when using replanning, σ = 1.0

B Example Problem Replanning, σ = 1.0

Figure 8: Length of plans shown against robustness of plans using Replanning, σ = 1.0

15



C Usage of AI
A large language model has only been used to help writing code for converting between
the KeysAndDoors struct, defined in Julia, and the PDDLEnv class, defined in Python. The
language model used was gemini-2.5-pro-preview-05-06. The prompt supplied to Gemini
is quite long due to included code. Code is left out for brevity and replaced by placeholders.
The output itself is also long. The output is located in the function to_python_pddl in
problem_runner.jl.

Could you c r ea t e a method to convert from the KeysAndDoors s t r u c t
to the PDDLEnv c l a s s . The code should be wr i t t en in Ju l i a . I
have a l r eady made the code to convert from the PDDLEnv c l a s s to
the KeysAndDoors s t r u c t . The code f o r t h i s can be found here :

<Code conver t ing PDDLEnv to KeysAndDoors>

The f o l l ow i ng code block s p e c i f i e s the PDDLEnv c l a s s :
<Code PDDLEnv c l a s s >

The f o l l ow i ng code block i s the f i l e conta in ing the domain f i l e o f
the keys and doors problem :

<Domain f i l e >

16


	Introduction
	Background
	Methods
	The Keys and Doors Problem
	Uncertainties

	Inference Techniques
	Importance Sampling
	Replanning

	Results
	Experimental Setup
	Experimental Results
	A Problem without Rooms
	Revisiting the Example Problem


	Responsible Research
	Discussion
	Findings
	Limitations

	Conclusions and Future Work
	Custom Problem Replanning, = 1.0
	Example Problem Replanning, = 1.0
	Usage of AI

