
Avoiding Conversion and
Rearrangement Overhead in

SIMD Architectures

Asadollah Shahbahrami





Avoiding Conversion and Rearrangement
Overhead in SIMD Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 15 september 2008 om 15:00 uur

door

Asadollah SHAHBAHRAMI

Master of Science in Computer Engineering-Machine Intelligence,
Shiraz University, Shiraz, Iran

geboren te Kelardasht, Chaloos, Mazandaran, Iran



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. K.G.W. Goossens

Copromotor: Dr. B.H.H. Juurlink

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. K.G.W. Goossens Technische Universiteit Delft, promotor
Dr. B.H.H. Juurlink Technische Universiteit Delft, copromotor
Prof. dr. ir. H.J. Sips Technische Universiteit Delft
Prof. dr. ir. A.J. van der Veen Technische Universiteit Delft
Dr. K. Flautner ARM Ltd., Cambridge
Dr. A. Ramirez Universitat Politècnica de Catalunya, Barcelona
Prof. dr. ir. G.J.M. Smit Universiteit Twente
Prof. dr. ir. R.L. Lagendijk, reservelid Technische Universiteit Delft

My first promotor Professor Stamatis Vassiliadis† has provided substantial guidance
and support for this thesis.

Shahbahrami, Asadollah
Avoiding Conversion and Rearrangement Overhead in SIMD Architectures
Computer Engineering Laboratory
Delft University of Technology
Keywords: SIMD Architectures, Vectorization, SIMD Programming, Multimedia
Application, Cache Optimization.

ISBN 978-90-807957-9-2
Cover page: Sketch design of an SIMD unit by Author.

Copyright c© 2008 by Asadollah Shahbahrami
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without permission of the author.

Typeset by the author with the LATEX Documentation system.

Author email: A.Shahbahrami@TUDelft.nl, shahbahrami@guilan.ac.ir
Printed in The Netherlands



This dissertation is dedicated to all my teachers and family with gratitude
and love





Avoiding Conversion and Rearrangement
Overhead in SIMD Architectures

Asadollah Shahbahrami

Abstract

I
n this dissertation, a novel SIMD extension called Modified MMX (MMMX)
for multimedia computing is presented. Specifically, the MMX architecture is
enhanced with the extended subwords and the matrix register file techniques. The

extended subwords technique uses SIMD registers that are wider than the packed for-
mat used to store the data. It uses 32 bits extra for each 64-bit register. The extended
subwords technique avoids data type conversion overhead and increases parallelism
in SIMD architectures. This is because promoting the subwords of the source SIMD
registers to larger subwords before they can be processed and demoting the results
again before they can be written back to memory incurs conversion overhead. The
matrix register file technique allows to load data that is stored consecutively in mem-
ory into a column of the register file, where a column corresponds to the correspond-
ing subwords of different registers. In other words, this technique provides both row-
wise as well as column-wise accesses to the media register file. It is a useful approach
for matrix operations that are common in multimedia processing. In addition, in this
work, new and general SIMD instructions addressing the multimedia application do-
main are investigated. It does not consider an ISA that is application specific. For
example, special-purpose instructions are synthesized using a few general-purpose
SIMD instructions. The performance of the MMMX architecture is compared to the
performance of the MMX/SSE architecture for different multimedia applications and
kernels using the sim-outorder simulator of the SimpleScalar toolset. Addition-
ally, three issues related to the efficient implementation of the 2D Discrete Wavelet
Transform (DWT) on general-purpose processors, in particular the Pentium 4, are
discussed. These are 64K aliasing, cache conflict misses, and SIMD vectorization.
64K aliasing is a phenomenon that happens on the Pentium 4, which can degrade
performance by an order of magnitude. It occurs if two or more data items whose ad-
dresses differ by a multiple of 64K need to be cached simultaneously. There are also
many cache conflict misses in the implementation of vertical filtering of the DWT, if
the filter length exceeds the number of cache ways. In this dissertation, techniques are
proposed to avoid 64K aliasing and to mitigate cache conflict misses. Furthermore,
the performance of the 2D DWT is improved by exploiting the data-level parallelism
using the SIMD instructions supported by most general-purpose processors.

Asadollah Shahbahrami Delft, The Netherlands, 2008

i





Abbreviations

Full Name Description
ASIC Application-Specific Inte-

grated Circuit
An integrated circuit that implements a specific
function.

CISC Complex Instruction Set
Computers

CISC is an instruction set architecture in which
each instruction consists of many microcode
and take many clock cycles to execute.

CPU Central Processing Unit A unit that executes the programs.
DCT Discrete Cosine Transform The DCT is a transform to convert image or

video pixels from the time domain to the fre-
quency domain.

DLP Data-Level Parallelism DLP is a technique to execute a large number of
operations by a single instruction.

DMPs Dedicated Multimedia
Processors

DMPs are typically custom designed architec-
tures intended to perform specific multimedia
functions.

DSPs Digital Signal Processors DSPs are microprocessors, which have specif-
ically been designed for digital signal process-
ing.

DWT Discrete Wavelet Trans-
form

The DWT provides a time-frequency represen-
tation of image or video signals.

FIR Finite Impulse Response FIR filters are digital filters that have an impulse
response which reaches zero in a finite number
of steps.

FP Floating-Point FP presents a numerical representation system
for real numbers.

FPGA Field Programmable Gate
Array

An FPGA is a reprogrammable hardware device
that can be used to implement arbitrary circuits.

GPPs General-Purpose Proces-
sors

Processors that are designed to execute a variety
of applications. GPPs have a higher degree of
flexibility than other processors such as DSPs.

HDTV High Definition TeleVision HDTV is the new standard in television technol-
ogy which enhances the quality of the picture on
the screen.

IDCT Inverse Discrete Cosine
Transform

The IDCT is the inverse of the DCT, which con-
verts the transformed image to the time domain.

ILP Instruction-Level Paral-
lelism

ILP is a technique to execute several instruc-
tions in each cycle by exploiting the indepen-
dent instructions.

ISA Instruction Set Architec-
ture

ISA includes the set of instructions of either a
particular processor or a family of processors.

JPEG Joint Photographic Experts
Group

The committee that has developed the JPEG and
JPEG2000 standards.

iii



LBWT Line-Based Wavelet Trans-
form

The LBWT is a traversal technique that is used
to implement the 2D discrete wavelet transform.
In this technique the vertical filtering starts as
soon as a sufficient number of lines, as deter-
mined by the filter length, has been horizontally
filtered.

LUT Look-Up Table A LUT is a group of memory cells, which con-
sists of all the possible results of a function for
a given set of its input values.

MDMX MIPS Digital Media eX-
tension

MDMX is a SIMD extension unit developed for
the MIPS family of processors.

MMA MultiMedia Application Multimedia applications use and process differ-
ent media elements including text, graphics, im-
ages, audio, 2D and 3D animation, and video.

MMX Multi-Media Extensions MMX is a multimedia extension, provided on
the Intel microprocessors, which consists of 64-
bit integer SIMD instructions on packed ele-
ments.

MMMX Modified Multi-Media Ex-
tensions

The MMMX architecture is MMX enhanced
with extended subwords, the matrix register file,
and a few general-purpose instructions that are
not present in MMX.

MPEG Motion Picture Experts
Group

The committee that has developed the MPEG
compression standards.

MRF Matrix Register File The MRF is a media register file that provides
both row-wise as well as column-wise access to
the register file.

NSPs Native Signal Processing NSP is an enhancement to a GPP to process
multimedia data.

RCWT Row-Column Wavelet
Transform

The RCWT is a traversal technique that is used
to implement the 2D discrete wavelet transform.
In the RCWT approach, the 2D DWT is divided
into two 1D DWTs, namely horizontal and ver-
tical filtering.

RISC Reduced Instruction Set
Computer

RISC is opposite of CISC. RISC represents
a microprocessor design strategy that reduces
chip complexity by using simpler instructions,
removing microcode layer, than the CISC de-
sign.

RUU Register Update Unit The RUU determines which instruction should
be issued to the functional units for execution.

SAD Sum-of-Absolute Differ-
ences

The SAD function is a similarity measurement
algorithm that is usually used in motion estima-
tion algorithms to remove temporal redundan-
cies between video frames.

SIMD Single-Instruction
Multiple-Data

Computation concept of executing the same in-
struction on multiple data elements.

iv



SLP Subword Level Parallelism SLP is a form of DLP that packs several small
data elements into a media register in order to
process them simultaneously.

SPE Synergistic Processing El-
ement

SPEs are SIMD processors with local stores.
The Cell processor contains 8 SPEs.

SPI Special-Purpose Instruc-
tion

Special-purpose instructions are provided in or-
der to accelerate some specific functions.

SPU Synergistic Processing
Unit

Each SPE of Cell processor has an SPU. SPU
includes a 256KB local memory and two SIMD
datapaths, and a 128x128b register file.

SSD Sum-of-Squared Differ-
ences

The SSD function is a similarity measurement
algorithm that is usually used in motion estima-
tion algorithms to remove temporal redundan-
cies between video frames.

SSE Streaming SIMD Exten-
sions

SSE is another multimedia extension that
provides floating-point SIMD instructions on
packed elements.

TLP Thread-Level Parallelism TLP is a technique to execute multiple threads
of an application or multiple applications at
once.

VIS Visual Instruction Set VIS is a multimedia instruction set extension
designed by Sun and implemented on the Ul-
traSPARC processor.

VLIW Very Long Instruction
Word

VLIW is a technique to execute many opera-
tions in a single instruction.

VMX Vector Multimedia eXten-
sion

VMX consists of 162 PowerPC instructions
that target multimedia applications, and was co-
developed by IBM, Motorola, and Apple.

Asadollah Shahbahrami Delft, The Netherlands, 2008

v





Contents

Abstract i

Abbreviations iii

List of Figures ix

List of Tables xvi

1 Introduction 1
1.1 Characteristics of Multimedia Applications . . . . . . . . . . . . . . 2
1.2 Processor Architectures to Support MMAs . . . . . . . . . . . . . . 3

1.2.1 Dedicated Multimedia Processors (DMPs) . . . . . . . . . . . 3
1.2.2 GPPs Enhanced with Multimedia Extension . . . . . . . . . . 5

1.3 A Comparison Between Processor Architectures for MMAs . . . . . 7
1.4 An Evaluation of SIMD Architectures Using Multimedia Kernels . . 10

1.4.1 Methodology and Metrics . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Performance Bottlenecks . . . . . . . . . . . . . . . . . . . . 12

1.5 Dissertation Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background 21
2.1 Data Type Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Data Type Conversion Instructions . . . . . . . . . . . . . . . 22
2.1.2 Avoiding Data Type Conversion . . . . . . . . . . . . . . . . 24

2.2 Data Rearrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Explicit Instructions . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Memory Operations . . . . . . . . . . . . . . . . . . . . . . . 26

vii



2.2.3 Register File Organization . . . . . . . . . . . . . . . . . . . . 27
2.3 SIMD Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Cache Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 MMMX Architecture 33
3.1 Extended Subwords . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 The Matrix Register File . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 MMMX Instruction Set Architecture . . . . . . . . . . . . . . . . . . 40

3.3.1 Load/Store Instructions . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 ALU Instructions . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Multiplication Instructions . . . . . . . . . . . . . . . . . . . 43
3.3.4 Differences Between MMMX and MMX Architectures . . . . 45
3.3.5 Hardware Cost of the Proposed Techniques . . . . . . . . . . . 46

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Performance Evaluation 51
4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Multimedia Standards . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Multimedia Kernels . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Algorithm and SIMD Implementation of Kernels . . . . . . . . . . . 55
4.2.1 Matrix Transpose . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Vector/Matrix Multiply . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Repetitive Padding . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 (Inverse) Discrete Cosine Transform . . . . . . . . . . . . . . 60
4.2.5 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . 62
4.2.6 Add Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.7 2 × 2 Haar Transform . . . . . . . . . . . . . . . . . . . . . . 64
4.2.8 Paeth Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.9 Color Space Conversion . . . . . . . . . . . . . . . . . . . . . 68
4.2.10 Similarity Measurements . . . . . . . . . . . . . . . . . . . . 74

4.3 Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Performance Evaluation Results . . . . . . . . . . . . . . . . . . . . 89

4.4.1 Block-level Speedup . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Image-level Speedup . . . . . . . . . . . . . . . . . . . . . . 92
4.4.3 Impact of the Number of Registers . . . . . . . . . . . . . . . 95
4.4.4 Analysis of each Proposed Technique Separately . . . . . . . . 96
4.4.5 Application-level Speedup . . . . . . . . . . . . . . . . . . . 102

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Optimizing the Discrete Wavelet Transform 105
5.1 2D Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . 106

viii



5.1.1 Row-Column Wavelet Transform . . . . . . . . . . . . . . . . 107
5.1.2 Line-Based Wavelet Transform . . . . . . . . . . . . . . . . . 108

5.2 Issues Related to the 2D DWT on the GPPs . . . . . . . . . . . . . . 108
5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Avoiding 64K Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5 Cache Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.1 Associativity-Conscious Loop Fission Technique . . . . . . . 116
5.5.2 Lookahead Technique . . . . . . . . . . . . . . . . . . . . . . 116
5.5.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 SIMD Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6.1 SIMD Implementations of Convolutional Methods . . . . . . . 120
5.6.2 MMX Implementation of the Lifting Scheme . . . . . . . . . . 123
5.6.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . . 126
5.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.5 MAC Operation, Extended Subwords and the MRF . . . . . . 130
5.6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 132

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Conclusions and Future Work 139
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3 Future Proposed Research Directions . . . . . . . . . . . . . . . . . 143

Bibliography 145

List of Publications 157

Samenvatting 161

Curriculum Vitae 163

Acknowledgments 165

ix



x



List of Figures

1.1 Different proposed architectures for processing of MMAs. . . . . . . 3
1.2 A 64-bit partitioned ALU that is divided into four parallel functional

units using the subword level parallelism concept. . . . . . . . . . . 6
1.3 Instructions needed per cycle to provide 4-way parallelism [91]. . . . 9
1.4 Speedup of the MMX and SSE implementations of the multimedia

kernels over the scalar versions on the Pentium 4 processor. . . . . . 12
1.5 Illustration of where overhead instructions are used in the MMX im-

plementation of the RGB-to-YCbCr kernel and the SSE implementa-
tion of the horizontal filtering of the Daub-4 transform. . . . . . . . . 14

1.6 Matrix transpose of a 4 × 4 block using SSE instructions. . . . . . . . 15
1.7 Illustration of the SSE instructions to transpose a 4 × 4 block. . . . . 15

2.1 Illustration of the punpcklbw mm0, mm1 instruction. . . . . . . . 23
2.2 An example of the extend sign byte halfword instruction that has been

provided in the synergistic processor unit of the Cell processor [67]. . 23
2.3 Illustration of the packed shuffle word instruction of the SSE architecture. 25
2.4 Illustration of the vector permute instruction of the AltiVec extension

and Cell SPE to permute sixteen subwords from the concatenation of
registers va and vb by the byte index values in the vc register. . . . . 26

2.5 Vector pointers are used to index the coefficients and input entries in
the single-instruction multiple disjoint data implementation of the fi-
nite impulse response filter. . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Different implementations of the vertical filtering of discrete wavelet
transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Speedup of the loop interchanged implementation of vertical filtering
over the aggregated implementation for different aggregation factors
on the Pentium 4. The image size is 2048 × 2048. . . . . . . . . . . 31

xi



3.1 C code of the sum-of-squared differences kernel. . . . . . . . . . . . 34
3.2 C code of the sum-of-absolute differences kernel. . . . . . . . . . . . 35
3.3 Different subwords in the media register file of the MMMX architecture. 36
3.4 A matrix register file with 12-bit subwords. For simplicity, write and

clock signals have been omitted. . . . . . . . . . . . . . . . . . . . . 38
3.5 First stage of the LLM algorithm for computing an 8-point DCT. . . . 39
3.6 Loading eight red, eight green, and eight blue values into the matrix

register file using the fldc8u12 instruction for little endian. . . . . 40
3.7 The fld8s12 instruction loads eight signed bytes and sign-extends

them to 12-bit values, while the fld8u12 instruction loads eight un-
signed bytes and zero-extends them to 12-bit values. . . . . . . . . . 41

3.8 Reducing eight 12-bit subwords to a single 96-bit sum or
96-bit difference using the instructions fsum{12,24,48} and
fdiff{12,24,48}, respectively. . . . . . . . . . . . . . . . . . . 43

3.9 Illustration of the fneg12 3mx0, 3mx1, 11010111 instruction. 43
3.10 Partitioned multiplication using the fmadd12 3mx0, 3mx1 in-

struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.11 Partitioned multiplication using the fmul12h 3mx0, 3mx1 in-

struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.12 (a) A register file with eight 96-bit registers, 2 read ports, and 1 write

port, (b) the implementation of two read ports and one write port for a
matrix register file with 8 96-bit registers as well as a partitioned ALU
for subword parallel processing. . . . . . . . . . . . . . . . . . . . . 47

3.13 A 96-bit partitioned ALU in the MMMX architecture. . . . . . . . . 48

4.1 A typical block diagram of an encoder and decoder of the JPEG standard. 53
4.2 A part of the MMX/SSE code to transpose an 8 × 8 block. . . . . . . 56
4.3 Pseudo C code for vector matrix multiply. . . . . . . . . . . . . . . . 57
4.4 The MMX implementation of the inner loop that has been shown

in Figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Repetitive padding for VOP boundary blocks. . . . . . . . . . . . . . 59
4.6 An example of the horizontal repetitive padding using the described

algorithm in [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Data flow graph of 8 pixels DCT using LLM [96] algorithm. The

constant coefficients of c, r, and s are provided for fixed-point imple-
mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 The MMX/SSE code of the first stage of the LLM algorithm for hori-
zontal DCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 A part of the MMMX implementation for the horizontal DCT algo-
rithm. “X” denotes to xi0 ± xi7, where 0 ≤ i ≤ 7. . . . . . . . . . . 62

xii



4.10 Three level 2D DWT decomposition of an input image using filtering
approach. The h and g variables denote the lowpass and highpass fil-
ters, respectively. The notation of (↓ 2) refers to downsapling of the
output coefficients by two. . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 Three different phases in the lifting scheme. . . . . . . . . . . . . . . 63
4.12 C implementation of the horizontal filtering of the (5, 3) lifting scheme. 64
4.13 The MMX implementation of inner loop of the add block kernel. . . . 65
4.14 The MMMX implementation of inner loop of the add block kernel. . 65
4.15 2D 2 × 2 Haar transform using two 1D horizontal and vertical Haar

transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.16 A part of the MMX code for the 2D 2 × 2 Haar Transform. . . . . . . 66
4.17 A part of the MMMX code for the 2D 2 × 2 Haar Transform. . . . . 66
4.18 An example of the inverse 2D 2×2 Haar transform that uses subbands

data to construct a 2 × 2 block. . . . . . . . . . . . . . . . . . . . . . 67
4.19 Illustration of the a, b, and c pixels according to PNG specification. . 68
4.20 Pseudo-code description of the Paeth predictor. . . . . . . . . . . . . 68
4.21 A part of the MMX code for the Paeth predictor kernel. . . . . . . . . 69
4.22 A part of the MMMX code for the Paeth predictor kernel. . . . . . . 70
4.23 Mean square error in the implementation of color space conversion for

different bit widths and image sizes. . . . . . . . . . . . . . . . . . . 70
4.24 The MMX instructions needed to convert RGB values from band in-

terleaved format to band separated format. . . . . . . . . . . . . . . . 72
4.25 Partitioned multiplication using the fmul12h instruction. . . . . . . 73
4.26 A part of the MMX code for the YCbCr-to-RGB color space conversion. 75
4.27 A part of the MMMX code for the YCbCr-to-RGB color space con-

version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.28 The structure of SAD instruction in multimedia extension. . . . . . . 77
4.29 The MMX/SSE implementation of the SAD function. . . . . . . . . . 78
4.30 The MMMX implementation of the SAD function. . . . . . . . . . . 78
4.31 A part of the MMX implementation of the sum-of-absolute differences

for similarity measurement of histograms. . . . . . . . . . . . . . . . 79
4.32 A part of the MMMX implementation of the sum-of-absolute differ-

ences for similarity measurement of histograms. . . . . . . . . . . . . 80
4.33 The MMX implementation of the sum-of-squared differences function. 81
4.34 The MMMX implementation of the sum-of-squared differences function. 82
4.35 Similar and dissimilar images. . . . . . . . . . . . . . . . . . . . . . 82
4.36 The MMX/SSE code of the sum-of-absolute difference function using

horizontal and vertical interpolation. . . . . . . . . . . . . . . . . . . 84
4.37 The MMMX implementation of the sum-of-absolute difference func-

tion using horizontal and vertical interpolation. . . . . . . . . . . . . 85
4.38 A part of the MMMX code for implementation of the histogram inter-

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



4.39 SimpleScalar Portable ISA (PISA) instruction formats. . . . . . . . . 86
4.40 Speedup of MMMX over MMX as well as the ratio of committed in-

structions (MMX over MMMX) for multimedia kernels, which use
extended subwords technique on a single block on the single issue pro-
cessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.41 Speedup of MMMX over MMX as well as the ratio of committed in-
structions (MMX over MMMX) for multimedia kernels, which use
both proposed techniques on a single block on the single issue processor. 91

4.42 Image-level speedup of MMMX over MMX as well as the ratio of
committed instructions for the kernels, which use the extended sub-
words technique on the single issue processor. . . . . . . . . . . . . . 92

4.43 Image-level speedup of MMMX over MMX as well as the ratio of
committed instructions for the kernels, which use both proposed tech-
niques on the single issue processor. . . . . . . . . . . . . . . . . . . 92

4.44 Image-level speedup of MMMX over MMX implementation for differ-
ent issue widths using out-of-order execution. The speedup is relative
to the number of cycles taken by the MMX implementation when exe-
cuted on the processor with the same issue width. . . . . . . . . . . . 93

4.45 Ratio of SIMD instructions, scalar, and SIMD ld/st instructions of the
MMX implementation to the MMMX implementation for one execu-
tion of kernels on a single block that use the extended subwords tech-
nique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.46 Ratio of SIMD instructions, scalar, and SIMD ld/st instructions of the
MMX implementation to the MMMX implementation for one execu-
tion of kernels on a single block, which use both extended subwords
and the MRF techniques. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.47 The candidate block of the current frame can be stored in eight media
registers to calculate the motion vector at each 16× 16 window search
of the reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.48 Speedup of MMMX with 8 registers (MMMX-8) and MMMX with
13 extra registers (MMMX-13) over MMX (8 registers) as well as the
ratio of committed instructions (MMX implementation to MMMX) on
the single issue processor. . . . . . . . . . . . . . . . . . . . . . . . 97

4.49 The structure of the fshuflh12 mm1, mm0, imm8 instruction. . 98
4.50 The structure of the fshufll12 mm1, mm0, imm8 instruction. . 98
4.51 The structure of the frever12 mm1, mm0 instruction. . . . . . . 99
4.52 A part of the code for horizontal DCT that has been implemented by

MMX enhanced by extended subwords. . . . . . . . . . . . . . . . . 99
4.53 Loading eight consequent stored pixels into a column register by load

column instruction for little endian. . . . . . . . . . . . . . . . . . . 100
4.54 A part of the MMX + MRF implementation of the horizontal DCT

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiv



4.55 Speedup of the MMX + ES, MMX + MRF, and MMMX over MMX
as well as ratio of committed instructions for an 8 × 8 horizontal DCT
on a single issue processor. . . . . . . . . . . . . . . . . . . . . . . . 101

4.56 The number of SIMD computation, SIMD overhead, SIMD ld/st,
and scalar instructions in four different architectures, MMX, MMX
+ MRF, MMX + ES, and MMMX for an 8 × 8 horizontal DCT kernel. 101

4.57 Image-level speedup of MMX + ES, MMX + MRF, and MMMX over
MMX as well as the ratio of committed instructions for the 2D DCT
kernel on a single issue processor. . . . . . . . . . . . . . . . . . . . 102

4.58 Application-level speedup of MMMX over MMX as well as ratio of
committed instructions for multimedia applications on the single issue
processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Different sub-bands after first decomposition level. . . . . . . . . . . 106
5.2 Sub-bands after second and third decomposition levels. . . . . . . . . 107
5.3 The line-based wavelet transform approach processes both rows and

columns in a single loop. . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4 C implementation of vertical filtering using the (5, 3) lifting scheme

with loop interchange technique. . . . . . . . . . . . . . . . . . . . . 109
5.5 Effectiveness of loop interchange on the Pentium 4. This figure de-

picts the speedup of vertical filtering with interchanged loops over the
straightforward implementation, which processes each column entirely
before advancing to the next column for the lifting and Daub-4 trans-
forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Slowdown of vertical filtering over horizontal filtering on the P4. . . . 112
5.7 Ratio of the number of cache misses incurred by vertical filtering to the

number of cache misses incurred by horizontal filtering for an 8KB 4-
way set-associative L1 data cache with a line size of 64 bytes. . . . . 112

5.8 C implementation of vertical filtering using the Daub-4 transform.
Note that the loops have been interchanged w.r.t. the straightforward
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 Speedup of vertical filtering over the reference implementation
achieved by loop fission. . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 Performance improvement achieved by the offsetting technique. . . . 114
5.11 Reuse in vertical filtering. . . . . . . . . . . . . . . . . . . . . . . . 115
5.12 Associativity-conscious loop splitting. . . . . . . . . . . . . . . . . . 116
5.13 (a) reference implementation and (b) associativity-conscious loop

splitting technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.14 Illustration of the lookahead algorithm for vertical filtering. . . . . . . 118
5.15 (a) reference implementation and (b) lookahead technique. . . . . . . 118

xv



5.16 Comparison of the speedups obtained by applying offsetting alone to
the speedups achieved by applying associativity-conscious loop fission
or lookahead in addition to offsetting for the CDF-9/7 transform. . . . 119

5.17 Speedups obtained by applying ACLF and the lookahead technique
over the reference implementation of the CDF-9/7 transform on the P3
and Opteron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.18 Data flow graph of the vertical filtering of the Daub-4 transform. . . . 122
5.19 Data flow graph of the horizontal filtering of the Daub-4 transform. . 122
5.20 Computing four lowpass values for horizontal filtering using SSE in-

structions (Daub-4 transform). . . . . . . . . . . . . . . . . . . . . . 123
5.21 One prediction and update stage in the lifting scheme of the (5, 3) lift-

ing transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.22 Part of the data flow graph of the forward integer-to-integer lifting

transform using the (5, 3) filter bank (Shr = Shift right). . . . . . . . . 125
5.23 MMX instructions needed to rearrange the elements for the (5, 3) lift-

ing scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.24 Performance improvements achieved by applying the offsetting tech-

nique to the SIMD implementations of all three transforms and, in ad-
dition, the lookahead technique to CDF-9/7. . . . . . . . . . . . . . . 127

5.25 Speedup of the SIMD implementations of horizontal filtering over the
scalar versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.26 Speedup of the SIMD implementation of vertical filtering over scalar
version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.27 The structure of the pmaddsd instruction. . . . . . . . . . . . . . . 131
5.28 Vectorization of the horizontal filtering of the (5, 3) lifting scheme us-

ing the matrix register file and extended subwords techniques. . . . . 132
5.29 A matrix register file with eight 128-bit registers, two read ports, and

one write port. Four registers can be accessed in row-wise as well
as column-wise. The modified register file is connected to a 128-bit
partitioned floating-point ALU for subword parallel processing. . . . 133

5.30 speedups of the MMMX implementation of the horizontal and vertical
filtering of the (5, 3) lifting, SSE-MAC, and SSE-MRF implementa-
tions of the horizontal filtering of the Daub-4 transform over MMX
and SSE, respectively, as well as the ratio of committed instructions
for an image size of 480 × 480 on a single issue processor. . . . . . . 134

xvi



List of Tables

1.1 Different data types that are used by multimedia data [52]. . . . . . . 2
1.2 Operations distribution that are needed to implement the multimedia

algorithms [52]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Summary of available multimedia extensions. Sn and Un indicate n-

bit signed and unsigned integer packed elements, respectively. Values
n without a prefix U or S in the last row, indicate operations work for
both signed and unsigned values. 1 Note that 68 instructions of the 144
SSE2 instructions operate on 128-bit packed integer in XMM registers,
wide versions of 64-bit MMX/SSE integer instructions. . . . . . . . . 7

1.4 Comparison of different architectures for multimedia processing [60,
137]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Storage capacity and area requirements with fixed number of bits per
register address. Number of registers per register file is 32 registers.
“d”: overhead per register file, “e”: addressing overhead per register [91]. 10

1.6 Parameters of the experimental platform. . . . . . . . . . . . . . . . 11
1.7 The number of instructions needed to transpose an 8 × 8 block on the

different multimedia extensions, each element of the block is two bytes. 16

2.1 The MMX instruction set to process 8-bit data type. . . . . . . . . . . 22

3.1 The storage and computational formats of some multimedia kernels. 36
3.2 The load/store instructions of the MMMX architecture. . . . . . . . . 41
3.3 The ALU instructions of the MMMX architecture. . . . . . . . . . . 42
3.4 The multiplication instructions of the MMMX architecture. . . . . . . 43
3.5 The main differences between the MMX/SSE and MMMX ISAs. . . 45

xvii



3.6 The area utilization in terms of LUTs and the critical path delays (ns)
of the MMX and MMMX architectures as well as the ratio of utilized
area and the critical path delay of MMMX over MMX for their register
file architecture, partitioned ALU, and the whole hardware system. . . 49

4.1 Summary of some multimedia standards. . . . . . . . . . . . . . . . 52
4.2 Summary of multimedia kernels. . . . . . . . . . . . . . . . . . . . 54
4.3 Processor configuration. . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Image-level speedup of the MMX and MMMX implementations for

different multimedia kernels, which have been used in the application-
level speedup, over the scalar implementations on a single issue pro-
cessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Parameters of the experimental platforms. . . . . . . . . . . . . . . . 111
5.2 Number of load/store instructions and misaligned accesses in each

loop iteration of horizontal filtering in the (5, 3) lifting, Daub-4, and
CDF-9/7 transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 The dynamic number of instructions of the SIMD implementations of
the horizontal and vertical filtering and also their ratio for different
transforms for an N × M image. . . . . . . . . . . . . . . . . . . . 129

5.4 Minimum and maximum wavelet coefficients and intermediate results
for a 5-level decomposition using the (5, 3) lifting scheme for 7- to
10-bit per pixel images. . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Number of dynamic instructions of the SIMD implementation of both
horizontal and vertical filtering of the (5, 3) lifting and Daub-4 trans-
forms after using the proposed techniques for an N × M image. . . . 135

xviii



Chapter 1

Introduction

M
ultiMedia Applications (MMAs) have been becoming one of the most
prominent workloads in computer systems [41, 93]. They are used in many
environments ranging from desktop systems to mobile systems. There are a

variety of multimedia algorithms for capturing, manipulating, storing, and transmit-
ting multimedia objects such as text, handwritten data, image, video, graphics, and
audio objects [53, 116, 18, 93, 88, 36]. Multimedia standards such as MPEG-1/2/4/7,
JPEG, JPEG2000, and H.263/4 put challenges on hardware architectures for execut-
ing different multimedia algorithms efficiently. This is because MMAs are associated
with multiple standards and multiple formats. However, the efficient processing of
MMAs is currently one of the main challenges in the media processing field.

Different architectures have been proposed to process MMAs ranging from fully cus-
tom to domain-specific architectures, and to General-Purpose Processors (GPPs) with
multimedia extensions. None of them, however, can provide high-performance with
programmability. The main reason is that the dynamic nature of MMAs has been
not matched well with the ability of the existing architectures. In this thesis, ar-
chitectural enhancements for GPPs equipped with Single-Instruction Multiple-Data
(SIMD) extensions are proposed to provide much more performance than and the
same programmability compared to existing multimedia extensions such as MMX
and SSE.

The purpose of this chapter is to provide a brief overview of recent architectural
approaches for multimedia processing and state a number of challenges for GPPs
enhanced with multimedia extensions, which will be addressed in this dissertation.
Section 1.1 presents an overview of multimedia characteristics. Section 1.2 describes
different classifications of processors that have been proposed for processing MMAs
and they are compared to each other in Section 1.3. Section 1.4 evaluates some

1



2 CHAPTER 1. INTRODUCTION

Operand size Usage Frequency
8-bit 40%

16-bit 51%
32-bit 9%

Table 1.1: Different data types that are
used by multimedia data [52].

Operation type Percentage
ALU 40%
Load/Store 26-27%
Branch 20%
Shift 10%
Integer Mult. 2%
Floating point 3-4%

Table 1.2: Operations distribution that
are needed to implement the multimedia
algorithms [52].

SIMD architectures using multimedia kernels on the Pentium 4 processor, in order to
determine their bottlenecks. Section 1.5 presents dissertation challenges, and finally,
Section 1.6 gives an overview of the different chapters of this thesis.

1.1 Characteristics of Multimedia Applications

In this section, the characteristics of MMAs are briefly discussed.

MMAs have certain characteristics that make them different from other applications,
for example, scientific benchmarks [41, 107, 7, 8, 50, 51]. The most important ones
are as follows. First, MMAs typically contain a significant amount of Data-Level Par-
allelism (DLP). This means that multimedia algorithms perform the same operations
on different data items. Second, most of the execution time of MMAs is spent in a
few small loops or kernels. Third, multimedia data is usually narrow. For example,
image and video pixels can be represented in 8-bit. Table 1.1 depicts the distribution
of operand sizes used in MMAs. It shows that most operands are smaller than or
equal to 16-bit. Finally, many multimedia algorithms process two-dimensional (2D)
data, process data along the rows as well as along the columns.

Additionally, MMAs perform significantly more fixed-point operations than floating-
point operations. Table 1.2 depicts the distribution of the operations needed to im-
plement MMAs. As this table shows, the overall usage of an integer ALU that can
perform arithmetic operations, compares, logic operations, and moves is about 40%.
Furthermore, MMAs have high spatial locality but little temporal locality. Typically,
the processor loads a small amount of data, processes it, and it never or rarely reuses
the data again. Based on these characteristics, MMAs require different architectures
than other applications.

In order to understand the limitations of existing architectures for processing MMAs,
they are investigated in the next section.



1.2. PROCESSOR ARCHITECTURES TO SUPPORT MMAS 3

P
ro

gr
am

m
ab

ili
ty

Performance

Reconfigurable

processors
General−purpose

       processors
Dedicated multimedia

architectures

ASICs

Programmable
media processors

Figure 1.1: Different proposed architectures for processing of MMAs.

1.2 Processor Architectures to Support MMAs

Many architectures ranging from application-specific processors to domain-specific
processors have been proposed to process MMAs [107, 8, 83, 80]. A number of
programmable Digital Signal Processors (DSP) have been used since 1980. They
support specific instructions such as the multiply-accumulate (MAC) instruction, in
order to improve both performance and programmability. Hen [60] has given a sum-
mary of characteristics of early DSPs as well as recent DSPs. Hen classified them
into four groups based on different implementation methods: DSP chip, DSP core,
multimedia DSPs, and Native Signal Processing (NSP) instruction set processors.
Multimedia DSPs are specifically designed for audio/video applications. One exam-
ple of this group is the Trimedia TM 1300 [43, 119]. The NSP processors extend the
instruction set of a GPP to process multimedia data.

Other researchers [36, 104, 37, 53, 123] have provided different classifications of
the media processors. All proposed architectures can be divided into two categories,
Dedicated Multimedia Processors (DMPs) and GPPs enhanced with multimedia ex-
tensions. DMPs can also be divided into three groups, Application Specific Integrated
Circuits (ASICs), reconfigurable architectures, and programmable media processors.
This classification is depicted in Figure 1.1 in the performance-programmability
space. Each architecture is briefly discussed in the following sections.

1.2.1 Dedicated Multimedia Processors (DMPs)

DMPs are typically custom designed architectures intended to perform specific mul-
timedia functions such as video and audio compression and decompression, and 2D
and 3D graphics applications. DMPs can be divided into ASICs, reconfigurable ar-



4 CHAPTER 1. INTRODUCTION

chitectures, and programmable media processors.

The ASIC implementation is a direct mapping of a multimedia algorithm to hard-
ware. The implemented hardware is optimized to execute that specific algorithm.
Matching the individual hardware modules to the processing requirements results in
area-efficient implementations. The ASIC design is usually used to accelerate spe-
cific multimedia algorithms such as the Discrete Cosine Transform (DCT), quantiza-
tion, entropy encoding, and motion estimation, while a host processor takes care of
the main control.

Reconfigurable architectures [16] offer a compromise between the performance ad-
vantages of ASICs and the flexibility of programmable architectures. Reconfigurable
architectures are able to directly implement specialized functions in hardware and
also contain functional resources that can be modified. However, reconfiguration
involves an additional cost of time and power.

Programmable media architectures can be divided into flexible programmable ar-
chitectures, which provide high flexibility, and adapted programmable architectures,
which provide higher efficiency but less flexibility. These architectures can support
a complete MMA. There are different mechanisms in the design of programmable
architectures for achieving high-performance such as DLP, Instruction-Level Par-
allelism (ILP), and Thread-Level Parallelism (TLP) or adaptation to special algo-
rithm characteristics by implementing specialized instructions and dedicated hard-
ware modules that result in higher efficiency for a limited application field [44].

Advanced dedicated multimedia processors use Very Long Instruction Word (VLIW)
architectural schemes to exploit a high degree of ILP [77]. This is because VLIW ar-
chitectures have many advantages compared to superscalar processors. For example,
VLIW processors employ static instruction scheduling performed at compile-time
rather than dynamic scheduling performed at run-time as in superscalar processors,
which requires much more hardware [45]. Furthermore, hardware does not need to
determine which instructions can be issued in parallel. One example of this group is
Philips’ TM1000 [43, 119]. This architecture contains a VLIW processor, as well as a
video and audio I/O subsystem. The processor has an instruction set that is optimized
for processing audio, video, and graphics.

Other researchers [87, 28, 79, 32, 75] have proposed some dedicated programmable
architectures for the multimedia domain. Lee et al. [87] have shown that a vector ar-
chitecture is a cost-effective solution for MMAs because these applications exhibit a
large amount of DLP. An ISA extension called Complex Streamed Instructions (CSI)
for increasing parallelism by processing 2D data streams has been proposed in [28].
This ISA extension has several advantages. First, CSI does not put an architectural
limitation on the number of subwords that are processed in parallel, because CSI pro-
cesses data streams of arbitrary length. Thus, the number of bits or data elements that



1.2. PROCESSOR ARCHITECTURES TO SUPPORT MMAS 5

are processed in parallel is not visible to the programmer. Second, CSI minimizes
the overhead caused by data misalignment by performing alignment in hardware.
CSI also eliminates loop control instructions, because CSI processes 2D streams of
arbitrary length. The instructions represent the overhead necessary to put data in a
format suitable to SIMD operations, these are called overhead instructions, such as
packing/unpacking and data re-shuffling instructions.

Matrix registers with accumulators are introduced in the Matrix-Oriented Multimedia
(MOM) ISA [32, 33]. The MOM architecture combines traditional pipelined vector
processing with subword processing. It relies on having a vector register file where
every element contains subwords that are processed in parallel. It supports stride-n
access, where every element is loaded separated by an n-byte gap. Two key features
distinguish MOM from CSI. First, MOM is a register-to-register architecture that
uses sectioning when the data do not fit into the MOM registers. Second, MOM
requires overhead instructions for data conversion.

Another related dedicated architecture for processing MMAs is the Imagine proces-
sor [75, 103], which has a load/store architecture for 1D streams of data records.
Imagine is a stand-alone multimedia coprocessor. The focus of the Imagine project
is to develop a programmable architecture for graphics and image/signal processing.

1.2.2 GPPs Enhanced with Multimedia Extension

In order to increase the performance of MMAs, GPPs vendors have extended their
ISAs. These ISA extensions use the Subword Level Parallelism (SLP) concept [89].
A subword is a smaller precision unit of data contained within a word. In SLP, mul-
tiple subwords are packed into a word and then whole word is processed. SLP is
used in order to exploit DLP with existing hardware without sacrificing the general-
purpose nature of the processor. SLP provides a very low-cost form of small-scale
SIMD parallelism, which is called microSIMD in [91], in a word-oriented processor.
This is because there is no need to replicate the functional units, and the memory
port can supply multiple elements at no additional cost. In addition, SLP is a form
of vector processing. A register is viewed as a small vector with elements that are
smaller than the register size. This requires small data types and wide registers.

As mentioned previously, multimedia kernels process small data types, and the regis-
ters of GPPs satisfy these requirements. In particular, the double-precision Floating-
Point (FP) registers can hold several of such elements. The same operation is applied
to the different subwords simultaneously.

In SLP, a word-wide functional unit is partitioned into parallel subword functional
units, with small hardware overhead. As illustrated in Figure 1.2, a 64-bit ALU can
be partitioned into four 16-bit ALUs. Such a partitionable ALU allows either four



6 CHAPTER 1. INTRODUCTION

Operand 2, each subword is 16−bitOperand 1, each subword is 16−bit

0

16−bit ALU16−bit ALU16−bit ALU16−bit ALU

Each subword is 16−bit

0 0

Cin

A 
64

−b
it 

pa
rti

tio
ne

d 
AL

U

Cout

Figure 1.2: A 64-bit partitioned ALU that is divided into four parallel functional units using
the subword level parallelism concept.

16-bit, two 32-bit ALU operations, or a single 64-bit ALU operation to be performed
in a single clock cycle. The overhead is very small since the same datapaths are used
in all cases. Furthermore, unlike VLIW and superscalar processors, SLP does not
require additional ports to the register file. A processor with two 64-bit partitionable
ALUs could support eight parallel 16-bit operations with just a 6-ported (4 read and
2 write ports) register file, while a processor with eight independent 16-bit functional
units requires a 24-ported register file.

The first multimedia extensions are Intel’s MMX [106, 105], Sun’s Visual Instruc-
tion Set (VIS) [140], Compaq’s Motion Video Instructions (MVI) [10], MIPS Digital
Media eXtension (MDMX) [57, 72], and HP’s Multimedia Acceleration eXtension
(MAX) [89, 90]. These extensions supported only integer data types and were in-
troduced in the mid-1990’s. 3DNow [2] was the first to support floating-point media
instructions. It was followed by Streaming SIMD Extension (SSE) and SSE2 from
Intel [111, 139]. Motorola’s AltiVec [118, 42] supports integer as well as floating-
point media instructions. In addition, high-performance processors also use SIMD
processing. An excellent example of this is the Cell processor [49, 62, 67] developed
by a partnership of IBM, Sony, and Toshiba. Cell is a heterogeneous chip multipro-
cessor consisting of a PowerPC core that controls eight high-performance Synergistic
Processing Elements (SPEs). Each SPE has one SIMD computation unit that is re-
ferred to as Synergistic Processor Unit (SPU). Each SPU has 128 128-bit registers.
SPUs support both integer and floating-point SIMD instructions.

The main differences between these multimedia extensions are the following. First,
they reconfigure the internal register file structure different from each other to accom-
modate microSIMD operations. Second, they choose and add different multimedia
instructions in their ISA. Multimedia instruction set can be broadly categorized ac-



1.3. A COMPARISON BETWEEN PROCESSOR ARCHITECTURES FOR MMAS 7

GPP with
Multimedia Extension
ISA Name AltiVec/VMX MAX-1/2 MDMX MMX/ VIS MMX/ SSE SSE2 SPU ISA

3DNow SIMD
Company Motorola/IBM HP MIPS AMD Sun Intel Intel Intel IBM/Sony/Toshiba
Instruction set Power PC PARISC2 MIPS-V IA32 P. V.9 IA32 IA64 IA64 -
Processor MPC7400 PA RISC R1000 K6-2 Ultra P2 P3 P4 Cell

PA8000 Sparc
Year 1999/2002 1995 1997 1999 1995 1997 1999 2000 2005
Datapath width 128-bit 64-bit 64-bit 64-bit 64-bit 64-bit 128-bit 128-bit 128-bit
Size of register file 32x128b (31) /32x64b 32x64b 8x64b 32x64b 8x64b 8x128b 8x128b 128x128b
Dedicated or shared with Dedicated Int. Reg. FP Reg. Dedicated FP Reg. FP Reg. Dedicated Dedicated Dedicated
Integer data types:
8-bit 16 - 8 8 8 8 8 16 16
16-bit 8 4 4 4 4 4 4 8 8
32-bit 4 - - 2 2 2 2 4 4
64-bit - - - - - - - 2 2
Shift right/left Yes Yes Yes Yes Yes Yes Yes Yes Yes
Multiply-add Yes No No Yes Yes Yes Yes Yes Yes
Shift-add No Yes No No No No No No No
Floating-point Yes No Yes Yes No No Yes Yes Yes
Single-precision 4x32 - 2x32 4x16 - - 4x32 4x32 4x32

2x32
Double-precision - - - 1x64 - - - 2x64 2x64
Accumulator No No 1x192b No No No No No
# of instructions 162 (9) 8 74 24 121 57 70 1441 213
# of operands 3 3 3-4 2 3 2 2 2 2/3/4
Sum of absolute-differences No No No Yes Yes No Yes Yes Yes
Modulo addition/ 8, 16, 32 16 8, 16 8, 16 16, 32 8, 16 8, 16 8, 16 8, 16
subtraction 32 32, 64 32, 64 32,64 32,64
Saturation addition/ U8, U16, U32 U16, S16 S16 U8, U16 No U8, U16 U8, U16 U8, U16 -
subtraction S8, S16, S32 S8, S16 S8, S16 S8, S16 S8, S16 -

Table 1.3: Summary of available multimedia extensions. Sn and Un indicate n-bit signed
and unsigned integer packed elements, respectively. Values n without a prefix U or S in
the last row, indicate operations work for both signed and unsigned values. 1 Note that 68
instructions of the 144 SSE2 instructions operate on 128-bit packed integer in XMM registers,
wide versions of 64-bit MMX/SSE integer instructions.

cording to the location and geometry of the register file upon which microSIMD
instructions operate. The alternatives are reusing the existing integer or floating point
register files, or implementing an entirely separate one. The type of the register file
affects the width and therefore the number of packed elements that can be operated
on simultaneously (vector length). Despite the similarities, each approach to subword
extensions is unique [72]. Key differences include the amount of additional hardware
required, ranging from MAX-2, which reuses the integer registers and execution units
and requires virtually no additional execution hardware, to AltiVec, which requires
an entirely new execution unit. Table 1.3 summarizes the common and distinguishing
features of existing multimedia instruction set extensions [8, 60, 129, 47].

1.3 A Comparison Between Processor Architectures for MMAs

In this section, different processor architectures for MMAs are compared based on
the metrics programmability, performance, and cost.



8 CHAPTER 1. INTRODUCTION

Architectures Performance Flexibility Power Cost Density Design effort

ASIC High Low Low High Medium High

Reconfigurable hardware Medium High High Medium Medium Medium

Dedicated media processors Medium High Medium Medium Medium Medium

GPPs with multimedia extensions Low High Medium Low High Low

Table 1.4: Comparison of different architectures for multimedia processing [60, 137].

Various metrics have been developed to compare the quality of different media pro-
cessor implementations. For example, flexibility has been considered as one of the
key advantage in media processors since it allows changes to system functionality
at various points in the design life cycle. Table 1.4 compares different solutions
for multimedia processing. The ASIC approaches offer the advantages of high-
performance and low power, but their design and debugging phases involve a signifi-
cant amount of time. Because the development cost cannot be spread across multiple
applications, the cost of ASICs are generally higher than, for example, conventional
microprocessor-based solutions. In addition, they are suitable only for specific func-
tions, and future extensions are not possible without redesigning the hardware.

Reconfigurable architectures are more flexible than ASIC designs, while their power
consumption is high. Dedicated media architectures provide dedicated modules for
several multimedia tasks, but they are not suitable for multiple standards and multi-
ple formats of media applications. They have high-performance compared to GPPs
enhanced with multimedia extensions but they have narrow applicability. GPPs
equipped with media ISA extensions are more flexible than other architectures, but
their performance is lower. One main reason why their performance is lower than
other architectures is because they incur many overhead instructions. For example,
Ranghanathan et al. [112] have shown that the implementations of the MPEG/JPEG
codecs using the VIS ISA require on average 41% overhead instructions

In this dissertation, some (micro-)architectural enhancements are proposed to avoid
overhead instructions and to exploit more DLP than existing multimedia extensions
such as MMX and SSE can. Subword level parallelism is used, a concept that has
already been used by microSIMD extensions. Exploiting SLP requires mapping the
algorithm to the partitioned ALUs in such a way that the maximum number of sub-
words are executed in parallel, while the time for overhead instructions must not
waste the speedup achieved by the partitioned ALUs.

SLP is more cost efficient than other parallel architectures such as Multiple Instruc-
tion, Multiple Data (MIMD), macroSIMD (compared to microSIMD), superscalar
processor, and VLIW architectures. This is because of the following reasons.

First, an MIMD architecture consists of multiple processors, and each processor can
execute a different instruction in each clock cycle. Each processor has its own regis-
ter file. For example, for four processors, four instructions must be issued for 4-way



1.3. A COMPARISON BETWEEN PROCESSOR ARCHITECTURES FOR MMAS 9

Instruction 1

Instruction 1

Instruction 1 Instruction 4Instruction 3Instruction 2

oper. 1, 2, 3, 4

MIMD processor

macroSIMD processor

microSIMD processor

VLIW processor

Superscalar processor

Instruction 4
Instruction 3
Instruction 2
Instruction 1

Instruction 1

Figure 1.3: Instructions needed per cycle to provide 4-way parallelism [91].

parallelism. An interconnection network is needed to transfer data between the pro-
cessors. Second, a macroSIMD architecture has the same datapaths as an MIMD
architecture, except that a single instruction is issued to all the processors in a single
clock cycle. Third, in the superscalar architecture, the register file is shared between
m parallel ALUs. In each clock cycle, at most n different instructions are issued
for n-way parallelism, where n ≤ m. Finally, the VLIW architectures is almost the
same as a superscalar architecture except that only a single instruction is issued in
each clock cycle, while this single instruction consists of up to n different operations
for n parallel ALUs to provide n-way parallelism.

Figure 1.3 shows the number of instructions that need to be issued in order to achieve
4-way parallelism in the different parallel architectures. In addition, Table 1.5 shows
the approximate area of the register files of the different architectures to support 4-
way parallelism on 16-bit elements. Each register file has 32 16-bit registers. Both
MIMD and macroSIMD architectures have four register files, with 128 registers in
total. Their area requirements are proportional to the total number of bits in all four
register files, with an overhead of d per register file, and an addressing overhead
of e per register. The microSIMD architecture can hold the same number of 16-bit
operands in one quarter of the number of registers, since these are packed as four 16-
bit subwords in one 64-bit register. Hence, it has slightly smaller area requirements
due to area overhead for the registers and register files than the MIMD or macroSIMD
architectures.

In the rest of this thesis, the word “SIMD” is used instead of “microSIMD”. In the
next section, the performance of some SIMD architectures such as the MMX and
SSE extensions is evaluated using multimedia kernels on the Pentium 4 processor.



10 CHAPTER 1. INTRODUCTION

Parallel # of Register Total # of Width of Max. Number Approximate Area
Architecture Files Registers Register of 16-bit Operands for all Registers
MIMD 4 128 16-bit 128 F(4*32*16)+4(d+32e)
MacroSIMD 4 128 16-bit 128 F(4*32*16)+4(d+32e)
Superscalar 1 32 16-bit 32 F(32*16)+d+32e
VLIW 1 32 16-bit 32 F(32*16)+d+32e
MicroSIMD 1 32 64-bit 128 F(4*32*16)+d+32e

Table 1.5: Storage capacity and area requirements with fixed number of bits per register
address. Number of registers per register file is 32 registers. “d”: overhead per register file,
“e”: addressing overhead per register [91].

1.4 An Evaluation of SIMD Architectures Using Multimedia Ker-
nels

In order to identify the bottlenecks of existing SIMD architectures, some impor-
tant multimedia kernels have been implemented using MMX and SSE and their
performance was measured on the Pentium 4. The selected kernels are the sum-
of-absolute differences (SAD) [111], SAD with interpolation, SAD for histogram
similarity measurement [39], sum-of-squared differences (SSD) [144], color space
conversions (RGB-to-YCbCr and YCbCr-to-RGB) [125], matrix transpose for inte-
gers (Transp. (int)) and FP numbers (Transp. (real)) [122], Paeth prediction [114],
2D DCT, (5, 3) lifting scheme [135], and Daubechies’ transform with four coeffi-
cients [141] (Daub-4) were selected. It is important to note that the last three kernels
process data in both horizontal and vertical directions. This means that these algo-
rithms consist of both horizontal filtering, process data along the rows and vertical
filtering, process data along the columns. This implies that in order to employ SIMD
instructions, the matrix needs to be transposed frequently. All kernels were imple-
mented using the MMX architecture except Transp. (real) and both horizontal filter-
ing and vertical filtering of the Daub-4 transform, which were implemented using the
SSE architecture.

In the following sections, the methodology and metrics and the results obtained on
the Pentium 4 processor are discussed. Finally, the performance bottlenecks are de-
termined.

1.4.1 Methodology and Metrics

Two versions of each kernel were implemented: one in C and one in assembly using
MMX and SSE. The different versions of each kernel employ the same algorithm
and data types. Each program consists of three parts, for reading the input data, for
performing the computation, and for storing the calculated data. Only the computa-
tion part was implemented in MMX and SSE and only the time taken by this part is



1.4. AN EVALUATION OF SIMD ARCHITECTURES USING MULTIMEDIA

KERNELS 11

Processor Intel Pentium 4
CPU Clock Speed 3.0GHz
L1 Data Cache 8 KBytes, 4-way set associative,

64 Bytes line size
L2 Cache 512 KBytes, 8-way set associative,

64 Bytes line size, On Chip
Table 1.6: Parameters of the experimental platform.

reported.

The reasons why the assembly language has been used for the SIMD programming
of multimedia kernels are the following. First, the assembly language is the most
effective technique because it may produce the required performance gain. Second,
as indicated by Kuroda et al. [83], the efficient programming of processors with mul-
timedia extensions can only be attained if experts tune their software using assembly
language, just as in DSP approaches. Third, the goal is to determine the impact of
SIMD instructions on the performance and not the performance of the intermediate
tools. Additionally, multimedia kernels are usually small functions and their imple-
mentations by assembly language is not so difficult.

All C programs were compiled using gcc with optimization level -O2. As experimen-
tal platform a 3.0GHz Pentium 4 processor was employed. The main architectural
parameters of this system are summarized in Table 1.6.

All programs were executed on a lightly loaded system. The number of cycles was
obtained using the IA-32 cycle counter [70]. Cycle counters provide a very precise
tool for measuring the time that elapses between two different points in the execution
of a program [17, 131]. In order to eliminate the effects of context switching and
compulsory cache misses, the K-best measurement scheme and a warmed up cache
were used [17]. That means that the function was repeatedly (K times) executed, and
the fastest time is reported. Executing the function at least once before starting the
measurement minimizes the effects of both instruction and data cache misses. The
speedup was measured by the ratio of execution cycle count for the computational
part of each kernel and this metric formed the basis of the comparative study in this
thesis.

1.4.2 Analysis of Results

Figure 1.4 depicts the speedup of the MMX and SSE implementations of the mul-
timedia kernels over the C implementation on the Pentium 4 processor. As can be
seen the speedup of the MMX/SSE implementation of the SAD kernel is the largest
due to the Special-Purpose psadbw Instruction (SPI) [111]. The speedup for other
similarity measurements (SAD with interpolation, SAD for histogram similarity mea-



12 CHAPTER 1. INTRODUCTION

Figure 1.4: Speedup of the MMX and SSE implementations of the multimedia kernels over
the scalar versions on the Pentium 4 processor.

surements, and SSD) is less than for the SAD kernel. This is because there are no
SPIs for these functions. In addition, the speedup of the RGB-to-YCbCr color space
conversion is less than the speedup of the YCbCr-to-RGB color space conversion.
The reason for this is that in the former kernel more overhead instructions are re-
quired than in the latter kernel. Furthermore, the performance improvements of the
SIMD implementations of the vertical filtering of the DCT, (5, 3) lifting, and Daub-4
are larger than the implementations of the corresponding horizontal filtering phases
of these kernels. This is because under the row-major image layout, it is easier and
more efficient to vectorize vertical filtering than horizontal filtering.

In general, multimedia extensions provide significant performance benefits for multi-
media kernels as is shown in Figure 1.4 and also by other researchers [112, 130]. Ex-
isting extensions, however, have a number of bottlenecks that limit the performance
improvement. In the next section, some of these bottlenecks are determined.

1.4.3 Performance Bottlenecks

SIMD extensions generally provide two kinds of SIMD instructions. The first are the
SIMD computational instructions such as arithmetic instructions. The second are the
SIMD overhead instructions that are necessary for data movement, data type conver-
sions, and data reorganization. The latter instructions are needed to bring data in a
form amenable to SIMD processing. These instructions constitute a large part of the
SIMD codes. For example, Ranghanathan et al. [112] indicated that the SIMD im-
plementations of the MPEG/JPEG codecs using the VIS ISA require on average 41%
overhead instructions such as packing/unpacking and data re-shuffling. In addition,
the dynamic instructions count of the EEMBC consumer benchmarks running on the
Philips TriMedia TM32 shows that over 23% of instructions are data alignment in-
structions such as pack/merge bytes (16.8%) and pack/merge half words (6.5%) [61].
The execution of this large number of the SIMD overhead instructions decreases the
performance and increases pressure on the fetch and decode steps.



1.5. DISSERTATION CHALLENGES 13

To illustrate where overhead instructions are needed in the SIMD implementations of
multimedia kernels, two motivational examples are shown in Figure 1.5. To the left,
the MMX implementation of the RGB-to-YCbCr color space conversion is shown
and to the right the SSE implementation of horizontal filtering of the Daub-4 trans-
form is shown. In addition, the Figure 1.5 in the middle shows the different steps in
the processing of multimedia data. The main reasons to select these kernels are as
follows. The image data in the color space conversion is usually interleaved. SIMD
vectorization of kernels that use interleaved data is difficult due to the fact that multi-
media extensions provide access only to continuous elements. As already mentioned,
the Daub-4 transform consists of two 1D transforms, horizontal and vertical filter-
ing, as do the other 2D transforms. To vectorize the horizontal filtering, the matrix
needs to be transposed frequently. Transposition takes a significant amount of time,
however. For example, Figure 1.6 shows how to transpose a 4 × 4 block of single-
precision floating-point values using SSE instructions. As this figure shows, the first
two low-order and two high-order values of rows 0 and 2, and 1 and 3 are unpacked.
The obtained results are also unpacked. For this operation eight load/store, eight un-
pcklps/unpckhps, and four data movement instructions are required. In other words,
20 SIMD instructions are needed to transpose a matrix of size 4 × 4 as depicted in
Figure 1.7. As a result, vectorizing such applications efficiently is a challenge in
SIMD architectures.

As Figure 1.5 shows, data reordering and data type conversion instructions are used
in Steps 3, 4, and 6 in the MMX implementation after loading the input data and
before storing the outputs. The overhead instructions are used in Step 3 in the SSE
implementation to transpose a block. In the MMX code, the number of overhead in-
structions is 41 in each loop iteration, while the number of the SIMD instructions in
the processing stage (Step 5) is 78. This means that the number of overhead instruc-
tions is significant compared to the number of SIMD instructions in the processing
stage. Consequently, it is important either to eliminate, to alleviate, or to overlap
these instructions with other SIMD instructions. In addition, 30 instructions in the
processing stage of the color space conversion are data movement instructions be-
tween registers and memory. This is because there are not enough registers to keep
the temporary results and coefficients. Therefore, data has to be frequently loaded or
stored from or to memory. Since the MMX and SSE architectures have only eight ar-
chitectural media registers that is not sufficient to implement the multimedia kernels
efficiently.

1.5 Dissertation Challenges

As indicated earlier, many data type conversion and data rearrangement instructions
are needed to implement MMAs using existing SIMD architectures. The main reason



14 CHAPTER 1. INTRODUCTION

1

2

3

4

5

6

7

Unpack to larger 
format

Process

movups       (edx, edi), xmm2

MMX code SSE code

16455, 16455
Ygeen_4way 16455, 16455,

movq           mm1,      (esi)
movq           mm2,      8(esi)
movq           mm3,      16(esi)

punpcklbw   mm1,      mm0

total of 78 instructions    

pmulhw        mm1,      Yred_4way
pmulhw        mm2,      Ygreen_4way
pmulhw        mm3,      Yblue_4way

packuswb    mm1,      mm7
packuswb    mm2,      mm6

Initialization

Steps

LP_Filter2    0.2241, 0.2241,
0.2241, 0.2241

Loop: Loop: movups        xmm0,    (esi)
movups        xmm1,    16(esi)
movups        xmm3,    8(esi)

movaps        xmm2,     xmm0 
unpcklps      xmm0,     xmm1
unpckhps     xmm2,     xmm1

mulps          xmm0,      LP_Filter1
mulps          xmm1,      LP_Filter2
mulps          xmm2,      HP_Filter1

movups       (edi),        xmm0

sub              ecx,         1
jnz               Loop

Different steps in SIMD implementaion

Yred_4way    8382  ,  8382,

Yblue_4way  3196  , 3196,
3196  , 3196

8382  ,  8382

punpcklbw   mm3,      mm0
punpcklbw   mm2,      mm0 

packuswb    mm3,      mm5

movq           16(edi),   mm3

sub             ecx,         24
jnz               Loop

Data rearrangment
instructions

Load input data

Pack

Store  the results

Loop control
instructions

pxor              mm0   ,   mm0

total of  35 instructions
punpcklbw   mm5,       mm4
psrlq            mm4,       24
movq           mm5,       mm1
movq           mm4,       mm1

movq           (edi)    ,   mm1
movq           8(edi)  ,   mm2

add             edi ,          24
add             esi ,          24

LP_Filter1    −0.129 , −0.129,
−0.129 , −0.129

HP_Filter1   −.0483 , −0.483,
−.0483 , −0.483

add              edi ,         16
add              esi ,         32 

HP_Filter2   0.8365, 0.8365,
0.8365, 0.8365

total of 16 instructions

total of 14 instructions    

Figure 1.5: Illustration of where overhead instructions are used in the MMX implementation
of the RGB-to-YCbCr kernel and the SSE implementation of the horizontal filtering of the
Daub-4 transform.



1.5. DISSERTATION CHALLENGES 15

a1 c1 a2 c2
a1 a2 a3

b1 b2 b3 b4

c2 c3 c4

d2 d3 d4

unpcklps

unpckhps

unpcklps

unpcklps b1 d1 b2 d2

unpcklps a1 b1 c1 d1

a2 b2 c2 d2unpckhps

a3 c3 a4 c4

b3 d3 b4 d4

a3 b3 c3 d3

a4 b4 c4 d4unpckhps

unpckhps
c1

d1

a4

Figure 1.6: Matrix transpose of a 4 × 4 block using SSE instructions.

movaps xmm0, (blk1) ; xmm0 =

movaps xmm1, 16(blk1); xmm1 =

movaps xmm2, 32(blk1); xmm2 =

movaps xmm3, 48(blk1); xmm3 =

movaps xmm4, xmm0 ; xmm4 =

movaps xmm6, xmm1 ; xmm6 =

unpcklps xmm0, xmm2 ; xmm0 =

unpcklps xmm1, xmm3 ; xmm1 =

movaps xmm5, xmm0 ; xmm5 =

unpcklps xmm0, xmm1 ; xmm0 =

unpckhps xmm5, xmm1 ; xmm5 =

unpckhps xmm4, xmm2 ; xmm4 =

unpckhps xmm6, xmm3 ; xmm6 =

movaps xmm7, xmm4 ; xmm7 =

unpcklps xmm4, xmm6 ; xmm4 =

unpckhps xmm7, xmm6 ; xmm7 =

movaps (blk2), xmm0 ; (blk2) =

movaps 16(blk2), xmm5 ; 16(blk2) =

movaps 32(blk2), xmm4 ; 32(blk2) =

movaps 48(blk2), xmm7 ; 48(blk2) =

a4 a3 a2 a1

b4 b3 b2 b1

c4 c3 c2 c1

d4 d3 d2 d1

a4 a3 a2 a1

b4 b3 b2 b1

c2 a2 c1 a1

d2 b2 d1 b1

c2 a2 c1 a1

d1 c1 b1 a1

d2 c2 b2 a2

c4 a4 c3 a3

d4 b4 d3 b3

c4 a4 c3 a3

d3 c3 b3 a3

d4 c4 b4 a4

d1 c1 b1 a1

d2 c2 b2 a2

d3 c3 b3 a3

d4 c4 b4 a4

Figure 1.7: Illustration of the SSE instructions to transpose a 4 × 4 block.



16 CHAPTER 1. INTRODUCTION

Multimedia Extension Number of Instructions
VIS 106
MAX/MAX2 64
AltiVec 24
MMX/SSE 88

Table 1.7: The number of instructions needed to transpose an 8 × 8 block on the different
multimedia extensions, each element of the block is two bytes.

for this is that the requirements of MMAs do not match the abilities of GPPs enhanced
with SIMD extensions. This is for the following reasons:

• There is a mismatch between the computational format and the storage format
of multimedia data. The precision of the intermediate results are usually larger
than the storage format. Consequently, data type conversion instructions such
as unpacking are required before operations are performed and the results also
have to be packed before they can be stored back to memory. As a result,
performance is lost due to the execution of data type conversion instructions,
and fewer subwords can be processed in parallel. These operations are shown
in Steps 4 and 6 in Figure 1.5.

• Existing SIMD computational instructions cannot efficiently exploit DLP of
the 2D multimedia data. As already mentioned, 2D multimedia algorithms
such as the 2D Discrete Wavelet Tranform (DWT) and 2D (I)DCT consist of
two 1D transforms called horizontal and vertical filtering. The horizontal fil-
tering processes the rows while vertical filtering processes the columns. SIMD
vectorization of the vertical filtering is straightforward, since the corresponding
data of each column are adjacent in memory. Therefore, several columns can
be processed without any rearranging of the subwords. For horizontal filtering
on the other hand, corresponding elements of adjacent rows are not continu-
ous in memory. In order to employ SIMD instructions, data rearrangement
instructions are needed to transpose the matrix. This step takes a significant
amount of time. For example, transposing an 8 × 8 block of bytes, requires 56
MMX/SSE instructions, if the elements are two bytes wide, then 88 instruc-
tions are required as shown in Table 1.7. This table depicts the number of
instructions needed to transpose an 8 × 8 block for different multimedia ex-
tensions. This was shown in Step 3 in Figure 1.5 for horizontal filtering of the
Daub-4 transform.

• Vector instructions of conventional SIMD extensions execute the same oper-
ations on multiple data that is adequately packed in vector registers. Com-
putations, on the other hand, may execute the same operations on multiple
interleaved data. SIMD memory architectures typically provide access to con-
tiguous memory items. This means that multimedia extensions cannot load or



1.5. DISSERTATION CHALLENGES 17

store strided data. Therefore, vectorizing interleaved data requires many re-
arrangement instructions to allow for parallel computation, which can lead to
actual performance degradation. This was shown in Step 3 in Figure 1.5 for
color space conversion.

• Special-purpose instructions such as the SAD instruction have limited useful-
ness except for the specific kernels they were designed to accelerate. This has
several drawbacks. First, if the SAD becomes obsolete because a different sim-
ilarity metric is employed, then the SAD SPI is no longer useful. For example,
MIPS’ MDMX [72] provides no SAD SPI but advocates using the SSD in-
stead. Second, as indicated in [85], the complex CISC-like semantics of SPIs
makes automatic code generation difficult. Third, the SAD SPI only supports
the packed byte data type. While useful for the SAD kernel used in motion
estimation, this precision is not sufficient for multimedia kernels such as mo-
tion estimation in the transform domain or for cost functions used in image
and video retrieval [94]. Finally, since these instructions process eight 8-bit
subwords, they are most useful if the vector length is a multiple of 8. In the
H.264 standard, however, variable block sizes, for instance 8× 4 and 4× 4 are
used [136].

All of the above limitations are critical to efficient SIMD implementation of multime-
dia applications. Solving these limitations is the scope of this dissertation. In order to
reach this goal, a novel SIMD ISA extension called the Modified MMX (MMMX) is
proposed. The MMMX architecture uses the extended subwords and the Matrix Reg-
ister File (MRF) techniques. Extended subwords use registers that are wider than the
packed format used to store the data. Extended subwords avoid data type conversion
instructions. The MRF allows to load data stored consecutively in memory to a col-
umn of the register file, where a column corresponds to corresponding subwords of
different registers. This technique avoids the need of data rearrangement instructions.
The proposed architecture is validated by studying the performance of a wide range
of multimedia kernels and applications. The performance obtained by the MMMX
architecture is compared with that achieved by the MMX/SSE architectures.

In addition, it was found that the implementation of the 2D DWT on the Pentium 4
suffers from the following problems.

• 64K aliasing, which occurs when two data blocks need to be cached simulta-
neously whose addresses differ by a multiple of 64K. This can degrade perfor-
mance by an order of magnitude. Two code transformation techniques, loop
fission and offsetting, are proposed to avoid 64K aliasing.

• Cache conflict misses. Cache performance can be improved by applying loop
interchange, but there will still be many conflict misses if the filter length ex-
ceeds the cache associativity. Therefore, two code transformation techniques,



18 CHAPTER 1. INTRODUCTION

associativity-conscious loop fission and lookahead, are proposed to reduce the
number of conflict misses.

The proposed techniques are implemented on actual machines and their performance
is compared to an optimized reference implementation.

An overview of how the research challenges have been addressed and how they are
presented in this dissertation follows.

1.6 Structure of the Thesis

This dissertation contains six chapters.

Chapter 2 gives a brief discussion about the background information related to data
type conversion, data permutation instructions, SIMD vectorization, and cache opti-
mization. In some SIMD architectures data type conversion instructions are used to
convert the smaller data type to a larger data type. In addition, in this chapter differ-
ent techniques to deal with data rearrangement are explained. For example, providing
pre-defined data permutation instructions, designing a separate permutation unit, and
changing the architecture of the media register file are such techniques. Furthermore,
some techniques for SIMD vectorization and cache optimization that have been pro-
posed by other researchers are described.

Chapter 3 describes the proposed MMMX architecture. First, extended subwords and
the matrix register file techniques are discussed in detail. Second, the new load/store
SIMD instructions, ALU, and multiplication instructions are presented. Third, the
main differences between the MMMX and MMX architectures are explained. Finally,
the hardware cost of the MMMX architecture is discussed.

Chapter 4 describes the performance evaluation of the proposed architecture using
multimedia kernels and applications. Some important MMAs such as MPEG-2 and
JPEG are selected. These applications are profiled in order to find the most time
consuming kernels, and those media kernels are implemented using the MMMX and
MMX/SSE architectures. The performance of the MMMX architecture is compared
to the MMX/SSE architectures at kernel-, image-, and application-level.

Chapter 5 discusses the implementation of the 2D DWT on SIMD-enhanced general-
purpose processors. First, the different algorithms to implement the 2D DWT are
explained. Second, the memory behavior of the vertical filtering is analyzed in or-
der to identify the problems of 64K aliasing and cache conflict misses. Third, the
proposed techniques to avoid 64K aliasing and to alleviate the cache conflict misses
are discussed. Finally, the SIMD vectorization of the 2D DWT and its performance
improvement are explained.



1.6. STRUCTURE OF THE THESIS 19

The thesis ends with Chapter 6, in which the conclusions, the contributions, and
future work are described.





Chapter 2

Background

A
register file consists of an array of registers that participates as a part of the
Central Processing Unit (CPU). The register file provides the source operands
and stores the calculated results of most instructions. In traditional GPPs, a

register can hold a single data, while in the GPPs enhanced with multimedia exten-
sions, a register can hold many packed data items and is called a media register.
Consequently, a media register file can be viewed as an N × M matrix, where N is
the number of registers and M is the maximum number of subwords in each register.
Since a media register file has capacity of N ×M ×n bits, where n is the number of
bits for the smallest subword. For example, in the MMX extension N = 8, M = 8,
and n = 8.

The previous chapter has shown that in the SIMD implementations of many multi-
media kernels, an n-bit subword is sometimes not sufficient to keep the intermediate
results. Then the n-bit subword should be unpacked to 2×n-bit subword. This means
that data type conversion instructions are needed to unpack a subword to a subword
that is twice as wide. In addition, the previous chapter has discussed that data permu-
tation instructions are used because of the data reordering within and between media
registers. Therefore, SIMD architectures have provided different SIMD instructions
to deal with data type conversion and data permutation instructions.

In this chapter, the background information on data type conversion instructions, data
rearrangement techniques, SIMD vectorization, and cache optimization techniques
are discussed. Section 2.1 describes the data type conversion instructions. Section 2.2
explains different techniques for data reordering. Section 2.3 explains different tech-
niques for SIMD vectorization of multimedia applications. Section 2.4 describes the
techniques that are used for cache optimization. Finally, concluding remarks are pre-
sented in Section 3.4.

21



22 CHAPTER 2. BACKGROUND

Instructions Description
paddb packed add byte, any carry out of the sum is lost.
psubb packed difference byte, any borrow out of a difference is lost.
pavgb average packed unsigned byte integers.
pmaxub packed unsigned byte maximum.
pminub packed unsigned byte minimum.

paddsb packed add signed saturation byte (−128 ≤ x ≤ 127).
psubsb packed difference signed saturation byte (−128 ≤ x ≤ 127).

paddusb packed add unsigned saturation byte (0 ≤ x ≤ 255).
psubusb packed difference unsigned saturation byte (0 ≤ x ≤ 255).

Table 2.1: The MMX instruction set to process 8-bit data type.

2.1 Data Type Conversion

This section first explains the different data type conversion instructions that have
been provided by some SIMD architectures and then it discusses how those instruc-
tions can be avoided by using a larger precision.

2.1.1 Data Type Conversion Instructions

Some multimedia extensions have provided 8 × 8-bit SIMD ALU and saturation
instructions for 8-way parallelism. Saturation clips the results of an arithmetic op-
eration to the range that can be represented by the data type. In other words, the
result of an operation that exceeds the range of a data type, saturates to the maximum
value of the range. On the other hand, if a result that is less than the range of a data
type then it saturates to the minimum value of the range. Table 2.1 depicts the MMX
instructions that support the byte data type. These instructions support three types of
arithmetic operations. First, wraparound operations that truncate the calculated result
to the result register size. Second, signed saturation that saturates the obtained result
to either the largest positive byte or the negative byte depending on the result. Finally,
unsigned saturation that saturates the result to either the largest unsigned byte or zero.

Image and video data is typically stored as packed 8-bit elements, but intermediate
results usually require more than 8-bit precision. As a consequence, most 8-bit SIMD
ALU instructions are wasted. In the SIMD extensions, if the packed subwords are
filled by a maximum value representable using the subword data type, the choice is
either to be imprecise using saturation operation at every stage, or to loss parallelism
by unpacking to a larger format. Using saturation instructions produce unexpected
results. This is because saturation is usually used at the end of computation. It is
more precise to saturate once at the end of the computation rather than at every step
of the algorithm. For instance, adding three signed 8-bit values 120 + 48− 10, using



2.1. DATA TYPE CONVERSION 23

punpcklbw   mm0,   mm1

mm0

mm1 0000000065 87 21 90 56 43 78 23

230780430560

mm0

Figure 2.1: Illustration of the punpcklbw mm0, mm1 instruction.

0xA2 0x56 0x67 0xF7 0x98 0x45 0xB1 0x23 0x09 0xE3 0xCC 0xD1 0x05 0x00 0xAA 0xFF

Halfword numbers

Byte numbers

xsbh            RT,  RA

Register RA

0x0056 0xFFF7 0x0045 0x0023 0xFFE3Register  RT 0xFFFF0x00000xFFD1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Extend sign byte to halfword 

Figure 2.2: An example of the extend sign byte halfword instruction that has been provided
in the synergistic processor unit of the Cell processor [67].

signed saturation at every step produces 117 and using signed saturation at the last
step produces 127.

SIMD architectures support different packing, unpacking, and extending in-
structions to convert the different data types to each other. For exam-
ple, the MMX/SSE architectures provide packss{wb,dw,wb} and punpck
{hbw,hwd,hdq,lbw,lwd,ldq} instructions for data type conversions. The
punpckl{bw,wd,dq} (unpack low packed data) instructions interleave the low-
order data subwords of the destination and source operands into the destination
operand. If the source operand has a value of all zeros, the result is a zero exten-
sion of the low order subwords of the destination operand. Figure 2.1 illustrates an
example for the punpcklbw instruction. However, these instructions do not support
sign extension and the programmer should carefully consider this problem.

The AltiVec extension and the ISA of the Cell SPE, on the other hand, provide extend
instructions to convert from a smaller data type to a larger data type, which have one
source operand and have the capability of sign extension. For instance, the Cell SPE
provides three such instructions. The first is extend sign byte halfword that propa-
gates the sign of the right byte of the source register to the left byte. The resulting
16-bit signed integer is stored in the destination operand. Figure 2.2 illustrates this
instruction.

The second is extend sign halfword to word instruction, where the sign of the half-
word in the right half of the source operand is extended to the left halfword. The
32-bit signed integer result is stored in the destination operand. The third data type
conversion instruction is extend sign word to doubleword. In this instruction the sign



24 CHAPTER 2. BACKGROUND

of the word in the right slot is propagated to the left word and the resulting 64-bit
integer is placed in the destination operand.

In addition, the AltiVec extension supports pack instructions for 8-bit and 16-bit
signed and unsigned saturation. These instructions concatenate two source operand
registers, producing a single result of either sixteen bytes or eight halfwords for 8-
and 16-bit data types, respectively. Additionally, there are some merge instructions
in the AltiVec ISA for byte, halfword, and word data type. For example, the halfword
SIMD merge instructions interleave the four low halfwords or four high halfwords of
two source operands and produce a result of 8 halfwords.

2.1.2 Avoiding Data Type Conversion

Some architectures provide a larger precision to avoid the use of data type conver-
sion instructions. For example, some DSP processors such as TMS320C64x/C64x+
DSP [138] and MIPS’ MDMX extension have wide accumulators. In the C64x and
C64x + DSPs two 32-bit registers are used to hold a 40-bit value. The MIPS’ MDMX
extension uses a 192-bit accumulator. This 192-bit register can be partitioned into
eight 24-bit values or four 48-bit values. It is mainly used for MAC operations,
which are common in many signal processing algorithms.

The ISA of the Cell SPE has 128-bit registers. This allows to use a computational
format of, e.g., 16-bit when the storage format is 8-bit. In fact, the Cell SPE does not
provide arithmetic instructions for the packed byte data type except for SPIs such as
average bytes and absolute differences. This is because as was mentioned in Chap-
ter 1, this data type is not sufficient for computational format. The SPE processor of
the Cell has provided explicit addition/subtraction and multiply instructions for 16-,
32-bit and 16-bit data types, respectively. In this thesis, however, it is shown that 12
and 24 bits are sufficient for many media kernels and, therefore, the additional four
and eight bits are not needed.

Slingerland and Smith have also proposed an idea of inserting four extra bits to each
byte of a register [130], where it is called fat subwords technique. However, they
have not evaluated this technique. Furthermore, as shown in Chapter 1 many 2D
media algorithms process data along the rows as well as along the columns, and the
fat subwords technique is not sufficient for those kernels.

2.2 Data Rearrangement

This section describes different approaches to permute data within a register and
across registers.



2.2. DATA REARRANGEMENT 25

7F 89 AB 45

45 AB 7F 89
3 2 1 0Subword

mm0

pshufw 01 00 10 11mm1,  mm0,

mm1

Figure 2.3: Illustration of the packed shuffle word instruction of the SSE architecture.

Generally, there are three approaches to deal with data rearrangement. First, the data
is reordered within the registers by instructions provided in the ISA. Second, the
data is reorganized during memory operations. Finally, the data is rearranged using
a special register file organization. These approaches are discussed in detail in the
following sections.

2.2.1 Explicit Instructions

Some SIMD architectures such as MIPS’ MDMX, MMX, and SSE have a set of
permutation instructions with limited capabilities. For example, the MMX/SSE
pshufw (packed shuffle word) instruction uses an immediate operand to select
which of the four words in the source operand will be placed in each of the words in
the destination operand. Figure 2.3 illustrates an example of this instruction. MIPS’
MDMX uses a predefined set of eight 8-bit and eight 16-bit wide shuffles to imple-
ment partial shuffle operations.

The AltiVec extension, the Cell SPE, and the Texas Instruments C64x VLIW
DSP [120] provide a separate permutation unit that allows an arbitrary permutation
of any subword in one instruction. In the AltiVec extension, this permutation unit is
one of four integer pipelines that are fed by the dynamic dispatch unit. In the SPE,
this unit is one of four units that are located in the odd pipeline. The Texas Instru-
ments C64x VLIW DSP has eight execution units. Two of them are used to handle
permutations.

The permute unit can generate almost any permutation of data from two input reg-
isters. For instance, the AltiVec extension and Cell SPE use vperm(vd, va,
vb, vc) and shufb(vd, va, vb, vc) (shuffle bytes) instructions, respec-
tively. These instructions can take an arbitrary collection of bytes from the two source
operands va and vb, and shuffle them into the destination operand vd based on the
permute vector vc. Figure 2.4 depicts an example of this instruction.

Although designing a separate permutation unit provides more flexibility than pre-
defined permutation instructions, it comes at a significant hardware cost, consuming



26 CHAPTER 2. BACKGROUND

00 01 02 03 04 05 06 07

2A 65 45 1A 34 90 2C 4D 7E CD 78

vc

va

vd

9E

CE

18 19 1A 1B 1C 1D 1E 1F

EE 2E 41

24

23

2B 9F 66 46 EF 1B 2F 4235 91 2D 4E 7F 79

23 35 2A 42 9E 91 65 2D 45 4E EE 7F 1A CE 2E

vb

79

1 2 3 4 5 6 7 8 9 A B C D E

11 12 13 14 15 16 17 18 19 1A 1B 1D 1E

Subwords

Subwords 10

0 F

1F1C

Figure 2.4: Illustration of the vector permute instruction of the AltiVec extension and Cell
SPE to permute sixteen subwords from the concatenation of registers va and vb by the byte
index values in the vc register.

chip area, and complexity. The most important problem with this unit is that it can
only access two media registers at a time. This results in serious limitations on the
data reordering across more than two media registers that is used in some applica-
tions such as matrix transposition and 2D media kernels as was discussed in previous
chapter. In addition, it is costly in terms of the number of registers because every re-
quired data reordering pattern must be kept in a register. Additionally, it increases the
memory bandwidth requirements to load the rearrangement patterns from memory to
registers.

Lee presented a new subword permutation instruction across multiple registers, which
can perform all permutations of a 2 × 2 matrix [92]. The Mix instruction in HP’s
MAX [89] can perform any permutation of the four 16-bit elements within a 64-bit
register.

In general, in this approach, the data permutation instructions are explicitly used to
rearrange the subwords within an SIMD register, two SIMD registers, or across more
than two SIMD registers. The execution overhead of these instructions is the main
drawback of this approach.

2.2.2 Memory Operations

Slingerland and Smith [130] proposed that SIMD architectures implement strided
loads and stores to gather non-adjacent data elements. This technique is useful for
some multimedia kernels such as color space conversion. This is because the strided
memory accesses can eliminate the overhead instructions. The MOM ISA provides
gather and scatter instructions to reorder the data. However, this approach has the
following drawbacks. First, since gather, scatter, and strided instructions are usu-
ally slower than normal load and store instructions, the memory latency is increased
and this increases the memory gap between the processor and the memory system
hierarchy. Second, loading several strided elements may cause a number of cache



2.2. DATA REARRANGEMENT 27

misses and reduce the spatial locality. Furthermore, higher bandwidth is required to
load many strided data simultaneously. In [22] it has been indicated that one reason
for poor VIRAM [78] memory performance for color space conversion is the strided
memory accesses.

ARM’s Neon Technology [11, 56] treats memory as an Array of Structures
(AoS). This means that a load instruction loads subwords stored consecutively in
memory into different SIMD registers. For example, the vld3.16 {D0, D1,
D2}, [R0] instruction transfers four 3 × 16-bit structures stored in memory as
x0, y0, z0, x1, . . . , z3 to the registers D0, D1, and D2 so that D0 contains the values
x0, . . . , x3, D1 the values y0, . . . , y3, and D2 the values z0, . . . , z3. This instruction
is very useful for the color space conversion kernel where the stride is 3 but cannot
be used for other data rearrangement operations that use strides different from 3 such
as matrix transposition. For this operation other load instructions such as vld4 can
be used.

2.2.3 Register File Organization

Many researchers [73, 63, 115, 58, 71, 101] have eliminated the data permutation
instructions by changing the organization of the media register file. For example,
Jung et al. [73] have proposed a register file organization that provides both row- and
column-wise accesses. Hsieh et al. [63] have discussed a Transpose Switch Matrix
Memory (TSMM). The TSMM can be interpreted as 4 columns of 4 16-bit registers
where each column corresponds to a particular processing element. This architecture
supports normal access as well as transposed read. Ronner et al. [115] have proposed
a highly parallel DSP (HiPAR-DSP) for image and video processing. Each data path
of the HiPAR-DSP architecture has access to a shared memory with regular matrix
access patterns and a matrix-memory. The matrix-memory is accessed using 2D
addresses. The 2D addresses consist of the position of the upper left requested data
element and the horizontal and vertical distance between adjacent matrix elements.
That is the address format is (h, v, hd, vd), where (h, v, hd, and vd) are the address of
the upper left requested data and the horizontal and vertical distance between adjacent
matrix elements, respectively.

Hanounik et al. [58] have proposed to use diagonal registers to execute matrix trans-
pose efficiently. In their technique, in addition to accessing the data in each row as is
done in a traditional vector register file, the data along the diagonal direction can also
be accessed. They have introduced three kind of registers, row registers, diagonal-
down registers, and diagonal-up registers. The diagonal-down registers are accessed
from the top left corner of the vector register file to the bottom right corner of register
file. The diagonal-up registers extend from the bottom left corner of vector register
file to the top right corner of vector register file.



28 CHAPTER 2. BACKGROUND

16 16 16 16
Vp0

stride

 Vp0 Vp1
for for

Vp1
1 1 32 33 34 35

coef(0)  coef(1) coef(2) coef(3)
0 1

. . .   
16 17 18 19

. . . 
32

input(n) input(n-1) input(n-2)  input(n-3) . . .
33 34 35

MAC MAC MAC MAC

Vector elements of registers

Figure 2.5: Vector pointers are used to index the coefficients and input entries in the single-
instruction multiple disjoint data implementation of the finite impulse response filter.

Jayasena et al. [71] have proposed a stream register file with indexed access. They
have shown that arbitrary access to a stream register file provides more temporal
locality and reduces data replication in the stream register file compared to sequential
stream register file.

A different approach to eliminate data permutation instructions named Single-
Instruction Multiple disjoint Data (SIMdD) has been proposed in the eLite DSP ar-
chitecture [40, 100, 66, 101]. Instead of a vector register file, the eLite DSP employs
a large scalar register file, the vector element file (VEF). The elements in the VEF are
addressed by four indices contained in a vector pointer register. In other words, vec-
tors are dynamically composed. While very flexible, this approach requires four read
ports to the VEF and can process at most four values in parallel. To process more,
more read ports are required. The eLite DSP also has vector accumulator registers
and a vector accumulator unit. For example, in case of the Finite Impulse Response
(FIR) filter, two vector pointers are used. All elements of a vector pointer point to the
same coefficient in the VEF and are incremented by one for the next coefficient. All
elements of the other vector pointer point to consecutive input entries in the VEF and
are incremented by one for addressing the next input data. Figure 2.5 illustrates this
algorithm. As this figure shows, Vp0 indexes the coefficient coef [0] and Vp1 indexes
the input data. The indexed coefficients and input values are used as the inputs to the
vector MAC operations.

In this method, there is overhead both in hardware and in software because in hard-
ware, vector pointer registers and a vector pointer unit are needed. In software, the
programmer or the compiler has to use initializations instructions for loading pointers
to two source vector pointers and a destination vector pointer.



2.3. SIMD VECTORIZATION 29

2.3 SIMD Vectorization

This section describes different techniques to vectorize MMAs efficiently.

Several studies have recently been performed to minimize the number of permuta-
tion instructions by compilers [113, 102, 81]. Kudriavtsev et al. [81] have proposed
an algorithm to generate permutation instructions without using intrinsics or built-in
functions. In their technique, the memory operations are grouped into SIMD instruc-
tions based on their effective address. Other operations are grouped starting from the
memory operation groups. The number of permutation instructions is optimized with
integer linear programming. Nuzman et al. [102] have extended a classic loop-based
vectorizer to generate efficient permutation instructions for interleaved data, whose
strides are powers of 2. Ren et al. [113] have used an algorithm to optimize the gener-
ation of permutation instructions. Their optimization technique reduces the number
of data rearrangement instructions by propagating permutations across statements
and merging consecutive permutations whenever possible.

Chaver et al. [25, 24] have used automatic vectorization to implement the Cohen,
Daubechies and Feauveau 9/7 filter [31] (CDF-9/7) using SSE instructions. They
used the single-precision floating-point format for both image pixels and wavelet
coefficients. The Intel compiler, however, can only vectorize simple loops, and there-
fore some manual code modifications had to be performed. Furthermore, only hor-
izontal filtering could be automatically vectorized (they assumed column-major or-
der). In addition, they focused on the memory hierarchy and considered several tech-
niques such as tiling to improve spatial and temporal locality. For example, they
combined aggregation with a line-based approach for their SIMD implementation.
The aggregation technique filters a number of adjacent columns consecutively before
moving to the next row. The line-based algorithm uses a single loop to process both
rows and columns together.

Bernabé et al. [15] have implemented the Daub-4 transform using the SSE instruc-
tions in order to reduce the execution time of the 3D wavelet transform. They as well
as other researchers [46, 23] have shown that vertical filtering of the DWT requires
more time than horizontal filtering because vertical filtering lacks spatial locality.
However, as shown in the first chapter, in order to vectorize horizontal filtering the
subwords in a media register have to be rearranged, which incurs significant over-
head.

Kutil [84] has implemented the (9, 7) lifting scheme using built-in SSE functions. He
proposed a single loop approach to SIMD vectorization. In this approach horizontal
and vertical filtering are combined into a single loop. This is called line-based com-
putation in [30] and pipeline computation in [24], where it has been used to vectorize
the CDF-9/7 transform. The single-loop approach requires a buffer whose size is



30 CHAPTER 2. BACKGROUND

... ... ... ... ... ...

...

...

(a) Normal

...

...

...

...

...

...

... ...

(b) Loop interchange

... ......

...

...

...

aggregation factor = 3

(c) Aggregation

Figure 2.6: Different implementations of the vertical filtering of discrete wavelet transform.

equal to 16 rows of data. If this buffer does not fit in the cache, the temporal locality
will be reduced.

2.4 Cache Optimization

This section describes different techniques to optimize the cache performance of the
2D DWT.

Meerwald et al. [99] have shown that a straightforward implementation of vertical fil-
tering of the DWT that processes the elements along the columns can generate many
cache misses and proposed two techniques, row extension and aggregation, to avoid
this problem. Row extension adds some dummy elements to each row so that the
image width is no longer a power of two but co-prime with the number of cache sets.
According to [99], a disadvantage of this method is that the final coded bitstream is
changed. As mentioned previously, aggregation approach processes a number of ad-
jacent columns consecutively before moving to the next row. The number of columns
filtered consecutively is called the “aggregation factor”. If the aggregation factor is
equal to the image width, aggregation is identical to loop interchange, which is a
well-known compiler technique. Figure 2.6 illustrates the normal straightforward,
the loop interchanged, and the aggregated implementation of vertical filtering.

A potential advantage of aggregation over loop interchange is that it can exploit the
reuse between the rows of input values needed to compute consecutive rows of out-
put values, while loop interchange cannot for large images. To investigate this, the
aggregation technique was implemented. Figure 2.7 depicts the speedup of loop inter-
change over aggregation for different aggregation factors on the Pentium 4. Contrary



2.4. CACHE OPTIMIZATION 31

Figure 2.7: Speedup of the loop interchanged implementation of vertical filtering over the
aggregated implementation for different aggregation factors on the Pentium 4. The image
size is 2048× 2048.

to the initial expectations, aggregation performs worse than loop interchange. This
is due to three reasons. First, aggregation incurs more loop overhead than loop in-
terchange, since it consists of three loop nests instead of two. Second, on a cache
miss the P4 prefetches the next block. Loop interchange takes advantage of this but
aggregation does not when it reaches the end of a group of columns. Third, cache
performance is not critical in these scalar implementations.

Chatterjee and Brooks [21] proposed two optimizations: strip-mining (which is iden-
tical to aggregation) and recursive data layout. The second optimization modifies the
layout of the image data so that each sub-band is stored contiguously. This increases
the locality for subsequent decomposition levels, but only the execution time of the
first level is reported. Furthermore, the first decomposition level takes more time than
all subsequent decomposition levels together.

Chaver et al. [24] combined aggregation with a line-based approach [30], which starts
vertical filtering as soon as a sufficient number of rows (determined by the filter
length) has been filtered horizontally. This approach reduces the amount of memory
required. In addition, they considered different layouts.

Komi et al. [76] as well as Lee et al. [94] proposed block-based approaches to improve
the cache efficiency for the 2D DWT. In [76] equations are presented that allow to
find the optimal block size, assuming a fully associative data cache. In [94] the block
size is equal to one way of the two-way set-associative L1 data cache.

Andreopoulos et al. [3] identified three categories of DWT implementations based on
the order the transform coefficients are produced: strictly breadth-first (SBF), roughly
depth-first (RDF), and strictly depth-first (SDF). SBF implementations filter all rows
horizontally before filtering all columns vertically. RDF implementations interleave
periods of horizontal filtering with periods of vertical filtering. The line-based and



32 CHAPTER 2. BACKGROUND

block-based approaches belong to this category. SDF corresponds to RDF with min-
imal interleaving period. Andreopoulos et al. have shown that RDF implementations
incur fewer misses than SBF implementations.

2.5 Conclusions

This chapter presented the background information for data type conversion and data
rearrangement instructions. Some multimedia extensions have provided different in-
structions to convert from a smaller data type to a larger data type and vice versa.
SIMD architectures use different techniques for data permutation. Generally, there
are three approaches for data reordering. First, explicit instructions are employed
in order to reorder the data within and between SIMD registers. Some SIMD ar-
chitectures have provided a set of pre-defined instructions with limited capabilities,
while others have used a separate permutation unit to allow an arbitrary permutation
of any subword. Second, data rearrangement is performed during memory opera-
tions using gather, and scatter instructions. In these methods the media register file
is only accessible in the horizontal direction. Finally, data permutation is performed
by the organization of the media register file. For example, the media register file is
accessible in both horizontal and vertical directions.

In addition, this chapter described some SIMD vectorization and cache optimization
techniques that have been used in implementations of multimedia kernels, for exam-
ple, in the 2D discrete wavelet transform.

In the next chapter, the MMMX architecture is presented. The MMMX architecture is
an SIMD extension for multimedia domains. It focuses on maintaining programma-
bility and accelerates MMAs by exploiting DLP. The MMMX architecture eliminates
the data type conversion and data rearrangement instructions. Its instructions are ap-
plicable in multiple domains. It is not an application-specific ISA.



Chapter 3

MMMX Architecture

I
n previous chapters, it was discussed that the performance of multimedia appli-
cations can be accelerated by exploiting DLP in a programmable SIMD archi-
tecture. This was because the media applications have been changing and this

promotes the use of programmable processors instead of custom ASICs or highly
specialized application-specific processors. Some multimedia kernels were usually
supported by dedicated and ASIC hardware. To avoid the added cost and complexity
of these dedicated hardware units, this chapter focuses on maintaining programma-
bility while increasing performance using a novel SIMD extension. In addition, new
and general SIMD instructions addressing the multimedia application domain are in-
vestigated. It does not consider an ISA that is application specific. For example,
special-purpose instructions are synthesized using a few general-purpose SIMD in-
structions.

This chapter describes a novel SIMD ISA extension called Modified MMX (MMMX,
pronounced as triple-MX). The MMMX extension is multimedia oriented. It is based
on two micro-architectural techniques: extended subwords and the Matrix Register
File (MRF). Extended subwords use registers that are wider than the packed format
used to store the data. The MRF allows to load data that is stored consecutively in
memory into a column of the register file, where a column corresponds to the corre-
sponding subwords of different registers. The MRF is useful for matrix operations
that are common in multimedia processing.

The MMMX architecture is MMX enhanced with extended subwords, the MRF, and a
few general-purpose instructions that are not present in MMX. It is important to note
that although the MMX/SSE integer extension has been enhanced with the proposed
techniques, the extended subwords and the MRF techniques are general and can be
applied to basically any SIMD ISA extension. The main reason why MMX was

33



34 CHAPTER 3. MMMX ARCHITECTURE

unsigned char blk1[16][16], blk2[16][16];
int ssd = 0;
for (i=0; i<16; i++)
for (j=0; j<16; j++)

ssd += (blk1[i][j] - blk2[i][j])
* (blk1[i][j] - blk2[i][j]);

Figure 3.1: C code of the sum-of-squared differences kernel.

selected is that it is representative of SIMD extensions and the author’s familiarity
with the x86 instruction set.

The remainder of the chapter is organized as follows. Extended subwords and the
MRF are discussed in Section 3.1 and Section 3.2, respectively. The MMMX instruc-
tions are described in Section 3.3, and concluding remarks presented in Section 3.4.

3.1 Extended Subwords

Image, video, and audio data are usually small 8- or 16-bit integers, while computa-
tions on these small data types often require larger data types. Consider, for example,
the code that is depicted in Figure 3.1. This code computes the sum-of-squared dif-
ferences between two 16 × 16 blocks.

The difference between blk1[i][j] and blk2[i][j] is a 9-bit value between
−255 and 255, and

∑

15

i=0

∑

15

j=0
(blk1[i][j] − blk2[i][j])2 does not fit in neither an 8-

nor a 16-bit subword. This is because as shown in Equation (3.1), a 24-bit value is
needed for the final result.

15
∑

i=0

15
∑

j=0

(255)2 < (28)3 = 224 (3.1)

Some architectures provide an absolute difference operation for such computations
and therefore, do not need a larger format for their intermediate results. For instance,
in the discussed example, instead of calculating blk1[i][j] - blk2[i][j]
that needs a precision of 9-bit, |blk1[i][j] - blk2[i][j]| can be cal-
culated. This means that for two 8-bit values x and y, x − y needs 9 bits but
|x − y| can be represented in 8 bits. This concept is also used in the special-
purpose psadbw instruction that has been provided in the SSE extension. The C
code of the sum-of-absolute differences function is depicted in Figure 3.2. This
code computes the sum-of-absolute differences between two 16 × 16 blocks. Since
blk1[i][j] - blk2[i][j] is a 9-bit value, eight of these intermediate results
do not fit in a single 64-bit register, while the SSE extension uses the absolute differ-



3.1. EXTENDED SUBWORDS 35

unsigned char blk1[16][16], blk2[16][16];
int sad = 0; short diff;
for (i=0; i<16; i++)
for (j=0; j<16; j++) {

diff = blk1[i][j] - blk2[i][j];
if (diff<0) diff = - diff;
sad += diff;

}

Figure 3.2: C code of the sum-of-absolute differences kernel.

ence operation to keep the carry bit internally. As shown in Equation (3.2), a 16-bit
value is needed for the final result.

15
∑

i=0

15
∑

j=0

(255) < (28)2 = 216 (3.2)

The absolute difference operation cannot be used by other multimedia kernels. There-
fore, those media kernels need an extra bit to keep the output carry. For example,
consider the following loop which computes the arithmetic average of two images:

unsigned char src1[], src2[], dst[];
for (i=0; i<n; i++)
dst[i] = (src1[i] + src2[i]) >> 1;

Even though the final result dst[i] is an 8-bit value, the intermediate result
src1[i] + src2[i] is 9-bit. As previously discussed in Section 2.1 in Chap-
ter 2, if the packed subwords are filled by a maximum value representable using the
subword data type, the choice is either to be imprecise using saturation operation at
every stage, or to loose parallelism by unpacking to a larger format. Using saturation
instructions produce unexpected results.

Converting or promoting the source operands to a larger format before they are pro-
cessed, and packing or demoting the results again before they are written to memory,
causes conversion overhead. In addition, the number of subwords that are processed
in parallel by a single SIMD instruction is reduced. The main reason for the data type
conversion instructions is the mismatch between the storage format and the compu-
tational format.

Some multimedia kernels have been examined to determine their storage and compu-
tational formats. The result is depicted in Table 3.1. It shows that four extra bits for
every byte in a register is sufficient for those kernels. This is also supported by [37],
where it was shown that a 12-bit data format is sufficient for the most functions in-
volved in the MPEG-4 encoding (core profile). For example, results presented there
indicate that the MPEG-4 encoding consists of 21 functions and 17 of them need a



36 CHAPTER 3. MMMX ARCHITECTURE

Multimedia kernels Storage format Computational format
RGB-to-YCbCr unsigned byte 12-bit
YCbCr-to-RGB unsigned byte 12-bit
SAD function unsigned byte 9-bit
SAD function with interpolation unsigned byte 10-bit
SSD function unsigned byte 16-bit
SSD function with interpolation unsigned byte 16-bit
Add block unsigned byte 9-bit
2D DCT (un)signed byte 12-bit
2 × 2 Haar transform unsigned byte 10-bit
Inverse Haar transform half word 10-bit
Paeth prediction unsigned byte 10-bit
Repetitive padding unsigned byte 9-bit
Arithmetic average unsigned byte 9-bit

Table 3.1: The storage and computational formats of some multimedia kernels.

95 84 83 7172 60 59 48 47 36 35 24 23 12 11 0
8 12−bit elements
4 24−bit elements
2 48−bit elements

Figure 3.3: Different subwords in the media register file of the MMMX architecture.

precision equal or smaller than 12-bit. The remaining functions need a larger preci-
sion than 12-bit, for instance, 32- and 64-bit.

To avoid the data type conversion overhead and to increase parallelism, extended
subwords are employed. This means that the registers are wider than the data loaded
into them. Specifically, for every byte of data, there are four extra bits. This implies
that MMMX registers are 96 bits wide, while MMX has 64-bit registers. The number
of elements that can be placed into a register is determined by the size of elements.
Based on that, the MMMX registers can hold 2 × 48-bit, 4 × 24-bit, or 8 × 12-
bit elements as is depicted in Figure 3.3. This means that a 96-bit register can be
broken into independent subwords of 12, 24, and 48 bits that are operated in parallel.
Registers are used to hold fixed-point data. In other words, the MMMX architecture
supports 8-, 16-, and 32-bit data types in memory and 12-, 24-, and 48-bit in the
datapath during computations.

The extended subwords technique increases the number of subwords that can be
packed into a media register. This feature allows to perform more operations in
parallel by packing more data elements into a single media register. The extended
subwords technique also eliminates most of the pack/unpack instructions required to
convert between different data types.

This technique, however, is not sufficient for 2D multimedia algorithms that process
data along the rows as well as along the columns. In other words, 2D operations



3.2. THE MATRIX REGISTER FILE 37

access data in both horizontal and vertical directions. The register files of existing
SIMD architectures only allow simultaneous access to a row register. A register is re-
ferred to a row register if it is horizontally (row-wise) accessed. In other words, row
registers correspond to conventional media registers. A register is called a column
register if it is vertically (column-wise) accessed. In order to employ SIMD instruc-
tions in 2D algorithms, the matrix needs to be transposed frequently. Transposition
takes a significant amount of time, however. This is because the matrix transpose op-
erations like any 2D operation accesses data elements along the rows as well as along
the columns. For example, to implement this operation in MMX/SSE requires many
rearrangement instructions such as punpckh, punpckl, and pshufw. Specifi-
cally, to implement an 8 × 8 matrix transposition using MMX/SSE requires 56 in-
structions if the elements are 8 bits wide. If the elements are two bytes wide, then 88
instructions are required.

The next section describes the matrix register file to overcome this limitation.

3.2 The Matrix Register File

This section describes the matrix register file (MRF), the number and configuration
of its registers, and its usefulness in the implementation of multimedia kernels.

As mentioned in previous chapters, one of the bottlenecks of any SIMD architecture
is the restricted access to the data stored in the media register file. SIMD instructions
can only access the data in row registers. The restriction is due to the conventional de-
sign of the media register file, which allows concurrent accesses only to data residing
in a row. However, the ability to efficiently rearrange subwords within and between
registers is crucial to the performance of many media kernels. Matrix transposition,
in particular, which is needed in several block-based algorithms, is a very expensive
operation. Therefore, a way to accelerate this operation is that the architecture allows
access to data in both dimensions. To overcome this problem, a matrix register file is
employed, which allows data loaded from memory to be written to a column of the
register file as well as to a row register.

Figure 3.4 illustrates an MRF with 12-bit subwords. It has eight row registers
3mxi, 0 ≤ i ≤ 7 (corresponding to conventional media registers) and eight col-
umn registers 3mxci, 0 ≤ i ≤ 7 (corresponding subwords in different row registers).
Both row and column registers are 96 bits wide. Data loaded from memory can be
written to a row register as well as to a column register. Seven 2:1 12-bit multiplexers
are needed per register/row to select between row-wise and column-wise access. For
example, for register 3mx0 it needs to be able to select between the most significant
subword of the data for column-wise access and another subword in case of row-wise
access. Multiplexers are not needed for the subwords on the main diagonal.



38 CHAPTER 3. MMMX ARCHITECTURE

mux mux mux mux mux mux mux

mux mux mux mux mux mux mux

mux mux mux mux mux mux mux select row− or

column−wise access

select row− or
column−wise access

7 5 4 3 2 1 0

7 6 5 4 3 2 1

6 6 6 6 6 6 6

0000000

7 7 7 7 7 7 76 5 4 3 2 1 0

0

6

7

column−wise access

select row− or

3mxc0 3mxc1 3mxc2 3mxc3 3mxc4 3mxc5 3mxc6 3mxc7

3mx0

3mx1

12−bit
7

12−bit

12−bit

12−bit

12−bit

12−bit

12−bit

12−bit

6

5

4

3

2

1

0

Write
data

least significant subword

most significant subword

3mx7

Figure 3.4: A matrix register file with 12-bit subwords. For simplicity, write and clock signals
have been omitted.

Each 12-bit subword MRF [i, j], 0 ≤ i, j ≤ 7 belongs to row register i and column
register j. Eight row and eight column registers are accessed in row-wise and column-
wise, respectively. Therefore, the MRF architecture provides parallel access to 12-,
24-, and 48-bit subwords of the row registers that are horizontally located. This is
similar to conventional SIMD architectures, which provide parallel access to 8-, 16-,
and 32-bit data elements of media registers. In addition, the MRF provides parallel
access to 12-bit subwords of the column registers that are vertically arranged. It does
not support access to 24- or 48-bit data elements of the column registers. Although it
can be extended to support those subwords, supporting 12-bit subwords is sufficient
to implement many media kernels, which has been done in the next chapter.

There are two ways to transpose an 8 × 8 block whose elements are smaller than 12-
bit while they use 16-bit storage format. First, normal write to row registers followed
by column-wise read from column registers. Second, column-wise write to column
registers followed by normal read from row registers. The MRF requires additional
hardware for each port that support column-wise access. Since the media register file
has fewer write ports than read ports, the latter approach is selected to implement the
MRF in this thesis.

To illustrate the usefulness of the MRF, two examples are discussed in the remainder
of this section. The first example is computing an 8-point 1D DCT using the LLM
algorithm [96] which is depicted in Figure 3.5. An 8×8 2D DCT can be accomplished
by performing a 1D DCT on each row followed by a 1D DCT on each column.
Initially, the bytes xi (0 ≤ i ≤ 7) are packed consecutively into one 64-bit quadword,
with x0 being the least significant and x7 being the most significant bytes. It can be
seen that this piece of code exhibits subword DLP, but only 4-way. Furthermore,
in order to exploit this parallelism using SIMD instructions, the elements x0 and
x7, x1 and x6, x2 and x5, and x3 and x4 have to be in corresponding subwords of
different registers. This implies that the high and low doublewords of the quadword



3.2. THE MATRIX REGISTER FILE 39

s10 = x0 + x7

s11 = x1 + x6

s12 = x2 + x5

s13 = x3 + x4

s14 = x3 − x4

s15 = x2 − x5

s16 = x1 − x6

s17 = x0 − x7

Figure 3.5: First stage of the LLM algorithm for computing an 8-point DCT.

have to be split across different registers and that the order of the subwords in one
of these registers has to be reversed. An alternative way to realize a 2D DCT is by
transposing the matrix so that all the xi’s of different rows are in one register. In
other words, it performs several 1D DCTs in parallel rather than trying to exploit the
DLP present in a 1D DCT. If the transposition step can be implemented efficiently,
this method is more efficient than the first one. Moreover, it allows to exploit 8-way
SIMD parallelism provided the subwords can represent the intermediate results.

It should be noted that matrix transposition not only arises in the DCT but also in
many other kernels such as the IDCT, vertical padding, and vertical subsampling.
Moreover, the matrix has to be transposed twice in order to exploit 8-way parallelism
in these kernels.

The second example is vectorization of strided data. As was mentioned in the first
chapter, SIMD architectures are most efficient when the data which is processed in
parallel is stored consecutively in memory. If not, there is a large overhead involving
data reorganization instructions. For example, in the case of color space conversion,
often the band interleaved format is used where the color components of each pixel
are adjacent in memory. This implies that in order to employ SIMD instructions
efficiently, the image pixels have to be reorganized so that the red data of different
pixels are contained in one register, the green data in another, and the blue data in a
third register. In this case, many data reorganization instructions need to be executed.

Figure 3.6 illustrates how the MRF can be used to reorganize the band interleaved
RGB data to band separated. With eight load-column instructions (fldc8u12) eight
red, eight green, and eight blue values are loaded into each register. Each load-
column instruction loads eight bytes (three red, three green, and two blue) values as is
shown in Figure 3.6 for little endian. To provide correct arrangement of RGB values,
an offset which is a multiple of 6 bytes is used for each fldc8u12 instruction. It is
remarked that this also works for other strides. For example, when the stride is 4, an



40 CHAPTER 3. MMMX ARCHITECTURE

g1 g2 b2 r3r1 b1 r2 g3 b3 r4 ...Memory

R1

fldc8u12            3mxc0,  0(R1)
fldc8u12            3mxc1,  6(R1)
fldc8u12            3mxc2, 12(R1)   
fldc8u12            3mxc3, 18(R1)   
fldc8u12            3mxc4, 24(R1)   
fldc8u12            3mxc5, 30(R1)   
fldc8u12            3mxc6, 36(R1)   
fldc8u12            3mxc7, 42(R1)   

0

0

0

0
0

0
0

00
0
0
0
0
0
0

0

0
0
0
0
0
0

0
0
0
0
0
0
0
0

3mxc0 3mxc1 3mxc2 3mxc3 3mxc4 3mxc5 3mxc6 3mxc7

0
0
0
0
0
0
0
0 0

0
0
0
0
0
0
0 0

0
0
0
0
0
0
0

0
0
0
0

0 0
0
0
0
0
0
0

0
0
0

3mx0
3mx1
3mx2
3mx3
3mx4

3mx7
3mx6
3mx5

g3

r1

r3
b2
g2
r2
b1
g1

g5
r5
b4
g4
r4
b3
g3
r3

g7
r7
b6
g6
r6
b5
g5
r5

r8
b7
g7
r7

g11
r11
b10
g10
r10
b9
g9
r9

r13
g13

b12
g12
r12
b11
g11
r11

r15
g15

b14
g14
r14
b13
g13
r13

g17
r17
b16
g16
r16
b15
g15

g8
b8
r9
g9

r15

Figure 3.6: Loading eight red, eight green, and eight blue values into the matrix register file
using the fldc8u12 instruction for little endian.

offset which is a multiple of 8 can be used.

As previously mentioned, the MMMX extension is multimedia oriented. Its instruc-
tion set has been designed based on the characteristics of MMAs. An ISA that is
application specific has not been considered. For example, SPIs are synthesized us-
ing a few general-purpose SIMD instructions. The following section describes the
instruction set of the MMMX architecture.

3.3 MMMX Instruction Set Architecture

The main goal of media instruction set is to enable efficient execution of multime-
dia workloads. In the design of the MMMX instruction set factors such as reduced
operation complexity and wider set of available operations have been considered.
More details about the available MMMX instruction set is discussed in the following
sections.

3.3.1 Load/Store Instructions

The MMMX architecture has different load/store instructions that depicted in Ta-
ble 3.2. Some of them are explained as follows. The fld8u12 instruction loads
eight unsigned bytes from memory and zero-extends them to a 12-bit format in a 96-
bit MMMX register. The fld8s12 instruction, on the other hand, loads eight signed
bytes and sign-extends them to a 12-bit format. These instructions are illustrated in
Figure 3.7 for little endian. The fld16s12 instruction loads eight signed 16-bit,
packs them to signed 12-bit format, and writes in a row register. This instruction is
useful for those kernels that their input data can be represented by the signed 12-bit,
while they use the signed 16-bit storage format. For example, in the DCT kernel,



3.3. MMMX INSTRUCTION SET ARCHITECTURE 41

3mx0 0 03 0 02 0 01 F a7 0 2a F aB 0 13 F FF

R1

fld8s12            3mx0, (R1)   

0xFF 0x13 0xaB 0x2a 0xa7 0x01 0x02 0x03 . . .Memory

fld8u12            3mx1, (R1)   

03 0 0 01 a7 0 2a aB 0 13 FF0 0 0 002

F

3mx1

Figure 3.7: The fld8s12 instruction loads eight signed bytes and sign-extends them to 12-
bit values, while the fld8u12 instruction loads eight unsigned bytes and zero-extends them
to 12-bit values.

Instructions Description

fld8u12 loads eight unsigned bytes, zero-extends them to 12-bit formats, and writes in a row register.
fld8s12 loads eight signed bytes, sign-extends them to signed 12-bit format, and writes in a row register.
fld16s12 loads eight signed 16-bit, packs them to signed 12-bit format, and writes in a row register.
fld16u12 loads eight unsigned 16-bit, packs them to unsigned 12-bit format, and writes in a row register.
fld16s24 loads four signed 16-bit, sign-extends them to signed 24-bit format, and writes in a row register.
fld16u24 loads four unsigned 16-bit, zero-extends them to 24-bit formats, and writes in a row register.
fld32s24 loads four signed 32-bit, packs them to signed 24-bit format, and writes in a row register.
fld32u24 loads four unsigned 32-bit, packs them to unsigned 24-bit format, and writes in a row register.
fld32s48 loads two signed 32-bit, sign-extends them to signed 48-bit format, and writes in a row register.
fldc8u12 loads eight unsigned bytes, zero-extends them to 12-bit format, and writes in a column register.
fldc16s12 loads eight signed 16-bit, packs them to signed 12-bit format, and writes in a column register.
fst12s8 saturates eight signed 12-bit to unsigned 8-bit and store into memory.
fst12s16 unpack eight signed 12-bit to signed 16-bit and store into memory.
fst24s16 saturates four signed 24-bit to signed 16-bit and store into memory.
fst24s32 unpack four signed 24-bit to signed 32-bit and store into memory.
fst48s16 saturates two signed 48-bit to signed 16-bit and store into memory.
fst48s32 saturates two signed 48-bit to signed 32-bit and store into memory.
fst96s16 saturates a signed 96-bit to signed 16-bit and store into memory.
fst96s32 saturates a signed 96-bit to signed 32-bit and store into memory.

Table 3.2: The load/store instructions of the MMMX architecture.

the input data is the signed 9-bit format. It uses the signed 16-bit storage format,
while it uses the signed 12-bit for computational format. The instruction fldc8u12
(“load-column 8-bit to 12-bit unsigned”) is used to load a column of the MRF.

Load instructions automatically unpack and store instructions automatically pack and
saturate, as illustrated for the load instructions in Figure 3.7. Store instructions
automatically saturate (clip) and pack the subwords. For example, the instruction
fst12s8 saturates the 12-bit signed subwords to 8-bit unsigned subwords before
storing them to memory.

3.3.2 ALU Instructions

Most MMMX ALU instructions are direct counterparts of MMX/SSE instruc-
tions. For example, the MMMX instructions fadd{12,24,48} (packed ad-



42 CHAPTER 3. MMMX ARCHITECTURE

Instructions Description
fadd{12,24,48} packed addition of 12-, 24-, or 48-bit subwords.
fsub{12,24,48} packed subtraction of 12-, 24-, or 48-bit subwords.
fsum{12,24,48} addition of adjacent elements of 12-, 24-, or 48-bit subwords.
fdiff{12,24,48} subtraction of adjacent elements of 12-, 24-, or 48-bit subwords.
fneg{12,24,48} to nagate some or all elements in a packed register.
finc{12, 24, 48} increment 12-, 24-, or 48- bit subwords.
fdec{12, 24, 48} decrement 12-, 24-, or 48- bit subwords.
fmin{12, 24, 48} minimum selection instructions in 12-, 24-, or 48-bit subwords.
fmax{12, 24, 48} maximum selection instructions in 12-, 24-, or 48-bit subwords.

Table 3.3: The ALU instructions of the MMMX architecture.

dition of 12-, 24-, 48-bit subwords) and fsub{12,24,48} (packed sub-
traction of 12-, 24-, 48-bit subwords) correspond to the MMX instructions
padd{b,w,d} mm,mm/mem64 and psub{b,w,d} mm,mm/mem64, respec-
tively. MMMX, however, does not support variants of these instructions that au-
tomatically saturate the results of the additions to the maximum value representable
by the subword data type. They are not needed because as was mentioned the load
instructions automatically unpack the subwords and the store instructions automati-
cally pack and saturate. In other words, the MMMX architecture does not support
saturation arithmetic. Table 3.3 depicts the ALU instructions.

In the remainder of this section and also the next section some novel MMMX ALU
and multiplication instructions are discussed, which are not supported in MMX. In
many media kernels all elements packed in a register need to be summed, while
in other kernels adjacent elements need to be added. Rather than providing dif-
ferent instructions for summing all elements and adding adjacent elements, it has
been decided to support adding adjacent elements only but for every packed data
type. Whereas summing all elements would probably translate to a multicycle op-
eration, adding adjacent elements is a very simple operation that can most likely
be implemented in a single cycle. Figure 3.8 illustrates how eight 12-bit subwords
can be reduced to a single 96-bit sum or 96-bit difference using the instructions
fsum{12,24,48} and fdiff{12,24,48}, respectively. It is remarked that
ARM’s Neon technology and SSE3 also support pairwise addition instructions.

Another operation that has been found useful in implementing many multimedia ker-
nels such as the (I)DCT kernels is the possibility to negate some or all elements
in a packed register. The instructions fneg{12,24,48} 3mx0, 3mx1, imm8
negate the 12-, 24-, or 48-bit subwords of the source operand if the corresponding
bit in the 8-bit immediate imm8 is set. One example of this instruction is depicted in
Figure 3.9. If subwords are 24- or 48-bit, the four or six higher order bits in the 8-bit
immediate are ignored.



3.3. MMMX INSTRUCTION SET ARCHITECTURE 43

95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0

95 72 71 24 23 048 47

95 048 47

95 0

op op op op

op op

op

op = addition (+) or subtraction (−)

fsum12

fdiff12

fsum24

fdiff24

fsum48

fdiff48

Figure 3.8: Reducing eight 12-bit subwords to a single 96-bit sum or 96-bit difference using
the instructions fsum{12,24,48} and fdiff{12,24,48}, respectively.

0xFFF 0xC00 0x200 0x400 0x801 0x7FF 0xF01

3mx0 0x400 0x200 0xC00 0x801 0x8010x001 0xF010x0FF

0x0FF3mx1

fneg12    3mx0, 3mx1,  11010111

Figure 3.9: Illustration of the fneg12 3mx0, 3mx1, 11010111 instruction.

3.3.3 Multiplication Instructions

The MMMX architecture supports three kinds of multiplication instructions that de-
picted in Table 3.4. The first are full multiplication instructions fmulf{12,24}.
For example, the fmulf12 instruction multiplies each 12-bit subword in 3mx0with
the corresponding subwords in 3mx1 and produces eight 24-bit results. This means
that each result is larger than a subword. Therefore, the produced results are kept in
both registers.

The second kind of multiplication instructions are the partitioned multiply-
accumulate instructions fmadd{12,24}. These instructions perform the operation
on subwords that are either 12- or 24-bit, while the MMX instruction pmaddwd
performs the MAC operation on subwords that are 16-bit. The MAC operation is
an important operation in digital signal processing. Figure 3.10 illustrates the op-
eration of the fmadd12 3mx0, 3mx1 instruction. This instruction multiplies the

Instructions Description
fmulf{12,24} full multiplication instructions.
fmadd{12,24} partitioned multiply-accumulate instructions.
fmul{12l,12h,24l,24h} truncation multiplication instructions.

Table 3.4: The multiplication instructions of the MMMX architecture.



44 CHAPTER 3. MMMX ARCHITECTURE

95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0

95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0

3mx0

95 72 71 48 47 24 23 0
=

a5a6a7 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

3mx0 a7 x b7 + a6 x b6 a5 x b5 + a4 x b4 a3 x b3 + a2 x b2 a1 x b1 + a0 x b0

3mx1

Figure 3.10: Partitioned multiplication using the fmadd12 3mx0, 3mx1 instruction.

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

0x0D20x1F4

0x404 0x404 0x404 0x404 0x404 0x404 0x4043mx1

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0
3mx0

fmul12h   3mx0, 3mx1

0x02B0x0350x07D0x0800x0120x0170x0140x00F

0x404

0x03C 0x050 0x05A 0x046 0x1FE 0x0AA3mx0

0x00F0F0  0x014140  0x016968  0x011918  0x07FFF8  0x07D7D0  0x034B48  0x02AAA8

24−bit result:

Figure 3.11: Partitioned multiplication using the fmul12h 3mx0, 3mx1 instruction.

eight signed 12-bit values of the destination operand by the eight 12-bit values of the
source operand. The corresponding odd-numbered and even-numbered subwords are
summed and stored in the 24-bit subwords of the destination operand.

The third type of multiplication is truncation. Truncation is performed by the
fmul{12l,12h,24l,24h} instructions. It means that the high or low bits of
the results are discarded. When n-bit fixed point values are multiplied with fractional
components, the result should be n-bit of precision. Specifically, the instructions
fmul12{l,h} multiply the eight corresponding subwords of the source and desti-
nation operands and write the low-order (fmul12l) or high-order (fmul12h) 12
bits of the 24-bit product to the destination operand. This kind of partitioned multi-
plication can be used in some applications. For example, the fmul12h instruction
is used in the fixed-point MMMX implementation of color space conversion that is
discussed in Chapter 4. Figure 3.11 illustrates one example of the fmul12h instruc-
tion. In this example, each subword of the 3mx0 register is multiplied by the value
0x404 that has been replicated in the 3mx1 register, and the corresponding 12-bit
high values are stored in the destination operand.

There is a loss of precision due to the nature of truncation. In order to reduce the
effect of this error, first, the intermediate 24-bit result is internally rounded and after
that the 12-bit result will be truncated as depicted in Figure 3.11. For example, the
result of the multiplication of the value 0x0AA with the value 0x404 is 0x02AAAB.
The final result after truncation with rounding low-order 12 bits is 0x02B, rather



3.3. MMMX INSTRUCTION SET ARCHITECTURE 45

Differences MMX/SSE (integer part) MMMX
Datapath 64-bit 96-bit
Size of register file 8 x 64-bit 8 x 96-bit
Shared with Floating point registers Dedicated
Access to register file row-wise row-wise + column-wise
Size of the partitioned ALU 64-bit 96-bit
Size of the integer subwords 8-, 16-, and 32-bit 12-, 24-, and 48-bit
Addition instructions padd{b, w, d} fadd{12, 24, 48}
Subtract instructions psub{b, w, d} fsub{12, 24, 48}
Saturate add instructions padds{b, w}, paddus{b, w} No
Saturate subtract instructions psubs{b, w}, psubus{b, w} No
Full multiply instruction No fmulf{12, 24}
High and low multiply inst. pmul{hw, lw, huw} fmul{12l, 12h, 24l, 24h}
The size of MAC unit 16-bit 12- and 24-bit
MAC instructions pmaddwd fmadd{12, 24}
Increment instruction No finc{12, 24, 48}
Decrement instruction No fdec{12, 24, 48}
Negate instruction No fneg{12, 24, 48}
Minimum selection instructions pmin{ub, sw} fmin{12, 24, 48}
Maximum selection instructions pmax{ub, sw} fmax{12, 24, 48}
Adjacent subwords addition No fsum{12, 24, 48}
Adjacent subwords subtraction No fdiff{12, 24, 48}
Special-purpose instructions No/pavg{b, w}, psadbw No
Overhead instructions packss{wb, dw} funpckl{12, 24}

packuswb, punpckh{bw, wd, dq} funpckh{12, 24}
punpckl{bw, wd, dq}, pshufw

Table 3.5: The main differences between the MMX/SSE and MMMX ISAs.

than truncated to 0x02A. On the MMX architecture, on the other hand, the pmulhw
instruction truncates the lower 16-bit rather than rounding it.

3.3.4 Differences Between MMMX and MMX Architectures

The main differences between the MMX/SSE and MMMX ISAs in the integer part
are depicted in Table 3.5. The characteristics of the MMMX architecture are the fol-
lowing. First, the MMMX architecture defines a set of eight row and eight column
registers, each of them contains 96 bits. Second, each MMMX row register contains
eight 12-bit, four 24-bit, or two 48-bit subwords, while its column registers consist of
eight 12-bit data elements. This means that the media register file is wider than the
data to be loaded into them. The registers are used to hold fixed-point data. In other
words, the MMMX architecture is a fixed-point SIMD extension. Third, the MMMX
load instructions implicitly unpack data from the storage format to the computation
format, and the store instructions implicitly pack and saturate data from the computa-
tion format to the storage format. Fourth, media registers can be accessed row-wise as



46 CHAPTER 3. MMMX ARCHITECTURE

well as column-wise. In other words, each 12-bit subword MRF [i, j], 0 ≤ i, j ≤ 7
belongs to row register i and column register j.

Additionally, there are some general-purpose SIMD instructions which do not have
an MMX equivalent, such as the fsum{12,24,48} and fdiff{12,24,48}
instructions. Due to the extended subwords, the MMMX architecture provides
more subword parallelism than MMX as will be shown for some multimedia
kernels in Chapter 4. Furthermore, MMMX does not support special-purpose
MMX/SSE instructions psadbw and pavg{b,w} as well as rearrangement instruc-
tions such as pshufw and packss{wb,dw,wb}. Both MMX and MMMX sup-
port unpack instructions. For instance, MMMX supports funpckl{12,24} and
funpckh{12,24} instructions as depicted in the last row in Table 3.5 in order to
reorder final results and store them in their appropriate places, while MMX supports
punpck{hbw,hwd,hdq,lbw,lwd,ldq} instructions.

3.3.5 Hardware Cost of the Proposed Techniques

In this section, the overhead hardware cost of the MMMX architecture over the MMX
architecture in terms of area and critical path delay is discussed.

The following are differences between the MMX and MMMX architectures from
the hardware point of view. First, each MMMX register is 32 bits wider than each
MMX register. Second, the MMMX register file is accessible in both directions,
while in the MMX architecture it is not. This means that for column-wise access to
the MMMX register file, multiplexers, and an additional decoder as well as wiring
are required. Third, the MMMX ISA needs to be able to address the column registers.
Finally, in the MMMX architecture, a 96-bit partitioned ALU is required to provide
eight 12-bit, four 24-bit, and two 48-bit subword parallel processing. In the MMX
architecture, on the other hand, a 64-bit partitioned ALU is sufficient. Furthermore,
in the MMMX architecture, there are some other SIMD instructions compared to the
MMX architecture.

As previously mentioned, in order to reduce the hardware cost of the MMMX archi-
tecture, column-wise access on the write port of the register file has been provided.
This is because the number of write ports is usually less than the number of read
ports. Only load-column instructions can access the column registers, while the other
instructions cannot. The number of load-column instructions in the MMMX ISA is
two. This is because 8- and 16-bit image data are loaded into column registers. These
instructions are used for those kernels that use the MRF technique, such as the RGB-
to-YCbCr kernel. A single bit to the instruction format of load instructions is used in
order to distinguish between normal load instructions and load-column instructions.

The register file, a 64-bit partitioned ALU, and a multiplication unit of the MMX ar-



3.3. MMMX INSTRUCTION SET ARCHITECTURE 47

muxmuxmuxmuxmux

muxmuxmuxmuxmux

muxmuxmuxmuxmuxmuxmux

muxmux

muxmux

.

.

7 7 567 7 4 7 3 7 2 7 1 7 0

6 7 6 6 5 6 4 6 3 6 2 6 1 6

010203040506070

0

wise access

.

.

.

.

.

.

9
6

 m
u

x
 8

x
1

.

12−bit ALU

Port B

3

3

row− or column−

A
 9

6
−

b
it
 p

a
rt

it
io

n
e

d

read register 2

control signals

A
L

U

read data 1

read data 2

3

3
Data 1

Port B

Port A

96

96
96

write register
3

read register 1

read register 2

wise access
row− or column−

write signal

Port C
Data write data

Data 2

A
 M

a
tr

ix
 R

e
g

is
te

r 
F

il
e

(b)

(a)

3mxc0 3mxc1 3mxc2 3mxc3 3mxc4 3mxc5 3mxc6 3mxc7

12−bit

96−bit

96 mux 2x 1

Port C

write register

row− or
column wise
access

3mx0

3mx1

3mx7

write signal

0 1 2 ... 7 Subwords

12−bit

96−bit

A
 4

:1
6
 d

e
c
o
d
e
r

96−bit

.

.

96−bit

96−bit

9
6

 m
u

x
 8

x
1

3

Port A 

96−bit

96−bit
.

96−bit

96−bit

96−bit

96−bit

read register 1

Figure 3.12: (a) A register file with eight 96-bit registers, 2 read ports, and 1 write port, (b)
the implementation of two read ports and one write port for a matrix register file with 8 96-bit
registers as well as a partitioned ALU for subword parallel processing.

chitecture and the MRF, extended subwords, a 96-bit partitioned ALU, and a multipli-
cation unit of the MMMX architecture have been implemented in VHDL. A register
file with two read ports and one write port has been considered for both architectures.
Figure 3.12(a) depicts a block diagram of a register file with one write port (Port C)
and two read ports (Port A and Port B). The input and output of this block diagram
is based on eight 96-bit registers. Figure 3.12(b) illustrates the combination of the
MRF with a 96-bit partitioned ALU for the MMMX architecture.

The partitioned ALUs have been designed based on the subword adder. Multiplexers



48 CHAPTER 3. MMMX ARCHITECTURE

95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0 95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0

95 84 83 72 71 60 59 48 47 36 35 24 23 12 11 0

ALU7 ALU1 ALU0

Carry

0

CarryIn
Carry

0
mux mux. . .. . .

. . .

. . . . . .

12 12

12

12 12

12

12 12

12

Figure 3.13: A 96-bit partitioned ALU in the MMMX architecture.

have been used in subword boundaries to propagate or prevent the subword carries
in the carry chain [65]. There are eight 12-bit adders. These adders operate inde-
pendently for 12-bit data. They can also be coupled to behave an four pairs of two
adders to perform four 24-bit operations, or combined into two groups of four adders
for two 48-bit format. Figure 3.13 illustrates that a 96-bit ALU can be partitioned into
eight 12-bit ALUs. Such a partitioned ALU can perform eight 12-bit, four 24-bit, two
48-bit, and a 96-bit operation.

In addition, all SIMD arithmetic, multiplication, logical, and shift instructions of both
architectures have also been implemented in VHDL. In the VHDL implementations
of both architectures the same techniques and methods have been used. In order to
provide a rough comparison of both architectures in terms of area and speed, the
Xilinx FPGA Virtex-II Pro xc2vp30 device has been used. Obviously the hardware
cost and speed can be improved by an ASIC implementation. The aim was to derive
a rough comparison for both architectures. All designs have been implemented in
VHDL and mapped onto the reconfigurable logic such as Look-Up Table (LUT). The
dedicated arithmetic resources such as multipliers have not been used. The hardware
implementations have been synthesized, placed, and routed using the Xilinx ISE tool.
In order to compare both architectures, the ratio of the MMMX area in terms of
utilized LUTs and critical path delay over the MMX area and critical path delay are
presented.

Table 3.6 illustrates the utilized area and the critical path delay of the MMX and
MMMX architectures. In addition, this table shows the ratio of utilized area and the
critical path delay of the MMMX over the MMX architecture. As this table shows
the area utilization of the register file of the MMMX architecture is 2.89 times larger
than the register file of the MMX architecture. This is because in the former eight 96-
bit registers, 672 2:1 multiplexers, and one 4:16 decoder is used, while in the latter,
eight 64-bit registers and one 3:8 decoder are sufficient. In addition, the timing result
shows that the critical path delay of the MRF is 5% larger than the critical path delay
of the MMX register file.



3.3. MMMX INSTRUCTION SET ARCHITECTURE 49

Hardware Component MMX MMMX MMMX / MMX

Register File (RF)
Area (# LUTs) 520 1504 2.89

Delay (ns) 8.08 8.50 1.05

Partitioned ALU
Area (# LUTs) 2424 3429 1.41

Delay (ns) 20.45 26.50 1.30

Partitioned ALU + 12/16-bit MULT
Area (# LUTs) 5617 6417 1.14

Delay (ns) 19.27 26.17 1.35

Partitioned ALU + 12,24/16 MULT
Area (# LUTs) 5617 12764 2.27

Delay (ns) 19.27 27.04 1.40

RF + Partitioned ALU + 12,24/16 MULT
Area (# LUTs) 6.023 14359 2.38

Delay (ns) 19.98 28.16 1.41

Table 3.6: The area utilization in terms of LUTs and the critical path delays (ns) of the MMX
and MMMX architectures as well as the ratio of utilized area and the critical path delay
of MMMX over MMX for their register file architecture, partitioned ALU, and the whole
hardware system.

The partitioned ALU of the MMMX architecture is 1.41 times larger than the parti-
tioned ALU of the MMX architecture. The former ALU is 30% slower than the latter
ALU. The critical path delay is because of the subword adder.

The partitioned ALU and multiplication unit of the MMMX architecture are 2.27
times larger than the partitioned ALU and multiplication unit of the MMX architec-
ture. This is because of the following reasons. First, the partitioned ALU of the
MMMX architecture is wider than the partitioned ALU of the MMX architecture.
Second, there are more general SIMD instructions in the MMMX ISA such as full
12- and 24-bit multiplications. The overhead instructions of the MMX architecture
depicted in the last row of Table 3.5 were not considered. The critical path delay of
MMMX, which is related to 24-bit multiplication, is 40% longer than the critical path
of the MMX ALU. Finally, the whole hardware system of the MMMX architecture is
2.38 times larger than the MMX architecture and its critical path delay is 41% longer
than the critical path delay of MMX.

It needs to be mentioned that pipelining of the multiplication operations has not been
considered as the aim was to provide a rough comparison between the MMX and
MMMX architectures in terms of maximum combinational logic delay.



50 CHAPTER 3. MMMX ARCHITECTURE

3.4 Conclusions

This chapter has described the MMMX architecture. The MMMX architecture is
based on the MMX architecture but enhanced with extended subwords and the ma-
trix register file. The extended subwords technique extends each media register with
32-bit. This technique alleviates data type conversion instructions and increases the
number of subwords that can be processed simultaneously. The matrix register file
provides both row-wise and column-wise access to media register file. In the MMMX
architecture, column-wise access on the write port of the register file has been pro-
vided and this reduces the hardware cost compared to providing column-wise access
on the read ports. This is because the number of write ports of the media register file
is usually less than the number of read ports. The MRF technique avoids data rear-
rangement instructions in 2D multimedia kernels. The main reason for this is that
this technique can be used to reorganize strided data and to transpose a matrix.

In addition, this chapter has presented new and general SIMD instructions addressing
the multimedia domain. It has described different load/store, ALU, and multiplica-
tion instructions. There are two kinds of load instructions, namely normal load and
load-column instructions. A single bit in the instruction format of load instructions
can be used in order to distinguish between normal load instructions and load-column
instructions. Only load-column instructions can access the column registers, while
the other instructions cannot. Additionally, this chapter has explained different multi-
plication instructions such as full multiplication, MAC operations, and multiplication
with truncation and rounding.

Furthermore, the hardware overhead of the MMMX architecture in terms of area
utilization and critical path delay has been discussed. In general, the MMMX archi-
tecture is 2.38 times larger than the MMX architecture and the critical path delay of
MMMX is 41% larger than the critical path of the MMX architecture.

In the next chapter the performance of the MMMX architecture at kernel-, image-,
and application-level will be evaluated. For this, first some MMAs are selected and
profiled in order to find the most time consuming kernels. Then, these multimedia
kernels are implemented using both MMX and MMMX and these SIMD implemen-
tations replace the original scalar version of the applications in order to obtain the
application-level speedup.



Chapter 4

Performance Evaluation

T
his chapter evaluates the MMMX architecture by comparing the performance
of MMMX implementations of several kernels and applications to the per-
formance of MMX implementations. For this evaluation, a number of impor-

tant multimedia benchmarks such as an MPEG-2 encoder/decoder (codec), a JPEG
codec, and MJPEG are selected. The performance is obtained for kernel-, image-,
and application-level. Kernels are the most time consuming functions and repre-
sent a major portion of multimedia applications. For example, motion estimation,
color space conversions, 2D (I)DCT, repetitive padding, and 2D DWT are some of
the most time consuming kernels in existing MMAs [126, 127]. Some multimedia
kernels such as color space conversions are defined using floating-point arithmetic,
while as mentioned in previous chapters, the MMMX architecture is a fixed-point
SIMD extension. This means that the floating-point kernels are implemented using
fixed-point arithmetic. In order to obtain the performance, the sim-outorder sim-
ulator of the SimpleScalar toolset has been selected as the evaluation environment.
The sim-outorder is a detailed, execution-driven simulator that supports out-of-
order issue and execution.

The chapter is organized as follows. Section 4.1 describes the MMAs and kernels se-
lected for performance evaluation. Section 4.2 presents the algorithms of the media
kernels as well as their SIMD implementations using both the MMX and MMMX
architectures. This section shows how the proposed techniques, extended subwords
and the matrix register file, can be used to reduce the dynamic number of instruc-
tions. Section 4.3 presents the experimental methodology and tools. Section 4.4
describes the obtained performance improvement of MMMX over MMX for block-
level, image-level, and application-level. Finally, Section 4.5 presents some conclu-
sions.

51



52 CHAPTER 4. PERFORMANCE EVALUATION

Multimedia Applications Description

JPEG encode JPEG encoder is a DCT-based lossy image compres-
sion that is used for digital pictures.

JPEG decode Decoding digital pictures in JPEG format.

MJPEG Motion JPEG is used to compress digital video with-
out using block-based motion estimation algorithms.

MPEG-2 encode MEPG-2 encoding is used to compress digital video
using block-based motion estimation algorithms.

MPEG-2 decode MPEG-2 decoder is used to decompress digital video
using block-based motion estimation algorithms.

Table 4.1: Summary of some multimedia standards.

4.1 Benchmarks

In this section, some multimedia standards and details of several computationally
important kernels are described.

4.1.1 Multimedia Standards

Some multimedia standards have been selected in order to validate the proposed ar-
chitecture. Table 4.1 summarizes the benchmarks that are used for performance eval-
uation in this chapter. The Joint Photographic Experts Group (JPEG) and Moving
Picture Experts Group (MPEG) established the JPEG image compression and the
MPEG video compression standards, respectively. Most image and video compres-
sion standards have an encoder and a decoder, which define how an image or video
is compressed into a stream of bytes and decompressed back into an image or video.
In the image encoder there are usually the following functions that are performed in
order: RGB-to-YCbCr color space conversion, downsampling, block splitting, DCT,
quantization, and encoding. The decoder performs the inverse of these kernels in
reverse order. For example, YCbCr-to-RGB color space conversion is used in the
decoder. The block diagram of a JEPG encoder and decoder is shown in Figure 4.1.
If the input images are in RGB color space then the RGB-to-YCbCr color space
conversion is the first step in the encoder stage. In the encoder 2 : 1 horizontal down-
sampling with 2 : 1 vertical downsampling is employed for chrominance information
(Cb and Cr) in order to reduce the encoded data with little or no perceptual effect. In
order to remove redundant image data, DCT is applied on each block of pixels pro-
vided by block splitting. After that each block of DCT coefficients is quantized using



4.1. BENCHMARKS 53

RGB−to−YCbCr

. . . 

. . . r1g1b1r2g2 Y
Cb

Cr

Y

Cb

r1g1b1r2g2 Y
Cb

Cr
UpsamplingOutput image

im
a

g
e

Input image

. . . 

Downsampling EncodingQuantizationDCTBlock splitting 

Decoding

C
o

m
p

re
sse

d

Cr

YCbCr−to−RGB

Figure 4.1: A typical block diagram of an encoder and decoder of the JPEG standard.

weighting functions. Finally, the resulting coefficients are encoded by some tech-
niques such as Huffman coding in order to remove redundancies in the coefficients.

In the MPEG-2 video codecs, in addition to the mentioned kernels, there are some
extra kernels such as motion estimation and motion compensation. Motion JPEG
(MJPEG) represents a digital video sequence as a series of JPEG pictures. This
means that it does not use motion estimation.

The JPEG and MPEG-2 standards use a block-based DCT transform [117]. The input
images are divided into 8 × 8 disjoint blocks and each of them is transformed with
the DCT as depicted in Figure 4.1.

In the following section, some multimedia kernels that take the most computational
time of the multimedia standards, are described.

4.1.2 Multimedia Kernels

As mentioned in Chapter 1, most of the execution time of MMAs is spent in multi-
media kernels. Therefore, in order to evaluate the proposed techniques, some time
consuming kernels of multimedia standards and Content-Based Image and Video Re-
trieval (CBIVR) systems have been considered. Table 4.2 lists the media kernels
along with a small description. In order to clarify which proposed techniques have
been used in SIMD implementations of media kernels, the presented kernels are di-
vided into two groups. First, kernels that use both extended subwords and the MRF
techniques, for instance, the first seven kernels. Second, kernels that just use extended
subwords technique, for example, the rest of the kernels (thirteen kernels).

The 2D transforms such as Discrete Wavelet Tranform (DWT) and (I)DCT are de-
composed into two 1D transforms called horizontal and vertical filtering. The hor-
izontal filtering (processing) processes the rows followed by vertical filtering (pro-



54 CHAPTER 4. PERFORMANCE EVALUATION

Multimedia Kernels Description

Matrix transpose Matrix transposition is an important kernel for many 2D media kernels.

Vector/Matrix Multiply Vector/matrix multiply kernel is used in some multimedia standards.

Repetitive Padding In this kernel, the pixel values at the boundary of the video object is replicated
horizontally as well as vertically.

RGB-to-YCbCr Color space conversion, which is usually used in the encoder stage.

Horizontal DCT Horizontal DCT in used in most media standards to process the rows of images
in order to remove spatial redundancy.

Horizontal IDCT Horizontal Inverse DCT is used in the multimedia standards in order to recon-
struct the rows of the transformed images.

Horizontal filtering of the DWT The horizontal filtering of the discrete wavelet transform is used to process the
whole rows of an image.

Vertical filtering of the DWT The vertical filtering of the DWT is used to process the whole columns of an
image.

Vertical DCT Vertical DCT in used in most media standards to process the columns of images
in order to remove spatial redundancy.

Vertical IDCT Vertical IDCT is used in the multimedia standards in order to reconstruct the
columns of the transformed images.

Add block The add block is used in the decoder, during the block reconstruction stage of
motion compensation.

2 × 2 Haar transform The 2 × 2 haar transform is used to decompose an image into four different
bands.

Inverse 2 × 2 Haar transform The inverse 2×2 haar transform is used to reconstruct the original image from
different bands.

Paeth prediction Paeth prediction is used in the PNG standard.

YCbCr-to-RGB Color space conversion, which is usually used in the decoder stage.

SAD function The SAD function, which is used in motion estimation kernel to remove tem-
poral redundancies between video frames.

SAD function with interpolation The SAD function with horizontal and vertical interpolation is used in motion
estimation algorithm.

SAD function for image histograms The SAD function is used for similarity measurements of image histograms.

SSD function The SSD function, which is used in motion estimation kernel to remove tem-
poral redundancies between video frames.

SSD function with interpolation The SSD function with horizontal and vertical interpolation is used in motion
estimation algorithm.

Table 4.2: Summary of multimedia kernels.

cessing) that processes the columns. The efficiency of using SIMD approach for the
vertical filtering is better than the horizontal filtering (in a row-major storage for-
mat). This is because elements of each loop iteration are adjacent in memory. In
order to increase DLP in SIMD implementation of vertical filtering, the extended
subwords technique is used, while in SIMD implementation of horizontal filtering
both proposed techniques are needed in order to increase DLP and also to avoid data
rearrangement instructions. In other words, in the MMMX implementations of both
horizontal and vertical processing, the extended subwords technique is employed. In
addition to the extended subwords technique, the MRF is also needed in the MMMX
implementation of horizontal processing.

The presented kernels in Table 4.2 are responsible for a large portion of execution



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 55

time and contain a substantial amount of DLP [95, 50]. For example, the profiling of
a JPEG codec shows that RGB-to-YCbCr and YCbCr-to-RGB consume an average of
13.1% and 28.7% of the total execution time, respectively. Other researchers [13, 12]
have reported that color space conversion consumes up to 40% of the entire process-
ing time of a highly optimized decoder. Additionally, in [82, 109, 128] it has been
indicated that motion estimation takes about 60% to 80% of the encoding time. The
sum-of-absolute differences and sum-of-squared differences are usually used in the
motion estimation algorithm.

This means that the applications can be accelerated by speeding up the kernels. In
order to accelerate a media kernel, but still keep it correct, it is first necessary to
understand its algorithm. Therefore, the next section briefly explains the algorithm
of multimedia kernels and sketches their MMX and MMMX implementations.

4.2 Algorithm and SIMD Implementation of Kernels

This section briefly describes the algorithms of the selected multimedia kernels as
well as their SIMD implementations using both the MMX and MMMX architectures.

4.2.1 Matrix Transpose

Matrix transposition is at the center of many 2D multimedia algorithms. Because of
this, it is considered as a kernel benchmark.

The MMMX implementation of the matrix transpose is straightforward. Iteratively,
a vector is loaded from memory and written to a column of the register file. Once a
sub-matrix has been transposed in this way, it is written back to memory. The MMX
implementation, on the other hand, is more difficult and requires many permutation
instructions. For example, transposing an 8 × 8 matrix consisting of single-byte
elements requires 56 MMX/SSE instructions to be executed. Figure 4.2 depicts a
part of the MMX/SSE implementation to transpose an 8 × 8 block. After this code,
only the first four columns have been transposed. The transposed columns are stored
in mm0, mm5, mm1, and mm2 registers.

In this chapter, the matrix transpose kernel was implemented for two different data
types, byte and 12-bit values. For brevity, they will be referred to as Transp. (8) and
Transp. (12), respectively. A 12-bit data format arises, for example, in the IDCT. In
memory, however, these values are stored as 16-bit.

In order to transpose a matrix larger than 8 × 8, splitting technique is employed. In
this technique, a matrix A of size N × N , where N = 2n, can be transposed by



56 CHAPTER 4. PERFORMANCE EVALUATION

movq mm0, (blk1) ; mm0 =

movq mm1, 8(blk1) ; mm1 =

movq mm2, 16(blk1); mm2 =

movq mm3, 24(blk1); mm3 =

movq mm4, 32(blk1); mm4 =

movq mm5, 40(blk1); mm5 =

movq mm6, 48(blk1); mm6 =

movq mm7, 56(blk1); mm7 =

punpcklbw mm0, mm1 ; mm0 =

punpcklbw mm2, mm3 ; mm2 =

punpcklbw mm4, mm5 ; mm4 =

punpcklbw mm6, mm7 ; mm6 =

movq mm1, mm0 ; mm1 =

movq mm3, mm4 ; mm3 =

punpcklwd mm0, mm2 ; mm0 =

punpcklwd mm4, mm6 ; mm4 =

movq mm5, mm0 ; mm5 =

punpckldq mm0, mm4 ; mm0 =

punpckhdq mm5, mm4 ; mm5 =

punpckhwd mm1, mm2 ; mm1 =

punpckhwd mm3, mm6 ; mm3 =

movq mm2, mm1 ; mm2 =

punpckldq mm1, mm3 ; mm1 =

punpckhdq mm2, mm3 ; mm2 =

a07 a06 a05 a04 a03 a02 a01 a00

a17 a16 a15 a14 a13 a12 a11 a10

a27 a26 a25 a24 a23 a22 a21 a20

a37 a36 a35 a34 a33 a32 a31 a30

a47 a46 a45 a44 a43 a42 a41 a40

a57 a56 a55 a54 a53 a52 a51 a50

a67 a66 a65 a64 a63 a62 a61 a60

a77 a76 a75 a74 a73 a72 a71 a70

a13 a03 a12 a02 a11 a01 a10 a00

a33 a23 a32 a22 a31 a21 a30 a20

a53 a43 a52 a42 a51 a41 a50 a40

a73 a63 a72 a62 a71 a61 a70 a60

a13 a03 a12 a02 a11 a01 a10 a00

a53 a43 a52 a42 a51 a41 a50 a40

a31 a21 a11 a01 a30 a20 a10 a00

a71 a61 a51 a41 a70 a60 a50 a40

a31 a21 a11 a01 a30 a20 a10 a00

a70 a60 a50 a40 a30 a20 a10 a00

a71 a61 a51 a41 a31 a21 a11 a01

a33 a23 a13 a03 a32 a22 a12 a02

a73 a63 a53 a43 a72 a62 a52 a42

a33 a23 a13 a03 a32 a22 a12 a02

a72 a62 a52 a42 a32 a22 a12 a02

a73 a63 a53 a43 a33 a23 a13 a03

Figure 4.2: A part of the MMX/SSE code to transpose an 8 × 8 block.

splitting the matrix into four sub-matrices Aij , i, j = 1, 2, of size N/2×N/2 and by
transposing the sub-matrices recursively as shown in the following equations.

A =

[

A11 A12

A21 A22

]

, AT =

[

AT
11 AT

21

AT
12 AT

22

]

.

4.2.2 Vector/Matrix Multiply

Vector/matrix multiplication is another important kernel with many applications. For
example, it has been used to implement FIR filters [26], the discrete wavelet trans-
form [124], and, of course, matrix/matrix multiplication. The naive vector/matrix



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 57

multiply algorithm traverses the matrix along the columns. Because in C matrices
are typically stored in row-major order, this leaves the columns scattered in memory.
This kernel will be referred to as V x M.

In [34] two MMX implementations of vector/matrix multiplication have been pre-
sented. In the first implementation the matrix is split into 4 × 2 sub-matrices and the
vector is also split into sub-vectors of two elements. The C algorithm of this method
is depicted in Figure 4.3. In addition, the MMX implementation of the inner loop is
illustrated in Figure 4.4.

int16 Vec[N];
int16 Mat[N][M];
int16 Res[M];
int32 Acc[4];
for (i=0 i<M; i+=4) {

Acc[0..3] = 0;
for (j=0; j<N; j+=2)

Acc[0..3] += Mult4x2(Vec[j], Mat[j][i]);
Res[i..i+3] = Acc[0..3];

}

Figure 4.3: Pseudo C code for vector matrix multiply.

mov eax, N
pxor mm2, mm2 ; mm2 = |0 |0 |
pxor mm3, mm3 ; mm3 = |0 |0 |

loop2:
movd mm7, (Vec) ; mm7 = |0 |0 |v1 |v0 |
punpckldq mm7, mm7 ; mm7 = |v1 |v0 |v1 |v0 |
movq mm0, (Mat) ; mm0 = |a03 |a02 |a01 |a00 |
movq mm6, 2*M(Mat); mm6 = |a13 |a12 |a11 |a10 |
movq mm1, mm0 ; mm1 = |a03 |a02 |a01 |a00 |
punpcklwd mm0, mm6 ; mm0 = |a11 |a01 |a10 |a00 |
punpckhwd mm1, mm6 ; mm1 = |a13 |a03 |a12 |a02 |
pmaddwd mm0, mm7 ; mm0 = |a11*v1+a01+v0|... |
pmaddwd mm1, mm7 ; mm1 = |a13*v1+a03+v0|... |
paddd mm2, mm0 ; mm2 = |0+a11*v1+a01+v0|...|
paddd mm3, mm1 ; mm3 = |0+a13*v1+a03+v0|...|
add Mat, 4*M ; index to row2
add Vec, 4 ; index to element v2
sub eax, 2
jnz loop2

Figure 4.4: The MMX implementation of the inner loop that has been shown in Figure 4.3.

This algorithm processes four columns of the matrix in parallel (Mult4x2 function)



58 CHAPTER 4. PERFORMANCE EVALUATION

and accumulates results in a set of four accumulators. However, the algorithm ex-
hibits poor cache utilization. In the second method, the outer loop of the vec-
tor/matrix multiply algorithm is unrolled four times. This algorithm processes 16
columns of the matrix in each iteration of the inner loop, and each iteration of the
outer loop calculates 16 elements of the output vector. The second algorithm per-
forms better than the first method. In other words, the second algorithm is more
optimized than the first technique. For instance, the results presented in [34] indicate
that the optimized MMX implementation is up to 4 times faster than the unoptimized
MMX implementation. In this thesis the MMMX implementation is compared to the
optimized MMX implementation. For this kernel, a matrix size of 8× 16 is used and
the elements are assumed to be 12 bits wide (stored as 16-bit) as is the case in, for ex-
ample, the Hadamard transform in image processing and in edge detection algorithm
using different masking [55].

MMMX processes 16 columns in two loop iterations. In each loop iteration an 8 × 8
sub-matrix is processed. In order to process each sub-matrix, MMMX, first trans-
poses each sub-matrix using eight load column instructions after that it employs MAC
and fsum instructions. In other words, this kernel mainly benefits from the 8×12-bit
multiply-add operation provided in MMMX.

4.2.3 Repetitive Padding

An important new feature in MPEG-4 is padding. Profiling results reported in [19,
20, 143], indicate that padding is a computationally demanding process. For example,
the results presented in [143] indicates that 13% of the execution time in the MPEG-4
decoder is spent in padding kernel.

MPEG-4 defines Video Object Planes (VOPs) as arbitrarily shaped regions of a frame
which usually correspond to objects. Motion estimation is defined over VOPs instead
of frames. The padding process defines the color values of pixels outside the VOP. It
consists of two steps. First, each horizontal line of a block is scanned. If a pixel is
outside the VOP and between an end point of the line and an end point of a segment
inside the VOP, then it is replaced by the value of the end pixel of the segment inside
the VOP. Otherwise, if the pixel is outside the VOP and between two end points of
segments inside the VOP, it is replaced by the average of these two end points. In
the second step the same procedure is applied to each vertical line of the block. In
other words, the repetitive padding kernel consists of horizontal and vertical repet-
itive padding that their functionality is the same. The vertical repetitive padding is
equivalent to performing a transpose operation on the pixel and shape matrices ob-
tained in the horizontal repetitive padding stage, followed by a second iteration of
horizontal repetitive padding. Figure 4.5 illustrates horizontal and vertical repetitive
padding for an 8× 8 pixel block. In this figure VOP boundary pixels are indicated by



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 59

a numerical value, interior pixels are denoted by X , and pixels outside the VOP are
blank.

15 93

X 75

X X 105

X X 85 31 150

X X X 7 42 91 X X

X X X X X X X X

15 93

X 75

X X 105

X X 85 31 150

X X X 7 42 91 X X

X X X X X X X X

93 93 93 93 93 93

75 75 75 75 75 75

105105105105105

58 58 58

15 93

X 75

X X 105

X X 85 31 150

X X X 7 42 91 X X

X X X X X X X X

93 93 93 93 93 93

75 75 75 75 75 75

105105105105105

58 58 58

15

15

93

93 93 93 93 93 93 93

93 93 93 93 93 93

Horizontal

padding

Vertical

padding

Figure 4.5: Repetitive padding for VOP boundary blocks.

The algorithm described in [14] has been used in both the MMX and the MMMX
implementations. That algorithm has two horizontal and vertical repetitive padding
the same as the previous one. The horizontal repetitive padding of the new algorithm
is illustrated in Figure 4.6. It consists of two stages. First, all pixel values are scanned
from left to right. In addition, there is a bit flag for each pixel. It indicates if a pixel
value is kept from the original value or has to be replaced by its left value. After the
first stage, all positions that replaced by a new value have a set flag, while for posi-
tions that their values have not been changed have a zero value in their corresponding
flags. For example, as Figure 4.6 shows the 85 value is propagated three times from
left to right. Second, the intermediate results are scanned from right to left. In other
words, pixel values are propagated from the right. If a position has already received
a new value in the first stage, the correct value for this position is the average of the
present value and the value propagated from the right. For instance, three replaced
positions in the first stage are replaced by (85 + 31)/2 = 58 value.

XX 85 85 85 85 31 150

x x 0 1 1 1 0 0

31X X 85 58 58 58 150

x x 1 1 1 1 1 1

x x 1 0 0 0 1 1

X 85 31 150X

Before repetitive padding

Shape input data

Row input data

After stage 1 of the  horizontal repetitive padding

After stage 2 of the horizontal repetitive padding

Figure 4.6: An example of the horizontal repetitive padding using the described algorithm
in [14].

In this algorithm, special instructions have been proposed for both horizontal as well
as vertical repetitive padding [14]. In the MMX implementation both input pixel



60 CHAPTER 4. PERFORMANCE EVALUATION

block and binary shape information have to transposed. In addition, MMX employs
the special-purpose pavgb instruction which computes the arithmetic average of 8
pairs of bytes. On the other hand, If column-wise access to the register file is sup-
ported, then both horizontal and vertical repetitive padding can be performed iden-
tically and efficiently using the MMMX instructions. Additionally, MMMX synthe-
sizes the special-purpose pavgb instruction using the more general-purpose instruc-
tions fadd12 and fsar12 (shift arithmetic right on extended subwords).

4.2.4 (Inverse) Discrete Cosine Transform

The discrete cosine transform and its inverse are widely used in several image and
video compression applications. JPEG and MPEG partition the input image into 8×8
blocks and perform a 2D DCT on each block. The input elements are often either 8-
or 9-bit, and the output is an 8 × 8 block of 12-bit 2’s complement data.

A 2D DCT is efficiently computed by performing a 1D DCT on each row (horizontal
DCT) followed by a 1D DCT on each column (vertical DCT). There are many differ-
ent algorithms to implement the 2D DCT. One algorithm is using a transform matrix.
The M ×M transform matrix T , (tij) 0 ≤ i, j ≤ M − 1 is given by Equation (4.1).

Tij =











1
√

M
, if i = 0, 0 ≤ j ≤ M − 1.

√

2

M
∗ cos

π(2j + 1)i

2M
if 1 ≤ i ≤ M − 1, 0 ≤ j ≤ M − 1.

(4.1)

For an M × M matrix A, TA is an M × M matrix whose columns contain the 1D
DCT of the columns of A. The 2D DCT of A can be computed as B = TAT

′

. Since
T is a real orthonormal matrix, its inverse is the same as its transpose [98]. Therefore,
the inverse 2D DCT of B is given by T

′

BT .

The second algorithm to compute the 2D DCT is the LLM algorithm [96]. This
algorithm performs a 1D DCT on each row of the 8× 8 block followed by a 1D DCT
on each column of the transformed 8 × 8 block. The algorithm has four stages, the
output of each stage is the input of next stage. Figure 4.7 depicts the data flow graph
of this algorithm for 8 pixels using fixed-point arithmetic.

Both C and MMX implementations of this algorithm are faster than the C and MMX
implementations of the former algorithm that defines the DCT as a matrix multipli-
cation. One main reason for this is that the number of multiplications in the matrix
multiplication algorithm is more than the LLM algorithm. Therefore, the LLM algo-
rithm has been used as a reference algorithm in this thesis.

In the MMX implementation of this algorithm, however, 16-bit functionality (4-way
parallelism) has been used because the input data is either 8- or 9-bit. This means that



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 61

+
+

+
+ −

−

−
−

+ − −+

+ − + +− −

+−

x1 x7x2 x3 x4 x5 x6x0

a4a3a2a1 a5 a6 a7a0

(a4*(−c2) + a7*c1 + r)>>s

(a4*c1 + a7*c2 + r)>>s
(a5*c3 + a6*c4 + r)>>s
(a5*(−c4) + a6*c3 + r)>>s

(b2*c5 + b3*c6 + r)>>s

(b2*(−c6) + b3*c5 + r)>>s

b0 b1 b2 b3 b4 b5 b6 b7

d0 d1 d2 d3 d4 d5 d6 d7

(d6*c7 + r)>>s
(d5*c7 + r)>>s

X0 X1 X2 X3 X4 X5 X6 X7

Stage 1

Stage 2

Stage 3

Stage 4

Inputs

Outputs

Figure 4.7: Data flow graph of 8 pixels DCT using LLM [96] algorithm. The constant
coefficients of c, r, and s are provided for fixed-point implementation.

this kernel needs 16-bit storage format, while the intermediate results are smaller than
16-bit. Data type conversion instructions are not needed because four 16-bit can be
loaded from memory to the four subwords of a media register. Although many rear-
rangement instructions are used in this implementation, this implementation exploits
4-way parallelism in all stages. Figure 4.8 depicts the MMX/SSE implementation of
the first stage of the LLM algorithm for horizontal DCT. As this figure shows some
rearrangement instructions are required in this implementation.

movq mm0, (dct) ; mm0 =

movq mm3, 8(dct) ; mm3 =

pshufw mm1, mm0, 27; mm1 =

pshufw mm2, mm3, 27; mm2 =

paddsw mm0, mm2 ; mm0 =

psubsw mm1, mm3 ; mm1 =

x03 x02 x01 x00

x07 x06 x05 x04

x00 x01 x02 x03

x04 x05 x06 x07

x03+x04 x02+x05 x01+x06 x00+x07

x00-x07 x01-x06 x02-x05 x03-x04

Figure 4.8: The MMX/SSE code of the first stage of the LLM algorithm for horizontal DCT.



62 CHAPTER 4. PERFORMANCE EVALUATION

MMMX processes eight rows in one iteration. A complete 8 × 8 block is loaded
into eight column registers. After that row registers which have eight subwords are
processed. Figure 4.9 depicts a part of the MMMX implementation of the LLM al-
gorithm. In this figure, “X” refers to xi0 ± xi7, where 0 ≤ i ≤ 7. First, eight
load column instructions are used to load a complete 8 × 8 block into column reg-
isters. After that two fadd12 and fsub12 instructions are needed to process 16
pixels simultaneously. In MMX, on the other hand, four instructions (two pshufw
instructions, a paddsw, and a psubsw instructions) are required to process eight
pixels.

fldc16s12 3mxc0, (dct) ; 3mxc0 =

fldc16s12 3mxc1, 16(dct) ; 3mxc1 =

fldc16s12 3mxc2, 32(dct) ; 3mxc2 =

fldc16s12 3mxc3, 48(dct) ; 3mxc3 =

fldc16s12 3mxc4, 64(dct) ; 3mxc4 =

fldc16s12 3mxc5, 80(dct) ; 3mxc5 =

fldc16s12 3mxc6, 96(dct) ; 3mxc6 =

fldc16s12 3mxc7, 112(dct); 3mxc7 =

fst12s16s 112(dct), 3mx7 ; (mem) =

fmov 3mx7 , 3mx0 ; 3mx7 =

fadd12 3mx0 , 112(dct); 3mx0 =

fsub12 3mx7 , 112(dct); 3mx7 =

x07 x06 x05 x04 x03 x02 x01 x00

x17 x16 x15 x14 x13 x12 x11 x10

x27 x26 x25 x24 x23 x22 x21 x20

x37 x36 x35 x34 x33 x32 x31 x30

x47 x46 x45 x44 x43 x42 x41 x40

x57 x56 x55 x54 x53 x52 x51 x50

x67 x66 x65 x64 x63 x62 x61 x60

x77 x76 x75 x74 x73 x72 x71 x70

x77 x67 x57 x47 x37 x27 x17 x07

x70 x60 x50 x40 x30 x20 x10 x00

X X X X X X X x00+x07

X X X X X X X x00-x07

Figure 4.9: A part of the MMMX implementation for the horizontal DCT algorithm. “X”
denotes to xi0 ± xi7, where 0 ≤ i ≤ 7.

The IDCT is the inverse of the DCT and can be accomplished using the same algo-
rithm except that the stages are reversed. Identical to the 2D DCT, the 2D IDCT is
divided into two 1D IDCT, namely horizontal IDCT and vertical IDCT.

4.2.5 Discrete Wavelet Transform

The DWT provides a time-frequency representation of a signal. The DWT is a multi-
resolution technique that can analyze different frequencies by different resolutions.
The DWT is computed by performing lowpass and highpass filtering of the image
pixels as shown in Figure 4.10. In this figure, the lowpass and highpass filters are
denoted by h and g, respectively. This figure depicts the three levels of the 2D DWT
decomposition. At each level, the highpass filter generates detail image pixels in-
formation, while the lowpass filter produces the coarse approximations of the input
image. At the end of each lowpass and highpass filtering, the outputs are downsam-
pled by two (↓ 2). As was mentioned in Section 4.1.2, the 2D DWT is separable



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 63

and obtains from two 1D DWT. In other words, a 2D DWT can be performed by first
performing a 1D DWT on each row, which is referred to horizontal filtering, of the
image followed by a 1D DWT on each column, which is called vertical filtering.

2

2

2

2

2

2

g[ ]h[ ]

g[ ]

h[ ]

g[ ]

h[ ]

in the 1st level decomposition.

in the 2nd level decomposition.

in the 3rd level decomposition.

in the 3rd level decomposition.
Input sequence

highpass wavelet coefficients

highpass wavelet coefficients

highpass wavelet coefficients

lowpass wavelet coefficients

Figure 4.10: Three level 2D DWT decomposition of an input image using filtering approach.
The h and g variables denote the lowpass and highpass filters, respectively. The notation of
(↓ 2) refers to downsapling of the output coefficients by two.

There are different approaches to implement 2D DWT such as traditional
convolution-based and lifting scheme methods. The convolutional methods apply
filtering by multiplying the filter coefficients with the input samples and accumulat-
ing the results. Their implementation is similar to the FIR implementation. This
kind of implementation needs a large number of computations. The lifting scheme
has been proposed for the efficient implementation of the 2D DWT. The lifting ap-
proaches need 50% less computations than the FIR approaches. The basic idea of
the lifting scheme is to use the correlation in the image pixels values to remove the
redundancy [38, 48]. The lifting scheme has three phases, namely: split, predict, and
update, as illustrated in Figure 4.11. In the split stage, the input sequence is split into

Split Predict Update

−

+

Input sequence

Low−pass output

High−pass output

Figure 4.11: Three different phases in the lifting scheme.

two sub-sequences consisting of the even and odd samples. In the predict and update
stages, the highpass and lowpass values are computed, respectively. One example of
this group is the integer-to-integer (5, 3) lifting scheme ((5, 3) lifting). Figure 4.12
depicts the C code of the horizontal filtering of the (5, 3) lifting transform for an
N × M image. Since pixel values are assumed 8-bit, in the MMX implementation
both data type and rearrangement instructions are needed. This is because the in-
termediate results are larger than 8-bit and many data permutation instructions are
required to put the adjacent pixels in different registers. Figure 4.12 shows that load-



64 CHAPTER 4. PERFORMANCE EVALUATION

ing the adjacent pixels from (i, j), (i, j − 1), and (i, j + 1) locations are necessary
to calculate a highpass value. On the contrary, in the MMMX implementation due to
extended subwords and the MRF techniques those overhead instructions are avoided.

void Lifting53_horizontal() {
for (i=0; i< N; i++)

for (j=1, jj=0; j<M; jj++, j +=2) {
// calculation of highpass values
tmp[i][jj+M/2] = img[i][j] - ((img[i][j-1] +

img[i][j+1]) >> 1);
// calculation of lowpass values
tmp[i][j] = img[i][j-1] + ((img[i][jj+M/2] +

img[i][jj+M/2-1]+2) >> 2);
}

}

Figure 4.12: C implementation of the horizontal filtering of the (5, 3) lifting scheme.

4.2.6 Add Block

For encoding a block or macroblock in Intra-coded mode in standards such as MPEG-
4, a prediction block is formed based on previously reconstructed blocks. The resid-
ual signal between the current block and the prediction is encoded. This residual
signal data can be larger than 8-bit. The add block kernel is used in the decoder,
during the block reconstruction stage of motion compensation. This kernel requires
9 bits of intermediate precision. Consequently, the MMX implementation needs to
unpack the input data from 8- to 16-bit and pack the 16-bit result to 8-bit. In the
MMMX implementation this overhead is not required. Figure 4.13 and Figure 4.14
depict the MMX and MMMX implementations of the inner loop of the add block
kernel.

4.2.7 2 × 2 Haar Transform

The 2× 2 Haar transform is used in image compression [145]. The 2× 2 Haar trans-
form is sometimes referred to as a wavelet. A 2D Haar transform can be performed
by first performing a 1D Haar transform on each row (horizontal Haar transform) fol-
lowed by a 1D Haar transform on each column (vertical Haar transform). This trans-
form is used to decompose an image into four different bands. The 1D 2 × 2 Haar
transform replaces adjacent pixel values with their sums and differences. Figure 4.15
depicts an example of the 2D 2× 2 Haar transform for a 4× 4 image. This transform
generates four different subbands of lowpass and highpass values. A part of the MMX
code for the inner loop of the 2D 2 × 2 Haar transform is depicted in Figure 4.16.



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 65

mov eax , M
pxor mm7 , mm7

loop2:
movq mm0 , (Blk1)
movq mm1 , mm0
punpcklbw mm0 , mm7
punpckhbw mm1 , mm7
paddsw mm0 , (Blk2)
paddsw mm1 , (Blk2+8)
packuswb mm0 , mm1
movq (Blk1), mm0
add Blk1 , 8
add Blk2 , 16
dec eax
jnz loop2

Figure 4.13: The MMX implementation
of inner loop of the add block kernel.

mov eax , M
loop2:

fld8u12 3mx0 , (Blk1)
fld16s12 3mx1 , (Blk2)
fadd12 3mx0 , 3mx1
fst12s8 (Blk1), 3mx0
add Blk1 , 8
add Blk2 , 16
dec eax
jnz loop2

Figure 4.14: The MMMX implementation
of inner loop of the add block kernel.

x00+x01 x02+x03 x00−x01 x02−x03  
x10+x11 x12+x13 x10−x11 x12−x13
x20+x21 x22+x23 x20−x21 x22−x23
x30+x31 x32+x33 x32−x33x30−x31

Highpass valuesLowpass values

(x00+x01) + (x10+x11) (x02+x03) + (x12+x13) (x00−x01) + (x10−x11) (x02−x03) + (x12−x13)

(x20+x21) + (x30+x31) (x22+x23) + (x32+x33) (x20−x21) + (x30−x31) (x22−x23) + (x32−x33)

(x00+x01) − (x10+x11) (x02+x03) − (x12+x13)

(x20+x21) − (x30+x31) (x22+x23) − (x32+x33) (x20−x21) − (x30−x31)

(x00−x01) − (x10−x11)

(x22−x23) − (x32−x33)

(x02−x03) − (x12−x13)

subband 1subband 0

subband 2 subband 3

x00    x01    x02    x03
x10    x11    x12    x13
x20    x21    x22    x23
x30    x31    x32    x33

Input pixles

Haar transformVertical

Haar transformHorizontal

Figure 4.15: 2D 2×2 Haar transform using two 1D horizontal and vertical Haar transform.



66 CHAPTER 4. PERFORMANCE EVALUATION

The detail implementation of this kernel has been presented in [68]. Both the hori-
zontal and vertical Haar transform are combined together and they are performed in a
single pass. First, sixteen byte values are loaded into mmo and mm1 registers from
two consecutive rows, row0 and row1. The punpcklbw and punpckhbw instruc-
tions expand the data to two bytes. The paddw and psubw instructions are used
to calculate the sums and differences of the loaded rows. After this, because both
operands are in the same register and because MMX does not have an instruction that
adds or subtracts adjacent elements, the instruction pmaddwd (MAC operation) with
some multiplicands set to 1 and others to -1 (LHB01 and LHB23) is used for the final
addition or subtraction.

; LHB01 and LHB23 are operands
; for MAC operation.
LHB01 dw 1, 1, 1, 1
LHB23 dw 1, -1, 1, -1

loop2:
movq mm0, (row0)
movq mm1, (row1)
pxor mm7, mm7
movq mm4, mm0
movq mm5, mm1
punpcklbw mm0, mm7
punpckhbw mm4, mm7
movq mm2, mm0
punpcklbw mm1, mm7
punpckhbw mm5, mm7
paddw mm0, mm1
psubw mm2, mm1
movq mm1, mm0
pmaddwd mm0, LHB01
movq mm3, mm2
pmaddwd mm2, LHB01
movq mm6, mm4
pmaddwd mm1, LHB23
paddw mm4, mm5
pmaddwd mm3, LHB23
.
.
jnz loop2

Figure 4.16: A part of the MMX code for
the 2D 2 × 2 Haar Transform.

loop2:
fld8u12 3mx0, row0
fld8u12 3mx1, row1
fmov 3mx2, 3mx0
fadd12 3mx0, 3mx1
fsub12 3mx2, 3mx1
fmov 3mx1, 3mx0
fsum12 3mx0
fdiff12 3mx1
fmov 3mx3, 3mx2
fsum12 3mx2
fdiff12 3mx3
.
.
jnz loop2

Figure 4.17: A part of the MMMX code
for the 2D 2 × 2 Haar Transform.

The MMMX code for the 2D 2 × 2 Haar transform is depicted in Figure 4.17. In
the MMMX implementation also both horizontal and vertical Haar transform are
combined to each other in a single loop. MMMX calculates the sums and differences



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 67

of the pixels that are loaded from the consecutive rows by fadd12 and fsub12
instructions. In addition, MMMX has instructions that adds or subtracts adjacent
subwords in the same register. Because of these, MMMX reduces the number of
instructions in the inner loop by almost a factor of 2 (from 20 to 11) compared to
MMX.

Both MMX and MMMX store different subbands in their appropriate places as de-
picted in Figure 4.15. Because of this, implementation of the inverse 2 × 2 Haar
transform is easier than its forward transform. The inverse transform employs differ-
ent subband data to construct 2 × 2 blocks. Figure 4.18 illustrates an example that
shows how a 2 × 2 block is constructed by different subband data.

x00     x01
x10     x11

x01 = (x00 = (

x10 = ( x11 = (

(x00−x01) − (x10−x11)
) / 4

((x00+x01) − (x10+x11) −
(x00−x01) − (x10−x11))

) / 4

((x00+x01) + (x10+x11) +

((x00+x01) − (x10+x11) +
(x00−x01) − (x10−x11))

) / 4

((x00+x01) − (x10+x11) −
(x00−x01) − (x10−x11))

) / 4

(x00+x01) + (x10+x11) +
(x00−x01) + (x10−x11) +
(x00+x01) − (x10+x11) +

(x00−x01) + (x10−x11)) −

((x00+x01) + (x10+x11) −
(x00−x01) + (x10−x11)) +

((x00+x01) + (x10+x11) −
(x00−x01) + (x10−x11)) −

= 

Figure 4.18: An example of the inverse 2D 2× 2 Haar transform that uses subbands data to
construct a 2 × 2 block.

Both MMX and MMMX can load data from four subbands into four SIMD registers.
MMX loads four 16-bit values from a single subband into a register, while MMMX
loads eight 16-bit values. There is no need for data permutation instructions in MMX.
All sums and differences are performed with normal add and subtract instructions.
MMX uses packuswb instruction in order to truncate results to one byte, while
this operation is performed using store instructions in MMMX. In order to reorder
the results and store them in their appropriate places, both architectures use unpack
instructions.

4.2.8 Paeth Prediction

Paeth prediction is used in the PNG standard [114]. The Paeth predictor returns the
pixel a, b, or c which is closest to the initial prediction a + b − c, where a is the
element to the east of the current pixel d, b the element to the north, and c the element
to the northeast as depicted in Figure 4.19. A pseudo-code description of the Paeth
predictor (for one pixel) is given in Figure 4.20.

Because a, b, and c are unsigned bytes, p = a+b−c is in the range −255 . . . 510 (10
bits), pa = |p − a| = |b − c| is in the range 0 . . . 255 (8 bits), pb = |p − b| = |a − c|



68 CHAPTER 4. PERFORMANCE EVALUATION

− −

c b −

a d

−

−

−

−

.

.

. . .

Figure 4.19: Illustration of the a, b, and c pixels according to PNG specification.

unsigned byte Paeth_predict(a, b, c)
{

p = a+b-c /* initial prediction */
pa = |p-a|
pb = |p-b|
pc = |p-c|
if (pa<=pb AND pa<=pc) return a
else if (pb<=pc) return b
else return c

}

Figure 4.20: Pseudo-code description of the Paeth predictor.

is also in the range 0 . . . 255, and pc = |p − c| = |a + b − 2c| is in the range
−510 . . . 510 (10 bits). This implies that 12 bits are sufficient to perform this kernel
without overflow. MMX, on the other hand, needs to unpack to 16-bit values and
performs the main computation calculating the Paeth predictor value for four pixels
using 4-way parallelism as depicted in Figure 4.21.

MMMX loads eight pixels values into registers and provides 8-way parallelism. The
MMMX implementation computes the prediction for 8 pixels in a single iteration as
a part of its implementation is shown in Figure 4.22.

4.2.9 Color Space Conversion

Multimedia standards usually use color space conversions of RGB-to-YCbCr and
YCbCr-to-RGB in their encoder and decoder, respectively. Conversion between the
YCbCr and RGB formats and vice versa can be represented with the following equa-
tions [108].





Y

Cb

Cr



 =





0.256 0.502 0.098
−0.148 −0.290 0.438
0.438 −0.366 −0.071









R

G

B



 +





16.5
128.5
128.5



 (4.2)



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 69

mov eax, M
pxor mm0, mm0 ; mm0 = |0 |0 |0 |0 |0 |0 |0 |0 |
pxor mm7, mm7 ; mm7 = |0 |0 |0 |0 |0 |0 |0 |0 |

loop1:
movd mm1, (Paeth) ; mm1 = |0 |0 |0 |0 |c3|c2|c1|c0|
movd mm2, 4(Paeth) ; mm2 = |0 |0 |0 |0 |b3|b2|b1|b0|
movd mm3, M(Paeth) ; mm3 = |0 |0 |0 |0 |a3|a2|a1|a0|
punpcklbw mm1, mm0 ; mm1 = | c3 | c2 | c1 | c0 |
punpcklbw mm2, mm0 ; mm2 = | b3 | b2 | b1 | b0 |
punpcklbw mm3, mm0 ; mm3 = | a3 | a2 | a1 | a0 |
movq mm4, mm1 ; mm4 = | c3 | c2 | c1 | c0 |
movq mm5, mm2 ; mm5 = | b3 | b2 | b1 | b0 |
movq mm6, mm3 ; mm6 = | a3 | a2 | a1 | a0 |
psubsw mm2, mm1 ; mm2 = |b3-c3|b2-c2|b1-c1|b0-c0|
psubsw mm3, mm1 ; mm3 = |a3-c3|a2-c2|a1-c1|a0-c0|
movq mm1, mm2 ; mm1 = |b3-c3|b2-c2|b1-c1|b0-c0|
paddsw mm1, mm3 ; mm1 = |a3+b3-2c3|...|a0+b0-2c0|
psubsw mm7, mm2 ; mm7 = |c3-b3|c2-b2|c1-b1|c0-b0|
pmaxsw mm2, mm7 ; mm2 = max((bi-ci),(ci-bi))
pxor mm7, mm7 ; mm7 = |0 |0 |0 |0 |0 |0 |0 |0 |
psubsw mm7, mm3 ; mm7 = |c3-a3|c2-a2|c1-a1|c0-a0|
pmaxsw mm3, mm7 ; mm3 = max((ai-ci),(ci-ai))
.
.
sub eax, 4
jnz loop1

Figure 4.21: A part of the MMX code for the Paeth predictor kernel.





R

G

B



 =





1.164 0.000 1.596
1.164 −0.392 −0.813
1.164 2.017 0.000









Y − 16.5
Cb − 128.5
Cr − 128.5



 (4.3)

In both equations, the coefficients have been rounded to three fractional decimal dig-
its. As these equations show, color space conversions are defined using floating-point
arithmetic but here, to avoid using floating-point operations, fixed-point arithmetic is
used. Specifically, for MMX implementation, 16-bit fixed-point numbers are used,
and for MMMX implementation the color space conversion is approximated by us-
ing 12-bit fixed-point arithmetic. To determine the accuracy of these approximations,
two different tests have been performed. First, the maximum absolute error has been
measured by checking all possible RGB values (0 ≤ R,G,B ≤ 255). For both the
MMMX implementation (12-bit) and the MMX implementation (16-bit), the maxi-
mum absolute error compared to a single-precision floating-point implementation is
1. Second, the Mean Square Error (MSE) has been measured for real images as well



70 CHAPTER 4. PERFORMANCE EVALUATION

mov eax , M
loop1:

fld8u12 3mx1, (Paeth) ; 3mx1 = |c7|c6|c5|c4|c3|c2|c1|c0|
fld8u12 3mx2, 8(Paeth) ; 3mx2 = |b7|b6|b5|b4|b3|b2|b1|b0|
fld8u12 3mx3, M(Paeth) ; 3mx3 = |a7|a6|a5|a4|a3|a2|a1|a0|
fmov 3mx4, 3mx1 ; 3mx4 = |c7|c6|c5|c4|c3|c2|c1|c0|
fmov 3mx5, 3mx2 ; 3mx5 = |b7|b6|b5|b4|b3|b2|b1|b0|
fmov 3mx6, 3mx3 ; 3mx6 = |a7|a6|a5|a4|a3|a2|a1|a0|
fsub12 3mx2, 3mx1 ; 3mx2 = |b7-c7|b6-c6|.....|b0-c0|
fsub12 3mx3, 3mx1 ; 3mx3 = |a7-c7|a6-c6|.....|a0-c0|
fmov 3mx1, 3mx2 ; 3mx1 = |b7-c7|b6-c6|.....|b0-c0|
fadd12 3mx1, 3mx3 ; 3mx1 = |a7+b7-2c7|...|a0-b0-2c0|
fneg12 3mx7, 3mx2, 255 ; 3mx7 = |c7-b7|c6-b6|.....|c0-b0|
fmax12 3mx2, 3mx7 ; 3mx2 = max((bi-ci),(ci-bi))
fneg12 3mx7, 3mx3, 255 ; 3mx7 = |c7-a7|c6-a6|.....|c0-a0|
fmax12 3mx3, 3mx7 ; 3mx3 = max((ai-ci),(ci-ai))
.
.
sub eax, 8
jnz loop1

Figure 4.22: A part of the MMMX code for the Paeth predictor kernel.

as randomly generated inputs. Figure 4.23 depicts the MSE of the 8-, 12-, and 16-
bit implementations as a function of the image size. It shows that MSE of the 12-
and 16-bit implementations are very close to each other while the MSE of the 8-bit
implementation is much larger.

Figure 4.23: Mean square error in the implementation of color space conversion for different
bit widths and image sizes.

In the remainder of this section, the SIMD implementation of the RGB-to-YCbCr
and YCbCr-to-RGB kernels are discussed in detail.

The RGB values are usually in the band interleaved format, i.e., they are stored as
R1G1B1, R2G2B2, R3G3B3, etc. Because of this a straightforward MMX imple-



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 71

mentation of the RGB-to-YCbCr kernel is not efficient. This is because of the fol-
lowing reasons. First, image pixels must be unpacked from unsigned byte to 16-bit
and vice versa because of the mismatch between the storage format and the compu-
tational format. This means that many data type conversion instructions are needed.
Second, there are four 16-bit subwords in each MMX register and three R, G, and B
values for each pixel. This implies that one of the subwords (a quarter of the process-
ing capacity) will be unused. Third, there is no instruction in the MMX ISA that adds
adjacent pixels. To synthesize this operation many shift instructions are used and ba-
sically perform scalar addition. Additionally, there are unaligned memory accesses
because in each loop iteration two pixels are processed and the starting address of
them is not necessarily a multiple of 8.

To efficiently implement this kernel compared to straightforward implementation,
first the band interleaved format is converted to the band separated format using re-
arrangement instructions. Experimental results on an actual machine show that the
MMX implementation using the band separated format is 4.20 times faster than the
straightforward MMX implementation for an image of size 576 × 768. The faster
method is used as the reference.

The MMX implementation using the band separated format consists of the following
stages:

1. Load the RGB values of eight pixels into the media register file (3 instructions).

2. Conversion from band interleaved to band separated format using rearrange-
ment instructions (35 instructions).

3. Unpack the packed byte data types to packed 16-bit word data types (6 instruc-
tions).

4. Shift the RGB values to the left by 7 bits (6 instructions).

5. Convert from RGB to YCbCr using 16-bit packed multiplication and addition
instructions (51 instructions).

6. Truncate the results by shifting them to the right by 6 bits (6 instructions).

7. Pack the unpacked results and store in memory (12 instructions).

This MMX implementation is also not very efficient because many rearrangement
and data type conversion instructions are required. For instance, 35 instructions are
needed to convert 8 pixels from the band interleaved format to the band separated
format. Figure 4.24 shows a part of the MMX code that achieves this rearrangement.
It can be seen that many unpack, shift, and data transfer instructions are required to
achieve this. As a result, both MMX implementations are inefficient.



72 CHAPTER 4. PERFORMANCE EVALUATION

movq mm0, (RGB) ; mm0 =
movq mm2,8(RGB) ; mm2 =
movq mm1,16(RGB); mm1 =
movq mm3, mm0 ; mm3 =
movq mm4, mm0 ; mm4 =
psrlq mm3, 24 ; mm3 =
punpcklbw mm4, mm3 ; mm4 =
movq mm6, mm2 ; mm6 =
movq mm7, mm2 ; mm7 =
psrlq mm3, 24 ; mm3 =
psllq mm6, 16 ; mm6 =
psrlq mm7, 8 ; mm7 =
por mm6, mm3 ; mm6 =
punpcklbw mm6, mm7 ; mm6 =
movq mm3, mm4 ; mm3 =
punpcklwd mm4, mm6 ; mm4 =
punpckhwd mm3, mm6 ; mm3 =
movq mm0, mm2 ; mm0 =
movq mm6, mm1 ; mm6 =
psrlq mm2, 32 ; mm2 =
psrlq mm0, 56 ; mm0 =
psllq mm6, 8 ; mm6 =
por mm0, mm6 ; mm0 =
punpcklbw mm2, mm0 ; mm2 =
movq mm0, mm1 ; mm0 =
psrlq mm1, 16 ; mm1 =
psrlq mm0, 40 ; mm0 =
punpcklbw mm1, mm0 ; mm1 =
movq mm6, mm2 ; mm6 =
punpcklwd mm2, mm1 ; mm2 =
punpckhwd mm6, mm1 ; mm6 =
movq mm1, mm4 ; mm1 =
punpckldq mm1, mm2 ; mm1 =
punpckhdq mm4, mm2 ; mm4 =
punpckldq mm3, mm6 ; mm3 =

g3 r3 b2 g2 r2 b1 g1 r1
r6 b5 g5 r5 b4 g4 r4 b3
b8 g8 r8 b7 g7 r7 b6 g6
g3 r3 b2 g2 r2 b1 g1 r1
g3 r3 b2 g2 r2 b1 g1 r1
0 0 0 g3 r3 b2 g2 r2
r3 r2 b2 b1 g2 g1 r2 r1
r6 b5 g5 r5 b4 g4 r4 b3
r6 b5 g5 r5 b4 g4 r4 b3
0 0 0 0 0 0 g3 r3

g5 r5 b4 g4 r4 b3 0 0
0 r6 b5 g5 r5 b4 g4 r4

g5 r5 b4 g4 r4 b3 g3 r3
r5 r4 b4 b3 g4 g3 r4 r3
r3 r2 b2 b1 g2 g1 r2 r1
g4 g3 g2 g1 r4 r3 r2 r1
r5 r4 r3 r2 b4 b3 b2 b1
r6 b5 g5 r5 b4 g4 r4 b3
b8 g8 r8 b7 g7 r7 b6 g6
0 0 0 0 r6 b5 g5 r5
0 0 0 0 0 0 0 r6

g8 r8 b7 g7 r7 b6 g6 0
g8 r8 b7 g7 r7 b6 g6 r6
r7 r6 b6 b5 g6 g5 r6 r5
b8 g8 r8 b7 g7 r7 b6 g6
0 0 b8 g8 r8 b7 g7 r7
0 0 0 0 0 b8 g8 r8
0 r8 b8 b7 g8 g7 r8 r7
r7 r6 b6 b5 g6 g5 r6 r5
g8 g7 g6 g5 r8 r7 r6 r5
0 r8 r7 r6 b8 b7 b6 b5

g4 g3 g2 g1 r4 r3 r2 r1
r8 r7 r6 r5 r4 r3 r2 r1
g8 g7 g6 g5 g4 g3 g2 g1
b8 b7 b6 b5 b4 b3 b2 b1

Figure 4.24: The MMX instructions needed to convert RGB values from band interleaved
format to band separated format.



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 73

In the MMMX implementation of the RGB-to-YCbCr kernel, due to the MRF tech-
nique, changing from the band interleaved format to the band separated format is not
needed as was illustrated in Figure 3.6 in the Section 3.2 of Chapter 3. In addition, the
data type conversion instructions are avoided and 8-way parallelism is provided using
the extended subwords technique. For example, the MMMX architecture needs 115
instructions to process 16 pixels, while the MMX architecture needs 300 instructions.

Figure 4.25 depicts an example that illustrates how the MMMX fmul12h instruc-
tion provides 8-way parallelism for this kernel. The coefficient value that should
be multiplied with the green value of an image pixel is 0.502, as was depicted in
Equation (4.2), approximated 0.502 by 1028/211 .

3mx3 =3mx2 = 3mx0
3mx0 = 8 green values

shift to left 1 time
3mx0 = shifted values

fsll12   3mx0, 1

3mx1 = eight times 1028
(0.502 = 1028/2^11)

fmul12h   3mx0, 3mx1

Real multiply results

Actual multiply results
by 0.502
3mx3 = 3mx3 x 0.502

by 1028/2^11
3mx2 = 3mx2 x 1028/2^11

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

95 84 83 72 71 60 59 48 47 36 35 24 23 1211 0

30 40 45 35 255 250 105 85

60 80 90 70 510 500 210 170

1028 1028 1028 1028 1028 1028 1028 1028

15 20 23 18 128 125 53 43

15.058 20.078 22.587 17.568 127.998 125.488 52.705 42.666

15.06 20.08 22.59 17.57 128.01 125.5 52.71 42.67

Steps:

1

2

3

4

Figure 4.25: Partitioned multiplication using the fmul12h instruction.

This figure shows four steps. In the first step, it loads eight green pixel values into a
media register (3mx0). In the second step, the subwords are shifted left by one bit.
This is accomplished through MMMX’s fsll12 instruction. This is because the
fmul12h instruction truncates the result between the 11th and 12th bit position of
the internal 24-bit result. The lower 12 bits will be discarded. For this need to shift
the subwords one bit to the left. The fixed-point coefficient 1028 would exceed the
12-bit signed range if it was shifted left by one bit. Because of this the first operand
is shifted left. In the third step, the value 1028 is stored in another media register
(3mx1) eight times. Finally, the shifted values are multiplied by the value 1028 using
the fmul12h 3mx0, 3mx1 instruction.

There can be some loss of precision due to this kind of instruction as already dis-
cussed in Section 3.3 of Chapter 3. The first error is due to quantizing. The coefficient



74 CHAPTER 4. PERFORMANCE EVALUATION

is 0.502, while 1028/211 = 0.501953125. The second reason for loss of precision is
due to the nature of truncation. In order to reduce the effect of this error, first, inter-
nally round the intermediate 24-bit result and after that truncate the 12-bit result. As
a result, if one compares the fixed-point results with the floating-point results shown
in the last row of Figure 4.25, one can see there is a small error. Specifically, the
rounded result of multiplying the third subword 250 with 1028/211 is 125, while the
rounded result of multiplying 250 with 0.502 is 126.

Both MMX and MMMX store the calculated Y, Cb, and Cr values in separate ar-
rays. This causes that the SIMD implementation of the YCbCr-to-RGB kernel be al-
most easier than the SIMD implementation of the RGB-to-YcbCr kernel. MMX and
MMMX can load eight Y, eight Cb, and eight Cr values in different registers. They
do not need the data permutation instructions and the MRF technique, respectively.
MMX unpacks the loaded values to 16-bit by data type conversion instructions, while
MMMX does not. This means that MMX employs 4-way parallelism, while MMMX
provides 8-way parallelism.

Figure 4.26 and Figure 4.27 show a part of the MMX and MMMX codes for the
YCbCr-to-RGB kernel based on the Equation (4.3). The floating-point coefficient
16.5 must be subtracted from Y values and floating-point coefficient 128.5 from Cb
and Cr values as well. These coefficients are provided by 1056/26 = 16.5 and
8224/26 = 128.5 in the MMX implementation, while they are provided by 66/22 =
16.5 and 514/22 = 128.5 in the MMMX implementation. This means that MMX and
MMMX, first shifts the loaded values to the left by 6 and 2 bits, respectively, and after
that the shifted values are subtracted by the fixed-point coefficients. For example, as
Figure 4.26 shows, MMX shifts the pixel values by 6-bit to the left and subtracts
them by fixed-point coefficients 1056 and 8224 values. The remaining floating-point
coefficients in Equation (4.3) are approximated by 10-bit in both architectures. For
instance, the floating-point coefficient 1.164 is replaced by 1.164 ∗ 210 = 1192.
Finally, the partitioned multiplication pmulhw and fmul12h instructions truncates
the lower 16- and 12-bit results in MMX and MMMX, respectively.

4.2.10 Similarity Measurements

Among the different similarity measurements, the sum-of-squared differences and
the sum-of-absolute differences functions have been found to be the most use-
ful [142, 133, 146, 144]. For example, in [146] eight similarity measurements for
image retrieval have been evaluated. Based on the results presented there, in terms of
retrieval effectiveness and retrieval efficiency, the SSD and SAD functions are more
desirable than other functions.

The SSD and SAD cost functions of two N ×N blocks for motion estimation are de-



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 75

Const1 dw 1056, 1056, 1056, 1056 ; 1056 / 2ˆ6 = 16.5
Const2 dw 8224, 8224, 8224, 8224 ; 8224 / 2ˆ6 = 128.5
Const3 dw 1192, 1192, 1192, 1192 ; 1192 / 2ˆ6 = 1.164
mov eax, M

loop1:
pxor mm0, mm0 ; mm0 = |0 |0 |0 |0 |0 |0 |0 |0 |
movq mm1, (Y) ; mm1 = |y7 |y6 |y5 |y4 |y3 |y2 |y1 |y0 |
movq mm2, (Cb) ; mm2 = |cb7|cb6|cb5|cb4|cb3|cb2|cb1|cb0|
movq mm3, (Cr) ; mm3 = |cr7|cr6|cr5|cr4|cr3|cr2|cr1|cr0|
movq mm5, mm1 ; mm5 = |y7 |y6 |y5 |y4 |y3 |y2 |y1 |y0 |
movq mm6, mm2 ; mm6 = |cb7|cb6|cb5|cb4|cb3|cb2|cb1|cb0|
movq mm7, mm3 ; mm7 = |cr7|cr6|cr5|cr4|cr3|cr2|cr1|cr0|
punpcklbw mm1, mm0 ; mm1 = |0 |y3 |0 |y2 |0 |y1 |0 |y0 |
punpcklbw mm2, mm0 ; mm2 = |0 |cb3|0 |cb2|0 |cb1|0 |cb0|
punpcklbw mm3, mm0 ; mm3 = |0 |cr3|0 |cr2|0 |cr1|0 |cr0|
punpckhbw mm5, mm0 ; mm5 = |0 |y7 |0 |y6 |0 |y5 |0 |y4 |
punpckhbw mm6, mm0 ; mm6 = |0 |cb7|0 |cb6|0 |cb5|0 |cb4|
punpckhbw mm7, mm0 ; mm7 = |0 |cr7|0 |cr6|0 |cr5|0 |cr4|
psllw mm1, 6 ; mm1 = mm1 x 2ˆ6
psllw mm2, 6 ; mm2 = mm2 x 2ˆ6
psllw mm3, 6 ; mm3 = mm3 x 2ˆ6
psllw mm5, 6 ; mm5 = mm5 x 2ˆ6
psllw mm6, 6 ; mm6 = mm6 x 2ˆ6
psllw mm7, 6 ; mm7 = mm7 x 2ˆ6
psubw mm1, Const1 ; mm1 = mm1 - Const1
psubw mm5, Const1 ; mm5 = mm5 - Const1
psubw mm2, Const2 ; mm2 = mm2 - Const2
psubw mm3, Const2 ; mm3 = mm3 - Const2
psubw mm6, Const2 ; mm6 = mm6 - Const2
psubw mm7, Const2 ; mm7 = mm7 - Const2
pmulhw mm1, Const3 ; mm7 = Y x 1.164
.
.
sub eax, 8
jnz loop1

Figure 4.26: A part of the MMX code for the YCbCr-to-RGB color space conversion.

fined by Equation (4.4) and Equation (4.5), respectively. In these equations x(m,n)
represents the current block of N 2 (usually N = 16) pixels, y(m+i, n+j) represents
the block in the reference frame, and (i, j) is the motion vector.

SSD(i, j) =

N
∑

m=1

N
∑

n=1

(x(m,n) − y(m + i, n + j))2. (4.4)

SAD(i, j) =

N
∑

m=1

N
∑

n=1

|x(m,n) − y(m + i, n + j)|. (4.5)

The SSD and SAD functions are also used in CBIVR systems, where images and



76 CHAPTER 4. PERFORMANCE EVALUATION

; 16.5 = 66 / 2ˆ2, 128.5 = 514 / 2ˆ2, and 1.164 = 1192 / 2ˆ10
Const1 dw 66 , 66 , 66 , 66 , 66 , 66 , 66 , 66
Const2 dw 514 , 514 , 514 , 514 , 514 , 514 , 514 , 514
Const3 dw 1192, 1192, 1192, 1192, 1192, 1192, 1192, 1192
mov eax, M

loop1:
fld8u12 3mx1, (Y) ; 3mx1 = |y7 |y6 |y5 |y4 |y3 |y2 |y1 |y0 |
fld8u12 3mx2, (Cb) ; 3mx2 = |cb7|cb6|cb5|cb4|cb3|cb2|cb1|cb0|
fld8u12 3mx3, (Cr) ; 3mx3 = |cr7|cr6|cr5|cr4|cr3|cr2|cr1|cr0|
fsll12 3mx1, 2 ; 3mx1 = 3mx1 x 2ˆ2
fsll12 3mx2, 2 ; 3mx2 = 3mx2 x 2ˆ2
fsll12 3mx3, 2 ; 3mx3 = 3mx3 x 2ˆ2
fsub12 3mx1, Const1 ; 3mx1 = 3mx1 - Const1
fsub12 3mx2, Const2 ; 3mx2 = 3mx2 - Const2
fsub12 3mx3, Const2 ; 3mx3 = 3mx3 - Const2
fmul12h 3mx1, Const3 ; 3mx1 = Y x 1.164
.
.
sub eax , 8
jnz loop1

Figure 4.27: A part of the MMMX code for the YCbCr-to-RGB color space conversion.

videos are indexed into a database using a vector of features extracted from the image
or video. In the retrieval stage the similarity between the features of the query image
and the stored feature vectors is determined. That means that computing the similarity
between two images or videos can be transformed into the problem of computing the
similarity between two feature vectors [86]. Hence, the large computational cost
associated with CBIVR systems is related to matching algorithms for feature vectors,
because there are many feature vectors from different images and videos in the feature
database.

Histogram Euclidean distance (Equation (4.6)) and bin-to-bin difference (b2b) (Equa-
tion (4.7)) are common similarity measurements in CBIVR systems [39]. In these
equations h1 and h2 represent two histograms, N is the number of pixels in an im-
age, and n is the number of bits in each pixel.

d2(h1, h2) =

2n
−1

∑

i=0

(h1[i] − h2[i])
2. (4.6)

fdb2b(h1, h2) =

∑

2n
−1

i=0
|(h1[i] − h2[i]|)

N
. (4.7)

The size of a histogram depends on the number of bits in each pixel. If a pixel depth
of n bits is supposed, the pixel values will be between 0 and 2n−1, and the histogram
will have 2n elements.



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 77

Components of color histograms are unsigned numbers and usually larger than 8- and
16-bit. For instance, if a frame of size 512 × 512 is completely white or black, the
largest element will be 218.

In the following subsections, the SIMD implementations of the SAD function, the
SSD function, and their interpolation are also discussed.

SIMD Implementation of the SAD Function

As mentioned in Chapter 1, the psadbw instruction [111] is an SPI specifically tar-
geted at the SAD function. A 64-bit psadbw instruction consists of 3 steps: (1) cal-
culate eight 8-bit differences between the elements, (2) calculate the absolute value
of the differences, and (3) perform three cascaded summations. These steps are illus-
trated in Figure 4.28. The C code of the SAD function was depicted in Figure 3.2 in
Section 3.1. The code in Figure 4.29 depicts the MMX/SSE implementation of the
SAD kernel for two 16 × 16 blocks using the psadbw instruction.

0816243240485663 0816243240485663

++++

++

+

h’ f’ e’ d’ c’ b’ a’ h e d c a

h−h’ g−g’ f−f’ e−e’ d−d’ a−a’

. . .. . . 

1.

2.

3.

bg’ g

b−b’

f

c−c’

|h−h’| |g−g’| |e−e’| |c−c’| |b−b’| |a−a’||d−d’||f−f’|

Figure 4.28: The structure of SAD instruction in multimedia extension.

One of the reasons why the psadbw instruction provides a significant performance
benefit is that the 9-bit differences cannot be stored in the 8-bit subwords. Further-
more, there are no instructions to sum all the elements in a register or to add adjacent
elements. In the MMMX architecture the 9-bit differences can be stored in the 12-
bit subwords. Moreover, it provides instructions to add adjacent elements which
can most lightly be performed in a single cycle. In other words, SIMD instructions
have been implemented to replace the psadbw instruction, which are more general-
purpose and can be used in many multimedia kernels and also in other similarity



78 CHAPTER 4. PERFORMANCE EVALUATION

measurements. The psadbw instruction can be synthesized using a small number
of such general-purpose SIMD instructions with only a small performance degrada-
tion. Figure 4.30 shows how the SAD function can be implemented using MMMX
instructions.

mov eax , 16
pxor mm5 , mm5

loop:
movq mm1 , (blk1)
movq mm2 , (blk2)
movq mm3 , (blk1+8)
movq mm4 , (blk2+8)
psadbw mm1 , mm2
psadbw mm3 , mm4
paddd mm1 , mm3
paddd mm5 , mm1
add blk1, 16
add blk2, 16
dec eax
jnz loop

Figure 4.29: The MMX/SSE implementa-
tion of the SAD function.

mov ecx , 2
loop1:

fxor 3mx5, 3mx5
mov eax , 8

loop2:
fld8u12s 3mx1, (blk1)
fld8u12s 3mx2, (blk2)
fld8u12s 3mx3, (blk1+8)
fld8u12s 3mx4, (blk2+8)
fsub12 3mx1, 3mx2
fneg12 3mx7, 3mx1, 255
fmax12 3mx1, 3mx7
fsub12 3mx3, 3mx4
fneg12 3mx7, 3mx3, 255
fmax12 3mx3, 3mx7
fadd12 3mx1, 3mx3
fadd12 3mx5, 3mx1
add blk1, 16
add blk2, 16
dec eax
jnz loop2
fsum12 3mx5
fsum24 3mx5
fsum48 3mx5
dec ecx
jnz loop1

Figure 4.30: The MMMX implementation
of the SAD function.

Since |a − b| = max(a − b, b − a), the absolute difference operation can be synthe-
sized using the MMMX instructions fsub12, fneg12, and fmax12. Thereafter,
the sum-of-absolute differences can be computed using the fsum{12,24,48} in-
structions. These instructions are more general-purpose than the psadbw instruc-
tion. Note that the elements in a register are not summed in every iteration. Because
each absolute difference is 8 bits and each subword is 12 bits, sixteen absolute differ-
ences can be accumulated before there is the risk of overflow. Therefore, in order to
provide 8-way parallelism, a 16×16 block was divided into two 8×16 blocks. In the
first iteration of the outer loop, the SAD function of the first 8×16 block is calculated
and in the next iteration, the SAD function of the other 8 × 16 block is performed.
Finally, the results are accumulated into one register using the fsum{12,24,48}



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 79

instructions.

Figure 4.31 and Figure 4.32 depict a part of the MMX and MMMX implementations
of the SAD function for similarity measurement of two histograms, respectively.

mov ecx, 256
pxor mm5, mm5 ; mm5 = 0

loop:
movq mm1, (HCurrent) ; mm1 = |h2 |h1 |
movq mm2, (HReference) ; mm2 = |r2 |r1 |
movq mm3, mm1 ; mm3 = |h2 |h1 |
psubd mm1, mm2 ; mm1 = |h2-r2|h1-r1|
psubd mm2, mm3 ; mm2 = |r2-h2|r1-h1|
movq mm3, mm1 ; mm3 = |h2-r2|h1-r1|
movq mm4, mm2 ; mm4 = |r2-h2|r1-h1|
pcmpgtd mm1, mm2 ; mm1 = mm1 > mm2
pcmpgtd mm2, mm3 ; mm2 = mm2 > mm3
pand mm1, mm3 ; mm1 = mm1 & mm3
pand mm2, mm4 ; mm2 = mm2 & mm4
paddd mm1, mm2 ; mm1 = mm1 + mm2
paddd mm5, mm1 ; mm5 = mm5 + mm1
.
.
sub ecx, 2
jnz loop
movq mm6, mm5 ; mm6 = mm5 = |p2|p1|
psrlq mm5, 32 ; mm5 = 0 p2
paddd mm5, mm6 ; mm5 = |p2+0 |p2+p1|

Figure 4.31: A part of the MMX implementation of the sum-of-absolute differences for simi-
larity measurement of histograms.

MMX provides 2-way parallelism as shown in Figure 4.31. This is because the ele-
ments of the color histograms are larger than 8- or 16-bit but smaller than 24-bit. The
image size determines histogram element size. For example, the largest image size
that is used is the High Definition Television (HDTV) standard is 1920 × 1080 [54]
that its histogram element size can be represented by 24-bit. Elements of the his-
tograms are stored in memory as 32-bit data type. Furthermore, there is no special-
purpose SAD instruction for 32-bit data types in the MMX ISA. This means that
thirteen other SIMD instructions are needed to implement it. The last three instruc-
tions in Figure 4.31 are used for addition of two adjacent data elements. MMMX, on
the other hand, provides 4-way parallelism as shown in Figure 4.32. This is because
24-bit subwords are sufficient for computational results of the histograms.



80 CHAPTER 4. PERFORMANCE EVALUATION

mov ecx, 256
fxor 3mx5, 3mx5 ; 3mx5 = 0

loop:
fld32u24 3mx1, (HCurrent) ; 3mx1 = |h3 |h2 |h1 |h0 |
fld32u24 3mx2, (HReference) ; 3mx2 = |r3 |r2 |r1 |r0 |
fsub24 3mx1, 3mx2 ; 3mx1 = |h3-r3|h2-r2|..|h0-r0|
fneg24 3mx7, 3mx1, 15 ; 3mx7 = |-(h3-r3)|..|-(h0-r0)|
fmax24 3mx1, 3mx7 ; 3mx1 = max(3mx1, 3mx7)
fadd24 3mx5, 3mx1 ; 3mx5 = 3mx5+3mx1
.
.
sub ecx , 4
jnz loop
fsum24 3mx5
fsum48 3mx5

Figure 4.32: A part of the MMMX implementation of the sum-of-absolute differences for
similarity measurement of histograms.

SIMD Implementation of the SSD Function

The SSD function for processing a block of size 16 × 16 has already been shown
in Figure 3.1 in Chapter 3. As was discussed in Section 3.1, 24 bits of precision
is sufficient for accumulation range of the SSD implementation. This means that
an unsigned 24-bit data type is sufficient, which does not map orderly to a general-
purpose data type.

Figure 4.33 and Figure 4.34 show how the SSD function can be implemented using
MMX and MMMX instructions, respectively. The MMX uses 16-bit subwords for
computational format. This is because the difference between two bytes does not fit
in 8 bits. In addition, there is an MAC pmaddwd instruction for 16-bit data elements.
The final result is stored in a 32-bit subword. Because of this, many punpck instruc-
tions are used to promote 8-bit to 16-bit data type. This is the reason why the static
number of instructions in each iteration of the MMX implementation is 36 compared
to 15 in the MMMX code. In the MMMX implementation 12-bit subwords are used
for processing and final computational results are stored in 24-bit subwords.

Interpolation

The SAD and SSD similarity measurements are only a summation of the pixel-wise
intensity differences and, consequently, small changes may result in a large similarity
distance. For example, the Euclidean distance of Figure 4.35(a) and (b) is less than
the Euclidean distance of (a) and (c), even though Figure 4.35(a) is more similar to



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 81

mov eax , 16
pxor mm0 , mm0 ; mm0 = |0 |0 |0 |0 |0 |0 |0 |0 |
pxor mm7 , mm7 ; mm7 = |0 |0 |0 |0 |0 |0 |0 |0 |

loop:
movq mm1 , (blk1) ; mm1 = |a7|a6|a5|a4|a3|a2|a1|a0|
movq mm2 , (blk2) ; mm2 = |b7|b6|b5|b4|b3|b2|b1|b0|
movq mm3 , mm1 ; mm3 = |a7|a6|a5|a4|a3|a2|a1|a0|
movq mm4 , mm2 ; mm4 = |b7|b6|b5|b4|b3|b2|b1|b0|
punpcklbw mm1 , mm0 ; mm1 = | a3 | a2 | a1 | a0 |
punpckhbw mm3 , mm0 ; mm3 = | a7 | a6 | a5 | a4 |
punpcklbw mm2 , mm0 ; mm2 = | b3 | b2 | b1 | b0 |
punpckhbw mm4 , mm0 ; mm4 = | b7 | b6 | b5 | b4 |
psubw mm1 , mm2 ; mm1 = |a3-b3|a2-b2|a1-b1|a0-b0|
psubw mm3 , mm4 ; mm3 = |a7-b7|a6-b6|a5-b5|a4-b4|
movq mm2 , mm1 ; mm2 = |a3-b3|a2-b2|a1-b1|a0-b0|
movq mm4 , mm3 ; mm4 = |a7-b7|a6-b6|a5-b5|a4-b4|
pmaddwd mm1 , mm2 ; mm1 = |(a3-b3)ˆ2+(a2-b2)ˆ2|...|
pmaddwd mm3 , mm4 ; mm3 = |(a7-b7)ˆ2+(a6-b6)ˆ2|...|
paddd mm1 , mm3 ; mm1 = mm1 + mm3
paddd mm7 , mm1 ; mm7 = mm7 + mm1
; for other 8 pixels
movq mm1 , (blk1+8)
movq mm2 , (blk2+8)
; 13 instructions like
; above
paddd mm7 , mm1
add blk1, 16
add blk2, 16
dec eax
jnz loop
movq mm6 , mm7
psrlq mm7 , 32
paddd mm7 , mm6

Figure 4.33: The MMX implementation of the sum-of-squared differences function.

Figure 4.35(c) than to (b).

For images, there are spatial relationships between pixels. There are many ways to
consider the relationships between pixels, for example, averaging. Averaging neigh-
boring pixels can be done either on two adjacent pixels horizontally, two adjacent
pixels vertically, or four adjacent pixels in both horizontal and vertical dimensions.
For instance, the MPEG-2 encoding offers varieties of block matching, involving
half-pixel interpolation. The original MPEG-2 code first performs the interpolation,
and then computes the sum of absolute differences on the result. To consider rela-
tionships between pixels in this thesis, the horizontal and vertical interpolation have



82 CHAPTER 4. PERFORMANCE EVALUATION

\begin{verbatim}
mov eax , 16
fxor 3mx7, 3mx7 ; 3mx7 = | 0 | 0 | 0 | 0 |

loop:
fld8u12 3mx1, (blk1) ; 3mx1 = |a7|a6|a5|a4|a3|a2|a1|a0|
fld8u12 3mx2, (blk2) ; 3mx2 = |b7|b6|b5|b4|b3|b2|b1|b0|
fld8u12 3mx3, (blk1+8) ; 3mx3 = |a15|a14|a13|a12|... |a8|
fld8u12 3mx4, (blk2+8) ; 3mx4 = |b15|b14|b13|b12|... |b8|
fsub12 3mx1, 3mx2 ; 3mx1 = |a7-b7|a6-b6|... |a0-b0|
fsub12 3mx3, 3mx4 ; 3mx3 = |a15-b15|a14-b14|.|a8-b8|
fmov 3mx2, 3mx1 ; 3mx2 = |a7-b7|a6-b6|... |a0-b0|
fmov 3mx4, 3mx3 ; 3mx4 = |a15-b15|a14-b14|.|a8-b8|
fmadd24 3mx1, 3mx2 ; 3mx1 = 3mx1 x 3mx2
fmadd24 3mx3, 3mx4 ; 3mx3 = 3mx3 x 3mx4
fadd24 3mx1, 3mx3 ; 3mx1 = 3mx1 + 3mx3
fadd24 3mx7, 3mx1 ; 3mx7 = 3mx7 + 3mx1
add blk1, 16
add blk2, 16
dec eax
jnz loop
fsum24 3mx7
fsum48 3mx7

Figure 4.34: The MMMX implementation of the sum-of-squared differences function.

(a)                                                                                      (b)                                                                                     (c)

Figure 4.35: Similar and dissimilar images.



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 83

been implemented that supported by the MPEG-4 standard.

SIMD Implementation of SAD with Interpolation

As previously mentioned, one way to consider the relationship between image pixels
is averaging. For this the SSE ISA provides special averaging instructions pavgb
and pavgw for packed unsigned bytes and packed unsigned words, respectively.
The former one provides 8-way parallelism, while the latter one supports 4-way
parallelism. However, averaging four 8-bit pixels using horizontal and vertical in-
terpolation may produce an error of 1 when performing 3 average operations as fol-
lows: pavgb(x, y, z, t) = pavgb[pavgb(x, y), pavgb(z, t)]. To avoid this error in the
MMX/SSE implementation, 16-bit operations are used and input pixels are converted
to 16-bit using pack/unpack instructions. Figure 4.36 and Figure 4.37 show a part of
the MMX/SSE and MMMX implementations of the SAD function with horizontal
and vertical averaging, respectively.

The sum of four neighboring pixels is larger than 8-bit. First, in the MMX/SSE
implementation, the 8-bit data type is unpacked to 16-bit. Then, the averaging of four
pixels is performed by 4-way parallelism. After that the 16-bit intermediate results
are packed to 8-bit data type. Finally, 8-way parallelism is used by the psadbw
instruction. In other words, MMX/SSE uses both 4- and 8-way parallelism as can be
seen in Figure 4.36. The MMMX implementation, on the other hand, always employs
8-way parallelism because 12-bit is sufficient for the sum of four pixels and it is also
sufficient to calculate the sum-of-absolute differences as depicted in Figure 4.37.

The SIMD implementation of SSD with interpolation is almost identical to the SIMD
implementation of the SSD function except that it consists of much more load and
ALU instructions in order to perform averaging.

Histogram Intersection Distance

In order to show the versatility of the MMMX ISA compared to the MMX/SSE ISA,
another distance measurement, which is referred to as histogram intersection has
been implemented. The histogram intersection distance between the two histograms
h1 and h2, fdint(h1, h2) was proposed by Swain and Ballard [134] and is used in
image and video retrieval [146, 39]. It is defined as:



84 CHAPTER 4. PERFORMANCE EVALUATION

mov eax, 16
pxor mm0 , mm0 ; mm0 = |0 |0 |0 |0 |0 |0 |0 |0|

loop:
; Pixels 0..7
movq mm1, (blk1) ; mm1 = |a0_7|a0_6|a0_5|..|a0_0|
movq mm3, (blk1+16) ; mm3 = |a1_7|a1_6|a1_5|..|a1_0|
movq mm2, mm1 ; mm2 = |a0_7|a0_6|a0_5|..|a0_0|
movq mm4, mm3 ; mm4 = |a1_7|a1_6|a1_5|..|a1_0|
punpcklbw mm1, mm0 ; mm1 = |a0_3|a0_2|a0_1 |a0_0|
punpcklbw mm3, mm0 ; mm3 = |a1_3|a1_2|a1_1 |a1_0|
movq mm5, (blk1+1) ; mm5 = |a0_8|a0_7|a0_6|..|a0_1|
movq mm6, (blk1+17) ; mm6 = |a1_8|a1_7|a1_6|..|a1_1|
punpcklbw mm5, mm0 ; mm5 = |a0_4|a0_3|a0_2| |a0_1|
punpcklbw mm6, mm0 ; mm6 = |a1_4|a1_3|a1_2| |a1_1|
.
.
packuswb mm1, mm2
psadbw mm1, (blk2)
; Pixels 8..F
movq mm1, (blk1+8) ; mm1 = |a0_15|a0_14|... |a0_8|
movq mm3, (blk1+24) ; mm3 = |a1_15|a1_14|... |a1_8|
movq mm2, mm1 ; mm2 = |a0_15|a0_14|... |a0_8|
movq mm4, mm3 ; mm4 = |a1_15|a1_14|... |a1_8|
punpcklbw mm1, mm0 ; mm1 = |a0_11|a0_10|a0_9 |a0_8|
punpcklbw mm3, mm0 ; mm3 = |a1_11|a1_10|a1_9 |a1_8|
movq mm5, (blk1+9) ; mm5 = |a0_16|a0_15|... |a0_9|
movq mm6, (blk1+25) ; mm6 = |a1_16|a1_15|... |a1_9|
punpcklbw mm5, mm0 ; mm5 = |a0_12|a0_11|a0_10|a0_9|
punpcklbw mm6, mm0 ; mm6 = |a1_12|a1_11|a1_10|a1_9|
.
.
packuswb mm3, mm4
psadbw mm3, (blk2+8)
.
.
add blk1, 16
add blk2, 16
dec eax
jnz loop

Figure 4.36: The MMX/SSE code of the sum-of-absolute difference function using horizontal
and vertical interpolation.



4.2. ALGORITHM AND SIMD IMPLEMENTATION OF KERNELS 85

mov eax , 8
loop:

fld8u12 3mx1, (blk1) ; 3mx1 = |a0_7 |a0_6 |... |a0_0|
fld8u12 3mx2, (blk1+8) ; 3mx2 = |a0_15|a0_14|... |a0_8|
fld8u12 3mx3, (blk1+16) ; 3mx3 = |a1_7 |a1_6 |... |a1_0|
fld8u12 3mx4, (blk1+24) ; 3mx4 = |a1_15|a1_14|... |a1_8|
fadd12 3mx1, 3mx3 ; 3mx1 = |a1_7 |a1_6 |... |a1_0|
fadd12 3mx2, 3mx4 ; 3mx2 = |a1_15|a1_14|... |a1_8|
fld8u12 3mx3, (blk1+1) ; 3mx3 = |a0_8 |a0_7 |... |a0_1|
fld8u12 3mx4, (blk1+9) ; 3mx4 = |a0_16|a0_15|... |a0_9|
fld8u12 3mx5, (blk1+17) ; 3mx5 = |a1_8 |a1_7 |... |a1_1|
fld8u12 3mx6, (blk1+25) ; 3mx6 = |a1_16|a1_15|... |a1_9|
fadd12 3mx3, 3mx5 ; 3mx3 = |a0_8+a1_8|.. |a0_1+a1_1|
fadd12 3mx4, 3mx6 ; 3mx4 = |a0_16+a1_16|.|a0_9+a1_9|
fadd12 3mx1, 3mx3 ; 3mx1 = |a1_7+a0_8+a1_8|... |
fadd12 3mx2, 3mx4 ; 3mx2 = |a1_15+ a0_16+a1_16|... |
fsra12 3mx1, 2 ; 3mx1 = 3mx1 >> 2
fsra12 3mx2, 2 ; 3mx2 = 3mx2 >> 2
fld8u12 3mx3, (blk2) ; 3mx3 = |b0_7 |b0_6 |... |b0_0|
fld8u12 3mx4, (blk2+8) ; 3mx4 = |b0_15|b0_14|... |b0_8|
.
.
add blk1, 16
add blk2, 16
dec eax
jnz loop

Figure 4.37: The MMMX implementation of the sum-of-absolute difference function using
horizontal and vertical interpolation.

intersection(h1, h2) =

∑

2n
−1

i=0
min(h1[i], h2[i])

N
. (4.8)

fdint(h1, h2) = 1 − intersection(h1, h2).

In this equation h1 and h2 represent two histograms, N is the number of pixels in
an image, and n is the number of bits in each pixel. The elements of the histograms
are larger than 16-bit. There are no suitable SIMD instructions such as minimum and
maximum selection for data types larger than the short data type in the MMX/SSE
ISA. As a result, the implementation of this cost function using MMX/SSE is diffi-
cult. The above equation shows that SIMD instructions are needed to find the mini-
mum values and addition of adjacent elements. Such SIMD instructions are available
in the MMMX ISA. Figure 4.38 depicts part of the MMMX implementation of the
histogram intersection for distance measurement of the two histograms.



86 CHAPTER 4. PERFORMANCE EVALUATION

mov eax , 256
fxor 3mx7, 3mx7 ; 3mx7 = |0 |0 |

loop:
fld32u24 3mx1, (h1) ; 3mx1 = |h1_3|h1_2|h1_1|h1_0|
fld32u24 3mx2, (h2) ; 3mx2 = |h2_3|h2_2|h2_1|h2_0|
fmin24 3mx1, 3mx2 ; 3mx1 = |g3 |... |g0 |, gi=min(h1_i & h2_i)
fsum24 3mx1 ; 3mx1 = | g3+g2 | g1+g0 |
fadd48 3mx7, 3mx1 ; 3mx7 = | 0+g3+g2 | 0+g1+g0 |
add h1 , 16
add h2 , 16
sub ecx , 4
jnz loop
fsum48 3mx7

Figure 4.38: A part of the MMMX code for implementation of the histogram intersection.

4.3 Evaluation Environment

In this section the experimental methodology and tools that were used for perfor-
mance evaluation are presented.

In order to evaluate the performance of the proposed techniques, the MMX archi-
tecture and the MMMX architecture with extended subwords and the MRF were
simulated using the sim-outorder simulator of the SimpleScalar toolset [9].
sim-outorder is a detailed, execution-driven simulator that supports out-of-order
issue and execution. The PISA ISA which consists of 64-bit instructions has been
used. It has three following instruction formats. First, register format that is used
for computational instructions. Second, immediate format that supports the inclusion
of a 16-bit constant. Finally, jump format that supports specification of 24-bit jump
targets. These instructions formats are illustrated in Figure 4.39. Each instruction
format contains a 16-bit annotate field, which can be used to synthesize new instruc-
tions without having to change and recompile the assembler. The MMX/SSE and
MMMX instructions have been synthesized using this annotate field.

rt

Immediate format:

Register format:

Jump format:

rd rurs

63 48 32 24 16 0
annotation field opcode rs rt 16−bit immediate

63 48 32 0
annotation field opcode unused

2526
26−target

63 48 32 24 16 0
annotation field opcode

7831

31

3147

47

47

23

23 15

15

Figure 4.39: SimpleScalar Portable ISA (PISA) instruction formats.

As Figure 4.39 shows there are four 8-bit register fields in the register format. Each



4.3. EVALUATION ENVIRONMENT 87

of these fields allows to 256 architectural registers. Two of the register fields, rd
and ru, can also be used as one 16-bit immediate value in the immediate format. The
opcode and annotation fields are 16-bit. These fields are compiled with the opcodes of
existing SimpleScalar instructions. The annotation field can be used for synthesizing
new instructions in the assembly files as in the following example:

add.d/a $f2,$f4,$f6

The annotation /a in this example specifies that the first bit of the 16-bit annotation
field should be set. The simulator can then be modified to indicate that the instruction
above corresponds to, e.g., paddb (packed addition of 8 bytes) instead of double-
precision floating-point addition. This method, however, is very error-prone.

In order to simplify synthesizing new instructions, two tools have been used:
the SimpleScalar Instruction Tool (SSIT) and the SimpleScalar Architecture Tool
(SSAT) [74]. SSIT allows to use human-readable instructions such as paddb in the
assembly files. It processes assembly files containing readable instructions, replaces
them with corresponding annotated instructions, and modifies the source code of the
sim-outorder to support the new instructions. SSAT extends SSIT by providing
the possibility to define new registers and to define aliases for existing registers. For
example, in MMX as well as in many other media extensions, the media registers
correspond to the floating-point registers.

As was mentioned in Chapter 3, the reason why the MMX ISA was selected is that
it is a representative SIMD extension. It is remarked that because the SimpleScalar
PISA architecture is RISC, MMX and MMMX have not been simulated but rather
RISC-like approximations. For example, one operand of many MMX instructions
can be a memory location, but load/store architectures have been simulated. This
does not affect the validity of the simulations because the main objective in this eval-
uation is to compare the performance of an SIMD architecture without extended sub-
words and the MRF to the same architecture with these features. Furthermore, in the
Pentium 4 MMX instructions involving memory operands are translated to RISC-like
micro-operations (µOPs).

The main parameters of the modeled processors are depicted in Table 4.3. Processors
with an issue width of 1, 2, and 4 instructions were modeled. So, when four SIMD
instructions are issued simultaneously, up to 32 data operations are executed in par-
allel. For most parameters the default values were used, except for the size of the
Register Update Unit (RUU), which is 16 by default. This, however, is insufficient to
find many independent instructions. Therefore, an RUU size of 64 was used.

The RUU is a costly resource, and its size should be minimized. The influence of
the RUU on the performance has been studied using the VIS extension in [27]. The
presented results in [27] shows that the increasing the RUU has a positive effect on
the performance of a VIS-enhanced processor. This means that the VIS-enhanced



88 CHAPTER 4. PERFORMANCE EVALUATION

superscalar CPU can exploit and execute larger amount of ILP by increasing the
RUU. In addition, for each issue width, there is a certain limit for the RUU to yield the
maximum performance. For example, the speedup of the 4- and 8-way VIS-enhanced
processor saturates when the RUU consists of 64 and 128 entries, respectively. Since,
both the MMX and VIS extensions are almost the same, 64 entries for the RUU is
realistic. In addition, Alpha has a window size of 80 instructions and the Pentium 4
has a window of 126 instructions.

The latency and throughput of SIMD instructions are set equal to the latency and
throughput of the corresponding scalar instructions. This is a conservative assump-
tion given that the SIMD instructions perform the same operation but on narrower
data types. In addition, both latency and throughput of the fsum instructions are set
to 1, while the latency and throughput of the psadbw instruction are set to 4 and 1,
respectively, the same as in the Pentium 4 processor. The FPGA synthesis results pre-
sented in Section 3.3 have not been used, but rather reasonable approximations. This
was down because, first FPGA synthesis are also not accurate for ASIC implemen-
tation. Second, pipelining SIMD multiplication operations has not been considered.
In the simulation, SIMD multiplication operations have a latency of 3 cycles and a
throughput of 1 cycle.

Three programs have been implemented by C and assembly languages and simulated
using the SimpleScalar simulator for each kernel. Each program consists of three
parts. One part is for reading the image, the second part is the computational kernel,
and the last part is for storing the transformed image. One program was completely
written in C. It was compiled using the gcc compiler targeted to the SimpleScalar
PISA with optimization level -O2. The reading and storing parts of the other two
programs were also written in C, but the second part was implemented by hand us-

Parameter Value
Issue width 1/ 2/ 4
Integer ALU, SIMD ALU 1/ 2/ 4
Integer MULT, SIMD MULT 1/ 2/ 4
L1 Instruction cache 512 set, direct-mapped 64-byte line

LRU, 1-cycle hit, total of 32 KB
L1 Data cache 128 set, 4-way, 64-byte line, 1-cycle

hit, total of 32 KB
L2 Unified cache 1024 set, 4-way, 64-byte line,

6-cycle hit, total of 256 KB
Main memory latency 18 cycles for first chunk, 2 thereafter
Memory bus width 16 bytes
RUU (register update unit) entries 64
Load-store queue size 8
Execution out-of-order

Table 4.3: Processor configuration.



4.4. PERFORMANCE EVALUATION RESULTS 89

ing MMX/SSE and MMMX. These programs will be referred to as C, MMX, and
MMMX for each kernel. All C, MMX, and MMMX codes use the same algorithms.
In addition, the correctness of the MMX and MMMX codes were validated by com-
paring their output to the output of C programs.

Some of the reasons why the assembly language has been used for the SIMD pro-
gramming of multimedia kernels in this thesis have already been discussed in Sec-
tion 1.4. Another reason is that in order to evaluate the performance of both the
MMX and MMMX architectures by the SimpleScalar toolset, the assembly language
codes of multimedia kernels have been needed. This is because suitable tools were
not available yet to generate the assembly codes.

The speedup was measured by the ratio of the total number of cycles for the compu-
tational part of each kernel for the MMX implementation to the MMMX implemen-
tation. In order to explain the speedup, the ratio of dynamic number of instructions
has also been obtained. These metrics formed the basis of the comparative study.
Ratio of dynamic number of instructions means the ratio of the number of committed
instructions for the MMX implementation to the number of committed instructions
for the MMMX implementation. Although based on a rough comparison of both ar-
chitectures in Chapter 3, the cycle time of MMMX is almost 40% slower than the
cycle time of MMX, after considering this MMMX is still faster than MMX.

In addition, a whole image size has been used as input for kernels. For example, a
144 × 176 image has been used for similarity measurement kernels and a 576 × 704
image has also been used for the other kernels. The full search algorithm has been
implemented for motion estimation on an image size of Quarter Common Interme-
diate Format (QCIF). The QCIF has a size of 144 × 176. In order to determine the
motion vectors for the reference blocks in the current frame, a macroblock of 8 × 8
pixel region has been used as the basic block and a search range of ±16 in the process
of motion estimation.

To obtain the application-level speedup, SIMD implementations of the multimedia
kernels have been replaced in their original C code in the media applications. In
other words, three different versions, namely C, MMX, and MMMX were provided
for each application and these versions were simulated by the simulator.

In the following section, the experimental results at block-, image-, and application-
level are described.

4.4 Performance Evaluation Results

In this section, the MMMX architecture is evaluated by comparing the performance
obtained for the MMMX implementation of a benchmark to the performance of the



90 CHAPTER 4. PERFORMANCE EVALUATION

MMX implementation of the same benchmark. The performance is compared at
block-, image-, and application-level implementations.

4.4.1 Block-level Speedup

Figure 4.40 and Figure 4.41 depict the speedup of MMMX over MMX for media
kernels that either use extended subwords technique or use both proposed techniques,
respectively. The results have been obtained for one execution of media kernels on a
single block on the single issue processor. In addition, these figures show the ratio of
committed instructions (MMX implementation over MMMX). Both figures show that
MMMX performs better than MMX for all kernels except SAD. The speedup in Fig-
ure 4.40 ranges from 0.74 for the SAD kernel to 2.66 for Paeth kernel. MMMX yields
a speedup ranging from 1.10 for the 2D IDCT kernel to 4.47 for the Transp.(12) ker-
nel in Figure 4.41. The most important reason why MMMX improves performance
is that it needs to execute fewer instructions than MMX. In the SAD kernel, on the
other hand, MMMX needs to execute more instructions than MMX. As Figure 4.40
shows, the ratio of committed instructions for the SAD kernel is 0.72.

An SPI has been used in the MMX implementation of the SAD function and the SAD
function with interpolation, while in the MMMX implementation this SPI has been
synthesized by a few general-purpose SIMD instructions. Both MMX and MMMX
employ 8-way parallelism in the SAD function, while MMMX uses more instructions
than MMX. MMX employs both 4- and 8-way parallelism in the SAD function with
interpolation, which means that it uses many data type conversion instructions. On
the contrary, MMMX always employs 8-way parallelism in the SAD function with
interpolation kernel. This is the reason that the speedup is almost two for this kernel.

Figure 4.40: Speedup of MMMX over MMX as well as the ratio of committed instructions
(MMX over MMMX) for multimedia kernels, which use extended subwords technique on a
single block on the single issue processor.

The speedup obtained for the Paeth kernel in Figure 4.40 is 2.66. The reason is that
intermediate data is at most 10 bits wide and MMMX can, therefore, calculate the
prediction for eight pixels in each loop iteration while MMX computes the prediction
for four pixels. The speedups of MMMX over MMX for the vertical IDCT and 2D



4.4. PERFORMANCE EVALUATION RESULTS 91

Figure 4.41: Speedup of MMMX over MMX as well as the ratio of committed instructions
(MMX over MMMX) for multimedia kernels, which use both proposed techniques on a single
block on the single issue processor.

IDCT kernels in those figures is less than the speedups for other kernels. This is
because the input data of these kernels is 12-bit and some intermediate results are
larger than 12-bit. Therefore, the MMMX implementation cannot employ 12-bit
functionality (8-way parallel SIMD instructions) all the time but sometimes has to
convert to 4 × 24-bit packed data types. The MMX implementation, on the other
hand, is able to use 16-bit functionality all the time.

The reason why MMMX improves performance by just 20% for the Padding kernel
in Figure 4.41 is that the MMX implementation employs the special-purpose pavgb
instruction which computes the arithmetic average of eight pairs of bytes. More pre-
cisely, the pavgb instruction is supported in the SSE integer extension to MMX.
MMMX does not support this instruction because with extended subwords it offers
little extra functionality since it can be synthesized using the more general-purpose
instructions fadd12 and fsar12 (shift arithmetic right on extended subwords).
Nevertheless, because the matrix needs to be transposed between horizontal and ver-
tical padding MMMX provides a speedup.

The two kernels for which the highest speedups are obtained are the 8 × 8 matrix
transpose on 8-bit (Transp.(8)) and 12-bit data (Transp.(12)). If the matrix elements
are 8-bit, MMMX can use the MRF to transpose the matrix, while MMX requires
many pack and unpack instructions to realize a matrix transposition. Furthermore,
if the elements are 12-bit (but stored as 16-bit data types), MMMX is able to em-
ploy 8-way parallel SIMD instructions, while MMX can only employ 4-way parallel
instructions. As a result, MMMX improves performance by more than a factor of
4.47.

The average speedup and ratio of committed instructions for kernels that only use the
extended subwords technique are 1.90 and 2.08, respectively, while for the kernels
that use both proposed techniques are 2.05 and 2.56. The reduction of the dynamic
instruction count in Figure 4.40 is due to extended subwords and in Figure 4.41 it
is due to extended subwords and the MRF techniques. As a result, the performance
benefits obtained by employing both techniques is higher than just using the extended



92 CHAPTER 4. PERFORMANCE EVALUATION

subwords technique.

4.4.2 Image-level Speedup

As explained before, the results presented in Figure 4.40 and Figure 4.41 are for one
execution on a single block. In most cases, however, the kernels are executed on all
blocks of an image or frame. To investigate if this changes the results fundamentally,
Figure 4.42 and Figure 4.43 depict the image-level speedups for multimedia kernels
that either use the extended subwords technique or use both extended subwords and
the MRF techniques, respectively.

Figure 4.42: Image-level speedup of MMMX over MMX as well as the ratio of committed
instructions for the kernels, which use the extended subwords technique on the single issue
processor.

Figure 4.43: Image-level speedup of MMMX over MMX as well as the ratio of committed
instructions for the kernels, which use both proposed techniques on the single issue processor.

In general, the image-level speedups are higher than the block-level speedups. For
example, the block-level speedup for the 2D DCT kernel is 1.66, while the image-
level speedup is 2.26. As another example, the block-level speedup for the Paeth
kernel is 2.66 whereas the image-level speedup is 2.72. The reason for this behavior
is as follows. Although executing the kernels on all blocks of an image does not
reduce the number of data cache misses (because the images are too large to be kept
in cache), it does reduce the number of instruction cache misses, since the kernels are
relatively small and can be kept in the instruction cache. In addition, the image-level
speedups for kernels that use both proposed techniques are larger than the image-level



4.4. PERFORMANCE EVALUATION RESULTS 93

speedups of kernels that only use the extended subwords technique. For example, the
average image-level speedup for former kernels is 2.43, while for the latter kernels is
1.97. The main reason for this is that using both extended subwords and the MRF can
reduce the dynamic number of instructions more than using the extended subwords
technique. The average ratio of committed instructions in Figure 4.43 is 2.70, while
it is 2.15 in Figure 4.42.

To summarize, the MMMX architecture improves performance compared to the
MMX architecture by executing fewer instructions than MMX. In other words, the
large number of instructions that have to be executed by the MMX architecture lim-
its its performance. In many cases the MMMX implementation can employ 8-way
parallel SIMD instructions, while MMX can employ only 4- or 2-way parallelism in
all kernels except in the SAD function and a part of the SAD function with interpo-
lation. In other words, MMMX can pack more arithmetic and logical operations into
a single SIMD instruction. In addition, MMMX avoids the data type conversion and
rearrangement instructions.

Figure 4.44 depicts the effect of increasing the issue width. It shows the image-level
speedups of the MMMX implementations over the MMX implementations on out-of-
order processors with different issue widths. The speedup is relative to the number
of cycles taken by the MMX implementation when executed on the processor with
the same issue width. In general, it can be observed that the speedup of MMMX over
MMX slightly decreases when the issue width is increased. This can be expected be-
cause MMMX collapses several MMX instructions into a single instruction, so gen-
erally it will decrease the distance between dependent instructions. This means that
the MMMX arithmetic and logical instructions allow to execute multiple arithmetic
and logical instructions as well as multiple iterations with one MMMX instruction.

Figure 4.44: Image-level speedup of MMMX over MMX implementation for different issue
widths using out-of-order execution. The speedup is relative to the number of cycles taken by
the MMX implementation when executed on the processor with the same issue width.

The main reason that the MMMX architecture improves performance compared to
the MMX architecture is that it executes less instructions than MMX as discussed in
previous figures. In order to show where the instruction count reduction comes from,
the instructions are divided into three groups, namely SIMD instructions, SIMD ld/st,



94 CHAPTER 4. PERFORMANCE EVALUATION

and scalar instructions. SIMD instructions consist of SIMD ALU/MULT and SIMD
overhead (data type conversions and rearrangement) instructions. The scalar instruc-
tions are used for conditional operations, boundary checking, updating the pointers,
and incrementing or decrementing index and address values. Figure 4.45 and Fig-
ure 4.46 show the ratio of SIMD instructions, scalar, and SIMD ld/st instructions
of the MMX implementation to the MMMX implementation for one execution of
kernels on a single block that either use extended subwords technique or use both
proposed techniques, respectively.

Figure 4.45: Ratio of SIMD instructions, scalar, and SIMD ld/st instructions of the MMX
implementation to the MMMX implementation for one execution of kernels on a single block
that use the extended subwords technique.

Figure 4.46: Ratio of SIMD instructions, scalar, and SIMD ld/st instructions of the MMX
implementation to the MMMX implementation for one execution of kernels on a single block,
which use both extended subwords and the MRF techniques.

The figures show that most of the reduction is due to the reduction of the number of
SIMD instructions and scalar instructions. In Figure 4.45 the average ratios of SIMD
instructions, scalar, and SIMD ld/st instructions are 2.63, 2.1, and 1.87, respectively.
In Figure 4.46 the average ratios of SIMD instructions, scalar, and SIMD ld/st instruc-
tions are 3.48, 4.94, and 1.78, respectively. Figure 4.46 depicts that the reduction of
the scalar instructions for some kernels, which use both techniques is slightly higher
than the other two parts. In some cases, for instance in the horizontal DCT kernel,
the proposed techniques eliminate all loop overhead. In addition, for some kernels,
for example, the padding kernel there is no loop overhead in both architectures. In
both figures, the reduction of SIMD ld/st instructions is much less than the reduction



4.4. PERFORMANCE EVALUATION RESULTS 95

of SIMD instructions and scalar instructions. In the MMX implementations, SIMD
instructions, SIMD ld/st instructions, and scalar instructions consume an average of
67.17%, 23.88%, and 8.95%, respectively, of the total instructions, while in MMMX,
they consume an average of 57.41%, 31.02%, and 11.57%, respectively, of the total
instructions. In other words, the percentage usage of SIMD instructions is reduced
by MMMX, while the percentage usage of SIMD ld/st and scalar instructions is in-
creased by MMMX. However, the percentage usage of SIMD ld/st instructions is
much more than the percentage usage of scalar instructions.

In the following section, the number of SIMD ld/st instructions in MMMX is reduced
by increasing the number of registers.

4.4.3 Impact of the Number of Registers

It is well-known that for ISA legacy reasons, MMX has only 8 architectural registers.
This is not enough to keep either intermediate results or constants values, which are
used by multimedia kernels. For example, some multimedia kernels such as color
space conversions use some coefficients that are unmodified through the full execu-
tion of the kernel. The number of these coefficients is usually small and cannot be
kept in registers but have to be reloaded from memory in each loop iteration. As
another example, a complete 8 × 8 block of the current frame that is used by full
search algorithm cannot also be kept in registers but have to be reloaded from mem-
ory in each loop iteration. Although the constants and current block will be found
in cache most of the times, the number of SIMD ld/st instructions is relatively large
compared to the number of arithmetic instructions. In other words, using a larger
register file would allow to keep intermediate and constant values during the whole
execution of programs in the media registers. In addition, this allows the programmer
to take advantage of the spatial and temporal data locality that are in many MMAs.
This reduces the required bandwidth for SIMD ld/st instructions and also improves
processing efficiency. Therefore, in this section the effect of adding more registers
to the MMMX architecture is considered for two multimedia kernels, color space
conversions and different similarity measurement algorithms. This is because color
space conversions use at most twelve constant coefficients, which can be kept in extra
registers. In addition, similarity measurement algorithms use a complete 8 × 8 block
of the current frame that can also be kept in added registers.

It has been found that 13 extra media registers are sufficient to keep the critical data
in the register file. In the RGB-to-YCbCr kernel, 11 of these registers are used to hold
constants and 2 to hold intermediate results. Since two of the constant coefficients
in the YCbCr-to-RGB kernel are zero and three of them are the same, for this kernel
only 9 additional registers are needed. For the similarity measurements kernels 8
extra media registers are employed. Thus, an entire 8 × 8 candidate block can be



96 CHAPTER 4. PERFORMANCE EVALUATION

stored in these 8 extra media registers, as depicted in Figure 4.47.

8 x 8 candidate block
of the current frame

16 x 16 window search

8 extra media registers in the
     MMMX architecture.

95 0

Reference frame

3mx8

3mx9

3mx10

3mx11

3mx12

3mx13

3mx14

3mx15

Figure 4.47: The candidate block of the current frame can be stored in eight media registers
to calculate the motion vector at each 16× 16 window search of the reference frame.

Figure 4.48 illustrates the speedup of MMMX with 8 registers (MMMX-8) and
MMMX with 13 extra registers (MMMX-13) over MMX as well as the ratio of
committed instructions (MMX implementation to MMMX) on the single issue pro-
cessor. MMMX-13 yields speedups ranging from 1.37 to 3.64. Furthermore, the
performance improvement of MMMX-13 over MMMX-8 ranges from 1.38 to 1.57,
and the ratio of committed instructions (MMMX-8 implementation to MMMX-13)
ranges from 1.22 to 1.56. Again, the main reason for these performance improve-
ments is the reduced number of instructions that need to be executed. Because the
data that is needed very often can be kept in registers, fewer ld/st instructions need to
be executed. The largest performance improvement is achieved for the SAD function.
For this kernel the speedup is 0.87 and 1.37 using MMMX-8 and MMMX-13, respec-
tively. Although the MMX code that uses the SAD SPI is faster than the MMMX-8
implementation, the MMMX-13 code yields more performance.

4.4.4 Analysis of each Proposed Technique Separately

As already indicated in Table 4.2, in the SIMD implementations of some kernels such
as the horizontal DCT both proposed techniques have been employed. Consequently,
a part of the performance benefits is due to extended subwords, which increases DLP
and the other part of the performance improvement is due to the MRF that eliminates
the data rearrangement instructions. This section discusses some examples, horizon-



4.4. PERFORMANCE EVALUATION RESULTS 97

Figure 4.48: Speedup of MMMX with 8 registers (MMMX-8) and MMMX with 13 extra
registers (MMMX-13) over MMX (8 registers) as well as the ratio of committed instructions
(MMX implementation to MMMX) on the single issue processor.

tal DCT and 2D DCT, in order to clarify how much of the performance gain is a result
of the additional parallelism provided by extended subwords and how much of it is
due to the MRF.

The algorithm of the horizontal DCT has been explained in Section 4.2.4. Two SIMD
implementations, one for MMX and one for MMMX have been discussed. In order
to determine the performance benefit of each proposed techniques, two extra SIMD
implementations, one for MMX enhanced with extended subwords and one for MMX
enhanced with the MRF have also been implemented.

MMX Enhanced with Extended Subwords

In MMX enhanced with extended subwords (MMX + ES), there are eight 12-
bit subwords in each media register. In order to bring these subwords in
a form amenable to SIMD processing, new data permutation instructions such
as fshuflh12, fshufhl12, fshufhh12, fshufll12, and frever12 are
needed. This is because of the following reasons. First, there is no shuffle instruc-
tions in MMX. MMX performs data permutation using pack and unpack instructions,
while these instructions are not useful for MMX + ES. Second, there is a pshufw
(packed shuffle word) instruction in SSE that is used for rearrangement of four sub-
words within a media register, while MMX + ES has eight subwords.

Figure 4.49 depicts the structure of the fshuflh12 mm1, mm0, imm8 instruc-
tion. This instruction inserts four subwords from the low part of the source operand
into the four high part of the destination operand at subword locations selected with
the immediate operand imm8 field. The immediate field has 8 bits. Each 2-bit of this
field selects one subword location in the high part of the destination operand. The
fshufhl12 is almost the same as the fshuflh12 instruction except that it inserts
four subwords from the high part of the source operand into the four subwords of the
low part of the destination operand.



98 CHAPTER 4. PERFORMANCE EVALUATION

7 0
imm8

1224364860728495 0 1224364860728495 0

mux

mux

mux

mux

mm1 mm0

Figure 4.49: The structure of the fshuflh12 mm1, mm0, imm8 instruction.

Figure 4.50 depicts the structure of the fshufll12 mm1, mm0, imm8 instruc-
tion. This instruction inserts four subwords from the low part of the source operand
into the low part of the destination operand using 8-bit immediate operand. The
functionality of the fshufhh12 instruction is almost the same as fshufll12 in-
struction except that it copies subwords from the high part of the source operand
and inserts them in the high part of the destination operand. The fshufll12 and
fshufhh12 instructions are similar to pshuflw and pshufhw instructions, re-
spectively, which are supported by the Intel SSE2 extension.

7 0
imm8

mux

mux

mux

mux

1224364860728495 0 1224364860728495 0
mm1 mm0

Figure 4.50: The structure of the fshufll12 mm1, mm0, imm8 instruction.

Figure 4.51 depicts the operation of the frever12 mm1, mm0 instruction. This
instruction copies subwords from source operand and inserts them in the reverse order
in the destination operand.

Figure 4.52 depicts a part of the horizontal DCT code that has been implemented



4.4. PERFORMANCE EVALUATION RESULTS 99

1224364860728495 0 1224364860728495 0
mm1 mm0

Figure 4.51: The structure of the frever12 mm1, mm0 instruction.

by the MMX + ES. In each loop iteration of this implementation eight pixels are
processed, the same as the MMX implementation that was discussed in Section 4.2.4.

fld16s12 mm0, (dct) ; mm0 =

frever12 mm2, mm0 ; mm2 =

fneg12 mm2, mm2, 15 ; mm2 =

fadd12 mm0, mm2 ; mm0 =

x7 x6 x5 x4 x3 x2 x1 x0

x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 -x4 -x5 -x6 -x7

x0+x7 x1+x6 x2+x5 x3+x4 x3-x4 x2-x5 x1-x6 x0-x7

Figure 4.52: A part of the code for horizontal DCT that has been implemented by MMX
enhanced by extended subwords.

MMX Enhanced with an MRF

In MMX enhanced with an MRF, there are four 128-bit column registers and eight 64-
bit registers the same as MMX. Each column register has eight 16-bit subword. Each
subword in a column register corresponds to a subword in a row register. Each load
column instruction can load eight 16-bit pixels into a column register. Figure 4.53
shows how four rows of an 8×8 block can be loaded into four column registers using
load column instructions. In addition, Figure 4.54 depicts a part of the MMX + MRF
implementation of the horizontal DCT algorithm. There are two loop iterations to
process an 8 × 8 block. This means that in each loop iteration, four rows (32 pixels)
are processed.

Experimental Results

Figure 4.55 depicts the speedup of MMX + ES, MMX + MRF, and MMMX over
MMX for one execution of an 8 × 8 horizontal DCT on a single issue processor. In
addition, this figure shows the ratio of committed instructions (MMX over the other
architectures). The speedup of MMX + ES is 1.15, while the speedup of MMX +



100 CHAPTER 4. PERFORMANCE EVALUATION

mm0
mm1
mm2
mm3
mm4
mm5
mm6
mm7

cmm0 cmm1 cmm2 cmm3

x07
x06
x05
x04
x03
x02
x01
x00 x10

x11
x12
x13
x14
x15
x16
x17

x20
x21
x22
x23
x24
x25
x26
x27

x30
x31
x32
x33
x34
x35
x36
x37fldc16s16    cmm0,  (block)

fldc16s16    cmm1,  16(block)
fldc16s16    cmm2,  32(block)
fldc16s16    cmm3,  48(block)

an 8 x 8 block

x00    x01    x02     x03    x04    x05    x06     x07
x10    x11    x12     x13    x14    x15    x16     x17
x20    x21    x22     x23    x24    x25    x26     x27
x30    x31    x32     x33    x34    x35    x36     x37

.

.

.

x70    x71    x72    x73     x74    x75    x76     x77

Figure 4.53: Loading eight consequent stored pixels into a column register by load column
instruction for little endian.

fldc16s16 cmm0 , (dct) ; cmm0 =

fldc16s16 cmm1 , 16(dct); cmm1 =

fldc16s16 cmm2 , 32(dct); cmm2 =

fldc16s16 cmm3 , 48(dct); cmm3 =

movq (dct), mm7 ; (mem) =

movq mm7 , mm0 ; mm7 =

paddsw mm0 , (dct) ; mm0 =

psubsw mm7 , (dct) ; mm7 =

x07 x06 x05 x04 x03 x02 x01 x00

x17 x16 x15 x14 x13 x12 x11 x10

x27 x26 x25 x24 x23 x22 x21 x20

x37 x36 x35 x34 x33 x32 x31 x30

x37 x27 x17 x07

x30 x20 x10 x00

x30+x37x20+x27x10+x17x00+x07

x30-x37 x20-x27 x10-x17 x00-x07

Figure 4.54: A part of the MMX + MRF implementation of the horizontal DCT algorithm.

MRF is less than 1. These results indicate that using either extended subwords or
the MRF techniques is insufficient to eliminate most pack/unpack and rearrangement
overhead instructions. In addition, using the MRF is both unuseful and causes per-
formance loss. The MMMX architecture that employs both proposed techniques, on
the other hand, yields much more performance benefits. Its speedup is 1.52.

In order to explain the behavior of Figure 4.55, Figure 4.56 shows the number of
SIMD computation, SIMD overhead, SIMD ld/st, and scalar instructions for the four
different architectures: MMX, MMX + MRF, MMX + ES, and MMMX for an 8 × 8
horizontal DCT kernel. As this figure shows, the total number of instructions in the
MMX + MRF is almost the same as MMX. This means that the former architec-
ture cannot reduce the total number of instructions. The MMX + MRF reduces the
number of SIMD overhead instructions, but it increases the number of SIMD ld/st



4.4. PERFORMANCE EVALUATION RESULTS 101

Figure 4.55: Speedup of the MMX + ES, MMX + MRF, and MMMX over MMX as well as
ratio of committed instructions for an 8 × 8 horizontal DCT on a single issue processor.

Figure 4.56: The number of SIMD computation, SIMD overhead, SIMD ld/st, and scalar
instructions in four different architectures, MMX, MMX + MRF, MMX + ES, and MMMX for
an 8 × 8 horizontal DCT kernel.

instructions. This is because the MMX + MRF transposes four rows in each iteration
and this causes that all eight 64-bit registers are filled. In order to use some of the
filled registers for intermediate computations, they are stored and loaded in memory
hierarchy and this increases the number of SIMD ld/st instructions. The latency of
SIMD ld/st instructions is almost more than the latency of the SIMD overhead in-
structions. This is the main reason why the MMX + MRF has a performance penalty.
MMX + ES, on the other hand, reduces the total number of instructions. The ratio of
committed instructions is 1.23 as shown in Figure 4.55.

The extended subwords technique reduces the number of SIMD computation and
SIMD ld/st instructions more than the MRF technique, while the latter technique
reduces the number of SIMD overhead and scalar instructions more than the former
technique. Consequently, these experimental results indicate that using either of these
techniques is insufficient to mitigate SIMD computation, SIMD overhead, SIMD
ld/st, and scalar instructions. The MMMX architecture that employs both proposed
techniques reduces the total number of instructions much more than MMX + MRF
and MMX + ES.

The results presented in Figure 4.55 are for one execution of the horizontal DCT
kernel on an 8 × 8 block. The horizontal DCT is a part of the 2D DCT kernel and
this kernel is executed on all blocks of an image. Figure 4.57 depicts the image-level
speedup of MMX + ES, MMX + MRF, and MMMX over MMX for the 2D DCT



102 CHAPTER 4. PERFORMANCE EVALUATION

kernel on a single issue processor. The speedup of MMX + ES is 1.39, while the
speedup of MMX + MRF is 0.94. MMMX yields a speedup of up to 2.17 due to use
of both proposed techniques. These speedups are larger than the block-level speedup.
The reasons for this have already explained in Section 4.4.2.

Figure 4.57: Image-level speedup of MMX + ES, MMX + MRF, and MMMX over MMX as
well as the ratio of committed instructions for the 2D DCT kernel on a single issue processor.

4.4.5 Application-level Speedup

In order to obtain application-level speedup, some MMAs such as MPEG-2, JPEG,
and MJPEG standards were studied. For the MPEG-2 encoder, the walk bitstream
has been used, which consists of three 352 × 288 frames. For the MPEG-2 decoder,
the vaya bitstream has been used, which consists of 25 160 × 112 frames. For the
JPEG benchmarks, the fallsbig input was used, which is a 3000 × 2000 pixel image.
Finally, for the MJPEG benchmark the tenis input was used, which is a frame of size
800 × 800.

In order to find the most time consuming kernels, these standards were profiled using
the GNU profiler, gprof command. In the MPEG-2 encoder, dist1 (sum-of-absolute
differences) is the most compute-intensive kernel. In this standard, four different
similarity measurements, SAD, SAD with interpolation, SSD, and SSD with inter-
polation, have been separately used. In other words, there are four MPEG-2 encoder
versions, namely MPEG-2 encoder with SAD, MPEG-2 encoder with the SAD inter-
polation, MPEG-2 encoder with SSD, and MPEG-2 encoder with the SSD interpola-
tion. Those similarity measurements consume an average of 87.2%, 91.2%, 90.2%,
and 91.3%, respectively. In the MPEG-2 decoder the 2D IDCT kernel consumes
an average of 26.7% of the total execution time. In the JPEG encoder (cjpeg), the
2D DCT and RGB-to-YCbCr color space conversion kernels consume an average
of 35.7% and 25.0% of the total execution time, respectively. In the JPEG decoder
(djpeg), the YCbCr-to-RGB color space conversion and 2D IDCT kernels take the
most of the total execution time. They take 64.3% and 21.4%, respectively. Finally,
the 2D DCT kernel consumes an average of 32.2% of the total execution time in the
MJPEG application.



4.4. PERFORMANCE EVALUATION RESULTS 103

As already discussed these kernels have been accelerated by MMX and MMMX. For
example, Table 4.4 depicts the image-level speedups of the MMX and MMMX imple-
mentations for different multimedia kernels, which have been used in the application-
level speedup, over the scalar implementations on a single issue processor. In addi-
tion, the third column shows the speedup of MMMX over MMX. As this table shows,
both architectures improve the performance of all media kernels. The MMMX archi-
tecture yields more speedups than the MMX architecture for all kernels except the
SAD kernel. These performance improvements can be used to improve the perfor-
mance of the whole applications. To obtain the application-level speedup, SIMD
implementations of the multimedia kernels have been replaced in their original C
code in the media applications.

The speedups of MMMX over MMX for complete applications on the single is-
sue processor are depicted in Figure 4.58. The MMMX architecture improves the
performance of all applications except the MPEG-2 encoder with the SAD kernel.
MMMX achieves speedups of 0.91, 1.67, 1.43, and 1.90 for MPEG-2 encoder with
SAD, MPEG-2 encoder with the SAD interpolation, MPEG-2 encoder with SSD, and
MPEG-2 encoder with the SSD interpolation, respectively. In the MPEG-2 encoder
that uses the SAD kernel, there is a slightly performance degradation. As mentioned
previously, this is because the MMX code uses a special-purpose psadbw instruc-
tion, while MMMX does not. The largest performance improvement that is 1.90
occurs for the MPEG-2 encoder that uses SSD with interpolation. In addition, the
MMMX architecture improves performance by a factor 1.15, 1.17, 1.37, and 1.16 for
the MPEG-2 decode, JPEG encode, JPEG decode, and MJPEG, respectively.

The total of improvement depends on fraction that is improved and amount of im-
provement for that fraction. Since MMMX improves the performance of multimedia
kernels more than MMX, it yields more application-level speedups than MMX.

Multimedia Kernel MMX MMMX MMMX/MMX
2D DCT 2.7 6.1 2.3
2D IDCT 3.2 5.1 1.6
RGB-to-YCbCr 4.8 11.8 2.5
YcbCr-to-RGB 6.2 11.0 1.8
SAD 15.3 13.3 0.9
SAD with interpolation 6.3 9.8 1.6
SSD 7.1 12.2 1.7
SSD with interpolation 4.6 8.5 1.9

Table 4.4: Image-level speedup of the MMX and MMMX implementations for different mul-
timedia kernels, which have been used in the application-level speedup, over the scalar im-
plementations on a single issue processor.



104 CHAPTER 4. PERFORMANCE EVALUATION

Figure 4.58: Application-level speedup of MMMX over MMX as well as ratio of committed
instructions for multimedia applications on the single issue processor.

4.5 Conclusions

In this chapter, the MMX architecture enhanced with the extended subwords and the
matrix register file techniques was evaluated. In order to evaluate the effectiveness
of the MMMX architecture, a number of multimedia benchmarks such as MPEG-2
codecs, JPEG codecs, and MJPEG were selected. These applications were acceler-
ated by accelerating their kernels. This is because the media kernels are the most
time consuming functions and represent a major portion of MMAs. This chapter also
presented the SIMD implementations of the media kernels using both the MMX and
MMMX architectures. The floating-point kernels were implemented by fixed-point
arithmetic. This chapter showed how the extended subwords and the matrix register
file techniques can be used to reduce the dynamic number of instructions by decreas-
ing data type conversion and data permutation overhead.

Simulation results were obtained by extending the sim-outorder simulator of the
SimpleScalar tool set. The performance was obtained at the kernel- image-, and
application-level. The presented results showed that MMMX improves performance
significantly compared to MMX. In other words, the large number of instructions
that had to be executed by the MMX architecture limits its performance. In addition,
the experimental results showed that using either of extended subwords or the MRF
technique is insufficient to mitigate data rearrangement instructions. The MMMX
architecture that employs both proposed techniques reduces the total number of in-
structions much more than MMX enhanced with the MRF and MMX enhanced with
extended subwords.

In the next chapter the Discrete Wavelet Transform (DWT) will be discussed in more
detail. The DWT is used in the JPEG2000 standard and processes whole images,
while the DCT is used in the MPEG standards and processes 8 × 8 blocks of pixels.
Three issues related to the efficient computation of the 2D DWT on general-purpose
processors, in particular the Pentium 4, are discussed, which are 64K aliasing, cache
conflict misses, and SIMD vectorization.



Chapter 5

Optimizing the Discrete Wavelet
Transform

T
he JPEG2000 standard employs the Discrete Wavelet Transform (DWT) in-
stead of the DCT that is used in the MPEG-2 compression standard. The
reason for this is that the image quality is much higher at lower bit rates with

a wavelet based transform. In addition, the DCT based compression standards par-
tition an image into discrete 8 × 8 pixel blocks. This generates blocking artifacts in
the output image. The DWT operates on a complete image or a large part of an im-
age and this avoids the artifact problem. Consequently, it needs more memory than
the DCT. The DWT is much more computationally intensive than other functions of
the JPEG2000 standard. For example, the obtained results in [126] show that the
DWT consumes on average 46% of the encoding time for lossless compression. For
lossy compression, the DWT even requires 68% of the total encoding time on aver-
age. Therefore, it is of great importance to enhance the performance of the DWT. In
order to improve performance, several researchers [35, 48] have proposed hardware
implementations of the DWT. Programmable processors, however, are preferred to
special-purpose hardware because they are more flexible, enable different transforms
to be employed, and allow various filter bank lengths and various transform levels.

In this chapter, three issues related to the efficient computation of the 2D DWT on
SIMD-enhanced GPPs are described, which are 64K aliasing, cache conflict misses,
and SIMD vectorization. The 64K aliasing is a phenomenon that it happens on the
Pentium 4, and it can degrade performance by an order of magnitude. It occurs if two
or more data input whose addresses differ by a multiple of 64K need to be cached
simultaneously. In addition, there are many cache conflict misses in the implemen-
tation of vertical filtering, if the filter length exceeds the number of cache ways.

105



106 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Horizontal filtering Vertical filtering

LL HL

LH HH
L H

Input image Output image after horizontal filtering Output image after vertical filtering

Figure 5.1: Different sub-bands after first decomposition level.

Additionally, the performance of the 2D DWT is improved by exploiting the DLP
using the SIMD instructions supported by most GPPs.

This chapter is organized as follows. Section 5.1 describes the discrete wavelet trans-
form and different approaches to traverse an image to implement the 2D DWT. The
problems related to implementing the 2D DWT efficiently on GPPs are discussed in
Section 5.2. Section 5.3 presents the experimental environment. Section 5.4 proposes
and evaluates two techniques to circumvent 64K aliasing. Section 5.5 addresses the
cache behavior of transforms with long filters and presents two techniques to avoid
conflict misses. SIMD implementations of the 2D DWT are described in Section 5.6.
Finally, conclusions are given in Section 5.7.

5.1 2D Discrete Wavelet Transform

The wavelet representation of a discrete signal X consisting of N samples can be
computed by convolving X with the lowpass and highpass filters and down-sampling
the output signal by 2, so that the two frequency bands each contains N/2 samples.
With the correct choice of filters, this operation is reversible. This process decom-
poses the original image into two sub-bands: the lower and the higher band [132].
This transform can be extended to multiple dimensions by using separable filters. A
2D DWT can be performed by first performing a 1D DWT on each row (horizontal
filtering) of the image followed by a 1D DWT on each column (vertical filtering).

Figure 5.1 illustrates the first decomposition level (d = 1). In this level the original
image is decomposed into four sub-bands that carry the frequency information in
both the horizontal and vertical directions. In order to form multiple decomposition
levels, the algorithm is applied recursively to the LL sub-band. Figure 5.2 illustrates
the second (d = 2) and third (d = 3) decomposition levels as well as the layout of
the different bands.

As was mentioned in previous chapter, there are different approaches to implement



5.1. 2D DISCRETE WAVELET TRANSFORM 107

LH1 HH1

HL1

HH2LH2

LL2 HL2

LH1 HH1

LH2 HH2

LH3 HH3

LL3 HL3
HL2

HL1

Layout  of individual bands
at second decomposition level

Layout  of individual bands
at third decomposition level

Output image at third decomposition levelOutput image at second decomposition level

Figure 5.2: Sub-bands after second and third decomposition levels.

the 2D DWT such as traditional convolution-based and lifting scheme methods. The
convolutional methods apply filtering by multiplying the filter coefficients with the
input samples and accumulating the results. The Daubechies’ transform with four
coefficients [141] (Daub-4) and the Cohen, Daubechies and Feauveau 9/7 filter [31]
(CDF-9/7) are examples of this category. For instance, the CDF-9/7 transform has 9
lowpass filter coefficients h = {h−4, h−3, h−2, h−1, h0, h1, h2, h3, h4} and 7 high-
pass filter coefficients g = {g−2, g−1, g0, g1, g2, g3, g4}. Both filters are symmetric,
i.e., h−i = hi. The lifting scheme has been proposed for the efficient implemen-
tation of the 2D DWT. This approach has three phases, namely: split, predict, and
update, which has been discussed in previous chapter. One example of this group is
the integer-to-integer (5, 3) lifting scheme ((5, 3) lifting).

In this chapter, three different transforms, Daub-4, CDF-9/7, and (5, 3) lifting, se-
lected from both discussed groups are considered. These filters are considered for
various reasons. First, the (5, 3) lifting and CDF-9/7 transforms are included in Part 1
of the JPEG2000 standard [110]. Second, these transforms have been considered in
many recent papers (e.g., [15, 59, 121, 25, 141, 29]). Finally, the (5, 3) lifting scheme
has low computational complexity and performs reasonably well for lossy as well as
lossless compression compared to other lifting filters [1]. Additionally, the (5, 3) fil-
ter has only one lifting step. Transforms with fewer lifting steps tend to perform better
than transforms with more lifting steps in terms of speed as well as accuracy [1].

There are different algorithms to traverse an image to implement these transforms,
namely Row-Column Wavelet Transform (RCWT) and Line-Based Wavelet Trans-
form (LBWT) [3, 4, 5, 6, 30]. These approaches are discussed in the following sec-
tions.

5.1.1 Row-Column Wavelet Transform

In the RCWT approach, the 2D DWT is divided into two 1D DWTs, namely horizon-
tal and vertical filtering. The horizontal filtering processes the rows of the original



108 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

.

.

.

N−1

2
1
0

0 1 2 M−1. . .

.

.

.

N−1

2
1
0

0 1 2 M−1. . .

0 1 2 M−1
0
1

L−1

2
L H
L H

HL L
L
L H

H
H

. . .3

of the small buffer.
.

.
Process the columns 

LH

LL LL

LH

HL

HH

HL

HH

HLLL

LH
Process L rows

Input image  

A small buffer

First decomposion level

HH

Figure 5.3: The line-based wavelet transform approach processes both rows and columns in
a single loop.

image and stores the wavelet coefficients in an auxiliary matrix. Thereafter, the verti-
cal filtering phase processes the columns of the auxiliary matrix and stores the results
back in the original matrix. In other words, this algorithm requires that all lines are
horizontally filtered before the vertical filtering starts. The computational complexity
of both horizontal and vertical filtering is the same. Figure 5.1 depicts both horizon-
tal and vertical filtering. Each of these filtering is applied separately. Each of these
N × M matrices requires NMc bytes of memory, where c denotes the number of
bytes required to represent one wavelet coefficient. The RCWT traversal technique
has been used to implement the 2D DWT in this chapter.

5.1.2 Line-Based Wavelet Transform

In the line-based wavelet transform approach, the vertical filtering starts as soon as
a sufficient number of lines, as determined by the filter length, has been horizontally
filtered. In other words, the LBWT algorithm uses a single loop to process both rows
and columns together. This technique computes the 2D DWT of an N ×M image by
the following stages. First, the horizontal filtering filters L rows, where L is the filter
length, and stores the lowpass and highpass values interleaved in an L × M buffer.
Thereafter, the columns of this small buffer are filtered. This produces two wavelet
coefficients rows, which are stored in different subbands in an auxiliary matrix in the
order expected by the quantization step. Finally, these stages are repeated to process
all rows and columns. Figure 5.3 illustrates the LBWT algorithm.

5.2 Issues Related to the 2D DWT on the GPPs

As previously mentioned, a 2D DWT consists of horizontal filtering along the
rows followed by vertical filtering along the columns. In order to develop high-
performance implementations of the 2D DWT on GPPs in general and the P4 in
particular, the following issues need to be addressed:



5.2. ISSUES RELATED TO THE 2D DWT ON THE GPPS 109

void Lifting53_vertical(){
for (i=0, ii=1; ii<N; i++, ii+=2)

for (j=0; j<M; j++) {
img[i+N/2][j] = tmp[ii][j] - ((tmp[ii-1][j]

+ tmp[ii+1][j])>>1);
img[i][j] = tmp[ii-1][j] + ((img[i+N/2][j]

+ img[i+N/2-1][j]+2)>>2);
}

}

Figure 5.4: C implementation of vertical filtering using the (5, 3) lifting scheme with loop
interchange technique.

First, the P4 suffers from a problem known as 64K aliasing, which can degrade per-
formance by an order of magnitude. It occurs when two data blocks need to be cached
simultaneously whose addresses differ by a multiple of 64K [69]. In implementation
of the 2D DWT, there is a 64K alias between the lowpass and the highpass values
when the image size is a large power of two. This phenomena and the proposed
techniques to circumvent it will be discussed in more detail in Section 5.4.

Second, the straightforward way of performing vertical filtering is by processing each
column entirely before advancing to the next column. This method, however, results
in excessive cache misses because it is unable to exploit spatial locality, since the
cache blocks corresponding to the first rows will have been evicted from the cache
when the algorithm advances to the next column. In order to improve spatial local-
ity, loop interchange has been applied, which is a well-known compiler technique.
Figure 5.4 depicts the C implementation of vertical filtering using the (5, 3) lifting
scheme for an N × M image with loop interchange. As this figure shows, the loop
interchange technique places the loop with index j after the loop with index i allow-
ing to process the same rows successively, thereby helping to reduce cache misses.
Figure 5.5 depicts the effectiveness of loop interchange for vertical filtering. It de-
picts the speedup of vertical filtering with interchanged loops over the straightforward
implementation, which processes each column entirely before advancing to the next
column for the (5, 3) lifting and Daub-4 transforms. Clearly, the implementations
with interchanged loops are much more efficient than the straightforward implemen-
tations, especially when the image is large.

Loop interchange, however, does not solve all cache and memory problems. This is
because there are still many conflict misses if the filter length exceeds the number of
cache ways, in particular, if the image size is a multiple of the cache size. Therefore,
two techniques have been proposed to reduce the number of conflict misses that will
be explained in Section 5.5. Although 64K aliasing is a problem specific to the P4, the
conflict avoidance methods are general and can be applied to other processors as well.
To show this, results are also presented for the P3 and AMD Opteron processors.



110 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Figure 5.5: Effectiveness of loop interchange on the Pentium 4. This figure depicts the
speedup of vertical filtering with interchanged loops over the straightforward implementa-
tion, which processes each column entirely before advancing to the next column for the lifting
and Daub-4 transforms.

As shown in Figure 5.5, the loop interchange technique improves the performance of
the vertical filtering significantly. For this reason the performance of the proposed
techniques will be compared to the performance attained by the algorithms after loop
interchange. In other words, the implementations with interchanged loops will be
used as reference implementations.

Third, high-performance implementations of the 2D DWT must exploit the DLP us-
ing the SIMD instructions supported by most GPPs. Section 5.6 describes how the
2D DWT can be vectorized using MMX and SSE instructions. Vertical filtering is rel-
atively straightforward to vectorize. Horizontal filtering is more difficult to vectorize,
however, since it requires the data to be reorganized.

5.3 Experimental Setup

All C programs and SIMD implementations have been executed on the P4 processor.
In addition, to show generality of the proposed techniques to avoid cache conflict
misses, the P3 and AMD Opteron processors have also been used. The main archi-
tectural parameters of these systems are summarized in Table 5.1. All versions were
compiled using gcc with optimization level -O2 and executed on a lightly loaded sys-
tem. The speedup was measured by the ratio of execution cycle count. The total
number of cycles has been obtained by the IA-32 cycle counter [70], which has been
explained in Section 1.4 of Chapter 1. To eliminate the effects of context switch-
ing and compulsory cache misses, the K-best measurement scheme and a warmed up
cache have been used.



5.4. AVOIDING 64K ALIASING 111

Processor Intel Pentium 3 AMD Opteron Intel Pentium 4

CPU Clock Speed 451MHz 2.0GHz 3.0GHz

L1 Data Cache 16 KBytes 64 KBytes 8 KBytes

2-way set associativity 2-way set associativity 4-way set associativity

32 Bytes line size 64 Bytes line size 64 Bytes line size

L2 Cache 512 KBytes 1 MBytes 512 KBytes

8-way set associativity 8-way set associativity 8-way set associativity

32 Bytes line size 32 Bytes line size 64 Bytes line size

Memory 384 MBytes 1 GBytes 1 GBytes

Table 5.1: Parameters of the experimental platforms.

5.4 Avoiding 64K Aliasing

In the Pentium 4 there is a phenomenon known as 64K aliasing [69]. It occurs if two
or more data blocks whose addresses differ by a multiple of 64K need to be cached
simultaneously. If it occurs, the associativity of the cache is useless and the effective-
ness of the cache is greatly reduced. The reasons for the 64K aliasing problem are not
well documented. Some sources [64] say it is due to incomplete tag encoding. More
precisely, only 16 bits are used for the cache lookup: 6 bits for the block offset, 5 bits
for the index, and bits 11 to 15 for the tag [97]. The remaining tag bits come from
the Dynamic Translation Look-aside Buffer (DTLB). Because of this, references to
addresses with the same 16 lower-order bits (i.e., addresses that are 216 bytes or a
multiple thereof apart) are not resolvable in the L1 data cache. According to the
Intel documentation [69], the instruction that accesses the second 64K aliasing data
item has to wait until the first one is written from the cache. This clearly obstructs
out-of-order processing.

For some image sizes, the 2D DWT suffers from 64K aliasing. To illustrate this,
Figure 5.6 depicts the slowdown of the reference implementation of vertical filtering
over horizontal filtering on the P4. Even though they perform the same number of op-
erations, for some image sizes vertical filtering is substantially slower (up to a factor
of 4.27) than horizontal filtering. One reason for this could be the cache behavior. To
analyze if this is the case, Figure 5.7 shows the ratio of the number of cache misses
incurred by vertical filtering to the number of cache misses incurred by horizontal
filtering. These results have been obtained using a trace-driven cache simulator with
the cache configured as the L1 data cache of the P4.

It can be seen that the slowdown of vertical filtering over horizontal filtering can-
not be explained by the cache miss behavior. For example, when the image size is



112 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Figure 5.6: Slowdown of vertical filtering over horizontal filtering on the P4.

Figure 5.7: Ratio of the number of cache misses incurred by vertical filtering to the number
of cache misses incurred by horizontal filtering for an 8KB 4-way set-associative L1 data
cache with a line size of 64 bytes.

256 × 256, vertical filtering is slower than horizontal filtering by a factor of 4.27
for the lifting transform, and by a factor of 2.95 for the Daub-4 transform. For both
transforms, however, they incur about the same number of cache misses. For the
CDF-9/7 transform, on the other hand, vertical filtering is slower by a factor of 1.82
but generates more than 39 times as many cache misses as horizontal filtering. Sim-
ilar behavior can be observed for other image sizes. Hence the large slowdown of
vertical versus horizontal filtering should not (only) be attributed to cache misses but
mainly to 64K aliasing.

To further explain why and when 64K aliasing occurs, Figure 5.8 depicts a C imple-
mentation of vertical filtering using the Daub-4 transform. It can be seen that one
iteration of the inner loop accesses img[i][j] and img[i+N/2][j]. Hence
64K aliasing occurs if cN 2/2 is a multiple of 216, where c is the number of bytes
needed to represent one wavelet coefficient. Since c is 2 for the lifting and 4 for the
Daub-4 and CDF-9/7 transforms, for square N × N images 64K aliasing occurs if
N = 256 (since 2·2562/2 = 216), for powers of 2 larger than 256, and for N = 1280
(since 2·12802/2 = 25·216). Although it is focused on square images in this chapter,
64K aliasing may also occur for non-square images. For N × M images, it occurs



5.4. AVOIDING 64K ALIASING 113

void Daub_4_vertical() {
int i, j, jj;
float low[] ={-0.1294, 0.2241, 0.8365 , 0.4830};
float high[]={-0.4830, 0.8365, -0.2241, -0.1294};
for (i=0, ii=0; ii<N; i++, ii +=2)
for (j=0; j<M; j++) {

img[i][j]= tmp[ii][j] *low[0]+tmp[ii+1][j]*low[1] +
tmp[ii+2][j] *low[2]+tmp[ii+3][j]*low[3];

img[i+N/2][j]= tmp[ii][j] *high[0]+tmp[ii+1][j]*high[1] +
tmp[ii+2][j]*high[2]+tmp[ii+3][j]*high[3];

}
}

Figure 5.8: C implementation of vertical filtering using the Daub-4 transform. Note that the
loops have been interchanged w.r.t. the straightforward implementation.

when cNM/2 is a multiple of 216.

To circumvent 64K aliasing, two techniques are proposed and evaluated. The first
idea is to split the inner loop so that the lowpass (img[i][j]) and highpass values
(img[i+N/2][j]) are calculated in separate loops. In this way the 64K alias be-
tween them is removed. This is actually a well-known compiler technique called loop
fission. Loop fission, however, is usually applied to enable other transformations such
as loop interchange and vectorization, while here it is applied to avoid 64K aliasing.

Figure 5.9 depicts the speedup resulting from this program transformation. For those
image sizes that suffer from 64K aliasing (as explained above, powers of two larger
than 256 × 256 and 1280 × 1280), loop fission indeed improves performance signif-
icantly. In these cases the speedup ranges from 1.97 to 2.94 for the lifting transform,
from 2.36 to 3.31 for Daub-4, and from 1.27 to 1.75 for CDF-9/7. For CDF-9/7, the
performance improvements are smaller than for the other two transforms, because
it also suffers from many cache conflict misses. The CDF-9/7 transform has a filter
length of 9, which is larger than the filter length of the other transforms. In other
words, the filter length of the CDF-9/7 exceeds the number of cache ways that it is
4. However, for those image sizes that do not suffer from 64K aliasing, loop fission
reduces performance by up to 20%. This is due to the following reasons. First and
most importantly, loop fission removes the temporal reuse that exists between the
calculation of the highpass and lowpass values. As can be seen in Figure 5.8, the first
statement in the loop body accesses tmp[ii][j] and so does the second statement.
After loop fission has been applied, the two statements are in different loops and this
temporal reuse has been removed. Second, loop fission increases loop overhead but
this overhead could be reduced by unrolling the loop.

The second proposed technique is to offset the memory address of the highpass value
by one or two rows depending on the transform. In other words, instead of storing the



114 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Figure 5.9: Speedup of vertical filtering over the reference implementation achieved by loop
fission.

Figure 5.10: Performance improvement achieved by the offsetting technique.

highpass value in img[i+N/2][j], it is stored in img[i+N/2+1][j]. By ap-
plying this offsetting technique, the distance between the two addresses is no longer
a multiple of 64K, but to apply this method, the matrices have to be extended with
one or two rows.

Figure 5.10 depicts the speedup achieved by the offsetting technique. For those im-
age sizes that suffer from 64K aliasing, it improves performance by a factor ranging
from 3.07 to 4.20 for the lifting transform, from 2.99 to 3.11 for Daub-4, and from
1.41 to 1.69 for CDF-9/7. Moreover, the offsetting technique does not incur a perfor-
mance penalty for image sizes that do not suffer from 64K aliasing. This is because
this technique does not destroy the temporal locality between the calculation of the
lowpass and highpass values. Concluding, the offsetting technique is better than loop
fission.

5.5 Cache Optimization

Figure 5.7 shows that for small images (up to 128 × 128), vertical filtering does not
produce more cache misses than horizontal filtering, regardless of the transform em-



5.5. CACHE OPTIMIZATION 115

.

.
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

�
�
�
�
�
�
�
�

���	�	


�
�
�


�
�
�


�
�
�


�
�
�


�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�










































�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

j+2
j+1
j

j+L+1
j+L
j+L−1

reused part

Image

row i of output coefficients
Rows needed to compute 

Rows needed to compute 
row i+1 of output coefficients

Figure 5.11: Reuse in vertical filtering.

ployed. For images larger than 800× 800, however, vertical filtering generates about
50% more misses than horizontal filtering for the lifting and Daub-4 transforms. For
the Daub-4 transform (Figure 5.8) this can be explained as follows. To compute row
i of img, it uses rows 2i, 2i + 1, 2i + 2, 2i + 3 of tmp. Hence to compute row i + 1,
it uses rows 2i + 2, 2i + 3, 2i + 4, 2i + 5. This implies that rows 2i + 2 and 2i + 3
are reused, provided 4 rows can be kept in cache. When N ≥ 800, however, they
cannot (since 4 × 4 × 800 > 8KB), which is why vertical filtering generates more
misses than horizontal filtering. For the lifting transform this actually already occurs
for N = 512, because this transform does not access 4 consecutive rows of input
data. In general, if the rows of input image needed to compute row i of output data
are the rows j to j+L−1, then rows j+2 to j+L−1 are reused to compute the next
row i + 1, provided L rows can be kept in cache. This is illustrated in Figure 5.11.
More serious behavior, however, is exhibited by the CDF-9/7 transform.

For example, when N is (a multiple of) a large power of two, vertical filtering with
this transform generates up to more than 72 times as many cache misses as horizontal
filtering. This can be explained as follows. When N = 512, each row is 512 × 4 =
2KB of data. Since each way of the P4 L1 data cache is also 2KB, corresponding
blocks in different rows map to the same cache set. Consequently, since 9 blocks
are needed to compute one block of output data and this exceeds the number of cache
ways, many conflict misses are generated. In other words, the reuse that exist between
the computation of img[i][j] and img[i][j+1] (provided they are in the same
cache block) is destroyed. The same holds when N is a multiple of 512. When
N = 256 or N = 1280, 5 blocks map to the same cache set, causing also many
cache misses but fewer than when all 9 blocks map to the same set. For the lifting
and Daub-4 transforms, this problem does not exist because their filter lengths are
equal to the number of cache ways.

To solve this problem, it needs to be ensured that at most n rows are accessed before
advancing to the next output data, where n is the number of cache ways. In the
remainder of this section, two methods are presented for doing so. Since they are



116 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

n rows processed
in one loop.

.

.

.

ii+L −1
max

ii+n

.
ii+1
ii

.

.
1

0

N−1

.

.

.

0 1 . . . M−1

max
compute one row of

L  rows needed to

output coefficients.

Figure 5.12: Associativity-conscious loop splitting.

parameterized by the number of cache ways and the filter length, they can also be
applied to other cache organizations and transforms. In other words, both techniques
are general and architecture independent.

5.5.1 Associativity-Conscious Loop Fission Technique

The first method is referred to as associativity-conscious loop fission (ACLF). The
idea is to split the loop that computes one row of wavelet output into multiple loops
so that each loop accesses at most n rows. Each loop computes the partial results that
can be computed by accessing the first n rows of input data. The remaining loops
add their results to these partial results.

Specifically, let Lmax = max{Llow, Lhigh}, where Llow and Lhigh are the lengths
of the lowpass and highpass filters of the DWT. One row of wavelet coefficients is
calculated using Lmax/n loops, and each loop accesses n rows of input coefficients.
This transformation is illustrated in Figure 5.12 and pseudo-code that illustrates the
transformation is depicted in Figure 5.13. For brevity and simplicity, start-up and
clean-up code has been omitted.

5.5.2 Lookahead Technique

In the second scheme, which is called lookahead, the rows are processed in a
skewed manner. There is only one loop, as in the original algorithm. In it-



5.5. CACHE OPTIMIZATION 117

for (i=0, ii=0; ii<N; i++, ii+=2)
for (j=0; j<M; j++) {

img[i][j] = tmp[ii][j] * low[0] + tmp[ii+1][j] * low[1]
+ . . . + tmp[ii+L_max-1][j] * low[L_max-1];

. . .
}

(a)

for (i=0, ii=0; ii<N; i++, ii+=2) {
for (L=0; L<L_max ; L+=n)

for (j=0; j<M; j++) {
img[i][j] += tmp[ii+L][j] * low[L]

+ tmp[ii+L+1][j] * low[L+1]
+ . . . + tmp[ii+L+n-1] * low[L+n-1];

. . .
}

}
(b)

Figure 5.13: (a) reference implementation and (b) associativity-conscious loop splitting tech-
nique.

eration j (0 ≤ j < N ) a partial results is computed for the output ele-
ment img[i][j] but, in the same iteration, a partial result is computed for
the output element img[i][(j+B/c) mod N] that is located B/c columns
ahead, for the element img[i][(j+2*B/c) mod N], and so on. Here B
is the cache line size in bytes and c is the number of bytes per wavelet coef-
ficient, as before. To compute a partial result for img[i][j], n input ele-
ments tmp[ii][j], tmp[ii+1][j], . . . , tmp[ii+n-1][j] are processed.
A partial result for img[i][(j+B/c) mod N] is computed using the elements
tmp[ii+n][(j+B/c) mod N], . . . , tmp[ii+2n-1][(j+B/c) mod N],
and so on. So in each iteration, L/n partial results are computed, where L is the
filter length. In later iterations, partial results corresponding to the same column are
accumulated. This scheme ensures that no more than n input coefficients accessed
in one loop iteration map to the same cache set. This algorithm is illustrated in Fig-
ure 5.14 and pseudo-code that illustrates the transformation is given in Figure 5.15.
For brevity and simplicity, start-up and clean-up code has been omitted.

5.5.3 Performance Results

Figure 5.16 compares the performance improvements obtained by applying ACLF
or lookahead in addition to offsetting to the speedup achieved by applying offsetting
alone. Results are presented only for CDF-9/7, since only this transform suffers from
both 64K aliasing as well as excessive cache misses. For image sizes that experience



118 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

L         rows
of image

0
.
.
.

i
i+1

i+n-1
i+n
.
.

i+L -1

N-1

0     1     2   . .   B/c  . .               2*B/c  . . .                       M - 1  

1    2    3   .. . .

1    2    3   . . . 

1   2     3   . . . 

.

.

max

max

Loop iteration in which these
coefficients are processed.

n input coefficients the same
column are processed in one
iteration.

Figure 5.14: Illustration of the lookahead algorithm for vertical filtering.

for (i=0, ii=0; ii<N; i++, ii+=2)
for (j=0; j<M; j++) {
img[i][j] = tmp[ii][j] * low[0] + tmp[ii+1][j] * low[1]

+ . . . + tmp[ii+L_max-1][j] * low[L_max-1];
. . .

}
(a)

for (i=0, ii=0; ii<N; i++, ii+=2)
for (j=0; j<M - L_max/n*B/c; j++) {
img[i][j] += tmp[ii][j] * low[0]

+ tmp[ii+1][j] * low[1]
+ . . . + tmp[ii+n-1] * low[n-1];

img[i][j+B/c] += tmp[ii+n][j+B/c] * low[n]
+ tmp[ii+n+1][j+B/c] * low[n+1]
+ . . . + tmp[ii+2*n-1][j+B/c] * low[2*n-1];

. . .
img[i][j+L_max/n*B/c] +=tmp[ii+L_max-1-n][j+L_max/n*B/c]

* low[L_max-1-n]
+ tmp[ii+L_max-1-n+1][j+L_max/n*B/c]
* low[L_max-1-n+1] + . . .
+ tmp[ii+L_max-1][j+L_max/n*B/c]*low[L_max-1];

}
(b)

Figure 5.15: (a) reference implementation and (b) lookahead technique.



5.5. CACHE OPTIMIZATION 119

Figure 5.16: Comparison of the speedups obtained by applying offsetting alone to the
speedups achieved by applying associativity-conscious loop fission or lookahead in addition
to offsetting for the CDF-9/7 transform.

many cache conflicts (as explained in Section 5.5, N = 256 and multiples thereof),
avoiding them provides additional performance improvements. For example, apply-
ing offsetting alone provides a speedup of up to 1.69, while combining it with the
lookahead technique yields a speedup of up to 1.99. In general, the lookahead tech-
nique performs slightly better than ACLF. This is because it incurs less loop overhead
than ACLF. For image sizes that do not generate many conflict misses, both schemes
generally slightly decrease performance (by at most 7%). This is due to overhead
needed for managing loop and index variables and address calculations.

As mentioned before, both ACLF and the lookahead technique are general and archi-
tecture independent. This means that, although results have been measured for the
CDF-9/7 transform and on the Pentium 4, they can also be applied to other trans-
forms and processors with different cache configurations. For example, for certain
image sizes, the (5, 3) lifting and Daub-4 transforms would incur many cache conflict
misses for a 2-way set-associative cache. But in these cases the same techniques can
be applied with the parameters L = 4 and n = 2. To validate this claim, Figure 5.17
depicts the speedup obtained by applying ACLF and the lookahead techniques on
the P3 and the Opteron processors. Analytically it can be determined that on the P3
many conflict misses occur when N = 1024, 2048, 4096 and on the Opteron when
N = 2048, 4096 and, to a lesser extent, for N = 1280. Figure 5.17 shows that for
these image sizes ACLF provides a performance improvement ranging from 14% to
18% on the P3 and from 2% to 95% on the Opteron. On the other hand, the looka-
head technique improves performance by 34% to 41% on the P3 and by 15% to 126%
on the Opteron. However, for image sizes that do not generate many cache conflict
misses, those techniques reduce performance by up to 20%. This shows that it is
necessary to provide different versions of the code and, depending on the image size
and the cache organization of the target platform, to call the most efficient version.



120 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Figure 5.17: Speedups obtained by applying ACLF and the lookahead technique over the
reference implementation of the CDF-9/7 transform on the P3 and Opteron.

5.6 SIMD Vectorization

An efficient implementation of the DWT on the P4 as well as other GPPs must exploit
the SIMD extensions provided by these processors. This section presents MMX/SSE
implementations of the DWT and also discusses performance results on the Intel P4
processor. This section is organized as follows. The SIMD implementations of the
convolutional methods (Daub-4 and CDF-9/7) are discussed in Section 5.6.1. There-
after, an SIMD implementation of the lifting scheme is presented in Section 5.6.2.
Performance results are provided in Section 5.6.3. In Section 5.6.4, the limitations
of the SIMD implementations that restrict the performance improvements are dis-
cussed. Section 5.6.5 discusses the possible solutions to improve the performance of
SIMD implementations of the 2D DWT. Finally, experimental results are presented
in Section 5.6.6.

5.6.1 SIMD Implementations of Convolutional Methods

The SIMD implementations of Daub-4 and CDF-9/7 are very similar. Both process
single-precision floating-point values and apply filtering by multiplying the filter co-
efficients with the input samples and accumulating the results. They will therefore be
discussed together.

Under a row-major image layout, it is relatively straightforward to vectorize vertical
filtering using SSE instructions. This is because the elements that can be processed si-
multaneously are stored consecutively in memory. Consider, for example, the Daub-4
transform and let xi,j be the input samples, let c0, . . . , c3 denote the lowpass filter co-
efficients, and let Li,j be the lowpass values. Then vertical filtering of the lowpass
values is given by:



5.6. SIMD VECTORIZATION 121

(Li,j Li,j+1 Li,j+2 Li,j+3) =

(c0 c0 c0 c0) × (x2i,j x2i,j+1 x2i,j+2 x2i,j+3) +

(c1 c1 c1 c1) × (x2i+1,j x2i+1,j+1 x2i+1,j+2 x2i+1,j+3) +

(c2 c2 c2 c2) × (x2i+2,j x2i+2,j+1 x2i+2,j+2 x2i+2,j+3) +

(c3 c3 c3 c3) × (x2i+3,j x2i+3,j+1 x2i+3,j+2 x2i+3,j+3) (5.1)

In this equation, the operator × denotes elementwise vector multiplication. Similar
equations can be drawn for the highpass values and other convolutional filters. This
equation can be mapped almost one-to-one to SSE instructions. The only technical
detail is that each coefficient needs to be replicated four times. Figure 5.18 illus-
trates the data flow graph of the vertical filtering. As this figure shows four different
input samples of each row are multiplied with one filter coefficient simultaneously.
Each filter coefficient should be replicated in each of the four different subwords of
a media register. After four multiplications of four consecutive rows with different
coefficients, the results of each column are added to each other. Finally, four wavelet
coefficients are calculated simultaneously.

Horizontal filtering is more difficult to vectorize, however. In this case, the lowpass
values can be calculated using the equation:

(Li,j Li,j+1 Li,j+2 Li,j+3) =

(c0 c0 c0 c0) × (xi,2j xi,2j+2 x2i,2j+4 x2i,2j+6) +

(c1 c1 c1 c1) × (xi,2j+1 xi,2j+3 x2i,2j+5 x2i,2j+7) +

(c2 c2 c2 c2) × (xi,2j+2 xi,2j+4 x2i,2j+6 x2i,2j+8) +

(c3 c3 c3 c3) × (xi,2j+3 xi,2j+5 x2i,2j+7 x2i,2j+9) (5.2)

In addition, Figure 5.19 depicts the data flow graph of the horizontal filtering. As
this figure shows four different input samples are multiplied with four different co-
efficients. The intermediate results are accumulated into one destination operand. In
other words, to map this figure to SIMD instructions, a vector-vector multiplication
(dot product) instruction would have been useful, but since SSE does not provide
such an instruction, the elements should be rearranged so that, for example, the input
samples xi,2j , xi,2j+2, x2i,2j+4, and x2i,2j+6 are stored consecutively in an SSE reg-
ister. Figure 5.20 shows the SSE code that computes four lowpass values. It can be
seen that many overhead (unpack) instructions are needed.



122 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

x20 x21 x22 x23

x30 x31 x32 x33

X

X

+

X

+

X

+

c3

c2

c1

c0

x10 x11 x12 x13

x00 x01 x02 x03

X

X

+

X

+

X

+

X

X

+

X

+

X

X

X

+

X

+

X

+

X

X

+

X

+

X

+

X

X

+

X

+

X

+

X

X

+

X

+

X

+

X

X

+

X

+

X

++

4 wavelet coefficients

x05 x06 x07

x14 x15 x16 x17

x24 x25 x26 x27

x34 x35 x36 x37

x04Row 0

Row 1

Row 2

Row 3

4 wavelet coefficients

c3

c2

c1

c0

c3

c2

c1

c0

c3

c2

c1

c0

c3

c2

c1

c0

c3

c2

c1

c0

c3

c2

c1

c0

c3

c2

c1

c0

Figure 5.18: Data flow graph of the vertical filtering of the Daub-4 transform.

X X X X

+ +

+

XX X X

+ +

+

X X X X

+ +

+

X X X

x01x00 x02 x03 x06 x07
c1 c2 c3

x05x04

c0 c1 c2 c3

c0 c1 c2 c3

c0

One wavelet coefficient

One wavelet coefficient

One wavelet coefficient

x08 x09 x10 x11

c0 c1 c2

Figure 5.19: Data flow graph of the horizontal filtering of the Daub-4 transform.



5.6. SIMD VECTORIZATION 123

movaps xmm0, (esi) ; xmm0 =

movaps xmm1,16(esi); xmm1 =

movaps xmm2, xmm0 ; xmm2 =

unpcklps xmm0, xmm1 ; xmm0 =

unpckhps xmm2, xmm1 ; xmm2 =

movaps xmm1, xmm0 ; xmm1 =

unpcklps xmm0, xmm2 ; xmm0 =

unpckhps xmm1, xmm2 ; xmm1 =

movups xmm2,8(esi) ; xmm2 =

movups xmm3,24(esi); xmm3 =

movaps xmm4, xmm2 ; xmm4 =

unpcklps xmm2, xmm3 ; xmm2 =

unpckhps xmm4, xmm3 ; xmm4 =

movaps xmm3, xmm2 ; xmm3 =

unpcklps xmm2, xmm4 ; xmm2 =

unpckhps xmm3, xmm4 ; xmm3 =

movaps xmm4, xmm0 ; xmm4 =

movaps xmm5, xmm1 ; xmm5 =

movaps xmm6, xmm2 ; xmm6 =

movaps xmm7, xmm3 ; xmm7 =

a3 a2 a1 a0

a7 a6 a5 a4

a3 a2 a1 a0

a5 a1 a4 a0

a7 a3 a6 a2

a5 a1 a4 a0

a6 a4 a2 a0

a7 a5 a3 a1

a5 a4 a3 a2

a9 a8 a7 a6

a5 a4 a3 a2

a7 a3 a6 a2

a9 a5 a8 a4

a7 a3 a6 a2

a8 a6 a4 a2

a9 a7 a5 a3

a6 a4 a2 a0

a7 a5 a3 a1

a8 a6 a4 a2

a9 a7 a5 a3

Figure 5.20: Computing four lowpass values for horizontal filtering using SSE instructions
(Daub-4 transform).

5.6.2 MMX Implementation of the Lifting Scheme

The SIMD implementation of the (5, 3) lifting scheme is significantly different from
the SSE implementations of Daub-4 and CDF-9/7 for the following reasons. First,
the (5, 3) lifting transform uses integer arithmetic and hence its SIMD implementa-
tion employs MMX instructions. Second, in the MMX implementation there are no
multiplication operations, since the input values need to be divided by powers of 2
which can be accomplished using shift operations. Third, because of its structure,
the (5, 3) lifting scheme is vectorized in a completely different way than the convo-
lutional transforms.

As previously mentioned, the lifting operation consists of several stages. First, the
original 1D input signal is split into a subsequence consisting of the even-numbered
input values {s0

i } and a subsequence containing the odd-numbered input values {d0
i }.

Thereafter, the prediction stage produces the highpass output values {d1
i } and the

update stage generates the lowpass output values {s1
i }.



124 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

+ + + +

+ + + +
0.5 0.5 0.5 0.5

s d s d s d s d
00 211 2 3 3

00000000

. . . 

1 −1/2−1/2−1/21−1/2−1/21−1/2−1/21−1/2

d d d d
0 1 2 3

1111

1 1/4 1/4 1 1/4 1/4 1 1/4 1/4 1 1/4 1/4

s
0
1

s
1
1

s
2
1

s
3
1

. . . 
3−Update
(lowpass output)

Input sequence

1− Split

(highpass output)
2− Prediction

Figure 5.21: One prediction and update stage in the lifting scheme of the (5, 3) lifting trans-
form.

The lifting operation for the (5, 3) filter bank is depicted in Figure 5.21. The se-
quences {s0

i } and {d0
i } denote the even and odd input sequence and the outputs {s1

i }
and {d1

i } are the lowpass and highpass output coefficients of the DWT filter, respec-
tively.

The equations that are used in the prediction and update stage of the (5, 3) lifting
transform are given by:

d1
i = d0

i − b
s0
i + s0

i+1

2
c (5.3)

s1
i = s0

i + b
d1

i−1 + d1
i + 2

4
c (5.4)

Figure 5.22 depicts a part of the data flow graph of the (5, 3) lifting scheme based
on Equation (5.3) and Equation (5.4). In order to vectorize horizontal filtering, the
data needs to be rearranged so that the even and odd subsequences are placed in
different registers. Furthermore, because s0

i and s0
i+1 have to be added, two copies

of the even subsequence are required, one that starts with s0
0 and one that starts with

s0
1. Figure 5.23 shows the MMX code that achieves this rearrangement. It can be

seen that many unpack instructions are required to achieve this. After the code has
been executed, the first four highpass output values can be computed by adding mm0
with mm3, shifting the results to the right by 1 bit position, and adding these results
to mm4.

As was the case for the convolutional transforms, vertical filtering is easier to vector-
ize. In this case, the even and odd subsequences do not have to be split because
they correspond to different rows. A drawback of vertical filtering compared to



5.6. SIMD VECTORIZATION 125

+ + +

Shr 1

+

Shr 1 Shr 1 Shr 1

− − − −

++ + +

Shr 2 Shr 2 Shr 2 Shr 2

+ + + +

s d s d s d s d
00 211 2 3 3

00000000

d 0
1

d
1
1

d
2
1

d
1
3

s
0
1 s

1
1 1

2
s

3
1s

2 2 2 2

3−Update

Lowpass output

Highpass output

2− Prediction

Input sequence

1− Split

Figure 5.22: Part of the data flow graph of the forward integer-to-integer lifting transform
using the (5, 3) filter bank (Shr = Shift right).

movq mm0, (esi); mm0 =

movq mm1,8(esi); mm1 =

pxor mm7, mm7 ; mm7 =

movq mm2, mm0 ; mm2 =

punpcklbw mm0, mm7 ; mm0 =

punpckhbw mm2, mm7 ; mm2 =

punpcklbw mm1, mm7 ; mm1 =

movq mm3, mm0 ; mm3 =

punpcklwd mm0, mm2 ; mm0 =

punpckhwd mm3, mm2 ; mm3 =

movq mm4, mm0 ; mm4 =

punpcklwd mm0, mm3 ; mm0 =

punpckhwd mm4, mm3 ; mm4 =

punpcklwd mm2, mm1 ; mm2 =

punpcklwd mm3, mm2 ; mm3 =

s0

0 d0

0 s0

1 d0

1 s0

2 d0

2 s0

3 d0

3

s0

4 d0

4 s0

5 d0

5 s0

6 d0

6 s0

7 d0

7

0 0 0 0 0 0 0 0

s0

0 d0

0 s0

1 d0

1 s0

2 d0

2 s0

3 d0

3

s0

0 d0

0 s0

1 d0

1

s0

2 d0

2 s0

3 d0

3

s0

4 d0

4 s0

5 d0

5

s0

0 d0

0 s0

1 d0

1

s0

0 s0

2 d0

0 d0

2

s0

1 s0

3 d0

1 d0

3

s0

0 s0

2 d0

0 d0

2

s0

0 s0

1 s0

2 s0

3

d0

0 d0

1 d0

2 d0

3

s0

2 s0

4 d0

2 d0

4

s0

1 s0

2 s0

3 s0

4

Figure 5.23: MMX instructions needed to rearrange the elements for the (5, 3) lifting scheme.



126 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

horizontal filtering is, however, that the previous highpass output values which are
needed for the update stage cannot be kept in a register, while in horizontal fil-
tering they can. For example, in vertical filtering, after calculating the highpass
values {d1

i+1,j , d
1
i+1,j+1

, d1
i+1,j+2

, d1
i+1,j+3

}, the computation of the lowpass values
{s1

i+1,j, s
1
i+1,j+1, s

1
i+1,j+2, s

1
i+1,j+3} should start. For this, access to the previous row

to load the four calculated highpass values {d1
i,j , d

1
i,j+1

, d1
i,j+2

, d1
i,j+3

} is necessary.
Consequently, the access pattern needed in vertical filtering is more complex than the
access pattern needed in horizontal filtering.

5.6.3 Performance Results

First, the offsetting technique has been applied to the SIMD implementations of all
three transforms and, in addition, the lookahead technique to CDF-9/7. The resulting
speedups are depicted in Figure 5.24. It can be seen that applying offsetting to the
MMX implementation of the (5, 3) lifting transform improves performance signifi-
cantly. For those image sizes that suffer from 64K aliasing, it improves performance
by factors ranging from 1.68 to 6.74. For the Daub-4 and CDF-9/7 transforms, how-
ever, the attained speedups are comparatively small. Applying offsetting to Daub-4
provides a speedup of 1.78 for images of size 256 × 256. For the other image sizes
that suffer from 64K aliasing, the speedups are smaller than 1.10. Applying both
offsetting and lookahead to CDF-9/7 improves performance by factors ranging from
1.14 to 1.45 when 64K aliasing as well as excessive cache conflict misses occur. The
reason for this behavior is that vectorization already (partially) eliminates 64K alias-
ing. The SSE implementations of the convolutional methods, load 32 bytes of data
(half a cache line) into registers before accessing a different cache line that could
conflict with the current one. The MMX implementation of the (5, 3) lifting scheme
loads 16 bytes of data into registers before accessing a different cache line (see the
first two lines of the code given in Figure 5.20). Hence in these implementations 64K
aliasing still occurs, but to a lesser extent than in the scalar version.

Figure 5.25 depicts the speedups of the SIMD implementations of horizontal filter-
ing over the corresponding scalar version. The largest speedups are obtained for the
(5, 3) lifting scheme. For this transform the speedup ranges from 1.69 to 3.39, while
the speedups for Daub-4 and CDF-9/7 range from 1.10 to 1.79 and from 1.25 to 1.44,
respectively. There are three main reasons why the speedups for the (5, 3) lifting
scheme are higher than for the Daub-4 and CDF-9/7 transforms. First, there are no
misaligned memory accesses in the MMX implementation of horizontal filtering us-
ing the (5, 3) lifting scheme, while in the SSE implementations there are as shown in
Table 5.2. Although SSE permits misaligned memory accesses, they are much slower
than aligned memory accesses. Second, there are more MMX execution units than
SSE units. This implies that more MMX instructions can be executed in parallel.



5.6. SIMD VECTORIZATION 127

Figure 5.24: Performance improvements achieved by applying the offsetting technique to the
SIMD implementations of all three transforms and, in addition, the lookahead technique to
CDF-9/7.

Figure 5.25: Speedup of the SIMD implementations of horizontal filtering over the scalar
versions.

Third, the MMX implementation of the (5, 3) lifting scheme performs more arith-
metic operations per wavelet sample than the SSE implementations of Daub-4 and
CDF-9/7. Because SIMD vectorization significantly reduces the CPU component
of the execution time, horizontal filtering using Daub-4 and CDF-9/7 has become
memory-bound. As Table 5.2 shows the number of load and store instructions in
each loop iteration of the horizontal filtering of the (5, 3) lifting scheme is less than
the Daub-4 and CDF-9/7 transforms.

Transforms Horizontal filtering
# load/store for # load for # misaligned

input/output data coefficients accesses

(5, 3) Lifting 5 0 0
Daub-4 6 8 2
CDF-9/7 14 19 4

Table 5.2: Number of load/store instructions and misaligned accesses in each loop iteration
of horizontal filtering in the (5, 3) lifting, Daub-4, and CDF-9/7 transforms.



128 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Figure 5.26: Speedup of the SIMD implementation of vertical filtering over scalar version.

Two other important observations can be drawn from Figure 5.25. First, the speedups
for the (5, 3) lifting scheme are lower for small images (N ≤ 128) than for larger
images, while for Daub-4 the opposite behavior can be observed. Second, since
all SIMD implementations perform four operations in one instruction, the expected
maximum speedup is 4, but the attained speedups are smaller. The first behavior can
be explained as follows. When N ≤ 128, almost all reads hit the L1 data cache
(except for compulsory misses). Hence the speedups obtained for these image sizes
are the speedups resulting from SIMD vectorization. When N > 128, however,
other factors start to play a role. For (5, 3) lifting, the speedup increases because the
MMX implementation incurs fewer cache conflicts and hence fewer memory stall
cycles than the scalar implementation. For Daub-4, on the other hand, the speedup
decreases because this implementation has become memory-bound. The fact that
the obtained speedups are smaller than 4 even when N ≤ 128 is mainly due to the
overhead instructions required to vectorize horizontal filtering.

Figure 5.26 depicts the speedups for vertical filtering. As explained in the previous
sections, vertical filtering is easier to vectorize and incurs less overhead than hori-
zontal filtering. This explains why the obtained speedups are about the maximum
speedup of 4 for images smaller than 256 × 256. For the lifting and Daub-4 trans-
forms the speedups for these image sizes are even larger than 4 in all but one case
due to reduction of loop overhead. For CDF-9/7, the speedups are slightly smaller
(around 3.32), because due to the small number of SSE registers, this implementation
needs to spill registers to memory. When N > 256, however, the obtained speedups
are smaller. For the lifting and CDF-9/7 transforms they are around 2 in most cases,
but for Daub-4 the average speedup for images larger than 256 × 256 is only 1.26.
Again this should be attributed to a memory bandwidth bottleneck.



5.6. SIMD VECTORIZATION 129

Transforms Horizontal filtering Vertical filtering Ratio
# dynamic instructions # dynamic instructions (Col. 2 / Col. 3

(5, 3) Lifting 5 + (5 + 31∗M

8
) ∗ N 6 + (5 + 22∗M

4
) ∗ N

2
1.40

Daub-4 4 + (4 + 48∗M

8
) ∗ N 4 + (4 + 37∗M

4
) ∗ N

2
1.30

Table 5.3: The dynamic number of instructions of the SIMD implementations of the horizontal
and vertical filtering and also their ratio for different transforms for an N × M image.

5.6.4 Discussion

In this section the limitations of the SIMD implementations that restrict the perfor-
mance and possible solutions are discussed. From the convolution-based transforms,
Daub-4 and CDF-9/7, only Daub-4 transform is considered in the following sections.
This is because their problems are almost the same.

First, as previously mentioned, the horizontal filtering is not easy to vectorize, while
the vertical filtering is. To vectorize the horizontal filtering, overhead instructions
are needed. Table 5.3 shows the dynamic number of instructions of the horizontal
and vertical filtering and their ratio for the (5, 3) lifting and Daub-4 transforms for
an N ×M image. As this table illustrates the number of executed instructions of the
vertical filtering is 1.40 and 1.30 times less than the number of executed instructions
of horizontal filtering for the (5, 3) lifting scheme and Daub-4 transforms, respec-
tively. Second, in the MMX implementation of the (5, 3) lifting, there is a mismatch
between the storage and the computational formats. For instance, about 12.7% of the
dynamic number of instructions are needed to convert the pixels to 16-bit values in
the MMX implementation. Third, there are some misaligned accesses in the SIMD
implementation of horizontal filtering of the Daub-4 transform.

Therefore, some architectural enhancements such as the MAC operation and the MRF
technique to aid the efficient SIMD vectorization of horizontal filtering are proposed.
A packed MAC instruction is used for Daub-4 transform. A MAC operation can
perform a four 32-bit single-precision floating-point multiplication with accumula-
tion. The SSE/SSE2/SSE3 ISAs do not provide the MAC operation for floating-point
numbers. Only a packed multiply and add instruction for fixed-point numbers is sup-
ported. The proposed MRF technique, which was discussed in the previous chapters,
can also be used for all transforms.

In order to evaluate if extended subwords can be used to improve the performance
of the (5, 3) lifting transform, the minimum and maximum wavelet coefficient and
intermediate result for a 5-level decomposition have been determined. As input, the
well-known “Lena” image as well as randomly generated images with 7 to 10 bits
per pixel (bpp) have been employed. The results are depicted in Table 5.4. The first
column shows the range of the input image pixels, the second and third columns the
minimum resp. maximum wavelet coefficient/intermediate result, and the last col-



130 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Image Data Between Min. value Max. value # bits
0, 127 -238 239 9

-128, 127 -472 477 10
0, 255 -475 478 10

-256, 255 -950 955 11
0, 511 -953 957 11

-512, 511 -1904 1915 12
0, 1023 -1906 1916 12

Table 5.4: Minimum and maximum wavelet coefficients and intermediate results for a 5-level
decomposition using the (5, 3) lifting scheme for 7- to 10-bit per pixel images.

umn shows the number of bits required to represent each coefficient and intermediate
result. The table shows that a 12-bit data format is sufficient for a 5-level decompo-
sition of images of up to 10 bpp. This means that the extended subwords technique
can be employed in order to exploit more DLP in the (5, 3) lifting transform.

The following section describes how the proposed techniques can be used for the
efficient SIMD implementation of the DWT.

5.6.5 MAC Operation, Extended Subwords and the MRF

The first proposed technique is to design and to implement a MAC operation. The
SSE ISA includes a packed multiply and add (pmaddwd) instruction for integers,
while it does not provide such instruction for floating-point numbers. As previously
mentioned, providing a MAC unit that can perform a 32-bit single-precision floating-
point multiplication with accumulation is a good solution to vectorize horizontal fil-
tering. As Figure 5.27 shows, multiplication of coefficients and input samples is
possible without using overhead instructions and replication of coefficients. The
pmaddsd (parallel multiply and add single-precision values to double-precision)
performs an SIMD multiply of the four single-precision floating-point values in the
source operand by the four single-precision floating-point values in the destination
operand. The two high-order words are summed and stored in the upper doubleword
of the destination operand, and the two low-order words are summed and stored in
the lower doubleword of the destination operand.

The second possible solution for the efficient SIMD implementation of DWT is using
extended subwords and the MRF. First, extended subwords and the MRF are used to
vectorize the horizontal filtering of the (5, 3) lifting transform. Then, the idea of the
MRF is extended to floating-point numbers, and it is used for efficient implementation
of the horizontal filtering of the Daub-4 transform.

The extended subwords and the MRF techniques have been discussed in Chapter 3.
Both techniques are used to vectorize the horizontal filtering of the (5, 3) lifting,
while the extended subword is employed for the implementation of vertical filter-



5.6. SIMD VECTORIZATION 131

x00 x01 x02 x03

x00 * c0 + x01 * c1 x02 * c2 + x03 * c3

+

* * * *

c0 c1 c2 c3

+

xmm1

xmm2

xmm1

pmulasd  xmm1, xmm2

Figure 5.27: The structure of the pmaddsd instruction.

ing. Figure 5.28 illustrates how the MRF technique can be used to reorder the
input data. Eight load-column instructions are used to load input sequence into
3mxc0, 3mxc1, ..., 3mxc7 column registers. To provide correct arrangement of even
and odd values according to Equation (5.3) and Equation (5.4), an offset, which is
a multiple of 6 bytes for each load-column instruction, is used. After eight load-
column instructions, each row register consists of either even ({s0

i }) or odd ({d0
i })

values. Thereafter, the SIMD ALU instructions can be used to process the row regis-
ters. The extended subwords technique provides 8-way parallelism in both horizontal
and vertical filtering.

In addition, the idea of the MRF is applied to floating-point numbers using the
SSE register file. The SSE register file has eight 128-bit floating-point registers
xmm0, ..., xmm7. Each register contains four single-precision floating-point val-
ues. This register file is modified by the MRF technique. The modified register file
has eight row registers, the same as the normal register file, and four column registers
xcmm0, ..., xcmm3. Figure 5.29 depicts the architecture of the modified register
file with 32-bit subwords. This modified register file has two read ports and one write
port that has been connected to a 128-bit partitioned floating-point ALU. As this fig-
ure shows four registers can be accessed in both horizontal and vertical directions.
Data loaded from memory can be written to a row register as well as to a column
register. Three 2:1 32-bit multiplexers are needed in each row to select between row-
wise and column-wise accesses. Only load-column instructions can write to a column
register, the same as in the MMMX register file. Therefore, a transposition of a block
stored in the memory can be performed using column-wise load instructions followed
by normal store instructions. Four load-column instructions and four normal store in-
structions are needed to transpose a 4 × 4 block of single-point floating-point values
using the modified register file, while 20 SSE instructions are required as was dis-



132 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

+/shr/−

+/shr/−

+/shr/−

+/shr/+

+/shr/+

+/shr/+

+/shr/−

+/shr/−

+/shr/−

+/shr/+

+/shr/+

+/shr/+

+/shr/−

+/shr/−

+/shr/−

+/shr/+

+/shr/+

+/shr/+
1

d

d
1

d
1

2

2

2

s

s
1

1

s
1

3

4

5

3

4

5

d
2
1

. . . 

1
d

d
1

d
1

s

s
1

1

s
1

21

22

23

21

22

23

2

2

2

20
d
1

0

0

3mx1

3mx2

3mx3

3mx4

3mx5

3mx6

3mx7

3mx0

2
1

d

d
1
1

0

s 0

s
1

1

1

s 2
1

R1

d s d s d s d s d s d s d s d
0 0 0 0 0 0 0 0 0 0 0 0 0

Input sequence:  s
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

. . .
000

. . . 

0

fldc8u12            3mxc0,     (R1)

fldc8u12            3mxc1,     6(R1)

fldc8u12             3mxc7,    42(R1)

3mxc0 3mxc1 3mxc7

d
3
0

s
0
0

s
3
0

d
0
0

d
0
2

s
0

1

s
0
2

d
0

1

s
3
0

d
6
0

s
6
0

d
3
0

d
5
0

s
4
0

s
5
0

d
4
0

s
21
0

d
24
0

s
24
0

d
21
0

d
23
0

s
22
0

s

22
d

23

d
0
1

2

2

2

Figure 5.28: Vectorization of the horizontal filtering of the (5, 3) lifting scheme using the
matrix register file and extended subwords techniques.

cussed in Chapter 1. Each load-column instruction can load 128 bits from memory
to a column register the same as the normal load and store instructions that are sup-
ported by the SSE extensions. For instance, the movaps instruction transfers 128
bits of packed data from memory to a row register. The modified register file is used
for vectorization of the horizontal filtering of the Daub-4 transform.

5.6.6 Experimental Results

In this section the proposed techniques are evaluated.

Experimental Setup

In order to evaluate the proposed techniques, the sim-outorder simulator of the
SimpleScalar toolset has been used that has been explained in Chapter 4. The hor-
izontal and vertical filtering of the (5, 3) lifting have been implemented using the
MMMX architecture. This architecture has been discussed in Chapter 3. For each
horizontal and vertical filtering of the (5, 3) lifting transform, two SIMD implemen-
tations using MMX and MMMX instructions have been implemented and simulated.
In the MMMX implementation of horizontal filtering, both extended subwords and



5.6. SIMD VECTORIZATION 133

mux muxmux

muxmuxmux

muxmux

muxmux mux

mux

wise access

row− or column−

.

.

.

3

D
e

c
o

d
e

r 
3

 x
 8

write signal

2

Write to column registers

032 3163649596127
3

1
2

8
 m

u
x
 8

x
1

1
2

8
 m

u
x
 8

x
1

xmm7

xmm6
xmm5
xmm4

xcmm0 xcmm1 xcmm2 xcmm3

128−bit

0 1 2 3

32 32

Port C

Subwords

3 3 2 3 1 3 0

2 3 2 1 22 0

31 1 2 1 1 0

0 3 0 2 0 1 0
xmm2

xmm1

xmm0

xmm3

128 mux 2x1

3
Write to row
registers

Decoder 2 x 4

.

.

.

read register 2

control signals

memory

fl
o

a
ti
n

g
−

p
o

in
t 

A
L

U
A

 1
2

8
−

b
it
 p

a
rt

it
io

n
e

d

128−bit

128−bit

32−bit

128−bit

128−bit

128−bit

128−bit

128−bit

128−bit

128−bit

128−bit

3
2

−
b

it
 f

lo
a

ti
n

g
−

p
o

in
t 

A
L

U

Port B

Port A 

128−bit

memory

read register 1

32

1
2

8
 m

u
x
 2

x
 1

Figure 5.29: A matrix register file with eight 128-bit registers, two read ports, and one write
port. Four registers can be accessed in row-wise as well as column-wise. The modified
register file is connected to a 128-bit partitioned floating-point ALU for subword parallel
processing.

the MRF techniques have been used, while in the vertical filtering only the extended
subwords technique has been used.

In addition, three SIMD implementations, namely SSE, SSE-MAC, and SSE-MRF
for horizontal filtering of the Daub-4 transform have been implemented and simu-
lated. The SSE version is the implementation that has been discussed in Section 5.6.1.
In the SSE-MAC implementation the proposed MAC operation has been used, while
in the SSE-MRF implementation the modified SSE register file has been employed.

The main parameters of the simulated processor are the same as the parameters that
have been discussed in Section 4.3 in Chapter 4. The performance obtained by the
MMMX and SSE-MAC as well as SSE-MRF implementations is compared to the
performance attained by the MMX and SSE implementations, respectively. In other
words, the SIMD implementations of the MMX and SSE are used as reference im-
plementations.



134 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

Figure 5.30: speedups of the MMMX implementation of the horizontal and vertical filtering
of the (5, 3) lifting, SSE-MAC, and SSE-MRF implementations of the horizontal filtering of
the Daub-4 transform over MMX and SSE, respectively, as well as the ratio of committed
instructions for an image size of 480× 480 on a single issue processor.

Performance Evaluation Results

Figure 5.30 depicts the speedups of the MMMX implementation of the horizontal
and vertical filtering of the (5, 3) lifting, SSE-MAC, and SSE-MRF implementations
of the horizontal filtering of the Daub-4 transform over MMX and SSE, respectively,
as well as the ratio of committed instructions for an image size of 480 × 480 on a
single issue processor. The MMMX implementation of the horizontal filtering of the
(5, 3) lifting transform is 2.90 times faster than the MMX implementation, while the
MMMX implementation of the vertical filtering is 2.03 times faster than the MMX
implementation. The reason why the speedup of the horizontal filtering is larger than
the vertical filtering is that in the MMMX implementation of the horizontal filtering
both techniques, extended subwords and the MRF, have been used, but in the MMMX
implementation of the vertical filtering only extended subwords has been used.

The speedup of SSE-MAC and SSE-MRF is 1.26 and 1.32, respectively. The ratio
of committed instructions is 1.00 and 1.33. This means that the MAC operation does
not reduce the number of committed instructions. SSE-MAC executes eight SIMD
and four scalar instructions in the inner loop to calculate two wavelet coefficients in
each iteration. SSE executes 44 SIMD and four scalar instructions in the inner loop
to calculate eight wavelet coefficients in each iteration. This means that in the SSE-
MAC implementation, four SIMD and two scalar instructions are needed to calculate
one wavelet coefficient, while in the SSE implementation, 5.5 SIMD and 0.5 scalar
instructions are required to calculate one wavelet coefficient. As a result, SSE-MAC
reduces the number of SIMD instructions, while it increases the number of scalar
instructions. The latency of the scalar instructions, which are used for incrementing
or decrementing index and address values, is less than the latency of the SIMD mul-
tiplication instructions. This is the reason why SSE-MAC yields a speedup of 1.26.



5.7. CONCLUSIONS 135

Transforms Horizontal filtering Vertical filtering Ratio
# Dynamic instructions # Dynamic instructions (Col. 2 / Col. 3

(5, 3) Lifting 6 + (4 + 51∗M

48
) ∗ N 5 + (4 + 20∗M

8
) ∗ N

2
0.85

Daub-4 4 + (4 + 36∗M

8
) ∗ N 4 + (4 + 37∗M

4
) ∗ N

2
0.97

Table 5.5: Number of dynamic instructions of the SIMD implementation of both horizontal
and vertical filtering of the (5, 3) lifting and Daub-4 transforms after using the proposed
techniques for an N × M image.

In order to reduce the number of the scalar instructions in the SSE-MAC implemen-
tation, the inner loop has been unrolled four times. This unrolled version yields a
speedup of 1.28 over SSE and its ratio of committed instructions is 1.33.

Table 5.5 shows the dynamic number of instructions for both horizontal and verti-
cal filtering and their ratio for (5, 3) lifting and Daub-4 transforms after using the
proposed techniques for an N × M image. The ratio of the number of executed
instructions of the horizontal filtering over the executed instructions of the vertical
filtering is 0.85 and 0.97 for (5, 3) lifting and Daub-4 transforms, respectively. From
comparison of Table 5.3 and Table 5.5, it can be understood that after applying the
proposed techniques, the number of executed instructions is reduced from 1.40 and
1.30 to 0.85 and 0.97, respectively.

5.7 Conclusions

In this chapter efficient implementation of the two dimensional discrete wavelet trans-
form on SIMD-enhanced GPPs have been discussed. Three different transforms,
(5, 3) lifting, Daub-4, and CDF-9/7, have been considered. Three issues related to
the efficient implementation of the 2D DWT on general-purpose, programmable pro-
cessors, in particular the Pentium 4, have been addressed. First, a simple and effective
technique to improve the cache locality of vertical filtering is the loop interchange. It
has been identified, however, that for certain image sizes the resulting implementa-
tion suffers from a phenomenon known as 64K aliasing. To avoid this problem, two
techniques have been applied: loop fission and offsetting. For image sizes that suffer
from 64K aliasing, loop fission provides a speedup that ranges from 1.27 to 3.31, de-
pending on the transform applied , while offsetting achieves speedups between 1.41
and 4.20. Loop fission, however, incurs more loop overhead and, more seriously, de-
stroys the temporal locality between the lowpass and highpass values. Consequently,
for image sizes that do not suffer from 64K aliasing it reduces performance by up
to 20%. Because offsetting does not destroy the temporal reuse, it is concluded that
offsetting is better than loop fission.

It has also been shown that for certain image sizes, vertical filtering (with inter-



136 CHAPTER 5. OPTIMIZING THE DISCRETE WAVELET TRANSFORM

changed loops) still generates many more misses than horizontal filtering. On the
P4, this happens in particular for the CDF-9/7 transform. The reason is that the filter
length exceeds the number of cache ways. Because of this, conflicts occur if the in-
put coefficients needed to compute one output coefficient map to the same cache set.
To avoid these conflicts two techniques have been applied: associativity-conscious
loop fission and lookahead. For image sizes that experience many cache conflict
misses ACLF improves performance by a factor that ranges from 1.59 to 1.80, while
the lookahead technique provides a speedup between 1.71 and 1.99. For other im-
age sizes, both schemes generally decrease performance slightly, due to the increased
loop overhead. Except for two image sizes, the lookahead technique performs slightly
better than ACLF, because it incurs less loop overhead. Both schemes are general be-
cause they can also be applied to other cache organizations and/or filter lengths. To
show this, results for the P3 and Opteron have also been presented.

To further enhance the performance of the 2D DWT, the SIMD instructions provided
by most general-purpose programmable processors must be exploited. MMX im-
plementations of the lifting transform and SSE implementations of the convolutional
transforms have been presented . While vertical filtering is relatively straightforward
to vectorize, horizontal filtering requires to rearrange the elements (sub-words) within
a register. Mainly because of this overhead, the speedups obtained for horizontal fil-
tering are relatively small, ranging from 1.69 to 3.39 for the lifting transform and
from 1.10 to 1.79 for the convolutional transforms. Because vertical filtering does
not incur this overhead, the speedups approach the ideal speedup of 4 when most
reads hit the L1 data cache. For larger images, however, the obtained speedups are
smaller, because the computation becomes memory-bound. This is especially the
case for the Daub-4 transform which has a smaller computation-to-communication
ratio than the other two transforms.

Amongst others, this work has shown that it is difficult to obtain a single implemen-
tation of the 2D DWT that works well for all image sizes, because most techniques
incur some overhead. This indicates that in order to obtain the fastest implementa-
tion of this important kernel, a parameterizable implementation is needed that takes
into account factors such as the cache organization of the target processor, the image
size, the filter length, etc. Specifically, focusing on the cache conflict problem, if the
cache organization, image size, and filter length are such that the number of input
blocks needed to compute one output block exceeds the number of cache ways, then
the lookahead technique should be applied. Otherwise, the reference implementation
should be called.

Additionally, the proposed extended subwords, the MRF, and MAC operation have
been used to improve the performance of the SIMD implementations. The extended
subwords and the MRF techniques have been used in the horizontal filtering of the
(5, 3) lifting transform, while only the extended subwords technique has been em-



5.7. CONCLUSIONS 137

ployed in the vertical filtering. These techniques provided speedups of 2.90 and 2.03
for horizontal and vertical filtering, respectively. The register file of the SSE exten-
sion has been modified by the idea of the matrix register file. The SSE modified
register file improves the performance of the horizontal filtering of the Daub-4 trans-
form by a factor of 1.32, while the MAC operation yields a speedup of 1.26.





Chapter 6

Conclusions and Future Work

I
n this dissertation, performance bottlenecks of multimedia extensions have been
addressed. Some of these bottlenecks are as follows. First, in many media ker-
nels, there is a mismatch between the computational format and the storage for-

mat in the processing of multimedia applications. This is because the precision of
intermediate results is usually larger than the storage format. Therefore, data type
conversion (unpack) instructions are required before the operations are performed
and the results also have to be packed before they can be stored back to memory. Sec-
ond, existing SIMD computational instructions cannot efficiently exploit DLP of the
2D multimedia data. The main reason is that the 2D multimedia algorithms process
the input pixels in both the horizontal and vertical directions, while the media regis-
ter file is just accessed in the horizontal direction. Consequently, data rearrangement
instructions are needed to efficiently implement 2D media kernels. As a solution, a
novel SIMD extension called MMMX has been proposed. The MMMX extension
enhances the MMX architecture with the extended subwords and matrix register file
techniques. While, these techniques have been applied to the MMX architecture,
they could also be applied to other SIMD architectures. The proposed architecture
has been evaluated using the sim-outorder simulator of the SimpleScalar toolset
on several MMAs and kernels. In addition, three issues related to the efficient im-
plementation of the 2D DWT on SIMD-enhanced GPPs have been addressed. These
issues are 64K aliasing, cache conflict misses, and SIMD vectorization.

This chapter summarizes the contents of the dissertation, outlines its contributions,
and proposes future research directions. It is organized in three separate sections.
Section 6.1 presents a summary of the thesis. Section 6.2 highlights the main con-
tributions of this work and finally, some open research directions are given in Sec-
tion 6.3.

139



140 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Summary

The work presented in this thesis can be summarized as follows.

In Chapter 2, the background information about data type conversion, data permuta-
tion instructions, SIMD vectorization, and cache optimization were described. First,
data type conversion instructions were discussed. The proposed techniques to avoid
these instructions were also described. For example, one way to avoid data type
conversion is by using wider media registers that has been considered in the design
of some DSPs. Second, three different techniques for data rearrangement were ex-
plained. Data reordering can be performed using either explicit instructions, memory
operations, or via register file structures. There are some explicit instructions such
as the packed shuffle word instruction in the SSE extension for data reorganization.
Strided load and store instructions can also reorder the input data. The structure of
the media register file can also be used to reorganize data. Third, some SIMD vec-
torization techniques were described. This technique improves the performance of
MMAs. This is because SIMD vectorization transforms sequential codes to parallel
codes. The vectorized programs can be executed on GPPs enhanced with SIMD ex-
tensions. GPPs typically employ cache memory. Hence, some cache optimization
techniques were also discussed at the end of Chapter 2.

Chapter 3 described the Modified MMX (MMMX) architecture which features the
extended subwords and matrix register file techniques. The MMMX architecture
is an SIMD extension for the multimedia domain. It focuses on maintaining pro-
grammability and accelerates MMAs by exploiting DLP. The MMMX architecture
alleviates the data type conversion and data rearrangement instructions. Its instruc-
tions are applicable in multiple domain. It did not consider an ISA that is application
specific. First, extended subwords and the matrix register file have been discussed
in detail. Second, novel SIMD load/store instructions and SIMD ALU operations
were presented. Third, the main differences between the MMMX and MMX archi-
tectures were shown. Thereafter, it was discussed how the MMMX architecture can
reduce the dynamic number of instructions and improve performance significantly
compared to MMX architecture. Finally, the hardware cost of the MMMX architec-
ture was evaluated.

Chapter 4 presented the performance evaluation of the proposed architecture. Its per-
formance was compared to the performance of the MMX architecture at the kernel-,
image-, and application-level. Several important MMAs were selected. The most
time consuming kernels were implemented using the MMMX and MMX/SSE archi-
tectures. In order to obtain the application-level speedup, the SIMD implementations
were replaced in the original scalar version of the applications.

Chapter 5 discussed one kernel, the discrete wavelet transform, in more detail. The



6.2. MAJOR CONTRIBUTIONS 141

DWT which is used in the JPEG2000 standard processes whole image size, while
the DCT which is used in the MPEG standards processes 8 × 8 blocks of pixels.
Three issues related to the efficient computation of the 2D DWT on general-purpose
processors, in particular the Pentium 4, have been discussed. These issues are 64K
aliasing, cache conflict misses, and SIMD vectorization. 64K aliasing is a Pentium 4
phenomenon that can degrade performance by an order of magnitude. In addition,
there are many cache conflict misses in the straightforward implementation of verti-
cal filtering, if the filter length exceeds the number of cache ways. Two techniques
were proposed to avoid 64K aliasing as well as two techniques to alleviate cache
conflict misses. Additionally, the performance of the 2D DWT was improved by
exploiting the DLP using the SIMD instructions supported by most GPPs. Finally,
some techniques were proposed and evaluated to improve the performance of SIMD
implementations of the 2D DWT, such as multiply-accumulate operation for single-
precision floating-point data types and the use of extended subwords and the MRF.

6.2 Major Contributions

The main contributions of this thesis are highlighted below.

• Detailed examination of the limitations of MMX data movement operations
led to the proposal of the matrix register file, which supports efficient matrix
transpose operations. The matrix register file allows both row-wise as well as
column-wise accesses to the register file. This technique reduces the amount of
explicit data reorganization instructions required by many SIMD calculations.

• Detailed examination of the amount of data type conversion in MMX and the
cause of these conversions led to the proposal of extended subwords. The ex-
tended subwords technique uses four extra bits for each byte of the media reg-
ister file. Load instructions implicitly unpack data from the storage format to
the computation format, and the store instructions implicitly pack and saturate
data from the computation format to the storage format. This design eliminates
the need for explicit pack and unpack instructions.

• A novel SIMD extension called MMMX has been proposed. The MMMX ex-
tension enhances the MMX architecture with the extended subwords and ma-
trix register file techniques. The MMMX architecture reduces the total number
of instructions much more than MMX, MMX enhanced with extended sub-
words, and MMX enhanced with the MRF. MMMX achieves an image-level
speedup of up to 3.24 over MMX. In addition, a set of new general-purpose
SIMD instructions have been proposed for multimedia computing.

• An initial examination of how many registers are needed to efficiently process



142 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

multimedia workloads on an SIMD processor. For example, MMMX with 13
extra registers yields speedups ranging from 1.37 to 3.64 over MMX.

• In order to develop high-performance implementations of the 2D DWT on
general-purpose processors in general and the P4 in particular, three issues
were addressed.

– The P4 suffers from a problem known as 64K aliasing, which can degrade
performance by an order of magnitude. Two techniques were proposed
and evaluated to avoid 64K aliasing. The first technique is loop fission
that split the inner loop so that the lowpass and highpass values are cal-
culated in separate loops. The loop fission technique provides a speedup
of up to 3.31, but for image sizes that do not suffer from 64K aliasing it
reduces performance by up to 20%. The second technique is to offset the
memory address of the highpass value by one or two rows depending on
the transform. This offsetting technique achieves a speedup of up to 4.20
and incurs no performance penalty for image sizes that do not suffer from
64K aliasing.

– There are many cache conflict misses in the implementation of vertical fil-
tering. Two techniques, namely associativity-conscious loop fission and
lookahead, were proposed to reduce the number of conflict misses. The
associativity-conscious loop fission splits the loop that computes one row
of wavelet output into multiple loops so that each loop accesses at most
n rows, where n is the number of ways. Each loop computes the par-
tial results that can be computed by accessing the first n rows of input
data. The remaining loops add their results to these partial results. The
lookahead technique processes the rows in a skewed manner. There is
only one loop, as in the original algorithm. The former technique im-
proves performance by up to 80% and the latter by up to 99%. For image
sizes that do not generate many conflict misses, both techniques slightly
decrease performance due to the overhead introduced by applying these
techniques.

– High-performance implementations of the 2D DWT must exploit the
DLP using the SIMD instructions supported by most GPPs. It was de-
scribed how the 2D DWT can be vectorized using MMX and SSE in-
structions. Vertical filtering is relatively straightforward to vectorize.
Horizontal filtering is more difficult to vectorize, however, since it re-
quires the data to be reorganized. The maximum speedups of the SIMD
implementations of horizontal and vertical filtering over the correspond-
ing scalar versions are 3.39 and 6.72, respectively. In addition, some
techniques were proposed and evaluated to improve the performance of
SIMD implementations of the 2D DWT, such as a MAC operation for



6.3. FUTURE PROPOSED RESEARCH DIRECTIONS 143

single-precision floating-point data types and the use of extended sub-
words and the MRF. The MAC operation achieves a speedup of up to
1.26 and extended subwords and the MRF yield a speedup of up to 2.90.

6.3 Future Proposed Research Directions

In spite of a comprehensive description and experimental validation of the SIMD
architectures that have been provided in this dissertation, there exist a number of
interesting issues which can be addressed in future. The following directions for
future improvements are proposed.

• One item related to the performance of multimedia extensions is the memory
alignment. Memory references are more efficient when accessing aligned re-
gions. A memory operation is aligned if its address is a multiple of the data
width. In other words, an n-byte transfer must be set on an n-byte boundary.
In most SIMD architectures, unaligned memory accesses have a large perfor-
mance penalty or are even disallowed. For example, our results show that for
the addition of two arrays of size 1024 × 1024, whose addresses are either
aligned or unaligned, the aligned implementation is 1.47 times faster than the
unaligned implementation using SSE instructions. An interesting research di-
rection could be to investigate hardware techniques to mitigate the effects of
misaligned accesses.

• A complete investigation of register utilization in multimedia applications has
not been considered in this thesis. If the media registers are effectively used,
they can reduce memory traffic by removing load and store instructions and
decrease power consumption by eliminating operations on the memory hier-
archy. In addition, the SIMD implementations of multimedia kernels can use
a lot of wide registers that cause a large increase in the number of registers
used. A larger register file allows coefficient values to be allocated to media
registers. The benefit is that the value is loaded once at the start of a function
and stored once at the end of the execution. However, determining the exact
number of registers is a future work to still consider. For example, the Cell
processor provides 128 128-bit registers and the register file of the TM3270
media processor consists of 128 32-bit registers. Are 128 registers enough?
Both VMX and AltiVec extensions need a number of registers to keep the data
for rearrangement instructions, while the number of registers can be reduced
by some micro-architectural modifications such as the MRF technique.

• Another challenge in SIMD architectures is to determine the number of sub-
words that can be processed simultaneously. If the number of subwords is too
less, it limits the ability to exploit DLP, whereas if the number of subwords



144 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

is too large, it can reduce performance improvement because of insufficient
DLP and using many more overhead instructions. This means that there is no
guarantee to obtain a larger speedup with wider vectors compared to shorter
vectors.

• The issue of the compiler support for SIMD vectorization has also not been
considered in this work. This issue is very important because writing code
for SIMD processors using assembly language usually macro-like intrinsics is
more tedious and error prone than compilers that automatically identify vec-
torizable parts of the program and generate the appropriate SIMD instructions.
Currently available compilers cannot exploit efficiently SIMD vectorization
automatically.

• The MMMX architecture improves the performance of multimedia kernels,
whereas its power dissipation has not been considered. As a result, the power
consumption of the proposed techniques can be the future research. For ex-
ample, considering the proposed techniques in the design of low-power media
processors.

• An interesting issue to investigate is how much multimedia applications can
benefit from multi-core architectures.



Bibliography

[1] D. M. Adams and F. Kossentini. “Reversible Integer-to-Integer Wavelet Trans-
forms for Image Compression: Performance Evaluation and Analysis”. IEEE
Trans. on Image Processing, 9(6):1010–1024, June 2000.

[2] Advanced Micro Devices Inc. “3DNow Technology Manual”, 2000.

[3] Y. Andreopoulos, K. Masselos, P. Schelkens, G. Lafruit, and J. Cornelis.
“Cache Misses and Energy Dissipation Results for JPEG-2000 Filtering”. In
Proc. 14th IEEE Int. Conf. on Digital Signal Processing, pages 201–209, 2002.

[4] Y. Andreopoulos, P. Schelkens, and J. Cornelis. “Analysis of Wavelet Trans-
form Implementations for Image and Texture Coding Applications in Pro-
grammable Platforms”. In Proc. IEEE Signal Processing Systems, pages 273–
284, 2001.

[5] Y. Andreopoulos, P. Schelkens, G. Lafruit, K. Masselos, and J. Cornelis.
“High-Level Cache Modeling for 2-D Discrete Wavelet Transform Implemen-
tations”. Journal of VLSI Signal Processing, 34:209–226, 2003.

[6] Y. Andreopoulos, N. D. Zervas, G. Lafruit, P. Schelkens, T. Stouraitis, C. E.
Goutis, and J. Cornelis. “A Local Wavelet Transform Implementation Versus
an Optimal Row-Column Algorithm for the 2D Multilevel Decomposition”. In
Proc. IEEE Int. Conf. on Image Processing, volume 3, pages 330–333, 2001.

[7] N. Aron, H. Wijaya, A. Singh, and V. Malhotra. “Study of Multi-
media Application Characteristics”. http://www.stanford.edu/class/ee392c/
handouts/apps/media-long.pdf, 2003.

[8] R. Asokan and S. Nazareth. “Processor Architectures for Multimedia”. In
Proc. 14th Annual Workshop on Architecture and System Design, pages 589–

145



146 BIBLIOGRAPHY

594, November 2001.

[9] T. Austin, E. Larson, and D. Ernst. “SimpleScalar: An Infrastructure for Com-
puter System Modeling”. IEEE Computer, 35(2):59–67, February 2002.

[10] P. Bannon and Y. Saito. “The Alpha 21164PC Microprocessor”. In IEEE Proc.
Compcon 97, pages 20–27, February 1997.

[11] M. Baron. “Cortex-A8: High Speed, Low Power”. Microprocessor Report,
11(14):1–6, 2005.

[12] M. Bartkowiak. “Optimizations of Color Transformation for Real Time Video
Decoding”. In Proc. EURASIP Conf. on Digital Signal Processing for Multi-
media Communications and Services, September 2001.

[13] F. Bensaali and A. Amira. “Accelerating Colour Space Conversion on Recon-
figurable Hardware”. Image and Vision Computing, 23:935–942, 2005.

[14] M. Berekovic, H. J. Stolberg, M. B. Kulaczewski, and P. Pirsch. “Instruc-
tion Set Extensions for MPEG-4 Video”. Journal of VLSI Signal Processing,
23:27–49, 1999.

[15] G. Bernabe, J. M. Garcia, and J. Gonzales. “Reducing 3D Wavelet Trans-
form Execution Time Through the Streaming SIMD Extensions”. In Proc.
11th Euromicro Conf. on Parallel Distributed and Network based Processing,
February 2003.

[16] C. Bobda. “Introduction to Reconfigurable Computing Architectures, Algo-
rithms and Applications”. Springer, 2007.

[17] R. E. Bryant and D. R. O’Hallaron. “Computer Systems: A Programmer’s
Perspective”. Prentice Hall, 2003.

[18] A. Chamas, A. Dalal, P. Dedood, P. Ferolito, B. Frederick, O. Geva, D. Green-
hill, H. Hingarh, J. Kaku, L. Kohn, L. Lev, M. Levitt, R. Melanson, S. Mitra,
R. Sundar, M. Tamjidi, P. Wang, D. Wendell, R. Yu, and G. Zyner. “A 64-
b Microprocessor with Multimedia Support ”. In Proc. IEEE Conf. on Solid
State Circuits, pages 178–179, February 1995.

[19] H. C. Chang, L. G. Chen, M. Y. Hsu, and Y. C. Chang. “Performance Analysis
and Architecture Evaluation of MPEG-4 Video Codec System”. In Proc. IEEE
Int. Symp. on Cicuits and Systems, volume 2, pages 449–452, May 2000.

[20] H. C. Chang, Y. C. Wang, M. Y. Hsu, and L. G. Chen. “Efficient Algorithms
and Architectures for MPEG-4 Object-Based Vodeo Coding”. In IEEE Work-
shop on Signal Processing Systems, pages 13–22, 2000.

[21] S. Chatterjee and C. D. Brooks. “Cache Efficient Wavelet Lifting in JPEG



BIBLIOGRAPHY 147

2000”. In Proc. IEEE Int. Conf. on Multimedia, pages 797–800, August 2002.

[22] S. Chatterji, M. Narayanan, J. Duell, and L. Oliker. “Performance Evaluation
of Two Emerging Media Processors: VIRAM and Imagine”. In Proc. 14th
IEEE Int. Symp. on Parallel and Distributed Processing, April 2003.

[23] D. Chaver, M. Prieto, L. Pinuel, and F. Tirado. “Parallel Wavelet Transform
for Large Scale Image Processing”. In Proc. IEEE Int. Symp. on Parallel and
Distributed Processing, pages 4–9, April 2002.

[24] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado. “2-D Wavelet
Transform Enhancement on General-Purpose Microprocessors: Memory Hi-
erarchy and SIMD Parallelism Exploitation”. In Proc. Int. Conf. on the High
Performance Computing, December 2002.

[25] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado. “Vectorization
of the 2D Wavelet Lifting Transform Using SIMD Extensions”. In Proc. 17th
IEEE Int. Symp. on Parallel and Distributed Image Processing and Multime-
dia, 2003.

[26] W. Chen, H. J. Reekie, S. Bhave, and E. A. Lee. “Native Signal Processing
on the Ultrasparc in the Ptolemy Environment”. In IEEE Conf. on Signals
Systems and Computers, volume 2, pages 1368–1372, November 1996.

[27] D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. A. G. Wijshoff. “Performance
Scalability of Multimedia Instruction Set Extensions”. In Proc. Euro-Par Par-
allel processing, pages 849–861, 2002.

[28] D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. A. G. Wijshoff. “The CSI
Multimedia Architecture”. IEEE Trans. on VLSI Systems, 13(1):1–13, January
2005.

[29] B. D. Choi, K. S. Choi, M. C. Hwang, J. K. Cho, and S. J. Ko. “Real-time DSP
Implementation of Motion-JPEG2000 Using Overlapped Block Transferring
and Parallel-Pass Methods”. Real-Time Imaging, 10:277–284, 2004.

[30] C. Chrysafis and A. Ortega. “Line-Based, Reduced Memory, Wavelet Image
Compression”. IEEE Trans. on Image Processing, 9(3):378–389, March 2000.

[31] A. Cohen, I. Daubechies, and J. C. F. Eauveau. “Biorthogonal Bases of
Compactly Supported Wavelets”. Communications on Pure and Appl. Math.,
45(5):485–560, June 1992.

[32] J. Corbal, R. Espasa, and M. Valero. “MOM: a Matrix SIMD Instruction
Set Architecture for Multimedia Applications”. In Proc. IEEE/ACM Conf. on
Supercomputing, pages 1–10, November 1999.

[33] J. Corbal, M. Valero, and R. Espasa. “Exploiting a New Level of DLP in



148 BIBLIOGRAPHY

Multimedia Applications”. In Proc. Int. Symp. on Microarchitecture, 1999.

[34] Intel Corporation. “An Efficient Vector/Matrix Multiply Routine using MMX
Technology”. Technical report, Intel Developer Services, 2004.

[35] P. P. Dang and P. M. Chau. “Reduce Complexity Hardware Implementation
of Discrete Wavelet Transform for JPEG 2000 Standard”. In Proc. IEEE Int.
Conf. on Multimedia and Expo, pages 321–324, August 2002.

[36] A. Dasu and S. Panchanathan. “A Survey of Media Processing Approaches”.
IEEE Trans. on Circuits and Systems for Video Technology, 12(8):633–644,
August 2002.

[37] A. Dasu and S. Panchanathan. “Reconfigurable Media Processing”. Parallel
Computing, 28(7):1111–1139, August 2002.

[38] I. Daubechies and W. Sweldens. “Factoring Wavelet Transforms into Lifting
Steps”. Journal of Fourier Analysis and Applications, 4(3):247–269, 1998.

[39] S. Deb. “Video Data Management and Information Retrieval”. IRM Press,
2005.

[40] J. H. Derby and J. H. Moreno. “A High-Performance Embedded DSP Core
With Novel SIMD Features”. In Proc. IEEE Int. Conf. on Acoustics Speech
and Signal Processing, pages 301–304, April 2003.

[41] K. Diefendorff and P. K. Dubey. “How Multimedia Workloads Will Change
Processor Design”. IEEE Computer, 30(9):43–45, September 1997.

[42] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales. “AltiVec Exten-
sion to PowerPC Accelerates Media Processing”. IEEE Micro, 20(2):85–95,
March-April 2000.

[43] J. T. J. Van Eijndhoven, F. W. Sijstermans, K. A. Vissers, E. J. D. Pol, and
M. J. A. Tromp. “Trimedia CPU64 Architecture”. In Proc. Int. Conf. on
Computer Design, pages 1–7, October 1999.

[44] R. Espasa and M. Valero. “Exploiting Instruction- and Data-Level Paral-
lelism”. IEEE Micro, 17(5):20–27, September-October 1997.

[45] P. Faraboschi, G. Desoli, and J. A. Fisher. “The Latest Word in Digital and
Media Processing”. IEEE Signal Processing Magazine, pages 59–85, March
1998.

[46] M. Feil, R. Kutil, P. Meerwald, and A. Uhl. “Wavelet Image and Video Coding
on Parallel Architectures”. In Proc. 2nd IEEE - EURASIP Symp. on Image and
Signal Processing and Analysis, 2001.

[47] F. Ferrand. “Optimization and Code Parallelization for Processors with Multi-



BIBLIOGRAPHY 149

media SIMD Instructions”. Master’s thesis, ENST Bretagne, 2003.

[48] M. Ferretti and D. Rizzo. “A Parallel Architecture for the 2-D Discrete Wavelet
Transform with Integer Lifting Scheme”. Journal of VLSI Signal Processing,
28:165–185, 2001.

[49] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais R. Kim, T. Le,
P. Liu, J. Leenstra, J. Liberty B. Michael H. J. Oh, S. M. Mueller, O. Taka-
hashi, A. Hatakeyama Y. Watanabe, N. Yano, D. A. Brokenshire, M. Peyra-
vian, T. Vandung, and E. Iwata. “The Microarchitecture of the Synergistic
Processor for a Cell Processor”. IEEE Journal of Solid-State Circuits, 41:63–
70, January 2006.

[50] J. Fritts. “Architecture and Compiler Design Issues in Programmable Media
Processors”. PhD thesis, University of Princeton, 2000.

[51] J. Fritts and W. Wolf. “Instruction Fetch Characteristics of Media Processing”.
In Proc. of SPIE Photonics West Media Processing, 2002.

[52] J. Fritts, W. Wolf, and B. Liu. “Understanding Multimedia Application Char-
acteristics for Designing Programmable Media Processors”. In Proc. SPIE
Photonics West Media Processors, pages 2–13, January 1999.

[53] B. Furht. “Processor Architectures for Multimedia: A Survey”. In Proc. Conf.
on Multimedia Modeling, pages 89–109, November 1997.

[54] M. Ghanbari, D. Crawford, M. Fleury, E. Khan, J. Woods, H. Lu, and
R. Razavi. “Future Performance of Video Codecs”. Technical Report
SES2006-7-13, Department of Electonic System Engineering University of
Essex, November 2006.

[55] R. C. Gonzalez and R. E. Woods. “Digital Image Processing”. Pear-
son/Prentice Hall, 3rd edition, 2008.

[56] J. Goodacre and A. N. Sloss. “Parallelism and the ARM Instruction Set Ar-
chitecture”. IEEE Computer, 38(7):42–50, 2005.

[57] L. Gwennap. “Digital, MIPS Add Multimedia Extensions”. Microprocessor
Report, 10(15):24–28, November 1996.

[58] B. Hanounik and X. Hu. “Linear-Time Matrix Transpose Algorithms Using
Vector Register File with Diagonal Registers”. In Proc. 15th Int. Conf. on
Parallel and Distributed Processing, April 2001.

[59] D. He and W. Zhang. “The Parallel Algorithm of 2-D Discrete Wavelet Trans-
form”. In Proc. 4th IEEE Int. Conf. on Parallel and Distributed Computing
Applications and Technologies, pages 738–741, August 2003.



150 BIBLIOGRAPHY

[60] Hu. Yu Hen. “Programmable Digital Signal Processors : Architecture, Pro-
gramming, and Applications”. New York Dekker, 2002.

[61] J. L. Hennessy and D. A. Patterson. “Computer Architecture: A Quantitative
Approach”. Morgan Kaufmann, 2002. 3rd edition.

[62] H. P. Hofstee. “Power Efficient Processor Architecture and the Cell Proces-
sor”. In Proc. 11th IEEE Int. Symp. on High-Performance Computer Architec-
tur, pages 258–262, February 2005.

[63] J. Y. F. Hsieh, A. Avoird, R. P. Kleihorst, and T. H. Y. Meng. “Transpose Mem-
ory for Video Rate JPEG Compression on Highly Parallel Single-chip Digital
CMOS Imager”. In Proc. IEEE Int. Conf. on Image Processing, volume 3,
September 2000.

[64] http://www.virtualdub.org/blog/pivot/entry.php?id=18. Does Hyperthreading
Technology speed up VirtualDub.

[65] L. Huang, M. Lai, K. Dai, H. Yue, and L. Shen. “Hardware Support for Arith-
metic Units of Processor with Multimedia Extension”. In Proc. IEEE Int. Conf.
on Multimedia and Ubiquitous Engineering, pages 633–637, April 2007.

[66] H. C. Hunter and J. H. Moreno. “A New Look at Exploiting Data Parallelism
in Embedded Systems”. In Proc. IEEE Int. Conf. on Compilers Architectures
and Synthesis for Embedded Systems, pages 159–169, 2003.

[67] IBM. “Synergistic Processor Unit Instruction Set Architecture”, January
2007. Version 1.2.

[68] Intel. “Using MMX Instructions to Compute the 2x2 Haar Transform”. Tech-
nical report, Intel Developer Services, 2004.

[69] Intel Corporation. “IA-32 Intel Architecture Optimization”, 2004. Order Num-
ber: 248966-011.

[70] Intel Corporation. “The IA-32 Intel Architecture Software Developer’s Manual
Volume 3 System Programming Guide”, 2004. Order Number: 253668.

[71] N. Jayasena, M. Erez, J. Ahn, and W. Dally. “Stream Register Files With In-
dexed Access”. In Proc. 10th IEEE Int. Symp. on High Performance Computer
Architecture, February 2004.

[72] M. D. Jennings and T. M. Conte. “Subword Extensions for Video Processing
on Mobile Systems”. IEEE Concurrency, 6(3):13–16, July-September 1998.

[73] Y. Jung, S. G. Berg, D. Kim, and Y. Kim. “ A Register File with Trans-
posed Access Mode”. In Proc. Int. Conf. on Computer Design, pages 559–560,
September 2000.



BIBLIOGRAPHY 151

[74] B. Juurlink, D. Borodin, R. J. Meeuws, G. T. Aalbers, and
H. Leisink. “The SimpleScalar Instruction Tool (SSIT) and
the SimpleScalar Architecture Tool (SSAT)”. Available via
http://ce.et.tudelft.nl/˜shahbahrami/, 2007.

[75] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson, J. Namkoong,
J. D. Owens, B. Towles, and A. Chang. “Imagine: Media Processing with
Streams”. IEEE Micro, 21(2):35–46, March-April 2001.

[76] H. Komi and A. Ortega. “Analysis of Cache Efficiency in 2D Wavelet Trans-
form”. In Proc. IEEE Int. Conf. on Multimedia and Expo, pages 465–468,
2001.

[77] K. Konstantinides. “VLIW Architectures for Media Processing”. IEEE Signal
Processing Magazine, 15(2):16–19, March 1998.

[78] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, D. Jones,
D. Patterson, and K. Yelick. “Vector IRAM: A Media-oriented Vector Proces-
sor with Embedded DRAM”. In Proc. 12th Int. Conf. on Hot Chips, August
2000.

[79] C. Kozyrakis and D. Patterson. “Vector Vs. Superscalar and VLIW Architec-
tures for Embedded Multimedia Benchmarks”. In Proc. 35th Int. Symp. on
Microarchitecture, November 2002.

[80] C. E. Kozyrakis and D. Patterson. “A New Direction for Computer Architec-
ture Research”. IEEE Computer, 31(11):24–32, November 1998.

[81] A. Kudriavtsev and P. Kogge. “Generation of Permutations for SIMD Pro-
cessors”. In Proc. ACM Conf. on Language, Compiler and Tool Support for
Embedded Systems, volume 40/7, pages 147–156, July 2005.

[82] P. Kuhn. “Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation”. Kluwer Academic Publishers, 1999.

[83] I. Kuroda and T. Nishitani. “Multimedia Processors”. Proc. IEEE, 86(6):1203–
1221, June 1998.

[84] R. Kutil. “A Single-Loop Approach to SIMD Parallelization of 2D Wavelet
Lifting”. In Proc. 14th Euromicro Int. Conf. on Parallel, Distributed, and
Netwrok-Based Processing, pages 413–420, 2006.

[85] S. Larsen and S. Amarasinghe. “Exploiting Superword Level Parallelism with
Multimedia Instruction Sets”. In Proc. ACM Conf. on Programming Language
Design and Implementation, pages 145–156, 2000.

[86] A. J. T. Lee, R. W. Hong, and M. F. Chang. “An Approach to Content-based
Video Retrieval”. In Proc. IEEE Int. Conf. on Multimedia and Expo, volume 1,



152 BIBLIOGRAPHY

pages 273–276, June 2004.

[87] C. G. Lee and D. J. DeVries. “Initial Results on the Performance and Cost
of Vector Microprocessors”. In Proc. 13th Annual IEEE/ACM Int. Symp. on
Microarchitecture, pages 171–182, December 1997.

[88] R. B. Lee. “Accelerating Multimedia With Enhanced Microprocessors”. IEEE
Micro, 15(2):22–32, April 1995.

[89] R. B. Lee. “Subword Parallelism with MAX-2”. IEEE Micro, 16(4):51–59,
August 1996.

[90] R. B. Lee. “Multimedia Extensions for General-Purpose Processors”. In Proc.
IEEE Workshop on Signal Processing Systems, pages 9–23, November 1997.

[91] R. B. Lee. “Efficiency of MicroSIMD Architectures and Index-Mapped Data
for Media Processors”. In Proc. Symp. on Media Processors IS&T/SPIE and
Electric Imaging, pages 34–46, January 1999.

[92] R. B. Lee. “Subword Permutation Instructions for Two-Dimensional Multi-
media Processing in MicroSIMD Architectures”. In Proc. IEEE Int. Conf. on
Application-specific Systems Architectures and Processors, pages 9–23, July
2000.

[93] R. B. Lee and M. D. Smith. “Media Processing: A New Design Target. IEEE
Micro, 16(4):6–9, August 1996.

[94] Y. D. Lee, B. D.Choi, J. K. Cho, and S. J. Ko. “Cache Management for Wavelet
Lifting in JPEG 2000 Running on DSP”. Electronics Letters, 40(6), March
2004.

[95] H. Liao and A. Wolfe. “Available Parallelism in Video Applications”. In Proc.
13th IEEE.ACM Int. Symp. on Microarchitecture, pages 321–329, December
1997.

[96] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. “Practical Fast 1-D DCT
Algorithms With 11 Multiplications”. In Proc. Int. Conf. on Acoustical and
Speech and Signal Processing, pages 988–991, May 1989.

[97] A. A. Lopez-Estrada. “Reduction of Address Aliasing”. Technical Report Pub.
No.: US 2005/0188172 A1, August 2005.

[98] H. Lütkepohl. “Handbook of matrices”. John Wiley & Sons, Chichester,
1996.

[99] P. Meerwald, R. Norcen, and A. Uhl. “Cache Issues with JPEG2000 Wavelet
Lifting”. In Proc. of Visual Communications and Image Processing, January
2002.



BIBLIOGRAPHY 153

[100] J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. H. Derby, M. S.
Ware, K. Kailas, A. Zaks, A. Geva, S. Ben-David, S. W. Asaad, T. W. Fox,
D. Littrell, M. Biberstein, D. Naishlos, and H. Hunter. “An Innovative Low-
power High-performance Programmable Signal Processor for Digital Com-
munications”. IBM Journal of Research and Development, 47(2/3):299–326,
March/May 2003.

[101] D. Naishlos, M. Biberstein, S. B. David, and A. Zaks. “Vectorizing for a
SIMdD DSP Architecture”. In Proc. Int. Conf. on Compilers Architectures
and Synthesis for Embedded Systems, volume 2, pages 2–11, November 2003.

[102] D. Nuzman, I. Rosen, and A. Zaks. “Auto-vectorization of Interleaved Data
for SIMD”. In Proc. ACM Conf. on Programming Language Design and Im-
plementation, volume 41/6, pages 132–143, June 2006.

[103] J. D. Owens, S. Rixner, U. Kapasi, P. Mattson, and B. Towles. “Media Pro-
cessing Applications on the Imagine Stream Processor”. In Proc. IEEE Int.
Conf. on Computer Design, September 2002.

[104] S. Panchanathan. “Architectural Approaches for Multimedia Processing”. In
Proc. 4th Int. Conf. on Parallel Numerics and Parallel Computing in Image
Processing Video Processing and Multimedia, pages 196–210, 1999.

[105] A. Peleg, , and U. Weiser. “MMX Technology Extension to the Intel Architec-
ture”. IEEE Micro, 16(4):42–50, August 1996.

[106] A. Peleg, S. Wiljie, and U. Weiser. “Intel MMX for Multimedia PCs”. Com-
munications of the ACM, 40(1):24–38, January 1997.

[107] P. Pirsch, A. Freimann C. Klar, and J. P. Wittenburg. “Processor Architectures
for Multimedia Applications”. In Proc. Workshop on Embedded Processor
Design Challenges: Systems Architectures, Modeling and Simulation, pages
188–206, February 2002.

[108] C. Poynton. “A Technical Introduction to Digital Video”. John Wiley and
Sons, Inc., 1996.

[109] M. Rabbani and P. W. Jones. “Digital Image Compression Techniques”.
Bellinghan, 1991.

[110] M. Rabbani and R. Joshi. “An Overview of the JPEG2000 Still Image Com-
pression Standard”. Signal Processing: Image Communication, 17(1):3–48,
January 2002.

[111] S. K. Raman, V. Pentkovski, and J. Keshava. “Implementing Streaming SIMD
Extensions on the Pentium 3 Processor”. IEEE Micro, 20(4):47–57, July-
August 2000.



154 BIBLIOGRAPHY

[112] P. Ranganathan, S. Adve, and N. P. Jouppi. “Performance of Image and Video
Processing with General Purpose Processors and Media ISA Extensions”. In
Proc. Int. Symp. on Computer Architecture, pages 124–135, 1999.

[113] G. Ren, P. Wu, and D. Padua. “Optimizing Data Permutations for SIMD De-
vices”. In Proc. ACM Conf. on Programming Language Design and Imple-
mentation, pages 118–131, June 2006.

[114] G. Roelofs. “PNG: The Definitive Guide”. O’Reilly, 1999.

[115] K. Ronner and J. Kneip. “Architecture and Applications of the HiPAR Video
Signal Processor”. IEEE Trans. on Circuits and Systems for Video Technology,
6(1):56–66, February 1996.

[116] H. Sasaki. “Multimedia Complex on a Chip”. In IEEE Int. Conf. on Solid-State
Circuits, pages 16–19, 1996.

[117] R. Schafer and T. Sikora. “Digital Video Coding Standards and Their Role
in Video Communications”. Proceedings of the IEEE, 83(6):907–924, June
1995.

[118] Freescale Semiconductor. “AltiVec Technology Programming Environments
Manual”, 2002.

[119] Philips Semiconductors. “TriMedia TM-1000: Programmable Media Proces-
sor”, 1998.

[120] N. Seshan. “High VelociTI Processing”. IEEE Signal Processing Magazine,
15(2):86–101, March 1998.

[121] J. A. Shafer. “Embedded Vector Processor Architecture for Real-Time Wavelet
Video Compression”. Master’s thesis, Department of Electrical and Computer
Eng. University of Dayton, 2004.

[122] A. Shahbahrami, B. Juurlink, D. Borodin, and S. Vassiliadis. “Avoiding Con-
version and Rearrangement Overhead in SIMD Architectures”. International
Journal of Parallel Programming, 34(3):237–260, June 2006.

[123] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “A Comparison Between
Processor Architectures for Multimedia Applications”. In Proc. 15th Annual
Workshop on Circuits, Systems and Signal Processing (ProRISC2004), pages
138–152, November 2004.

[124] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Performance Comparison
of SIMD Implementations of the Discrete Wavelet Transform”. In Proc. 16th
IEEE Int. Conf. on Application-Specific Systems Architectures and Processors
(ASAP), July 2005.



BIBLIOGRAPHY 155

[125] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Accelerating Color Space
Conversion Using Extended Subwords and the Matrix Register File”. In Proc.
8th IEEE Int. Symp. on Multimedia, December 2006.

[126] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Implementing the 2D
Wavelet Transform on SIMD-Enhanced General-Purpose Processors”. IEEE
Trans. on Multimedia, 10(1):43–51, January 2008.

[127] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Versatility of Extended Sub-
words and the Matrix Register File”. ACM Transactions on Architecture and
Code Optimization (TACO), 5(1), May 2008.

[128] T. Shanableh and M. Ghanbari. “Heterogeneous Video Transcoding to Lower
Spatio-Temporal Resolutions and Different Encoding Formats”. IEEE Trans.
on Multimedia, 2(2):101–110, June 2000.

[129] N. T. Slingerland and A. J. Smith. “Multimedia Instruction Sets for General
Purpose Microprocessors: A Survey”. Technical Report UCB//CSD-00-1124,
University of California, December 2000.

[130] N. T. Slingerland and A. J. Smith. “Measuring the Performance of Multimedia
Instruction Sets”. IEEE Trans. on Computers, 51(11):1317–1332, November
2002.

[131] D. B. Stewart. “Measuring Execution Time and Real-Time Performance”. In
Proc. Conf. on Embedded Systems, pages 1–15, September 2006.

[132] E. J. Stollnitz, T. D. Derose, and D. H. Salesin. “Wavelets for Computer
Graphics: Theory and Applications”. Morgan Kaufmann, 1996.

[133] S. R. Subramanya, H. Patel, and I. Ersoy. “Performance Evaluation of Block-
based Motion Estimation Algorithms and Distortion Measures”. In Proc. IEEE
Int. Conf. on Information Technology: Coding and Computing, volume 2,
pages 2–7, 2004.

[134] M. Swain and D. Ballard. “Color Indexing”. International Journal of Com-
puter Vision, 7(1):11–32, 1991.

[135] W. Sweldens. “The Lifting Scheme: A Custom-Design Construction of
Biorthogonal Wavelets”. Journal of Applied and Computational Harmonic
Analysis, 3(2):186–200, 1996.

[136] A. Tamhankar and K. R. Rao. “An Overview of H.264/MPEG-4 Part 10”. In
Proc. 4th Int. Conf. on Video and Image Processing and Multimedia Commu-
nications, pages 1–51, July 2003.

[137] R. Tessier and W. Burleson. “Reconfigurable Computing for Digital Signal
Processing: A Survey”. Journal of VLSI Signal Processing, 28(1):7–27, June



156 BIBLIOGRAPHY

2001.

[138] Texas Instruments. “TMS320C64x/C64x+ DSP CPU and Instruction Set Ref-
erence Guide”, July 2007. Literature Number: SPRU732D.

[139] S. Thakkar and T. Huff. “The Internet Streaming SIMD Extensions”. Intel
Technology Journal, pages 1–8, 1999.

[140] M. Tremblay, J. Michael 0’Connor, V. Narayanan, and L. He. “VIS Speeds
New Media Processing”. IEEE Micro, 16(4):10–20, August 1996.

[141] M. A. Trenas, J. Lopez, E. L. Zapata, and F. Arguello. “A Memory System
Supporting the Efficient SIMD Computation of the Two Dimensional DWT”.
In Proc. IEEE Int. Conf. on Acoustics Speech and Signal Processing, volume 3,
pages 1521–1524, May 1998.

[142] S. M. Vajdic and A. R. Downing. “Similarity Measures for Image Matching
Architectures a Review with Classification”. In Proc. IEEE Symp. on Data
Fusion, pages 165–170, November 1996.

[143] S. Vassiliadis, G. Kuzmanov, and S. Wong. “MPEG-4 and the New Multime-
dia Architectural Challenges”. In 15th Int. Conf. SAER, September 2001.

[144] L. Wang, Y. Zhang, and J. Feng. “On the Euclidean Distance of Images”.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(8):1334–1339,
August 2005.

[145] P. Xiao. “Image Compression By Wavelet Transform”. Master’s thesis, East
Tennessee State University, 2001.

[146] D. Zhang and G. Lu. “Evaluation of Similarity Measurement for Image Re-
trieval”. In Proc. IEEE Int. Conf. on Neural Networks and Signal Processing,
volume 2, pages 928–931, December 2003.



List of Publications

Journal

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Implementing the
2D Wavelet Transform on SIMD-Enhanced General-Purpose Processors”.
IEEE Transactions on Multimedia, Vol. 10, No. 1, pages: 43-51, January 2008.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Versatility of Extended
Subwords and the Matrix Register File”. ACM Transactions on Architecture
and Code Optimization (TACO), Vol. 5, No. 1, May 2008.

• A. Shahbahrami, B. Juurlink, D. Borodin, and S. Vassiliadis. “Avoiding Con-
version and Rearrangement Overhead in SIMD Architectures”. International
Journal of Parallel Programming, Vol. 34, No. 3, Pages 237-260, June 2006.

Proceedings

• A. Shahbahrami, J. Y. Hur, B. Juurlink, and S. Wong. “FPGA Implemen-
taion of Parallel Histogram Computation”. Proc. 2nd HiPEAC Workshop
on Reconfigurable Computing, pp. 63-72, January 2008, Gothenburg, Sweden.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “SIMD Vectorization of
Histogram Functions”. 18th IEEE Int. Conf. on Application-Specific Systems
Architectures and Processors (ASAP) pp. 174-179, July 2007, Montreal,
Canada.

• J. Tao, A. Shahbahrami, B. Juurlink, R. Buchty, W. Karl, and S. Vassiliadis.
“Optimizing Cache Performance of the Discrete Wavelet Transform Using a
Visualization Tool”. Proc. 9th IEEE Int. Symp. on Multimedia, December

157



158 LIST OF PUBLICATIONS

2007, Taichung, Taiwan.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Accelerating Color Space
Conversion Using Extended Subwords and the Matrix Register File”. Proc.
8th IEEE Int. Symp. on Multimedia, pp. 37-46, December 2006, San Diego,
California, The USA.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Limitation of Special-
Purpose Instructions for Similarity Measurements in Media SIMD Exten-
sions”. Proc. ACM/IEEE Int. Conf. on Compilers, Architecture, and
Synthesis for Embedded Systems, pp. 293-303, October 2006, Soeul, South
Korea.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Improving the Memory
Behavior of Vertical Filtering in the Discrete Wavelet Transform”. Proc. 3rd
ACM Int. Conf. on Computing Frontiers pp. 253-260, May 2006, Ischia, Italy.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Performance Comparison
of SIMD Implementations of the Discrete Wavelet Transform”. Proc. 16th
IEEE Int. Conf. on Application-Specific Systems Architectures and Proces-
sors, July 2005, Samos, Greece.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “ Matrix Register File
and Extended Subwords: Two Techniques for Embedded Media Processors”.
Proc. 2th ACM Int. Conf. on Computing Frontiers, May 2005, Ischia, Italy.

• B. Juurlink, A. Shahbahrami, and S. Vassiliadis. “Avoiding Data Conversions
in Embedded Media Processors”. The 20th Annual ACM Symposium on
Applied Computing Santa Fe, March 2005, New Mexico, The USA.

• A. Shahbahrami. “The Determination of Initial Condition in Constraint
Satisfaction Neural Networks for Medical Images Segmentation”. The 6th Int.
Conf. on CSI Computer (CSICS 2001) 20-22 Feb. 2001 University of Isfahan,
Iran.

• A. Shahbahrami. “A Comparison of Nonparametric Algorithms in Selection
of Thresholding Based on Entropy”. Proc. 1st Int. Iranian Conf. on Machine
Vision, Image Processing and Applications (MVIP2001), 2001, Birjand, Iran.

ProceedingsLocal

• A. Shahbahrami and B. Juurlink. “A Comparison of Two SIMD Implemen-
tations of the 2D Discrete Wavelet Transform”. Proc. 18th Annual Workshop



LIST OF PUBLICATIONS 159

on Circuits, Systems and Signal Processing (ProRISC2007), pp.169-177 ,
November 2007, The Netherlands.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Performance Impact of
Misaligned Accesses in SIMD Extensions”. Proc. 17th Annual Workshop
on Circuits, Systems and Signal Processing (ProRISC2006) , pp. 334-342,
November 2006, The Netherlands.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Efficient Vectorization of
the FIR Filter”. Proc. 16th Annual Workshop on Circuits, Systems and Signal
Processing (ProRISC2005), November 2005, The Netherlands.

• A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “A Comparison Between
Processor Architectures for Multimedia Applications”. Proc. 15th Annual
Workshop on Circuits, Systems and Signal Processing (ProRISC2004),
November 2004, The Netherlands.

• A. Shahbahrami. “The Selection of Multiple Threshold Scheme for Image
Segmentation Based on Co-Occurrence Matrix”. The 6th Annual Scientific
and Research Conference in the University of Guilan, March 2000.

• A. Shahbahrami. “Simulation of a Environment for Comparison of Different
Page Replacement Algorithms in Structural Memory Hierarchy”. The 7th
Annual Scientific and Research Conference in the University of Guilan, March
2001.





Samenvatting

I
n deze dissertatie wordt een vernuftige SIMD uitbreiding, genaamd geModi-
ficeerde MMX (MMMX), voor multimedia berekeningen gepresenteerd. De
MMX architectuur is verbeterd door toevoeging van de vergrote deelwoorden

techniek en de matrix registerstructuur techniek. De vergrote deelwoorden tech-
niek gebruikt SIMD registers die breder zijn dan het formaat waarin de data in het
geheugen wordt opgeslagen. Het gebruikt 32 bits meer voor elk 64-bits register. De
vergrote deelwoorden techniek vermijdt het converteren van data types en verhoogt
het parallellisme in SIMD architecturen. Dit is omdat het promoveren van deelwoor-
den voordat ze gebruikt worden in berekeningen, en het degraderen van het resultaat
voordat het kan worden opgeslagen, kosten met zich meebrengt. De matrix regis-
terstructuur staat toe dat data die is opgeslagen in aaneenliggend geheugen in een
kolom van de registerstructuur kan worden geladen. Een kolom komt overeen met
de corresponderende deelwoorden van de verschillende registers. Met andere wo-
orden, deze techniek staat toe dat de registerstructuur zowel rij- als kolomsgewijs
gelezen en geschreven kan worden. Het is bruikbaar voor matrix operaties die ge-
bruikelijk zijn in media toepassingen. Daarnaast worden in dit werk nieuwe en al-
genene SIMD instructies onderzocht die bedoeld zijn voor multimedia toepassin-
gen. Toepassingsspecifieke instructies worden niet beschouwd. Speciale instructies
worden gesynthetiseerd door een aantal algemene instructies. De prestatie van de
MMMX architectuur wordt vergeleken met de prestatie van de MMX/SSE archi-
tectuur voor verschillende multimedia toepassingen en toepassingskernen gebruik-
makend van de sim-outorder simulator, die onderdeel is van de SimpleScalar simu-
latieomgeving. Daarnaast worden drie zaken bediscussieerd die gerelateerd zijn aan
het efficient implementeren van de 2D Discrete Wavelet Transform (DWT) op pro-
cessoren voor algemene doeleinden, met name de Pentium 4. Deze zijn 64K aliasing,
cache mis vanwege conflict, en vectorisatie SIMD. 64K aliasing is een verschijnsel
dat kan voorkomen in de Pentium 4 en welke de prestatie aanzienlijk kan vermin-
deren. Het vindt plaats als twee of meer data elementen, wiens adressen een veelvoud
van 64K verschillen, tegelijkertijd in de cache moeten worden opgeslagen. Er is ook
vaak een cache mis vanwege conflict in de implementatie van het verticale filter van
de DWT als de filter lengte het aantal cache paden overschrijdt. In deze dissertatie
worden technieken voorgesteld om 64K aliasing te voorkomen en de effecten van
een cache mis vanwege conflict te verminderen. Verder wordt de prestatie van de 2D
DWT verbeterd door data parallellisme middels SIMD instructies te exploiteren, die
ondersteund worden door de meeste algemene processoren.

161





Curriculum Vitae

Asadollah Shahbahrami was born in Kelardasht,
Chaloos, Mazandaran, Iran on 21st of September 1968.
He graduated from Bahonar high school in 1989 and
at the same year, he was accepted to study Computer
Engineering in Iran University of Science & Technology
in Tehran. He got his B.Sc degree in 1993 and at the same
year he was accepted to study his master study in Shiraz
University, Shiraz, Iran. He received the M.Sc degree in
Computer Engineering-Machine Intelligence in 1996. At
the same year he was offered a permanent position at the

University of Guilan, Rasht, Iran. He has worked there from 1996 to 2003 as a
lecturer.

In 2003, he was entitled to an overseas Ph.D scholarship from the Iranian Ministry of
Science, Research and Technology. In January 2004, he joined the Faculty of Elec-
trical Engineering, Mathematics, and Computer Science (EEMCS), Delft University
of Technology, Delft, The Netherlands, as a full-time Ph.D student under advisors
Prof. Stamatis Vassiliadis and Dr. Ben Juurlink. This thesis covers his Ph.D study.
When he finalized his thesis in the beginning of the 2008 year, he has started working
as a research associate at the same university.

His research interests include computer architecture, image and video processing,
multimedia instructions set design, and SIMD programming. He is a member of
IEEE and ACM.

163





Acknowledgments

My first thank goes to my first promotor, Prof. Stamatis Vassiliadis who was a really
great person in all aspects. He was that kind of person hard to find. His personality
went well beyond the scope of nationalities. He had the skill to gather people from
differnet cultures to create the best environment for work and living. He was a person
that affected me to be a better person both in life and in science. It has been my
fortune to choose his group amongst the many choices that I had. I remember all his
guidance, support, kindness, friendliness, advice, and confidence to my family and I.
He will always reside in my heart. God bless him.

I am especially grateful for the countless contributions of my supervisor, Dr. Ben
Juurlink who is a smart person and always straight to the point. During my Ph.D
study in Computer Engineering Laboratory, he has helped to challenge me towards
critical academic reasoning and improved technical writing. I specifically thank him
for his endless guidance, suggestions, attention, and support.

I acknowledge Prof. Dr. K. G. W. Goossens, my new promotor at CE group. His
support in the set up of the final thesis defense was important in concluding my
research at TU Delft.

I would like to thank Dr. Stephon Wong for the time and help he gave me during my
study. I would also like to thank Dr. Koen Bertels, Dr. Georgi Gaydadjiev, Dr. Sorin
Cotofana, Dr. Said Hamdioui, Dr. Zaid Al-Ars, Dr. Georgi Kuzmanov, and Dr. Reza
Hassanpour for their time, help, and nice discussions.

Many thanks go to my former roommates, Dmitry Cheresiz, Pyrros Stathis, Bayu
Kanigoro, Demid Borodin, and Ricardo Chaves who have endured my presence. I
thank all my cheerful friends in CE group. I also thank Ijeoma Sandra Irobi for her
time spent reading my thesis and Cor Meenderinck for his help on translating the
abstract and propositions to Dutch. I am thankful to Lidwina and Bert for the help
and time they gave to me. I also acknowledge S. Kaneman and V. A. C. E. van Der

165



Burg for designing the cover page.

Financial support for this thesis was provided by the Iranian Ministry of Science,
Research, and Technology, University of Guilan, and a part by the Netherlands Orga-
nization for Scientific Research (NWO). They are gratefully acknowledged for their
support to pursue my PhD research.

Our stay in Delft would have been very boring without our friends who made this
time unforgettable. My special thanks goes to Helen Skinner, our first landlady in
Delft, who has been helpful to my family, even doing some shopping for us when we
arrived in Delft. She also helped with Dutch translation of our letters and babysit-
ting my daughter sometimes. I always remember her help, time, support, and our
“Chakochoneh”. I would also like to thank all my Iranian friends in Delft warmly.

I want to express my gratitude to my literature teacher, Mr. Delfan in high school in
Kelardasht, who gave me a force and self confidence to do everything that I like and
to continue my study at the University. My gratitude is also extended to my aunts
Golambar, Mahnaz, and their respectful family Ali Cavooci and Salim Teimornejad.
I always remember their help and kindness.

Last but not least, I am eternally grateful to my mother Gohar, father Saadi, and my
eldest brother Zabiullah for their unlimited love and support in all aspects of my life.
I would also like to thank my mother-in-law Mehr Mah Nekoeemehr who encouraged
me to continue my studies and my wife, Mitra for her unlimited love, understanding,
and patience and as the mother of our lovely daughter Yasamin. Finally, I express my
deepest love to Yasamin for her understanding when I was really busy with my work
and for her patience all those evenings that I was away.

Delft, Asadollah Shahbahrami
September 2008

166






