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Non-ergonomic working conditions are the leading causes of musculoskeletal disorders that seriously affect
human health. REBA is widely used tool due to its convenience and consideration of all body parts. However,
it heavily relies on the subjective judgments of the assessor, leading to inconsistencies in results, and lacks
sensitivity in detecting small changes in ergonomic risk factors. Therefore, there is a need to improve
the REBA method by integrating it with new technologies. While a few studies have proposed integrating
ergonomic risk measurement tools with ANNs, there is a research gap in comparing different types of neural
networks and membership functions to determine the most effective approach for improving the performance
of REBA. Additionally, there is a need to apply these integrations to real-life case studies to demonstrate
their effectiveness in practice. This study proposes a comparative neural network and neuro-fuzzy-based REBA
method that includes various types of neural networks and membership functions. The proposed method is
applied to service employee who have experienced increased workloads due to the Covid-19 pandemic. The
results show that the neuro-fuzzy method is more accurate than the REBA and provides greater flexibility in
defining which member belongs to which risk level cluster. This study is critical because it addresses research
gaps in integrating neural networks and REBA and applies these integrations to a real-life case study. By
comparing different types of neural networks and membership functions, the study provides insights into which
approaches are most effective for improving the performance of REBA.

1. Introduction risk assessment often involves using standardized tools, such as NIOSH,

RULA, OWAS, REBA, and WISHA, proposed for different work condi-

Musculoskeletal disorders are among the most widespread occupa-
tional health problems caused by non-ergonomic working conditions
in industrialized countries (Mattioli et al., 2006). In 2017, there were
138.7 million Disability-Adjusted Life Years, 1.3 billion extensive cases,
and 121.3 thousand deaths globally associated with musculoskeletal
disorders-related problems (Safiri et al., 2021) and besides these direct
effects, decreased productivity, increased time waste, energy losses, and
severe impacts of stress cause additional economic losses and psycho-
logical problems. For these reasons, it is crucial to identify ergonomic
risk factors in a working environment and take preventive measures
before they emerge (Boden et al., 2001; Goetsch, 2013). Accurate and
comprehensive ergonomic risk detection using appropriate methods is
an important starting point of this process.

Characteristics of ergonomic risk assessment include identifying
ergonomic hazards in the workplace, evaluating the risk associated
with these hazards, and recommending interventions to eliminate or
reduce the risk of work-related musculoskeletal disorders. Ergonomic
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tions by focusing on several parts of the human body. However, there
are also some challenges and limitations associated with ergonomic risk
assessment tasks. One of the main challenges is the subjectivity of the
assessment, as different assessors may have different interpretations of
the same task or hazard. There may also be limitations in the accuracy
of the tools used, as some tools may not capture all relevant ergonomic
risk factors or may not apply to all types of tasks or work environ-
ments (Boden et al., 2001; Goetsch, 2013). Another limitation is the
feasibility and cost of implementing interventions to reduce ergonomic
risks. Interventions may require significant resources and investment,
and practical limitations in implementing changes to work processes
or equipment may exist. Finally, ergonomic risk assessments may not
always consider individual differences in factors such as body size,
physical capabilities, and work experience, which can affect the level
of risk associated with a task. Therefore, it is essential to consider these
factors when conducting ergonomic risk assessments and designing
interventions (Boden et al., 2001).
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The Rapid Entire Body Assessment (REBA) method is a widely
used observational tool for musculoskeletal disorders to analyze the
employee’s posture and determine the operation’s risk levels that are
subject to measurement. Since REBA considers the whole body and
provides analysts with a practical but systematic assessment procedure,
it has become one of the most frequently used methods in many
contexts (Erginel and Toptanci, 2019). There is an extensive body of
literature focusing on different applications of REBA in various indus-
tries like transportation (Ahmed et al., 2012), manufacturing (Erginel
and Toptanci, 2019), and health (Girard et al., 2016). Most of these
applications consider an ergonomically risky task such as heavy lift-
ing or repetitive movements of the hands and provide a case study
by measuring risks and looking for preventive measurements. Also,
comparing the performance of the REBA method with different risk
assessment methods like RULA or OWAS is quite common. These
studies contribute significantly to understanding various sources of risk
in different industries, the performance of various methods, and preven-
tion measures on different tasks. However, improving the assessment
tools by considering the latest modern working environment’s latest
scientific developments and requirements as using them properly.

There has been an inevitable improvement in artificial intelligence
applications in recent years, which is transformed numerous parts
of traditional industries. In particular, machine learning and pattern
recognition tools are widely used in different tasks. MLP (Multilayer
Perceptron), GRNN (Generalized Regression Neural Network), RBF (Ra-
dial Basis Function), Convolutional Neural Network (CNN), and Fuzzy
are the most popular types of Artificial Neural Networks (ANNs) used
in these areas of application. MLP is a feedforward neural network
architecture with one or more hidden layers of interconnected neurons.
It is often used for classification and regression tasks. GRNN is a radial
basis function neural network that uses a kernel function to estimate
the conditional probability density function of the input data. It is often
used for regression and function approximation tasks. RBF is another
type of radial basis function neural network that uses radial basis func-
tions to compute the output of each neuron. It is often used for function
approximation, classification, and pattern recognition tasks. CNN is a
deep learning algorithm well-suited for processing images and other
multidimensional data types. CNNs have been used to achieve state-
of-the-art performance on various computer vision tasks, including
image classification, object detection, and image segmentation. Fuzzy
logic is a mathematical framework that can handle data uncertainty by
assigning degrees of truth to statements. Fuzzy logic can be used with
artificial neural networks to improve their ability to handle uncertain
and imprecise data. Especially CNN and fuzzy logic have been widely
used in the health sector in recent years (Zhou et al., 2021; Almeida
et al., 2020; Ghasemi and Mahdavi, 2020a). These methods will be
discussed in detail in Section 3.

These promising developments also affect how we carry out our
work tasks. While everything has been transforming in this direction,
the assessment tools we use to measure ergonomic risks must also
be improved. Although the conventional REBA is a user-friendly and
systematic ergonomic risk assessment tool, its performance can be
enhanced by using artificial intelligence applications. For instance,
parallel to the motivation of our study, research that makes fuzzy
and risk assessment is Ghasemi and Mahdavi (2020a) explores how
technology is transforming work and its effects on workers’ well-being,
productivity, and job satisfaction. The authors examine the growing
prevalence of telework, including its advantages and disadvantages,
such as reduced commuting time and increased work-life balance, but
also the potential for increased social isolation and decreased commu-
nication and collaboration. They also discuss the impact of automation
on job displacement and the importance of reskilling and upskilling to
help workers adapt to new technology and job requirements. Further-
more, the authors explore how the gig economy and the rise of inde-
pendent contractors are changing the traditional employer—employee
relationship, with benefits and job security implications.
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From this point of view, this study focuses on ANNs and their
possible integrations with the REBA method. The main objective is to
improve the performance of the REBA steps by integrating them with
neural networks and providing a more accurate and faster assessment
tool. Combining the proven performance of the REBA method with
promising artificial intelligence tools will provide important insights
and valuable perspectives for ergonomic risk assessment by increasing
the performance of the assessment.

With this motivation, we introduce comparative neural networks
and neuro-fuzzy-based REBA methodology for ergonomic risk assess-
ment. The performance of various neural network integrations with
the REBA method is measured and compared regarding estimation
performance, computation time, and errors. The proposed method is
compared to other neural network methods and ANFIS with differ-
ent membership functions. The study shows the potential of the pro-
posed methodology to automate the assessment process and reduce
the risk of musculoskeletal disorders in both service and manufactur-
ing businesses. The proposed method is a successful decision support
tool for identifying ergonomic risks and providing quick feedback to
decision-makers. Future research can include incorporating biomechan-
ical equations in the proposed methodology, adapting the method
for employees in other work areas, and revising the parameters for
different ergonomic risk assessment methods.

In doing so, we used a dataset of delivery service employees whose
workload has increased significantly due to the Covid-19 pandemic
and transformations in the online shopping industry. We calculated the
ergonomic risk levels of the delivery task using different ANNs models
with MLP, RBF, GRNN, and ANFIS and discussed their performances
and integration capabilities for the ergonomic risk assessment. The
proposed methodology contributes to ergonomic risk assessment liter-
ature by providing a flexible new tool integrated with artificial neural
network methods. Since different combinations’ performance is tested
using a real-life case study, essential insights can help practitioners and
researchers for future improvements.

The rest of the paper is organized into four sections. Section 2
presents a literature review by focusing on various REBA applications
in different industries and discussing a few artificial intelligence-related
applications in alignment with this study. Section 3 focuses on the ma-
terials and methods of the research and briefly discusses conventional
REBA method steps, artificial neural networks, and adaptive neuro-
fuzzy inference systems. While the application is given in Section 4, the
results are discussed in Section 5. The conclusion and future directions
of the study are discussed in Section 6.

2. Literature review

Rapid Entire Body Assessment (REBA) was presented in 2000 by
Hignett and McAtamney (2000) and grabbed the attention of many
researchers and practitioners in the coming years (Coyle, 2005; Mo-
tamedzade et al., 2011; Shirzaei et al., 2015). Thanks to its user-friendly
calculation steps and observation-oriented nature, many people from
different areas, such as agriculture and forestry (Enez and Nalbantoglu,
2019), manufacturing (Erginel and Toptanci, 2019; Mukkamala et al.,
2021), transportation and storage (Ahmed et al., 2012; Khan and
Singh, 2018), construction (Li et al., 2018), health (Abdollahzade et al.,
2016) and education (Hashim and Dawal, 2013), applied REBA to
measure risk levels of various tasks. For instance, Abdollahzade and
others (Abdollahzade et al., 2016) focused on the health domain and
studied high-risk nurses in Iran with the help of a questionnaire and the
REBA method. The application results indicated high-risk levels in the
postures of nurses and discussed the requirements for urgent measures.
They found a relationship between working postures, age, gender,
experience, shift frequency and operational room types and pointed
importance of not only physical conditions but also some additional
variables on ergonomic risk assessment. Similar REBA applications for
risk assessment of healthcare workers are proposed by other researchers
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Fig. 1. Distribution of REBA studies.

using case studies, observations, and questionnaires (Torres et al., 2017;
Ratzon et al., 2016; Carneiro et al., 2015). In addition, there are many
REBA applications for dental hygienists (Kim et al., 2019; Noh and
Roh, 2013; Rafeemanesh et al., 2013), radiologists (Yoo and Koo, 2004;
Kim and Roh, 2014) and surgeons (Hignett et al., 2017; Dwyer et al.,
2020) as various branches of healthcare tasks. Transportation is another
application area that has a variety of REBA studies for operators,
carriers and workers, sometimes integrated with other risk assessment
tools (Ahmed et al.,, 2012; Gorde and Borade, 2019). For example,
Ahmed et al. (2012) studied the ergonomic risk of bus drivers dealing
with wheeled mobility devices by using three risk assessment tools
besides REBA. The evaluation revealed that the current wheelchair tie-
down and occupant restraint system (WTORS) in the US is highly risky
for drivers and requires urgent improvement.

From a methodological point of view, when we look at REBA
applications in the literature, it can be seen that many studies use
the method for risk measuring or performance comparison aims. Even
if most applications focus on the risk level definition of tasks using
REBA or similar assessment methods like RULA, few studies consider
neural network comparisons and fuzzy logic in alignment with this
research. For example, Anghel et al. (2019) studied the RULA method
by integrating neural networks and applied the proposed method to
automotive workers. They structured an experiment in MATLAB in
order to rank workstations according to their ergonomic risk levels.
In another study, Bora et al. (2019) use an automated neural network
search (ANS) approach for REBA and RULA integrated prediction sys-
tem that is proposed for industrial vehicle drivers. They use CATIA
software with other techniques to analyze the posture parameters of
subjects and make a conclusion about the risk levels of the tasks. This
application also presents some insights to improve the reliability of
the system for drivers considering the findings of the experiments.
Following a similar idea Ghasemi and Mahdavi (2020b) introduce a
new scoring system based on Bayesian networks, fuzzy sets and REBA.
In their study, they structure a network that consists of twenty-six nodes
by following the logic of REBA assessment steps together with a fuzzy
set. The application results showed that this new scoring system was
more sensitive to changes in the body postures of the workers compared
to the traditional method. The advantages of fuzzy logic and neural
networks can improve the conventional REBA method and increase the
sensitivity of the calculations.

In another study, Paudel and Choi (2020) also show the advan-
tage of integrating promising methods to increase the reliability and
performance of conventional risk assessment methods. They use the
positions of the workers as input and estimate the body angles for
postures to see whether the position is ergonomically safe or not. In

doing so, they use REBA together with RULA to analyze videos that are
taken from the working environment. The proposed integrated method
plays a role as an early warning system by considering risky positions
and presenting immediate output to analysts or decision-makers. In
addition, few studies integrate image processing and different artificial
intelligence methods with ergonomic assessment tools like REBA or
RULA (Chatzis et al., 2022; Estrada-Lugo et al., 2022; Paudel and Choi,
2020).

Table 1 Illustrates some REBA studies from the literature systemat-
ically by focusing on their publication year, integrated, or compared
methods if applicable and the approach used in the study. This clas-
sification aims to give an idea about the general trends in REBA
studies and then introduce the literature gap we want to focus on by
conducting this study.

It can be said that there is an increasing interest in the REBA method
applications in various directions from 2007 to 2022. In order to show
the integration of different approaches with the REBA method, we
introduce Fig. 1, which focuses on the number of REBA studies together
with other popular approaches like fuzzy sets or RULA.

The literature review analysis shows that many of the studies focus
mainly on applications of REBA in different tasks. However, parallel
to technological developments and increased performance of artificial
intelligence applications, there are few promising integrations between
ergonomic risk assessment tools and various network models, especially
in recent years. These few applications revealed important results
regarding with integration capability of the methods, performance
levels and contributions. It has been shown that combining the REBA
method with fuzzy sets and neural networks increases the performance
of the assessment tools and provides practitioners with more reliable
and efficient evaluation results. Also, they show the possibility and
advantages of these combinations for practical reasons. However, since
these studies generally consider one type of network or fuzzy sets, the
comparisons between different methods or approaches still require fur-
ther investigation. Even if we have some promising examples, we need
to see the performances of the various network algorithms and learning
styles together with the REBA method. With this motivation, our study
proposes a comparative approach that covers all these literature gaps
and presents a case study from the real world. In the next section, the
proposed methodology that is proposed to integrate neural networks
into the REBA method is presented and discussed step by step.

3. Materials and methods

The proposed methodology consists of four steps starting with data
collection, as shown in Fig. 2. Here, as in the conventional REBA
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Table 1

Literature review on REBA applications in various domains.
Author Year Focus Method/Objective
Kee & Karwowski 2007 Comparison of REBA, RULA and OWAS Observational study
Ahmed et.al. 2012 REBA on transportation mobility Observational study
Torres & Vina 2012 REBA on vaccine production center Observational study
Noh & Roh 2013 REBA on dental hygienists Observational study
Rafeemanesh et.al. 2013 REBA on dentists. Observational study
Kim & Roh 2014 REBA on radiologists Observational study
Ansari & Sheikh 2014 REBA on small-scale industry Observational study
Carneiro et.al. 2015 REBA on home-care nurses Observational study
Can et.al. 2015 REBA on employees Fuzzy-REBA
Abdollahzade et. al. 2016 REBA on nurses Observational study
Ratzon et.al. 2016 REBA on nurses Observational study
Balaji & Alphin 2016 REBA and RULA on industry Observational study
Golabchi et.al. 2016 REBA on construction Fuzzy- RULA
Torres et.al. 2017 REBA on nurses. Observational study
Hignett et.al. 2017 REBA in the gynaecological field Observational study
Khan & Singh 2018 REBA in the railway sector. Observational study
Erginel et.al. 2018 REBA on furniture manufacturing employees Fuzzy-REBA
Kim et.al. 2019 REBA, dental hygienists Observational study
Schwartz et.al. 2019 REBA on Janitor Observational study
Gorde & Borade 2019 REBA on cycle rickshaw operators Observational study
Enez & Nalbantoglu 2019 Comparison of REBA and OWAS Observational study
Yayl: & Caligkan 2019 REBA on forest nursery employees Observational study
Bora et.al. 2019 REBA and RULA on industrial vehicle drivers Prediction with ANS
Anghel et al. 2019 RULA on the automotive industry Prediction with ANNs
Kee et.al. 2020 measure max holding time for REBA, RULA Observational study
Paudel&Choi 2020 REBA and RULA in deep learning Prediction with ANNs
Ghasemi&Mahdavi 2020 Fuzzy REBA and Bayesian networks Fuzzy-REBA
Estrada-Lugo et. al 2022 RULA, REBA and image processing Image processing integration
Chatsiz et.al. 2022 REBA and image processing Image processing integration

method, there are observed and recorded body angle values and move-
ment characteristics (rotation, bending, etc.). The next step is the REBA
method application steps which depend on the employee’s body angle
values, and the Scores A, B and Activity are calculated in this part.
The third step is the application part, where the ANNs structures and
neuro-fuzzy methods are used. At this stage, different ANNs models are
tried, such as MLP, RBF and GRNN, and the optimal result is obtained
by changing the parameters of each model. In addition, the neuro-fuzzy
method was used with different membership functions, and at the final
stage, the results were compared with the results of the ANNs models.

3.1. Data collection

Ergonomic risk data is a unique type of data that refers to the risk
of injury or discomfort resulting from the design or use of equipment,
tools, or workstations. Compared to other data sets, such as financial
or sales data, ergonomic risk data has some unique characteristics and
challenges that make it difficult to collect, analyze, and apply.

One of the main challenges of ergonomic risk data is its subjectivity.
Unlike financial or sales data, ergonomic risk data is often based on
self-reported symptoms or discomfort experienced by workers. This
can make it challenging to quantify and compare across different indi-
viduals or work environments, as different people may have different
thresholds for pain or discomfort.

Another challenge of ergonomic risk data is its complexity. Er-
gonomic risk factors can involve multiple factors, such as posture,
repetitive motions, force, and duration of exposure. Additionally, er-
gonomic risk factors can interact with physical, cognitive, and environ-
mental factors, which can make it difficult to isolate specific risk fac-
tors. As a result, collecting and analyzing ergonomic risk data requires
a multidisciplinary approach that involves expertise in ergonomics,
human factors, and occupational health.

Contextual variability is another characteristic of ergonomic risk
data that makes it unique. Ergonomic risk factors can vary depending
on the context of the work environment, such as the type of work being
performed, the equipment or tools being used, and the physical and
environmental conditions. This variability can make it challenging to
generalize findings across different work environments or tasks and

highlights the importance of collecting data that is specific to the
context of the workplace.

Lack of standardization is another challenge of ergonomic risk data.
There is often a lack of standardization in the collection and analysis
of ergonomic risk data, which can make it difficult to compare data
across different studies or workplaces. This can also make it challenging
to develop effective interventions or prevention strategies that can be
applied across different work environments.

Finally, ergonomic risk data can raise ethical considerations related
to worker privacy. Ergonomic risk data often involves the collection of
sensitive health information, which must be collected and analyzed in
a way that protects the privacy and confidentiality of workers.

In conclusion, ergonomic risk data is a unique type of data that
presents several challenges compared to other data sets. To effectively
collect, analyze, and apply ergonomic risk data, it is important to
consider its subjectivity, complexity, contextual variability, lack of stan-
dardization, and ethical considerations. By taking a multidisciplinary
approach to collecting and analyzing ergonomic risk data, we can better
understand and mitigate ergonomic risks in the workplace.

After the task to be evaluated in terms of ergonomic risk is de-
termined, appropriate equipment and measurement environment are
prepared. All body angles required in the REBA method are measured
and recorded by dividing the working body into two groups, Group A
(Neck, Truck, Legs) and Group B (Upper arms, Lower arms, Wrists).

3.2. Rapid Entire Body Assessment (REBA) method

REBA is an observational method that allows the determination of
the activities that may cause possible musculoskeletal disorders, based
on evaluating the body shapes of the employees while performing an
action (Hignett and McAtamney, 2000). REBA is a convenient method
for risk assessment in manual tasks and is advantageous in terms of
prioritizing the measures to be taken according to the outcome of the
risk.

The REBA testbed involves a systematic approach that includes
several steps. First, the work area is observed to identify the tasks
and postures involved. Second, video recordings or photographs are
taken of the workers performing these tasks. Third, the postures are
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Fig. 2. The proposed methodology steps.

analyzed using established guidelines to determine the level of risk for
developing WMSDs. Finally, recommendations are made to reduce the
risk of injury.

For the application of the traditional REBA method, whole body
parts are divided into two groups, A and B. As can be seen from Fig. 3,
group A includes trunk-neck-legs, and group B includes upper arms—
lower arms-wrists (Erginel and Toptanci, 2019). These groups are rated
based on the degrees of angles and the body’s vertical axis during work.
The scores of Group A and B are calculated separately, using the REBA
tables that can be seen in Fig. 4. The load/force score is added to

the Group A score, and the load grip score is added to the Group B
score to get the final scores of each group. Score C is obtained from
the same table with the help of Score A and Score B. The final REBA
score is obtained by adding Score C and activity scores (Hignett and
McAtamney, 2000).

The final REBA scores are divided into five levels according to the
degree of risk as shown in Table 2. The risk level of the work under
examination determines the necessity of the measure to be taken.

The proposed method is designed to calculate Score A and Score B
using the angle values observed and other required load ratings. Thus,
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Activity Score
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REBA Score

Fig. 4. REBA calculations steps (Hignett and McAtamney, 2000).

3.3. Artificial neural networks (ANNs)

Prevention levels depending on REBA risk scores.

Degree REBA score Risk level Precaution Artificial neural networks (ANNSs) were first proposed by Warren

0 1 Negligible Not necessary McCulloch and Walter Pitts by following the learning, inference and

1 28 Low May be necessary prediction principles of the human brain (Chatzis et al., 2022). Its struc-
2 4-7 Middle Necessary .. . . .

3 810 High Necessary in a short time ture is inspired by neural networks and presented with mathematical

4 11-15 Very high Immediately necessary principles for input, output and hidden layers. The most basic unit of

an ANN:S is a single artificial neuron, and they have entry pathways like

biological neurons, and the networks balance inputs with the help of

transfer functions via hidden layers (Hill et al., 1994). There is at least

three input values (Score A, Score B and Activity Score) to be used in one neuron in each layer, and the transfer function only exists in the

the next step are obtained in a faster way in this step. hidden and output nodes. The most frequently used ANNs model is the



B. Yalcin Kavus, P. Gulum Tas and A. Taskin

backpropagation learning rule which detects patterns and relationships
in data and collects information in that direction (Basheer and Hajmeer,
2000). This means that it learns not through network programming but
through experiences.

Artificial neural networks (ANNs) have several parameters that can
be adjusted during training. These parameters include the number of
hidden layers and nodes per hidden layer, the activation function,
learning rate, regularization, optimization algorithm, and batch size.
Adjusting these parameters can influence the capacity of the network
to learn complex patterns, the convergence rate, and the quality of
the final solution. It is important to select and adjust these parameters
carefully to optimize the performance of the network on the given
task. Hyperparameter optimization techniques such as grid search and
randomized search can be used to find the optimal set of parameters.

For ANNSs analysis, the dataset with possible inputs and correspond-
ing targets is divided into three parts: Training dataset, validation
dataset and testing dataset. The training process optimizes the connec-
tions between neurons in different layers, while the testing process aims
to approximate the real data by making predictions. The validation
dataset is used to prove that the method used is accurate and can
consistently achieve what is expected (Liu et al., 2015).

ANNs process a series of input data by updating the weights re-
cursively. The signals collected from the input layer are combined
after being multiplied by their weight values and passed through an
activation function to obtain an output value for the neuron. This
function represents the sum of the weights of the input values, most
of the time, the sigmoid function is preferred (Basheer and Hajmeer,
2000). ANNs read the input and output values given to them for
training and determine the difference between the predicted value and
the target value. It updates the weight values backwards to reduce the
resulting difference. This cycle is repeated until the target accuracy
level is reached.

A multilayer perceptron (MLP) is a class of feedforward ANNs
which are suitable for regression prediction problems where a real-
valued quantity is predicted given input value. A multilayer perceptron
(MLP) is a class of feedforward ANNs. MLPs are suitable for regression
prediction problems where a real-valued quantity is predicted given
input value. The mathematical notations used to describe MLP:

Input Layer The input layer consists of the input features. Let X be the
input vector, where X = [xq, X, X3, ..., X,].

Hidden Layer: An MLP may have one or more hidden layers. Let H be
the hidden layer, where H = [hy, h,, h;, ..., h;], and the number of
neurons in the hidden layer is denoted by the letter ‘m’.

Weight Matrices: MLP uses a set of weight matrices to connect the
input and hidden layers, as well as the hidden and output layers. Let
W, be the weight matrix between the input layer and the hidden layer,

where W = [w; ;, Wj,, W3, ..., W ,], and W, be the weight matrix
between the hidden layer and the output layer, where W, = [w, ;, W, ,,
Wy3, ..., Wy, ] Here, p’ is the number of output neurons.

Bias Terms: MLP also uses bias terms to adjust the output of each
neuron. Let b; be the bias term for the hidden layer, where b, = [b; |,
by, by3, ..., by ], and b, be the bias term for the output layer, where
by = [by 1, byp, by3svens byl

Activation Function: Each neuron in the MLP uses an activation func-
tion to introduce non-linearity into the network. Let f be the activation
function, where f(x) = 1/(1 + e"-x) is the commonly used sigmoid
function.

Output: The output of the MLP is denoted by Y, where Y = [y,
Y2, ¥3» ---» ¥pl. The predicted output is obtained by applying the
activation function to the weighted sum of the input features and bias
term for each neuron in the hidden and output layers. Mathematical
Formulation: The mathematical formulation of MLP can be represented
as:

H=f(X=*W, +b))
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Y =f(H=W,+b,) €}

where “*’ denotes the dot product of two matrices, and f() denotes the
activation function.

There are also methods other than MLP that provide a lot of flexibil-
ity and reliability in problems. Radial Basis Function Neural Networks
(RBF) is one of these methods. RBF proposed by Kung and Hwang
(1988). RBF and MLP belong to the same class of neural networks called
feed-forward networks. RBF is a mathematical function commonly
used in machine learning and other fields. The general mathematical
notation for a Radial Basis Function is:

(@) = ¢(lIx —cl]) (2

where:

¢ is the Radial Basis Function

r is the distance between the input vector x and the center point c

|Ix-c|| is the Euclidean distance between the input vector x and the
center point c.

RBF is used as an alternative to MLP. It reduces the time used
for network training. RBF consists of three layers: an input layer, a
hidden layer, and an output layer. While RBF uses Euclidean distances,
MLP uses point products between inputs and weights. Also, MLP uses
sigmoidal activation functions, while RBF uses Gaussian activation
functions that make neurons more locally sensitive. With these differ-
ences, RBF facilitates the growth of new neurons during training (Frost,
2017b).

Generalized Regression Neural Networks (GRNN) is a variation of
RBF based on kernel regression networks and was introduced by Specht
(1991). Here are the mathematical notations used in GRNN:

Input vector: The input vector is denoted by x, where x = [x4, X, ...,
x,], and x; is the ith input variable.

Target output: The target output is denoted by y.

Hidden layer: The hidden layer consists of the RBF neurons. The
output of each RBF neuron is a function of the distance between the
input vector and the center of the neuron. The RBF is denoted by ¢(r),
which is a function that computes the similarity between the input
vector and each training example. The most used RBF is the Gaussian
function:

~lIx = cll2
() = exp———5—

where c is the center of the RBF, ¢ is the width of the RBF

, 3

Weight: The weight between the input vector and the RBF is denoted
by w.

Normalized weight: The normalized weight between the input vector
and the RBF is denoted by a, which is computed as:

w

== 4
a S 4
Output: The output of the GRNN is denoted by y, which is computed
as:

_ ag(x;)y;
7= Z P(x;)y, 5)
Y ap(x;)

Training dataset: The training dataset consists of a set of input vectors

X = {Xq, Xy, ..., X} and their corresponding target outputs Y = {y;,
Vo5 eovs Y}

Test dataset: The test dataset consists of a set of input vectors X' =
{x1’, x2/, ..., xn’} for which we want to predict the target outputs Y’
=’y sk

Learning algorithm: The learning algorithm is used to train the GRNN
on the training dataset. The most used learning algorithm for GRNN is
the Gaussian mixture model (GMM) algorithm.
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GRNN does not require an iterative training procedure, since it
approximates any arbitrary function between input and output. Its main
advantages are that it can learn quickly and rapidly converge to the
optimal regression surface with a large number of datasets. Although
GRNN and RBF models are motivated by different principles, they
have similar applications. The main difference is that the GRNN output
layer performs a weighted average while RBF performs a weighted
sum (Zadeh, 1965).

In the proposed methodology, a feedforward backpropagation learn-
ing rule is used that allows the weights to be updated according to
the error rate achieved in the previous epoch. ANNs is designed as a
network that accepts Score A, Score B and Activity Score as inputs, and
the final REBA Score as output. The explanation of every unit is given
below:

Score A (input): Score A is calculated from trunk, neck and leg angles
and is an input value for the proposed ANNs model that predicts the
final REBA score.

Score B (input): Score B is calculated from the upper arm, lower arm
and wrist angles and is an input value to.

Score C (input): Score C constitutes the third input value as a value
derived from the combination of Scores A and B.

Final REBA Score (output): 1t is the final score value introduced to
ANNs depending on the input values.

3.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

In fuzzy sets introduced by Zadeh (1965), the state of an entity
belonging to any set is represented by the concept of “membership
degree”. While in classical sets, whether it belongs to the set or not
is expressed with certain values such as 0 and 1, there is no such
distinction in fuzzy sets, and the membership degree takes a value in
the range of [0,1].

Most of the hybrid systems, in which fuzzy logic and ANNs are
integrated, are made with the principles in the categories of putting
fuzziness into the neural network framework and changing the basic
properties of neurons. The neuro-fuzzy systems used for this purpose
can be listed as ANFIS, FALCON, FuNe, etc. In this study, Adaptive
Neural Fuzzy Inference System (ANFIS) method will be used due to its
practicality and promising performance for this type of network model.
ANFIS is a type of artificial neural network that is based on the Takagi—
Sugeno fuzzy inference system developed in the early 1990s by taking
the benefits of both, as it uses both neural networks and fuzzy logic
principles together (Zadeh, 1965).

We assume the fuzzy inference system under consideration has two
inputs (x and y), and one output (z). Usually input variable represents
as a polynomial. In that case, a typical rule set of first-order polyno-
mial, Takagi and Sugeno fuzzy if-then rules can be expressed as in
Eq. (6) (Kung and Hwang, 1988):

Rule 1 : If xis A; and y is B then f; = p;x+ g1y + 1|
Rule 2 : If x is A, and y is B, then f, = p,x + g,y +1r, (6)

where Rule i denotes ith fuzzy rule (i = 1,2,...), x is the input, )
is the output and A; and B; are fuzzy membership functions in the
then-part (consequent part of the first-order Sugeno fuzzy model. The
architecture of ANFIS consists of five layers, and a brief introduction of
the model is given as follows.

Layer 1 The first layer is called the fuzzification layer. It uses Jang’s
ANFIS model to separate the input values into fuzzy sets, and the
Triangle, Trapezoid and Gaussian activation function as a form of
membership function. Here, the output of each node consists of the
membership degrees that depend on the input values and the member-
ship function used. The output of the node is a square node membership
function given in Eq. (7).

0} = uA;(x) ™
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where x values are the inputs of node i, and A, is the linguistic label
characterized by membership function u.

Layer 2: The second layer is called rule layer. Each node in this layer
represents the number and rules created according to the Sugeno fuzzy
logic inference system. The output ui of each rule node is the product of
the membership degrees from the first layer. Each node output indicates
the firing strength of a rule. Firing strength means the degrees to which
the prior part of the fuzzy rule is satisfied and it shapes the output
function for the rule.

w; = uA; (x) * uB,(y) (i=1,2,..) ®)
Layer 3: The third layer is called the normalization layer. Each node
in this layer accepts all nodes from the rule layer as input values and
calculates the normalized value of each of them. The outputs of this
layer are called the normalized firing level (Eq. (9)). That is, each node
in this layer is a fixed node labeled N.

w;

wi=———, (i=12,.. 9
= o G ) ©

Layer 4: This layer is called the clarification layer. The weighted result
values of a given rule are calculated at each node in this layer. The
parameters are called result parameters. Every node i in this layer is a
square node. The node output is the output membership function given
by Eq. (10).

0? =w; f; = wi(pxX +qy +r;) (10)

Layer 5: This layer is called the total layer. There is only one node in
this layer and it is labeled with a summation. Here, the output value of
each node in the 4th layer is summed to obtain the actual value of the
ANFIS system. As a result, the ANFIS structure is functionally identical
to a Sugeno-type FIS structure.

4. The application

The proposed methodology is applied to supermarket delivery em-
ployees, who were exposed to higher risks due to the operational
circumstances during the pandemic. In addition to affecting all work-
ing conditions worldwide, the COVID-19 pandemic has also been a
transformative factor in people’s consumption habits. Due to the de-
velopment and widespread use of e-commerce, online shopping has
become more popular during COVID-19 lockdown days. Most countries
banned going out for days to prevent the virus from spreading. During
these periods, especially online shopping systems of supermarkets were
used to meet consumption needs in Turkey. People order and supply
their needs quickly and safely through these platforms. Thus, needs
were met without going to supermarkets. To meet these demands most
of the time, supermarket employees work more than their regular work-
ing hours and deliver orders to be handled ergonomically. Repetitive
movements of supermarket employees, such as lifting, carrying and
climbing stairs with shopping bags, can cause ergonomic problems. A
series of operations are carried out, such as taking customer orders from
the supply points, loading them to the vehicles, unloading them at the
delivery point, moving them to the buildings and moving them to the
upper floors with or without elevators. These operations may negatively
affect the musculoskeletal system of service employees, and skeletal
system disorders may occur if measures are not taken in the long term.
To prevent this, in the proposed approach, while service employees are
performing the task of “order delivery”, the shapes their bodies take are
analyzed with the REBA method, and the observations are recorded.
These observations are used in the proposed new methodology to
determine the risk scores of the movements.

ANNs methods can be used to predict the ergonomic risk level based
on input factors. It can help to identify potential risks before they
become actual issues, allowing for early intervention and prevention.
Also, these methods can be used to optimize ergonomic factors in the
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Fig. 5. Image of a market employee while lifting the bags.

Table 3 Table 4
Body angles of some of the real employees measured. Correlation coefficients between the input variables determined.
El E2 E3 E4 ES5 Variable A_Score B_Score C_Score
Trunk 35’ 50’ 48’ 45’ 65’ A _Score 1 -0.169 0.047
A Score Neck 10’ 20/ 25’ 32 25’ B_Score -0.169 1 0.046
Leg 55’ 40’ 42/ 45’ 35’ C_Score 0.047 0.046 1
C Score
Upper Arm 55’ 12 87’ 90’ 90’
B Score Lower Arm 75' 88’ 90’ 180 85’
Wrist 13 10 12/ 18 12/
— Based on the data collected from 25 employees, 75 more data
Activity score 0 0 1 2 2 .
REBA 10 9 12 11 12 were produced randomly which based on the body angles of the real

workplace. By analyzing various aspects, a neural network can suggest
changes or adjustments to workstations or processes that minimize
ergonomic risks. ANNs methods help to improve the efficiency and ac-
curacy of REBA assessments. By automating the analysis and prediction
of ergonomic risks, the process can be streamlined and standardized,
reducing potential errors or inconsistencies. Overall, ANNs methods can
be a valuable tool for analyzing and predicting ergonomic risks in the
workplace, allowing for more proactive and effective management of
these risks.

This study uses comparative neural networks and neuro-fuzzy-based
REBA methodology for ergonomic risk assessment. The classical REBA
method eliminates processing redundancy and makes a faster and more
precise estimation. Different ANNs models were established with the
obtained data set and continued with specific models that gave more
meaningful results. These models are MLP, RBF, GRNN. At the same
time, ANFIS was used to classify movements and remove uncertainty.

Due to the Covid-19 pandemic, tracking each employee individually
for the case study was impossible, which created some problems in
obtaining the data needed for the study. To overcome this problem,
25 random order delivery employees’ body angles were obtained by
recording and measuring. It was not possible to get the entire data set
by measuring due to pandemic restrictions and social distance rules.
For example, Fig. 5 shows the image of a market employee while lifting
the bags. Some factors, such as bending, waist angle and knee angle, as
seen in Fig. 5, are essential for the load on the person. Also, the load on
the arms and the angle of the arms are crucial when delivering bags.
Climbing stairs with heavy bags and continuous isometric arm muscle
contraction are not ergonomic for supermarket employees.

The real-life measurements of the study were made with 25 random
volunteers and the relevant parameters were collected. As an example
of these measurements, the body angles (Trunk, Neck, Leg, Upper Arm,
Lower Arm and Wrist) of five employees (E1, M2, E3, E4 and E5) are
given in Table 3.

workers with the MATLAB R2021b program. This study worked with
a total of 100 data (25 real-life and 75 produced). Random data are
generated by adhering to certain rules such as human body limits, REBA
upper and lower angle values. These values are restricted according to
the limits given in the Step-by-step REBA guide and task records. In
addition, expert opinions are consulted for the angle ranges of different
body parts in accordance with human ergonomics, and the dataset is
generated randomly according to the following ranges.

The trunk data are generated between 0-90 degrees according to
the flexion—extension state and the side bending of the trunk. The leg
data are generated between 0-90 degrees according to the movement of
double leg or single leg use. The wrist data are generated between 0-75
degrees of bending from the midline. The arm data are generated be-
tween 0-180 degrees according to shoulder raise, upper arm abducting,
supporting arms, leaning and front and back movement of the arm.

Firstly, the correlation coefficients of input variables are calculated
and given in Table 4. The correlation coefficient of —0.169 indicates a
weak negative correlation between A Score and B score. The correlation
coefficient of 0.047 and 0.046 indicates a weak positive correlation
between A Score and C Score, and B Score and C Score, respectively.
However, when interpreting correlation, it is important to remember
that correlation is not causation. There may or may not be a causal
relationship between the two related variables. The weak correlation
coefficients do not have a negative effect on the independent variables’
explanation (R? = 0.95) of the REBA Score.

Relationship analysis is conducted with the IBM SPSS AMOS pro-
gram. The diagram and results are given in Fig. 6 as follows:

Fig. 6 shows the inputs and output, arrows extending from inputs
to output to indicates the regression coefficient of each input. These
coefficients show how each input affects the REBA output; with error
variable which is denoted by “el”. In the structural model, 3 inputs
and 1 output are examined. By checking Fig. 6, it can be interpreted
that all the inputs have a significant effect on the target variable.

4.1. The ANNs based REBA model

The proposed ANNs model is structured considering several proce-
dures; first, the dataset consisting of scores based on angles generated
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Fig. 6. The diagram and results of relationship analysis.

Neural Network

Layer

Fig. 7. The proposed MLP neural network model.

randomly is divided into training (80%) and test (20%) datasets. The
training dataset is used to construct the network that matches parame-
ters. The testing dataset is used to provide an independent assessment
of the final unbiased fitted model. In this study, the proposed ANNs
model is trained and tested with 80 and 20 samples, respectively. In
the ANNs procedure, the network with 3 input neurons and 1 output
neuron is trained for 1000 epochs. Two different rules are applied for
the training process as; “stop it after a certain number of epochs” or
“stop it when the error tolerance value reaches to 0.01”. The proposed
model is trained by the learning algorithm of “Gradient descent with
momentum and adaptive learning rate backpropagation (GDX)”.

Although there are different approaches in literature to determine
the required number of hidden layers and the number of neurons
in hidden layers, there is not a general rule (Zadeh, 1965). In this
study, the number of hidden layers and the number of neurons in
these layers are determined by trial and error in order to minimize the
error rate (Kung and Hwang, 1988). For this purpose, the network is
simulated for various number of hidden layers and hidden neurons in
order to minimize the mean square error (MSE) between the actual and
predicted values. As a result of the experiments, the range of hidden
layers and hidden neurons are selected as 1-2 and 5-10, respectively,
to give the best output. Studies in the literature have shown that the
momentum factor should be less than one in order to stabilize the back
propagation. Therefore, a constant momentum coefficient value of 0.9
and various learning rate values (0.1, 0.5 and 0.9) are used for the
network model. In order to determine the optimum neural network
performance, trial and error method is used by changing one factor at
a time (Frost, 2017a). Some combinations of this experimental work on
predicting REBA values are summarized in Table 5.

In this study, different network models designed to find the opti-
mum value are run and MSE, MAPE, RMSE and validation values are
computed for each model. Considering an unused dataset is an impor-
tant principle when generalizing a network model (Frost, 2017a). The
network is created by the MLP with the training function of “traingdx”
and the learning function of “traingdm”. With these functions, learning
rates, weight and bias values can be changed.

Different ANNs models are designed with predefined input and
output values. Also, they are designed using combinations of different

10

Table 5
The proposed neural network model definition.

Architecture + Multi-layer perceptron neural networks (MLP)

* Input neurons: 3

+ Output neuron: 1

+ Training function: GDX

« Hidden layers 1 or 2

+ Hidden neurons: 5 or 10

+ Activation functions: purelin or tansig or logsig functions in
hidden and output layers

+ Learning rates: 0.1 or 0.5 or 0.9

* Momentum rate: 0.9

Computation « Training: Backpropagation rule
+ Training termination: Stop training when reaches a

specified number of epochs or 0.01 error tolerance

values of parameters, which are hidden layer, hidden neuron, learning
rate, momentum rate and activation function. Each model is run at least
10 times and the value with the lowest error is taken into account. To
measure the model performance, MSE, MAPE and RMSE are used. A
brief comparison of different ANNs models is designed here and, their
MSE, MAPE, RMSE and Validation values can be seen in Table 6.

Model #10 is selected as the best model because it has the lowest
MSE value. The ANNs structure of Model #10 is shown in Fig. 7. This
structure has 3 inputs, 1 output and one hidden layer containing 5
neurons. The hidden layer activation function is “purelin”, the output
layer activation function is “purelin”, the learning coefficient equals to
0.9 and the momentum ratio equals to 0.9.

80% of the dataset is used for training and 20% for testing, here.
Training is continued till the error tolerance reaches to a specified
number of epochs or 0.01. Fig. 8 shows the coefficient of correlation
(R) graph for training, validation, test and overall targets data. The
coefficient of correlation is used to measure the correlation between
actual output and predicted output and show the direction and strength
of the linear relationship between these values. For this reason, if R-
value is high enough, the constructed ANNs model is considered to be
good (Detienne et al., 2003). In Fig. 8, it can be seen that R-values are
0.972, 0.983, 0.974 and 0.973 for training, validation, test and overall
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Table 6
ANNs models with combinations of different parameter values.
. . # of Hidden Activation Function
" Hidden Learning Neurons MSE MAPE RMSE Val.
Layer Rate HN-1 HN-2 HL-1 HL-2  Output (%)
AF AF Layer AF
1 1 0.1 10 - purelin - purelin 0.1433  0.0260 03785 97
2 1 0.1 10 - purelin - tansig 11815 09165 1.0869 47
3 1 0.1 10 - tansig - logsig 11815 09165 1.0869 40
4 1 0.5 5 - purelin - purelin 0.1411 02570 03756 97
5 1 0.5 5 - tansig - logsig 1.1839 09165 1.0880 36
6 1 0.5 10 - purelin - purelin 0.1834  0.0288  0.4282 97
7 1 0.9 0 - tansig - tansig 11185 09165  1.0575 32
8 1 0.9 10 - purelin - purelin 0.1514  0.0269 03891 97
9 1 0.9 10 - purelin - tansig 1.1985 09165  1.0947 58
10 1 0.9 S) - purelin - purelin 0.1410  0.0256 03754 98
11 2 0.1 5 5 purelin  purelin  purelin 0.6681  0.0517 0.8173 96
12 2 0.1 5 10 purelin  purelin  purelin 0.1471  0.0263 03835 97
13 2 0.1 5 10 purelin logsig  tansig 1.1886  0.9165  1.0902 20
14 2 0.1 10 10 purelin  purelin  purelin 0.1571  0.0257 03963 97
15 2 0.1 10 10 purelin logsig  tansig 1.190 09165  1,0908 49
16 2 0.5 5 5 purelin  purelin  purelin 03211 0.0367 05667 96
17 2 0.5 5 10 purelin  purelin  purelin 0.1529  0.0266 03910 97
18 2 0.5 5 10 logsig  logsig  logsig 1.1901 09160  1.0909 28
19 2 0.5 10 10 purelin  purelin  purelin 0.1809  0.0286 04253 97
20 2 0.9 5 5 purelin  purelin  purelin 0.163 0.0276 ~ 0.4037 97
21 2 0.9 5 5 logsig  logsig  logsig 1.1835 09190  1.0878 35
22 2 0.9 5 10 purelin  purelin  purelin 0.1691  0.0278 04112 97
23 2 0.9 10 10 purelin  purelin  purelin 0.1439  0.0260 03793 97
- Training: R=0.972 Validation: R=0.98309
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Fig. 8. The coefficient of correlation values for Model#10.
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Fig. 10. The MLP fitness chart for the test data.

targets data, respectively (Lee, 1997). The estimated values represent
the real values very well as seen in Fig. 8.

The fitness charts for the actual and predicted data are shown in
Figs. 9 and 10, respectively. The graphs show the relationship between
outputs.

Fig. 9 shows the estimation values for the training data. Actual
outputs and estimated outputs are shown in green and red, respectively.
It is seen that these two output graphs are very close to each other
and even overlap some points. Good prediction results mean that the
learning of the network with the training data will be better. Then the
test data is estimated with the trained network and the result can be
seen in Fig. 10.

In Fig. 11, the test outputs and the actual outputs are shown in red
and blue, respectively. The graph shows that the data are very close to

12

each other. In this case, it can be said that the established ANNs model
is well trained and makes good predictions.

4.2. The Neuro-Fuzzy based REBA model

In this study, Neuro Fuzzy integration ANFIS method is used. The
scores used in the classical REBA are expressed as Triangle fuzzy
number, Trapezoidal fuzzy number and Gaussian fuzzy number. The
fuzzy operations that deal with two different calculation methodologies
are performed, and the ergonomic risk score of the job is determined
by using the Fuzzy REBA tables obtained by Detienne et al. (2003).
A Score, B Score and Activity Score input variables are considered as
fuzzy numbers to create REBA Score values. The Triangle, Trapezoid
and Gaussian fuzzy forms of the scores used in classical REBA are given
in Table 7.
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Table 7
Fuzzy scores and their associated fuzzy numbers.
FN 1 2 3 4 3 6
Triangle MF 1,1,2) 1,2,3) 2,3,4) (3,4,5) (4,5,6) (5,6,7)
Trapezoid MF (0,0,1,2) (0,1,2,3) 1,2,3,4) (2,3,4,5) (3,4,5,6) (4,5,6,7)
Gaussian MF 1,1) 1,2) 1,3) 1,4 (1,5) (1,6)
FN 7 8 9 0 iyl 2
Triangle MF (6,7,8) (7,8,9) (8,9,10) (9,10,11) (10,11,12) (11,12,12)
Trapezoid MF (5,6,7,8) (6,7,8,9) (7,8,9,10) (8,9,10,11) (9,10,11,12) (10,11,12,12)
Gaussian MF 1,7 1,8) 1,9 1,10) 1,11) 1,12)
Table 8
The results of the sensitivity analysis.
# Input MF Type  Output MF Type  Optimization Method  Train error Test Error
1 Trampmf Linear hybrid 2.65e-06 0.3359
2 Trampmf Linear backpropa. 0.0114 0.3365
3 Trampmf Constant hybrid 2.65e-06 0.3359
4 Trampmf Constant backpropa 0.7613 0.8117
5 Trimf Linear hybrid 4.13e-07 0.3363
6 Trimf Linear backpropa. 0.0096 0.3387
7 Trimf Constant hybrid 1.42¢-06 0.3365
8 Trimf Constant backpropa. 0.7671 0.8161
9 Gaussmf Linear hybrid 4.22e-07 0.3386
10 Gaussmf Linear backpropa. 0.0109 0.3372
11 Gaussmf Constant hybrid 1.31e-06 0.3175
12 Gaussmf Constant backpropa. 0.0075 0.3170
The graphical membership functions of each fuzzy scores are shown Table 9
in Fig. 11. Fuzzy Logic Designer Apps of the MATLAB R2021b is used Comparison of neural network and neuro-fuzzy models.
for Fuzzy REBA calculations. Data set values with 3 inputs and 1 Type MSE MAPE RMSE
output are normalized with x/max(x). The “wtaver” method is used for MLP 0.1410 0.0256 0.3754
defuzzification in the ANFIS system containing 432 rules. Some rules RBF 0.1340 0.0801 0.3660
h below GRNN 0.0163 0.0247 0.1276
are snown below. ] o ) o Triangle MF 0.0054 0.0011 0.0735
(D) If (inputl is inImf1) and (input2 is in2mf1) and (input3 is in3mf1) Trapezoid MF 0.4392 0.0117 0.6627
then (output is outlmf1) Gaussian MF 0.7113 0.0105 0.8433

(2) If (inputl is inlmf1) and (input2 is in2mf1) and (input3 is in3mf2)
then (output is outlmf2)
(3) If (inputl is inlmf1) and (input2 is in2mf1) and (input3 is in3mf3)
then (output is outlmf3)

A sensitivity analysis is carried out by changing the parameters in
order to determine the configuration with the lowest error. Table 8
shows the result of the sensitivity analysis for the linear and constant
membership functions. The parameters are changed during the analysis
including input MF type (trampmf, trimf and gaussmf), output MF
type and Optimization type (hybrid and backpropagation). In total, 12
cases are developed and for each case the train and test errors are
calculated. The most accurate configuration consists of triangle and
gaussian membership functions. Among them, the model that gives the
best results is triangle input, linear output and hybrid optimization
method with the train error of 4.13e—07 and test error of 0.3363.

5. Results and discussion

In this section, the results of the established ANNs models (MLP,
RBF and GRNN) and ANFIS models (trampmf, trimf and gaussmf) are
compared. The GRNN model, that gives the best results among the
ANNs models, is trained by the learning algorithm of “GDX”. The model
structure has a two-layer network with 3 inputs and 1 output. The
transfer function of the first layer is the “radial basis” and weights to
inputs with the help of a spread rate of 0.6. The transfer function of
the second layer is “purelin”. The learning rate equals to 0.5 and the
momentum ratio equals to 0.9. The best result among the neuro-fuzzy
models is given by “trimf ANFIS model” with triangular membership
function.
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The MSE, MAPE and RMSE values obtained from all model types
are given in Table 9.

According to the results in Table 9, the lowest MSE value between
ANNs models belongs to GRNN with 0.0163. Although there is not a
big difference between GRNN and MLP, it is seen as GRNN is a more
suitable method for the dataset we have. The reason is that, GRNN
Train error is very low (0.0016) compared to the other methods. It can
be seen in Fig. 12 that the overlap ratio with the real data in the train
part is very well.

The lowest MSE value between ANFIS belongs to Triangle mem-
bership function with 0.0054. It can be said that, triangle membership
function is a more suitable method for the dataset we have. It can be
seen in Fig. 13 that the overlap ratio with the real data in the train part
is very well compared to others.

If we compare the ANNs and ANFIS error results, triangular MF
ANFIS model obtains the best results for all error types. This shows that
in REBA score calculation, fuzzy logic predictions are more suitable for
real calculations and more realistic results can be obtained with fuzzy
logic.

In order to better see the difference between these three methods,
the five real employee data given in Table 3 are estimated with MLP,
GRNN, RBF and the ANFIS models with different MFs, and the results
are presented in Table 10. For example, an employee’s body angles
to be used in estimating REBA output are trunk (45’), neck (32'), leg
(45"), upper arm (90), lower arm (180’), and wrist (18'). In addition
to this, the employee who has 2 activity points has a REBA score of 11
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Fig. 11. Membership functions representing triangle, trapezoid and gaussian fuzzy scores, respectively.

Table 10

Actual REBA score and the predicted values with neural networks and neuro-fuzzy models.

REBA score Predicted score
MLP GRNN RBF Triangle MF Trapezoid MF Gaussian MF
El 10 9.7888 10 10.001 10 9.999 9.999
E2 9 10.8043 9 9 9 8.999 8.999
E3 12 10.8569 12 11.999 12 11.999 11.999
E4 11 9.6323 11 11.1273 11 10.999 10.999
E5 12 9.8400 12 11.8727 12 10.999 10.999

considering traditional REBA tables. He/she can be classified as in the
high-risk group.

These predicted REBA scores show that the employee is in the high-
risk group. It is seen that, the predicted score with GRNN model is
closer to the actual value compared to the one predicted with MLP and
RBF model. GRNN handles the data with a single-pass neural network
which uses Gaussian activation hidden layer function. Therefore, GRNN
makes more precise predictions on linear datasets. Since our dataset has
linear features, the scores predicted with RBF are equal to the actual
REBA Scores (Can et al., 2015).

On the other hand, the solution time is shorter in GRNN than other
methods for a dataset of 100 units. The computational complexity is
the amount of resources required to run it. Particular focus is given to
computation time and memory storage requirements https://www.mat
hworks.com/matlabcentral/answers/108121-how-to-calculate-the-com
putational-complexity. Therefore, the short duration of the analyses is
an important decision method. Elapsed time for MLP is 3.528 s, for
GRNN is 2.249 s, for RBF is 2.537 s, for Triangle MF 2.356 s, for
Trapezoid MF 3.462 s and for Gaussian MF 3.381 s. As the size of the
problem increases, time becomes an important factor for the researcher.
For this reason, by comparing prediction errors and time, the researcher
will be able to decide which method to apply.
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At the same time, the ANFIS model with a triangular membership
function is also closer to the actual value compared to the other
predicted MFs. Although the GRNN and triangular MF ANFIS prediction
scores are the same, the errors of triangular MF ANFIS are found to
be smaller because of the fuzzy logic is providing a more appropriate
modeling here. It is seen that the ANFIS model is better in performance
comparison.

6. Conclusions and future directions

In recent years, there has been an increasing interest in automating
ergonomic evaluations using artificial intelligence techniques such as
ANNs. ANNs-based REBA is a modified version of the REBA method
that uses ANNs to predict REBA scores automatically. However, like
any other artificial intelligence-based technique, ANNs-based REBA has
certain limitations that need to be considered. This study is aimed
to develop a framework in which ANNs and neuro-fuzzy models are
integrated into REBA in order to determine the risk levels of the works
in a faster and more consistent way. Thus, a structure that predicts a
more realistic risk score is established depending on the observed body
angles and movement characteristics.

One of the limitations of the proposed method is the quality and
quantity of input data. The accuracy of the predictions depends on
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Fig. 12. The fitness charts of train data for RBF, GRNN and MLP.

the availability of complete and accurate input data. It is not possible
to observe all employees individually for the case study due to the
Covid-19 pandemic. To improve the accuracy of the predictions, it is
crucial to ensure the input data is complete and accurate. Another
limitation of the proposed method is its limited applicability. The
method has been trained on a specific set of tasks and populations,
and may not be suitable for evaluating tasks and populations that differ
from those used in training the algorithm. This can limit the usefulness
of the method in certain settings. To make the proposed method more
applicable to different tasks and populations, it is necessary to expand
the training data. This can be achieved by collecting data from a wider
range of tasks and populations, including individuals with different
physical characteristics and abilities. The expanded training data will
improve the accuracy of the predictions for a broader range of tasks
and populations.

Another limitation of the proposed method is its lack of consid-
eration for individual differences. The method does not account for
individual characteristics such as age, gender, and physical ability,
which can result in inaccurate predictions for individuals who fall
outside the average range of the population used to train the algorithm.
Finally, the proposed method can be costly. It requires specialized soft-
ware and hardware, which can be expensive for smaller organizations
with limited resources. To reduce the cost of the method, it is essential
to develop more affordable software and hardware solutions. This can
be achieved by using open-source software and cloud-based solutions,
which can reduce the cost of hardware and licensing fees.

To our knowledge, this is the first study in the literature to present
a risk score calculation methodology by integrating neural networks
and neuro-fuzzy models with REBA method. In addition, it presents a
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comparative analysis with MLP, GRNN, RBF neural network methods
and three different membership functions of ANFIS. In this respect, it
offers a new perspective in terms of handling the ergonomic risks of
the works with artificial intelligence techniques in future studies. The
proposed method will form the basis for the study of more advanced
ANNS s techniques such as convolutional neural networks (CNNs) and re-
current neural networks (RNNs) to predict REBA scores based on input
data from motion capture sensors or video recordings. Additionally, in
terms of a real-world application, this methodology has shown great
potential in automating the assessment process and reducing the risk
of musculoskeletal disorders in both service and manufacturing busi-
nesses, allowing a quick and practical estimation. With the motivation
of this study, the proposed ANNs and neuro-fuzzy integrated REBA
methodology can be considered as a successful decision support tool
to identify the ergonomic risks of the works and get quick feedbacks
to decision makers for non-ergonomic situations. As a future direction,
fuzzy logic approach can be included as a comparative and multi-
dimensional study. The methodology proposed here can be applied
by revising the parameters for different ergonomic risk assessment
methods such as RULA or OWAS. At the same time, different data sets
can be obtained by making observations for the REBA method. These
datasets can be analyzed and compared to the methods in this study.

Alternatively, for future research the biomechanical equations can
be incorporated into the proposed methodology in the laboratory en-
vironment after the pandemic restrictions have ended. The proposed
method can also be adapted for employees in other work areas (for
manufacturing workers, cargo personnel, etc.), where REBA-based risk
assessment can be performed, due to its generalizability.
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