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• This study examines the influence of
weather conditions on the delay caused
by traffic incidents.

• The RPHDHM model is introduced to de-
termine the relationship between weather
conditions and the duration of traffic
delay.

• The RPLHM model is introduced to ex-
plore the relationship between weather
conditions and the delay severity.

• Substantial differences in probabilities of
traffic delay severity across various time
models are observed.
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Background: Existing studies mainly focus on the relationship between real-timeweather and traffic crash injury sever-
ity, while few scholars have investigated the operation risk levels caused by traffic incidents. Identifying weather-
related factors that affect the incident-induced delay is helpful for estimating the delay levels when an incident occurs.
Accordingly, the present study profoundly explores the relationship between weather conditions and traffic delays
caused by traffic incidents.
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Random parameters logit model
Heterogeneity in the means
 To that end, the hazard-based duration and multinomial logit modeling frameworks are employed to determine the

effect of weather conditions on the duration of traffic delay and the delay severity, respectively. More importantly,
Table 1
Summary of research on the impact of weather condi

Author (year) Study area

Abdel-Aty et al., 2011 Central Florida (U

Hassan and Abdel-Aty, 2013 Central Florida (U

Xu et al., 2013a California (US)

Xu et al., 2013b San Francisco Bay
Yu et al., 2013 Colorado (US)

Yu and Abdel-Aty, 2014a Colorado and Orla
(US)

Yu and Abdel-Aty, 2014b Colorado (US)

Seeherman and Liu, 2015 California (US)
Yu et al., 2015 Colorado (US)

Liu et al., 2017 Maryland (US)

Ghasemzadeh and Ahmed, 2019 Washington state (

Zhan et al., 2020 Shenzhen (China)
Methods: The traffic incident and weather datasets from January 1 to December 31, 2020, in New York State are used.

to account for multiple layers of unobserved heterogeneity, a random parameter with heterogeneity in means ap-
proach is introduced into the above two models.
Results: (1) The strong breeze (wind speed over 8 m/s) and low visibility (visibility under 5 km) significantly affect the
duration of delay. (2) Hot day (between 20 and 30 °C) has a 344.03 % greater probability of minor delay. A strong
breeze has a higher probability of severe delay. The low visibility is found to increase the estimated odds of moderate
delay and severe delay by 51.15 % and 13.39 %, respectively. In comparison, the normal visibility (between 10 and
20 km) significantly decreases the estimated odds of severe delay by 119.17 %.
Conclusions: Compared with other weather factors, wind speed, temperature, and visibility have the greatest impact on
the traffic delay levels after a traffic accident, and there are significant differences in the impact under different delay
severity. Findings from this study will help policymakers to establish comprehensive differentiating security measures
to resolve traffic delays.
1. Introduction

In recent years, severe weather conditions have been one of the most
critical factors affecting the safe operation of the road network, which
caused frequent traffic accidents and resulted in serious injuries and fatali-
ties. From 2014 to 2019, nearly 30 % of road accidents in Canada occurred
each year under severe weather conditions, leading to over 910,000 inju-
ries and >11,000 fatalities (Transport Canada, 2021). In the US, there are
over 5.8 million vehicle collisions yearly, approximately 21 % of which
are weather-related. On average, almost 5000 people are killed in
weather-related crashes, and over 418,000 are injured yearly (FHWA,
2022).

Many scholars have studied the impact of severe weather on traffic
safety, such as examining howweather-related factors affect traffic accident
likelihood or injury severity (Ghasemzadeh and Ahmed, 2019; Liu et al.,
2017; Seeherman and Liu, 2015; Yu et al., 2015; Yu and Abdel-Aty,
2014a,b; Zhan et al., 2020). Table 1 presents a detailed description of
some representative literature in the field mentioned above in recent years.

In addition to studying the impact of severe weather on the crash likeli-
hood or injury severity, investigating how weather affects the duration of
the incident-induced delay can also be relevant, helping traffic regulators
develop improved incident response countermeasures. Accordingly, some
tions on traffic safety.

Study
period

Weather-related

S) 2007–2009 Rainfall; visibilit

S) 2007–2009 rainfall; visibility

2008;2010 Rainfall; visibilit

(US) 2008 Rain; fog
2010–2011 Visibility, precip

temperature
ndo 2007–2011 Temperature; sn

2007–2011 Snow; visibility

2007–2013 Snowfall; rainfal
2008–2010 Visibility; precip

2000–2012 Temperature; pr

US) 2009–2013 Clear; rain; snow
crosswind; blowi

2010–2016 Temperature; pr

2

scholars have examined the weather-related factors influencing traffic inci-
dent durations. For example, Vlahogianni and Karlaftis (2013) proposed a
survival neural network model for predicting the duration of events af-
fected by congestion, finding that rainfall intensity is an essential feature.
Dimitriou and Vlahogianni (2015) developed a fuzzy rule-based system to
study the duration of highway incidents and revealed that higher rainfall
is associatedwith longer durations. Javid (2018) developed a robust regres-
sionmodel to estimate incident-caused travel time variability based on traf-
fic and weather data. Precipitation (including rainfall and snowfall) can
lead to congestion and delays, especially during peak hours (Bi et al.,
2022; Koetse and Rietveld, 2009; Tsapakis et al., 2013). According to
Giang et al. (2014), the timely transfer of patients by ambulance was de-
layed by 8 % - 10 % due to precipitation.

It is noted that more academics have analyzed the factors influencing
the traffic incident duration based on survival analysis models. Specifically,
Alkaabi et al. (2011) found that weather-related factors such as windy and
rainy conditions significantly increase highway clearance time based on the
Weibull AFT (accelerated failure time) model. Li and Shang (2014) studied
incident duration based on flexible parametric hazard-based models,
reporting that the incident duration is longer in Winter. This phenomenon
may be related to poor weather conditions during Winter, such as heavy
snowfall and low visibility (Yu et al., 2013). Furthermore, to account for
variables Dependent variables Model

y Crash likelihood Bayesian matched case-control
logistic

Crash likelihood Random Forests and matched
case-control logistic regression
models

y Accident likelihood Bayesian random intercept logistic
regression models

Crash severity level Sequential logit model
itation, and Crash-frequency Bayesian random effect models

ow season; Crash injury severity level Fixed parameter logit model;
support vector machine; correlated
random parameter logit model

Crash injury severity level Hierarchical Bayesian binary
probit models

l Crashes and incidents frequencies Negative binomial regression model
itation Crash rate Correlated random parameter

Tobit model
ecipitation Risk of motor vehicle collisions Time-stratified case-crossover

analysis; conditional logistic
regression models

; fog; hail; severe
ng snow

Crash severity level Ordered probit model

ecipitation Road traffic casualty Time-stratified case-crossover
analysis; conditional quasi-Poisson
regression



1 Note that delay-severity refers to the traffic incident-induced delay-severity, expressed as
the number between I and IV, where type I - IV indicates minor delay, moderate delay, severe
delay, and extreme delay, respectively.
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the unobserved heterogeneity, Hojati et al. (2013) applied theWeibull AFT
models with random parameters to examine the effects of air temperature,
wind speed, and rainfall on the crash-induced traffic incident duration.
Islam et al. (2022) evaluated the factors influencing the incident clearance
duration using the random parameters hazard-based duration model and
discovered that rainy conditions increase the clearance time.

However, traditional randomparametersmodels assume that themeans
of random parameters are the same for all observations, resulting in failure
to explore the effects of explanatory variables on themeans of estimated pa-
rameters and possibly leading to biased estimates (Mannering et al., 2016;
Washington et al., 2020). Therefore, it is necessary to explore the effect of
weather on the delay duration caused by traffic incidents using the ad-
vanced random parameters hazard-based duration model with heterogene-
ity in means.

Further, to provide additional insights into how weather affects delay
severity, we examine the impact of weather conditions on multiple levels
of delay caused by traffic incidents. Since the delay severity is a discrete
output variable, it can be modeled analogously to the crash injury severity.
In general, discrete choice models, such as logit or probit models, are
widely used to investigate injury severities (Ghasemzadeh and Ahmed,
2019; Theofilatos, 2017; Ye and Lord, 2014; Yu and Abdel-Aty, 2014a,b).
In recent years, a proliferation of studies has considered the effect of hetero-
geneity and allowed parameter estimates to be different across observa-
tions. Thus, random parameters are introduced (Chen et al., 2019; Gong
et al., 2022; Hosseinzadeh et al., 2021; Lee et al., 2021; Wang et al.,
2020). Moreover, to account for the effect of explanatory variables on the
random parameters and provide more insight, we apply random parame-
ters with heterogeneity in means and variances (Ijaz et al., 2022; Li et al.,
2021; Washington et al., 2020; Yu et al., 2020; Zamani et al., 2021). Note-
worthy, few authors, to the authors' knowledge, have used the random pa-
rameters modelwith heterogeneity inmeans to analyze the operational risk
levels after traffic incidents, such as the incident-induced delay severity.

To sum up, evidence suggests that the existing studies appear to have
the following gaps.

First, few researchers have considered operation risk levels caused by
traffic incidents, especially the impact of real-time weather factors. How-
ever, studying the risk level of operation after a traffic incident could also
be relevant, which help traffic managers develop improved incident re-
sponse countermeasures.

Second, existing studies generally used traditional hazard-based dura-
tionmodels to investigate time-related traffic crash data, ignoring the effect
of unobserved multilayer heterogeneity, which leads to biased estimates
and not practically indicative results (Mannering et al., 2016).

Third, the traffic operational risk level is a discrete output variable that
can be studied with discrete choice models. However, to the authors'
knowledge, no researcher has employed advanced discrete choice models
to study this problem.

Accordingly, we summarize the contributions of this research as
follows.

(1) This study focuses on the impact of weather factors on traffic delays
caused by traffic incidents, which will provide technical support for
real-time risk control and incident emergency response under different
weather conditions.

(2) We use a hazard-based duration model that considers unobserved het-
erogeneity to study the multilayer heterogeneous influence of real-time
weather factors on traffic delay durations, which is new to the literature.

(3) We classify the delay severity into four types and use random parameters
logit model with heterogeneity in means approach (i.e., RPLHM) to pro-
vide additional insights into how weather conditions affect different
delay severities, which is an innovation for the literature.

The traffic incident-induced delay and weather dataset in New York
State, US, from Jan to Dec 2020, are selected (Moosavi et al., 2019a,b).
Firstly, we consider the incident-induced delay as a continuous duration
3

variable and develop a random parameter hazard-based duration model
with heterogeneity in means (i.e., RPHDHM) to investigate the effects of
potential weather factors on traffic delay duration. Furthermore, to help
policymakers to establish a comprehensive differentiating security policy,
a random parameter logit model with heterogeneity in means approach
(i.e., RPLHM) is introduced to determine the relationship between weather
conditions and the delay severity (i.e., minor delay, moderate delay, severe
delay, and extreme delay). Finally, considering the difference in traffic and
human characteristics on weekdays and weekends, day and night, the
models related to the day of week and time of day are used to examine fur-
ther the relationship between the weather conditions and traffic delay se-
verity. The detailed framework of this paper is displayed in Fig. 1.

The next structure of the current study is organized as follows: Section 2
describes the data used for this study, followed by Section 3 on themethod-
ological approach. Section 4 gives themodel results. And the last section de-
scribes the conclusions and discussions of this study and the outlook for
future research directions.

2. Data

2.1. Source of the data

The dataset is a publicly available crash database (Moosavi et al., 2019a,
b), which covers 49 states of the US. The accident data are collected from
February 2016 to Dec 2021, using multiple APIs that provide streaming
traffic incident (or event) data. Currently, there are about 2.8 million acci-
dent records in this dataset.

In this study, we selected the latest data from January 1 and December
31, 2020, a total of 3440 traffic incidents in the State of New York. Traffic
incident information includes the date and start-end time, delay-severity,1

and weather-related variables. Fig. 2 shows the proportion of various
delay severity and the number of accidents in each month, respectively.

2.2. Data processing

Temperature, wind, visibility, and precipitation are widely considered
in the relevant studies about the weather-delay relationship (Chen and
Wang, 2019; Giang et al., 2014; Schuldt et al., 2021). In this study, two
kinds of real-time weather variables are extracted from the weather data,
including basic and dummy weather variables. This section elaborates on
the data processing for these weather variables.

(1) Basic weather variables

We select temperature (°C), visibility (km), humidity (%), wind speed
(m/s), and precipitation (mm) as weather-related continuous variables.
Fig. 3 shows the distribution of some weather variables at different delay
severities.

(2) Dummy weather variables

Based on the study of Bi et al. (2022), we classify the continuous
weather variables in the present study as follows,

Firstly, for temperature, we classify the temperature values into four
levels, namely cold (under 0 °C), normal (between 0 and 20 °C), hot (be-
tween 20 and 30 °C), and torrid (over 30 °C). As shown in Table 2, the nor-
mal temperature has the highest percentage at 73.1%, followed by hot days
at 21.5 %. For visibility, there are also four levels, bad (under 5 km), poor
(between 5 and 10 km), normal (between 10 and 20 km), and unlimited
(over 20 km). In terms of precipitation, it is divided into 0 mm, between
0 and 1 mm, and over 1 mm, where the proportion of no precipitation is
92.5 %. Finally, we divide the wind speed by the unit interval of 2 m/s



Fig. 1. The study framework layout.
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and define a strong breeze as a wind speed exceeding 8m/s, in linewith the
study of Wu and Liao (2020). Table 2 shows details of the descriptive statis-
tics of each variable. Further, Fig. 4 respectively shows the proportion and
number of the four types of delay-severity among the temperature, wind
speed, visibility, precipitation, and sky conditions dummy variables. The
figure shows that the proportion of moderate delay is the highest among
all the weather dummy variables. In addition, the proportion of extreme
delay in cold weather (under 0 °C) is the highest.

3. Methodology

3.1. Random parameters hazard-based duration models with heterogeneity
in means

Firstly, we consider the incident-induced delay, the time from the begin-
ning to the end of the delay, as a duration variable. The random parameter
hazard-based duration model with heterogeneity in means approach
(i.e., RPHDHM) is introduced to determine the relationship between critical
4

influencing factors (such as temperature, wind speed, visibility, and precip-
itation) and the duration of traffic delay.

To begin with, the cumulative distribution function F(t) is the probabil-
ity that the duration of the incident-induced delay does not exceed a given
moment t, which can be expressed as (Washington et al., 2020):

F tð Þ ¼ P T ≤ tf g ¼
Z t

0
f uð Þdu (1)

where T, as a continuous nonnegative random variable, represents the
delay duration caused by a traffic incident. The probability density function
f(t) of the random variable T is the derivative of F(t) and can be denoted as
follows:

f tð Þ ¼ dF tð Þ
dt

¼ lim
Δt

P t < T < t þ Δtf g
Δt

(2)



Fig. 2. The statistics of monthly traffic incidents in 2020.
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The survival function S tð Þ specifies the probability that the delay dura-
tion is longer than the given moment t and is presented as follows:

S tð Þ ¼ 1 � F tð Þ ¼ P T>tf g ¼
Z þ∞

t
f uð Þdu (3)

The hazard function represents the conditional probability that the
delay does not end before the moment t but ends within (t, t þ Δt),
where Δt is a very short time interval. The hazard function h(t) is
expressed as follows:

h tð Þ ¼ lim
Δt!0

P t < T < t þ ΔtjT≥tf g
Δt

¼ f tð Þ
S tð Þ (4)

Several approaches exist to incorporate explanatory variables in the
hazard-based duration models, including semi- and fully-parametric
models. The latter allows us to make assumptions for the distribution
of the duration and the functional form.

Therefore, a fully parametric AFT (accelerated failure time) model is
employed in this study. The natural logarithm of the delay duration, log
T, is expressed as a linear function of the covariates, with the basic form
shown below:

log T ¼ β′X þ ε (5)

where X is a vector of covariates, β is a vector of coefficients, and ε is the
error term.

Various parametric distributions have been applied in full parametric
models, such as the exponential distribution, the Weibull distribution,
and the log-normal distribution (Washington et al., 2020). Among these,
Fig. 3. The distribution of weather varia

5

theWeibull distribution isflexible because it allows positive or negative du-
ration dependence, i.e., it enables the modeling of data whose probability
of the end of duration rises or falls monotonically over time (Ali et al.,
2022; Pang et al., 2022; Washington et al., 2020). Therefore, this study is
modeled based on the Weibull AFT model with the following hazard func-
tion (Washington et al., 2020):

h tð Þ ¼ λPð Þ λtð ÞP−1 ð6Þ

where P is the shape parameter and P> 0; λis the scale parameter and λ > 0.

3.2. Random parameters logit models with heterogeneity in means

To further identify the influencing factors of delay severities, four delay-
severity categories are determined as discrete outcome variables: type-I,
type-II, type-III, and type-IV (Moosavi et al., 2019a,b). The random param-
eters logitmodelwith heterogeneity inmeans (i.e., RPLHM) is used to study
the effect of weather variables on delay severity.

A traffic delay-severity function, Yin, that determines the delay-severity
i in crash n, is specified as follows (Ahmed et al., 2021; Fountas et al., 2021,
2018; Washington et al., 2020):

Y in ¼ βiXin þ εin (7)

where Xin are vectors of explanatory variables that affect traffic
delay-severity i (I, II, III, and IV) in crash n, βiis a vector of corresponding
estimable parameters, and εin is an error term that is assumed to follow
an independent and identical distribution with zero mean and variance σ2.

Further, to account for the unobserved heterogeneity, we introduce ran-
dom parameters with heterogeneity in means to our model, which not only
bles on the severity of traffic delay.



Table 2
Descriptive statistics of variables.

Variable Mean Std. Min Max

Severity 2.484 0.753 1 4
Distance (km) 0.289 0.933 0 15.9
Duration (min) 50.325 13.801 9 60
Continuous variables

Temperature (°C) 14.190 9.000 −24 33
Humidity (%) 58.127 21.012 13 100
Wind speed (m/s) 4.622 2.625 0 16
Visibility (km) 15.257 3.396 0 32
Precipitation (mm) 0.078 0.459 0 7.37

Dummy variables
Temperature (°C)
<0 °C 0.029 0.167 0 1
0–20 °C 0.731 0.444 0 1
20–30 °C 0.215 0.411 0 1
>30 °C 0.026 0.160 0 1

Wind speed (m/s)
0 m/s 0.066 0.249 0 1
0–2 m/s 0.049 0.217 0 1
2–4 m/s 0.287 0.452 0 1
4–6 m/s 0.308 0.462 0 1
6–8 m/s 0.176 0.381 0 1
>8 m/s 0.113 0.317 0 1

Visibility (km)
<5 km 0.072 0.259 0 1
5–10 km 0.032 0.176 0 1
10–20 km 0.872 0.334 0 1
>20 km 0.023 0.151 0 1

Precipitation (mm)
0 mm 0.925 0.263 0 1
0–1 mm 0.052 0.222 0 1
>1 mm 0.023 0.150 0 1

Sky conditions
Clear 0.276 0.447 0 1
Cloud 0.588 0.492 0 1
Rain 0.099 0.299 0 1
Snow 0.026 0.159 0 1
Fog 0.011 0.103 0 1

Season
Spring 0.670 0.470 0 1
Summer 0.282 0.450 0 1
Autumn 0.007 0.083 0 1
Winter 0.041 0.199 0 1

Week
Weekday 0.813 0.390 0 1
Weekend 0.187 0.390 0 1

Time
Morning peak (6–9 a.m.) 0.224 0.417 0 1
Evening peak (5–8 p.m.) 0.297 0.457 0 1
Off-peak 0.480 0.500 0 1
Day 0.873 0.333 0 1
Night 0.127 0.333 0 1
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allows the parameter estimates to vary across observations but also enables
us to observe the effect of the explanatory variables on the means of
observation-specific parameter estimates. The random parameters can be
expressed as follows (Washington et al., 2020):

βn ¼ βþ ΘZn þ ξn (8)

where β is the vector of mean parameter estimate across all observations,
Znis a vector of explanatory variables from observation n that influence
the mean of βn, Θ is a vector of estimable parameters and ξnis a vector of
randomly distributed terms.

The simulatedmaximum likelihood method was applied for model esti-
mation (Train, 2009), and 1000 Halton draws were used to achieve stable
parameter estimates (McFadden and Train, 2000). In terms of the distribu-
tion of the random parameters, the normal distribution is used to achieve
the best goodness of fit (Behnood and Mannering, 2019; Fountas et al.,
2018, 2021).
6

4. Result analysis

Firstly, fixed and random parameters models are also estimated.
Each hazard-based duration framework and multinomial logit frame-
work is evaluated by comparing the Akaike Information Criterion
(AIC) value, the McFadden R-Squared, and the log-likelihood value at
convergence. Smaller AIC values, higher McFadden R-Squared values,
and higher log-likelihood values at convergence indicate a better
model fit (Washington et al., 2020). The goodness-of-fit of both models
suggests that the random parameters models with heterogeneity-in-
means are superior (see Table 3).

Therefore, in the following subsections, we investigate how
weather-related factors affect the delay duration and severity based on
the estimates of these two superior models (see Tables 4–5 for
RPHDHM and RPLHM, respectively). Specifically, Subsection 4.1
explains both model results of random parameters and heterogeneity-
in-means. Subsection 4.2 explores the effect of weather variables on
delay durations and levels after traffic incidents. And Subsection 4.3 dis-
cusses the effects of weather factors on the delay severity under differ-
ent times (i.e., Weekday/Weekend, Day/Night).
4.1. Random parameters with heterogeneity-in-means results

For the RPHDHM model (see Table 4), four explanatory variables pro-
duce statistically significant standard deviations and heterogeneity in
means, including cold temperature (under 0 °C), hot temperature (between
20 and 30 °C), fog, and weekend.

Specifically, as shown in Fig. 5 (a), the cold temperature produces a
normally distributed random parameter following N (−0.143, 0.2222),
demonstrating that traffic incident delay time is lower in 74.03 % of the
crashes that occurred under cold weather. The presence of a lower per-
centage of traffic volume on cold days compared to warm days is the
possible reason behind this. Moreover, the normal visibility (between
10 and 20 km) and evening peak-hour variables reduce the mean of
the cold temperature variable, indicating that long delay durations are
less likely to occur under cold and evening peak hours. Conversely, a
strong breeze (over 8 m/s) increases its mean, which suggests long de-
lays usually happen on windy days.

Similarly, hot temperature (between 20 and 30 °C) results in a random
parameter, with a lowprobability of delay for the vastmajority of the obser-
vations (99.71 %). However, strong breeze, normal visibility, and evening
peak hours increase the mean of hot temperatures, making longer delays
more likely. In contrast, precipitation (over 1 mm) decreases the mean
value under hot temperatures, indicating that longer delays are less likely
to happen in hot, rainy weather.

In terms of foggy weather, while the duration of delays is reduced by
29.60 %, a strong breeze significantly increases its mean, which means
that windy conditions are associated with longer delays.

As shown in Fig. 5 (b), the weekend indicator produces a significant
random parameter, with 79.68 % of traffic incidents decreasing delay
durations. The evening peak reduces weekends' mean value, while pre-
cipitation increases its mean, implying shorter delays during weekend
evening rush hours and longer ones on rainy weekends.

For the RPLHMmodel results in Table 6, two variables have statistically
significant random parameters: hot temperature and normal visibility.

Concretely, the probability of minor delay after traffic accidents rises
dramatically on hot days, up to 344.03 %. Calm conditions (wind speed=
0m/s) reduce the mean of hot temperatures, indicating that the probability
of minor delay in windless weather is lower.

The estimated parameter of normal visibility obeys a normal distribu-
tion, with a mean of −0.216 and a standard deviation of 0.111. It means
83.47% of the likelihood of extreme delay is reduced (see Fig. 6). Humidity
decreases themean of normal visibility, while rainfall increases its mean, il-
lustrating that the probability of extreme delay is slightly lower in wet
weather and higher in rainy weather.



Fig. 4. The statistics of traffic incidents in dummy weather variables.
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4.2. Impact analysis of real-time weather factors

(1) Temperature

The temperature has a significant effect on traffic delays. Specifically,
cold days (under 0 °C) and hot days (between 20 and 30 °C) reduce the du-
ration of delays by 13.32 % and 33.37 %, respectively (see Table 4). This
negative association can be explained by previous studies showing a
Table 3
Goodness-of-fit measures for the estimated models.

Goodness-of-fit measures Hazard-based duration model

HD RPHD

Number of observations 3440 3440
No. of parameters 20 26
Log-likelihood at convergence −180.27 −175.95
McFadden R-Squared 0.134 0.174
Akaike information criterion (AIC) 400.54 403.90

MNL: Multinomial logit model; RPL: Random parameters logit model; RPLHM: Random
model; RPHD: Random parameters hazard-based duration model; RPHDHM: Random p

7

significant decrease in travel demand under high and low temperature
conditions, resulting in lower traffic volumes and accident possibilities,
thus reducing delays (Roh et al., 2013).

Remarkably, most of the existing literature focuses on analyzing the im-
pact of a single weather factor on traffic conditions. However, this study in-
troduces heterogeneity inmeans, thus providingmore insights by exploring
the effects of multiple weather factor interactions on traffic delays in depth.
For example, a strong breeze (over 8m/s) is found to have a significant pos-
itive interaction effect with cold days (under 0 °C), and hot days (between
Logit model

RPHDHM MNL RPL RPLHM

3440 3440 3440 3440
36 29 31 35

−155.93 −3350.7 −3342.3 −3338.0
0.268 0.076 0.299 0.300

383.86 6759.40 6746.60 6746.00

parameters logit model with heterogeneity-in-means. HD: Hazard-based duration
arameters hazard-based duration model with heterogeneity-in-means.



Table 4
Estimation results of significant variables for RPHDHMmodel.

Variable Parameter
estimate

t-stat. Hazard
ratio

Constant 3.839⁎⁎⁎ 153.19
Continuous variables

Humidity (%) 0.028⁎⁎⁎ 2.76 2.84 %
Dummy variables

Temperature (°C)
<0 °C −0.143⁎⁎⁎ −4.46 −13.32 %

Random parameters (normally distributed) 0.222⁎⁎⁎ 9.57 −
Heterogeneity in the means of the random
parameters

<0 °C: >8 m/s 0.021⁎⁎⁎ 5.24 −
<0 °C: 10–20 km −0.231⁎ −1.69 −
<0 °C: Evening peak −0.260⁎⁎⁎ −4.28 −
0–20 °C 0.030⁎ 1.81 3.05 %
20–30 °C −0.406⁎⁎⁎ −4.96 −33.37 %

Random parameters (normally distributed) 0.147⁎⁎⁎ 4.19
Heterogeneity in the means of the random
parameters

20–30 °C: >8 m/s 0.012⁎⁎ 2.47 −
20–30 °C: 10–20 km 0.312⁎ 1.78 −
20–30 °C: >1 mm −0.329⁎ −1.89 −
20–30 °C: Evening peak 0.159⁎ 1.84 −

Wind speed (m/s)
>8 m/s 0.003⁎⁎⁎ 3.22 0.30 %

Visibility (km)
<5 km 0.007⁎⁎⁎ 4.68 0.70 %
10–20 km −0.031⁎ −1.67 −3.05 %

Precipitation (mm)
>1 mm 0.051⁎⁎⁎ 4.32 5.23 %

Sky conditions
Clear −0.040⁎⁎⁎ −3.89 −3.92 %
Snow 0.056⁎ 1.83 5.76 %
Fog −0.351⁎⁎⁎ −7.09 −29.60 %

Random parameters (normally distributed) 0.075⁎⁎ 2.23 −
Heterogeneity in the means of the random
parameters

Fog: >8 m/s 0.014⁎⁎⁎ 3.91 −
Week
Weekend −0.225⁎⁎⁎ −5.61 −20.15 %

Random parameters (normally distributed) 0.271⁎⁎⁎ 14.74 −
Heterogeneity in the means of the random
parameters

Weekend: >1 mm 0.108⁎⁎⁎ 2.85 −
Weekend: Evening peak −0.198⁎⁎⁎ −5.31 −

Time
Evening peak −0.034⁎⁎⁎ −3.16 −3.34 %
Day 0.059⁎⁎⁎ 5.17 6.08 %
Shape parameter 0.184⁎⁎⁎ 66.70

Note: ⁎⁎⁎, ⁎⁎, ⁎ ==> Significance at 0.99, 0.95, and 0.90 level of confidence,
respectively.

Table 5
Estimation results of significant variables for the RPLHM model.

Variable Parameter
estimate

t-stat. Pseudo-elasticities (%)a

I II III IV

[II] Constant 6.048⁎⁎⁎ 6.04
[III] Constant 6.778⁎⁎⁎ 6.54
[IV] Constant 7.509⁎⁎⁎ 7.33
Continuous
variables
[III] Humidity
(%)

−0.006⁎⁎ −2.46 8.74 9.08 −23.97 7.37

Dummy variables
Temperature (°C)

[II] < 0 °C −0.327⁎⁎⁎ −3.46 4.01 −3.46 4.18 3.91
[I] 0–20 °C 0.711⁎⁎⁎ 2.76 10.68 −0.61 −0.61 −0.51
[II] 0–20 °C 0.335⁎⁎⁎ 2.74 −3.39 2.02 −3.62 −2.93
[IV] 0–20 °C 1.782⁎⁎⁎ 6.76 −2.82 −2.93 −2.93 21.96
[I] 20–30 °C 0.232⁎⁎⁎ 4.01 344.03 −13.50 −13.50 −111.6

Random
parameters
(normally
distributed)

0.064⁎ 1.83

Heterogeneity in
the means of the
random
parameters

20–30 °C:
0 m/s

−0.001⁎ −1.73

[III] 20–30 °C 0.995⁎⁎ 2.29 −4.43 −4.53 10.05 −2.92
[IV] 20–30 °C 3.630⁎⁎⁎ 6.72 −5.74 −5.81 −5.81 30.67
[I] > 30 °C 1.015⁎⁎ 2.29 2.14 −0.26 −0.26 −0.22
[IV] > 30 °C 2.089⁎⁎⁎ 4.12 −1.29 −1.31 −1.31 18.97

Wind speed
(m/s)

[I] 0 m/s −0.261⁎⁎⁎ −4.97 −113.55 3.16 3.16 2.59
[III] > 8 m/s 0.206⁎ 1.71 −0.79 −0.80 1.53 −0.67

Visibility (km)
[II] < 5 km 0.081⁎⁎⁎ 5.42 −69.24 51.15 −73.11 −57.78
[IV] < 5 km 1.781⁎⁎ 2.36 −0.52 −0.53 −0.53 13.39
[IV]

10–20 km
−0.216⁎⁎⁎ −5.80 12.00 12.50 12.50 −119.17

Random
parameters
(normally
distributed)

0.111⁎⁎⁎ 4.13

Heterogeneity in
the means of the
random
parameters

10–20 km:
Rain

0.053⁎⁎ 2.12

10–20 km:
Humidity

−0.001⁎ −1.79

Precipitation
(mm)

[III] 0 mm −0.721⁎⁎⁎ −4.08 17.53 18.35 −48.36 14.51
[II] > 1 mm 0.820⁎ 1.91 −6.66 5.22 −6.80 −4.41

Sky conditions
[II] Clear −1.084⁎⁎⁎ −5.13 15.59 −13.32 16.65 12.24
[II] Cloud −0.789⁎⁎⁎ −4.66 26.20 −18.93 27.43 21.98
[I] Rain 1.971 1.34 18.28 −0.66 −0.66 −0.59
[III] Fog −1.077⁎⁎ −2.07 0.16 0.16 −1.00 0.13

Week
[IV] Weekday −0.0390⁎⁎ −2.42 2.92 2.98 2.98 −22.92

Time
[I] Morning

peak
−0.888⁎⁎⁎ −2.79 −18.87 0.41 0.41 0.34

[I] Day 1.235⁎⁎ 2.39 98.97 −3.96 −3.96 −3.25
[IV] Day −1.608⁎⁎⁎ −9.47 9.94 10.22 10.22 −104.02

Note: 1) ⁎⁎⁎, ⁎⁎, ⁎ ==> Significance at 0.99, 0.95, and 0.90 level of confidence,
respectively.
2) I - minor delay, II - moderate delay, III- severe delay, and IV - extreme delay.

a The pseudo-elasticities quantify the change in outcome probability when an
explanatory variable changes from “0” to “1” (Washington et al., 2020).
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20 and 30 °C), i.e., the strong breeze significantly increases themean of cold
days and hot days, suggesting that longer delays often happen on windy
days with extreme temperatures. The result is well understood: strong
winds can affect vehicle controllability, further increasing the likelihood
of crashes, which in turn can lead to severe congestion (Hou et al., 2018).
Moreover, normal visibility (between 10 and 20 km) and evening peaks
also have a significant positive interaction effect with hot days (between
20 and 30 °C), increasing its mean and making the probability of longer de-
lays more likely. This result indicates that longer delay duration generally
happens during hot, clear evening peak hours. It may be because drivers
are exhausted and crashes are more frequent during the hot evening rush
hour, resulting in long delays (Cabrera-Arnau et al., 2020).

(2) Wind

Strong breeze (wind speed over 8 m/s) significantly increases the dura-
tion of traffic delays and the probability of severe delay. The conclusion is
intuitively easy to understand: the strong breeze will increase the difficulty
8



Fig. 5. Distribution of parameters estimation for representing variables in the RPHDHMmodel.a
aAccording to Table 4, hot temperature (between 20 °C and 30 °C) and fog make 99.71 % and 99.99 % of the incident-induced delays lower, respectively.
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of handling large vehicles and reduce vehicle stability, increasing the fre-
quency of rollover crashes, which induces severe traffic delays (Hou
et al., 2018; Young and Liesman, 2007). Moreover, the strong breeze can
blow up dust on the road, thus affecting visibility (FHWA, 2022).

An interesting finding of this paper is that there is a significant interac-
tion between the strong breeze and foggy days, thus making the probability
Table 6
The estimation results of significant variables for the Weekday model based on the
RPLHM model.

Variable Parameter
estimate

t-stat. I II III IV

[II] Constant 5.056⁎⁎⁎ 7.18
[III] Constant 5.351⁎⁎⁎ 6.99
[IV] Constant 4.716⁎⁎⁎ 6.53
Continuous variables

[III] Humidity (%) −0.005⁎ −1.94 7.63 7.63 −19.49 5.55
Dummy variables

Temperature (°C)
[II] < 0 °C −0.383⁎⁎⁎ −3.76 4.78 −4.15 4.78 4.20
[I] 0–20 °C 0.643⁎⁎ 2.45 9.81 −0.57 −0.57 −0.40
[II] 0–20 °C 0.374⁎⁎⁎ 2.73 −3.95 2.07 −3.95 −2.76
[IV] 0–20 °C 1.723⁎⁎⁎ 5.55 −2.31 −2.31 −2.31 17.81
[I] 20–30 °C 0.197⁎⁎⁎ 4.83 289.85 −12.7 −12.70 −8.94
[III] 20–30 °C 0.236⁎ 1.83 −1.12 −1.12 2.39 −0.58
[IV] 20–30 °C 2.911⁎⁎⁎ 6.78 −3.79 −3.79 −3.79 20.48
[IV] > 30 °C 1.688⁎⁎⁎ 3.41 −0.91 −0.91 −0.91 13.23

Wind speed (m/s)
[I] 0 m/s −0.197⁎⁎⁎ −4.44 −90.94 2.81 2.81 2.00

Visibility (km)
[II] < 5 km 0.053⁎⁎⁎ 3.04 −48.17 33.25 −48.17 −33.98
[IV] 10–20 km −0.302⁎⁎⁎ −6.62 9.92 9.92 9.92 −100.77

Random parameters
(normally
distributed)

0.152⁎⁎⁎ 5.26

Heterogeneity in the
means of the
random parameters

10–20 km: Rain 0.060⁎⁎ 1.96
Precipitation (mm)
[III] 0 mm −0.698⁎⁎⁎ −3.33 18.49 18.49 −46.84 13.15

Sky conditions
[II] Clear −1.111⁎⁎⁎ −4.53 17.01 −13.29 17.01 11.02
[III] Clear −0.334⁎⁎ −2.02 2.64 2.64 −6.47 1.72
[II] Cloud −0.712⁎⁎⁎ −3.49 26.15 −17.54 26.15 18.93
[I] Rain 1.209⁎⁎⁎ 2.96 9.23 −0.41 −0.41 −0.30
[III] Fog −0.883⁎ −1.67 0.17 0.17 −0.94 0.12

Time
[I] Morning

peak
−0.970⁎⁎⁎ −3.06 −21.25 0.42 0.42 0.30

Note: 1) ⁎⁎⁎, ⁎⁎, ⁎==> Significance at 0.99, 0.95, and 0.90 level of confidence, re-
spectively.
2) I - minor delay, II - moderate delay, III- severe delay, and IV - extreme delay.
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of longer delays more likely. It provides a new idea for road safety
management by producing a joint warning system for different severe
weather conditions. Precisely, real-time speed limit values should be mea-
sured when two or more severe weather conditions are present at the
same time, in this case, a joint warning for strongwinds and foggy weather.
Concretely, real-time speed limit values should be recalculatedwhen two or
more severe weather conditions exist simultaneously. And traffic manage-
ment departments should set up real-time speed limit warning signs by
the roadside, which also broadcast the road conditions ahead to provide
drivers with more accurate driving guidance.

(3) Precipitation

The daily precipitation over 1 mm first increases the duration of traffic
delays by 5.23 % and the probability of moderate delay by 5.22 %. Simi-
larly, Giang et al. (2014) also confirmed that rainfall causes 8.6 % longer
travel time compared to no precipitation. It might be due to the fact that
precipitation can cause slippery roads and reduced visibility, leading to
crashes and triggering delays (FHWA, 2022). Consequently, in rainy or
snowy weather, drivers should be reminded to drive carefully and slowly
and encouraged to install anti-skid chains on their tires if necessary to re-
duce traffic accidents caused by slipping.
Fig. 6. Distribution of parameters estimation for representing variables in the
RPLHM model.



Table 7
The estimation results of significant variables for the Weekend model based on the
RPLHM model.

Variable Parameter
estimate

t-stat. I II III IV

[II] Constant 7.518⁎⁎⁎ 4.78
[III] Constant 9.867⁎⁎⁎ 5.96
[IV] Constant 8.220⁎⁎⁎ 5.02
Dummy variables
Temperature (°C)

[I] 0–20 °C 1.024⁎⁎ 2.09 19.27 −1.27 −1.27 −1.27
[IV] 0–20 °C 1.315⁎⁎⁎ 3.95 −7.16 −7.16 −7.16 16.56
[I] 20–30 °C 0.429⁎⁎⁎ 4.53 619.65 −21.89 −21.89 −21.89
[III] 20–30 °C −1.347⁎ −1.73 0.42 0.42 −3.77 0.42
[IV] 20–30 °C −2.334⁎⁎⁎ −2.72 0.73 0.73 0.73 −40.35

Wind speed
(m/s)

[III] 0 m/s 0.129⁎⁎⁎ 3.04 −14.44 −14.44 37.14 −14.44
[III] 6–8 m/s −0.671⁎⁎ −2.02 1.77 1.77 −6.88 1.77

Visibility (km)
[II] < 5 km 0.157⁎⁎⁎ 4.96 −132.29 102.30 −132.29 −132.29
[IV]

10–20 km
2.215⁎⁎ 2.54 −1.38 −1.38 −1.38 3.44

Precipitation
(mm)

[III] 0 mm −1.021⁎⁎ −2.36 21.27 21.27 −68.41 21.27
[II]

0.5–1 mm
1.231⁎⁎⁎ 2.63 −5.55 2.49 −5.55 −5.55

Sky conditions
[IV] Clear 0.646⁎⁎ 2.36 −4.12 −4.12 −4.12 14.78
[II] Rain 0.934⁎⁎⁎ 3.32 −11.04 6.25 −11.04 −11.04
[III] Snow −1.582⁎⁎⁎ −2.61 1.72 1.72 −5.41 1.72

Time
[IV] Morning

peak
−0.787⁎ −1.93 1.10 1.10 1.10 −16.52

[IV] Night 1.509⁎⁎⁎ 5.34 −12.91 −12.91 −12.91 15.72
[IV] Summer −0.723⁎⁎ −2.14 1.80 1.80 1.80 −21.38
[IV] Winter 1.267⁎⁎⁎ 2.76 −4.73 −4.73 −4.73 1.97

Note: 1) ⁎⁎⁎, ⁎⁎, ⁎ ==> Significance at 0.99, 0.95, and 0.90 level of confidence,
respectively.
2) I - minor delay, II - moderate delay, III- severe delay, and IV - extreme delay.
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It is worth noting that precipitation increases the mean of the weekend
indicator, and precipitation during the weekend makes the likelihood of
longer delays more likely. In addition, the higher the relative humidity,
the long delays are caused. Conversely, higher relative humidity results in
a 23.97% reduction in the probability of severe delay in the RPLHMmodel.

(4) Visibility

Low visibility conditions cause serious crashes and, consequently, traf-
fic delays by causing, for example, increased speed variance (Abdel-Aty
et al., 2011; Hassan and Abdel-Aty, 2013; Yu and Abdel-Aty, 2014b). Ac-
cording to Table 4, low visibility (under 5 km) significantly increases the
traffic delay duration, while normal visibility (between 10 and 20 km)
decreases the traffic delay duration by 3.05 %. In terms of the delay se-
verity, low visibility (under 5 km) increases the probability of moderate
delay and extreme delay by 51.15 % and 13.39 %, respectively, while
normal visibility (between 10 and 20 km) reduces the likelihood of ex-
treme delay by 119.17 %. A potential interpretation is that drivers
who suddenly encounter relatively high traffic density under lower vis-
ibility will be too late to reduce speed, resulting in crashes such as rear-
end collisions (Abdel-Aty et al., 2012). Therefore, drivers must comply
with the applicable speed limits in low visibility conditions.

Sky conditions also reflect the effects of visibility. The clear condi-
tion reduces the duration of traffic delays by 3.92 % and the probability
of moderate delay by 13.32 %. This result is consistent with common
sense, as drivers have a better view in clear weather and are less likely
to have an accident, hence lower delay levels. Rain conditions increase
the likelihood of minor delays by 18.28%, and snow conditions increase
the duration of traffic delays by 5.76 %.

Finally, the weekday reduces the probability of extreme delay by
22.92 %, and the day indicator also reduces the likelihood of extreme
delay by 104.02 % but increases the probability of minor delay by
98.97 %. According to Abdel-Aty et al. (2011), drivers may have a
clearer perception of the external environment during daytime com-
pared to nighttime, which reduces the likelihood of traffic accidents
and then eases delays.

4.3. Analysis of traffic delay-severity based on day-of-week models and time-of-
day models

Traffic and human characteristics may vary by day of week and time of
day; day-of-week models (i.e., Day model and Night model) and time-of-
daymodels (i.e., Weekdaymodel andWeekendmodel) are used to examine
further the relationship between the weather conditions and traffic delay-
severity caused by traffic incidents.

Tables 6–7 show estimation results separately based on Weekday and
Weekendmodels. We found thatmore significant weather-related variables
are observed in theWeekday model than in theWeekendmodel, indicating
that the overall effect of weather conditions on weekdays is more sensitive
and stronger than that on weekends. The same indicator also impacted the
traffic delay severity differently between weekdays and weekends. Specifi-
cally, for example, the probability of extreme delays during hot weekdays
(between 20 and 30 °C) increases by 20.48 %. This finding is exciting and
reasonable because people need to commute on weekdays. And they tend
to travel by car during muggy weather to improve their comfort, which in-
creases the traffic density and consequently leads to extreme delays
(Badshah et al., 2022).

Conversely, the probability of extreme delays on hot weekends de-
creases by 40.35%, which could be attributed to the fact that people gener-
ally reduce unnecessary trips during hot and muggy weather, decreasing
traffic and easing congestion. During clear, windless weekends (i.e., wind
speed=0m/s), people's travel demand increases, and the probability of se-
vere delays increases by 14.78 % and 37.14 %, respectively. Moreover, the
probability of extreme delays increases by 15.72 % at night on weekends.
The potential reason for this could be that most public transportation
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stops operating at night. Therefore, people have to take cabs or private
cars to return home, and the darkness at night makes drivers less aware
of their surroundings, which increases the traffic flow and the possibility
of crashes and induces extreme congestion and delay. Thus, one suggestion
is to install intelligent heat-sensitive street lights to illuminate the road,
reduce drivers' blind spots, and thus improve road safety.

To further verify the transferability of influencing factors, this study
adopts the out-of-sample simulation, namely, adopting the Weekend
model to predict Weekday data. Then the prediction accuracy is finally ob-
tained by comparing the difference with the predicted probability of their
influencing factors. It should be noted that these out-of-sample forecasts
do not simply use the mean of the random parameters, which would result
in obviously biased predictions. For details regarding this technique and
how to interpret the results, a reader may refer to recent studies on injury
severity (Alnawmasi and Mannering, 2022; Alogaili and Mannering,
2022, 2020; Hou et al., 2022; Islam et al., 2020; Se et al., 2022).

Firstly, we used theWeekendmodel to predictWeekday data. The result
of this out-of-sample simulation is presented in Fig. 7. Specifically, minor
and severe delay predictions are underestimated by 0.0002 and 0.0001, re-
spectively. Moderate and extreme delay predictions are overestimated by
0.0001 and 0.0002, respectively. Generally, it seems that the influence fac-
tors of traffic delay levels in the Weekend model can be used to predict the
Weekday data.We also found thatmany individuals showed prediction pre-
cisionwith a significant deviation; namely, themean value of prediction ac-
curacy is likely to be the positive and negative balance between the high
estimate and the low estimate in individual prediction. Therefore, judging
the transferability of influencing factors only from the forecast mean
value is defective. In order to express individual differences in the



Fig. 7. Using the Weekend model to predict Weekday data.
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forecasting process more intuitively, this study constructed the fre-
quency distribution map to show individual prediction accuracy. See
Fig. 7 for details.

Tables 8–9 show estimation results based on the Day and Night models.
This study also finds that more weather-related variables are observed in
the Daymodel than in the Nightmodel. The same significant factor also sig-
nificantly affects the impact of day and night traffic delay severity. For ex-
ample, in the Night model, the probability of minor delay increases
significantly by 73.81 % for cold (under 0 °C) weather conditions, while
in the day model, the probability of moderate delay increases by 11.93 %
and 359.42 % for the normal day (between 0 and 20 °C) and hot day (be-
tween 20 and 30 °C), respectively. The no-wind condition increases the
probability of severe delay by 41.42 % in the Night model but reduces
the probability of minor delay by 112.11 % in the Day model. In addition,
the morning peak increases the probability of severe delay by 10.74 % and
decreases the probability of minor delay by 112.11 % in the Night model.
However, the morning peak decreases the probability of minor delay in
the Day model by 25.91 %.

Secondly, we used the Night model to predict day's data. The result of
this out-of-sample simulation is presented in Fig. 8. Specifically, minor
delay, moderate delay, and severe delay predictions are overestimated by
0.0003, 0.0017, and 0.0011, respectively. The extreme delay predictions
are underestimated by 0.0032. It is worth noting that other studies
also illustrated significant underestimation and overestimation in the
out-of-sample predictions (Alnawmasi and Mannering, 2022; Alogaili
and Mannering, 2022; Wang et al., 2022). However, Yan et al. (2022)
concluded that the prediction deviation is relatively small based on
11
random parameters models. The overall differences in the integration
of the sample size and contributing variables might cause the contradic-
tory phenomenon. Please see Mannering (2018) and Mannering et al.
(2020) for a detailed discussion of the issues.

5. Conclusions and discussion

Using traffic delay data that occurred between January 1 and December
31, 2020, in the state of NewYork, the present study explores deeply the re-
lationship between weather conditions and traffic delay caused by traffic
incidents, while the potential influencing factors, including temperature,
wind speed, visibility, and precipitation are statistically analyzed. To that
end, to account for multiple layers of unobserved heterogeneity, a random
parameters hazard-based duration model with heterogeneity in means ap-
proach is introduced to determine the relationship between key influencing
factors and the duration of traffic delay. Further, following the original
dataset reports, the delay-severity outcomes are categorized as follows:
type-I delay (i.e., minor delay), type-II delay (i.e., moderate delay),
type-III delay (i.e., severe delay), and type-IV delay (i.e., extreme delay), a
random parameters logit model with heterogeneity in means approach is
introduced to determine the relationship between weather conditions and
the delay-severity. The key findings are summarized as follows:

(1) Wind speed, temperature, and visibility significantly impact the
incident-induced delay levels, and their impact varies across the sever-
ity of delays. Specifically, strong breeze (wind speed over 8 m/s), pre-
cipitation over 1 mm, and low visibility (visibility under 5 km)



Table 8
The estimation results of significant variables for the Day model based on the
RPLHM model.

Variable Parameter
estimate

t-stat. I II III IV

[II] Constant 5.380⁎⁎⁎ 5.46
[III] Constant 5.619⁎⁎⁎ 5.59
[IV] Constant 4.865⁎⁎⁎ 4.84
Dummy variables

Temperature (°C)
[II] < 0 °C −0.267⁎⁎⁎ −2.63 3.16 −2.48 3.37 2.75
[I] 0–20 °C 0.805⁎⁎⁎ 2.95 11.93 −0.76 −0.76 −0.48
[II] 0–20 °C 0.398⁎⁎⁎ 3.11 −4.22 −4.22 −4.69 −2.75
[IV] 0–20 °C 1.558⁎⁎⁎ 4.41 −1.41 −1.49 −1.49 15.03
[I] 20–30 °C 0.196⁎⁎⁎ 3.24 359.42 −15.16 −15.16 −9.48

Random parameters
(normally
distributed)

0.076⁎⁎ 2.10

[III] 20–30 °C 0.912⁎⁎ 2.06 −4.11 −4.27 9.24 −1.70
[IV] 20–30 °C 3.771⁎⁎⁎ 5.45 −3.48 −3.50 −3.50 20.92
[I] > 30 °C 1.144⁎⁎ 2.45 2.66 −0.31 −0.31 −0.16
[IV] > 30 °C 1.442⁎⁎ 2.57 −0.61 −0.61 −0.61 8.59

Wind speed (m/s)
[I] 0 m/s −0.255⁎⁎⁎ −4.38 −112.11 3.39 3.39 2.08

Visibility (km)
[II] < 5 km 0.077⁎⁎⁎ 4.82 −67.35 44.44 −73.11 −42.68
[IV] 10–20 km −0.369⁎⁎⁎ −5.24 5.41 5.88 5.88 −62.40

Random parameters
(normally
distributed)

0.215⁎⁎⁎ 4.91

Heterogeneity in the
means of the
random parameters

10–20 km: Rain 0.073⁎⁎ 2.27
Precipitation (mm)
[III] 0 mm −0.777⁎⁎⁎ −4.18 19.07 20.47 −51.25 12.03
[II] > 1 mm 0.809⁎ 1.84 −6.96 4.74 −7.24 −2.89

Sky conditions
[II] Clear −1.714⁎⁎⁎ −6.75 24.34 −18.83 27.18 13.46
[III] Clear −0.628⁎⁎⁎ −3.29 4.42 4.89 −11.96 2.43
[II] Cloud −0.987⁎⁎⁎ −5.28 34.29 −22.11 36.60 21.97

Time
[I] Morning

peak
−1.081⁎⁎⁎ −3.29 −25.91 0.57 0.57 0.36

Note: 1) ⁎⁎⁎, ⁎⁎, ⁎ ==> Significance at 0.99, 0.95, and 0.90 level of confidence,
respectively.
2) I - minor delay, II - moderate delay, III- severe delay, and IV - extreme delay.

Table 9
The estimation results of significant variables for the Night model based on the
RPLHM model.

Variable Parameter
estimate

t-stat. I II III IV

[II] Constant 5.148⁎⁎⁎ 5.02
Random parameters
(normally
distributed)

2.271⁎ 1.73

[III] Constant 4.287⁎⁎⁎ 3.54
[IV] Constant 5.211⁎⁎⁎ 4.99

Continuous variables
[III] Humidity (%) −0.025⁎⁎⁎ −2.97 48.42 21.16 −132.94 48.42

Dummy variables
Temperature (°C)

[III] < 0 °C −1.308⁎ −1.74 1.01 0.52 −16.36 1.01
[I] < 0 °C 2.328⁎⁎ 2.06 73.81 −1.24 −2.89 −2.89
[IV] 0–20 °C 1.223⁎⁎⁎ 2.75 −8.29 −3.69 −8.29 8.23
[IV] 20–30 °C 0.935⁎ 1.85 −5.07 −1.93 −5.07 7.56

Wind speed (m/s)
[III] 0 m/s 0.190⁎⁎⁎ 2.91 −24.82 −11.38 41.42 −24.82

Visibility (km)
[IV] 10–20 km −0.096⁎⁎⁎ −2.83 28.22 10.75 28.22 −51.43

Precipitation (mm)
[IV] 0.5–1 mm 1.299⁎ 1.68 −1.78 −0.83 2.68 −1.78

Time
[III] Evening

peak
0.925⁎⁎ 2.48 −7.46 −3.71 10.74 −7.46

[III] Spring 1.478⁎⁎⁎ 4.05 −34.87 −15.56 58.81 −34.87
[I] Winter −1.897⁎⁎ −2.24 4.33 −17.18 4.33 4.33

Note: 1) ⁎⁎⁎, ⁎⁎, ⁎ ==> Significance at 0.99, 0.95, and 0.90 level of confidence,
respectively.
2) I - minor delay, II - moderate delay, III- severe delay, and IV - extreme delay.
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significantly affect the duration of delay; a hot day (between 20 and
30 °C) has a 344.03 % greater probability of being minor delay. Strong
breeze has a higher likelihood of severe delay, and precipitation over
1 mm increases the probability of moderate delay. The low visibility
is found to increase the estimated odds of moderate delay and severe
delay by 51.15% and 13.39%, respectively. In comparison, the normal
visibility (between 10 and 20 km) significantly decreases the estimated
odds of severe delay by 119.17 %.

(2) The RPHDHM and RPLHM models provide superior statistical fit and
offer additional insights by accommodating variations of the explana-
tory variables across the observations and factors affecting the means
of the parameter density functions of the random parameters. For the
RPHDHMmodel, there are four statistically significant variables as ran-
dom parameters, including the cold temperature (under 0 °C), the hot
temperature (between 20 and 30 °C), the fog weather, and the week-
end. For the RPLHMmodel, there are two statistically significant vari-
ables as random parameters, including the hot temperature (between
20 and 30 °C) and the normal visibility (between 10 and 20 km).

(3) The out-of-sample predictions undertaken in this study further confirm
non-transferability by adopting Weekend model parameters to predict
the data of the Weekday and using the Night model to predict the
day's data. The overall differences in the integration of the sample
size, statistics of traffic delay levels, and contributing variables might
cause the contradictory phenomenon.
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(4) The findings from this analysis also offer a number of practical implica-
tions. First, in addition to exploring the duration of traffic delay, we ex-
amine the impact of weather conditions on multiple levels of delay
caused by traffic incidents. Accurate identification of weather-related
influencing factors that correspond to different delay severity is
expected to help policymakers to establish a comprehensive differenti-
ating security policy to resolve traffic congestion, e.g., installing intelli-
gent heat-sensitive street lights to illuminate the road and reduce
drivers' blind spots. Second, findings from the study indicate that
weather-related variables significantly affect traffic delay; more impor-
tantly, the interactions between variables (obtained by random param-
eters with heterogeneity in means approach) are found to increase the
delay duration, and accordingly, a road safety management system
with joint warnings for multiple severe weather conditions need to be
proposed. Third, more weather-related variables are observed in the
Weekday model than in the Weekend model. So, integrating diverse
driver behaviors of weekday and weekend perspectives into consider-
ation at all stages of resolved policy.

This study also has some limitations. Firstly, due to the lack of crash
characteristics in original datasets, this study only explores the relationship
between weather conditions and traffic delays caused by traffic incidents,
so more comprehensive data can be obtained for further research. In addi-
tion, future work in this area can explore the spatial transferability of the
proposed models across states and compare the differences among states.
It is noted that the utilization of Intelligent Transportation Systems (ITS)
easing traffic congestion, a good understanding of what are the Critical Suc-
cess Factors to support ITS in reducing traffic jams will be potential future
research (Çaldağ and Gökalp, 2020). Moreover, the effect of weather on
traffic safety during the COVID-19 lockdown requires further exploration.
With the advent of COVID-19, a unique and unprecedented period of
slower traffic occurred due to the outbreak control policy. Existing research
found that crash frequency decreased during the earlier “Lockdown” period
while severity increased (Sekadakis et al., 2021; Dong et al., 2022; Shaik
and Ahmed, 2022). There also has study to investigate its impacts on traffic



Fig. 8. Using the Night model to predict Day data.
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safety during the later stage of the pandemic (Gong et al., 2023). They dis-
covered that the crash frequency was significantly lower throughout the
pandemic. However, it significantly increases during the later stage due
to the relaxed restrictions. In future work, longer periods of data to study
the impact of weather on traffic safety from the COVID-19 “Lockdown” to
the “New Normal” would be a promising direction.
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