
1 
 

OWL Formal Ontology for the Social Structure in the 

OperA Meta-model 

 

 

THESIS 

 

Submitted in the partial fulfillment of 

The requirements for the degree of  

 

MASTER OF SCIENCE 

 

In 

 

 

COMPUTER SCIENCE 

TRACK INFORMATION ARCHETECTURE 

 

By 

 

 

Weili Tuo 

Born in Chongqing, China 

 

 

 

 

 

 

 

    

Web Information Systems 

     Department of Software Technology 

     Faculty EEMCS, Delft University of Technology 

   Delft, The Netherlands 

    http://wis.ewi.tudelft.nl 

  



2 
 

Author:      Weili Tuo 

Student ID:   4192990 

Email:       tuoweili19910606@gmail.com 

Abstract: 

The rise in various activities of organizations in society increases the demand for organizational 

model. Because the organizational model is used for managements and such activities will 

increase management demand for organizations. The organizational model (OM) defines the way 

in which activities such as task allocation, coordination and supervision are directed towards the 

achievement of organizational aims. OperA is an existing framework for organizational modeling. 

OperettA, which is based on the OperA approach, is a graphical environment for the analysis, 

management, and specification of an organizational model. There are two ways to create OperA 

organizational model: through editing XML documents and through OperettA. Within both ways, 

there are limitations and disadvantages, such as editing inconsistencies or semantic 

inconsistencies. In this thesis, we present the OWL OperA meta-model, which is redelivered from 

the OperA approach description into OWL2, and OWLperettA as a plug-in for OperettA to export 

the Social structure (SS) of an Organizational Model designed by OperettA into OWL2 format. The 

OWL OperA meta-model provides a more expressive way of defining or specifying the elements 

in an organizational model. OWLperettA, in combination with OperettA, presents a convenient 

environment to design the SS of an OM. Using reasoner and SPARQL query for checking the 

OWL2 ontology, we are able to overcome the limitations and disadvantages of OperA and 

OperettA described above for specifying and analyzing the Social structure of an organizational 

model.  

 

Keywords: OperA, OperettA, OWL2, Organizational Modeling, the Social Structure, Ontology, 

meta-model, Semantic. 

  



3 
 

Graduation Committee 

 

Chair: Prof. dr. ir. G.J. Houben, Faculty EEMCS, TU Delft 

University supervisor: Dr. H.M. Aldewereld, Faculty TPM, TU Delft 

Committee Member: Dr.M.V,Dignum, Faculty TPM, TU Delft 

Committee Member: Dr.M.B.van Riemsdijk, Faculty EEMCS, TU Delft   

http://staff.tudelft.nl/en/H.M.Aldewereld/


4 
 

Preface 

This thesis has been produced as my final piece of work for my study at Delft 

University of Technology as a master Information Architect (IA) student in Computer 

Science. I performed my thesis within the Information and Communication 

Technology section. During the time at TUD, I had take courses from the domains of 

Business and IT. In order to support my future work in information, I decided to 

choose a topic related to the information. The experience of performing the 

challenges in this thesis makes me improve a lot in dealing with research problems. 

 

I would like to deeply thank my daily supervisor Dr.Huib Aldewereld by this 

opportunity. Without the help and guidance of Huib, the thesis would not be 

possible to be finished. He provided all kinds of comments to me while I was 

performing this thesis. He pushed me to the right direction when I was confused and 

help me a lot by frequent meetings. I would like to thank my professor Geer Jan 

Houben. He allowed me to perform my thesis in ICT section and make me 

understand how to think in research. He also gave me advices for evaluating in 

creatively and powerful ways.  

 

I would specially thank Dr.Virginia Dignum, who introduce me to the topic of this 

thesis and help me solve the problems I met. Furthermore, my thanks also go to 

Dr.Birna van Riemsdijk for providing me with feedbacks, guidance and critiques. I 

have learnt a lot from all of them. 

  

 

 

 

Weili Tuo 

Delft. The Netherlands 

May 5th.2014 

  



5 
 

Contents 

目录 

OWL Formal Ontology for the Social Structure in the OperA Meta-model ...................................... 1 

Abstract: ............................................................................................................................................ 2 

Preface .............................................................................................................................................. 4 

Contents ............................................................................................................................................ 5 

1. Introduction .............................................................................................................................. 7 

1.1 Problem Statement ............................................................................................................. 9 

1.2 Challenges & Research Questions ..................................................................................... 10 

1.3 Methodology ..................................................................................................................... 12 

1.4 Scope ................................................................................................................................. 13 

1.5 Contributions .................................................................................................................... 13 

1.6 Design Guideline ............................................................................................................... 14 

2. Background Information ......................................................................................................... 15 

2.1 OperA ................................................................................................................................ 15 

2.2 OperettA ............................................................................................................................ 16 

2.3 OWL ................................................................................................................................... 17 

2.3.1 OWL & OWL2 Language ......................................................................................... 17 

2.3.2 Elements of General OWL2 Ontology .................................................................... 18 

2.4 Protégé .............................................................................................................................. 19 

2.5 EMF ................................................................................................................................... 19 

2.6 Reasoner ........................................................................................................................... 21 

2.7 DL-query Tab ..................................................................................................................... 21 

2.8 SPARQL-query .................................................................................................................... 22 

3. Specification of the OWL OperA Meta-model ........................................................................ 24 

3.1 Mapping Methodology...................................................................................................... 24 

3.2 OperA Meta-model Description ........................................................................................ 25 

3.2.1 Architecture of SS ................................................................................................... 25 

3.2.2 Architecture of SS in OM ........................................................................................ 26 

3.3 OperA Meta-model Definition .......................................................................................... 28 

3.4 Specification of SS ............................................................................................................. 29 

3.5 Conclusions ....................................................................................................................... 32 

4. OWLperettA: OWL Auto Generator Tool ................................................................................. 33 

4.1 Motivation & Aim of OWLperettA ..................................................................................... 33 

4.2 High-level Architecture ...................................................................................................... 33 

4.3 Specification of OWLperettA ............................................................................................. 35 

4.3.1 Requirements for OWLperettA............................................................................... 35 

4.3.2 Framework of OWLperettA .................................................................................... 37 

4.4 Usage of OWLperettA........................................................................................................ 38 

4.5 Conclusions ....................................................................................................................... 39 



6 
 

5. Predicted Added Functionalities ............................................................................................. 40 

5.1 Categories of Consistencies ............................................................................................... 40 

5.2 Possible Solutions .............................................................................................................. 42 

6. Case Study and Evaluation ...................................................................................................... 45 

6.1Description of Case ............................................................................................................ 45 

6.2 OperA Case Model Designing ............................................................................................ 48 

6.3 Evaluation Methods .......................................................................................................... 48 

6.4 Experiments ...................................................................................................................... 52 

6.4.1 Experiment One ..................................................................................................... 52 

6.4.2 Experiment Two ..................................................................................................... 54 

6.4.3 Experiment Three ................................................................................................... 55 

6.4.4 Experiment Four ..................................................................................................... 57 

6.5 Conclusions ....................................................................................................................... 58 

7. Discussion and Conclusions .................................................................................................... 58 

7.1 Discussions ........................................................................................................................ 59 

7.2 Limitations ......................................................................................................................... 61 

7.3 Conclusions ....................................................................................................................... 62 

7.3 Future Work ...................................................................................................................... 62 

Reference ........................................................................................................................................ 64 

Appendix ......................................................................................................................................... 66 

A. OWL OperA meta-model Specification ........................................................................... 66 

B. Evaluation Results ........................................................................................................... 70 

C. Query Statement for the Added functionalities .............................................................. 73 

 

  



7 
 

1. Introduction 

According to (Epstein, 2006)agent-based computational modeling is changing the face of social 

science. The purpose of any society is to allow its members to coexist in a shared environment 

and pursue their respective goals in the presence or in co-operation with others. Organizational 

society as (V. Dignum, Meyer, Dignum, & Weigand, 2003) described is an environment consists of 

different agents and interactions between different agents. These agents were revealed by 

(Ferber, Gutknecht, & Michel, 2004) as independent actors interacting together to coordinate 

their behavior and often cooperate to achieve some collective goal. An organization can be 

defined as a specific solution created by more or less autonomous actors to achieve common 

objectives. So, organizational modeling has been advocated to specify systems which can 

represent the regulating structure explicitly and independent from the acting components. 

OperA described by (M. Dignum, 2003) has been developed to provide an expressive way for 

defining open organizations distinguishing explicitly between the organizational aims, and the 

agents who act in it.  

 

As described above, we are able to concisely indicate that OperA is a meta-model or framework 

for design organizational model. OperettA, described in (Aldewereld & Dignum, 2011), is a tool to 

support the design, analysis and development of organizational model (OM) using the OperA 

through as EMF based representation of the OperA meta-model. According to (Okouya & Dignum, 

2008), we will see that some problems will always occur when designers design the OM through 

editing document and OperettA. These problems will be described in the Section 1.1. 

 

(M. Dignum, 2003) has introduce the Logic for Contract Representation (LCR), to describe 

interactions between different agents or social states in organizational model. However, LCR is 

logic and it make OperA framework hard to reason. In addition, because OperettA is based on  

(Budinsky, 2004), It does not contain an expressive semantics too, which means OperettA also 

cannot reason about consistency. These limitations in the OperA meta-model cause the problems 

of OperettA for the designer. By perfecting the development of the OperA framework, designers 

can design the OM easier and more accurately through OperettA, so we propose to convert 

OperA meta-model into a more expressive ontology. 

 

Indicated by the above demand, we suggest several potential solutions for them. (Klyne & Carroll, 

2006), McGuinneSS (McGuinness & Van Harmelen, 2004), W3C (Group, 2009) are suggested 

potential solutions for our conversion of the OperA framework to ontology. As (Okouya et al., 

2008) has described that, RDF, OWL, OWL2 are all powerful language for describing ontology. 

Comparing RDF, OWL and OWL2, They are all RDF based and can express semantic meaning of 

data. OWL has more vocabularies than RDF to describe ontology, and OWL2, as an extension of 

OWL, further complete the syntax of OWL. 

  



8 
 

 EMF OWL2 

Features  Standardized 

 Structured 

 Too supported (eclipse) 

 Expressiveness 

 Inheritance 

 Constraint definition 

 Maintainability 

 Automatic code generated (eclipse) 

 Standardized 

 Structured 

 Tool supported (Protégé ) 

 Expressiveness 

 Inheritance 

 Maintainability 

 There exist a reasoner for classification and consistence of the 

ontology 

 Semantic Query language can be used to query the ontology 

and a set of Instance data stored in a data repository 

 Semantics 

 Better Connectability 

 Stronger Constraint definition 

Table1.1 Comparison between EMF and OWL for designing OperA meta-mdoel 

 

Table1.1 has shown that, comparing to EMF, OWL2 can cover most of EMF’s features. In addition, 

OWL2 has more features that EMF doesn’t have. We can see that, except for the above features, 

OWL2 don’t use UNA as well. However, the OWL2 can be inferred by their semantic expressions 

to identify the elements. After comparing features of EMF and OWL2 in representing the OperA 

meta-model, we can introduce some advantages of OWL2 in the following:   

 

 Semantics: In OWL2, all the elements in the ontology can be assigned semantic meaning. 

This can be used to check class consistency, allow for ontology query or any other thing. It is 

the most important feature that OWL2 can support in contrast to the EMF model design. 

With the semantic features, a lot of implicated relationships, or meaning of text can be 

contained in the OWL2 ontology design. This is also the primary cause for our solution in 

Section1.2.  

 Stronger constraint definition: OWL2 provides a rich set of primitives and allows for 

consistency checking by using additional axioms and several OWL2 class and property 

expressions. 

 Connectability: it means that OWL2 is easier to connect to different systems. There are 

multiple systems that are able to develop “similar OperettA” software based on OWL 

ontology. (Knublauch, Fergerson, Noy, & Musen, 2004) provides a lot of methods to realize 

OWL related implementation it.  

 

Of these advantages, we will try to evaluate only the first two. As shown by the Table above, we 

think that OWL2 may be more powerful than EMF to design the OperA meta-mode, because it 

has more features like the powerful query language, connectability, semantics, and stronger 

constraint definition. Semantics, which is the core feature of OWL2, gives more meaning to 

elements and relationships in ontology. Stronger constraint definitions define elements 

constraints in ontology more detailed. These two features will make the meta-model more 

expressive. The connectability means better connection between different systems, which means 

more compatibility and reusability. All the advantages are caused by the differences between the 



9 
 

EMF and OWL2. Some of these improvements will be evaluated through the case studies 

(examples) which were already built for the EMF based meta-model. 

 

After analyzing of Table1.1 above in order to perfect the OperA framework, we select to use 

OWL2 as the basis of converting the OperA meta-model. We propose to convert the OperA 

meta-model represented through EMF into OWL2 based ontology. We also intent to show the 

advantages of our converted model compare to the OperA meta-model designed in EMF. Below 

Figure1.1 show our objective of project.  

OperA meta 
model in EMF

OperA meta 
model

In OWL2

OperA meta 
model 

definition

Represented through EMF(XML)

Represented by OWL2

OperettAOnly used by

Used by

OWLperettA tool

Be Plug-in of

OWL2 
files

Export

Potential used by

Other potential 
systems

 

Figure1.1 Project Objectives 

 

Overall, the project will produce the OperA meta-model which was represented in EMF, in OWL2. 

Through the project, an ontology called OWL OperA meta-model will be reproduced after 

converting the original model OperA meta-model represents through EMF, which we will call the 

OperA meta-model in the following Chapters. After we design the OWL OperA meta-model, we 

should be able to design cases with this model. However, editing OWL2 documents manually is 

difficult and error prone. We propose to design a tool to automatically create and export cases 

OWL2 to as well. With these OWL2-based cases, we can do the evaluation effective.  

 

The introduction is structured as the follows. First, the research approach is presented containing 

description of the research questions and the solution approaches are listed. Secondly, we offer a 

methodology of our design and the process of achieving objectives. In addition, we describe our 

scope of project, and contributions made in this thesis.  

 

1.1 Problem Statement 

As mentioned above, there are a number of problems with the EMF based meta-model of 

OperettA. (Okouya & Dignum, 2008) introduces the main problems as follows:  

The OperA meta-model lacks semantics. In a lot of situations with case, there is a high potential 

occurs errors in the editing process. It will be hard or complex to check the consistency of a case 



10 
 

model by the designers. All the inconsistencies checking have to be done manually. Artificial 

lookup will not work effectively if errors occur, which means that it can be hard to modify or 

upgrade an OperA case model. This problem can be divided into 2 sub-challenges which will be 

explained clearly in the following. Some kinds of error are not detectable in OperettA and editing. 

Our solution will try to solve this. 

 

1.2 Challenges & Research Questions 

When we design an organizational model through the OperA meta-model without OperettA, 

there is a high potential occurs errors in the editing process and it will be difficult for a designer 

to check the consistency or find the errors they have made while editing the documents. The 

model is based on XML hard to find out possible errors that may occurred in the designing phase. 

This challenge leads us to the first research question described as below.  

 

1. Research question 1 

How can the designers check the consistency of the case model easily instead of manually 

checking? 

 

 Approach 

We will use the Protégé to check the inconsistencies of the model and try to find all errors made 

in the designing. If some errors happen in the designing of a case model, it will be difficult to 

check the errors. As (Horridge, 2009)  and (Walter, Parreiras, & Staab, 2012) pointed out, an 

important part of OWL2 is semantic features expression and stronger constraints. Constraint 

definition can describe the conceptual description better because it contains semantics it and 

more powerful expressions. Reasoner (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007) has been 

developed by using of the semantic expression and stronger constraints to realize automatically 

judgment and derivation. With the reasoner, the process of designing a case model in OperA will 

be highly improved by automatically checking the consistency of the ontology.  

 

We use a case study to prove that OWL2 can help checking the inconsistency of a model. For this 

we use the conference scenario, detailed in Chapter6, which was already modeled in current 

version of OperettA. We will design OperA case model using the same case description. Finally, 

the outcome should show that whether it can automatically check inconsistency in the case 

model which is guided by the OWL OperA meta-model through reasoner.  

 

For a model, if some semantic errors happens, that not mean the model is incorrect. As  

(Aldewereld & Dignum, 2011) has mentioned that, OperettA is able to be used to create OM 

which is based on OperA meta-model. So, we are capable of using OperettA to design OM. 

However, for the OperettA, it uses the EMF for the development, which means that semantic 

errors are not able to be checked. Semantic error defines that in some kind of situation, the 

description of elements in model is not suitable for semantic meaning of the syntax or concepts. 

Without Unique Name Assumption (UNA) is a kind of semantic consistency for OperettA, which 

means that when we entry the name for different individuals in OM, it is not possible for us to 



11 
 

use the name to identify the individuals (same name can be assigned to different individuals). 

However, as empirical fact, it’s better for a model to make individuals different with different 

name which can result in without vague. If we can find out the individuals in the OM with the 

same name, we are able to locate these individuals and have the possibility to make them 

different and easy to be identified visually. There is another one semantic consistency may 

happen while designing the OperA OM. It is unacceptable that we when design an OperA case 

model without OperettA, we make an objective has sub objective of itself. However, this kind of 

situation is possible in syntax of OperettA. These introduction leads to following research 

question 2. 

 

2. Research question2 

How can we check the semantics consistency of a model exported by the tool developed by us? 

 

 Approach 

By the introduction of (Prud’Hommeaux & Seaborne, 2008), SPARQL query provide query 

statement for designers to query specific information from a RDF based format document. As  

(Klyne & Carroll, 2006) has described that, RDF is an expressive language and basis of OWL2. So, 

if we try to query information of OWL2, we can use the SPAQRL query. As (Sirin & Parsia, 2007) 

has presented that, because of the large vocabulary of OWL2 compare to RDF, we should do 

some modification for the SPARQL query to query DL syntax. With the help of this query, we can 

access the ontology and query the specific information in the ontology. Therefore, this approach 

by using SPARQL query can provide us method to access data in the ontology and query all 

specific information out. 

 

We are able to use case study to prove the validation of the approach. The conference scenario 

mentioned above is used again. For evaluate semantic inconsistency example 1, firstly, we add 

some same names for different individuals in the conference case description. Then, we try to 

design this OM case by OperettA. In the following, we use the tool we propose to develop to 

export this case into OWL2 file which follows the OWL OperA meta-model. The tool will be 

detailed explained in Chapter3. After we get the OWL2 file which represents the conference case 

with some same names for different individuals in OM, we input the file into Protégé, and using 

the (Rodriguez-Muro, Lubyte, & Calvanese, 2008) which will be detailed described in Chapter2 to 

query the individuals with the same name. Results should show that different individuals of same 

name will be queried and located by SPARQL query. With regards to semantic inconsistency 

example 1, we add an objective has its sub-objective attribute of its own in the OWL OperA case 

model. Then, we use the reasoner to export inferred ontology. On the top of this ontology, 

combining with SPARQL query, we can get this objective which has sub-objective of itself. The 

detailed evaluation will be explained in Chapter 6. 

 

As the information introduced in the above paragraph, we need to get a conference case in OWL2 

for the SPARQL query. But the OWL2 is complex and hard to edit the case in the OperA OWL 

meta-model format by txt, so there is a demand to support creation of OWL OperA OM 

conveniently. 

 



12 
 

3. Research question3 

How can we automatically get a case model in the format of the OperA OWL meta-model? 

 

 Approach 

We have designed a tool to convert a case model with OperA model into an OperA OWL 

representation (in accordance with the OWL OperA meta-model). After using this tool, we get an 

OWL model of organizational model which can be used by protégé. With the help of this tool, we 

can do the transformation easier. 

 

With the mapping from the OperA meta-model to the OWL OperA meta-model, we will develop 

the tool based on OperettA to take full use of the functions in OperettA resource. Combined with 

Jena (McBride, 2001), we can implement this tool. 

 

On the basic of these solutions to these challenges, there should be two expected detailed 

functionalities added to the model: 

1. It has the ability to do the inconsistency checking of the ontology automatically. 

2. It is able to check the semantic inconsistencies of the ontology automatically. 

 

In addition, there should be an added functionality for the OperettA tool: 

3. We can have a tool to convert an OperA case model into an OWL OperA case model. OperA 

case model means the SS of a case OM built on OperA meta-model. OWL OperA case model 

represents the SS of a case OM built on OWL OperA case model 

 

These added functionalities will be detailed described and evaluated in Chapter 5 and Chapter 6. 

If we prove that these properties are valid, we can answer our research by these added 

functionalities. In order to answer these research questions, we use the methodology introduced 

below as the guidance of our processes. 

1.3 Methodology 

This project follows the design methodology explained below: 

Empirical foundation Development
Theoretical 
foundation

EMF&OWL2
Advantages
OperettA

Specification of OWL 
OperA Meta-model,
Development of tool

Protégé, SPARQL query,
Reasoner, OWL2, EMF,

OperA

Experiment theory for 
Evaluation 

Problem statements

Research questions

Re
lev

an
ce 

cy
cle

De
vel

op
men

t 
cy
cle

Ri
gor

cy
cle

Main elements 
Evaluation

Interaction
cycle

Interaction
cycle

 



13 
 

Figure1.2 Design Methodology  

 

In this methodology, there are three core parts to the project: the relevant cycle, the 

development cycle and the rigor cycle. These cycles will interaction with each other development. 

Eventually, we can get the outcome through the develop cycle: 

 Relevance cycle: Empirical foundation 

In this cycle, we analysis the OperA meta-model, and OperettA, and form the challenges and 

research questions. According to the experience of OperettA which is based on the OperA 

meta-model, we discover the challenges that the existing for OperettA. The process can be called 

Empirical foundation. This part provides the foundations for the development, and compares the 

results of the evaluation the development to confirm our contributions. 

 Design cycle: Development 

In this cycle, the development intends to design the meta-model of OperA in OWL and the tool 

for automatically exporting OWL OperA case model. The design of the case study and evaluation 

of this case such that we can judge whether the OWL OperA meta-model is correct and can solve 

the research questions. This part gets directions from the empirical foundation and the 

theoretical basis to make the development feasible.  

 Rigor cycle: Theoretical foundation 

In this cycle, we search for the related work and knowledge which are need for this project which 

are called background theories. We should find our theoretical ways or methods to do the 

experiments which are used to support the evaluation. In this part, we get the requirements from 

the development part and find the theoretical foundation for the development.  

 

1.4 Scope 

As OperA is a complicated framework consists of several parts: The Social structure (SS), the 

Interaction Structure (IS), the Communication Structure (CS), and the Norm Structure (NS) are the 

core sub-frameworks of OperA. We scope our research in this project into a particular part of 

these described above. In OperA, each part of them is functionally independent module and 

elements in them are described independent. In order to convert all the OperA, we should do 

them separately, which will improve the efficiency. So, the scope of our thesis is not limiting our 

results.  

 

Therefore, an OWL-Based ontology for only OperA meta-model, named the called Social 

Structure (SS) will be designed and evaluated. We call this the ontology OWL OperA meta-model.  

1.5 Contributions 

In this thesis, we made the following contributions: 

1. We produce an OWL OperA meta-model by converting the SS of the OperA meta-model into 

OWL2. 

2. We develop a plug-in of OperettA for exporting the SS of an OM designed by OperettA into 



14 
 

OWL2. Through this plug-in, we are able to get models on OWL OperA meta-model. 

3. We do the evaluation of OWL OperA meta-model through case study. After the evaluation, 

we successfully prove that OWL OperA meta-model produce more advantages comparing to 

OperA meta-model. 

1.6 Design Guideline 

In order to convert OperA meta-model into OWL2, some more research steps need to be taken as 

well. The following activities will be taken to do the development: 

1. Study the OperA meta-model (Social structure) and EMF modeling, use of protégé, OWL2 

language; 

2. Analysis and learn the Social structure of OperA, the do specification of SS for converting it 

into OWL2. Elements, relationship and activities analyzing of SS. 

3. Design correct and complete mapping OWL OperA meta-model of Social structure in OWL2 

by protégé; 

4. Develop a simple tool as plug-in of OperettA based on the OWL OperA meta-model for 

creating case model.  

5. Example collection and learning of the OperA Social structure and do the case study for the 

evaluation. 

 

The thesis is organized as follows: Chapter2 presents the related works which we may use or 

discuss in our project. Chapter3 discusses about OWL OperA meta-model and specify features of 

this model. Chapter4 provides the specification of the tool OWLperettA, this tool is a plug-in of 

OperettA and is able to be used for exporting OperA model into OWL2 model.  With the 

description of Chapter5, we can get to know the added functionalities which will occur after our 

meta-model conversion. Chapter6 show the evaluation of these added functionalities mentioned 

in previous Chapter. Finally, we summarize what we have contributed and give the conclusion for 

our thesis in Chapter7.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

2. Background Information 

Before we design the OWL OperA meta-model or develop the tool, we give some necessary 

theoretical foundations on the relevant topics used in this thesis. According to the science cycle 

of methodology described in Chapter 1, the OperA framework, the OperettA tool, OWL2 model, 

Protégé etc are the necessary theoretical foundations we are going to use this information run in 

the remainder of the thesis. 

2.1 OperA 

The OperA framework is an organizational modeling approach (M. Dignum, 2003). OperA 

combines the specification of organizational structures, requirements and objectives allowing 

participants to act freely on their own capabilities and demands. At an abstract level, the OperA 

model describes the objectives of the organization which are used to describe the desired states 

that the organizations want to be in.  

 

OperA contains an organizational model (OM), social model (SM), and interaction model (IM). 

The OM specifies the means to realize the objectives of the organization. The OM is divided into 

of 4 structures as follow: the social structure (SS), the interaction structure (IS), the normative 

structure (NS) and the communication structure (CS). The social model identifies organizational 

roles to agents and describes contracts about role enactment. The interaction model specifies the 

interaction agreements between role-enacting agents and the organization. In our project, we 

focus on the OM. 

 

The organizational model in OperA, as shown in Figure 2.1 below, it is a part of OperA 

meta-model. The four structures (SS, IS, NS, CS shown below) are the main elements. Roles and 

interactions that determined by the global goals, are described in the social. Interactions 

between the roles, determined by the global goals, are described in interaction structure.  

Organization norms describing the expected or desired behaviors, are defined in the normative 

structure. The ontology and communication languages are in the communication structure. In our 

project, we keep our scope in SS of OperA framework. Because we have limited time to do this 

project and the OperA is a large framework that cannot be converted completely in a short 

research time. In OperA, each part of them is functionally independent module and elements in 

them are described independent. In order to convert all the OperA, we should do them 

separately, which will improve the efficiency. So, the scope of our thesis is not limiting our results.  

  



16 
 

 
Figure 2.1 Part of OperA framework 

There are several important elements that should be explained and described in the SS. These 

elements are Role, Objective, Dependency, and Rights. These elements will be described in 

chapter 3. The OperA is the guiding framework and methodology for creating OWL OperA 

meta-model we have mentioned in Chapter 1 and Chapter 4. It is also the basis for OWLperettA 

in Chapter 3. 

 

2.2 OperettA 

The OperettA tool was described in (Aldewereld & Dignum, 2011). OperettA is an IDE (Integrated 

Development Environment) developed to support the design, analysis and development of agent 

organizations using the OperA conceptual framework and methodology. It is intended to support 

software engineers and developers in both developing and documenting the various aspects of 

specifying and designing an organizational model.  

 

The OperA conceptual framework is represented in EMF (EMF is explained later in Section 2.5) 

and resulted in the OperA meta-model. The OperA meta-model provide an expressive way for 

defining organizations and elements among the organizations. OperA meta-model supports the 

development of model driven software OperettA. OperettA enables the specification of 

organizational elements. OperettA also supports the specification of interactions among 

participants in the organizations.  

 

OperettA is based on EMF, build using the OperA meta-model and containing visual editors in 

Eclipse framework. OperettA will be used during the evaluation as described in Chapter 5, and 

Chapter 6. In Chapter 3, we are going to introduce the OWLperettA plug-in embedded in 

OperettA used for designing OWL2-based OperA model.  



17 
 

2.3 OWL 

2.3.1 OWL & OWL2 Language 

OWL is a web ontology language described in (McGuinness & Van Harmelen, 2004). OWL is based 

on RDF. It can be used by applications to deal with the data in the ontology rather than just 

presenting them to humans. OWL is used to directly describe the meaning of terms in 

vocabularies and relationships among different terms. This representation is called an ontology. 

OWL has more facilities to express meaning and semantics than RDF as (McGuinness & Van 

Harmelen, 2004) described. OWL adds more vocabulary for describing properties and classes 

compared to the RDF. There are three significant sub-languages in OWL: OWL-lite, OWL-DL, 

OWL-Full. For the design of an ontology based on OWL, the three sub-languages can be 

selectively used for different situation and requirements. 

 

According to (McGuinness & Van Harmelen, 2004), the three sub-languages can support different 

situations as following: 

OWL-Lite : the simplest OWL sub-language that can be used for the specification of inheritance 

and constraints. 

OWL-DL: compared to the OWL-Lite, OWL-DL is based on description logics which allows for 

automatic reasoning. Computational completeness and decidability are important features of 

OWL-DL. 

OWL-Full: the most expressive language, but it lacks computational capabilities. 

 

Overall, OWL-Lite has lower complexity than OWL-DL and OWL-Full. OWL-DL and OWL-Full both 

want to maximize expressiveness. However, OWL-DL supports computational completeness 

through description logics while OWL-Full supports free syntactic use without computational 

guarantees.   

 

Basic OWL ontology consists of Individuals, Properties and Classes, and can be edited through the 

Protégé tool as mentioned in (Horridge, 2009). Individuals represent the objects in the scope. 

They are known as instance of classes. OWL does not use the Unique Name Assumption 

(UNA).  In logics with the unique name assumption, different names always refer to different 

entities in the world. Properties are binary relations on individuals just as roles in description 

logics or attributes in some other formats. Properties in ontology consist of three sub-properties 

called: Object Property, Data type property and annotation property. These properties are all 

used to show the relationships existing in the ontology. Classes are explained as the sets of 

individuals. They are described using formal descriptions that exactly state the requirements for 

the membership of the classes. Combining Classes, Properties and Individuals, we get an 

ontology. 

 

As (Consortium, 2009) presented, OWL2 is similar to the overall structure of OWL but with more 

functionalities. OWL2 is an extension of OWL. OWL2 ontology provides Classes, Properties, 

Individuals and Data values and is stored as a semantic web document. For OWL2, the following 



18 
 

some distinctions to OWL: 

1. Syntactic sugar: some of the new features are syntactic sugar, which means that the added 

features to the syntax of the OWL to provide more features by OWL2 such as the disjoint 

union of classes.  

2. New expressivity: new features like object properties, data types, data type properties have 

new expressivities to express elements in them such as keys, property chains, qualified 

cardinality restrictions and so on.   

3. Three new defined profiles. OWL 2 Profiles are sub-languages (syntactic subsets) of OWL 2 

that offer important advantages in particular application scenarios. OWL 2EL, OWL2 QL, and 

OWL2 RL are the three defined profiles. Each profile is defined as a syntactic restriction of 

the OWL 2 Structural Specification. As a result, the set of RDF Graphs that can be handled by 

the Description Logics reasoner is slightly larger in OWL 2. 

 

According to the OperA, we know that there are all kinds of constraints for the interactions 

between different elements. In order to represent OperA framework, we should use the language 

that is capable of representing different specified constraints. OWL2 will provide more powerful 

syntax for expressing these kinds of constraints by syntax sugar, new expressivity or defined 

profiles. Therefore, we choose the OWL2 as the basic language for the completely converting. We 

will introduce the OWL2 ontology components for future designs. 

 

2.3.2 Elements of General OWL2 Ontology 

OWL2 ontology mainly consists of three parts: Individuals, classes and properties. We intent to 

introduce these three part as the basis of our specification. 

 

Individuals 

As (Horridge, 2009) has presented that Individuals represent objective in the domain which we 

are interested in. It should have a name and it must be explicitly stated that individuals are the 

same or different because of the unique name Assumption is not exist in OWL. Individuals are 

also known as instances of classes. Designing an OWL OperA case model is creating individuals 

upon the OWL OperA meta-model.  

 

Properties 

Properties are binary relations on individuals. Properties link two individuals together to show 

the relationship between the two individuals. Properties can be explicitly described further to 

make us know more about the relations. These relations can endow more semantic meaning and 

axioms for future inferring. Properties can also link the individuals to a data type. This is another 

kind of description for the individual. Therefore, in Protégé, the properties are divided into 3 

parts: ObjectiveProperties, DataProperties and AnnotationProperties. In our project, 

ObjectiveProperties and DataProperties need to be detailed described by the constraints and 

axioms for different elements in OperA approach.  

 

Classes 



19 
 

According to the (Horridge, 2009), classes are elaborated to sets that include individuals. They 

are described using formal description format that state precisely the requirements for 

memberships of classes. Classes may be organized into a hierarchy with super-class and 

sub-classes which is known as taxonomy. These classes represent a category of individuals who 

may share the same properties. 

 

Taking our project into consideration, we choose OWL2 as the converting basis language as we 

has described in chapter section 2.3.1. We intend to create OWL2 ontology at the end. Instructed 

by this knowledge, we are going to specify the OWL OperA meta-model in Chapter 3.  

 

2.4 Protégé 

As (Horridge, 2009) mentioned, Protégé is a free, open source ontology editor and 

knowledge-base framework. The Protégé platform supports modeling ontologies via a web 

client or a desktop client. Protégé ontologies can be developed in a variety of formats including 

OWL, RDF(S), and XML Schema. Protégé is based on Java, is extensible, and provides a 

plug-and-play environment that makes it a flexible base for rapid prototyping and application 

development. 

 

An important difference between Protégé’s OWL and OWL standard is that OWL standard does 

not use the Unique Name Assumption (UNA). This means that two different names could actually 

refer to the same individual. For example, “Queen Elizabeth”, “The Queen” and “Elizabeth 

Windsor” might all refer to the same individual. In OWL, it must be explicitly stated that 

individuals are either the same, or different from each other — otherwise it will be unclear 

whether they might be the same, or whether they might be different from each other.  

 

If we use Protégé to design OWL2 ontology, three main elements should be paid attention to: 

Individuals, Classes and Properties as we mentioned in Section 2.3.2. For designing the 

definitions and constraints of the model, we should define the relationship between individuals 

and individuals, or individuals and datatype. With the help of ObjectPropertiesRestriction and 

DataPropertiesRestriction, we can give the semantic meanings to the model to express the 

relationships. 

 

In addition, As (Tudorache, Noy, Tu, & Musen, 2008) has described that, there are a lot of 

plug-ins for Protégé. These plug-in make Protégé more powerful by providing different functions. 

In our project, the reasoner and SPARQ queries will be used in Chapter 6 for the evaluation. 

These two are going to be introduced in following paragraph. Protégé is the tool for us to 

implement the OWL OperA meta-model as we specified in Chapter 4.  

2.5 EMF 

Eclipse Modeling Framework (EMF) as mentioned in (Budinsky, 2004) is a framework to describe 

http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html
http://protegewiki.stanford.edu/index.php/WebProtege
http://protegewiki.stanford.edu/index.php/WebProtege
http://protegewiki.stanford.edu/index.php/WebProtege
http://protegewiki.stanford.edu/wiki/Protege4UserDocs


20 
 

a model, and then generate software related to that model. Especially, it is integrated with and 

tuned for efficient programming. It brings the high level modeling and low level programming 

together. EMF is based on Eclipse, the described model concepts can be related to the 

implementation in Eclipse through EMF. 

 

Models in EMF gave a common terminology in describing the model, the meta-model (Völter, 

Stahl, Bettin, Haase, & Helsen, 2013). A meta-model is the basic structure of a complete model. 

In brief, a model is an instance of the meta-model, the meta-model is a model that makes 

statements about modeling. The meta-model can be used to deal with the challenges of model 

language syntax description and model validation through constraint defined in the meta-model. 

The main elements provided by EMF to build a meta model is described in Figure2.2.  

EClass

-name: string

EReference

-name: string

-containment: Boolean

EAttribute

-name: string

EDataType

eReferences

eReferenceType

 
Figure2.2 structure of EMF modeling 

 

The meta-model build through EMF composes of Eclass, EAttribute, EReference , and EDataType. 

With these elements, they can describe interactions and relationships of a meta-model. After 

building the meta-model, one can develop software depending on this meta-model. The Figure 

2.3 shows the process of creating a model driven software. 

XML model

Xml shema

RDB Schema

Other...

Meta-model 
(Ecore model)

Java code
Automatically

generate

Model driven 
software

Basis of

 

Figure 2.3 model-driven software process 

As shown in Figure2.3, the Ecore model or meta-model can be created from an UML model, an 

XML Schema or a RDB Schema. On the basis of the Ecore model, we are able to develop the 

related software. The biggest advantage of using EMF is the automatic code generating 



21 
 

functionality. Java implementation code or other forms of models can be automatically generated 

to develop related software easier.  

 

The description above makes us understand more about the EMF. This Section supports the EMF 

advantages described in Chapter 1. In our project, the OperA meta-model was built on EMF. So, 

when we design the OWL OperA meta-model in Chapter 4, we also need to take the OperA 

meta-model into consideration. 

2.6 Reasoner  

As (Sirin et al., 2007) has mentioned, the reasoner is a key element for working with OWL. The 

reasoner is a kind of software or reasoning engine that enables to infer logical consequences 

from a set of asserted facts or axioms. A reasoner will provide many standard and extended 

reasoning services for semantic ontologies. Reasoners can be used to check the consistency of 

the classes, object properties, and data properties in the OWL ontology. There are several 

important reasoners that have been developed for supporting ontology reasoning such like Pellet, 

Hermit, or FacT+.  

 

HermiT (Shearer, Motik, & Horrocks, 2008) is the current used reasoner by Protégé mentioned in 

Section 2.4. Given an OWL model or ontology, HermiT can identify the subsumption relationships 

between classes so that it does reclassification. It can also check the consistency of the inputted 

ontology. After using the reasoner, the inconsistencies are shown in Protégé in red and in an 

explanation window. With the help of the Hermit reasoner, we can get an result for the 

consistency and classification of the classes, object properties and data properties, and we can 

judge the efficiency of our OperA OWL meta-model through a comparison between the expected 

result as we mentioned in above paragraph with the actually results.  

 

In Chapter 1, we have mentioned the reasoner for evaluation. In the Chapter 5, we treat the 

reasoner as a candidate for solving one of our research questions. Detailed information about the 

usage of reasoner  will be described in chapter 6. 

 

2.7 DL-query Tab 

As Nickdrummond1 has introduced that the DL-query tab is a plug-in for Protégé. It can provide a 

method to query the OWL ontology consisting of DLs in protégé. DL is a sub-language of OWL2, 

which we have mentioned in Section 2.3. However, it has a limitation that only classified 

ontologies can be queried through it. A classified ontology is a correct ontology that is checked 

for consistency using the reasoner. Manchester OWL syntax (Horridge et al., 2006), which is a 

friendly and easy syntax, used as the basic for the query language. OWL DL tab use the class 

expression to query the relevant information of ontology. Class expression is based on the 

                                                             
1
 DL-query tab, retrieve from: http://protegewiki.stanford.edu/wiki/DLQueryTab, 2014. 



22 
 

Manchester OWL. The DL-Query can also be used to add elements to an ontology just like the 

function of Protégé. 

 

The DL query consists of three parts: Query (class expression), Query result and selectable 

components. For the Query result, the output of the query will be shown in a query result 

window. The output will be different by choosing the selectable components which we desire to 

get. Six components can be selected for querying: super classes, ancestor classes, equivalent 

classes, subclasses, descendant classes and individuals. These components are all the result 

categories which we can get from the DL-query tab.  

 

DL-query is treated as a candidate solution for doing the added functionality evaluation in 

Chapter 5. Information mentioned in this Section will help analyzing and deciding whether the 

DL-query tab can be used in Chapter 5 or not. 

 

2.8 SPARQL-query 

In Section 2.4, it is said that, SPARQL query tab (Rodriguez-Muro et al., 2008) is a plug-in in 

Protégé. The SPARQL query tab is used for querying ontology information and access data in an 

ontology by using the SPARQL based query language. This language will be described in the 

following. We will use it for our evaluation. However, in order to take use of this plug-in, SPARQL 

query language should be used. That means, we should have ability of using SPAQL query 

languages. 

 

As (Prud’Hommeaux & Seaborne, 2008) mentioned, SPARQL query is query language for RDF. It 

can be used to express queries on source data which are stored in RDF. The SPARQL query has its 

own syntax and semantic expression for querying. The results of the SPARQL will be sets or RDF 

graphs.  

 

For basic SPARQL queries, Basic Graph Pattern (BGP) is the building block. A BGP consist of a set 

of triple patterns. A triple pattern is an RDF triple. For complex SPARQL queries, Combinations of 

BGPs are made by using the following projections: SELECT, OPTIONAL, UNION and FILTER. 

 

After the brief introduction of SPARQL, we should notice that in this thesis, we may focus on 

querying the OWL-DL by SPARQL for the detailed information. As (Sirin & Parsia, 2007) has 

presented that, even though there are many query languages for querying RDF and OWL, neither 

type can be used to query the OWL-DL, so SPARQL-DL was developed. SPARQL-DL is a powerful 

and expressive language for querying OWL-DL by combining TBox, RBox and ABox. As (Fokoue, 

Kershenbaum, Ma, Schonberg, & Srinivas, 2006) has described, the TBox contains assertions 

about concepts such as subsumption and equivalence. The RBox contains assertions about roles 

and role hierarchies. The ABox contains role assertions between individuals and membership 

assertions. The SPARQL-DL has a more expressive and powerful vocabulary compared to DL query. 

Mixed Boxes query in syntax is an extension for normal ABox or Tbox for SPARQL-DL. The 

semantics of the SPARQL-DL is similar to OWL-DL. This information is the theoretical foundation 



23 
 

for the Terp which is described below. 

 

According to the requirements of SPAQRL queries in Protégé, we need to be capable of querying 

OWL with SPARQL queries. The query range will be OWL2 ontology in Protégé rather than RDF. 

We have demand to design a particular kind of SPARQL query statement for querying OWL2. As 

(Sirin, Bulka, & Smith, 2010) has described, Terp has been developed to design this particular 

kind of SPARQL query statement. Terp is an extension for SPARQL query from RDF to OWL2. Terp 

syntax allows class, property, and data range expressions, expressed in Manchester syntax, to be 

used inside SPARQL queries. With this information, we will gain ability to write queries to query 

OWL2 ontology in our evaluation in Chapter 6. 

 

In this Chapter, we have introduced the related information that should be known and will be 

used for the following design and implementation. OperA, OperettA, and EMF are the basic 

elements for this project. They are the theoretical foundations for the specification of the OWL 

OperA meta-model in Chapter 3 and the specification of OWLperettA that will be developed in 

Chapter 4. OWL2 and Protégé should be known and understood for the design and 

implementation of the OWL OperA meta-model in Chapter 3. Reasoners, DL-queries or SPARQL 

queries may be applied and used for the evaluation which will be done in Chapter6. In the next 

Chapter, we will design our tool for simplify the evaluation by using the related knowledge 

introduced in this Chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

3. Specification of the OWL OperA 

Meta-model 

We have introduced the relevant information about the entire project, such as OperA, OperettA, 

and so on, in the previous Chapter. The OWL OperA meta-model is our desired product because 

of the problems that occur in the OperA meta-model, as we have described in Chapter1. We also 

intend to develop a tool based on the OWL OperA meta-model. Therefore, we should specify the 

OWL OperA meta-model by considering the OperA meta-model as the basis for conversion. With 

supporting background information supporting, we can find appropriate ways to design the 

OWL OperA meta-model. 

 

In this Chapter, we aim at providing a specification of the elements into OWL format after 

analyzing the OperA meta-model as presented by (Aldewereld & Dignum, 2011). We call it the 

OWL OperA meta-model as another representation of the OperA approach; it is also the basis for 

developing the tool. In order to design the OWL OperA meta-model, the mapping methodology 

and structure of the OperA meta-model should first be illustrated clearly.  

 

3.1 Mapping Methodology 

As we have described, we are going to map the OperA meta-model into OWL2. The OperA 

meta-model is based on EMF. Therefore, we must find a method for doing it. Table 3.1 below 

outlines the methodology of conversion.  

Domain in EMF  Ranges in OWL2 

Eclass 

     EAttribute 

              EAttributeType 

              Etype  

     EReference 

              Etype 

     EEnum 

     EDataType 

     EOperation 

              EAnnotation 

Class 

Data Property 

Data Type 

Date Type 

Object Property 

Class 

Class 

Data Type 

- 

- 

EAnnotation 

     EAnnotation Details 

              Key 

              value 

     EAnnotation Reference 

Annotation property 

    - 

        constant 

        property value 

    - 

Entity URI (Class) 

EEnum Class 



25 
 

    Name 

    Default value 

    Class 

    Data property assertion of individual 

Table 3.1 EMF to OWL2 Mapping 

Table 3.1 has shown the mapping methodology for transforming the core elements of the EMF 

model into OWL2 elements. By using this mapping table, we are able to perform the conversion 

in the following sections. 

 

3.2 OperA Meta-model Description 

In order to conduct the mapping from the OperA meta-model to the OWL OperA meta-model 

with a complete transfer, we should first understand clearly the structure of the meta-model. 

Relationships in SS and relationships between SS and OM are the core aspects we are going to 

explore. First, we introduce the relationships in SS. 

3.2.1 Architecture of SS 

According to (Aldewereld & Dignum, 2011) , the social structure of the OperA meta-model 

presents the definition of organizational roles, with their objectives, rights, norms and the 

relationship among them. The SS architecture contains several elements and the relationships 

among them are shown below in Figure3.1:  

 



26 
 

 
Figure3.1 Social Structure 

According to Figure3.1, SS presents the different interactions among Role, Dependency, Objective, 

etc. Dependency also has three sub classes. Various elements interact with others through 

different interactions. Role, Objective and Dependency are the elements directly forming the SS. 

However, OperA is a model consists of SS, IS, CS, and NS. Without the interaction with other 

structures in OperA, SS will not achieve the functionality of OperA. We will describe the 

interaction between the SS and the other structures in the OperA meta-model in the following 

section. 

 

3.2.2 Architecture of SS in OM 

We have introduced the SS in the previous section. We will now present the relationships 

between SS and the OM to explain the interaction among the SS and the other structures in 

OperA. According to (Aldewereld & Dignum, 2011), SS is a part of the OM and it will interact with 

the other parts to achieve the model features. A brief high level relationship of SS in the OM is 

shown in the Figure3.2 below: 



27 
 

 

Figure3.2 Relationship of SS in OperA 

As Figure 3.2 reveals, SS is a part of the OM. The SS in Figure 3.2 is a representation of Figure 3.1. 

There are several elements related to role; but not all the related elements are elements of SS. 

We do not have to define the elements that are out of SS, such as PartialStateDescription in the 

OperA meta-model, because of our scope. The related elements will be called interacting 

elements. Role, Objective, Dependency and Rights are the most important interacting classes in 

SS and elements such as Norm, player and partial state description should be in other structures, 

albeit related to SS. The SS interact with the other parts of OM through the interaction among 

Roles in SS and Player, Norms, and PartialStateDescription out of SS. Above all, elements in SS will 

also interact with each other. All relationships are interactions among instances of different 

elements. Therefore, OperA can work effectively with complete model features.  

 

Based on these two figures, we can clearly see the elements, different relationships, and 

interactions in SS and out of SS. We will now abstract the information contained in the SS of the 

OperA meta-model in the following section. 

 



28 
 

3.3 OperA Meta-model Definition 

Before we specify the OWL OperA meta-model, we should clearly understand the content of the 

OperA meta-model. Detailed information about the OperA meta-model will be shown in this 

section. According to (M. Dignum, 2003), the OperA approach is defined as follows.( we provide 

just give the Role element example of the OperA approach; the others are elaborated in 

AppendixA.1.) These definitions are provided as the basic background for the existing OperA 

meta-model defined in (Aldewereld & Dignum, 2011). 

 

Role: It is the presentation of participants that holds in the organization. Roles describe an 

organizationally-sanctioned, structured bundle of activity types. In the SS, role representations 

specify the activities and services necessary to achieve social objectives. Role representations 

also enable abstraction from the individuals that will finally perform the role. We provide the 

definition of Role elements that should existed in SS in Table3.2.  

 

Role Definition 

Name:            A unique name referring to this role 

Objective:         A set of landmarks that describe the desired result of this role 

Rights:            A set of expressions about the rights of the role 

Norms:            A list of normative expressions that limit this role 

RoleType:          Which type of agent can apply for or perform this role: external or Internal 

Table 3.2 Role definition 

 

According to Table 3.2, we can see that Role has some attributes. These attributes show the 

relationship between instances of the role and other elements. As we have described, these 

definitions are the basis of the existing OperA meta-model. The role elements of the OperA 

meta-model are defined in Table 3.3.  

Element EAttributes       interacting elements EReference 

Role objectives 

norms 

rights 

roletype 

dependantOn 

DependeeIn 

Objectives 

Norms 

Rights 

Roletype 

Dependency 

Dependency 

Name 

Table 3.3 OperA meta-model definition for Role 

We abstract Table3.3 from the existing OperA meta-model built by EMF. This Table shows that 

EAttribute reflects the relationships between role instances and interacting elements’ instances. 

Interacting elements are the destination ranges of these relationships. EReference shows the 

relationship between role instances and data type. Among the interacting elements, some of 

them belong to SS and some do not. 

 

The above information has introduced the Role definition in the OperA approach and the Role 

specification in the OperA meta-model. There are some additional elements that have been 



29 
 

defined and specified. Due to limited space, we put them in the AppendixA.1. We have already 

obtained all the specified OperA meta-model elements in SS. Among all the elements, some 

interacting elements should also be mentioned so that we can read the OperA format documents 

successfully through the OperA document. However, as we describe in Section 3.1.1, we don’t 

need to specify these interacting elements in detail because they do not belong to SS. These 

interacting elements are shown below:  

 

Norms: They describe the rules and limitations that some of the classes (like Role) must follow. 

PartialStateDescription: It is a type of description of status for different states needed for 

different classes (like the Objective in Social Structure) in the OM structure. 

Player: It is a description for higher level of Role; a player can play different roles in different 

situations and requirements. 

 

All of the above information represents the definition of the elements of SS. We need to specify 

each element in Table 3.3 above to the OWL2-based Format and implement through Protégé. 

Through the support of the OperA meta-model specification, the OWL OperA meta-model can be 

designed to represent the OperA approach in OWL2. We will now specify the OWL OperA 

meta-model. 

3.4 Specification of SS 

In this Section, we present specifications of the elements in SS in the OperA meta-model into 

OWL2. Then, we implement these specifications through Protégé. We have presented theoretical 

knowledge of the OWL2 ontology in Section 2.3. We should specify the related model into OWL2 

ontology. According to the definition of the OperA meta-model, we can specify elements into 

OWL2 as follows by using the mapping methodology provided in section 3.1. 

 

Class hierarchy 

In order to show clear relationships among elements that are named classes in OWL2, we design 

the hierarchy of classes of SS in Figure3.3. 

  



30 
 

OM

CSSS NSIS

Play
er

Norm PSD
Objec
tive

Depen
dency

Righ
t

Role
Type

Role

Depen
dency

Depen
dency

Depen
dency

 

Figure3.3 Class hierarchy of SS in OWL 

 

In the figure, we can see there are four hierarchies in the social structure. Our scope is SS and the 

sub-classes of SS. The reference classes are shown in the right of the figure as we mention in 

Section 3.2.1. In the following section, we define the SS for the OperA OWL meta-model mapping 

from the OperA meta-model. As the Figure shows, there are five classes and three sub-classes 

that must be defined. 

 

Class definition 

It is necessary for us to define the classes and the relationships between different classes in OWL 

ways. As we described above, all the classes in SS have been provided. We should define them in 

detail to achieve an entire meta-model.  

 

As (Horridge, 2009) has described, in OWL modeling, we can specify different elements through 

different features. The confirmed features in the above paragraph has been introduced, we thus 

have some simple guidance for specification of the OperA OWL meta-model. 

1. Elements should be specified into classes. 

2. Relationships between classes should be specified into properties. There are two kinds of 

properties that we should describe: objectproperties and dataproperties. 

 Objectproperties shows the relationship between individuals or classes. They have their 

own features and objectproperties restrictions. 

 Dataproperties shows the relationship between individuals or classes and data. They 

have their own features and dataproperties restrictions. 

3. Instances of a class should be specified into individuals. Individuals can be given value. 

 

According to this guidance and mapping table in section 3.1, we can design our OWL OperA 

meta-model by designing the classes, object properties, data properties and data type for 

different elements that exist in the OperA meta-model. In the following section, we provide the 



31 
 

specification for each element. We provide a Role element example. Specification for the other 

elements is shown in AppendixA.2 

 

Role 

The role and its relationships with each other classes are shown in Figure3.4 below: 

Role

Objecti
ve

Right
Datatyp

e

Norm

Depende
ncy

Depende
ncy

HasRoleName

HasRight

HasNorm

HasObjective

IsDependantOn IsDependeeIn

  

Figure3.4 role & relationship 

As the Figure 3.4 shows, for the individuals of a role, the role interacts with a data type and four 

interacting classes, as in the interacting elements we described in Section 3.2.1. Different 

interactions represent different relationships. We also give them a unique name for each 

different interaction. In the interacting classes, Norm is a class out of SS. We call it the 

OutInteract class. We define the relationships by derive target and destination target. Derive 

target is the deriving class of a relationship, which will be designed as a domain in the OWL 

OperA meta-model. Destination target is the destination class of a relationship, which will be 

designed as a range in the OWL OperA meta-model. For example, in the relationship HasRight, 

the domain should be class Role and the range should be Right. Based on the description above, 

we define the class Role in the table below, according to our simple rules and mapping table: 

Class Role 

DataProperties HasRoleName 

Dataproperties 

Restriction 

HasRoleName exactly 1 string 

Objectproperties  HasRight 

HasNorm 

HasObjective 

IsDependantOn  

IsDependeeIn 

Objectproperties HasRight some Right 



32 
 

Restriction HasNorm min 0 Norm 

HasObjective some Objective 

(IsDependantOn min 1 Dependency) or (IsDependeeIn min 1 Dependency) 

Table3.4 Role  

According to Table3.4, we can see that: for the dataproperty, we specify the name of the role. 

Individuals performing a Role should have a role name. The HasRoleName is the relationship. The 

domain of this relationship is Role and the range is dataType. These specifications show that: the 

individuals performing a Role have role names that are dataType. 

 

For Objectproperty, we specify the interacting elements of Role. For different interacting 

elements, we give them corresponding relationships. The domain of this relationship is Role and 

the range is the corresponding interacting elements. In particular, for the interaction between 

Role and Dependency, we design them following the requirements provided by the OperA 

framework and these logical features cannot be realized by the OperA meta-model. After the 

specification of these core parts of Role, we can specify other similar elements. 

 

Due to limited space, other class’ specifications for the OWL OperA meta-model are shown in 

AppendixA.2. With regard to the OutInteract classes, because of our focus on SS, it is not 

necessary to defined them in detail. We just need to briefly declare these classes (we don’t have 

to specify them) to ensure the completeness of SS.  

 

3.5 Conclusions 

In this Chapter, a mapping methodology (See Table 3.1) was presented. We also introduced the 

OperA meta-model, and specified the OperA OWL meta-model explicitly by using this mapping 

methodology. With the detailed definition of the elements and relationships, we can implement 

the modeling easily through Protégé. The implemented results are the OperA OWL meta-model. 

As we mentioned in Chapter 1, the OWL OperA meta-model is the desired product we propose to 

present. The OperA OWL meta-model will support the development of a tool. However, we 

should verify the OWL OperA meta-model by using a case study to evaluate it. That means we 

should design an OWL OperA case model for evaluation. However, it is not easy for a designer to 

design an OWL2 based OperA case model by editing; therefore, we hope to develop a tool to 

automatically export the OperA case model into OWL2. Then, we just need to use the OperettA 

to design the OperA case model as the input of the tool. The tool will be described in the 

following chapter.  

 

  



33 
 

4. OWLperettA: OWL Auto Generator Tool 

As we mentioned in Section 1.2, a tool may be used to export the OperA case model into an 

OWL OperA case model. This tool can also be used to answer research question 3. In order to 

do so, the tool should be supported by the OWL OperA meta-model. We have specified the 

OWL OperA meta-model in Chapter 3. Therefore, in this chapter, we introduce the 

OWLperettA tool. OWLperettA is supported by OWL OperA meta-model. In short, OWLperettA 

is a plug-in embedded in OperettA. Combining OperettA with OWLperettA, we can create an 

OWL OperA case model: its usage will be explained in Section 4.4. OperettA is based on the 

OperA meta-model we have created through EMF. However, OWLperettA should be based on 

the OperA OWL meta-model mentioned in Chapter 1 as one of our research goals.  

 

With the help of OWLperettA, we can create the SS of an OM through OperettA and export 

OWL OperA case model as the result. Through Protégé, we should be able to evaluate the 

efficiency of the OWL OperA meta-model by inputting this result into Protégé. In order to 

explain OWLperettA, we introduce its motivation and aim.  

4.1 Motivation & Aim of OWLperettA 

Motivation 

As we mentioned in Chapter1, we hope to solve research question 2 by using a tool to 

automatically form the OWL OperA case model, so that we can save time and reduce editing 

structure errors. This problem has been extended to research question 3. OWLperettA is the tool 

that will be developed to solve this problem.  

 

Aim 

As mentioned above, on the primary level, OWLperettA aims at solving research question 3. 

Specifically, OWLperettA is the desired tool for our project to automatically convert an OperA 

case model (OperA document) into an OWL2 file. We suggest that it be embedded into OperettA 

to make the project integrated. OWLperettA is developed to support the conversion of OperA 

document into OWL2 files for the SS of an OM using the OperA OWL meta-model. The OWL 

OperA meta-model has been described in detail in the previous chapter. 

 

In the following, we will provide a description of OWLperettA. In order to understand 

OWLperettA, we should first introduce its environment. 

4.2 High-level Architecture 

We present a high-level architecture of OWLperettA that explains its environments. These 

processes can export an OWL OperA case model based on an OperA case model. This OWL OperA 

case model can be validated as shown in the Figure4.2 below: 



34 
 

Case study 
description 
in OperA 
format

OWLperettA

OWL OperA 
meta-model

input

OperettA

Owl files

Output

Validation

Protégé

Reasoner

Sparql 
query

 

Figure4.1 High-level architecture of OWLperettA 

 

According to Figure 4.1, this architecture consists of three parts: input, OWLperettA and output. 

It shows how OWLperettA will be used in our project. 

 

 Input 

In Figure 4.1, an OperA case model designed through OperettA is used as the input for 

OWLperettA. As mentioned above, OperettA is an existing tool used to design an OperA case 

model. Considering our goal to evaluate a case model with changes in Chapter 6, we must insert 

changes into the design of an OperA case model. This OperA case model is used as input for 

OWLperettA. 

 

 OWLperettA 

OWLperettA follows the mappings from the OperA meta-model to the OWL OperA meta-model 

as we have presented in Chapter 3. When an OperA case model is input into OWLperettA, we can 

output an OWL OperA case model, which can completely cover all the features of an OperA case 

model. The OWL OperA case model should be in OWL2 format and OWLperettA is embedded in 

OperettA. 

 

 Output 

The output portion aims at validating the efficiency of the OperA OWL meta-model by verifying 

the OWL OperA case model. By using OWLperettA, we can obtain an OWL OperA case model 

designed through OperettA. The OWL OperA case model is the case labeled by the OWL OperA 

meta-model and structured by OWL2. Then, we input the output documents into Protégé which 

we have mentioned in Chapter2. Reasoner, DL-query, and SPARQL-query are three kinds of 

plug-ins in Protégé that we may use to perform the evaluation. The evaluation procedure will be 

explained in Chapter 6.  

 



35 
 

4.3 Specification of OWLperettA 

As demonstrated by the presentation of the high level architecture, OWLperettA can be regarded 

as a connecting component between an OperA case model and an OWL OperA case model.  In 

order to develop OWLperettA to fulfill all the functionalities in the architecture, we must identify 

the requirements for such development.  

4.3.1 Requirements for OWLperettA 

In order to fulfill our goal of conversion, we must identify the requirements of OWLperettA clearly. 

The following list briefly outlines the requirements of this tool: 

1. OperA-format input 

2. Extracting Raw data  

3. OperA meta-model to OWL OperA meta-model Conversion 

4. OWL-format output 

5. Integration 

6. Visual Interface 

7. Java based coding 

 

The above list offers a brief impression of the requirements necessary for OWLperettA. We next 

present them more precisely in terms of what they represent, why they are proposed and how 

they offer solutions: 

 

 OperA-format input 

 

Explanation: OperA format should be the input format for the case document. 

Reasons: Firstly, confirmed structured documents make the file easier to be read by a computer. 

Secondly, our project scope concentrates upon an OperA approach. 

Solution: OperettA can be used to design the OperA case model as input for OWLperettA. 

Integrate OWLperettA with OperettA. 

 

 Extracting raw data  

 

Explanation: We must extract necessary and important information (data flow that represents 

the raw data information) from the OperA case model. 

Reasons: When we have an OperA case model as input, we should be able to read the detailed 

and necessary information from this OperA case model. Extracting raw data provide a way to 

obtain the data flow. 

Solution: An extractor can be used to extract correct raw data from the OperA case model. Many 

methods in OperettA package can be used as the theories basis of our extractor.  

 

 OperA case model to OWL OperA case model Conversion 

 



36 
 

Explanation: There is a need to convert the raw data labeled by the OperA meta-model into raw 

data labeled by the OWL OperA meta-model.  

Reasons: Because we must convert the OperA case model into an OWL OperA case model, we 

must perform the conversion by following the mapping from an OperA meta-model to the OWL 

OperA meta-model. 

Solution: A convertor should be designed for the conversion. The converter should be based on 

the mapping from an OperA meta-model to the OWL OperA meta-model.  

 

 OWL2-format output 

 

Explanation: The output should be in OWL2 format. 

Reasons: Firstly, we wish to get OWL2 models through the transfer. Secondly, we are trying to 

evaluate the efficiency of the OperA OWL meta-model; the output of OWLperettA should be able 

to be used by the reasoner or the SPARQL query tab in Protégé that we described in Chapter2.  

Solution: A format generator for exporting and saving OWL files can be designed for fulfilling the 

requirements. As we mentioned in Chapter 1, Jena (McBride, 2001) can be used for solving this 

requirement. The OWL2 file export by Jena can be used in Protégé. 

 

 Integration 

 

Explanation: There is a demand for embedded OWLperettA into OperettA (Aldewereld & Dignum, 

2011) as a plug in. 

Reasons: Because we wish to make the tool an integrated tool, we intend to use the OperA case 

model as the input; the OperA case model can be designed by OperettA.  

Solution: OperettA, which is the software used in Eclipse, is the embedded platform for 

OWLperettA, so we should use the plug-in dependencies of OperettA to embed the OWLperettA 

into the OperettA.  

 

 Visual Interface 

 

Explanation: A visual interface is also needed for exporting the designed document. 

Reasons: It will save time and be easy for the user to adopt because of a humanized interface. 

Solution: There is a visual button for us called ontology. After pressing this button, we can export 

our designed OperA case model. In order to fulfill this, we are able to use eclipse.UI.plug-in 

package because for OperettA, it is used in the same way for establishing a plug-in. 

 

 Programming language used: 

 

Explanation: We must use programming language for the programming of this tool. 

Reasons: With the programming, we can design independent software that can easily to be 

connected to any other software with High compatibility. 

Solution: Java is a good solution. Java is platform independent and further, OperettA is Java 

based. It is better to create a plug-in with the same developing language of the platform in which 

it will be embedded. There are multiple development environments for Java. 



37 
 

 

With the combination and implementation of the different requirements, we can obtain an 

integrated OWLperettA for our conversion goal. On the basis of these requirements for 

OWLperettA, we can develop the framework for OWLperettA below. 

 

In the following section, we introduce the framework of OWLperettA for the detailed 

specification of this tool.  

4.3.2 Framework of OWLperettA 

Taking into account the information presented above, there are several processes that should be 

performed in OWLperettA, such as “read OperA case model”, “convert case model” and so on. 

Conversion can be implemented by dividing these processes into different components to make 

OWLperettA work normally and be easily understood. They can be called respectively raw data 

extractor, converter component and Format generator component. The structure of the 

OWLperettA will is shown in Figure 4.2 below: 

Extractor Converter Generator

OWLperettA

Input
Output

OWL Files

Raw 
data

Raw 
data

 

Figure4.2 Framework of OWLperettA 

According to Figure 4.2, we can see that different components interact with one another: to form 

an OWL2 file. There is a data flow that represents the raw data of a case, such as the conference 

case mentioned in Chapter 1. The data flow from the extractor; to the converter; and then to the 

generator. In the different components, the raw data are handled in different formats. We 

describe these components as follows. 

 

 Extractor component 

 

In the extractor component, we aim to read the OperA files automatically. We have embedded 

OWLperettA into OperettA, so we can use the methods provided by the OperettA package to 

develop OWLperettA as described in Section4.3.1. This component aims at reading the inputted 

case study to obtain the raw data of the document. As described in Chapter1, we scope our 

project in the SS of an OM; thus, we should be focused on the provided methods of the SS in the 

OperettA package. 

 

 Converter component 

 

After the extraction of the inputted files, we come to the converter. In this component, we 



38 
 

transfer the extracted data (raw data obtained from the OperettA package) into the required raw 

data labeled by the OWL OperA meta-model, following the mapping we designed in Chapter 4. 

Hash Map, List should be used to store information for potential calling. We can simply visit all 

the related packages of OperettA and store the useful information into Hash Map or List for 

future converting. 

 

 Generator component 

 

After the converter, we should label these raw data with the OWL OperA meta-model and export 

them into OWL2 files. We should use Jena which we have mentioned in Section 4.3.1 and 

Chapter 1. Jena can provide methods for us to label raw data with the OWL OperA meta-model 

and export them into OWL2 (implementing the mapping). Finally, we can obtain the respective 

OWL2 files, called the OWL OperA case model. We hope that this case model can be input into 

Protégé. 

 

However, as we have described, OWLperettA cannot be used independently to create an OWL 

OperA case model. In the following, we will introduce the usage of OWLperettA to create the 

OWL OperA case model for evaluation.  

 

4.4 Usage of OWLperettA 

Above, we have elaborated the development of OWLperettA. However, as we outline in Chapter 

1, we must create an OWL OperA case model for the evaluation of research questions 1 and 2. 

We have mentioned that OWLperettA should be a plug in of OperettA. As we have described 

above, OperettA can be used to design an OperA case model, and OWLperettA can directly 

export an OperA case model into an OWL OperA case model. Thus, by using OperettA together 

with OWLperettA, we can conveniently create an OWL OperA case model. The usage of 

OWLperettA to design an OWL OperA case model is shown in the Figure 4.3 below. 

 



39 
 

Case Social 
structure 
descrption 

Text analysis

OperettA

Social 
structure 
Editor

interaction 
structure 
Editor

Partial 
State 

Description 
Editor

OWL files
(OWL OperA 
Case model)

Export 
into

input

OperA meta-model

Based on

OWLperettA

OWL OperA meta-
model

De
si
gn
ed
 

th
ro
ug
h

Ba
se
d 
on

Based on

OperA case 
model

Save as As input for

  

Figure 4.3 Usage of OWLperettA in designing an OWL OperA case model 

 

According to Figure 4.3, we can see that, in order to design an OWL OperA meta-model, we must 

use both OperettA and OWLperettA. OperettA is a tool that consists of several parts: a Social 

Structure Editor, an Interaction Structure Editor and a Partial State Description Editor. We need to 

focus on the Social Structure Editor because our scope is the social structure of OperA; we need 

to use this part to create an OperA case model for evaluation. Social structure is a graphical 

environment for the specification, analysis, and design of the SS of an OM. After designing 

through OperettA, we can obtain an OperA case model that is XML-based. We have embedded 

OWLperettA into OperettA as well, so we can import the designed OperA case model into 

OWLperettA directly. Finally, the OWL OperA case model is exported by the OWLperettA.  

 

4.5 Conclusions 

In this chapter, with the support of the OWL OperA meta-model, we have developed OWLperettA.  

Through OWLperettA, we can automatically export OWL2 files by transforming an OperA case 

model into an OWL OperA case model. Combining OWLperettA and OperettA, we can create an 

OWL OperA case model through an interface in Eclipse instead of editing manually. As we 

outlined in Chapter1, we wish to create a tool to solve research question 2, which leads to 

research question 3. After our implementation, we have created OWLperettA, which can answer 

research question 3. However, even though the combination of Chapters 3, and 4, we still cannot 

verify whether a correct meta-model has been successfully designed or not. We propose 

methods to evaluate research questions 1 and 2. Based on these research questions, we come up 

with some added functionalities that the OWL OperA meta-model may bring us. These added 

functionalities are described in following chapter. After evaluating these added functionalities, 

we can verify the OWL OperA meta-model by answering research questions 1 and 2. 



40 
 

5. Predicted Added Functionalities 

In the previous chapter, we designed the OWL Opera meta-model under the guidance of the 

OperA meta-model. Comparing the OperA meta-model to the OWL OperA meta-model, there are 

several obvious functionalities that can’t be fulfilled by the former; however, they can be realized 

through the latter. The OperA meta-model and OperettA can be improved by realizing our 

predicted added functionalities which can answer the research questions we described in 

Chapter 1. All these predicted added functionalities occur because of the semantic meaning and 

stronger constraints expression of the OWL2 and complete structural advantages. They will be 

evaluated in Chapter 6.  

 

In this chapter, we introduce several functionalities that can’t be identified or fulfilled when using 

the OperA meta-model to design the OperA case model; but can be realized through the OWL 

OperA meta-model. All these functionalities will contribute to future design of organizational 

models. After a detailed description of the functionalities, we briefly explain how we can evaluate 

or fulfill the functionalities. All the improved functionalities should be limited in the scope of 

social structure (SS). 

 

5.1 Categories of Consistencies  

In the OperA meta-model and OperettA described in (Aldewereld & Dignum, 2011), some limited 

problems will exist when designing through EMF. The OWL OperA meta-model is predicted to be 

able to solve some of the problems. Predicted added functionalities may occur because of the 

more powerful vocabulary and the semantic meaning of the expressions in OWL2. All these 

predicted functionalities are the key to our research questions 1 and 2 as outlined in Chapter1. 

We intend to divide the predicted added functionalities into easily comprehensible categories of 

consistencies according to the research questions. The consistencies are divided into two 

categories: structural consistencies and semantic consistencies. 

 

Category1: structural consistencies. 

As we described in Chapter 1, research question 1 intends to check the consistency of a case 

model of OperA. Added Structural functionality represents the added functionality that occurs 

through the improvement in solving problems in the structure of an OWL OperA case model. 

Functionality 1 mentioned below is the core predicted structural functionality we will describe 

and evaluate in our project. 

 

Functionality 1: Checking the structural consistencies (errors) of the ontology. 

OperettA, as described by (Aldewereld & Dignum, 2011), is a complete software to design the 

OperA case model. All the features of the OperA meta-model can be realized by OperettA. So the 

result of the designed OWL OperA case model should be structured correctly if we design the 

OperA case through OperettA for exporting by OWLperettA. However, when we design an OWL 



41 
 

OperA case model manually by editing xml, there is a high potential to make structural 

inconsistencies or errors. However, these structural inconsistencies of the manually edited OWL 

OperA case model should be checked.   

 

Category2: semantic consistencies. 

As we described in Chapter 1, research question 2 intend to check semantic consistency of the 

case model of OperA. When we address it, there should be added semantic functionality that 

cannot be checked, even through OperettA. Added semantic functionalities represent the added 

functionalities caused by the improvement in solving the semantically consistent problems of the 

case model. Functionalities 2 through 4 mentioned below are the core predicted semantic 

functionalities we will describe in our project. As we mentioned in the abstract, there are two 

ways to create an OWL OperA case model. Semantic inconsistencies have high a potential   

occur in both ways. 

 

Functionality2: Different Individuals in the same class should not have the same individual 

name. 

 

When we design an OWL OperA case model, for the same class, different instances can be given 

the same individual name at the same time. For example, in a simple OperA case model 

“Conference” with two role instances: General-chair and pc-chair, they both have the role name 

attribute called: chairman. Normally, we know that these two instances are different and they 

should not have the same role name so that they can be identified easily from the semantic level 

by the future users or designers. In other words, they should have semantic consistency. However, 

the OperA meta-model allows for the OperA case model to share the same name for different 

instances in same class. After the design of the OWL OperA meta-model, we should be able to 

check the semantic inconsistencies that occur in the OWL OperA case model designed through 

OWLperettA. In this functionality, it means that different individuals in the same class with the 

same individual name can be checked.  

 

Functionality3: Different individuals in different classes should not have the same individual 

name. 

The situation described above is almost the same for functionality 3. For different classes, the 

instance of one class can be given an individual name equal to the individual name of an instance 

in another class at the same time in the same model. For example, in a simple OperA case model 

“Conference” with one Right SubmitPaper and one objective instance PublishPaper, they both 

have the right name equal to the objective name called: PublishPaper. Normally, we know that 

these two instances are different in different elements. They should not have the same name so 

that they can be identified and queried easily from the semantic level by the future users or 

designers; as above, they should be semantically consistent. However, the OperA meta-model 

allows for the OperA case model to share a given individual name for instances in respectively 

different classes. After its design, we should be able to check the semantic inconsistencies that 

occur in the OWL OperA case model through OWLperettA. In this example, the occurrence of 

different individuals in different classes with same individual names can be checked.  

 



42 
 

Functionality4: Objectives should not have a Sub Objective of themselves. 

A particular semantic inconsistency will occur when we design the OWL OperA case model by 

editing. We can design objective individuals to have a Sub Objective of themselves. For example, 

let us assume that there are three objective individuals, O1, O2, and O3. O2 is a Sub Objective of 

O1. O3 is a Sub Objective of O2. It is possible for us to create a semantic inconsistency in which 

O3 has a Sub Objective of O1 while editing the OWL OperA case model. Because the OWL OperA 

meta-model is the basis of the OWL OperA case model, we should be able to check the semantic 

inconsistencies that occur in editing the OWL OperA case model. In other words, the objective 

individuals that have a Sub Objective of themselves can be checked. 

 

5.2 Possible Solutions 

As mentioned in Chapter 1, there are three potential methods in Protégé to evaluate the case 

model: the reasoner (Hermit or FACT+), the DL-Query tab and the SPARQL Query tab (described 

in Chapter 2). In this project, SPARQL Query should be the main method for added semantic 

functionalities. The Reasoner and the DL-query tab cannot work so effectively in semantic added 

functionalities, but reasoner may be suitable for added structure functionalities. The reasons are 

elaborated below.  

 

The reasoner 

As (Shearer et al., 2008) have described, the Hermit reasoner follows the novel “hyperTableau” 

calculus algorithms to realize inconsistent checking, class, objective functionalities, and data 

functionalities classification. Reasoner is also the basis for the DL-query tab, which will be 

explained in the next section. The Hermit reasoner is a functional reasoner for OWL2. 

 

The Hermit reasoner can identify the subsumption classes, objective properties or data 

properties. It will check the inconsistencies for the classes, objective properties, data properties 

and even the Individual by the constraints definition or axioms offered in the OWL-DL. These 

inconsistencies can be regarded as structural inconsistencies. However, it doesn’t take initiative 

to determine by inputted detailed data information that contains semantic inconsistencies. For 

our added functionalities 3 through 5, semantic consistencies can be used as the identification of 

the core elements we wish to obtain. Therefore, the reasoner doesn’t work well in functionalities 

2 to 3.  

 

But for the added functionality 1, the reasoner may be used for the evaluation. The reasoner can 

be used for checking consistency of ontology. In this project, some structural errors may occur 

during the design of the OWL OperA case model by editing if the workload for editing is large. By 

inputting the OWL OperA case model in Protégé and starting the reasoner, we can ascertain 

whether the OWL OperA case model is consistent or not. Inconsistency will be presented in a red 

text or explanation box. Reasoner can also be used as an auxiliary means to export inferred 

ontology.  

 

The DL-query tab 



43 
 

As the DL-query tab2 has introduced, there are two main limitations of our analysis that would 

make it impossible to realize the added functionalities: 

 

Limitation 1: The DL-query tab is a type of querying based on the reasoner. It should ensure that, 

before using the DL-query, the reasoner should be used first. The active ontology will be classified. 

The DL-query can only execute a query when the ontology is classified (as we have mentioned in 

Chapter2). One more step should be taken before using the DL-query tab. For functionality 1, if 

we wish to use the DL-query, we should use the reasoner first. However, the reasoner can directly 

check the inconsistencies in functionality 1, and thus, we do not need to use DL-query tab. 

 

Limitation2: The DL-query tab is based on the Manchester OWL syntax by (Horridge & 

Patel-Schneider, 2009). It can be used to query the data information store in the OWL ontology. 

However, it can’t query the individuals who share the same specific data information that can be 

regarded as semantic information. Manchester syntax only offering the expression for query 

(with basic logical symbols), and it does not support the syntax to search specific data 

information. However, this kind of query is the core of our evaluation of functionalities 2 through 

4. We simply wish to query these individuals and objective individuals with a semantic relation 

without knowing the specific value. So the DL-query can’t be used as the method for realizing the 

added functionalities 2 through 4. 

 

Combining the above situations, we can conclude that the DL-query is not appropriate fit for our 

evaluation to realize the predicted added functionalities. 

 

 

The SPARQL-query Tab 

As (Sirin et al., 2010) have described, Terp has been designed and implemented. Terp syntax 

allows class, functionality, and data range expressions, expressed in Manchester syntax, to be 

used inside SPARQL queries. With this information, we will gain the ability to write queries to 

query OWL2 ontology in our evaluation in Chapter6. The SPARQL query tab of Protégé provides 

us an environment to query OWL2-based ontology by using Terp. It is possible for the SPARQL 

query language to query the relevant information through semantic information. Therefore, we 

believe the SPARQL query tab could be a suitable method for the added functionalities 

evaluation. 

 

However, for functionality 1, it is proposed to check the structural consistencies occurring in the 

case model. When the OWL OperA case model is edited with structural inconsistencies, it is not a 

correct OWL2 ontology. When we use the SPAQRL query tab into a wrong OWL2 ontology, it is 

not possible to check the inconsistencies of a wrong ontology. So, the SPARQL query cannot be 

used for evaluate the functionality 1. 

 

In our project, we prefer to use the SPARQL query tab to perform the evaluation of functionalities 

2 through 4. Because of functionalities 2 to 3, we should check relevant information based on 

semantic information in the OWL OperA case model. Individual names are treated as the 

                                                             
2
 DL-query tab, retrieve from: http://protegewiki.stanford.edu/wiki/DLQueryTab, 2014 

http://protegewiki.stanford.edu/wiki/DLQueryTab


44 
 

semantic information contained in the OWL OperA case model. While using the SPARQL query 

tab, we should input relevant query statements for specific queries. These relevant query 

statements are shown in AppendixC. Detailed evaluation methods will be provided in the 

evaluation part. However, we should use the SPARQL query tab for checking the objective 

relations information, which is regard as semantic information as well. However, through 

OperettA, it is not possible to create these types of relationships inconsistencies as well. However, 

when we create an OperA case model, it is possible to create these types of inconsistencies by 

editing these types of inconsistencies. Therefore, in order to evaluate this functionality, we 

should edit these types of semantic inconsistency manually instead of using OperettA. Combining 

the reasoner and the SPARQL query tab, we are able to check the inconsistency of the OWL 

OperA case model. 

 

In this chapter, we introduced the predicted added functionalities that the OWL OperA 

meta-model will bring to us after we design it, by comparing it to the OperA meta-mode. We also 

introduced the candidate methods for the different added functionalities evaluations. Generally, 

we can divide the functionalities into two main categories: added structural functionalities and 

added semantic functionalities. Research questions 1 and 2 may be solved through these 

methods as we have discussed in this chapter. But the predicted added functionalities should also 

be evaluated by these methods. In the following chapter, we will perform the evaluation through 

providing detailed methods and the detailed OWL OperA case model for respective 

functionalities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

6. Case Study and Evaluation 

In Chapter 3, we introduced the OWL OperA meta-model. Because of the uncertainty of this 

model, we must evaluate it by designing a case model. This evaluation should be able to verify 

the added functionalities we predict to fulfill. We should abstract the social structure parts for 

evaluation. As the methodology for our project described in Chapter 1, the case study should be 

used as the basis of evaluation. As(Yin, 2009) has pointed out, if we use case study as evaluation 

method, the case study should be a less desirable form of research question, does not require 

control behavioral events and focuses on a contemporary event. Therefore, we would like to use 

the case study for our project evaluation, dependent on our project’s methodology. In our project, 

we wish to verify the effectiveness of the OWL OperA meta-model, which could be ascertained 

by evaluating the predicted added functionalities. In order to realize this evaluation, we create 

corresponding scenarios for the evaluation to obtain respective results. After analyzing the 

results, we reach our conclusion. 

 

In this chapter, a case called “conference” will be introduced for the evaluation. We are able to 

create the OperA case model through OperettA and OWLperettA or through editing. These are 

two ways in which we create a case, as we discussed in Chapter 4. Evaluation is described in 

detail to verify the OWL OperA meta-model. For all the added functionalities we predicted in 

Chapter 5, we set up the methods and scenarios respectively. Analyzing the result by putting the 

method into the scenario, we can ascertain whether the functionalities are validated or not. We 

will introduce the conference case at the beginning of this chapter as the basis of the case study. 

 

6.1Description of Case 

Conference organization is an exemplary case for the organizational model. We choose 

conference organization as our case example for several reasons. Firstly, all types of conferences 

are held in various places at any given time, which makes the conference universal. In addition, a 

conference can cover all the elements of SS in OperA, which will make the evaluation credible. 

Finally, a conference is relatively easily understood by all of us without any difficult academic 

knowledge. Below, we elaborate some of the main descriptions that have been provided by 

researchers. 

 

Case description 

As (Zambonelli, Jennings, & Wooldridge, 2001)have described, a conference organization is used 

to support the management of an international conference. Setting up and running a conference 

is a multi-phase process that involves several types of individuals. During the submission phase, 

authors must be informed that their papers have been received and they need to be assigned a 

submission number. Once the submission deadline has passed, the program committee (PC) must 

handle the review of the paper, typically by contacting potential referees and asking them to 

review a number of the papers. Eventually, the reviews come in and they are used to decide 



46 
 

about the acceptance or rejection of the submission. Authors must be informed of these 

decisions and if their paper has been accepted, they must be asked to produce a revised version 

of it. Finally, the publisher must collect these revised versions and print the proceedings. 

 

(M. Dignum, 2003)has stated that the global objective of this society is to realize a conference. 

Stakeholders in this society are the organizers, the authors, PC members and participants. The 

objective of the organizer is to organize a successful conference, authors wish to have their 

papers accepted, PC members aim at assuring the quality of the program and participants hope 

for a high quality conference. Facilitation activities can be described in terms of an organizer role 

that administrates the conference and a chairperson role responsible to regulate conference 

sessions. 

 

According to (DeLoach, 2002), the system starts by having authors submitpapers to an individual 

in the paper database (PaperDB) role, who is responsible for collecting the papers, along with 

their abstracts, and providing copies to reviewers when requested. Once the deadline has passed 

for submissions, the person responsible for partitioning the entire set of papers into groups to be 

reviewed (the Partitioner role) asks the PaperDB role to provide him or her with the abstracts of 

all papers. The Partitioner partitions the papers and assigns them to a person (the Assigner) who 

is responsible for finding n reviewers for each paper. Once assigned a paper to review, a 

Reviewer requests the actual paper from the PaperDB, prepares a review and submits the review 

to the Collector. Once all (or enough) of the reviews are complete, the Decision Maker 

determines which papers should be accepted and notifies the authors. 

 

Based on the information provided above, we already have enough to abstract the case into a 

well-formatted description. In this description, all elements, relationships, interactions and 

values will be added. We abstract them in the following section. 

 

 

Case abstraction 

According to the descriptions of three kinds of conference organization cases, we can abstract 

their core elements and interactions as shown below in Figure 6.1: 

 



47 
 

Figure6.1 Conference organization interaction 

 

According to Figure 6.1, four stakeholders exist in this organization. Interactions are different 

among different stakeholders. We create the abstraction on the basis of the information in the 

case descriptions presented above, as set forth in Tables6.1 and 6.2below: 

 

Stakeholders Explanations 

General-chair The general-chair is the organizer, who aims at holding a successful 

conference. In order to guarantee the success of the conference, we must 

fulfill several objectives, such as obtaining submissions from authors, 

maintaining the quality of the Program, forming the PC committee for the 

reviewing and so on. 

PC-chair The program committee chair is the leader of the PC committee, who, along 

with the management of the PC-members, maintains the quality of the 

program. 

PC-member The program committee member is the basic component of the PC 

committee, who aims at correcting the reviews. 

Author Authors are the core elements of the conference. They publish a paper of 

their own. These papers are checked by the PC committee of the conference. 

Table 6.1 Stakeholders 

 

Stakeholders Interactions Interaction aims 

General-chair PC-chair, Author The quality of the program can be fulfilled 

through the interaction. 

PC-chair PC-member, General-chair They ensure that the papers are reviewed, and 

the quality of the program can be fulfilled 

through the interaction. 

PC-member PC-chair They fulfill the review of the papers 

Author General-chair The general-chair obtains submission of the 

papers from the authors. In return, the author 

will obtain the information concerning the 

paper’s acceptance status from the 

general-chair.  

Table 6.2 Interactions among Stakeholders  

The information in the above tables represents the basic components of conference organization. 

If we wish to design the conference organization into an OperA case model, we need detailed 

specification of these basic components by mapping them onto an OperA meta-model. 

 

In Tables 6.1 and 6.2, we have the analysis of the stakeholders and the various interactions within 

the conference case. With these elements, we are able to design the conference case into OperA 

in the next section. 

 



48 
 

6.2 OperA Case Model Designing 

Because of our scope, we only need to design the SS of the conference organization. According to 

the abstraction above, we can assign different elements in the case to the OperA meta-model. 

According to Figure 6.1, we can see that Role, Dependencies and Objective of Dependencies of 

the conference case model have been presented clearly. The interactions between role and the 

dependencies are also indicated by Figure 6.1. However, there are some types of information that 

have not been described yet. We must supplement our OperA case model with the Right, 

Objectives and Objective of Role. The complementary is shown in Table 6.3: 

Role Right Objective Sub-onjective 

PC-chair empty QualityOfProgram PaperReviewed 

AssignPaper 

DecisionOnPaper 

PC-member empty CorrectReview empty 

General-chair chooseAuthor SuccessfulConference GetSubmission, 

QualityProgram, 

FormPC, 

SendCFP  

Notify. 

Author empty PublishPaper empty 

Table 6.3 Conference specification in OperA 

 

According to this abstraction, we can implement these designs through OperettA or by editing. 

Thus, we have successfully designed the conference OperA case model. This conference OperA 

case model is used to support the evaluation methods described in the following section. 

 

6.3 Evaluation Methods  

As we mentioned in Chapter5, we have designed methods for evaluating the added 

functionalities. Because of the different categories of added functionalities, we should specify 

different methods to verify different functionalities. These methods provide the processes for 

performing case evaluation (through an experimental design). Combining figures and text in the 

following paragraphs, we describe each method clearly and separately. 

 

Method for evaluating functionality 1: 

We introduced functionality1 in Chapter5. The case ontology based on the OWL OperA 

meta-model designed by the designer can be checked for inconsistency automatically when an 

error occurs. At present, there are several methods to create the case ontology. Firstly, we can 

use OperettA to create the case model, which can be exported into OWL2 by OWLperettA. 

Secondly, editing an OWL document is another way to design a case ontology based on the OWL 

OperA meta-model. In setting up our method, we choose the second way to design the case 

ontology. 



49 
 

For the first way, OperettA is a tool to create a structurally correct OM. The designed OperA case 

model can be exported into OWL2, guided by the OWL OperA meta-model, which is a conversion 

of the OperA meta-model without changes. Thus, after we design a structural correct case model 

through OperettA and export it into OWL2 ontology, the case ontology will always be structurally 

consistent. For the second way, there is the possibility to design the case ontology with structural 

errors and the case ontology can be input into Protégé. Accordingly, we should use the second 

method to design the case, with all other processes handled in Protégé. The method to evaluate 

functionality 1 is shown in Figure 6.2. 

P
ro

té
gé

 p
ro

ce
ss

Conference case description

Conference OWL 
OperA model

Design through
Editing

Input into Protege

Conference in 
Protégé 

Reasoner
Choose the
Reasoner

Checking result

Start reasoner
Explanation of 

inconsistency in 
windows

Abstract 
windows information

OWL OperA meta-model

Guidance model for OM

Information about 
individuals with the same 

individual name

Based on the case description, 
we should made relevant 

changes

Case model with particular 
structural  errors or 

consistency

  
Figure 6.2 Method to evaluate functionality 1  

Based on Figure6.2, we can set up the steps as follows. 

Firstly, there is an existing OWL OperA meta-model, (designed in Chapter 3). We design the 

conference case based on the OWL OperA meta-model. As we have described above, we design 

the case by editing OWL2. 

Secondly, we should make specific structural errors in designing the conference case. A 

conference ontology will be created. We name it conference_with_editing_error.OWL. It 

represents the conference OWL OperA model in Figure 6.2. Then, we input this OWL document 

into Protégé. 

Finally, we start the reasoner. A window called “help for inconsistent ontologies” will occur and 

the ontology on the left side will turn red, which means that the ontology is inconsistent. After 

pressing the explain button, the inconsistent results are presented in this window. 

 

Method set up for evaluating functionality 2: 

We introduced functionality2 in Chapter5 – different Individuals in the same class shouldn’t have 

the same individual name. In particular, we demand to export a correct ontology so that the 

result is credible. For individuals in the same class, we should not enter the same individual name 

for each individual. The same individual name for different individuals will cause a 

misunderstanding of the ontology. We regard these as semantic inconsistencies. However, 

OperettA allows for defining different individuals with different individual names. So we should 



50 
 

find solutions for the designer to allow for identifying those individuals that have the same name. 

After locating these individuals, we can modify these names so that the ontology can be 

expressed more clearly. The method to evaluate functionality 2 is shown in Figure 6.3. 

 

O
p

e
re

tt
A

 P
ro

ce
ss

P
ro

té
gé

 p
ro

ce
ss

Conference case description

Conference OperA 
model

Export through
OWLperettA

Conference OWL 
OperA model

Design through
OperettA

Save as

Conference OWL2 File

Input into Protege

Conference in 
Protégé 

SPARQL query tab
Choose the

SPAQRL query
tab

Query Results

Input query statement
for each functionality

Queried table in 
SPARQL query

Abstract 
Table information

Information about individuals with 
the same individual name

Based on the case description, we should 
made relevant changes

OWL2 files can be input 
into Protégé

 

Figure 6.3 Method to evaluate functionality2 

Based on Figure6.3, we can set up the steps as follows. 

Firstly, through OperettA, we can create the conference OperA model easily. Then, we make 

changes associated with individuals’ names based on this model. 

Secondly, after we implement all these changes, we can obtain 

“conference_sameclass_name.OWL” by using the OWLperettA. This document represents the 

conference OWL OperA model for evaluating functionality 2. 

Thirdly, we should input this OWL file into Protégé, and then choose the SPARQL query tab. After 

inputting our designed query statements listed in AppendixC.1 for SPARQL queries, we press the 

“execute” button. 

Finally, we obtain a table that contains the results of all the information that we wish to query. 

 

 

Method for evaluating functionality 3:  

Functionality3 is also introduced in detail in Chapter5 – different Individuals in different classes 

shouldn’t have the same individual name. The set-up for the method to evaluate this 

functionality is very similar to the method for functionality 2 described above. The steps are the 

same as Figure6.2 describes. However, there are two divergent points. 

 

1. In the first step, the changes made here are different from the changes made in the method 

for functionality3. However, these changes are all based on the “conference OperA model” 

and are so-called semantic inconsistencies. 

2. In the third step, the designed query statements shown in AppendixC.2 are different from 



51 
 

those used in the method for functionality2. 

 

These points will be distinguished in the scenarios described in the following section. With these 

two distinctions, our changed OWL OperA case model, called 

“conference_differentclass_name.OWL,” can be designed. We can set up the correct method for 

evaluating functionality3as shown in Figure 6.3. 

 

Method for evaluating functionality 4:  

As we described in Chapter 5, functionality 4 indicates that individuals of objective shouldn’t 

have a Sub Objective of themselves. In designing the OWL OperA case model, for the individuals 

of objective, we shouldn’t create the relationship “has Sub Objective” between individuals of the 

objective and themselves. Through OperettA, execution errors will be reported when this kind of 

situation occurs. According to the empirical circle of our project methodology described in 

Chapter 1, we are not able to continue designing in OperettA because of these execution errors’ 

appear, we should restart it for continuous designing. However, there is a high potential for 

designers to create these types of interactions, which are semantic inconsistencies, by editing. 

Therefore, we should find solutions to check for this semantic inconsistency. After checking the 

consistencies, we can make modifications so that the conference OWL OperA model (conference 

ontology) can be expressed more clearly without semantic inconsistencies. According to the 

description in Chapter 5, we select the SPARQL query tab to conduct the evaluation. Figure6.4 

shows the processes of evaluating functionality 4 through the SPARQL query tab. 

Pr
ot

ég
é 

pr
oc

es
s

Conference case description

Conference OWL 
OperA model

Design through
Editing Input into Protege

Conference in 
Protégé 

SPARQL query tab

Choose the
SPARQL query

Tab

Checking results

Input query statement
for each functionality

Queried table in 
SPARQL query

Abstract 
table information

OWL OperA meta-model

Guidance model for OM Inferred conference ontology

Export inferred 
ontology

Inferred ontology
In Protégé 

Input the ontology into Protégé 

Information about 
individuals with the 

same individual name

Based on the case 
description, we should 
make relevant changes

Case model with particular 
semantic  errors or 

consistency for Objective

 

Figure 6.4 processes of methods to evaluate functionality 4 

Based on Figure6.4, we can set up the steps as follows. 

Firstly, there is an existing OWL OperA meta-model. We design the conference case based on the 

OWL OperA meta-model. As we have described above, we design the conference case by editing 

OWL2. 

Secondly, we can make specific structural inconsistencies in designing the individuals of Objective. 



52 
 

Then, we save this file as “conference_objective.OWL.” 

Thirdly, we should input this OWL file into Protégé. After using the reasoner, we can export the 

inferred conference ontology called “conference_objective_inferred.OWL.” 

After inputting “conference_objective_inferred.OWL” into Protégé again, we should choose the 

SPARQL query tab. We then input our designed query statements, which are listed in 

AppendixC.3, for SPARQL query, and press the “execute” button. 

Finally, we obtain a table that contains the results of all the information that we wish to query. 

 

With these four methods as guidance, we can perform the evaluation separately for different 

functionality. In order to implement the methods we must set up experimental scenarios. These 

various experimental scenarios are elaborated in the following section. 

6.4 Experiments  

In our case study, we use purposive samples.3Purposive sampling is a case study method for 

evaluation, which is used when an evaluator is studying a particular phenomenon and wants to 

ensure that examples of it show up in the study. We aim at obtaining some phenomenon or 

results demonstrating that something can be reasoned or that it occurs as the purposive samples  

show us. As evaluator, we must know the potential of the example to reveal those kinds of 

reasons. As stated above, for all functionalities, we create corresponding experiments for 

evaluating them. Four simple experiments are created by including the scenario and the 

experiment results. Expected results are the designed inconsistencies that include both the 

structural inconsistencies and the semantic inconsistencies. The expected results will be 

described while we are elaborating the scenarios. Each scenario will have its own experimental 

results.  

6.4.1 Experiment One 

6.4.1.1 Scenario Functionality One 

For evaluating functionality1, we should design the case ontology by editing the document. In 

order to create the case conference ontology, we should create several individuals for each 

element in SS. We should also create functionality to show the relationships between different 

individuals. We design several structural inconsistencies in the case ontology. These errors are 

shown below in Table 6.4: 

NamedIndividuals structural inconsistencies 

PC-Chair <HasRoleType rdf:resource="&untitled-ontology-63;Ex"/> 

<HasRoleType rdf:resource="&untitled-ontology-63;In"/> 

                                                             
3
Edith D.Balbach, Using Case Studier to do Program Evaluation, retrieve 

from:http://www.case.edu/affil/healthpromotion/ProgramEvaluation,2014 



53 
 

PC-Chair <HasObjective rdf:resource="&untitled-ontology-63; 

chooseAuthor_5ae8816a-3f1d-429e-bed5-41e6930248e9"/> 

Table 6.4 structural inconsistencies 

In Table 6.4, with regard to the PC-Chair, we create two specific inconsistencies. The PC-chair 

should have only one role type, but, we design two role types, “In” and “Ex”. The PC-Chair has 

several objectives. We design it such that it has the Objective of chooseAuthor. Nevertheless, 

chooseAuthor is an individual of type right. Therefore, these two errors will make the ontology 

inconsistent. The ontology with structural inconsistencies will be called 

conference_with_editing_error.OWL.  

 

After inputting this document into Protégé, we will perform testing on this ontology by using the 

reasoner. We expect that the reasoner can locate this inconsistent place automatically. These 

inconsistencies are the key to transform the ontology into a correct ontology.  

 

6.4.1.2 Experiment Scenarios One Results  

Through the design of scenario one, we can obtain the case ontology 

conference_with_editing_error.OWL with structural inconsistencies in it. Based on this ontology, 

we use reasoner to do the checking. The experiment results are presented in AppendixB.1. We 

abstract the information into the Table6.5 below:  

individual inconsistency location explanation 

PC-Chair PC-Chair HasObjective of 

ChooseAuthor 

Objective DisjointWiht Right 

HasObjective Range Objective 

choosAuthor is Right 

PC-Chair PC-Chair HasRoleType In 

PC-Chair HasRoleType Ex 

Ex different from In 

Role HasRoleType exactly 1 RoleType 

In, Ex Type RoleType. 

Table 6.5 Experiment results of scenario one 

Table 6.5 shows the location of the inconsistencies. In addition, explanations are presented for 

easier modification. For the first inconsistency, after analyzing the explanations, the PC-Chair 

shouldn’t have objectives out of the Range Objective. However, chooseAuthor is not in the range 

of Objective. Therefore, we should modify chooseAuthor into an individual in the Range 

Objective. For the second inconsistency, explanations tell us that the PC-Chair is unable to have 

two different Role Types because of the candidate constraints of exactly one role type. In order to 

modify it, we should delete one of the relationships. In conjunction with Table6.4, all the 

inconsistencies have been located. They explanations also provide an easy way to modify these 

inconsistencies. That means, for the OWL OperA meta-model, there is automatically an easier 

way for us to check consistency and design the correct ontology.  

 



54 
 

6.4.2 Experiment Two 

6.4.2.1 Scenario Functionality Two 

For evaluating functionality2, as mentioned above, we must make changes based on the 

“conference opera model”. There are four main elements that we must input as data into this 

model. These elements are respective role, dependency, objective, and right. Each of them has 

several individuals and all the individuals should have the name. In order to evaluate the 

individual names, we must make some modifications to the names of individual for each of the 

elements. In Table 6.6 below, we can see the added information we need. 

Element Create new individual? Individual name 

Role   PC-Chair 

Dependency   paperReviewed 

Right   chooseAuthor 

Objectives   correctReview 

Table6.6 Semantic inconsistencies 1 

As Table 6.6 shows, we have created two individuals with the same name in each elements. 

Currently, there are two individuals with the name PC-Chair in the class role and two 

dependencies individuals named paper Reviewed in the class Dependency. It is the same with the 

Right and the Objectives, with two individuals with the same individual name chooseAuthor and 

correctReview. “Conference_sameclass_name.OWL” will be designed based on the Conference 

opera model. 

 

However, for a model, it not wise to have two individuals in the same element with the same 

name. OperettA allows for creating two individuals in the same element with the same name, 

which will make the designer puzzled about the model. Therefore, we expect that, after we input 

the changed model into OWLperettA, export it into the OWL file, with the method mentioned in 

section 6.3, we can obtain the information concerning all the individuals who have the name 

PC-Chair, paperReviewed, chooseAuthor, and correctReview. All this information has been added 

into Table6.2. 

 

6.4.2.2 Experiment Scenarios Two Results  

After performing the evaluation with the method provided for functionality3, by inputting model 

“conference_sameclass_name.OWL” and using the particular query statements presented in 

AppendixB.2, we can obtain the information abstracted into the Table 6.7 below:  

element Individual 1 Individual 2 Name 

Role PC-Chair_10 PC-Chair_74 PC-Chair 

Dependency D10 D69 paperReviewed 

Objective correctReview_0f correctReview_0c correctReview 



55 
 

Right chooseAuthor_255 chooseAuthor_492 chooseAuthor 

Table6.7 Experiment results of scenario two 

In conjunction with Table 6.6, we  see that all the added individuals have been queried by the 

SPQRAL query tab. The results also contain the name value for each added individual. In addition, 

individual 2 is queried for each element because it has the same individual name as individual 1. 

After we have designed the “conference_sameclass_name.OWL”, we hope that, there is a 

solution for finding the individuals in the same elements with the same name. What’s more, 

when we located these individuals, we can re-design them and modify their individual names to 

make the ontology distinct and easily to be understood by users of the OM. After this evaluation, 

semantic inconsistencies have been checked and we can verify that functionality 2 has been 

realized well.  

 

6.4.3 Experiment Three 

6.4.3.1 Scenario Functionality Three 

Scenario four will take use of method for functionality3 which is quite similar to method for 

evaluating functionality3. However, their scenarios are totally different. Even though, we should 

base on conference opera model to make changes, these changes are quite different from the 

changes in scenario two. As we know, there are four main elements in the model that we need 

for inputting data. Each of them has several individuals and all the individuals should have a 

name. To evaluate the name, we should add three individuals in one element with individual 

names equal to the names of individuals in other elements respectively. As a consequence, there 

should be six designed semantic inconsistencies for the names to cover all the elements. These 

changes are shown in Table 6.8:  

Changes.No element Operation 

1 Right Create individual1 with name General-Chair 

(role name) 

2 Right Create individual2 with name publishPaper 

(objective name) 

3 Right Create individual3 with name 

paperReviewed (dependency name) 

4 objective We should create the objective PC-Chair as 

objective of role PC-Chair. 

5 Objective Create a individual with name PC-Chair (role 

name) 

6 dependency Create a individual with name PC-Chair (role 

name) 

Table6.8 semantic consistencies 2 

As Table 6.8 has shown, “conference_differentclass_name.OWL” is created through these 

operations based on the Conference OperA model. We create three rights individual with 



56 
 

different names equal to the names of individuals in class role, objective, and dependency 

respectively. According to the OperettA tutorial4, dependency names are equal to the objective 

names, which depend on dependant and dependee. We don’t have to create more objective 

individuals with the same individual name in dependency individuals, because they are always 

equivalent when the dependency only has one objective. Therefore, if we have the demand to 

create a dependency individual, we should create an objective individual (such as the no.4 

PC-Chair objective individual) that is related to this dependency individual and can give the 

dependency individual a name. 

 

However, individuals of different elements must be different individuals. The name is the key to 

identify them from the visual interface. Thus, creating these individuals and relationships will 

make the whole model vague for OM users, because of the so called semantic inconsistencies. 

After inputting the changed model, we export it through OWLperettA and input it into Protégé, 

as the method explained that, information that individuals in different elements with the same 

individual names is expected to be queried.  

 

6.4.3.2 Experiment Scenarios Three Results  

When the related query experiment was performed on “conference_differentclass_name.OWL”, 

some information was presented in the table at the bottom of Protégé. This information has been 

saved in AppendixB.3. We have abstracted the relevant information into Table 6.9:  

Element1 Individual1 Element2 Individual1 Name value 

Right paperReviewed_558 Dependency 

Objective 

D10 

paperReviewed_3f6 

paperReviewed 

Right General-Chair_187 Role General-Chair_5ae General-Chair 

Right correctReview_6f7 Objective correctReview_3b9 correctReview 

Dependency D102 Role PC-Chair_eab PC-Chair 

Objective Author_ae3 Role Author_b3b Author 

Objective PC-Chair_365 Role PC-Chair_eab PC-Chair 

Table6.9 Experiment results of scenario three 

We should now compare it to Tables 6.8 and 6.9. Through the query statements we designed 

using the SPARQL query tab, all semantic inconsistencies that individuals in different elements 

have same individual names have been queried. Individual1 represents the individual of 

element1, individual2 represents individual of element2. We learned that Element1 and 

individual1 are consistent to the added information we have created in 

“conference_differentclass_name.OWL” through comparative analysis. Element2 and individual2 

are the equivalent individuals that exist in the model. In the Table 6.9, one more pair of 

equivalent individuals occurs just because of the passive added objective individual PC-Chair for 

getting a dependency individual D102 .After we designed “conference_differentclass_name.OWL”, 

we desired to find out the solution for locating individuals in different elements of the same 

name. According to the Table 6.9, each row of the table shows the results of two particular 

                                                             
4
 TUTORIAL: OperettA, retrieved from http://ict1.tbm.tudelft.nl/operetta/downloads/tutorial.pdf, 2014 

http://ict1.tbm.tudelft.nl/operetta/downloads/tutorial.pdf


57 
 

individuals in element1 and element2 with the same individual name. That proves that semantic 

inconsistencies have been checked. The method is the validated solution for functionality 3. 

 

6.4.4 Experiment Four 

6.4.4.1 Scenario Functionality Four 

In order to evaluate functionality 4, we propose to design a case ontology by editing a document. 

In order to create the conference ontology, we should create several individuals for each element 

in SS. We should also create property to show the relationships between different individuals. 

However, there are potential semantic inconsistencies during the design process. We design 

several semantic inconsistencies in the case ontology about objective semantic inconsistencies. 

These inconsistencies will are below in Table 6.10: 

NamedIndividuals inconsistencies (relations) 

decisionOnPapers 

_3d1efd5f-385f-4cb4-a9df-d

8177eedc487 

<HasSubObjective rdf:resource="&untitled-ontology-63; 

getSubmissions_04796a09-266e-43cf-93a8-17712e0632bf"/> 

getSubmissions 

_04796a09-266e-43cf-93a8-

17712e0632bf"/> 

<HasSubObjective rdf:resource="&untitled-ontology-63; 

decisionOnPapers_3d1efd5f-385f-4cb4-a9df-d8177eedc487/> 

Table 6.10 Semantic inconsistencies_objective 

As Table 6.10 has shown, “conference_objective_inferred.OWL” is created through these 

operations based on the conference OperA model. For the individuals named decisionOnPapers 

and getSubmission, we create a relationship with themselves through “sub objective”. 

DecisionOnPapers has the sub objective of getSubmission. GetSubmission has the sub objective 

of DecisionOnPapers as well. There is no structure error in syntax. They are the semantic 

inconsistencies we have mentioned above. These inconsistencies cannot be checked by either 

editing or OperettA. 

 

However, these semantic inconsistencies show that individuals of objective can have a sub 

objective of themselves. This will make the ontology vague. After inputting the changed model, 

we export it through reasoner and input it into Protégé again. As the method explained, the 

SPARQ query tab is expected to present the individuals who have sub objectives of themselves in 

objective class. 

 

6.4.4.2 Experiment Scenario Four Results 

According to scenario four, we export “conference_objective_inferred.OWL” through the 

reasoner in Protégé. By operating through the SPARQL query tab as we described in the method 



58 
 

for functionality4, we can obtain a table with the relevant inconsistency information in it. This 

information has been saved in AppendixB.4. We have abstracted the information into Table 6.11 

below. 

Objective Sub objective 

decisionOnPapers 

_3d1efd5f-385f-4cb4-a9df-d8177eedc487 

decisionOnPapers 

_3d1efd5f-385f-4cb4-a9df-d8177eedc487 

getSubmissions 

_04796a09-266e-43cf-93a8-17712e0632bf"/> 

getSubmissions 

_04796a09-266e-43cf-93a8-17712e0632bf"/> 

Table6.11 Experiment results of scenario four 

As shown in the Table 6.11, there are two individuals of the objectives called decisionOnPapers 

and getSubmissions. Both have sub objectives of themselves. By Comparing Tables 6.8 and 6.4, 

the semantic inconsistencies we have created while designing the “Conference_objective.OWL”: 

“individual decisionOnPapers has the sub objective of getSubmissions” and “individual 

getSubmissions has the sub objective of decisionOnPapers”. Therefore, for the inferred ontology 

“Conference_objective.OWL”, both will have a sub objective of themselves in the semantic level. 

Through our evaluation methods, we can query these two individuals out. In other words, with 

our design of the OWL OperA meta-model, we are able to check the semantic inconsistencies 

about a particular objective that cannot be checked when we use the OperA meta-model to 

design the OperA case. This proves that functionality 4 is validated as well. 

 

According to the evaluation and discussion above, all the functionalities can be proven to be 

validated. There are indeed functionalities that occur when we convert the OperA meta-model 

into the OWL OperA meta-model. These functionalities also contribute to our research questions.  

6.5 Conclusions 

In this chapter, we give the description of a case called “conference organization” and perform 

the specifications of the OperA model design for the case. With this case, we try to perform the 

evaluation of the OWL OperA meta-model. With the design of the case into OperA, we can have 

the basic input for the OWLperettA we need to create. We just need to make specific changes to 

this model for different properties’ evaluation. With one changes, expectations for this changes 

will be produced after using OWLperettA. According to the methods, scenarios, and experiments 

we have designed, we can obtain actual results. After we compare the expectations with the 

actual results, we can conclude the evaluation. All the added functionalities that we predicted in 

Chapter 5 can be verified by the different methods in evaluation. That means that for research 

questions 1 and 2, the OWL OperA meta-model can be improved by the added functionalities 

that have been proven by the evaluation. 

 

7. Discussion and Conclusions 

In the previous chapters, we have presented the introduction of our project, OWLperettA, the 



59 
 

OWL OperA meta-model, and evaluation by case study. We regard this information as the 

contributions that this project brings to us. All these information presented in the above Chapters 

is considered as the basis for this chapter. In this chapter, firstly, we reveal the meaning of the 

results from each Chapter and discuss the relationships between the results and the research 

questions. In addition, we elaborate some of the limitations we encountered during our 

processes of development. Finally, some future directions for research are introduced so that 

others are able to embark on related work more easily, and perhaps resolve our remaining 

limitations. We first introduce the discussion of the results.  

7.1 Discussions 

As we stated in Chapter 1, we seek to answer three research questions. For each of these 

questions, we should discover a solution. Therefore, we will discuss the research questions 

separately to show how we solve each one. 

 

Automatically checking structural inconsistencies  

Our first research question concerns the need to check structural inconsistencies for the case 

model based on OperA. That is, can we design the OperA meta-model in another format that 

satisfies all the requirements of the OperA meta-model, and on the basis of this newly designed 

meta-model (the OWL OperA meta-model), are we capable of creating an OWL OperA case 

model? Finally, with regard to this case model, can we automatically check for structural 

consistencies when some inconsistencies occur while we are designing the case model?   

 

In Chapter1, we selected OWL2 as the format for our new meta-model, which we call OWL OperA 

meta-model. The OWL OperA meta-model presented in Chapter 3 was specified to satisfy OperA 

approach description requirements and mapping from OperA meta-model to build a meta-model 

in OWL2. With this OWL OperA meta-model, we can a design OWL OperA case model. 

 

In order to verify the OWL OperA meta-model, we should use it to build the SS of an OM case 

that we call the OWL OperA case model. In Chapter 6, we designed an experiment, a scenario, 

and a method to check the inconsistencies in the OWL OperA case model. These inconsistencies 

in Table6.1 appear when we edit the OWL OperA case model. According to the results of the 

experiment in Table 6.5, compared to Table 6.4, the inconsistencies have been automatically 

checked out by reasoner after we input the case model into Protégé. All of the above show that 

the research question 1 can be solved by using the OWL OperA meta-model to edit the OWL 

OperA case model. 

 

OWL2 automatically exporting 

Research question 3 is an extension of solving the other research questions. It relates to the 

demand to create an OWL OperA case model automatically instead of editing documents. In 

other word, can we automatically export the OperA case model into the OWL OperA case model? 

 

In order to design the OWL OperA case model, we should perform the following two tasks. Firstly, 

we should design the OWL OperA meta-model, as we did in Chapter4. Secondly, we should edit 



60 
 

the case based on the OWL OperA meta-model. In accordance with Chapter3, we intended to 

design a tool called OWLperettA for exporting OWL2. As we introduced in Chapter2, OperettA is 

an existing tool for designing an OM based on the OperA meta-model. Thus, we suggest to build 

OWLperettA based on OperettA to make the editing of the SS of an OM easier, that is, developing 

the OWLperettA as a plug-in of OperettA. As Figure4.2 shows, OWLperettA has been designed to 

export OperA case model into an OWL OperA case model in OWL2 format. By performing these 

tasks, we simply begin designing the OWL OperA case model through OperettA, then by using the 

OWLperettA embedded in OperettA, we are able to obtain the OWL case model automatically 

instead of editing the case model manually. According to the Chapter6, OWLperettA is used in 

the method of evaluating functionalities 2, 3, and 4. We show that this tool can successfully 

export the OWL OperA case model. Therefore, according to these discussions, we can see that 

research question 3 has been worked out through the designing of the OWL OperA meta-model 

and OWLperettA. 

 

Semantic inconsistencies checking 

In accordance with research question2 in Chapter 1, we hope to find solutions to identify the 

semantic inconsistencies in the OWL OperA case model because we think the OWL OperA meta- 

model can help us do so. We regard it as the demands to locate individuals with the same 

individual names and to check individuals of Objective class that have a Sub-Objective of 

themselves (these two are regarded as semantic inconsistencies that cannot be treated as 

structural errors). These demands are divided into demand 1 and demand 2 respectively. 

 

For demand 1, when designing the OWL OperA case model, we prefer to understand or identify 

different individuals with their names. However, for designing the SS of an OM through OperettA, 

it is not possible to do so because of the possible repetitive names of individuals. In order to 

check this kind of inconsistency, we should design the OWL OperA case model following the OWL 

OperA meta-model built in Chapter3. By using the OWLperettA described in Chapter 4, we can 

obtain this case model more easily. As the evaluation in Chapter 6 has presented, we evaluate 

demand 1 through two functionality scenarios. Through OperettA and OWLperettA, we provide 

some examples with same names for individuals in Tables 6.6 and 6.8. After we execute the 

methods offered by Chapter6, we are capable of obtaining the results in Tables 6.7 and 6.9. These 

tables reveal that all the individuals of the same name have been queried and located by our 

method. Next, we are able to modify the individuals’ names because of these locations. 

 

For demand 2, when we design the OperA case model by editing, there is a high potential to edit 

an objective individual that has a Sub Objective of itself when there are a lot of objective 

individuals. This inconsistency can be seen as semantic inconsistency and it is hard to identify. In 

order to check this kind of inconsistency, we should edit the OWL OperA case model by using the 

OWL OperA meta-model detailed in Chapter 3. As described in Chapter 6, inconsistencies are 

designed in Table 6.10. We evaluate these inconsistencies by using the method we have provided 

in Chapter 6. The results in Table 6.11 reveal that this kind of consistency can be checked 

successfully. The added functionality we described in Chapter 5 related to objective is proven to 

be true.  

 



61 
 

The discussions of demand 1 and 2 have shown that research question 3 can be handled by the 

development of OWLperettA and the OWL OperA meta-model.  

 

After discussing the research questions and results, we are able to confirm the contributions 

described in Chapter1 for OWLperettA and the OWL OperA meta-model. With the help of 

evaluation, four predicted functionalities have been verified for the OWL OperA meta-model. 

And these functionalities prove that the three research questions have been solved.  

 

7.2 Limitations 

In our thesis, we successfully resolve the short-comings that exist in the OperA meta-model. 

However, not all the short-comings are resolved perfectly. There are several limitations that may 

exist. These limitations may not affect the effectiveness of the model and the added 

functionalities; but there are risks that affect the validity or feasibility of the OWL OperA 

meta-model. We divide the limitation into three categories: limitation during the meta-model 

conversion; limitations during the evaluation; and limitations during the development of 

OWLperettA.  

 

Limitations during the meta-model conversion 

For the meta-model, our scope may be too narrow. We focus on the social structure (SS) of an 

organizational model (OM). However, SS is a small part of the OperA model. There are several 

other parts, namely interaction structure (IS), communication structure (CS) and Norm structure 

(NS). Because of time limitations, we focus efforts on SS instead of all the parts. However, SS 

cannot fulfill all the features of the OperA approach. 

 

Limitations during the evaluation  

 Bounded of the evaluation method 

A limitation also stems from evaluation of functionality 3. In the OWL OperA case model, we have 

four classes that we should deal with to create comparison in evaluating functionality 3. 

Evaluation for Functionality 3 tries to locate individuals in different classes with the same 

individual names. However, dozens of classes will increase for the meta-model in the future 

because of developing the other parts of the OM. That means the number of comparisons 

between individuals of different classes will add up to hundreds even. The workload for designing 

SPAQL query statements for each pair will be also large. 

 

 Low Integration  

During the evaluation, firstly, there are many steps in the evaluation methods. Then, while using 

the SPARQL query part, we must input each corresponding designed SPARQL query statement at 

each query. These factors make the evaluation too complicated and low integrated. 

 

Limitations during the development of OWLperettA 

 RDF and OWL exporting vague 

In OWLperettA, we indeed export the documents that can be read by Protégé. However, these 



62 
 

documents are not well formed OWL2 documents. They are a type document based on RDF, 

which is also the basis of OWL2. Even though they can be directly transferred into OWL2 by 

inputting into Protégé and saving them, it represents low integration. 

 Bounded exporting 

The current OWLperettA is able to export the SS of an OM designed by OperettA. However, an 

OM consists of not only SS but also NS, IS, and CS. Thus, the exporting is circumscribed.  

 Lack of Evaluation 

Because this tool is a simple document converting tool, we have already realized the converting. 

However, we didn’t evaluate whether the tool can successfully convert all the information 

included in the OperA model into the OWL model.  

 

After analyzing the limitations of our project, we provide a summary of our thesis in the next 

section. 

 

7.3 Conclusions 

In our thesis, we present a meta-model called the OWL OperA meta-model for 

organization-oriented model developments. This OWL OperA meta-model is derived from the 

OperA approach description and converted from the OperA meta-model designed by EMF.  The 

OWL OperA meta-model is able to express all features in the OperA approach description. It adds 

semantic and stronger constraints to the expressions to make the meta-model more powerful. 

On the basis of the OWL OperA meta-model, the tool OWLperettA is developed. OWLperettA is 

used to support OWL2 files exporting and it is embedded in OperettA. OWLperettA can convert 

the OperA case model into an OWL OperA case model, which is a representation of the case 

model built upon the OWL OperA meta-model. Combining these two consequences with 

evaluation, we verify that we have developed a powerful OWL OperA meta-model and 

OWLperettA. 

 

Our work realized the conversion from a simple EMF-based model to OWL2. We have provided a 

referable mapping table for converting an EMF-based model into OWL2. We also present how to 

add the semantics into the SS of an OperA meta-model. We can use our work in adding semantics 

into an EMF-based model. We can also consider our work as the beginning of adding semantics 

into the complete OperA meta-model. By using an OperA meta-model that contains semantics, 

we can design a comprehensive OM.  

 

7.3 Future Work 

An organizational model is a relatively large model. In this thesis, we propose to transfer an 

OperA meta-model into OWL2 and evaluate the effectiveness of our OWL OperA meta-model. In 

order to evaluate it more easily, we design the OWLperettA to automatically export OWL2 

ontology. Based on the information mentioned above, future research for future could concern 



63 
 

integrated OperA meta-model conversion, completed OWLperettA implementation, and 

evaluation method improvements.  

 

Integrated OperA meta-model converting 

As has been described in the limitations section, there are three sub-structures of OMs that must 

be converted for complete OperA meta-model conversion. We have already converted SS. The 

meta-model transformations from the IS, CS, and NS of an OM into OWL2 could be direction. The 

processes of converting are similar. Finally, converting all OperA meta-models into OWL2 will 

make the OWL OperA meta-model more valuable to design a complete OM.   

 

Completed OWLperettA implementation 

According to Section 7.2, firstly, the NS, the IS, and the CS may be converted in the future. In 

order to find an easier way to evaluate the designed ontology for them respectively, we must also 

modify OWLperettA. Currently, OWLperettA is able to export the SS portion. There is a demand 

to add functionalities in OWLperettA to export other three part (NS, IS and CS) into OWL2. 

Secondly, if we wish to perform the exporting more clearly and perfectly, we can change the 

OWL2 source package Jena to OWL API. OWL API is the source package used by Protégé. If we 

replace Jena with OWL API, we are able to export the format in the same manner as with the 

documents from Protégé.  

 

Evaluation Method improvements 

According to the limitations in Section7.2, firstly, we have indicated that our evaluation methods 

would cause a high workload because of the increasing number of classes if we develop other 

parts of OperA. Hopefully, we need to find solutions to solve the situation that there is an 

individual in one class, comparing its individual’s name to other individuals’ names with those 

individuals are in different classes, if some pairs have the same individual names, we should 

query them and obtain all the results by one query. Secondly, at present, we copy the SPARQL 

query statements and paste them into the SPARQL query tab of Protégé for each of the different 

queries. We prefer to have humanizing interfaces do the querying. We can design a plug-in of 

Protégé by embedding all these query statements into the program. Integrating with a simple 

interface, we can query the ontology by pressing one button called “name checking”. We thus 

query individuals in all classes with the same name, and these query results can be displayed in 

one table window. 

 

We have discussed the results and research questions. All research questions have been 

answered by the development of the OWL OperA meta-mode, and OWLperettA by evaluation of 

this meta-model. However, there still exist some limitations or weaknesses. Our project is just a 

beginning representation that adding the semantic expression into the OperA meta-model. There 

are many future projects that can be undertaken to complete OperA approach conversion. In the 

future, a complete OWL OperA meta-model that covers all aspects of the OperA approach may 

be developed to build a better OM.  

 

 

  



64 
 

Reference 

Aldewereld, H., & Dignum, V. (2011). OperettA: Organization-oriented development environment 

Languages, Methodologies, and Development Tools for Multi-Agent Systems (pp. 1-18): 

Springer. 

Budinsky, F. (2004). Eclipse modeling framework: a developer's guide: Addison-Wesley Professional. 

Consortium, W. W. W. (2009). OWL 2 web ontology language document overview.  

DeLoach, S. A. (2002). Modeling organizational rules in the multi-agent systems engineering 

methodology Advances in Artificial Intelligence (pp. 1-15): Springer. 

Dignum, M. (2003). A model for organizational interaction: based on agents, founded in logic. 

Dignum, V., Meyer, J.-J. C., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in 

agent societies Formal approaches to agent-based systems (pp. 37-52): Springer. 

Epstein, J. M. (2006). Generative social science: Studies in agent-based computational modeling: 

Princeton University Press. 

Ferber, J., Gutknecht, O., & Michel, F. (2004). From agents to organizations: an organizational view of 

multi-agent systems Agent-Oriented Software Engineering IV (pp. 214-230): Springer. 

Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., & Srinivas, K. (2006). The summary abox: Cutting 

ontologies down to size The Semantic Web-ISWC 2006 (pp. 343-356): Springer. 

Group, W. C. O. W. (2009). {OWL} 2 Web Ontology Language Document Overview.  

Horridge, M. (2009). A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools 

Edition1. 2. The University Of Manchester.  

Horridge, M., Drummond, N., Goodwin, J., Rector, A. L., Stevens, R., & Wang, H. (2006). The 

Manchester OWL Syntax. Paper presented at the OWLed. 

Horridge, M., & Patel-Schneider, P. F. (2009). OWL 2 web ontology language manchester syntax. W3C 

Working Group Note.  

Klyne, G., & Carroll, J. J. (2006). Resource description framework (RDF): Concepts and abstract syntax.  

Knublauch, H., Fergerson, R. W., Noy, N. F., & Musen, M. A. (2004). The Protégé OWL plugin: An open 

development environment for semantic web applications The Semantic Web–ISWC 2004 (pp. 

229-243): Springer. 

McBride, B. (2001). Jena: Implementing the RDF Model and Syntax Specification. Paper presented at 

the SemWeb. 

McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C 

recommendation, 10(2004-03), 10.  

Okouya, D., & Dignum, V. (2008). OperettA: a prototype tool for the design, analysis and development 

of multi-agent organizations. Paper presented at the Proceedings of the 7th international 

joint conference on Autonomous agents and multiagent systems: demo papers. 

Okouya, D., Penserini, L., Saudrais, S., Staikopoulos, A., Dignum, V., & Clarke, S. (2008). Designing MAS 

Organisation through an Integrated MDA/Ontology Approach. Paper presented at the 

TWOMD. 

Prud’Hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF. W3C recommendation, 

15.  

Rodriguez-Muro, M., Lubyte, L., & Calvanese, D. (2008). Realizing ontology based data access: A 

plug-in for protégé. Paper presented at the Data Engineering Workshop, 2008. ICDEW 2008. 



65 
 

IEEE 24th International Conference on. 

Shearer, R., Motik, B., & Horrocks, I. (2008). HermiT: A Highly-Efficient OWL Reasoner. Paper presented 

at the OWLED. 

Sirin, E., Bulka, B., & Smith, M. (2010). Terp: Syntax for OWL-friendly SPARQL Queries. Paper presented 

at the OWLED. 

Sirin, E., & Parsia, B. (2007). SPARQL-DL: SPARQL Query for OWL-DL. Paper presented at the OWLED. 

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical owl-dl reasoner. Web 

Semantics: science, services and agents on the World Wide Web, 5(2), 51-53.  

Tudorache, T., Noy, N. F., Tu, S., & Musen, M. A. (2008). Supporting collaborative ontology 

development in Protégé The Semantic Web-ISWC 2008 (pp. 17-32): Springer. 

Völter, M., Stahl, T., Bettin, J., Haase, A., & Helsen, S. (2013). Model-driven software development: 

technology, engineering, management: John Wiley & Sons. 

Walter, T., Parreiras, F. S., & Staab, S. (2012). An ontology-based framework for domain-specific 

modeling. Software & Systems Modeling, 1-26.  

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5): sage. 

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2001). Organisational rules as an abstraction for the 

analysis and design of multi-agent systems. International Journal of Software Engineering and 

Knowledge Engineering, 11(03), 303-328.  

 

 

 

 

 

 

 

 

 

 

  



66 
 

Appendix 

 

A. OWL OperA meta-model Specification 

1. OperA approach & OperA meta-model definition 

Objective: Objective defined the state of affairs that the role expected to achieve or realize in the 

environment. Role Objective is become part of proposes for enacting the role for actor.         

It is a definition for role’s ideal state. Roles are specified by its objective and each role at least has 

one objective. It may have parent-objective or sub-objective. Objective can be further described 

through the explanation of the sub-objective. 

Objective Definition 

Name:               Identify the particular objective. 

Sub-Objective:        it is objectives that contribute to the realization of another objective 

Parent-objective:      it is higher level objective that this objective can only achieve a part of 

the goals of the higher level objective. 

State:               use the LCR to express what the objective is for the environment. 

User:                it is the role which contains the objective 

Table1 Objective Definition 

 

Element EAttributes       interacting elements EReference 

Objective stateDescription 

subObjective 

parentObjective 

usedByRole 

PartialSateDescription 

Objective 

Objective 

Role 

Name 

Table2 OperA meta-model definition for Objective 

 

Dependency: it is the link between roles to describe the interaction between roles. It describe 

how actors can interact and contribute to realization of the objective of each other by different 

kind of coordination. If there are roles A and B, A depends on B to realize the objective C. C is one 

of the objectives of A to realize. The description of the process is call dependency. Coordination 

type of society that is divided into three types are assigned to the dependency. 

 

As the Table described that the Dependency is consist of 3 kind of dependencies: 

HierarchyDependency, MarketDependency and NetworkDependency. According to [], we can see 

that: 

1. HierarchyDependency: these work like delegation; the dependees have to achieve the 

objective which is assigned to him through the dependency. 

 

2. MarketDependency: it’s like a kind of bidding or auction. The dependees can apply for some 

objective through the dependency. However, it’s the dependants’ right to choose which 



67 
 

dependee he prefer to fulfill the objective. 

 

3. NetworkDependency. In this situation, all roles are equal to the objective. They have to 

coordinate among them to achieve the objective. 

 

Dependency Definition 

ID:               it is a particular number to make the organizational model easier to be 

remembered 

Name            it is a unique identifier for the dependency. 

Objective:        A set of landmarks that describe the desired result of this role 

Dependant:       it is the role which depend on another role through the dependency to 

realize the objective of it 

Dependee:        it is the other role described in the upper row.  

Table3 Dependency definition 

 

Element EAttributes       interacting elements EReference 

Dependency 

Sub-classes 

  

HierarchyDependency 

 

MarkerDependency 

 

NetworkDependency 

 

ObjectiveOfDependency 

 

 

HasDependant 

HasDependee 

HasDependant 

HasDependee 

HasDependant1 

HasDependant2 

Objective 

 

 

Role 

Role 

Role 

Role 

Role 

Role 

Name 

ID 

Table4 OperA meta-model definition for Objective 

 

Right: it is a definition for the right of roles, it tells about the inherent capability of the role. 

Rights are always represented by especially format LCR. 

Right Definition 

Name:                 it has a unique name to be identified 

Capability expression:    It is a kind of format to express the capability of a actor while it play a 

role  

Tabel5  Right Definition 

 

Element EAttributes       interacting elements EReference 

Right Expr PartialSateDescription Name 

Table6 OperA meta-model definition for Right 

 

RoleType: it shows that the role was divided into 2 categories. It is represented by two individuals 

with cardinality value. In OperA, roles can be two types called: institutional roles and external 

roles. The institutional roles’ actors are complex and controlled by society and designed to force 

the social behavior and global activity. The external roles enact by actors according to the rules 

and principles describe the overall objectives of society by society specified rules. They are 



68 
 

represented by two individuals with cardinality value 

RoleType 

Value:            it has two confirmed value: ‘External’ equal to 1 and ‘Internal’ equal to 0  

Table7 RoleType Definition 

 

2. Specifications of OWL OperA meta-model 

 

Objective 

The Objective and it’s relationships with each other classes can be described as the Figure below: 

 

ObjectiveDataType

PSD

Objective

Objective

Role

Dependenc
y

HasObjectiveName

IsUsedBy

IsObjectiveOf
Dependency

Ha
sS
ta
te
De
sc
ri
pt
io
n

HasParentObjective

HasSubObjective

 

Figure4.5 Objective & Relationship 

 

We can define the class Objective in the below Table according to our simple rules: 

class Objecitve 

DataProperties HasObjectiveName  

Dataproperties 

Restriction 

HasObjectiveName exactly 1 string 

Objectproperties  HasParentObjective 

HasSubObjective 

HasStateDescription 

IsObjectiveOfDependency 

IsUsedBy 

Objectproperties HasParentObjective min 0 Objective 



69 
 

Restriction HasSubObjective min 0 Objective 

HasStateDescription exactly 1 PSD 

IsObjectiveOfDependency some dependency 

IsUsedBy some Role 

Table8 Objective definition in OWL2 

Dependency 

The Dependency and it’s relationships with each other classes can be described as the Figure 

below: 

 

DateType
(string)

Dependenc
y

HasDependencyID

HasDependencyName

HD

MD

ND

SUB-CLASS

Role

Role

Role

OR

 

Figure4.6 Dependency & Relationship 

 

We can define the class Dependency in the below Table according to our simple rules: 

Class Dependency 

DataProperties HasDependencyID 

HasDependencyName 

Dataproperties 

Restriction 

HasDependencyID exactly 1 string 

HasDependencyName exactly 1 string 

Sub classes HD MD ND 

Objectproperties  HasDependant 

HasDependee 

HasDependant 

HasDependee 

HasDependant 

HasDependee 

Objectproperties 

Restriction 

HasDependant exactly 

1 Role 

HasDependee exactly 

1 Role 

HasDependant exactly 

1 Role 

HasDependee exactly 

1 Role 

HasDependant1 

exactly 1 Role or 

HasDependant2 

exactly  1 Role 

Table9 Dependency definition in OWL2 

 

Right 

The Right and it’s relationships with each other classes can be described as the Figure below: 

 



70 
 

Right

PSD

Dataty
peHasRightName

Hasexpression

 

Figure4.7 Right & Relation 

 

We can define the class Right in the below Table according to our simple rules: 

class Right 

DataProperties HasRightName 

Dataproperties 

Restriction 

HasRightName exactly 1 string 

Objectproperties  HasExpr 

Objectproperties 

Restriction 

HasExpr exactly 1 PSD 

Table10 Right definition in OWL2 

 

RoleType 

The class RoleType is different from the other classes, it is treated as a datatype of role. It 

includes two individuals external and internal with their own value to represent different things.  

class RoleType 

Individuals 

members 

External 

Internal 

DataProperties HasLabelValue 

Dataproperties 

assertion 

External HasLabelValue 1 

Internal HasLabelValue 0 

Objectproperties  Empty 

Objectproperties 

Restriction 

Empty 

Table11 RoleType definition in OWL2 

 

B. Evaluation Results 

1. Screenshot of Property 1: 



71 
 

 

 

Figure1 Screenshot for the explanation 

 

2. Screenshot of Property 2 

 

Figure2 Screenshot for all the added elements 

 

3. Screenshot of Property 3 



72 
 

 
Figure3 Screenshot for all the added elements 

 

4. Screenshot of Property 4 

 

Figure4 Screenshot for objective query 

 

 



73 
 

C. Query Statement for the Added functionalities 

1. Query statement for property2 

 

PREFIX :<http://www.semanticweb.org/administrator/ontologies/2014/0/untitled-ontology-63#> 

SELECT  ?RoleIndividual ?RoleIndividual1 ?rolev  ?rolex  

        ?DependencyIndividual ?DependencyIndividual1 ?dependencyv  ?dependencyx  

        ?ObjectiveIndividual ?ObjectiveIndividual1 ?objectivev  ?objectivex  

        ?RightIndividual ?RightIndividual1 ?rightv  ?rightx  

 

WHERE{ 

        {?RoleIndividual rdf:type :Role. 

        ?RoleIndividual :HasRoleName ?rolev. 

        ?RoleIndividual1 :HasRoleName ?rolex.FILTER(?RoleIndividual1 != ?RoleIndividual 

&& ?rolex=?rolev).} 

    UNION 

        {?DependencyIndividual rdf:type :Dependency. 

        ?DependencyIndividual :HasDependencyName ?dependencyv. 

        ?DependencyIndividual1 :HasDependencyName ?dependencyx.FILTER(?Dependen

cyIndividual1 !=  ?DependencyIndividual &&  ?dependencyx=?dependencyv).} 

   UNION 

         {?RightIndividual rdf:type :Right. 

         ?RightIndividual :HasRightName ?rightv. 

            ?RightIndividual1 :HasRightName ?rightx.FILTER(?RightIndividual1 != ?RightIndivi

dual &&?rightv=?rightx).} 

    UNION 

          {?ObjectiveIndividual  rdf:type :Objective. 

          ?ObjectiveIndividual :HasObjectiveName ?objectivev. 

          ?ObjectiveIndividual1 :HasObjectiveName ?objectivex.FILTER(?ObjectiveIndivid

ual1 !=?ObjectiveIndividual && ?objectivex=?objectivev).} 

} 

 

 

2. Query statement for functionality 3 

 

PREFIX :<http://www.semanticweb.org/administrator/ontologies/2014/0/untitled-ontology-63#> 

SELECT  ?RightIndividual1 ?DependencyIndividual1 ?Rightx1  ?Dependencyx1 

        ?RightIndividual2 ?RoleIndividual1 ?Rightx2 ?Rolex1 

        ?RoleIndividual2  ?DependencyIndividual2  ?Rolex2 ?Dependencyx2  

        ?RoleIndividual3  ?ObjectiveIndividual1     ?Rolex3 ?Objectivex1  

        ?RightIndividual3 ?ObjectiveIndividual2    ?Rightx3 ?Objectivex2 

WHERE{ 

       { ?RightIndividual1 rdf:type :Right. 



74 
 

        ?DependencyIndividual1 rdf:type :Dependency. 

        ?RightIndividual1 :HasRightName ?Rightx1. 

        ?DependencyIndividual1 :HasDependencyName ?Dependencyx1 .FILTER(?Dependency

x1=?Rightx1) } 

       UNION 

       { ?RightIndividual2 rdf:type :Right. 

        ?RoleIndividual1 rdf:type :Role. 

        ?RightIndividual2 :HasRightName ?Rightx2. 

         ?RoleIndividual1 :HasRoleName ?Rolex1.FILTER(?Rolex1=?Rightx2) 

} 

       UNION 

       { ?RoleIndividual2 rdf:type :Role. 

         ?DependencyIndividual2 rdf:type :Dependency. 

         ?RoleIndividual2 :HasRoleName ?Rolex2. 

         ?DependencyIndividual2 :HasDependencyName ?Dependencyx2.FILTER(?Dependency

x2=?Rolex2) 

}  

        UNION 

        { ?RoleIndividual3 rdf:type :Role. 

         ?ObjectiveIndividual1  rdf:type :Objective. 

         ?RoleIndividual3 :HasRoleName ?Rolex3. 

         ?ObjectiveIndividual1  :HasObjectiveName ?Objectivex1 .FILTER(?Objectivex1 

=?Rolex3) 

} 

         UNION 

         {?RightIndividual3 rdf:type :Right. 

         ?ObjectiveIndividual2   rdf:type :Objective. 

         ?RightIndividual3 :HasRightName  ?Rightx3. 

         ?ObjectiveIndividual2   :HasObjectiveName ?Objectivex2.FILTER(?Objectivex2= ?Rig

htx3) 

} 

} 

 

3. Query statement for Property4: 

 

PREFIX :<http://www.semanticweb.org/administrator/ontologies/2014/0/untitled-ontology-63#> 

SELECT  ?objective  ?subobjective  

WHERE{ 

       ?objective rdf:type :Objective.  

       ?objective :HasSubObjective ?subobjective.FILTER  ( ?subobjective =?objective). 

} 

 

 


