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Abstract This paper summarizes results obtained for Greenland’s mass balance observed

with NASA’s GRACE mission. We estimate a Greenland ice sheet mass loss at

-201 ± 19 Gt/year including a discernible acceleration of -8 ± 7 Gt/year2 between

March 2003 and February 2010. The mass loss of glacier systems on the South East of

Greenland has slowed down while the mass loss increases toward the North along the West

side of Greenland. The mass balance can be compared with results obtained by a regional

climate model of the Greenland system and ice sheet altimeter data obtained from NASA’s

ICEsat mission. Our GRACE-only results differ to within 15% from these independently

calculated values; we will comment on the possible causes and the quality of the glacial

isostatic adjustment model which is used to correct geodetic datasets.

Keywords Temporal gravity � Greenland ice sheet � Satellite gravimetry

1 Introduction

The Gravity Recovery and Climate Experiment (GRACE) was launched in March 2002. It

consists of two satellites separated by &220 km orbiting at 450–500 km above the Earth’s

surface, see also Tapley et al. (2004). In this paper we rely on GRACE derived monthly

sets of spherical harmonic coefficients that describe the gravity field of the Earth. The

temporal variations in such gravity fields relative to a long term average gravity field

provide the capability to calculate monthly maps of surface water thickness which come

with a spatial resolution of � 300 km.

With the help of the multi-basin estimation technique introduced in Wouters et al.

(2008) we translate the observed water thickness variations into mass time series for 16
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basins defined within the Greenland system, see Fig. 1. There are four additional basins

near Greenland (Ellesmere Island, Baffin Island, Iceland and Svalbard) where we also

calculate mass time series. A sum of the estimated basin mass time signals yields a realistic

estimate for the total mass change of the Greenland system. The motivation for writing this

paper is to provide background information to a presentation with the same title at the

workshop on the Earth’s Cryosphere and Sea level Change held at the International Space

Science Institute in Bern, Switzerland, March 22–27, 2010.

In Sect. 2 we show the results obtained with GRACE for Greenland’s mass using a new

implementation of the forward method discussed in Wouters et al. (2008), in Sect. 3.1 we

compare the obtained solution with other solutions that only depend on GRACE, in Sect.

3.2 we compare our results to independent mass balances derived from satellite altimetry,

in Sect. 3.3 we discuss a comparison with an independent mass balance calculation that

does not depend on GRACE or satellite gravimetry, in Sect. 3.4 we discuss the possible

consequences of a new glacial isostatic adjustment model that was recently published and

in Sect. 4 we discuss the outlook for future research on Greenland’s mass balance.

2 Mass Loss Trend and Acceleration of the Greenland Ice Sheet

The GRACE system described in Tapley et al. (2004) provides monthly estimates for the

Earth’s geoid up to a spatial resolution of approximately 300 km which is mostly governed

by the height of the GRACE system above the Earth’s surface. Under suitable conditions a

sufficient number of GRACE measurements becomes available to compute degree and

order 60 spherical harmonic coefficient sets at monthly intervals, whereby it should be

remarked that the Centre Nationales de Etudes Spatiales (CNES) in Toulouse France

produces GRACE gravity fields at 10 day intervals, cf. Bruinsma et al. (2010). Two

standard GRACE spherical harmonic coeffient sets from the Center of Space Reseach at

the University of Texas (CSR) and the Geo-Forschungs Zentrum in Potsdam (GFZ) are

developed by the GRACE science team. These solutions can be downloaded from

ftp://podaac.jpl.nasa.gov/grace/data/L2/.

The raw GRACE data consists of inter-satellite distance variations including GPS and

accelerometer data collected on both spacecrafts. After processing this data we obtain a

level-2 product that provides a monthly set of spherical harmonic coefficients that describe

the gravity field of the Earth. During this process all high frequency mass variations that

occur within the processing month are removed so that the produced monthly gravity fields

are corrected for effects from ocean tides and atmospheric air pressure variations. The

Fig. 1 Basin definitions and
index numbers within the
Greenland system, including, in
red, the 2,000 m contour; for
elevations above 2,000 m, the
indices are increased by 8
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latter both affect the Earth’s crust through atmospheric pressure loading, but also play a

role in a barotropic ocean model which is used to correct the GRACE gravity fields.

After removal of the static part of the geoid and correction for the glacial isostatic

adjustment of the Earth, for which we initially use the models of Paulson et al. (2007) and

Peltier (2004), a residual monthly geoid can be obtained from the GRACE system. If we

assume that the resulting geoid variations after the GIA correction occur as a result of mass

variations on the Earth’s surface, and if we assume that the GRACE system is able to

observe the signal with an infinite spatial resolution then an elastic loading theory can be

used to compute monthly equivalent water thickness yt(x) where t is time and x the

geographic location, for details see Wouters (2010) and Schrama and Wouters (2011).

In reality the spatial resolution of GRACE is limited for a number of reasons: (1)

GRACE samples the gravity field from an orbit that occasionally experiences resonances

resulting in unfavorable repeating ground track patterns, (2) the altitude of the GRACE

satellites is between 450 and 500 km, and (3) the equivalent water thickness maps are

convolved with an isotropic, homogeneous spherical Gaussian function G which assists in

de-striping these maps.

A separate discussion is the use of a filter technique based on an empirical orthogonal

function (EOF) approximation of the GRACE level-2 data or the computed water thickness

maps. In the paper of Wouters et al. (2008) the spherical harmonic coefficients are freed

from noise by means of an EOF approximation and in Schrama and Wouters (2011) an

EOF approximation is used to identify noisy months in the GRACE level-2 series.

In the following GRACE observed water thickness maps are represented as ztðxÞ ¼
GðytðxÞÞ and the task is to use this information to derive mass variations within basins as

shown in Fig. 1. For this reason the defocussing method considers the linear system:

ztðxÞ ¼
XN

i¼1

atibiðxÞ þ �tðxÞ ð1Þ

where z is the convoluted water thickness observed by GRACE at month t at geographic

location x. We define N basins in the model domain, the coefficients ati describe a uniform

water thickness in basin i at month t and the functions bi(x) model the contribution of unit

basin function i which is defined by the basin shape and the selected Gaussian smoothing

radius, for details see Schrama and Wouters (2011). Equation (1) is solved by minimization

of a cost function �tðxÞ0Q�1�tðxÞ where Q is the covariance matrix of the GRACE water

thickness observations. The solved for coefficients ati are converted into a mass change per

basin which results in a time series for basin i.
A first finding with the method described above is that the choice of the number of

basins greatly affects Greenland’s mass loss trend function which can be demonstrated by

representing the ice sheet by one or more basins. If the Greenland ice sheet is modeled by a

single basin being the overlap over compartments 1–16 in Fig. 1 then the mass change

dM/dt becomes -146 ± 14 Gt/year where the error margin follows from a 95% confidence

interval. If we use basins 1–8 within the coastal zone then we get -207 ± 18 Gt/year, when

the system is fully described by all 16 basins as shown in Fig. 1 then we get

-219 ± 19 Gt/year. Finally, if we include the four surrounding regions Ellismere Island,

Baffin Island, Iceland and Svalbard (the EBIS region) then we get -250 ± 28 Gt/year.

These mass change rates are computed with consideration of a 3 degree Gaussian

smoothed radius. As input for the de-focussing method we used equivalent water thickness

maps derived from monthly GRACE spherical harmonic coefficients provided by the CSR,

the GFZ and the University of Bonn. GRACE data was used between March 2003 and Feb
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2010 and we applied the glacial isostatic adjustment models from Paulson et al. (2007) and

Peltier (2004) to obtain mass loss rates.

The difference between modeling the Greenland ice sheet with 1 or 8 basins hints to an

approximation error of the here described de-focusing method. This problem may be

avoided by defining a sufficient number of basins.

From the above results we conclude that there is a difference of approximately 12 Gt/

year between a solution of 8 coastal basins and 16 Greenland basins, and a difference of

approximately 31 Gt/year between a full 16 basin Greenland System (GS) solution and a

20 basin solution that includes the EBIS area. Since there are noticeable correlations in the

solution one can not rely on differencing methods because mass changes that occur by

adding a few basins to the system will propagate between the involved basins.

For numerical reasons discussed in Schrama and Wouters (2011) we decided to merge

the GS above 2,000 m into one basin and to allow for mild a priori constraints, i.e. greater

than 106 Gt2 is assumed as a priori variance by modeled basin. This yields a 13-basin

configuration where the mass change trend of the GS becomes -201 ± 19 Gt/year, below

2,000 m we find -250 ± 20 Gt/year, above 2000 m we see a mass gain of 49 ± 10 Gt/

year, whereby we remark that the errors below and above 2,000 m are correlated by -0.89.

For the EBIS region we find -51 ± 17 Gt/year and the correlation of errors to the rest of

the solution is between -0.3 and 0.3. The full system consisting of the GS and the EBIS

region experiences a mass loss of -252 ± 28 Gt/year and an acceleration of -22 ± 4 Gt/

year2 where more than half of the acceleration signal comes from the EBIS region. All

reported values are obtained between from GRACE data collected between March 2003

and February 2010.

The time series by basin in the 13-basin solutions do not only show a linear trend; there

are also unique accelerations and annual signals for each basin. The mass change rates and

accelerations within the coastal zone of Greenland are shown in Figs. 2 and 3, respectively,

for March 2003–February 2010. Any trend or acceleration of the Greenland system as a

whole is by definition an approximation because it is the sum of mass changes that

originate mostly from the coastal zone of the GS.
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Fig. 2 Mass loss rates in Gt/year
in the Greenland system derived
by the de-focussing method. The
red zone of the color bar is for
negative mass change rates
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3 Discussion

In this section we will compare our obtained solution for the 13-basin configuration to

existing GRACE-only mass balance estimates (MBE), altimeter derived MBEs, and cli-

matologic MBEs of the Greenland ice sheet. Due to the recent developements in the

Glacial Isostatic Adjustment (GIA) community we will also comment on Wu et al. (2010)

who suggested that it may be necessary to develop a new GIA model for Greenland.

3.1 Comparison to ‘‘GRACE-Only’’ Solutions

When we compare our results to published mass balance estimates of Greenland we notice

that Velicogna (2009) finds -137 Gt/year between 2002–2003 to -286 Gt/year in

2007–2009. Their suggestion is that one could interpret this result as a mass loss rate of

-230 ± 33 Gt/year and an acceleration of -30 ± 11 Gt/year2. In Wouters et al. (2008)

we reported a mass change rate of -179 ± 25 Gt/year for the time period 2003–2008; the

solution of Wouters et al. (2008) is compatible with the solution presented here because of

the acceleration effect. For a 13-basin solution we find with the method described in Sect. 2

and with consideration of the gravity field solution provided by the CSR, the GFZ and the

university of Bonn, including the GIA models of Paulson et al. (2007) and Peltier (2004),

an acceleration of -8 ± 7 Gt/year2 for the GS, and for the combination of the GS and the

EBIS we get -22 ± 4 Gt/year2.

A Greenland mass loss rate difference is observed between the methods of Wouters

et al. (2008) and Velicogna (2009) because of the contribution of the EBIS region. The

averaging kernel method used by Velicogna (2009) partly overlaps the neighborhood of

Greenland so that this method is affected by mass loss processes in adjacent regions as

explained in Wouters et al. (2008) and Wouters (2010).

Whereas both methods are based on monthly GRACE spherical harmonic coefficients

provided by the Center of Space Research (CSR) at Austin the results of Luthcke et al.

(2010) depend on their implementation of a mass concentration model (mascon model) as
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Fig. 3 Mass change
accelerations in Gt/year2 by
compartment in the Greenland
system. The red zone indicates
that the mass change trends are
becoming more negative
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reported in Luthcke et al. (2006) and Rowlands et al. (2005). At the European Geosciences

Union meeting held in Vienna, Luthcke et al. (2010) showed that their Greenland mass

loss rate stands at -177 ± 6 Gt/year during August 2003–August 2009. This mascon

solution displays a large signal in the coastal zone of -242 ± 19 Gt/year while above

2,000 m a mass gain of 65 ± 9 Gt/year is observed; furthermore there is no evidence for

an acceleration in the Goddard Space Flight Center (GSFC) mascon solution. In Schrama

and Wouters (2011) it is reported that a significant anti-correlation occurs between the total

mass variation in coastal zone and the area above 2,000 m on Greenland and that the

separation of both signals obtained by the de-focussing method is difficult. Nevertheless

for an unconstrained 13 basin solution we also find a mass gain of 49 ± 10 Gt/year over

2,000 m in the GS.

3.2 Comparison to Solutions from Satellite Altimetry

Any satellite altimetry mass balance estimate comes with the fundamental problem that it

provides a volume estimate and that firn compaction affects the quality of the computed

mass effects by basin. A second effect is that mass loss on Greenland occurs in the coastal

margins where all altimeter systems face data interpretation problems because of a rugged

topography. The MBE from radar altimetry is discussed in Zwally et al. (2005) for the

period 1992–2002 with ERS-1 and ERS-2 data. Their conclusion is that the coastal margin

of Greenland was losing -42 ± 2 Gt/year below the equilibrium line but that Greenland

was gaining mass by a rate of ?53 ± 2 Gt/year inland. ICEsat provides estimates of the

topographic change measured by a laser as is discussed in for instance Pritchard et al.

(2009) who find thinning along the coastal margin and thickening above 2,000 m on

Greenland. A recent Greenland MBE derived from ICEsat altimetry data is -171 ± 4 Gt/

year during 2003–2007 as explained in Zwally et al. (2011), while Sørensen et al. (2010)

mention -210 ± 21 Gt/year for October 2003–March 2008. In Zwally et al. (2011) the

rate of mass gain above 2,000 m is compared between 1992–2002 and 2003–2007. Their

conclusion is that the mass change in this area decreased from 44 to 28 Gt/year, while

below 2,000 m the mass change increased from -51 to -198 Gt/year.

3.3 Comparison to Climatologic Mass Balance

The Greenland mass balance may also be obtained from regional climate models such as

Regional Climate model for Greenland maintained by Michiel van den Broeke (RACMO/

GL) which are an essential contribution in modeling the surface mass balance (SMB). In van

den Broeke et al. (2009) the SMB follows from precipitation, evaporation and seepage of

meltwater; another required component is the glacier discharge (D) which is measured with

the help of satellite interferometry as is explained in Rignot and Kanagaratnam (2006). The

mass balance for Greenland that should be compared to the values obtained from GRACE,

ICEsat and ERS-1 and 2 is the difference SMB-D. This calculation results in -237 ±

20 Gt/year for the Greenland ice sheet according to van den Broeke et al. (2009). Their

estimate is entirely independent of any assumption about the gravity field of the Earth

including corrections to the gravity fields as a result of glacial isostatic adjustment of the Earth

which must be applied to the monthly GRACE gravity fields to derive a surface mass balance.

The Greenland mass change rate reported in van den Broeke et al. (2009) is within 15

percent of the result obtained by Wouters et al. (2008), Velicogna (2009), Schrama and

Wouters (2011), and Sørensen et al. (2010). Although the time window is nearly com-

patible it is not well understood why the results obtained by Luthcke et al. (2010) and
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Zwally et al. (2011) deviate from the MBE published by van den Broeke et al. (2009) by

more then the allowed confidence interval even if one would correct for known acceler-

ations of the Greenland ice sheet, see also Table 1.

3.4 Consequences of a New Post Glacial Rebound Model

For the calculation of the Greenland ice sheet mass change trend and accelerations with the

13-basin approximation reported in Sect. 3.1 we tested two implementations of GIA

models for Greenland, namely that of Peltier (2004) and Paulson et al. (2007). Both models

are based on the same ice history model ICE-5G that originates from Peltier (2004). The

GIA model of Paulson et al. (2007) is obtained by adjusting the viscosity structure within

the Earth’s crust to find a best match to the GRACE data. The conclusions with both used

GIA models is that there are no significant differences in the obtained Greenland mass loss

changes which was the status quo during the workshop in March 2010. Since the workshop

Wu et al. (2010) suggested that a new GIA model should be constrained by a larger

contribution to mass variations in Greenland.

In Wu et al. (2010) the authors use deformation vectors estimated from GPS data

acquired from stations on the Greenland coast, including ocean bottom pressure predictions

acquired from a data assimilation model and the CSR level-2 RL04 GRACE data from April

2002 to December 2008. One of the possibilities might be that the ICE-5G(VM2) model in

Peltier (2004) underestimates GIA in the Greenland system. This was the a priori model that

went into the simulations and the data-assimilation technique hinting at a -0.56 mm per

year GIA geoid trend rather than the ?0.1 mm per year trend that is associated with the ICE-

5G(VM2) model. But uncertainties in Late-Pleistocene deglaciation is only one of the

possibilities; another one is Late-Holocene glaciation. In Wu et al. (2010) the possibility is

mentioned of more recent additional net past ice accumulation of about 100–300 m. The

Earth starts to deform viscously typically on time scales of a few 100 years, so that addi-

tional recent ice mass accumulation between 6,000 years ago and the present might induce

additional present-day crustal subsidence, cf. Sparrebom et al. (2006).

The conclusions of Wu et al. (2010) are that the Greenland Ice Sheet would experience

about half of the present day mass loss, i.e. they find -104 ± 23 Gt/year between 2002

and 2008, which was later corrected to -130 Gt/year (X. Wu, personal communication).

The consequence of the results in Wu et al. (2010) is that the difference widens between

GRACE-based Greenland mass loss rates and the MBE obtained by climatologic studies,

see Sect. 3.3 Also, the difference between altimeter derived MBEs and the climatologic

studies would increase when an alternative GIA correction as suggested in Wu et al. (2010)

Table 1 Published mass balance estimates (MBEs) for Greenland based on various methods

Authors MBE Coastal Inland Period Method

Zwally et al. (2005) ?11 ± 3 -42 ± 2 53 ± 2 92–02 ERS-1/2

Zwally et al. (2011) -171 ± 4 -198 28 03–07 ICEsat

Luthcke et al. (2010) -177 ± 6 -242 ± 19 65 ± 9 03–09 GRACE

Wouters et al. (2008) -179 ± 25 -186 ± 19 7 ± 18 03–07 GRACE

Schrama and Wouters (2011) -201 ± 19 -250 ± 20 49 ± 10 03–09 GRACE

Sørensen et al. (2010) -210 ± 21 03–08 ICEsat

Velicogna (2009) -230 ± 33 02–09 GRACE

van den Broeke et al. (2009) -237 ± 20 03–08 SMB-D
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is used for correcting altimeter data. Whether the approach of Wu et al. (2010) should be

adopted is a challenge for further studies, since the GIA correction is fundamental to all

discussed gravimetry and altimeter methods shown in Table 1 except for the climatologic

MBE as reported by van den Broeke et al. (2009).

4 Outlook

With the help of a de-focussing method reported in Sect. 3.1 applied to a 13-basin solution

we find a Greenland system mass loss rate and acceleration that is consistent with the

results published by Velicogna (2009), van den Broeke et al. (2009) and altimeter derived

MBEs from Zwally et al. (2011) and Sørensen et al. (2010). As a result our Greenland

mass balance estimates from GRACE agree to within 15% with independent mass balances

derived from climatological studies and ICEsat altimetry studies.

The physical significance of an acceleration term as presently observed within the

Greenland system is not well understood. The mass loss rate in Fig. 2 is for instance not

uniform along the shore, neither is the acceleration of mass change as shown in Fig. 3. The

glaciers along the South East of Greenland are still losing mass, but the acceleration map

shows that this process is slowing down, whereas the basins on the West and North West of

Greenland have increased their rate of mass loss. The GRACE derived regional clima-

tologies within the coastal basins do resemble the results obtained by van den Broeke et al.

(2009). Yet more research is necessary to refine the conclusions, and in particular the long

term behaviour of the mass change on Greenland including its relation to known circu-

lation pattern changes in the ocean and atmosphere related, e.g., to the North Atlantic

oscillation and the El Niño Southern Oscillation.

The new GIA correction by Wu et al. (2010) provides a new direction in post glacial

rebound research. The method uses GPS deformation vectors near Greenland, GRACE

data, and an ocean model yielding ocean bottom pressure data. At the same time the GIA

model developed by Wu et al. (2010) considerably widens the gap between the Greenland

mass balance results of van den Broeke et al. (2009) and the GRACE mass loss estimates

discussed in Velicogna (2009), Wouters et al. (2008), Schrama and Wouters (2011) and

Luthcke et al. (2010). Whether the Greenland GIA model has converged may depend on

further research focussing on the interpretation of geologic sea level records along the

Greenland shore, such as discussed in Sparrebom et al. (2006).
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