
Application-Oriented Scheduling

in Multicluster Grids

Ömer Ozan S̈ONMEZ

Application-Oriented Scheduling

in Multicluster Grids

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 7 juni 2010 om 15:00 uur

doorÖmer Ozan SÖNMEZ

Master of Science in Computer Engineering, Koç University,Turkey
geboren te Istanbul, Turkey

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. H.J. Sips

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. H.J. Sips Technische Universiteit Delft, promotor
Dr.ir. D.H.J. Epema Technische Universiteit Delft, copromotor
Prof.dr. K.G. Langendoen Technische Universiteit Delft
Prof.dr.ir. H.E. Bal Vrije Universiteit Amsterdam
Prof.dr. D. Trystram Grenoble Institute of Technology, France
Dr. E. Deelman University of Southern California, USA
Dr. A. Gürsoy Koç University, Turkey
Prof.dr. C. Witteveen Technische Universiteit Delft, reservelid

Published and distributed by:̈Omer Ozan S̈ONMEZ
E-mail: osonmez@gmail.com

ISBN: 978-90-79982-07-3

Keywords: Grids, clusters, scientific applications, scheduling, co-allocation, predictions, experi-
mentation, performance

Copyright c© 2010 byÖmer Ozan S̈ONMEZ

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage and retrieval system, without written permissionof the author.

Printed in The Netherlands by: Ẅohrmann Print Service

The work described in this thesis has been carried out in the ASCI graduate school. ASCI disser-
tation series number 201.
This work was carried out in the context of the Virtual Laboratory for e-Science project (www.vl-
e.nl), which is supported by a BSIK grant from the Dutch Ministry of Education, Culture and
Science (OC&W), and which is part of the ICT innovation program of the Dutch Ministry of
Economic Affairs (EZ). Part of this work is also carried out under the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract IST-2002-004265).

To my parents,

i

Contents

1 Introduction 1
1.1 An overview of scheduling in multicluster grids 2

1.1.1 Key aspects and organization . 2
1.1.2 Challenges in grid scheduling 7

1.2 Job models in grids . 8
1.3 Problem statement . 9
1.4 The testbeds . 11

1.4.1 The DAS system . 11
1.4.2 The KOALA grid scheduler . 13
1.4.3 The Delft grid simulator . 15

1.5 Research contributions and thesis outline 15

2 Co-Allocation for parallel applications 19
2.1 A job model for parallel applications 20
2.2 Parallel job management and co-allocation support in KOALA 21
2.3 Job placement policies . 22

2.3.1 The Worst Fit policy . 23
2.3.2 The Flexible Cluster Minimization policy 23
2.3.3 The Communication-Aware policy 23

2.4 The impact of system properties on co-allocation performance 25
2.4.1 The impact of inter-cluster communication 25
2.4.2 The impact of heterogeneous processor speeds 27

2.5 Co-Allocation versus no co-allocation 28
2.5.1 The applications . 28
2.5.2 Experiments in the real environment 29
2.5.3 Experiments in the simulated environment 32

2.6 The performance of the placement policies 34
2.6.1 Experiments in the real environment 35
2.6.2 Experiments in the simulated environment 37

2.7 Challenges with supporting co-allocation 38

ii

2.7.1 Communication libraries . 39
2.7.2 Advance processor reservations39
2.7.3 System reliability . 39

2.8 Related work . 40
2.9 Summary . 41

3 Malleability for parallel applications 43
3.1 Aspects of supporting malleability 44

3.1.1 Specification of malleable jobs44
3.1.2 Initiative of change . 44
3.1.3 The obligation to change . 45

3.2 Designing support for malleability in KOALA 45
3.2.1 The DYNACO framework and its use for malleability 45
3.2.2 Supporting DYNACO applications in KOALA 46
3.2.3 Job management . 47
3.2.4 Malleability management policies 48

3.3 Experimental setup . 49
3.3.1 Malleable applications . 49
3.3.2 The workloads . 50

3.4 Experimental results . 52
3.4.1 Analysis of the PRA approach 52
3.4.2 Analysis of the PWA approach 53

3.5 Related work . 53
3.6 Summary . 55

4 Cycle scavenging for parameter sweep applications 57
4.1 Requirements for supporting cycle scavenging 58

4.1.1 Fair-Share scheduling . 58
4.1.2 Notion of idleness . 59
4.1.3 Unobtrusiveness . 59

4.2 Designing support for cycle scavenging in KOALA 60
4.2.1 Application model . 60
4.2.2 System architecture . 60
4.2.3 Fair-Share policies . 62
4.2.4 Scheduling at the application level 63

4.3 The performance of the cycle scavenging system 64
4.3.1 The impact of the task submission mechanism 64
4.3.2 Performance of the fair-share policies 65
4.3.3 Unobtrusiveness of the cycle scavenging system 66

iii

4.4 Related work . 67
4.5 Summary . 68

5 The performance of bags-of-tasks in multicluster grids 69
5.1 A scheduling model for BoTs . 70

5.1.1 System and job model . 70
5.1.2 Resource management architectures70
5.1.3 Task selection policies . 71
5.1.4 Task scheduling policies . 73

5.2 The workload model for bags-of-tasks 74
5.2.1 Model overview . 75
5.2.2 Submitting user . 76
5.2.3 BoT arrival patterns . 77
5.2.4 BoT size . 77
5.2.5 Intra-BoT characteristics . 77

5.3 Experimental setup . 78
5.3.1 The simulated environment . 78
5.3.2 The performance metrics . 78
5.3.3 The workloads . 78
5.3.4 Simulation assumptions . 79

5.4 The performance of bags-of-tasks 80
5.4.1 The impact of the task scheduling policy 80
5.4.2 The impact of the workload characteristics 81
5.4.3 The impact of the dynamic system information 83
5.4.4 The impact of the task selection policy 84
5.4.5 The impact of the resource management architecture 88

5.5 Related work . 89
5.6 Summary . 89

6 The performance of scheduling workflows in multicluster grids 91
6.1 The scheduling framework . 92

6.1.1 Workflow model . 92
6.1.2 Multicluster grid model . 93
6.1.3 Workflow scheduling policies 93
6.1.4 Task throttling . 96

6.2 Experimental setup . 97
6.2.1 Experimental environments . 97
6.2.2 The workflows . 99
6.2.3 The workloads . 100

iv

6.2.4 The performance metrics . 101
6.3 Simulated environment results .. . 101

6.3.1 Single workflow scheduling . 101
6.3.2 Multi-Workflow scheduling . 106
6.3.3 Discussion . 108

6.4 Real system results . 108
6.4.1 Single workflow scheduling . 109
6.4.2 Multi-Workflow scheduling . 110
6.4.3 Discussion . 112

6.5 Related work . 112
6.6 Summary . 113

7 Evaluating prediction methods for grid scheduling 115
7.1 Grid workload traces . 116
7.2 Job runtime predictions .117

7.2.1 Methodology . 118
7.2.2 Experimental setup . 120
7.2.3 Results . 121

7.3 Queue wait time predictions .123
7.3.1 Point-Valued predictions . 124
7.3.2 Upper-Bound predictions . 125

7.4 The performance of prediction-based grid scheduling 126
7.4.1 The experimental setup . 127
7.4.2 Scheduling policies . 128
7.4.3 Performance metrics . 129
7.4.4 Results . 129

7.5 Related work . 131
7.6 Summary . 133

8 Conclusion 135
8.1 Conclusions . 136
8.2 Suggestion for future work .137

Acknowledgments 159

Summary 161

Samenvatting 165

Curriculum Vitae 169

Chapter 1

Introduction

The term ‘grid computing’ was coined in the mid 1990s to describe the seamless, se-
cure, and coordinated sharing of geographically distributed computer systems in order to
solve computationally demanding problems in science, engineering, and industry [77].
The name grid has been given as an analogy to the power grids with the idea that com-
putational resources should be obtained as swiftly as electrical energy by only plugging
into a grid. Over the last decade, numerous national and international grid computing
systems have been deployed worldwide1, typically joining multiple, geographically dis-
tributed, autonomous cluster systems with high-speed wide-area interconnections. The
EGEE Grid [63] across Europe, TeraGrid [194] in the USA, Grid’5000 [90] in France,
and the DAS system [52] in the Netherlands, which will be described in detail in Sec-
tion 1.4.1, are some examples of such systems. Various scientific communities−from
fields as diverse as high energy physics, earth sciences, andlife sciences− use these grid
systems to run their applications, which have widely different characteristics that pose
unique resource requirements to the grid.

The underlying challenges of grid computing, including resource transparency, secu-
rity, application execution and file management, have been well addressed by grid middle-
ware solutions [88,89,92,183]. Grids also need high-levelscheduling (meta-scheduling)
systems [33, 38, 91, 148] that use grid middleware in order tomap application tasks to
resources and then manage their execution on behalf of users. While vast numbers of
powerful computers exist in grids, the problem of assigningcomputations and data to
them in such a way as to optimize application performance is achallenging task due to
the complex nature of the grid systems, as well as to the communication and structural
characteristics of the applications. Further complicating this situation are the competing
needs of users. In this thesis we address the challenge of designing and analyzing realis-
tic and practical application-oriented scheduling mechanisms in multicluster grid systems.
Application-oriented scheduling in grids aims to optimizeuser-centric performance cri-

1A broad list of grid projects is available at: http://www.gridcomputing.com/

2

teria, such as application execution time, with methods specialized for different types of
applications. However, the vast amount of research on application-oriented scheduling
methods in grids does not propose practical solutions due toits unrealistic assumptions
about grid environments. The grid community still needs realistic grid-level scheduling
solutions−preferably deployed and evaluated in real systems− that would improve the
execution performance of certain types of applications. Inorder to address this need, in
this thesis, we propose various application-oriented scheduling policies, most of which
we have implemented and evaluated in a real multicluster grid environment, in addition
to simulation-based experiments in which we use realistic scenarios.

The remaining part of this chapter is organized as follows. In Section 1.1, we give an
overview of scheduling in multicluster grids, while in Section 1.2, we describe the com-
mon application types that we encounter in grids. In Section1.3, we present the problem
statement of this thesis. In Section 1.4, we describe the multicluster grid system, the grid
scheduler, and the simulation environment that we have usedin our implementations and
experiments. Finally, in Section 1.5, we present the research contributions and outline the
structure of this thesis.

1.1 An overview of scheduling in multicluster grids

Today’s grid computing systems vary widely in the technologies and standards they use,
as well as in their structure and usage scenarios. However, the aim is very similar in all
of these cases, that is, exploiting a diverse set of resources together for the sake of the
efficient execution of applications. Therefore, resource management, and in particular
scheduling, plays an important role in obtaining better execution performance for the
applications. In this section, we present the main conceptsof scheduling in multicluster
grids through a generic scheduling framework.

1.1.1 Key aspects and organization

Grid scheduling can be defined as the process of assigning jobs to grid resources that span
multiple administrative sites. This process is typically done with the goal of minimizing
the turn around time of a job. We refer to a job as the application that a user wants to
execute in a grid. In addition, we refer to a site as a set of processing and data resources,
as well as a local resource manager (scheduler), which runs on the front-end machine of
the site, in a single administrative unit. Figure 1.1 depicts a generic scheduling framework
for multicluster grids. Below, we describe the main elements, the local resource manager,
the grid middleware, and the grid scheduler, which togethermake up this framework.

3

Local Resource

Manager
Local Resource

Manager

Local Resource

Manager

Middleware

Grid

Information

Service

Local Resource

Manager
Local Resource

Manager

Local Resource

Manager

Grid Scheduler

Site Site Site

Cluster Clusters Supercomputer

Job Job Job

 Local User

Grid User
Job

Job

Figure 1.1: A generic scheduling framework for multicluster grids.

Local resource manager

Resources in a single site are managed by a Local Resource Manager (LRM), which
provides low-level resource allocation and scheduling forthe jobs of both local and grid
users. A local user can use the resources of the local site sheis affiliated with, while a
grid user can use resources from multiple such sites to whichshe has granted access. An
LRM has exclusive control over its resources, that is, no jobscan be scheduled on those
resources without using the LRM. Jobs that are submitted to anLRM are initially placed
into queues until there are enough idle computing nodes (or processors) to execute the
jobs. After that, the LRM dispatches the jobs to the assigned nodes, and then manages the
job execution until its completion, and finally, returns theresults to the submitting party.
LRMs can be queried to retrieve information about the properties of the system that they
manage, and information about the queued and scheduled jobs. However, the level of
detail of the information provided can be limited if system policy restrictions apply.

Most LRMs, including the Portable Batch System (PBS-Pro) [165], the Sun Grid
Engine (SGE) [87], LoadLeveler [1], and the Load Sharing Facility (LSF) [136], focus on
maximizing processor throughput and utilization, and minimizing the average wait time
and response time of jobs. Typical installations of such LRMsuse the first-come first-
served (FCFS) with backfilling [70,132] as the scheduling policy. FCFS simply considers
jobs for dispatch in their arrival order, while backfilling is an optimization of FCFS that
tries to balance the goals of utilization and maintaining FCFS order. Backfilling requires
users to provide information in advance on the maximum job execution time. While the
job at the head of the queue is waiting, backfilling allows jobs with smaller processor

4

requirements to be dispatched, provided that they would notdelay the execution of the
job at the head of the queue. In addition to traditional job scheduling policies, some of
the LRMs (e.g., PBS-Pro [165] and Maui [140]) also support moreadvanced techniques,
including advance reservations, cycle scavenging, peer scheduling, and job checkpointing
and restart.

LRMs are typically designed for single administrative domains, and are usually con-
figured in a way to give priority to the jobs of the local users over the jobs of grid users.
The agreements on the usage of the resources among the parties that are involved in the
grid are usually defined by Service Level Agreements (SLAs) [62]. These agreements de-
fine specific policies that state who can access the resources, how and when the resources
can be used, and other such criteria.

Grid middleware

Grid computing often requires the use of a middleware software to mitigate the complexity
of integrating distributed autonomous systems. Grid middleware intermediates between
grid applications and the grid hardware infrastructure, and therefore, it hides the under-
lying physical infrastructure from the users and from the vast majority of programmers.
In doing so, grid middleware offers transparent access to a wide variety of distributed
resources to users and simplifies the collaboration betweenorganizations.

Grid middleware such as the Globus Toolkit [76, 89], Legion [92], UNICORE [183],
and gLite [88] have contributed a lot to the growth of grids bysimplifying grid access
and usage. Among these middlewares, the Globus Toolkit is the best known, and it is the
one that we use in some of the work of this thesis. Globus comprises a set of modules
each of which defines an interface that users and higher-level services can use to invoke
that module’s mechanisms [89]. These modules implement fundamental services, such as
resource management, security, data management, and communications. For instance, the
Globus Resource Allocation Manager (GRAM) allows interfacing to different LRMs for
locating resources, and for submitting, monitoring, and canceling jobs on remote compute
resources. The Globus Security Infrastructure (GSI) module provides basic authentica-
tion mechanisms that can be used to validate the identity of both users and resources.
GSI supports delegation of credentials for computations that involve multiple resources
and/or sites. This allows a user to sign-on only once (singlesign-on) to use grid resources
at multiple sites. The Monitoring and Discovery System (MDS) is the information ser-
vice component of the Globus Toolkit, and it provides information about the available
resources on the grid and their status. Finally, Globus provides GridFTP, which is a high-
performance data transfer tool that is optimized for high-bandwidth wide-area networks.

Grid middleware solutions provide a set of services that facilitate application execu-
tion on grids; however, these grid middleware services do not make any scheduling de-

5

cisions that require application-specific knowledge [51].Instead, users and higher-level
services such as grid schedulers are expected to make any scheduling decisions that re-
quire application knowledge, and they use those middlewareservices to allocate resources
and run their applications according to scheduling decisions.

Grid Scheduler

For a common grid user it might be difficult and tedious to manually find and allocate
all the resources needed to execute an application. To automate this process, grids need
high-level scheduling systems [2]. A typical grid scheduling system provides an interface
to users for expressing job requirements, for submitting jobs, for scheduling jobs across
the grid, for launching jobs for execution, for error handling, and for recovery during the
execution of the job. It uses grid middleware services to interface to different LRMs.

Grid-level scheduling involves three main phases [175]. The first phase,resource
discovery, involves creating a list of potential execution sites thatthe user submitting the
job has access to. All of the sites in this list must also meet the job requirements specified
by the user. The set of possible job requirements can be very broad and can vary among
jobs. It may include static details such as an operating system or a specific hardware
architecture, as well as dynamic details such as number of processors or a minimum
bandwidth allocation.

The second phase,site selection, involves determining the execution site, among the
potential sites, on which the job will run. In order to attainbetter job execution per-
formance, efficient scheduling methods are required to identify the proper site for a job
based on the information obtained from a grid information service. The grid information
service gathers information from individual sites throughits software sensors. The sched-
uler queries the information service to get static (e.g., resource capabilities) or dynamic
information (e.g., existing reservations, queue lengths,scheduled jobs, future resource
availabilities) about the clusters, to be used in decision making. A grid information ser-
vice can be provided by the underlying grid middleware, e.g., Globus MDS [89], as well
as in the form of a third-party tool, e.g., Ganglia [84], or a custom implementation. In
general, scheduling jobs in a distributed system is an NP-complete problem [74], and
therefore, the proposed grid scheduling methods are mainlyheuristics except for some
special cases [11, 43]. In practice, a grid scheduler may be required to handle different
types of jobs using different scheduling policies. For instance, some jobs may require
Quality of Service (QoS) support while others may require best effort service. Other ex-
amples can be given by considering the structural properties of the jobs. In Section 1.2,
we elaborate on the characteristics of the applications that we encounter in grids, and that
grid schedulers should take into account in order to providebetter performance. In addi-
tion, the scheduler also has to consider local site policies; a site may specify a maximum

6

percentage of the resources, in terms of number of resourcesand time, to be allocated for
grid use.

In the third phase,job execution, the job is submitted to the LRM of the selected
site. The preparation phase of the submission may include setup, file staging, reserva-
tion claiming, or other such tasks that are required to prepare the resource to execute
the job. Submitting a job in grids can be very complicated because of a lack of stan-
dards for job submission since grid middleware services mostly rely on local-parameter
fields [175]. The ongoing work in the Global Grid Forum [160] addresses this need for
common job submission APIs with the Distributed Resource Management Application
API (DRMAA) [59]. After the job is submitted, the status of thejob (e.g., failed, queued,
running, or finished) is communicated to the scheduler by thejob submission service. Fi-
nally, after the job is executed, the output files−if there are any− associated with the job
are transfered to the designated locations.

Most jobs in grids use the resources of only one site. However, some types of jobs,
e.g., jobs that run parallel applications, may take advantage from running on resources
in multiple sites. Therefore, jobs may require co-allocation, i.e., the simultaneous or co-
ordinated allocation of resources at multiple sites [47, 145, 186]. However, co-allocation
presents a challenge to the grid scheduler, that is, guaranteeing the availability of re-
sources in different sites at the job’s start time. The most straightforward strategy to do so
is to reserve processors at each of the selected sites. If theLRMs do support reservations,
this strategy can be implemented by having the scheduler obtain a list of available time
slots from each LRM, reserve a common time slot for all job components, and notify the
LRMs of this reservation. In the absence of processor reservation mechanisms, alternative
solutions are required in order to achieve co-allocation [146].

Scheduling in grids can be done at the application level, globally, or as a combination
of the two. Application-level grid schedulers, such as Nimrod/G [33] and AppLeS [15,
38], schedule an application on submission, based on the information available regarding
the resources. A separate scheduler instance runs for each application submitted, and
information about other applications that are already running, or being simultaneously
submitted, are ignored due to the lack of a central control. Global schedulers, such as
GridWay [91] and GrADS [201], on the other hand, consider information about other
jobs. Since they acquire more knowledge about the status in the system, they can make
more informed decisions. OurKOALA grid scheduler [144,148], which will be described
in Section 1.4.2, allows a combination of global and application-level scheduling. Once
resources are allocated for a job by the grid-level policies−depending on the job type as
we will explain in Section 1.2− the scheduling of the tasks that make up the job can be
delegated to the application-level policies.

7

1.1.2 Challenges in grid scheduling

In traditional parallel computing systems, scheduling is awell-studied problem. The
schedulers of such systems are tightly coupled with the system, and have full control
of the resources that they manage. In contrast, grid schedulers have no control over
the resources that are dispersed across multiple administrative domains. Therefore, the
scheduling methodologies and policies proposed for the traditional parallel systems can-
not directly be applied to grid environments. Below we identify the main challenges in
grid scheduling, which make it more difficult than traditional scheduling, and which we
take into account in the scheduling mechanisms and policiesthat we have designed and
implemented in the work of this thesis.

1. Lack of control over resources.Grid schedulers have to make resource selection
decisions in an environment where they have no control over the local resources;
they have to interface to information services about resource availability, and to
LRMs to schedule jobs. Each individual site making up a grid may have a different
owner, has its own user community, and has its own autonomousLRM. The site
owners are often not willing to give up the autonomy of their sites, but will only al-
low access to their resources through a grid scheduler that interfaces to their LRM
according to specific usage rules. Moreover, the LRMs may havedifferent prop-
erties and capabilities. For instance, some LRMs may supportadvance resource
reservation, while others support queuing-based scheduling, or some may support
job checkpointing and migration, while others do not.

2. Characteristics of grid resources.Typically, resources in a grid system are het-
erogeneous in terms of hardware, e.g., processor architecture, disk space, network,
software, e.g., operating system, libraries, and systems management, e.g., security
set-up, usage SLAs. Moreover, the availability of resources in a grid system varies
frequently. In addition to failures, resources may be allocated (or released) by con-
current users, and resource owners may add or withdraw theirresources to/from
the resource pool at any time. This dynamic nature of the resources, together with
the heterogeneity, makes it difficult for grid schedulers topredict the behavior of
applications on grids.

3. Lack of complete control over jobs. Grid schedulers do not have full control
over the entire set of jobs in a grid; local jobs and jobs submitted by multiple grid
schedulers have to co-exist in a grid. The jobs that are executed in a single site in
a grid may be submitted through the local scheduler or through any of a number of
grid schedulers. This means that a grid scheduler has to takeinto account jobs from
multiple sources when deciding on where a particular job should run.

8

Parallel Job Bags-of-Tasks Workflow

Figure 1.2: Common job models in grids.

1.2 Job models in grids

Ever more scientists use grid computing to meet the resourceneeds of their applications.
For instance, many applications of grand challenge problems [86], such as protein fold-
ing, financial modeling, earthquake simulation, and climate/weather modeling, are being
executed on grid systems in order to make use of the vast number of resources. Such ap-
plications in grids can be implemented using different software libraries (the well-known
grid programming libraries are presented in the work of Lee and Talia [127]), such as
MPI [152], Ibis [12,205], JavaSpaces [80], and ProActive [10]. In addition, grid applica-
tions often need to be represented with a job model, such as parallel, bags-of-tasks, and
workflow (see Figure 1.2), to facilitate their execution in grids. In this section we describe
the common job models in grids, which we also use throughout this thesis.

The description of a job varies according to the job description language being sup-
ported by the grid scheduler or the grid middleware. A job maycomprise several tasks,
which can be scheduled independently or together dependingon the job model or the
scheduling policy being used. A grid scheduling system needs to implement appropriate
mechanisms to be able to handle application scheduling and execution with regard to the
different job models that we explain below.

A parallel job is composed of several tasks which can be executed in parallel. Tasks
run on a number of computational nodes in parallel, and exchange information using some
underlying library, such as MPI [152] or Ibis [12, 205]. Parallel jobs can be classified as
rigid, moldable, and malleable [71]. A rigid job requires a fixed number of processors.
When the number of processors can be adapted only at the start of the execution, the job is
called moldable. Similar to rigid jobs, the number of processors for moldable jobs cannot
be changed during runtime. Jobs that have the flexibility to change the number of assigned
processors during their runtime, that is, that can grow or shrink, are called malleable.
Parallel applications can be made malleable using specific programming models, such as
Ibis-Satin [203], and theDYNACO Framework [28,30]. For a parallel job, a grid scheduler
has to deal with the job’s programming library, including assembling the list of resources
the job is executed on for an MPI job, or adding the location ofthe nameserver to the
parameters of an Ibis job.

9

A bags-of-tasks (BoT) is composed of independent tasks that can be scheduled and
executed in any order without needing inter-task communication. Parameter sweep appli-
cations (PSAs) are a special type of BoT with tasks that each execute the same program
but with different parameters. There are various importantBoT applications in grids,
including data mining, massive searches, Monte Carlo simulations, fractal calculations
(such as Mandelbrot), and image processing applications (such as tomographic recon-
struction) [207].

Workflows constitute another commonly used job model in manycomplex grid appli-
cations. In general, workflows are represented as directed acyclic graphs (DAGs), where
the nodes represent tasks to be performed and the edges represent dependencies between
tasks. For a workflow job, the scheduler needs to take into account issues like task inter-
dependencies, advanced reservations, and fault-tolerance, besides the job’s programming
model. Important workflow applications in grids include Montage (astronomy applica-
tion) [149], CyberShake (earthquake analysis application)[46], and SIPHT (bioinformat-
ics application) [135].

Irrespective of their models, applications may pose different communication require-
ments. For instance, some applications are communication-intensive, requiring large
volumes of data movement among the tasks, while other applications are computation-
intensive, requiring minor, or no data movement at all. In this respect, a grid scheduler
should take into account the communication characteristics of the applications in order to
improve their execution performance.

1.3 Problem statement

Grid scheduling is challenging due to the heterogeneity andthe dynamic nature of the
grid resources as well as to the lack of control of those resources. The wide variety
in the structural and the communication characteristics ofthe applications submitted to
grids further complicate grid scheduling, and may lead to poor or unpredictable perfor-
mance unless these characteristics are taken into account.Therefore, we need efficient
scheduling mechanisms and policies in grids that are specialized for different common
grid application types such as parallel applications, bags-of-tasks, and workflows.

In this thesis our aim is to propose and implement schedulingmechanisms and poli-
cies for different application types, and to investigate their performance in a real multi-
cluster grid system, the DAS, using ourKOALA multicluster grid scheduler, as well as
with simulations using realistic scenarios. We study grid scheduling for a wide range
of grid application types including parallel applicationsthat may need co-allocation or
malleability, bags-of-tasks that can benefit from cycle scavenging, and workflows. More
specifically, in this thesis we aim to answer the following research questions:

How beneficial is processor co-allocation in multicluster grids? In multicluster
grid systems, parallel applications may benefit from processor co-allocation, that is, the

10

simultaneous allocation of processors in multiple clusters. Although co-allocation al-
lows the allocation of more processors than available in a single cluster, it may severely
increase the execution time of applications due to the relatively slow wide-area com-
munication. Despite various simulation-based performance evaluation studies on co-
allocation [25,27,66,111,172], and efforts to support co-allocation in a real multicluster
grid scheduler [144,145,147,148,187], we still lack a complete understanding of to which
extent processor co-allocation is beneficial in real grids.To this end, we will perform
a comprehensive investigation on the benefit of processor co-allocation in multicluster
grids.

How to schedule malleable applications in multicluster grids? Application mal-
leability, that is, the property of parallel applications to use varying amounts of resources
such as processors during their execution, is potentially avery versatile and beneficial fea-
ture. Malleability facilitates dealing with the dynamic nature of multicluster grid systems.
Despite several approaches that have been proposed to buildparallel malleable applica-
tions [28,114,198,199], virtually no existing multicluster or grid infrastructure is able to
benefit from this property. Most of the previous work on scheduling malleable applica-
tions does not meet the challenges that appear in the contextof multicluster systems. We
will address such issues as the selection of a suitable execution site for each malleable
application, resilience to background load due to local users, and prioritizing malleable
applications for dynamic resource allocation operations (i.e., growing and shrinking in
terms of number of resources being used).

How to run large-scale cycle-scavenging applications politely yet efficiently in
multicluster grids? Cycle scavenging is the underlying technology of desktop grids that
enables harnessing idle CPU cycles to solve large-scale scientific problems. The same
concept can be applied to multicluster grid environments togive users the opportunity of
executing such large-scale computation intensive applications at a low priority without
being in the way of regular grid users or local users. Although various cycle scaveng-
ing systems [7, 44, 134] exist, they all necessitate additional software installations on the
compute nodes or modifications to the LRM of the clusters, bothof which would be ad-
ministrative obstacles in multicluster grid systems. We will address the question of how to
incorporate/integrate cycle scavenging into grid schedulers in a seamless way without the
need for modifying LRMs or for (pre-)installing any additional software on the compute
nodes.

What is the performance of bags-of-task scheduling in multicluster grids? In
contrast to the workloads of tightly coupled parallel computing systems, a considerable
part of the workloads submitted to multicluster grids consists of bags-of-tasks (BoT) [98].
Therefore, a realistic performance analysis of schedulingBoTs in multicluster grids is
important. Although many scheduling policies for BoTs have been proposed for a variety
of systems, most of these policies have been proposed for tightly-coupled systems, or at

11

least, they do not consider heterogeneous resources. The few solutions that can be applied
in practice in multicluster grid systems [39, 82, 130, 180] assume that the scheduler has
either no information or mostly accurate information at itsdisposal. We will tackle the
question of what is the performance of BoT scheduling in multicluster grids by proposing
realistic scheduling policies and evaluating them with detailed realistic scenarios.

What is the performance of dynamic workflow scheduling in multicluster grids?
Scientists increasingly rely on grid workflows for executing complex mixtures of tasks
with data dependencies. Previous research on workflow scheduling [20, 21, 93, 125, 196]
considers usually static scheduling methods in which workflow tasks are mapped to re-
sources before their execution. Static scheduling, however, does not consider the dynamic
nature of multicluster grids, and besides, it assumes that perfectly accurate information
is available about the system resources and the workflow tasks, which is an unrealistic
assumption for grids. Motivated by this fact, we will present a realistic investigation on
the performance of dynamic workflow scheduling in multicluster grids.

What is the performance of job runtime and queue wait time predictions in
grids? Grids bring about not only the advantages of an economy of scale, but also the
challenges of resource and workload heterogeneity. A consequence of these two forms of
heterogeneity is that job runtimes and queue wait times are highly variable, which gen-
erally reduces application performance and makes grids difficult to use by the common
scientist. Predicting job runtimes and queue wait times hasbeen widely studied for tra-
ditional parallel environments [23, 56, 57, 107]. We will address the question of how the
proposed prediction methods perform in grids, whose resource structure and workload
characteristics are very different from those in parallel systems. Such an analysis points
the grid research community in the right direction to improve the predictability of job
runtimes and queue wait times in grids.

1.4 The testbeds

In this section we present the background information regarding the DAS system [52],
theKOALA grid scheduler [144,148], and the Delft Grid Simulator [104], which we have
used for our implementations and experiments in this thesis.

1.4.1 The DAS system

The Distributed ASCI Supercomputer (DAS) [52] is an experimental computer testbed
in the Netherlands that is exclusively used for research on parallel, distributed, and grid
computing. The system was built for the Advanced School for Computing and Imaging
(ASCI) [8], a Dutch research school in which several universities participate. The DAS
system is now in its third generation (DAS-3) after the first and second generations have

12

Table 1.1: The distribution of the nodes over the DAS-2 clusters.

Cluster Location Nodes

Vrije University 72
U. of Amsterdam 32
Delft University 32

Utrecht University 32
Leiden University 32

Table 1.2: The properties of the DAS-3 clusters.

Cluster Location Nodes Speed Structure Interconnect

Vrije University 85 2.4 GHz dual-core Myri-10G & GbE
U. of Amsterdam 41 2.2 GHz dual-core Myri-10G & GbE
Delft University 68 2.4 GHz single-core GbE
MultimediaN 46 2.4 GHz single-core Myri-10G & GbE

Leiden University 32 2.6 GHz single-core Myri-10G & GbE

proven to be successes. Part of our research in this thesis has been conducted on the
second (DAS-2) and on the third (DAS-3) generation of the DASsystem. Therefore, we
describe only the last two generations of the DAS system.

The DAS-2, which was in use between 2002 and 2006, consisted of 200 nodes, or-
ganized into five dual-processor clusters of identical 1 GHzIntel Pentium III processors.
The distribution of the nodes over the clusters is given in Table 1.1. The clusters were in-
terconnected by the Dutch university backbone (100 Mb/s), and the nodes within a cluster
were connected by Myrinet LAN [157] (1.2 Gb/s). On each of theclusters, the Sun Grid
Engine (SGE) [87] was used as the local resource manager. SGEwas configured to run
applications on the nodes in an exclusive fashion, i.e., in space-shared mode.

The DAS-3 was installed late 2006. The main difference between the DAS-3 and
the previous DAS systems is the degree of heterogeneity present in the system in terms
of processor speed, processor structure, and network. The DAS-3 consists of 272 nodes
organized into five dual-processor clusters as shown in Table 1.2 with a mixture of single-
core and dual-core AMD Opteron processors. As the same tableshows, the DAS-3 has
a minor level of processor speed heterogeneity. All DAS-3 clusters have 1 Gb/s and 10
Gb/s Ethernet, as well as a high speed Myri-10G [157] interconnect, except for the cluster
in Delft, which has only Ethernet interconnects. As in the DAS-2, each of the clusters is
managed by SGE in space-shared mode.

13

KOALA Runners

KOALA Scheduler

Runners Framework

Submission Engines

Users

Figure 1.3: The layered architecture of theKOALA grid scheduler.

In the DAS systems, each of the DAS clusters is an autonomous system with its own
file system. Therefore, in principle files (including application executables) have to be
moved explicitly between users’ working directories in different clusters. In addition,
simple usage rules are enforced in the DAS systems that usersor schedulers have to
consider. The most important of these are that any application cannot run for more than
15 minutes from 08:00 to 20:00, and that execution must be performed on the compute
nodes, never on the head nodes. The DAS systems can be seen as afast prototyping
computational grid environment, with its structure and usage policies designed to enable
grid research.

1.4.2 The KOALA grid scheduler

The KOALA grid scheduler [144, 148]2 is designed for multicluster systems such as the
DAS, with the aim of implementing mechanisms and policies for scheduling various grid
application types.KOALA served scientists in the DAS-2 between 2005 and 2007, and
since May 2007, it has been in operation in the DAS-3 system.

KOALA was initially designed to schedule parallel applications that may need co-
allocation, that is, the simultaneous allocation of processors in multiple clusters. In
the study of this thesis, we have extendedKOALA with support for scheduling parallel
malleable applications [31], parameter sweep applications [185], and workflow applica-
tions [188]. Below, we describe the main building blocks ofKOALA . For further details
we refer the reader to [148] and [144].

2TheKOALA grid scheduler project page: http://www.st.ewi.tudelft.nl/koala/

14

Architecture of KOALA

KOALA has a layered architecture that allows us to develop distinct layers independently,
which can then work together. TheKOALA layered architecture consists of four layers:
thescheduler, therunners framework, therunners, and thesubmission engines, as shown
in Figure 1.3.

The KOALA scheduler is responsible for scheduling jobs received fromthe KOALA

runners or any third-part job submission tools with its scheduling policies that are used to
map jobs on suitable execution sites. In general, the choiceof which scheduling policy
to be used is initiated by the runners and therefore, it can beselected by the users for
every submitted job separately. The scheduler is supportedby an information service,
which monitors the status of resources by means of processorand network information
providers and a file replica location service.

To address the challenge of grid application deployment,KOALA has the concept of
runners, which are job submission and monitoring tools. Different runners can be written
to support the unique characteristics of different application types by using theKOALA

runners framework. The runners framework hides the heterogeneity of the grid by pro-
viding to the runners a runtime system and its correspondingset of APIs for commonly
used job submission operations such as interfacing with theKOALA scheduler for job
scheduling, the transfer of input files, deploying jobs on grids, monitoring and respond-
ing to failures, and the transfer of output files back to the submission site. In addition,
the runners framework has fault tolerance mechanisms that deal with the reliability is-
sues of the grid infrastructure. Relying on the runners framework, the runners provide the
environment for users to develop per-application type schedulers that can be specially tai-
lored to match the needs of applications such as PSAs and workflows. The runners have
complete freedom to implement their own mechanisms for the application level opera-
tions, or alternatively, to use the default implementations that are provided by the runners
framework.

The last layer consists of the submission engines, which arethird-party tools that
use the runners to submit jobs toKOALA . These tools include workload generation and
submission tools (e.g., Grenchmark [99]), workflow engines(e.g., Karajan [206]), and
user scripts.

KOALA is not tied to any particular operating system or grid middleware. For instance,
the current implementation ofKOALA can use both Globus GRAM [89] and DRMAA [59]
services for job submission and monitoring operations on the DAS-3 system. The job
management operations in theKOALA scheduler, including scheduling policies, queue
operations, interactions with the runners and middleware services, differ according to the
type of the application submitted, and hence the type of the runner used. In Chapters 2,
3, 4 and 6, we present the additional necessary information on the operation ofKOALA

with regard to the subjects covered in those chapters.

15

1.4.3 The Delft grid simulator

In grid research, scientists often use simulations in orderto conduct performance eval-
uation experiments. In real grid systems, experiments can be very time consuming and
very difficult to reproduce, since it is hard to attain the same circumstances in such a
dynamic environment. Therefore, simulations are criticalas they facilitate the assess-
ment large numbers of experimental settings in a reasonableamount of time. Despite
many efforts, today’s grid simulators [34, 35, 61, 112, 124]still lack important features in
system modeling, experiment setup, and experiment management. To this end, we have
implemented our own grid simulator, the Delft Grid Simulator (DGSim) [104]. When
compared to previous simulation tools, DGSim focuses more on the simulation process,
with better support for synthetic trace generation and use,and for exploring large design
spaces [104]. Besides, DGSim enables us to implement scheduling policies at different
levels, including the cluster, the application, and the user level. We tested and validated
DGSim in [104] as part of our previous work. In Chapters 2, 5, 6,and 7, we extend and
use DGSim for our performance evaluation experiments.

1.5 Research contributions and thesis outline

In this thesis we propose and investigate application-oriented scheduling solutions in mul-
ticluster grids. The main chapters aim to answer the research questions formulated in Sec-
tion 1.3, respectively. In Chapters 2, 3, and 4, we perform mainly real experiments with
KOALA at DAS, and in Chapters 5, 6, and 7, we perform mostly simulation-based exper-
iments with our DGSim tool. Below we describe the structure and the main contributions
of this thesis.

Assessing the benefit of processor co-allocation (Chapter 2). We investigate the
performance of processor co-allocation in multicluster grids for parallel applications that
range from computation-intensive to communication-intensive under various system load
settings. Further, we compare the performance of several scheduling policies that we have
specifically designed for parallel applications that may use co-allocation. We demonstrate
that considering latency in the resource selection phase improves the performance of co-
allocation, especially for communication-intensive parallel applications. The content of
this chapter is based on our research published in [186,187].

A scheduling framework for malleable applications (Chapter 3). We present an
architecture and an actual implementation of the support for malleability in multicluster
grid schedulers with the help of theDYNACO framework [28] for application malleability.
We propose two policies to manage dynamic resource allocation for malleable applica-
tions that already started; one which spreads any additional processors to the malleable
jobs that have been running the longest, and one that spreadsthem equally over all run-

16

ning malleable jobs. Our experimental evaluation shows that higher system utilization and
shorter job execution times can be achieved when malleability is used. We also find that
the relative performance of our two malleability management policies varies according to
the design choice as to when to initiate a malleability management policy. The content of
this chapter is based on our research published in [31].

A scheduling framework for cycle scavenging applications (Chapter 4). We
present an integrated design of cycle scavenging support into a scheduling architecture
for multicluster grids. The implemented cycle scavenging mechanism runs alongside the
regular grid scheduling, being unobtrusive to the jobs of higher priority (both local and
grid jobs). Our mechanism obviates the need for additional software installations on the
compute nodes or any modifications to the resource managers of the clusters. We exclu-
sively target Parameter Sweep Applications (PSAs) to run ascycle scavenging jobs. In
addition, we propose two best-effort cycle scavenging policies that try to achieve fair-
share resource allocation among cycle-scavenging users. The content of this chapter is
based on our research published in [185].

The performance of bag-of-tasks scheduling (Chapter 5).We propose a taxonomy
of scheduling policies for bags-of-tasks that focuses on information availability and ac-
curacy, we also present two new task scheduling policies. Weexplore the large design
space of bags-of-task scheduling in multicluster grids along five axes: the task selection
policy, the input workload, the information policy, the task scheduling algorithm, and the
resource management architecture. Notably, we find that task selection policy is impor-
tant only in busy systems. In addition, we find that a centralized resource management
architecture achieves the best performance for bag-of-tasks applications. The content of
this chapter is based on our research published in [103].

The performance of dynamic workflow scheduling (Chapter 6). We introduce
a framework for dynamic workflow scheduling that includes a novel scheduling taxon-
omy to which we map seven policies that cover the full spectrum of information use.
We explore the performance of these seven policies in a comprehensive study that also
distinguishes between single and multiple (concurrent) workflow submissions. Notably,
we find that there is no single grid workflow scheduling policywith good performance
across all the investigated scenarios, and we find that task throttling, that is, limiting the
per-workflow number of tasks dispatched to the system, prevents the head-nodes from
becoming overloaded while not unduly decreasing the performance. The content of this
chapter is based on our research published in [188].

The performance of prediction methods for grid scheduling (Chapter 7). We
present an analysis of the performance and benefit of predicting job execution times and
queue wait times in multicluster grids based on traces gathered from various research
and production grid environments. We find that time series methods for predicting job
execution times, and prediction methods that give upper-bounds for job queue wait times,

17

yield low accuracy due to the common occurrence of burst job submissions in grids. In
addition, we have investigated whether prediction-based grid-level scheduling policies
can have better performance than policies that do not use predictions. We find that a
better accuracy of the predictions does not imply a better performance of grid scheduling.
The content of this chapter is based on our research published in [189].

Chapter 8 summarizes the thesis, presents its conclusions, and indicates several re-
search directions originating from this thesis.

18

Chapter 2

Co-Allocation for parallel applications

In multicluster grids, parallel applications may benefit from using processors in multiple
clusters simultaneously, that is, they may use processor co-allocation. This potentially
leads to higher system utilizations and lower queue wait times by allowing parallel jobs
to run when they need more processors than are available in a single cluster. Despite such
benefits, with processor co-allocation, the execution timeof parallel applications may
severely increase due to wide-area communication overheadand processor heterogeneity
among the clusters. In this chapter, we investigate the benefit of processor co-allocation
(hereafter, we use ’co-allocation’ to refer to ’processor co-allocation’), despite its draw-
backs, through experiments performed in the DAS-3 multicluster grid environment, using
our KOALA grid scheduler. In addition, we perform simulation-based experiments using
our DGSim tool to extend our findings obtained in the real environment.

Our investigation on the benefit of co-allocation in multicluster grids involves the
following components: First, we present an analysis of the impact of the inter-cluster
communication technology of a system on the co-allocation performance of parallel ap-
plications. Secondly, we investigate when co-allocation in multicluster grids may yield
lower average job response times through experiments that run workloads of real MPI
applications as well as synthetic applications which vary from computation-intensive to
communication-intensive. Finally, we compare the performance of co-allocation policies
that we have designed and implemented inKOALA , which are the Communication Aware
(CA) policy that takes either inter-cluster bandwidth or latency into account when decid-
ing on co-allocation, and the Flexible Cluster Minimizationpolicy (FCM) that only takes
the numbers of idle processors into account when co-allocating jobs. Notably, we find
that for parallel applications whose slowdown due to the inter-cluster communication is
low, co-allocation is advantageous when the resource contention in the system is mod-
erate. However, for very communication-intensive parallel applications, co-allocation is
disadvantageous since it increases execution times excessively. In addition, we demon-
strate that considering latency in the resource selection phase improves the performance

20

of co-allocation, especially for communication-intensive parallel applications.
The remaining part of this chapter is organized as follows. Section 2.1 presents a job

model for parallel applications that may run on co-allocated resources. In Section 2.2, we
explain the parallel job management and the main mechanismsto realize co-allocation in
our KOALA grid scheduler. In Section 2.3, we present the scheduling policies of KOALA

for co-allocation. In Sections 2.4, 2.5, and 2.6, we presentthe results of our experiments.
In Section 2.7, we discuss the challenges and issues of realizing co-allocation in real
multicluster grids. Section 2.8 reviews related work on co-allocation. Finally, Section 2.9
summarizes the chapter.

2.1 A job model for parallel applications

In this section we present our job model for parallel applications that may need processor
co-allocation. In our model, a job comprises either one or multiple componentsthat can
be scheduled separately (but simultaneously) on potentially different clusters, and that
together execute a single parallel application. A job specifies for each component its
requirements and preferences, such as its size (the number of processors or nodes it needs)
and the names of its input files. A job may or may not specify theexecution sites where
its components should run. In addition, a job may or may not indicate how it is split up
into components. Based on these distinctions, we consider three job request structures,
fixedrequests,non-fixedrequests, andflexiblerequests, as depicted in Figure 2.1.

In a fixed request, a job specifies the sizes of its components and the execution site on
which the processors must be allocated for each component. On the other hand, in a non-
fixed request, a job also specifies the sizes of its components, but it does not specify any
execution site, leaving the selection of these sites, whichmay be the same for multiple
components, to the scheduler. In a flexible request, a job only specifies its total size
and allows the scheduler to divide it into components (of thesame total size) in order to
fit the job on the available execution sites. With a flexible request, a user may impose
restrictions on the number and sizes of the components. For instance, a user may want to
specify for a job a lower bound on the component size or an upper bound on the number
of components. By default, this lower bound is one and this upper bound is equal to
the number of execution sites in the system. Although it is upto the user to determine
the number and sizes of the components of a job, some applications may dictate specific
patterns for splitting up the application into components,hence, complete flexibility is not
suitable in such a case. So, a user may specify a list of options of how a job can be split
up, possibly ordered according to preference.

These request structures give users the opportunity of taking advantage of the system
considering their applications’ characteristics. For instance, a fixed job request can be
submitted when the data or software libraries at different clusters mandate a specific way

21

Figure 2.1: The job request types supported byKOALA .

of splitting up an application. When there is no such affinity,users may want to leave the
decision to the scheduler by submitting a non-fixed or a flexible job request. Of course, for
jobs with fixed requests, there is nothing a scheduler can do to schedule them optimally;
however, for non-fixed and flexible requests, a scheduler should employ scheduling poli-
cies (calledjob placement policiesin the context ofKOALA) in order to optimize some
criteria.

2.2 Parallel job management and co-allocation support
in KOALA

The KOALA grid scheduler is capable of scheduling and co-allocating parallel jobs em-
ploying either the Message Passing Interface (MPI) or Ibis [12,205] parallel communica-
tion libraries. In this chapter we only consider MPI jobs, which have to be compiled with
the Open-MPI [83] library. Open-MPI, built upon the MPI-2 specification, allowsKOALA

to combine multiple clusters to run a single MPI applicationby automatically handling
both inter-cluster and intra-cluster messaging.

The parallel jobs that may need co-allocation are handled inKOALA as follows. Upon

22

submission of a parallel job, theKOALA scheduler uses one of its job placement poli-
cies (see Section 2.3) to try to place job components on suitable execution sites, which
requires the sites having enough idle processing nodes thatcan accommodate these job
components. If the placement of the job succeeds and input files are required, the sched-
uler informs the runner, that is, the job submission tool, toinitiate the third-party file
transfers from the selected file sites to the execution sitesof the job components. If a
placement try fails,KOALA places the job at the tail of the placement queue, which holds
all jobs that have not yet been successfully placed. The scheduler regularly scans the
queue from head to tail to see whether it is able to place any job. For each job in the
queue its number of placement tries is recorded, and when this number exceeds a certain
threshold value, the submission of that job fails.

In order to realize co-allocation,KOALA uses an atomic-transaction approach [47] in
which job placement only succeeds if all the components of a job can be placed at the same
time. This necessitates the simultaneous availability of the desired numbers of idle nodes
in multiple clusters. Since the local schedulers in the DAS-3, which are all SGE [87], do
not support advance reservations,KOALA employs an on-spot node allocation mechanism.
In order to allocate nodes for the job components,KOALA uses its Component Manager
(KCM), which is a daemon process that runs on the head node of a cluster, and that
interfaces the SGE through the DRMAA [59] interface.

For each component that is mapped to a cluster by the scheduler, the runner first
launches a KCM on the head node of that cluster. The runner provides this KCM the
number of nodes to claim, and for how long they should be claimed. Then, the KCM
submits one or more placeholder scripts to the SGE [87] through the DRMAA interface.
The SGE schedules the placeholder script(s) to a set of its nodes, and then each of these
placeholder scripts reports back thehostnameof its node to the KCM. Subsequently, the
KCM compiles a list of the node hostnames it receives from the placeholder scripts and
sends them to the runner. Finally, the runner uses the node hostnames, received from
all KCMs, to launch the job on multiple clusters by using the corresponding OpenMPI
command and parameters1. The runner maps two application processes per node, since
all the clusters in our testbed comprise nodes of dual processors. Upon job completion,
the runner gathers the results and presents them to the user.

2.3 Job placement policies

TheKOALA job placement policies are used to decide where the components of non-fixed
and flexible jobs should be sent for execution. In this section we present three job place-
ment policies ofKOALA , which are the Worst Fit, the Flexible Cluster Minimization,and

1An example on how to execute an OpenMPI application manuallyin the DAS-3 system is presented at
http://www.cs.vu.nl/das3/openmpi-tcp.shtml

23

the Communication-Aware placement policy. Worst Fit is the default policy ofKOALA

which serves non-fixed job requests. Worst Fit also makes perfect sense in the absence of
co-allocation, when all jobs consist of a single component.The two other policies, on the
other hand, serve flexible job requests and only apply to the co-allocation case.

2.3.1 The Worst Fit policy

The Worst Fit (WF) policy aims to keep the load across clustersbalanced. It orders the
components of a job with a non-fixed request type according todecreasing size and places
them in this order, one by one, on the cluster with the largest(remaining) number of idle
processors, as long as this cluster has a sufficient number ofidle processors. WF leaves
in all clusters as much room as possible for later jobs, and hence, it may result in co-
allocation even when all the components of the considered job would fit together on a
single cluster.

2.3.2 The Flexible Cluster Minimization policy

The Flexible Cluster Minimization (FCM) policy is designed with the motivation of min-
imizing the number of clusters to be combined for a given parallel job in order to reduce
the number of inter-cluster messages. FCM first orders the clusters according to decreas-
ing number of idle processors and considers component placement in this order. Then
FCM places on clusters one by one a component of the job of size equal to the number
of idle processors in that cluster. This process continues until the total processor require-
ment of the job has been satisfied or the number of idle processors in the system has been
exhausted, in which case the job placement fails (the job component placed on the last
cluster used for it may be smaller than the number of idle processors of that cluster).

Figure 2.2 illustrates the operation of the WF and the FCM policies for a job of total
size 24 in a system with 3 clusters, each of which has 16 idle processors. WF successively
places the three components (assumed to be of size 8 each) of anon-fixed job request on
the cluster that has the largest (remaining) number of available processors, which results
in the placement of one component on each of the three clusters. On the other hand, FCM
results in combining two clusters for a flexible job of the same total size (24), splitting the
job into two components of sizes 16 and 8, respectively.

2.3.3 The Communication-Aware policy

The Communication-Aware (CA) placement policy takes either bandwidth or latency into
account when deciding on co-allocation. The performance ofparallel applications that
need relatively large data transfers are more sensitive to bandwidth, while the performance
of parallel applications which are dominated by inter-process communication are more

24

Fixed Job Components

Flexible Job Component

Component Placement Order

Component Placement Order

Figure 2.2: An example comparing the WF and the FCM placement policies.

sensitive to latency. In this thesis we only consider the latter case, and we run the CA
policy with the latency option.

The latencies between the nodes of each pair of clusters in the system are kept in the
information service ofKOALA and are updated periodically. CA first orders the clusters
according to increasing intra-cluster latency, and checksin this order whether the com-
plete job can be placed in a single cluster. If this is not possible, CA computes for each
cluster the average of all of itsinter-cluster latencies, including its ownintra-cluster la-
tency, and orders the clusters according to increasing value of this average latency. As in
the FCM policy, CA then splits up the job into components of sizes equal to the numbers
of idle processors of the clusters in this order (again the last component of the job may
not completely fill up the cluster on which it is placed).

In fact, the CA policy does not guarantee the best solution to the problem of attain-
ing the smallest possible execution time for a co-allocatedparallel application, since this
problem is NP complete. However, it is a reasonable heuristic for small-scale systems.
For larger systems, a clustering approach can be considered, in which clusters with low
inter-cluster latencies are grouped together, and co-allocation is restricted to those groups
separately.

25

2.4 The impact of system properties on co-allocation per-
formance

In this section, we evaluate the impact of the inter-clustercommunication characteristics
and the processor speed heterogeneity of a multicluster system on the execution time
performance of a single parallel application that runs on co-allocated processors.

2.4.1 The impact of inter-cluster communication

In a multicluster grid environment, it is likely that the inter-cluster communication is
slower than the intra-cluster communication in terms of latency and bandwidth, which
are the key factors that determine the communication performance of a network. This
slowness, in fact, depends on various factors such as the interconnect technology that en-
ables the inter-cluster communication among the processesof a parallel application, the
distance between the clusters, the number and capabilitiesof the network devices, and
even the network configuration. Therefore, depending on thecommunication require-
ments of a parallel application, the inter-cluster latencyand bandwidth may have a big
impact on its execution time performance.

In this section, we first present the results of experiments for measuring the commu-
nication characteristics of our testbed, and then we present the results of experiments for
assessing the impact of inter-cluster communication on execution time performance.

With the DAS-3 system, we have the chance to compare the performance of the Myri-
10G [157] and the Gigabit Ethernet (GbE, 1Gb/s) interconnect technologies. When the
cluster in Delft is involved in the co-allocation of a parallel job, GbE is used for the entire
inter-cluster communication, since it does not support thefaster Myri-10G technology.
For all other cluster combinations, for co-allocation Myri-10G is used, even though they
all support GbE. Table 2.1 shows the average intra-cluster and inter-cluster bandwidth
(in MB/s) and the average latency (in ms) as measured between the compute nodes of
the DAS-3 clusters (the values are diagonally symmetric). These measurements were
performed with an MPI ping-pong application that measures the average bi-directional
bandwidth, sending messages of 1 MB, and the average bi-directional latency, sending
messages of 64 KB, between two (co-)allocated nodes. The measurements were per-
formed when the system was almost empty. With Myri-10G, the latency between the
nodes is lower and the bandwidth is higher in comparison to the case with GbE. The mea-
surements also indicate that the environment is heterogeneous in terms of communication
characteristics even when the same interconnection technology is used. This is due to
characteristics of the network structure such as the distance and the number of routers
between the nodes. For example, the clusters Amsterdam and MultimediaN are located
in the same building, and therefore, they achieve the best inter-cluster communication.

26

Table 2.1: The average bandwidth (in MB/s, top numbers) and latency (in ms, bottom
numbers) between the nodes of the DAS-3 clusters (for Delft-Leiden see text).

Clusters Vrije Amsterdam Delft MultimediaN Leiden

Vrije 561 185 45 185 77
0.03 0.4 1.15 0.4 1.0

Amsterdam 185 526 53 512 115
0.4 0.03 1.1 0.03 0.6

Delft 45 53 115 10 -
1.15 1.1 0.05 1.45 -

MultimediaN 185 512 10 560 115
0.4 0.03 1.45 0.03 0.6

Leiden 77 115 - 115 530
1.0 0.6 - 0.6 0.03

We were not able to perform measurements between the clusters in Delft and Leiden due
to a network configuration problem; hence, we excluded either the cluster in Delft or the
cluster in Leiden in all of our experiments.

The synthetic parallel application that we use in our execution-time experiments per-
forms one millionMPI AllGather all-to-all communication operations each with a mes-
sage size of 10 KB. The job running this application has a totalsize of 32 nodes (64
processors), and we let it run with fixed job requests with components of equal size on all
possible combinations of one to four clusters with the following restrictions. We either
exclude the cluster in Delft and let the inter-cluster communication use the Myri-10G net-
work, or we include the cluster in Delft, exclude the one in Leiden, and let the inter-cluster
communication use GbE.

Figure 2.3 shows the execution time of the synthetic application averaged across all
combinations of equal numbers of clusters. Clearly, the execution time increases with
the increase of the number of clusters combined. However, the increase is much more
severe, and the average execution time is much higher, when GbE is used—co-allocation
with Myri-10G adds much less execution time overhead. Theseresults indicate that the
communication characteristics of the network are a crucialelement in co-allocation, es-
pecially for communication-intensive parallel applications. However, the performance of
co-allocation does not solely depend on this aspect for all types of parallel applications,
as we will explain in the following section.

27

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of clusters combined

Myri-10G
GbE

Figure 2.3: The execution time of a synthetic co-allocated MPI application, depending on
the interconnect technology used and the number of clusterscombined.

2.4.2 The impact of heterogeneous processor speeds

Unless an application developer does take into account processor speed heterogeneity
and optimizes his applications accordingly, the executiontime of a parallel application
that runs on co-allocated clusters may be limited by the speed of the slowest processor,
due to the synchronization of the processes. This is a major drawback of co-allocation
especially for computation-intensive parallel applications which do not require intensive
inter-cluster communications.

In order to investigate the impact of heterogeneous processor speeds on co-allocation
performance, we have run a synthetic parallel application combining the cluster in Leiden
(which has the fastest processors, see Table 1.2) with each of the other clusters in the
DAS-3 system and quantified the increase in the execution time over running the applica-
tion only in Leiden. The synthetic parallel application performs ten million floating point
operations without any I/O operations and inter-process communications except the nec-
essary MPI initialization and finalization calls. As the results in Table 2.2 indicate, there
is a slight increase in the execution time ranging from 7% to 17% due to the minor level
of processor speed heterogeneity in DAS-3. Therefore, in this study we do not consider
the slowdown due to heterogeneous processor speeds in our policies. Nevertheless, the
FCM policy can easily be enhanced such that it does consider the processor speeds when
co-allocating in systems where this slowdown can be high.

28

Table 2.2: The execution time of a synthetic application when co-allocating the cluster in
Leiden with each of the other clusters.

Cluster Leiden Leiden- Leiden- Leiden- Leiden-
combination Vrije Delft MultiMediaN Amsterdam

Execution time[s] 30 32 32 32 35
Percentage of increase - 7% 7% 7% 17%

2.5 Co-Allocation versus no co-allocation

In this section, we investigate when co-allocation for parallel applications may be bene-
ficial over disregarding co-allocation. In Section 2.5.1, we present the applications that
we have used in our experiments. In Section 2.5.2, we presentand discuss the results
of the experiments conducted in the DAS-3 system. We have performed additional ex-
periments in a simulated DAS-3 environment, in order to investigate the performance of
co-allocation for a wide range of situations. We present anddiscuss the results of these
simulation-based experiments in Section 2.5.3.

2.5.1 The applications

For the experiments, we distinguish between computation- and communication-intensive
parallel applications. We have used three MPI applications, Prime Number[166],
Poisson[148], andConcurrent Wave[78], which vary from computation-intensive to
communication-intensive.

The Prime Number application finds all the prime numbers up toa given integer limit.
In order to balance the load (large integers take more work),the odd integers are as-
signed cyclically to processes. The application exhibits embarrassing parallelism; collec-
tive communication methods are called only to reduce the data of the number of primes
found, and the data of the largest prime number.

The Poisson application implements a parallel iterative algorithm to find a discrete
approximation to the solution of a two-dimensional Poissonequation on the unit square.
For discretization, a uniform grid of points in the unit square with a constant step in both
directions is considered. The application uses a red-blackGauss-Seidel scheme, for which
the grid is split up into “black” and “red” points, with everyred point having only black
neighbors and vice versa. The parallel implementation decomposes the grid into a two-
dimensional pattern of rectangles of equal size among the participating processes. In each
iteration, the value of the each grid point is updated as a function of its previous value and
the values of its neighbors, and all points of one color are visited first followed by the
ones of the other color.

29

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of clusters combined

Prime
Poisson

Wave

Figure 2.4: The average execution times of the applicationsdepending on the number of
clusters combined.

The Concurrent Wave application calculates the amplitude ofpoints along a vibrating
string over a specified number of time steps. The one-dimensional domain is decomposed
by the master process, and then distributed as contiguous blocks of points to the worker
processes. Each process initializes its points based on a sine function. Then, each process
updates its block of points with the data obtained from its neighbor processes for the
specified number of time steps. Finally, the master process collects the updated points
from all the processes.

The runtimes of these applications in the DAS-3 are shown in Figure 2.4. Each appli-
cation has been run several times on all combinations of clusters (excluding the cluster in
Delft; the interconnect technology is Myri-10G) as fixed jobrequests with a total size of
32 nodes and components of equal size (except for the case of 3clusters, in which we sub-
mit components of sizes 10-10-12 nodes), and the results have been averaged. The results
demonstrate that as the Concurrent Wave application is a communication-intensive appli-
cation, its execution time with multiple clusters increases markedly, from 200 seconds as
a single cluster to 750 seconds when combining four clusters. The Poisson application
suffers much less from the wide-area communication overhead, while the Prime Number
application is not affected by it at all, since it is a computation-intensive parallel applica-
tion.

2.5.2 Experiments in the real environment

In this section we present our experiments on the DAS-3. We first explain our experimen-
tal setup and then discuss the results.

30

Experimental setup

In our experiments, we use three workloads that each containonly one of the applications
presented in Section 2.5.1. In the experiments in which no co-allocation is employed,
the workloads are scheduled with the WF policy, and in the experiments in which co-
allocation is used, the workloads are scheduled with the FCM policy (and all job requests
are flexible).

We consider jobs with total sizes of 8, 16 and 32 nodes, so thatthe jobs can fit on
any cluster in the system in case of no co-allocation; the total size of a job is randomly
chosen from this considered set of total sizes. For every application, we have generated a
workload with an average inter-arrival time determined in such a way that the workload is
calculated to utilize approximately 40% of the system on average. The real (observed) uti-
lization attained in the experiments depends on the policy being used, since the theoretical
calculation of the utilization (i.e., thenet utilization) is based on the average single-cluster
execution times of the applications. When there is no co-allocation, there is no wide-area
communication, and the real and the net utilizations coincide. The job arrival process is
Poisson.

We use the tools provided within the GrenchMark project [99]to ensure the correct
submission of our workloads to the system, and run each workload for 4 hours, under the
policy in question. We have excluded the cluster in Delft, and the interconnect technology
is Myri-10G.

In the DAS-3 system, we do not have control over the background load imposed on
the system by other users. These users submit their (non-grid) jobs straight to the lo-
cal resource managers, bypassingKOALA . During the experiments, we monitored this
background load and we tried to maintain it between 10% and 30% across the system by
injecting or killing dummy jobs to the system. We consider our experimental conditions
no longer to be satisfied when the background load has exceeded 30% for more than 5
minutes. In such cases, the experiments were aborted and repeated.

In order to describe the performance metrics before presenting our results, we first
discuss the timeline of a job submission inKOALA as shown in Figure 2.5. The time
instant of the successful placement of a job is called itsplacement time. Thestart timeof
a job is the time instant when all components are ready to execute. The total time elapsed
from the submission of a job until its start time is thewait timeof a job. The time interval
between the submission and the placement of a job shows the amount of time it spends in
the placement queue, i.e., thequeue time. The time interval between the placement time
and the start time of a job is itsstartup overhead.

31

 Start

Time
Submission Finish

 Time Time

OverheadQueue Time

Response Time

TimeExecution

Placement
Time

Wait Time

Figure 2.5: The timeline of a job submission inKOALA .

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

WF
W-Prime

FCM
W-Prime

WF W-
Poisson

FCM W-
Poisson

WF
W-Wave

FCM
W-Wave

A
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 [

s
]

wait	time
execution	time

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

P
e

rc
e

n
ta

g
e

 o
f

jo
b

s
 [

%
]

Number of clusters combined

FCM W-Prime
FCM W-Poisson

FCM W-Wave

(b)

Figure 2.6: Real Experiments: The average job response times(a), and the percentages of
co-allocated jobs (b) of the workloads (denoted byW-Application Name).

Results

We will now present the results of our experiments for comparing the performance with
and without co-allocation with the WF and FCM policies, respectively, for workloads of
real MPI applications. Figure 2.6(a) shows the average job response time broken down
into the wait time and the execution time for the workloads ofall three applications, and
Figure 2.6(b) shows the percentages of co-allocated jobs.

First of all, we have observed in our experiments that the startup overhead of jobs is 10
seconds on average regardless of the number of clusters combined for it, and hence, from
the values of the wait time shown in Figure 2.6(a), we conclude that the wait time is dom-
inated by the queue time. Compared to what we have observed with Globus DUROC [89]
and the MPICH-G2 [155] library for co-allocation [187], the DRMAA-SGE [59] interface
and the Open-MPI [83] library for co-allocation yield a muchlower startup overhead, by
a factor of 5 on average.

Figure 2.6(a) indicates that for the workloads of the Prime and Poisson applications,
the average job response time is lower when the workloads arescheduled with FCM
compared to when they are scheduled with WF; however, the average job response time is

32

higher for the workload of the Wave application with FCM. The FCM policy potentially
decreases the job wait times since it is allowed to split up jobs in any way it likes across
the clusters. Given that the execution times of the Prime Number and Poisson applications
only slightly increase with co-allocation, the substantial reduction in wait time results in
a lower average job response time.

For the Wave application, co-allocation severely increases the execution time due to
high inter-cluster communication. As a consequence, the observed utilization also in-
creases, causing higher wait times. Together, this leads tohigher response times. As
Figure 2.6(b) indicates, a relatively small fraction (<30%) of co-allocation is respon-
sible for the aforementioned differences in the average jobresponse times between no
co-allocation and co-allocation.

We conclude that in case of moderate resource contention (i.e., 40% workload +
10-30% background load), co-allocation is beneficial for computation-intensive paral-
lel applications (e.g., Prime) and for communication-intensive applications whose slow-
down due to the inter-cluster communication is low (e.g., Poisson). However, for very
communication-intensive parallel applications (e.g., Wave), co-allocation is disadvanta-
geous due to the severe increase in the execution time. In thenext section, we further
evaluate the performance of no co-allocation vs. co-allocation under various workload
utilization levels using simulations.

2.5.3 Experiments in the simulated environment

In this section, as in the previous section, we first explain the experimental setup and then
present and discuss the results of our simulations.

Experimental setup

We have used the DGSim grid simulator [104] for our simulation-based experiments.
We have modeled theKOALA grid scheduler with its job placement policies, the DAS-3
environment, and the three MPI applications based on their real execution times in single
clusters and in combinations of clusters. We have also modeled a synthetic application
whose communication-to-computation ratio (CCR) can be modified. We define the CCR
value for a parallel application as the ratio of its total communication time to its total
computation time, when executed in asingle cluster. We set the total execution time of
the application to 180 s. in a single cluster irrespective ofits CCR. For instance, for a
CCR value of 1.0, both the communication and the computation part of the application
take 90 s; for a CCR value of 0.5, these values are 60 s., and 120 s.When the application
runs on co-allocated clusters, the communication part is multiplied by a specific factor
that is calculated from the real runs of the synthetic application on the corresponding co-
allocated clusters, and the total execution time of the application increases accordingly.

33

-40

-20

 0

 20

 40

 10 20 30 40 50 60 70 80 90

C
h

a
n

g
e

 i
n

 t
h

e
 A

J
R

T
 [

%
]

Net utilization [%]

W-Prime [No Limit]
W-Poisson [No Limit]

W-Wave [No Limit]
W-Wave [Limit:2]

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90

O
b

s
e

rv
e

d
 u

ti
liz

a
ti
o

n
 [

%
]

Net utilization [%]

W-Prime [No Limit]
W-Poisson [No Limit]

W-Wave [No Limit]
W-Wave [Limit:2]

(b)

Figure 2.7: Simulation Experiments: Percentage of change in the average job response
time in reverse scale (a) for the workloads of the MPI applications when they are sched-
uled with FCM in comparison to when they are scheduled with WF, and the observed
utilization versus the net utilization (b) when the workloads are scheduled with FCM.

As in Section 2.5.2, we use workloads that each contain only one of MPI or the syn-
thetic applications. In the experiments in which no co-allocation is employed, the work-
loads are scheduled with the WF policy, and in the experimentsin which co-allocation is
used, the workloads are scheduled with the FCM policy. For theworkloads of the Wave
application, we also consider the case in which FCM is limitedto combine two clusters
at most.

We consider jobs with total sizes of 8, 16 and 32 nodes, so thatthe jobs can fit on
any cluster in the system in case of no co-allocation; the total size of a job is randomly
chosen from this set of considered total sizes. For every application, we have generated
seventeen workloads with net utilizations ranging from 10%to 90% in steps of 5%. The
job arrival process is Poisson. We assume that there is no background load in the system.
Each workload runs for 24 simulated hours, under the policy in question, and we have
again excluded the cluster in Delft.

Results

Figure 2.7(a) shows the percentage of change in the average job response time (AJRT) for
the workloads of the MPI applications when they are scheduled with FCM in comparison
to when they are scheduled with WF. Figure 2.7(b) illustratesthe observed utilization
vs. the net utilization for the same workloads when they are scheduled with FCM. In
Table 2.3, for each policy-workload pair, we present the netutilization interval in which
saturation sets in and jobs are stacked in the queue and the wait times constantly increase
without bounds.

When the resource contention is relatively low (up to 40%), with the job sizes included

34

in the workloads, most jobs are placed in single clusters without a need for co-allocation,
hence we observe no difference in the average job response times. For the computation-
intensive Prime application, the performance benefit of co-allocation increases with the
increase of the contention in the system, since jobs have to wait longer in the placement
queue in case of no co-allocation. In addition, as Table 2.3 shows the workload of the
Prime application causes saturation at lower utilizationswhen co-allocation is not con-
sidered; the saturation point is in between 85-90% net utilization for WF W-Prime, and
between 90-95% for FCM W-Prime.

We observe that for the Poisson application, co-allocationis advantageous up to 75%
net utilization, since the lower wait times compensate for the increase of the execution
times. However, beyond this level, saturation sets in and consequently, the average job
response times increase.

For the Wave application, the extreme execution time increase of the jobs with co-
allocation increases the observed utilization in the system as shown in Figure 2.7(b),
which as a result, causes an early saturation (see also Table2.3). In addition, we see
that limiting co-allocation to two clusters yields a betterresponse time performance than
in case of no limit. However, the benefit is minor.

In order to compare real and simulation experiments, in Table 2.4 we present the net
utilizations imposed by the workloads in the real and the simulation experiments where
the percentages of change in the average job response times match. It turns out that the
net utilization in the real experiments is lower than the netutilization in the correspond-
ing simulation experiments, which is probably due to the background load in the real
experiments having different characteristics than the workloads of MPI applications.

Figure 2.8 shows the change in the average job response time for the workloads of
the synthetic application with various CCR values. Comparing the results to those of
the real MPI applications, we see that W-Prime matches CCR-0.1,W-Poisson matches
CCR-0.25, and W-Wave matches CCR-4. The results with the workloadsof the synthetic
application exhibit the following. First, parallel applications with very low CCR values
(i.e., 0.10) always benefit from co-allocation. Secondly, for applications with CCR values
between 0.25 and 0.50, co-allocation is beneficial to a certain extent; with the increase
of the contention in the system, the performance benefit of co-allocation decreases and
after some point it becomes disadvantageous. Finally, for applications with CCR values
higher than 0.50, co-allocation is disadvantageous since it increases the job response times
severely.

2.6 The performance of the placement policies

Although we have observed that it would be really advantageous to schedule
communication-intensive applications on a single clusterfrom the perspective of the exe-

35

-40

-20

 0

 20

 40

 10 20 30 40 50 60 70 80

C
h

a
n

g
e

 i
n

 t
h

e
 A

J
R

T
 [

%
]

Net utilization [%]

CCR-0.1
CCR-0.25
CCR-0.5

CCR-1
CCR-4

Figure 2.8: Simulation Experiments: Percentage of change in the average job response
time for the workloads of the synthetic application (with different CCR values) when they
are scheduled with FCM in comparison to when they are scheduled with WF.

Table 2.3: The net utilization intervals in which the policy-workload pairs induce satura-
tion.

Policy-Workload Utilization Interval
WF {W-Prime, W-Poisson, W-Wave} 85-90%

FCM W-Prime 90-95%
FCM W-Poisson 80-85%

FCM W-Wave [No Limit] 70-75%
FCM W-Wave [Limit:2] 75-80%

cution time (see in Figure 2.4), users may still prefer co-allocation when more processors
are needed than available on a single cluster. In this section, we compare the FCM and
CA policies in order to investigate their co-allocation performance for communication-
intensive parallel applications.

2.6.1 Experiments in the real environment

In this section we present our experiments in the DAS-3. We first explain our experimental
setup and then discuss the results.

Experimental setup

In our experiments in this section, we use workloads comprising only the Concurrent
Wave application [78], with a total job size of 64 nodes (128 processors). We have gen-

36

Table 2.4: The net utilizations in the real and the simulation experiments where the
changes in AJRTs match.

Workload Change in Net Utilization Net Utilization
the AJRT (in Real Experiments) (in Simulations)

W-Prime -16% 40% + BG Load 75-80%
W-Poisson -5% 40% + BG Load 65%
W-Wave +50% 40% + BG Load 70%

 0

 100

 200

 300

 400

 500

 600

FCM
W-Wave

[w/o Delft]

CA
W-Wave

[w/o Delft]

FCM
W-Wave
[w. Delft]

CA
W-Wave
[w. Delft]

A
v
e
ra

g
e
 j
o
b
 r

e
s
p
o
n
s
e
 t
im

e
 [
s
]

wait	time
execution	time

Figure 2.9: Real Experiments: Performance comparison of theFCM and CA policies.

erated a workload with an average inter-arrival time determined in such a way that the
workload is calculated to utilize approximately 40% of the system on average. The job
arrival process is Poisson.

We handle the background load in the way mentioned in Section2.5.2. We run the
workload for 4 hours, under the policy in question. In the first set of experiments, we have
excluded the cluster in Delft, and in the second set of experiments we have excluded the
cluster in Leiden and included the one in Delft; the interconnect technology used by a job
is GbE when the cluster in Delft is involved in its co-allocation, and Myri-10G otherwise.

Results

Figure 2.9 shows the performance of the FCM and CA policies whenscheduling the
workload of the Wave application on the sets of clusters without and with the one in
Delft.

In terms of the average job response time, the CA policy outperforms the FCM pol-
icy, irrespective of the involvement of the cluster in Delft, which has a slow inter-cluster
communication speed. The difference in response time is moderate (50 s.) or major (230

37

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80

A
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 [

s
]

Net utilization [%]

FCM W-Wave
CA W-Wave

(a) Cluster in Delft excluded

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80

A
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 [

s
]

Net utilization [%]

FCM W-Wave
CA W-Wave

(b) Cluster in Delft included

Figure 2.10: Simulation Experiments: Performance comparison of the FCM and CA poli-
cies.

s.) depending on whether the cluster in Delft is excluded (communication speed has a low
variability across the system) or included in the experiments (communication speed has a
high variability across the system), respectively.

The CA policy tries to combine clusters that have faster inter-cluster communica-
tion (e.g., the clusters in Amsterdam and MultimediaN). However, as it is insensitive to
communication speeds, the FCM policy may combine clusters with slower inter-cluster
communication, which consequently increases the job response times. The increase is
more severe when the cluster in Delft is included in the experiments, since it is involved
in many of the co-allocations for the jobs due to its large size.

We conclude that considering inter-cluster latency in scheduling communication-
intensive parallel applications that require co-allocation is useful, especially when the
communication speed has a high variability across the system. In the following section,
we extend our findings in the real environment by evaluating the performance of the FCM
and CA policies under various resource contention levels in asimulated DAS-3 environ-
ment.

2.6.2 Experiments in the simulated environment

In this section, again, we first explain the experimental setup and then present and discuss
the results of our simulations.

Experimental setup

In our simulations, we use workloads comprising only the Concurrent Wave application,
with total job sizes of 32, 48, and 64 nodes; the total size of ajob is randomly chosen

38

from this set. We have generated thirteen workloads with netutilizations ranging from
20% to 80% in steps of 5%. The job arrival process is Poisson. We assume that there is
no background load in the system. Each workload runs for 24 simulated hours, under the
policy in question.

In the first set of experiments, we have excluded the cluster in Delft, and in the second
set of experiments we have included the cluster in Delft and excluded the one in Leiden.

Results

Figure 2.10(a) and 2.10(b) illustrate the average job response time results of the FCM and
CA policies scheduling the workloads of the Wave applicationon the set of clusters either
excluding the one in Delft or including it, respectively.

The CA policy outperforms the FCM policy for almost all utilization levels in both
sets of experiments. As the utilization increases, the gap between the results of the two
policies becomes wider. When the cluster in Delft is excluded, the system is saturated
between 75-80% net utilization level; however, when it is included, the system is saturated
between 60-70% net utilization, which is much less. The reason is that co-allocating the
cluster in Delft increases the job response times more severely.

We also see that the simulation results are consistent with the real experiments as
the difference in the performance of the two policies is muchlarger when the cluster in
Delft is included than when the cluster in Delft is excluded.This fact supports our claim
that taking into account inter-cluster communication speeds improves the performance,
especially when the communication speed has a high variability across the system.

To conclude, the results provide evidence that we should omit clusters that have slow
inter-cluster communication speeds when co-allocation isneeded. In other words, in large
systems we should group clusters with similar inter-cluster communication speeds, and
restrict co-allocation to those groups separately.

2.7 Challenges with supporting co-allocation

Although we have demonstrated a case for supporting co-allocation in a real environment
with ourKOALA grid scheduler, there are still many issues to be consideredbefore proces-
sor co-allocation may become a widely used phenomenon in multicluster grids and grid
schedulers. In this section, we discuss some of these issues, related to communication
libraries, processor reservations and system reliability.

39

2.7.1 Communication libraries

There are various communication libraries available [83, 153–155, 203] that enable co-
allocation of parallel applications. However, all these libraries have their own advantages
and disadvantages; there is no single library we can name as the most suitable for co-
allocation. Some include methods for optimizing inter-cluster communication, some in-
clude automatic firewall and NAT traversal capabilities, and some may depend on other
underlying libraries. Therefore, it is important to support several communication libraries
as we do with theKOALA grid scheduler (e.g., MPICH-G2 [155], OpenMPI [83], and
Ibis [203,205]).

2.7.2 Advance processor reservations

The challenge with simultaneous access to processors in multiple clusters of a grid lies
in guaranteeing their availability at the start time of an application. The simplest strategy
is to reserve processors at each of the selected clusters. Ifthe local schedulers of the
clusters do support advance reservations, this strategy can be implemented by having a
grid scheduler obtain a list of time slots from each LRM, reserve a common time slot for
all job components, and notify the LRMs of this reservation. Unfortunately, a reservation-
based strategy in grids is currently limited due to the fact that only few local schedulers
support advance reservations (e.g., PBS-pro [165], Maui [140]). In the absence of an
advance reservation mechanism good alternatives are required, such as the mechanism
explained in Section 2.2, in order to achieve co-allocation.

2.7.3 System reliability

The single most important distinguishing feature of grids as compared to traditional par-
allel and distributed systems is their multi-organizational character, which causes forms
of heterogeneity in the hardware and software across the resources. This heterogeneity, in
turn, makes failures appear much more often in grids than in traditional distributed sys-
tems. In addition, grid schedulers or resource management systems do not actually own
the resources they try to manage, but rather, they interfaceto multiple instances of local
schedulers in separate clusters who are autonomous and who have different management
architectures, which makes the resource management a difficult challenge.

We have experienced in our work onKOALA that even only configuring sets of pro-
cessors in different administrative domains in a cooperative research environment is not
a trivial task. Due to incorrect configuration of some of the nodes, during almost all our
experiments, hardware failed and jobs were inadvertently aborted. To accomplish the ex-
periments that we have presented in this study, we have spentmore than half a year and we
have submitted more than 15,000 jobs to get reliable results. We claim that co-allocation

40

in large-scale dynamic systems such as grids requires good methods for configuration
management as well as good fault tolerance mechanisms.

2.8 Related work

Various advance reservation mechanisms and protocols for supporting processor co-
allocation in grid systems have been proposed in the literature [9, 40, 131, 168, 174, 184].
Performance studies on co-allocation, however, mostly studied in simulated environ-
ments; only a few studies investigate the problem in real systems. In this section, we
discuss some of the studies that we find most related to our work.

Bucur et al. [25–27] study through simulations processor co-allocation in multiclusters
with space sharing of rigid jobs for a wide range of such parameters as the number and
sizes of the job components, the number of clusters, the service-time distribution, and
the number of queues in the system. Parallel to our results, they find that co-allocation
is beneficial as long as the number and sizes of job components, and the slowdown of
applications due to the wide-area communication, are limited.

Ernemann et al. [66] present an adaptive co-allocation algorithm that uses a simple
decision rule to decide whether it pays to use co-allocationfor a job, considering the
given parameters such as the requested run time and the requested number of resources.
The slow wide-area communication is taken into account by a parameter by which the
total execution time of a job is multiplied. In a simulation environment, co-allocation is
compared to keeping jobs local and compared to only sharing load among the clusters,
assuming that all jobs fit in a single cluster. One of the most important findings is that
when the application slowdown does not exceed 1.25, it pays to use co-allocation.

Röblitz et al. [171, 172] present an algorithm for reserving compute resources that
allows users to define an optimization policy if multiple candidates match the specified
requirements. An optimization policy based on a list of selection criteria, such as end time
and cost, ordered by decreasing importance, is tested in a simulation environment. For
the reservation, users can specify the earliest start time,the latest end time, the duration,
and the number of processors. The algorithm adjusts the requested duration to the actual
processor types and numbers by scaling it according to the speedup, which is defined
using speedup models or using a database containing reference values. This algorithm
supports so-called fuzziness in the duration, the start time, the number of processors, and
the site to be chosen, which leads to a larger solution space.

Jones et al. [111] present several bandwidth-aware co-allocation meta-schedulers for
multicluster grids. These schedulers consider network utilization to alleviate the slow-
down associated with the communication of co-allocated jobs. For each job modeled,
its computation time and average per-processor bandwidth requirement is assumed to
be known. In addition, all jobs are assumed to perform all-to-all global communication

41

periodically. Several scheduling approaches are comparedin a simulation environment
consisting of clusters with globally homogeneous processors. The most significant result
is that co-allocating jobs when it is possible to allocate a large fraction (85%) of on a
single cluster, provides the best performance in alleviating the slowdown impact due to
inter-cluster communication.

The Grid Application Development Software (GrADS) [50,201] enables co-allocation
of grid resources for parallel applications that may have significant inter-process commu-
nication. For a given application, during resource selection, GrADS first tries to reduce
the number of workstations to be considered according to their availabilities, computa-
tional and memory capacities, network bandwidth and latency information. Then, among
all possible scheduling solutions the one that gives the minimum estimated execution time
is chosen for the application. Different from our work, GrADS assumes that the perfor-
mance model of the applications and mapping strategies are already available or can be
easily created. While Dail et al. present the superiority of the approach within GrADS
over user-directed strategies, we handle the co-allocation problem for various cases, and
present a more in-depth analysis.

In addition to the benefit of co-allocation from a system’s orusers’ point of view,
various study also addresses the performance of a single co-allocated parallel applica-
tion [121, 164, 204]. A study by Seinstra et al. [176] presenta work on the co-allocation
performance of a parallel application that performs the task of visual object recognition
by distributing video frames across co-allocated nodes of alarge-scale grid system, which
comprises clusters in Europe and Australia. The application has been implemented using
the Parallel-Horus [177] tool, which allows researchers inmultimedia content analysis
to implement high-performance applications. The experimental results show the benefit
of co-allocation for such multimedia applications that require intensive computation and
frequent data distribution.

2.9 Summary

In this chapter we have investigated the benefit of processorco-allocation in a real mul-
ticluster grid system, DAS-3, using ourKOALA grid scheduler as well as in a simulated
environment using our DGSim tool. Initially, we have assessed the impact of inter-cluster
communication characteristics of a multicluster system onthe execution time perfor-
mance of a single co-allocated parallel application. Then,we have evaluated the co-
allocation performance of a set of parallel applications that range from computation- to
communication-intensive, under various utilization conditions. Finally, we have evalu-
ated two scheduling policies for co-allocating communication-intensive applications. We
conclude the following.

First, the execution time of a single parallel application increases with the increase

42

of the number of clusters combined. This increase depends very much on the commu-
nication characteristics of the application, and on the inter-cluster communication char-
acteristics and the processor speed heterogeneity of the combined clusters. Secondly,
for computation-intensive parallel applications, co-allocation is very advantageous pro-
vided that the differences between the processor speeds across the system are small.
For parallel applications whose slowdown due to the inter-cluster communication is low,
co-allocation is advantageous when the resource contention in the system is moderate.
However, for very communication-intensive parallel applications, co-allocation is disad-
vantageous since it increases execution times too much. Finally, in systems with a high
variability in inter-cluster communication speeds, taking network metrics (in our case the
latency) into account in cluster selection increases the performance of co-allocation for
communication-intensive parallel applications.

Although there is a large opportunity for many scientific parallel applications to ben-
efit from co-allocation, there are still many issues that need to be overcome before co-
allocation can become a widely employed solution in future multicluster grid systems.
The difference between inter- and intra-cluster communication speeds, efficient commu-
nication libraries, advance processor reservations, and system reliability are some of these
challenges.

Chapter 3

Malleability for parallel applications

In multicluster grids, resource availability may vary because of resource failures, because
resources may be allocated or released by concurrent users,and because organizations
may add or withdraw parts of their resources to/from the resource pool at any time. In any
of these cases, application malleability, that is, the property of applications to deal with
a varying amount of resources during their execution, allows applications to benefit from
appearing available resources, while gracefully releasing resources that are reclaimed
by the environment. Allowing resource allocation to vary during execution, malleabil-
ity gives a scheduler the opportunity to revise its decisions even after applications have
started executing. Increasing the flexibility of applications by shrinking their resource
allocations, malleability allows new applications to start sooner, possibly with resources
that are not going to be usable during their whole execution.Making applications able
to benefit from the resources that appear during their execution by growing their resource
allocations, malleability also helps applications terminate sooner. In addition to these
very general advantages, malleability makes it easier to deal with the dynamic nature of
large-scale distributed execution environments such as multicluster grid systems. Several
approaches have been proposed to build parallel malleable applications [28,114,198,199],
and to schedule them in traditional parallel systems [95,96,141,151]. However, previous
work does not address how to build mechanisms to schedule parallel malleable applica-
tions in the context of a multicluster grid scheduler.

In this chapter we present an architecture and an actual implementation of the sup-
port for malleability in ourKOALA grid scheduler with the help of theDYNACO frame-
work [28,30] for application malleability. We propose two policies to manage malleabil-
ity in the scheduler for malleable jobs that have already been running in the system; one
which hands out any additional processors to the malleable jobs that have been running
the longest, and one that spreads them equally over all malleable jobs. Each of these
policies can be coupled with one of two approaches which either favor running or queued
malleable jobs when additional resources become available. Then, we evaluate these

44

policies and approaches in combination with the worst fit load-sharing scheduling policy
of KOALA with experiments in the DAS-3 environment. These experiments show that a
higher utilization and shorter job execution times can be achieved when malleability is
used.

The rest of this chapter is organized as follows. Section 3.1presents the aspects of
supporting malleability to be considered by a multiclustergrid scheduler. Section 3.2 de-
scribes how we support malleability inKOALA , and details the malleability management
approaches and policies that we propose. Section 3.3 presents the experimental setup,
and Section 3.4 discusses our experimental results. Section 3.5 reviews related work on
scheduling malleable applications. Finally, Section 3.6 summarizes the chapter.

3.1 Aspects of supporting malleability

In this section we state the aspects of supporting malleability that should be taken into
account by a grid scheduler. The aspects that we consider arespecification of malleable
jobs, initiative of change, and obligation to change, respectively.

3.1.1 Specification of malleable jobs

A malleable job may specify theminimumandmaximumnumber of processors it requires.
The minimum value is the minimum number of processors a malleable job needs to be
able to run; the job cannot shrink below this value. The maximum value is the maximum
number of processors a malleable job can handle; allocatingmore than the maximum
value would just waste processors. We do not assume that astepsizeindicating the number
of processors by which a malleable application can grow or shrink is defined. We leave
the determination of the amount of growing and shrinking to the protocol between the
scheduler and the application (see Section 3.2).

3.1.2 Initiative of change

Another aspect that we consider is the party that takes the initiative of changing the size
of a malleable job (shrinking or growing). Either the application or the scheduler may
initiate grow or shrink requests. An application may do so when the computation it is
performing calls for it. For example, a computation can be inneed of more processors
before it can continue. On the other hand, the scheduler may decide that a malleable
job has to shrink or grow based on the availability of free processors in the system. For
example, the arrival of new jobs to a system that is heavily loaded may trigger a scheduler
to requests currently running malleable jobs to shrink.

45

Figure 3.1: Overview of the architecture of theDYNACO framework for adaptability.

3.1.3 The obligation to change

Requests for changing the size of a malleable job may or may nothave to be satisfied. A
voluntarychange means that the change does not have to succeed or does not necessarily
have to be executed; it is merely a guideline. Amandatorychange, however, has to
be accommodated, because either the application cannot proceed without the change, or
because the system is in direct need of the reclaimed processors.

3.2 Designing support for malleability in KOALA

In this section, we present our design for supporting malleable applications inKOALA .
First, we describe theDYNACO framework that we use to implement malleable applica-
tions. Then, we explain how we include theDYNACO framework into theKOALA mul-
ticluster scheduler, and finally, we present our approachesand policies for managing the
execution of malleable applications, respectively.

3.2.1 The DYNACO framework and its use for malleability

DYNACO [28]1 is a generic framework for building dynamically adaptable applications.
As its architecture shows in Figure 3.1,DYNACO decomposes adaptability into four com-
ponents, similarly to the control loop suggested in [120]. Theobservecomponent mon-
itors the execution environment in order to detect any relevant change; relying on this
information, thedecidecomponent makes the decision about adaptability. It decides
when the application should adapt itself and which strategyshould be adopted. When
the strategy in use has to be changed, theplan component plans how to make the ap-
plication adopt the new strategy; finally, theexecutecomponent schedules actions listed
in the plan, taking into account the synchronization with the application code. Being a
framework,DYNACO is expected to be specialized for each application. In particular, de-
velopers must provide the decision procedure, the description of planning problems, and
the implementation of adaptation actions.

1DYNACO is available at the following website: http://dynaco.gforge.inria.fr

46

Figure 3.2: The architecture of the Malleable Runner withDYNACO in theKOALA multi-
cluster scheduler.

In addition, developers of theDYNACO framework proposedAFPAC [29] as an imple-
mentation of theexecutecomponent that is specific to SPMD applications. As reported
in [28], DYNACO andAFPAC have been successfully used to make several existing MPI-
based applications malleable. While not being restricted tothis class of applications,
DYNACO contributes to reduce the cost of transforming existing parallel applications into
malleable ones when it is combined with tools such asAFPAC.

3.2.2 Supporting DYNACO applications in KOALA

In order to supportDYNACO-based applications inKOALA , we have designed a specific
runner called the Malleable Runner (MRunner); its architecture is shown in Figure 3.2. In
the MRunner, the usual control role of the runner over the application is extended in order
to handle malleability operations. For that purpose a complete instance ofDYNACO is
included in the MRunner on a per-application basis. A frontend, which is common to all
of the runners, interfaces the MRunner to the scheduler. We add a malleability manager
in the scheduler, which is responsible for triggering changes of resource allocations.

In the DYNACO framework, the frontend is reflected as a monitor, which generates
events when it receivesgrow andshrink messages from the scheduler. Resulting events
are propagated throughout theDYNACO framework and translated into the appropriate
messages to Globus GRAM [89], which is the job submission daemon that we use in this
study, and to the application. The frontend catches the results of adaptations in order to
generate acknowledgments back to the scheduler. It also notifies the scheduler when the
application voluntarily shrinks below the amount of allocated processors. Since GRAM
is not able to manage malleable jobs as discussed in [30], theMRunner manages the
malleable job as a collection of GRAM jobs of size1.

Upon growth, the MRunner submits new jobs to GRAM. When it receives active
messages from GRAM, it transmits the new collection of activeGRAM jobs (i.e. the
collection of held resources) to the application. In order to reduce the impact on the ex-
ecution time, interactions with GRAM overlap with the execution of the application and

47

suspension of the application does not occur before all the resources are held. To do so,
GRAM submissions launch an empty stub rather than the application’s program. The
stub is turned into an application process during the process management phase, when
resources are recruited by the application. That latter operation is faster than submit-
ting a job to GRAM as it is relieved from tasks such as security enforcement and queue
management. Conversely, upon shrink, the MRunner first reclaims processors from the
application; then when it receivesshrunkfeedback messages, it releases the correspond-
ing GRAM jobs. Again, interactions with GRAM overlap the execution, which resumes
immediately.

3.2.3 Job management

In this study we assume that every malleable job is executed in a single cluster, and so,
no co-allocation takes place. Therefore, contrary to our parallel job model described in
Section 2.1, all the components of a job are scheduled on a single cluster.

Upon submission of a parallel job toKOALA , whether it is rigid or malleable, the
initial placement is performed by one of the existing placement policies as described
in Section 2.2. In the placement phase of malleable jobs, theinitial number of proces-
sors required is determined considering the number of available processors in the system.
Specifically, given a malleable job, the placement policiesplace it if the number of avail-
able processors is at least equal to the minimum processor requirement of the application.

In the job management context, the malleability manager is responsible for initiating
malleability management policies that decide on how to growor shrink malleable applica-
tions. Below, we propose two design choices as to when to initiate malleable management
policies, which give Precedence to Running Applications over waiting ones (PRA) or vice
versa (PWA), respectively.

In the PRA approach, whenever processors become available, for instance, when a job
finishes execution, first the running applications are considered. If there are malleable jobs
running, one of the malleability management policies is initiated in order to grow them;
any waiting malleable jobs are not considered as long as at least one running malleable
job can still be grown. In this approach malleable jobs are never shrunk unless a priority
setting is considered between rigid and malleable jobs.

In PWA approach, when the next job in the queue cannot be placed, the scheduler
applies one of the malleability management policies for shrinking running malleable jobs
in order to obtain additional processors. Those shrink operations are mandatory. If it is
however impossible to get enough available processors in order to place that queued job,
taking into account the minimum sizes of the running jobs, then the running malleable
jobs are considered for growing by one of the malleable management policies. Whenever
processors become available, the placement queue is scanned in order to find a job to be
placed.

48

In both approaches, in order to trigger job management, the scheduler periodically
polls theKOALA information service. In doing so, the scheduler is able to take into ac-
count dynamically the background load due to other users even if they bypassKOALA . In
addition, in order not to stress execution sites when growing malleable jobs, and there-
fore, in order to leave always a minimal number of available processors to local users, a
threshold is set over whichKOALA never expands the total set of the jobs it manages.

3.2.4 Malleability management policies

The malleability management policies, which we will describe below, determine the
means of shrinking and growing of malleable jobs during their execution. Since each
malleable job is executed in a single cluster the policies are applied for each cluster sepa-
rately.

Favor Previously Started Malleable Applications (FPSMA)

The FPSMA policy favors previously started malleable jobs whenever the policy is ini-
tiated by the malleability manager. FPSMA starts growing from the earliest started mal-
leable job and starts shrinking from the latest started malleable job. In thegrow proce-
dure, first, malleable jobs running on the considered cluster sorted in the increasing order
of their start time, then the value of the number of processors to be allocated on behalf of
malleable jobs is offered to the subsequent job in the sortedlist. In reply to this offer (the
job itself considers its maximum number of processors requirement), a desired number of
processors are allocated on behalf of that job. Then, the policy updates the number of idle
processors and continues to offer processors to the subsequent jobs in the list. Theshrink
procedure runs in a similar fashion; the differences with the grow procedure are that the
jobs are sorted in the decreasing order of their start time, and rather than allocation, the
compromised number of processors are waited to be released.

Equi-Grow & Shrink (EGS)

The EGS policy attempts to balance processors over malleable jobs. When it is initiated
by the malleability manager, it distributes available processors (or reclaims needed pro-
cessors) equally over all of the running malleable jobs. In case the number of processors
to be distributed or reclaimed is not divisible by the numberof running malleable jobs,
the remainder is distributed across the least recently started jobs, or reclaimed from the
most recently started jobs, respectively.

The EGS policy is similar to the well-known equipartition policy [141], which has
originally been proposed as a dynamic processor allocationscheme for malleable paral-
lel applications running in traditional parallel systems.The two policies, however, differ

49

40

0
2

0
0

4
0

0
6

0
0

8
0

0

Number of Processors

T
im

e
 [

s]

FT
Gadget 2

3020100

Figure 3.3: The execution times of the two malleable applications depending on the num-
ber of used processors.

in the following points. While our EGS policy distributes equally available processors
among running jobs, the equipartition policy distributes equally the whole set of proces-
sors among running jobs. Consequently, EGS is not expected tomake at each time all of
the malleable jobs have the same size, while equipartition does. But equipartition may
combine grow and shrink messages, while EGS consistently either grows or shrinks all of
the running malleable jobs.

3.3 Experimental setup

In this section we describe the setup of the experiments thatwe have conducted in DAS-3
in order to evaluate the support and the scheduling policiesfor malleable jobs inKOALA .
First, we will present the malleable applications, and thenwe will describe the details of
the workloads that we have used in our experiments.

3.3.1 Malleable applications

For the experiments, we rely on two applications that have been made malleable withDY-
NACO. These applications are the NAS Parallel Benchmark FT [202],which is a bench-
mark for parallel machines based on a fast Fourier transformnumerical kernel, and GAD-
GET [191], which is a legacyn-body simulator. Further details on how these applications
were made malleable can be found in [28]. Figure 3.3 shows howthe execution times of
the two applications scale with respect to the number of processors on the Delft cluster
(see table 1.2). With two processors, GADGET takes ten minutes, while FT lasts two

50

minutes. The best execution times are respectively four minutes for GADGET and one
minute for FT.

While GADGET can execute with an arbitrary number of processors, FT only accepts
powers of two. As we have already stated, we propose that the scheduler does not care
about such constraints, in order to avoid to make it implement an exhaustive collection
of possible constraints. Consequently, when responding to grow and shrink messages,
the FT application accepts only the highest power of two processors that does not exceed
the allocated number. Additional processors are voluntarily released to the scheduler. In
addition, the FT application assumes processors of equal compute power, while GADGET
includes a load-balancing mechanism.

3.3.2 The workloads

The workloads that we employ in our experiments combine the two applications of Sec-
tion 3.3.1 with a uniform distribution. Their minimum size is set to 2 processors, while
the maximum size is 46 for GADGET and 32 for FT. In both cases, 300 jobs are sub-
mitted. Jobs are submitted from a single client site; no staging operation is ordered even
when processors are allocated from remote sites.

Regarding Figure 3.3, the maximum sizes we have chosen are greater than the sizes
for which we have observed the minimum execution times. Thisdeliberate choice comes
from the following. Applications are not supposed to scale the same in all of the clusters,
which may be heterogeneous. In addition, users may not be aware of the speedup behavior
of their applications. Hence, the maximum size of a malleable job should not be the size
that gives to the best execution time of the application in any particular cluster.

For the PRA-based experiments, we have used two following workloads. Workload
Wm is composed exclusively of malleable jobs, while workloadWmr is randomly com-
posed of 50% of malleable jobs and 50% rigid jobs. In both cases, inter-arrival time is
2 minutes. Rigid jobs are submitted with a size of 2 processors, and malleable jobs with
an initial size of 2 processors. In our experiments,KOALA employs the Worst-Fit policy.

Apart from workloadWm or Wmr, the only background load during the experiments
is the activity of concurrent users. This background load does not disturb the measures.
When analyzing the PWA approach, we have used two workloadsW ′

m
andW ′

mr
, which

derive respectively fromWm andWmr. In these workloads, inter-arrival time is reduced
down to 30 seconds in order to increase the load of the system.

51

10 15 20 25 30

8
0

1
0

0

Average number of processors per job

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

 jo
b

s
[%

] FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

6
0

4
0

2
0

0

50

(a) The cumulative distribution of the number of
processors per job averaged over the execution time
of jobs.

40

1
0

0

Maximum number of processors per job

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

jo
b

s
[%

]

8
0

6
0

4
0

2
0

0

3020100

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(b) The cumulative distribution of the maximum
number of processors reached per job during its ex-
ecution.

0 200 400 600 800 1000 1200

8
0

1
0

0

Execution time [s]

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

jo
b

s
[%

]

6
0

4
0

2
0

0

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(c) The cumulative distribution of the job execution
times.

0 200 400 600 800 1000 1200

8
0

1
0

0

 Response time [s]

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

jo
b

s
[%

]

6
0

4
0

2
0

0

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(d) The cumulative distribution of the job response
times.

25000 26000 27000 28000 29000 30000

8
0

1
0

0
1

2
0

Time [s]

T
o

ta
l n

u
m

b
e

r
o

f
u

se
d

 p
ro

ce
ss

o
rs

6
0

4
0

2
0

0

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(e) Utilization of the platform during the experi-
ment.

0 10000 20000 30000

0
2

0
0

4
0

0
6

0
0

8
0

0

Time [s]

N
u

m
b

e
r

o
f

g
ro

w
n

 m
e

ss
a

g
e

s

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(f) Activity of the malleability manager.

Figure 3.4: Comparison between the FPSMA and EGS policies with the Precedence to
Running Applications (PRA) approach of job management (no shrinking).

52

3.4 Experimental results

In this section we will present the results of our experiments for both the Precedence
to Running Applications (PRA) and the Precedence to Waiting Applications (PWA) ap-
proaches.

3.4.1 Analysis of the PRA approach

Figure 3.4 compares the FPSMA and EGS policies for malleability management in the
context of the PRA approach for job management, i.e., when jobs are never shrunk. For
this experiment, we have done 4 runs for each combination of amalleability management
policy (one of FPSMA or EGS) and a workload (eitherWm or Wrm).

Figures 3.4(a) and 3.4(b) show for each combination how jobsare distributed with
regard to their average and maximum size. In both figures, with workloadWmr, which has
50% rigid jobs with only 2 processors, relatively few malleable jobs retain their initial size
of 2 during their execution. In addition, we observe that among the policies, EGS tends
to give more processors to the malleable jobs than FPSMA, both in terms of average and
maximum number of processors per job. On one hand, with FPSMA, short applications
(like FT in our experiments) may terminate before it is theirturn to grow, i.e., before
previously started jobs terminate. They are thus stuck at their minimal size. On the other
hand, EGS makes all jobs grow every time it is initiated. Hence, even jobs that have been
started recently do grow, and only few jobs do not grow beyondtheir minimal size.

Figures 3.4(c) and 3.4(d) show the distributions of the execution time and the response
time, respectively. Two groups of jobs appear clearly: those with execution times and re-
sponse times less than 200 s, and those for which these times are greater than 400 s.
Those two groups correspond to the two applications in the workloads (respectively FT
and GADGET). In both cases, we observe that theWm workload results in better perfor-
mance than theWmr workload, which means that malleability makes applications actually
perform better. Furthermore, with the FPSMA policy, for both of the workloads, the tail
of the performance distribution cuts off far before than that of with the EGS policy.

Figure 3.4(e) shows the utilization of the DAS-3 during a part of the experiments.
With workloadWm, which includes only malleable jobs, the EGS policy leads toa higher
utilization. In fact, as we have already observed, this policy tends to make jobs larger in
terms of their size. For the same reason, the utilization is higher with workloadWm than
with Wmr.

Finally, Figure 3.4(f) shows the activity of the malleability manager. As expected, the
number of grow operations is much higher when all jobs are malleable (workloadWm).
It is also higher with the EGS policy than with FPSMA. Each time the policy is triggered,
EGS makes all of the running malleable jobs grow, while FPSMAonly does so with the
ones that have started earlier.

53

3.4.2 Analysis of the PWA approach

Figure 3.5 compares the FPSMA and EGS policies in the contextof the PWA approach
for job management, i.e., when the scheduler can also shrinkmalleable jobs. With the
PWA approach, the load of the system has a direct impact on theeffectiveness of the
malleability manager. If on the one hand the system is overloaded, all of the jobs are
stuck at their minimal size and malleability management becomes ineffective, while if on
the other hand the system load is low, no job is shrunk and PWA behaves exactly the same
as PRA. We have therefore used workloadsW ′

m
andW ′

mr
, which increase the load of the

system.
Figure 3.5(f) shows that beyond a certain time, the malleability manager becomes

unable to trigger any other change than initial placement ofjobs. Similarly, Figures 3.5(a)
and 3.5(b) show that many of the jobs are stuck at their minimal size, irrespective of
the workload and the malleability management policy being used. This phenomenon is
more pronounced with the EGS policy, which means that load balancing is achieved as
expected.

Figure 3.5(c) shows that the execution time is almost the same for the four cases.
Most of the GADGET jobs have an execution time of 600s, 30% higher than with PRA.
This difference results from what we observe about the size of the jobs. Figure 3.5(d)
shows that the response time is far worse for the combinationof the EGS policy andW ′

m

workload due to higher wait time. This result confirms the system overload observed on
Figure 3.5(e) as a high utilization. Favouring long-running jobs, FPSMA has reduced
enough the execution time of GADGET jobs to maintain the loadsufficiently low.

3.5 Related work

Simulation-based studies [32, 109, 110, 151] on the scheduling of malleable applications
in cluster systems often neglect the issues that arise in real environments such as the effec-
tive scalability of applications and the cost of growing or shrinking in terms of resource
allocation at runtime. Besides, the previous research have not considered the combina-
tion of malleability management and load sharing policies across clusters, which is an
issue specific to multicluster grids. In this section we discuss several implementations of
malleable applications and their scheduling in cluster systems.

Several approaches have been used to make parallel applications malleable. While
GrADS [201] relies on the SRS [200] framework, AppLeS [16] andASSIST [3] propose
to build applications upon intrinsically malleable skeletons. With AMPI [114], malleabil-
ity is obtained by translating MPI applications to a large number of CHARM++ objects,
which can be migrated at runtime. Utrera et al. [198] proposeto make MPI applications
malleable by folding several processes onto each processor.

54

40

8
0

1
0

0

Average number of processors per job

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

jo
b

s
[%

]

6
0

2
0

4
0

0

3020100

FPSMA/W’m
FPSMA/W’mr
EGS/W’m
EGS/W’mr

(a) The cumulative distribution of the number of
processors per job averaged over the execution time
of jobs.

60

8
0

1
0

0

Maximum number of processors per job

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

jo
b

s
[%

]

FPSMA/W’m
FPSMA/W’mr
EGS/W’m
EGS/W’mr

50403020100

6
0

4
0

2
0

0

(b) The cumulative distribution of the maximum
number of processors reached per job during its ex-
ecution.

0 200 400 600 800 1000

Execution time [s]

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

jo
b

s
[%

]

8
0

1
0

0
6

0
4

0
2

0
0

FPSMA/W’m
FPSMA/W’mr
EGS/W’m
EGS/W’mr

(c) The cumulative distribution of the job execution
times.

0 200 400 600 800 1000

8
0

1
0

0

Response time [s]

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

jo
b

s
[%

]

6
0

4
0

2
0

0
FPSMA/W’m
FPSMA/W’mr
EGS/W’m
EGS/W’mr

(d) The cumulative distribution of the job response
times.

0 2000 4000 6000 8000 10000

Time [s]

T
o

ta
l n

u
m

b
e

r
o

f
u

se
d

 p
ro

ce
ss

o
rs

1
0

0
2

0
0

4
0

6
0

6
0

FPSMA/W’m
FPSMA/W’mr
EGS/W’m
EGS/W’mr

(e) Utilization of the platform during the experi-
ment.

0 2000 4000 6000 8000 10000 12000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Time [s]

N
u

m
b

e
r

o
f

m
a

ll
e

a
b

ili
ty

 o
p

e
ra

ti
o

n
s

FPSMA/W’m
FPSMA/W’mr
EGS/W’m
EGS/W’mr

(f) Activity of the malleability manager.

Figure 3.5: Comparison between the FPSMA and EGS policies with the Precedence to
Waiting Applications (PWA) approach of job management (both growing and shrinking).

55

A couple of works have studied how to schedule malleable applications in combi-
nation with making parallel applications malleable. Amongthem, AppLeS [16] and
GrADS [199] are somewhat specific as they propose that applications are responsible to
schedule themselves on their own. However, this approach raises the question of how the
system behavior and performance would be, in case several concurrent malleable applica-
tions compete for resources. Furthermore, as those approaches rely on checkpointing, it is
unclear how an application gets its resources back when it accepts to try a new allocation.
System-wide schedulers, such asKOALA do not suffer from these drawbacks.

Some other approaches rely on a system-wide scheduler. Corresponding to the under-
lying execution model, AMPI uses an equipartition policy, which ensures that all jobs get
almost the same number of processors; while the policy in [198] is based on folding and
unfolding the jobs (i.e., doubling or halving the number of allocated processors). How-
ever, those two approaches rely on the properties of their underlying execution model.
For instance, equipartition assumes that any application can be executed efficiently with
any number of processors, as it is the case with AMPI; while folding restricts the number
of processes to be divisible by the number of processors (often a power of 2 for practical
reasons), which is the only way to fold efficiently non-malleable applications. A more
general approach such as the one we propose is more appropriate in the context of mul-
ticluster grids. McCann and Zahorjan [141] further discuss the folding and equipartition
policies. According to their experiments, folding preserves well efficiency; while equipar-
tition provides higher fairness. They also propose a rotation policy in order to increase
the fairness of the folding policy. However, rotation is almost impracticable in the context
of multicluster grids.

As fairness does not imply efficiency in terms of allocated processors, a biased
equipartition policy is proposed in [96] such that the cumulative speedup of the system
is maximized. The policy further considers both malleable and rigid jobs in a single sys-
tem [95], and it guarantees to allocate a minimum number of processors to each malleable
job, such that they are not ruled out by rigid jobs. However, in multicluster grids it is com-
mon that some of the users bypass the global grid scheduler. The problem of making the
scheduler take into account that incurred background load is not addressed in this study.

3.6 Summary

In this chapter we have presented the design and a real implementation of the support
for malleability in ourKOALA grid scheduler using theDYNACO framework [28, 30] for
application malleability. We have proposed two malleability management policies, Favor
Previously Started Malleable applications (FPSMA) and Equi-Grow&Shrink (EGS), for
malleable applications. FPSMA distributes idle processors to the malleable jobs starting
from the job that have started earliest, while EGS spreads them equally among all running

56

malleable jobs. We have also proposed two design choices as to when to initiate malleable
management policies, which give precedence to running malleable applications over wait-
ing ones (PRA) or vice versa (PWA), respectively. We have evaluated these policies and
design choices running experiments with workloads of malleable and rigid parallel appli-
cations in DAS-3. Our experiments show that malleability improves the execution time
of the parallel applications. In addition, when PRA is preferred the FPSMA policy out-
performs the EGS policy, while they perform similarly when PWA is preferred. PWA
behaves exactly the same as PRA unless the load in the system ishigh.

Chapter 4

Cycle scavenging for parameter sweep
applications

Cycle scavenging is the underlying technology of desktop grids and volunteer comput-
ing projects (such as Seti@Home [178]), which enables harnessing idle CPU cycles of
desktop workstations to solve large-scale scientific problems in a variety of research ar-
eas. The same concept can be applied to multicluster grid environments to give users
the opportunity of executing such large-scale computation-intensive applications at a low
priority without being in the way of regular grid users or local users. In this chapter we
present scheduling strategies for the support of cycle scavenging in multicluster grid sys-
tems, and evaluate the performance of the implemented solutions both from the user and
the system perspectives.

Today, many grids exhibit significant job submission burstsbetween periods of rela-
tive idleness [98]. Many users perform observational scheduling, that is, they postpone
the submission of relatively low-priority jobs until a cluster becomes (largely) idle. This
attitude, however, may lead to resource contention when several such users crowd the
same idle cluster, and may delay the execution of more important jobs unless some form
of administrative support for job and user priorities is deployed. Cycle scavenging, on
the other hand, obviates the need for establishing priorityclasses, which can be a time-
consuming and error-prone administrative operation. Supporting cycle scavenging in a
grid system would enable users to execute long-running applications (e.g., 3-D rendering,
molecular docking, and game solving applications) at the lowest priority without violating
the resource usage rules enforced in the system.

In this chapter we extend ourKOALA grid scheduler with cycle scavenging support.
The implemented cycle scavenging mechanism runs alongsidethe regular grid schedul-
ing, being unobtrusive to the jobs of higher priority (both local and grid jobs). Although
cycle scavenging infrastructures do exist [7, 44, 134], ourmechanism obviates the need
for additional software installations on the compute nodesor any modifications to the re-

58

source managers of the clusters (e.g., SGE [87]), both of which would be administrative
obstacles in multicluster grid systems. We exclusively target large-scale applications that
can be modeled as Parameter Sweep Applications (PSAs) to runas cycle scavenging (CS)
jobs. We enable single PSAs to run across multiple clusters simultaneously, that is, in a
co-allocated fashion.

The scheduling architecture for cycle scavenging that we have incorporated into
KOALA comprises two levels. At the grid level, scheduling policies run to ensure fair
distribution of idle resources among CS users in a dynamic fashion, and at the application
level, CS users can customize the scheduling policies in order to improve the perfor-
mance of their applications. We have designed two best-effort cycle scavenging schedul-
ing policies that enforce fair resource sharing between CS users in a dynamic fashion.
The policies do not need to keep track of the past usages of theCS users. The first policy
distributes or reclaims the idle nodes evenly among CS users,regardless of the site these
idle nodes belong to. The second policy, on the other hand, partitions or reclaims the idle
nodes evenly such that each CS user is assigned an equal share of idle nodes on each site.
We show with experiments conducted in the DAS-3 multicluster environment that the lat-
ter policy outperforms the former in terms of fairness. We also perform experiments to
demonstrate the efficiency of the implemented system in terms of scheduling overhead.

The rest of the chapter is structured as follows. Section 4.1explains the requirements
for the support of cycle scavenging in a multicluster grid scheduler. Section 4.2 presents
the implemented scheduling architecture and the scheduling policies for cycle scavenging.
Section 4.3 presents the experiments that we have performedto assess the performance
of the implemented cycle scavenging scheduling policies. Section 4.4 reviews the related
work, and finally, Section 4.5 summarizes the chapter.

4.1 Requirements for supporting cycle scavenging

In this section we state the requirements of cycle scavenging (CS) that should be taken into
account by a grid resource manager or a grid scheduler to ensure the efficient allocation of
idle resources. These requirements are fair-share scheduling, a proper notion of idleness
of processing nodes, and unobtrusiveness, respectively.

4.1.1 Fair-Share scheduling

As we know from desktop grids or volunteer computing environments, CS applications
are high throughput computing applications that consist ofindependent sequential tasks,
which scale to many thousands of nodes, and require large amounts of computation. Con-
sidering the size of these applications, the scheduling mechanism should try to achieve
fair-share resource allocation among the users submittingCS tasks, so that it prevents

59

some users monopolizing all free resources for a considerable amount of time, leaving
space for users having relatively light workloads.

Fair-Share scheduling, in fact, was originally proposed for managing resource allo-
cation of processes on time-sharing uniprocessor systems [119]. The application of the
fair-share resource allocation to a distributed system is very much dependent on how the
system administrators define the fair share. A study investigating this issue in cluster sys-
tems [122] shows that unless the jobs on a cluster are flexiblein terms of space (number
of nodes) and time (checkpointable), fair-share is not ableto achieve real-time fairness as
it can on a uniprocessor; rather, it becomes a best-effort service.

Due to the fact that tasks of a CS application may be preempted at any time, giving a
hard completion time guarantee for a CS application is almostimpossible; nevertheless,
users submitting CS applications may be more interested in the rate of receiving partial
results, that is, the throughput, since their jobs consist of independent sequential tasks. To
improve such performance, scheduling at the application level should be considered as a
separate layer under the fair-share resource allocation scheme. Such a layered architecture
would provide modularity and flexibility.

4.1.2 Notion of idleness

A grid scheduler would possibly schedule CS tasks whenever itis aware of idle nodes on
clusters. However, the existence of idle resources may not be the only prerequisite for
acquiring those resources to run tasks of a CS application. When to consider a resource
as idle may be subject to the additional administrative policies of each site. For instance,
a site may only be willing to run such tasks when a certain percentage of its resources are
idle and simultaneously there are no local jobs waiting in the queue, or site administrators
may want to set time limits such as allowing CS tasks to run onlyat nights. In addition,
site administrators may need to set usage limits due to reasons such as cooling costs,
which would increase by running long-lasting CS applications at a high utilization.

4.1.3 Unobtrusiveness

From the system perspective, we need to ensure that placing and running CS tasks are
unobtrusive to the jobs of higher priority; a grid schedulerhas to make immediate pre-
emption possible without causing significant delays whenever non-CS jobs demand the
nodes allocated to CS jobs. These high priority jobs in a multicluster grid can be defined
as the non-CS jobs that are directly submitted to local resource managers by local users,
and the non-CS jobs that are submitted to a grid scheduler by grid users.

When a CS task is canceled due to a high priority job by the grid scheduler, it has
to return back to a task pool so that it can be re-scheduled. A checkpointing mechanism

60

would be useful not to lose many computations; however, we donot consider checkpoint-
ing as it lies outside the focus of this chapter. Instead, we leave users to implement their
own application level checkpointing solutions.

4.2 Designing support for cycle scavenging in KOALA

In this section we present our design for supporting cycle scavenging (CS) inKOALA .
First, we explain the application model, then we describe the system architecture, and
finally, we present the fair-share policies and scheduling at the application level, respec-
tively.

4.2.1 Application model

For this study we consider in particular high-throughput applications that conform to the
Parameter Sweep Application (PSA) model. A PSA can be definedas a single executable
that is run for a range of parameters for a large number of times. The PSA model is
well suited for our problem since on the one hand many large-scale scientific applications
are structured in this way, and on the other hand PSAs are veryflexible to be run as CS
jobs in a multicluster grid environment. We support OGF’s standardized Job Description
Language (JSDL 1.0 [113]) to which we have added an extensionfor parameter sweeps
such that users can submit PSAs as single entities by specifying input files for parameter
extraction and representing the ranges of parameters as loops or lists of comma-separated
values.

We treat PSAs as malleable applications that can grow or shrink dynamically in terms
of the number of compute nodes they execute on. Moreover, we allow PSAs to run in
multiple clusters simultaneously, i.e., in a co-allocatedfashion. TheKOALA scheduler
has been modified to handle PSAs in a different way than regular grid jobs (we explain
this in the next section in more detail). A job component, in the cycle scavenging context,
represents the set of tasks of a PSA that are running in the same cluster. The job compo-
nents are dynamically created at run time according to the interactions with the scheduler
rather than being statically specified at submission time.

4.2.2 System architecture

In order to support cycle scavenging inKOALA , we have implemented two additional
components, a specificKOALA runner called theCS-Runnerand a glide-in mecha-
nism [81] called theLauncher. Figure 4.1 illustrates the interaction between these com-
ponents and the existingKOALA components that together achieve cycle scavenging. The

61

Regist
er

N
otify Local Job

Subm
ission

ACK

Gro
w

/ S
hrin

k

Submit PSA(s) Initiate Launchers

User

JDL

CS-Runner

Scheduler KIS

KCM

Launcher Non - CS Job

Launcher Non - CS Job

Launcher

Cluster

Non - CS Job

Head Node

NodeNode

Manage Launchers

1

2
3

4

5

Figure 4.1: The system architecture to support cycle scavenging in KOALA .

fair-share scheduling policies have been incorporated in the existing scheduler compo-
nent. TheKOALA Component Manager (KCM) is our job submission daemon that runs
as a separate copy per job component on the head node of the corresponding cluster. The
KCM interfaces to a local resource manager (that is SGE [87] inDAS-3) through the
standardized DRMAA [59] interface. We have added to the KCM thefunctionality of
notifying theKOALA Information Service (KIS) about local (non-CS) job submissions.

Along with scheduling regular grid jobs, the scheduler is responsible for allocating and
reclaiming idle nodes among active CS-Runners, based on the fair-share policy in use.
The fair-share policies decide on which CS-Runners are going to be offered additional
nodes (i.e.,grow), or are going to be forced to release nodes (i.e,shrink), from which
clusters, and how many (see Section 4.2.3). A CS-Runner may receive a grow request
whenever the scheduler becomes aware of idle nodes in one or more clusters through the
KIS. On the other hand, a CS-Runner may receive a shrink requestfor one of two reasons.
First, a CS-Runner may be forced to release nodes that it occupies whenever a non-CS
job (at the local or grid level) demands those nodes. Secondly, depending on the fair-
share policy deployed, it may also be asked to release nodes to open up space for other
CS-Runners.

The CS-Runner is entitled to manage the scheduling and monitoring of CS tasks (each
task refers to a parameter) on behalf of a user on the allocated idle resources. It initiates
Launchers on the idle nodes to delegate the execution of the parameters. For simplicity, in
this study we restrict users to have a single CS-Runner at a time; hence, each CS-Runner
process in the system corresponds to a different user. When itaccepts a grow offer, a CS-
Runner submits a request to the KCM to initiate Launchers on theidle nodes allocated

62

by the scheduler, and then the parameter values are submitted to the Launchers, based
on the application level policy in use (see Section 4.2.4). Upon successful execution of a
parameter, a Launcher sends back the result to the associated CS-Runner. Upon receiving
a shrink message, the Launchers are preempted according to the Launcher preemption
policy deployed in the CS-Runner (see Section 4.2.4).

The Launcher runs an executable for the given set of parameters in sequential order
that otherwise would be submitted one by one to the scheduler. The motivation behind the
Launcher mechanism is to reduce the overhead by decreasing the number of job submis-
sions which would put a considerable burden on the head nodesin a parameter study, and
to have more control on application level scheduling in the CS-Runner (see Section 4.3.1
for the performance results). If compute nodes have multiple processors, a CS-Runner can
optionally initiate a separate Launcher per processor in order to improve the performance
(i.e., the throughput).

In fact, the idea of enabling the rapid execution of many jobson clusters, creating a
virtual pool of resources and bypassing the local resource manager, has previously been
realized with several implementations such as the Condor Glide-In mechanism [81], My-
Grid’s virtual cluster approach [45], DIANE [150], and the Falkon framework [169]. The
Launcher adopts the same idea; however, it differs from these mechanisms in terms of
functionality as it is specialized to run complete PSAs as single entities. For instance, it
saves statistical information about the parameters that ithas run, and is able to send partial
results on completion or periodically.

4.2.3 Fair-Share policies

Our solution to fair-share resource allocation is to partition the idle resource space equally
among the active CS-Runners. We have designed two best-effortfair-share policies that
are based on the well-knownEquipartitionpolicy [141], which has originally been pro-
posed as a dynamic processor allocation scheme for malleable parallel applications run-
ning in a single cluster.

The first policy,Equipartition-All, tries to distribute the idle nodes (or reclaims the
required number of nodes) evenly among the active CS-Runners on a grid-wide basis
(see Figure 4.2). Whenever some of the nodes are reclaimed fornon-CS jobs, the policy
does not repartition the idle nodes allocated to the CS-Runners to equalize the numbers
of idle nodes they occupy. Instead, the policy gives back thereclaimed nodes to the
corresponding CS-Runners after the non-CS jobs are finished.

The second policy,Equipartition-PerSite, partitions the idle nodes on a per-cluster
basis. It tries to allocate or reclaim nodes evenly in each cluster to or from the active CS-
Runners. There is no need for repartitioning with the Equipartition-PerSite policy, since
each CS-Runner has the same number of nodes before and after some of the nodes are

63

Figure 4.2: The distribution of the idle nodes among the CS-Runners with the
Equipartition-All and the Equipartition-PerSite policies.

reclaimed for higher priority jobs.
In comparison to the Equipartition-PerSite policy, the Equipartition-All policy may

not treat users equally due to the heterogeneity of the node capabilities and the possi-
bly different background loads on the clusters because of local or grid-level jobs. We
investigate this issue and its effects in Section 4.3.2.

In case there are too many CS users competing for the limited numbers of idle re-
sources, the overall throughput can substantially decrease with our dynamic fair-share
policies. Therefore, we apply admission control to limit the number of active CS-Runners
to improve the overall service quality.

4.2.4 Scheduling at the application level

The default scheduling solution that we have implemented atthe application level is based
on a pure pull model. Each Launcher requests from its CS-Runnera new parameter to
execute when it becomes idle. When the scheduler sends a shrink message, the desired
numbers of Launchers are preempted, and the uncompleted parameters are placed back
into the parameter pool of the CS-Runner. The Launcher preemption policy preempts the
Launchers starting from the one that has pulled a parameter most recently, to the one that
has pulled a parameter earliest, with the intention to lose less computation. The reason we
prefer the pull model instead of the push model is that the latter necessitates a CS-Runner

64

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

32 64 128 256 512 1024 2048 4096

M
a

k
e

s
p

a
n

 [
s
]

Number of Tasks (Size)

Ideal
No-Launcher

Launcher

Figure 4.3: The makespan of PSAs for different submission mechanisms.

to frequently poll its Launchers for idleness.
We provide an API with which users can customize the CS-Runner,and the men-

tioned scheduling solutions according to their applications’ characteristics and require-
ments. One such example might be resubmitting the preemptedjobs to the sites where
input files already exist (in case the parameters are input files), in order to reduce unnec-
essary file transfers.

4.3 The performance of the cycle scavenging system

In this section we evaluate, in the DAS-3 testbed, the performance of the cycle scavenging
system and the scheduling strategies that we have incorporatedKOALA .

4.3.1 The impact of the task submission mechanism

In our first experiment we demonstrate the performance gain of using the Launcher mech-
anism over submitting the tasks (parameters) of a PSA as separate tasks to a grid system.
We use a synthetic application that takes the same time, 60 seconds, to execute each of
its parameters. We consider a single cluster with 32 nodes, and vary the application size
(number of parameters) as powers of 2 between 32 and 4096. We submit the application
using the CS-Runner with and without the Launchers for each size. For the former case,
the Launchers are initiated once and pull equal numbers of parameters to execute. For the
latter, the parameters are submitted as separate tasks to the grid middleware whenever the
CS-Runner is notified of idle nodes by the scheduler. During theexperiments we ensure
that no other jobs run in the cluster.

65

Figure 4.3 shows the results in terms of themakespanof the application. The
makespan of a PSA can be defined as the difference between the time of the earliest
submission of one of its tasks, and the time of the latest completion of one of its tasks.
The ideal case assumes no overhead in the system, that is, sets of 32 tasks are placed
on the nodes and started immediately. With using Launchers,the performance is close
to the ideal case, irrespective of the application size. On the other hand, as the size of
the application increases, the difference becomes much more visible between the regular
submission of tasks and the ideal case. It leads to a difference of approximately one and
a half hour when running the application of size 4096. Provided that the executable and
the input files reside in the execution site, there are two sources of this difference: the
task startup overhead, which is 5 seconds per task on average, and the information delay
due to the polling nature of monitoring resources. The monitoring period is 60 seconds in
the experiment, which can be considered as a realistic grid monitoring setting (see, e.g.,
Ganglia [84]).

4.3.2 Performance of the fair-share policies

In our second experiment, we compare the performance of the Equipartition-All and the
Equipartition-PerSite policies. We assume that three CS users submit the same application
with the same parameter range. The parameter sweep application we use is a program that
we have implemented to solve a rewarding puzzle (2M.US$), Eternity-II [68], which is
played on a square board with 16X16 spaces. The goal is to place all of the 256 pieces on
the board in such a way that the patterns on adjacent sides match. Finding a solution is
computationally hard; a brute-force technique requires millions of CPU years. Our solver
performs random walks to yield the best solution that it can,based on the parameters
given.

Although local job submissions force CS-Runners to release nodes, in this experiment,
we mainly attributed preemptions to grid job submissions. We use two synthetic work-
loads, with different arrival patterns, in order to represent the jobs of regular grid users.
The first workload,WBlock, periodically imposes for ten minutes a steady load of 40% on
the system with a period of 20 minutes; the load is distributed non-uniformly across the
clusters. The second workload,WBurst, imposes a 40% load (again non-uniform across
the clusters) with burst submissions of 1 minute repeated every 10 minutes. The moti-
vation behind using such workloads is to observe the performance of the policies under
dynamic loads, which is a typical case for grids.

Each experiment is terminated after 1 hour. We monitor the load due to local jobs
in each cluster, and ensure that this background load is steady and does not disturb the
experiments. We use the tools provided within the GrenchMark project [99] to create
the workloads and to ensure the correct submission of them tothe system. We use with

66

Table 4.1: Performance of the CS policies under the WBlock workload.

Equipartition-All Equipartition-PerSite
Throughput Num. of Avg. Num.Throughput Num. of Avg. Num.
[tasks/min] Preemptions of Nodes[tasks/min] Preemptions of Nodes

CS User-1 1.68 346 23 2.55 323 37
CS User-2 3.3 304 45 2.4 321 37
CS User-3 1.92 333 28 2.7 323 37

KOALA the Worst-Fit policy (see Section 2.3) in order to schedule the jobs of these work-
loads.

Figure 4.4 shows the performance results of the Equipartition-All and the
Equipartition-PerSite policies in terms of the number of completed tasks (parameters)
during the experiments, and Table 4.1 presents the throughput, the number of preemp-
tions, and the average number of nodes allocated to each CS user for the experiments
with WBlock. With the Equipartition-All policy, we observe that the number of tasks
completed (as well as the metrics in Table 4.1) per CS user varies considerably. With
both workloads, the load is distributed in an unbalanced wayacross the clusters. As a
consequence, with the Equipartition-All policy, CS users who happen to occupy more
processors than other users in the heavily loaded clusters,suffer more due to frequent
preemptions. This phenomenon, on the other hand, does not affect the CS users when
the Equipartition-PerSite policy is used. That policy always allocates an equal number of
nodes in each cluster to each CS user, and therefore, each CS user would suffer or benefit
equally from the behavior of non-CS jobs in a particular cluster. In this experiment, we
have also verified that all the CS users receive almost the sameamounts of CPU time with
the Equipartition-PerSite policy. The reason for the smalldifferences in the number of
completed tasks are due to Launcher failures (the failed Launchers are restarted immedi-
ately when noticed by the CS-Runners) and to the execution timevariation of the solver
application due to the randomness it includes.

4.3.3 Unobtrusiveness of the cycle scavenging system

In order to assess the unobtrusiveness of our CS system, we have performed extensive
test runs to quantify the additional delay that local jobs and non-CS grid jobs experience
before they start execution due to reclaiming of the nodes occupied by CS-Runners. For
non-CS jobs submitted toKOALA , we observe an additional delay between 2 and 8 sec-
onds before they start execution. Local jobs, however, experience an additional delay
between 8 and 15 seconds. KCM polls the local resource managerwith a period of 10
seconds to be aware of recent local job submissions. This contributes most to the addi-

67

 0

 50

 100

 150

 200

 250

Equi-All
WBlock

Equi-All
WBurst

Equi-
PerSite
WBlock

Equi-
PerSite
WBurst

N
u
m

b
e
r

o
f

C
o
m

p
le

te
d
 T

a
s
k
s

CS User-1
CS User-2
CS User-3

Figure 4.4: Number of tasks completed per CS user for the two fair-share policies.

tional delay that local jobs experience. To decrease the polling period would of course
decrease the delay, but we have observed that periods lower than 10 seconds increase the
processor load on the head node of the cluster in question considerably.

4.4 Related work

There are various platforms that make desktop grids or volunteer computing possible as
well as some that enable cycle scavenging at the organization level to put idle cycles to
good use.

The BOINC [7] platform facilitates volunteer computing projects (e.g., Fold-
ing@home [75], Rosetta@home [173], and Seti@home [178]). BOINC provides tools
that allow participants to remotely install a client software on a large numbers of desktops,
and to attach the client software to accounts on multiple projects. With BOINC, desktop
owners are able to specify how their resources can be allocated among the projects. An-
other similar platform is Entropia [42], which can be distinguished from its counterparts
by its binary sandboxing technology for ensuring security and unobtrusiveness, and its
architecture which incorporates physical node management, resource scheduling, and job
management layers. OurGrid [44] is an open platform that enables different research
labs to share their idle computational resources when needed. OurGrid relies on a peer-
to-peer incentive mechanism, calledNetwork of Favors, which aims to make it in each
participant’s best interest to donate idle cycles, along with preventing free riding. With
OurGrid, each user runs a broker-agent which competes with other agents to schedule the
jobs over the resources on behalf of the user. Therefore, it does not provide fair-share
resource allocation among users. The Condor [134] platform was initially designed to

68

scavenge compute cycles on large collections of idle desktop machines, but it has also
been extended to operate as a batch scheduler on top of a cluster system and as a resource
broker on top of Globus [89] based grids [81]. In addition to desktop computers, it is also
possible with Condor to scavenge idle nodes in a cluster by configuring each node such
that they can execute Condor jobs when no job is running which has been submitted by
the local resource manager of the cluster. Condor does not adopt traditional scheduling,
rather it uses a central matchmaking mechanism in which jobsand resources are matched
according to their requirements specified with so-called ClassAds. As the fair-share pol-
icy, Condor runs theUp-Down[156] algorithm to protect the rights of light users when a
few heavy users try to monopolize all resources. The algorithm relies on the information
of past resource usage rates of users.

In this study we have not considered past usage, since our notion of fair-share parti-
tions the idle resources evenly among users dynamically in real time. In addition, to de-
ploy any of the platforms mentioned above in a multicluster grid system requires per-node
installations or configurations in the local resource managers of clusters, which could be
impossible due to administrative restrictions. In contrast, the system we have presented in
this chapter does not require any such installations or modifications, rather, it seamlessly
integrates the notion of cycle scavenging into grid-level scheduling.

4.5 Summary

In this chapter we have presented the design and the analysisof the support for cycle
scavenging in multicluster grids. We have incorporated scheduling strategies for cycle
scavenging in ourKOALA grid scheduler. We have implemented two best-effort fair-share
polices that dynamically partition the idle nodes among theactive CS users. We have
compared these policies with experiments conducted in a real multicluster grid system.
The results show that a dynamic cycle scavenging policy should distribute the idle nodes
from each cluster in equal amounts to the active CS users in order to ensure fairness. In
addition, we have performed experiments to show that the implemented system is efficient
in terms of scheduling overhead, and, is unobtrusive to higher priority jobs.

Chapter 5

The performance of bags-of-tasks in
multicluster grids

Even though the local and wide-area interconnections in multicluster grid systems have
improved markedly as in our DAS system, and efficient wide-area communications li-
braries are now available such as MPI variants and Ibis [205], it turns out that a large
fraction of the jobs in the workloads imposed on such systemsis due to sequential appli-
cations, often submitted in the form of Bags-of-Tasks (BoT) [98,102] (see also Chapter 7
for a broader discussion). The reasons for this phenomenon are the relatively high net-
work latencies, the complexities of parallel programming models, and the nature of the
scientific computational work (e.g., repeated simulations, parameter sweeps).

In this chapter we present a realistic and systematic investigation of the performance
of scheduling BoTs in multicluster grids. What distinguishesour study from previous
efforts is that we use a workload model for BoTs with which we generate realistic traces
for our evaluation, and that we explore the large design space of bag-of-task scheduling
in multicluster grids along five axes, which are the task selection policy, the workload, the
information policy, the task scheduling policy, and the resource management architecture.

The rest of this chapter is organized as follows. In Section 5.1, we propose a sys-
tematic approach to evaluating the scheduling of BoTs in grids; with this approach we
identify three scheduling policies that have not been investigated previously, which are
the Earliest Completion Time with task runtime Predictions,the Fastest Processor First,
and the Shortest Task First with Replication policies. In Section 5.2, we present the work-
load model for BoTs. In Sections 5.3 and 5.4, we investigate the performance of BoTs in
multicluster grids. In Section 5.5, we review the related work on BoT scheduling. Finally,
in Section 5.6, we summarize the chapter.

70

5.1 A scheduling model for BoTs

In this section we present a scheduling model for BoTs in multicluster grids consisting of
four components. In Section 5.1.1, we describe the models ofthe system and of the jobs
submitted to it. The system model considers clusters of resources. In Section 5.1.2, we
present the resource management architectures, which add structure to the set of clusters
as to how their resources are jointly managed. Deciding which tasks to run where is
in our model a two-step process: first from the waiting tasks in the system aneligible
set is created using one of thetask selection policies(Section 5.1.3), and then the tasks
from the eligible set are mapped to resources using one of thetask scheduling policies
(Section 5.1.4).

Our model extends the current state-of-the-art in several ways. The resource manage-
ment architecture and the task selection policies have not been explicitly included in pre-
vious BoT scheduling models. For the task scheduling policies, previous models [39,130]
have considered that the resource performance (e.g., speed, SPECInt2006 value [190]) or
the task runtime are not (accurately) known by the scheduling policy, but that at least one
of them is accurately known. In contrast to these models, ourmodel considers that at
the same time the information about both the processor performance and the task runtime
may be inaccurate or even missing.

5.1.1 System and job model

In our model we assume that the computing resources (processors) are grouped in clus-
ters. The processors may have different performance acrossclusters, but within the same
cluster they are homogeneous. The workload of the system consists of jobs submitted by
various users; each of the jobs is a bag of sequential tasks (possibly only one). We employ
the SPEC CPU benchmarks model for application execution time[190], that is, the time it
takes to finish a task is inversely proportional to the performance of the processor it runs
on (see also Section 5.3). Upon their arrival into the systemthe tasks are queued, waiting
for available resources on which to be executed. Once started, tasks run to completion,
so we do not consider task preemption or task migration during execution. Instead, tasks
can be replicated and canceled, or migrated before they start.

5.1.2 Resource management architectures

The complete set of clusters is operated as one large-scale distributed computing system
using a resource management architecture which dictates how jobs are distributed across
the resources in the system. In our model, each of the clusters has its own local resource
manager (RM), but other RMs may be employed to build a complete architecture. A

71

global resource manager (GRM) is an RM that can submit tasks forexecution to another
RM.

Each RM in the system executes the same scheduling procedure upon the arrival of
new BoTs and on the completion of tasks. The scheduling procedure is as follows. First,
the RM calls the task-selection policy, which selects from the RMs current queue the
eligible setof tasks. Then, the scheduler executes the eligible set using the task-scheduling
policy, which in turn sorts the eligible set and/or ranks theresources to create a schedule.
Only after all the tasks in the schedule are completed is a neweligible set generated.

In this work we use three resource management architectures, one based on indepen-
dent clusters, one centralized, and one decentralized. Below we describe these architec-
tures:

1. SEParated Clusters (sep-c): Each cluster operates separately with its own local
RM and its own local queue to which jobs arrive. Each user can submit tasks to
exactly one RM.

2. Centralized Scheduler with Processor monitoring (csp): Each cluster operates
separately with its own local RM and its own local queue to which jobs arrive. In
addition, a GRM with a global queue operates on top of the cluster local RMs. The
users submit tasks only to the global system queue. When the global RM observes
that a cluster has idle resources, it moves some of the tasks on the global queue
to that cluster. The information about the number of free processors is gathered
periodically by a monitoring service.

3. Condor-like, with Flocking (fcondor): This models a Condor-like architecture
with flocking capabilities [65]. Similarly tosep-c, each cluster operates sepa-
rately with its own local RM and its own local queue to which jobs arrive. How-
ever, here each user can submit tasks to any RMs. A user keeps submitting tasks
to the same RM while that RM starts the tasks immediately; when tasks start to be
queued, the user will switch to another RM, in round-robin order.

In our model, a GRM may submit at most one task at a time to another RM; the target
RM will in this case receive BoTs with one task. This ensures that the GRM can control
the order in which its tasks are considered at the remote RM. Note that forsep-c there
is no GRM, but there exist local users.

5.1.3 Task selection policies

The RM uses its task selection policy to select from the RM’s local queue theeligible set
of tasks. We investigate in this work seven task selection policies, the first two of which
do not take into account the user who submits a task:

72

1. S-T The Select-Tasks policy selects all the tasks in the system.For each arriving BoT,
the set of its tasks is added to the eligible set.

2. S-BoT The Select-BoTs policy selects BoTs in the order of their arrival. When the
eligible set has become empty, the set of tasks of the selected BoT are considered
the new eligible set.

3. S-U-Prio The Select-User-Priority policy assumes that each user in the system has
a unique priority. It selects all the tasks of the user with the highest priority. Ideally,
each user has a unique priority, which distinguishes the user’s resource usage rights
from any other’s. In practice, a system will be configured with just a few (e.g., up
to four) distinct priorities. We use in this work the ideal scenario; in many settings,
its performance gives an upper bound of the performance of the practical scenario.

4. S-U-T The Select-User-Tasks policy aims at the equal sharing of resources among
the system users: It first selects the user with the lowest resource consumption, and
then it selects all the tasks of the selected user.

5. S-U-BoT Similarly toS-U-T, the Select-User-BoT policy aims at the equal sharing
of resources among the system users: It first selects the userwith the lowest resource
consumption, then it orders the selected user’s BoTs in theirorder of arrival into an
ordered set. From this set, the tasks of the first BoT are considered the new eligible
set.

6. S-U-GRR The Select-User-Global-Round-Robin algorithm selects the next user in
round-robin order. It then adds all waiting tasks of this user to the eligible set.
If a user submits additional BoTs during his turn, the corresponding tasks will not
be considered for selection during this turn.

7. S-U-RR The Select-User-Round-Robin policy is a variation of S-U-GRR, where only
one task is selected per user at each round. Under S-U-RR, a BoT ofsize N will re-
ceive complete service after exactly N rounds. This algorithm is similar to the WFQ
algorithm for scheduling packets over the network [161], with the main difference
of tasks not having a known runtime at selection time, as opposed to network pack-
ets having a pre-assigned number of bits to transfer.

For all task-selection policies that require it, the resource consumption is simply com-
puted as the sum of the past usage and usage of currently running tasks. The usage of a
task is computed as the CPU time spent by it until its completion (the current moment)
for tasks that have (not yet) completed. Given the range of the runtimes of the tasks in our
traces and experiments, a precision on the order of seconds is enough for computing and
accurately measuring these CPU time values.

73

Table 5.1: An information availability framework.K , H, andU stand for information
Known a-priori, based on Historical data, and Unknown, respectively. The scheduling
policies marked with⋆ have not been previously studied in the context of BoT scheduling.

Task Information
K H U

K ECT [138], FPLT [142] ECT-P⋆ FPF⋆

MaxMin [39]
Resource H DFPLT [48] - -
Information MQD [130]

U STFR⋆ - RR [82]
WQR [48]

5.1.4 Task scheduling policies

There exist many scheduling policies for BoT workloads in large scale distributed sys-
tems [39, 48, 82, 130]. We categorize such policies according to the information policy
used for resources and tasks, where a piece of information can be either fully Known (K),
known from Historical records (H), or fully Unknown (U). In this work we consider only
two pieces of information (theinformation set): the performance of a processor and the
execution time of a task (e.g., on a reference processor). Then, a task-scheduling policy
can be characterized in terms of its information usage by a tuple (R, T), with R andT the
information policy for resources and for tasks, respectively. We map several scheduling
policies to this characterization in Table 5.1. Most of the existing scheduling policies are
either(U,U) or (K,K); in practice, Condor [195] uses by default an(U,U) policy, Ap-
pLeS supports several(U,U) and(K,K) heuristics [16], MyGrid implements an(U,U)

policy [45]. Scheduling policies for BoT of types(U,K), (K,U), (U,H), (H,U), and
(H,H) have not been addressed in the literature of BoT scheduling.

To address the main goal of this work, a systematic approach to evaluating BoT
scheduling in grids, we propose one simple policy for each ofthe types(U,K), (K,U),
and(K,H). The(U,K) and(K,U) policies give an upper bound of the achievable per-
formance of(U,H) and (H,U) policies, respectively. The scheduling policies used in
this chapter are described below:

1. Earliest Completion Time (ECT) (K,K) : The ECT policy assigns each task to the
resource (cluster or processor) that leads to the earliest completion time possible. If
the resource is a cluster, it also takes into account the cluster’s queue when comput-
ing the earliest completion time. It is a Gantt chart-based scheduling policy [39].

2. Fastest Processor Largest Task (FPLT)(K,K) : The FPLT policy assigns the
largest task to the fastest processor available.

74

3. Round-Robin with Replication (RR) (U,U) : The RR policy first assigns all the
tasks to processors, in the initial order of the eligible set. After finishing all tasks
in the eligible set, it replicates tasks at most once on the resources that become
available, in round-robin order.

4. Work Queue with Replication (WQR) (U,U) : The Work Queue with Replication
policy differs from RR in that it can replicate tasks several times instead of only
once. The number of replicas is appended to name of the scheduling policy, e.g.,
WQR-1 replicates tasks once (and is identical to RR).

5. Dynamic Fastest Processor Largest Task (DFPLT)(H,K) : The DFPLT policy as-
sumes that the resource performance is dynamic over time. Onthe completion of
a task, the performance of the resource on which the task was executed is (re-)
computed, and the resource receives a performance rank. This policy assigns the
largest task to the resource with the highest performance rank. In this work DFPLT
is exactly the same as FPLT since we do not incorporate a performance model for
resources in our simulation model.

6. ECT with task runtime Prediction (ECT-P) (K,H) : The ECT-P policy operates
similarly to ECT, but uses predicted instead of real task runtime values. We re-
fer to Chapter 7 for the details of the prediction scheme that we use with this policy.

7. Shortest Task First with Replication (STFR) (U,K) : The STFR policy always as-
signs the shortest task first. After finishing all tasks in theeligible set, it replicates
tasks at most once on the resources that become available, inround-robin order.

8. Fastest Processor First (FPF)(K,U) : The FPF policy assigns the tasks in the initial
order of the eligible set. Each task is assigned to the fastest available processor.

The information set can be extended to more dimensions than just two. However,
the two selected pieces of information already foster non-trivial customization, e.g., the
execution time of a task can be extended to include the job setup and removal. If the job
execution model of the system does not allow for the decoupling of job data from the job
execution, as is the case for many cluster managers used in practice, the execution time of
a task can also include the data transfer time to/from the execution place. Similarly, the
execution time can include the setup of a virtual environment that is needed for executing
a job.

5.2 The workload model for bags-of-tasks

In this section we present the workload model for BoTs in multicluster grids that is pro-
posed in [97,101], and that we use in this study.

75

Table 5.2: Characteristics of the seven grid traces used to validate the BoT workload
model.

System Trace
Trace Name Size Duration Size

ID [CPUs] [Years] [tasks]

T1 DAS-2 400 1.5 1.1M
T2 Grid5000 ∼2500 2.5 1.0M
T3 NGS 378 3 0.6M
T4 AuverGrid 475 1 0.4M
T5 SHARCNET 6,828 1 1.1M
T6 LCG 24,515 0.03 0.2M
T7 NorduGrid ∼2000 2 0.8M

Table 5.3: The parameter values for the best fits of the statistical distributions to the BoT
model for the seven studied traces. N, LN, W, and G stand for the normal, lognormal,
Weibull, and gamma distributions, respectively. Z stands for the Zipf distribution with
two parameters:α and the number of unique users (ranks).

Trace User Bag-Of-Tasks Task
ID Ranking IAT [s.] Daily Cycle Size ART [s.] RTV [s.]

T1 Z(1.25,333) W(4.06,7.91) G(2.62,0.13) W(1.75,2.91) N(1.78,3.87) W(1.64,10.21)
T2 Z(1.39,481) W(4.27,8.42) W(1.57,20.54) G(2.47,1.64) N(2.31,4.97) N(5.54,9.56)
T3 Z(1.30,379) W(4.94,8.48) W(1.64,25.42) W(2.02,1.58) N(3.50,3.51) G(1.79,0.29)
T4 - (see text) W(3.87,7.33) W(1.72,25.49) W(1.78,1.51) G(3.55,0.47) N(6.41,11.73)
T5 Z(1.25,412) W(4.17,7.65) W(2.44,28.99) W(1.37,1.89) N(3.06,7.45) W(1.93,13.65)
T6 Z(1.32,216) W(4.05,6.48) W(1.71,23.86) N(1.33,2.71) LN(1.82,0.34) W(2.85,14.21)
T7 Z(1.36,387) N(1.97,8.00) W(1.62,22.18) W(1.80,2.17) N(2.76,9.04) W(2.86,16.58)

Avg Z(1.31,368) W(4.25,7.86) W(1.79,24.16) W(1.76,2.11) N(2.73,6.1) W(2.05,12.25)

5.2.1 Model overview

The model for BoTs focuses on four aspects: The submitting user (Section 5.2.2), the
BoT arrival patterns (Section 5.2.3), the BoT size (Section 5.2.4), and the intra-BoT (task)
characteristics (Section 5.2.5).

Seven grid workload traces from the Grid Workloads Archive (GWA) are used to
validate the BoT model1. Table 5.2 summarizes the characteristics of the seven systems
and their traces.

The real (trace) data corresponding to each of the characteristics are fitted to the fol-
lowing candidate distributions, each of which has low complexity [69] and is used ex-
tensively in the analysis of computer systems: exponential, hyper-exponential, normal,

1The GWA makes (anonymized) grid workload traces available to researchers at:
http://gwa.ewi.tudelft.nl/

76

log-normal, gamma, and Weibull.

The fitting process uses the Maximum Likelihood Estimation (MLE) method [4],
which delivers good accuracy for the large data samples specific to workload traces. Then,
goodness-of-fit tests are used to assess the quality of the fitting for each distribution, and
to establish a best fit for each of the model parameters. For each candidate distribution
with the parameters found during the fitting process, the hypothesis is formulated that the
data are derived from it (the null-hypothesisof the goodness-of-fit test). The Kolmogorov-
Smirnov test (KS-test) [133] is used for testing the null-hypothesis. The KS-test statistic
D estimates the maximal distance between the CDF of the empirical distribution of the
input data and that of the fitted distribution. The null-hypothesis is rejected ifD is greater
than the critical value obtained from the KS-test table. TheKS-test is robust in outcome
(i.e., the value of theD statistic is not affected by scale changes, like using logarithmic
values). The KS-test has the advantage over other traditional goodness-of-fit tests, like
the t-test or the chi-square test, of making no assumption about the distribution of the
data. The KS-test can disprove the null-hypothesis, butcannotprove it. However, a lower
value ofD indicates better similarity between the input data and datasampled from the
theoretical distributions.

For each model characteristic, the candidate distributionwith the lowestD value is
selected for each workload trace; the parameters of the bestfit distributions are recorded
as an instance of the model of the respective trace. The selected distributions for each
trace and their parameters are depicted in Table 5.3. Trace T4 does not include user
information.

The model produces parameters for an “average system” as thesystem that has the
average properties of the seven systems considered in this work. Using the average sys-
tem properties we can generate synthetic yet realistic traces, without using a single real
system as a reference. The average system properties are built as follows. For each model
characteristic, a candidate distribution that has the lowest averageD value over all seven
traces is selected as the average system fit. When for two candidate distributions the dif-
ference of theirD values is below 0.01, the distribution closest to the average system fit is
selected. The data for each trace are then fit independently to the candidate distribution,
resulting in a set of best fit parameters. The parameters of the average system represent
the average of this set. The ’Avg’ row in Table 5.3 presents the parameters of the average
system.

5.2.2 Submitting user

The Zipf distribution was fitted to the user ranking based on their relative job submission
frequencies. First, the users are ranked based on number of submitted jobs in descending
order (the lowest rank is equal to the number of unique users in the trace). The probabili-

77

ties associated with each rank are calculated by dividing the number of submitted jobs for
each user of that rank by the total number of jobs in the trace.

5.2.3 BoT arrival patterns

The BoT arrival patterns are modeled in two steps: first the inter-arrival time (IAT) be-
tween consecutive BoT arrivals during peak hours, and then the IAT variations caused by
the daily submission cycle.

Similar to the results in [98], the hours between 8AM and 5PM are found to be “peak
hours”, with significantly more arrivals than during the rest of the day. Only the data for
BoTs arriving during the peak hours are considered when modeling the IAT. According to
established modeling practice [137], a logarithmic transformation with base 2 is applied
to these data to reduce the range and the effect of extreme values; this does not affect the
quality of the data fitting. The Weibull distribution is selected as the average system fit
and as the best fit for six of the seven traces.

The daily cycle is modeled similarly to [137]. First, the dayis split into 48 slots of 30
minutes each, then the number of BoT arrivals during each of the 48 slots is counted, and
finally this data set is fitted against the candidate distributions. The Weibull distribution
is selected as the average system fit.

5.2.4 BoT size

Similarly to IAT modeling, a base-two logarithmic transformation is applied before fitting
to the batch size (i.e., the number of tasks in a BoT). The Weibull and the normal distri-
butions are tied, followed closely by gamma; the Weibull distribution is selected as the
average system fit due to the higher number of best fits for individual traces: five against
one.

The average BoT size per trace is between 5 and 50, while the maximum BoT size
can be on the order of thousands. Depending on size, nine classes of BoTs are defined: of
size 2-4, of size 5-9, of size 10-19, of size 20-49, of size 50-99, of size 100-199, of size
200-499, of size 500-999, and of size 1000 and over. In addition, a Small (Medium) class
is defined encompassing the BoTs that fall in the classes 2-4 and 5-9 (10-19 and 20-49).

5.2.5 Intra-BoT characteristics

The modeled intra-BoT characteristics are the average task runtime (ART) and the task
runtime variability (RTV), both measured in seconds. Similarly to IAT modeling, a base-
two logarithmic transformation is applied before fitting tothe task runtime. The normal
distribution is the average system fit and the best fit for five of the seven traces.

78

The intra-BoT task runtime variability is defined as the variance of runtimes of the
tasks belonging to the same BoT. The Weibull distribution is the average system fit and
the best fit for four of the seven traces.

5.3 Experimental setup

This section describes the setup of the experiments in Section 5.4.

5.3.1 The simulated environment

The experiments are performed in a simulated environment encompassing two multi-
cluster environments, the DAS-3 and Grid’5000 grids, for a total of 20 clusters and over
3500 processors, which is motivated by the current work on inter-operating the corre-
sponding real environments. For our simulations, we have extended our DGSim tool [104]
with the task-selection and task-scheduling policies described in Section 5.1. In addition,
we have extended DGSim to support heterogeneous processingspeeds; the processing
speed of the resources used in simulation correspond to the SPEC [190] values of the real
DAS-3 and Grid’5000 resources, and their relative performance ranges between 1.0 and
1.75.

5.3.2 The performance metrics

To assess the performance of BoT scheduling in multicluster grids we use the following
metrics:

Makespan (MS), which for a BoT is defined as the the time elapsed from its submission
to the system until the completion of its last task.

Normalized Schedule Length(NSL), which for a BoT is defined as the ratio of its
Makespan and the sum of its tasks’ runtime on a reference processor. The NSL is
the extension of the slowdown used for jobs in traditional computing systems [73].
Lower NSL values are better, in particular NSL values below 1are desired.

5.3.3 The workloads

Each of the 20 clusters of the combined system receives an independent stream of jobs
(input workload). The input workloads used in our experiments are either one month-
long traces collected from the individual grids starting atidentical moments in time (real

79

traces), or synthetic traces that reflect the properties of grid workloads (realistic traces)2.
The need for realistic traces is twofold. First, traces coming from one system cannot be
used unmodified on a different system [67, 79] (e.g., the job submission depends on the
original circumstances); the seven traces used in this workoriginate from seven different
grids. Furthermore, modifying the real traces (e.g., by scaling or duplicating their jobs)
may lead to input that does not actually represent a realistic trace; scheduling results are
highly sensitive to such changes [67]. Second, given the size of the explored design space
(see Section 5.4), performing the experiments for each realtrace becomes unmanageable.
The use of real traces is required for validation purposes, to give evidence that results
obtained with real and with realistic traces are similar.

Unless otherwise noted, the realistic traces use the parameter values of the average
system given in row “Avg” of Table 5.3. Our workloads have between 20,000 and 175,000
tasks, with an average of over 60,000 tasks (the median is over 64,000 tasks).

5.3.4 Simulation assumptions

We have made the following five assumptions in the experiments. First, we assume that
the network between the clusters is perfect and has zero latency. Second, because all
tasks are sequential, all sites employ the FCFS policy, without backfilling. Third, multi-
processor machines (which do occur in the DAS-3 and Grid’5000) behave and can be
used as sets of single-processor machines without a performance penalty. Fourth, all load
arrives directly at the RMs of the resource management architecture which is in place,
with no jobs bypassing those RMs. Finally, we assume that there are no resource failures,
because in light of the model for cluster-based grids [98] and of the model for desktop
grids of Kondo et al. [123], an environment with resource failures is equivalent to a smaller
environment, provided that the average resource availability duration is not lower than the
runtime of the jobs.

Table 5.4: The design space coverage of the experiments presented in this section. The
characteristics in bold indicate the main focus of each section.

Res.Mgmt. Selection Scheduling Workload System Information
Section Architecture Policy Policy Characteristics Load Inaccuracy
Section 5.4.1 csp S-T all real, realistic ∼25%, 20-95% no
Section 5.4.2 csp S-T all synthetic 60% no
Section 5.4.3 csp S-T all realistic 60% yes
Section 5.4.4 csp all FPLT realistic 20-95% no
Section 5.4.5 all S-T FPLT realistic 20-95% no

2We use throughout this chapter the formulationrealistic tracesin place ofrealistic synthetic tracesto
accentuate the difference between the traces used in this work and the unrealistic synthetic traces used in
previous studies.

80

5.4 The performance of bags-of-tasks

In this section we present an investigation of the performance of BoTs in multicluster
grids. We cover with over 1200 trace-based simulations a design space with five axes and
more than 2 million points: We consider 7 task-scheduling policies, 7P tuples of values
describing the workload (withP the number of parameters in the workload model and7

the number of values of each), 2 values for information inaccuracy (yes or no), 8 task-
selection policies, and 3 resource management architectures; the exploration further uses
3 types of workloads (real, realistic, synthetic), for 7 system loads. To explore this design
space efficiently, we assess in the subsections below in turnwith a set of experiments for
each parameter the impact on performance of varying the parameter along one of the axes
of the design space; Table 5.4 shows an overview of what each experiment covers.

Most of the results present average values of the BoT MS and/orNSL metrics un-
der various system loads, and as such are mostly useful to thesystem administrator or
to the user submitting a workload with characteristics closely match those of the average
workload. However, Sections 5.4.1 and 5.4.2 present detailed results for different BoT
sizes and task runtimes; thus, they are also useful to understanding the performance per-
ceived by users whose workload characteristics are significantly different than the average
workload.

5.4.1 The impact of the task scheduling policy

In this section we assess the impact on performance of the scheduling policy using the
setup described in the first line of Table 5.4. Our main findings are summarized below.

Small and Medium-Sized BoTs have a high NSL even under low load

We simulate the task-scheduling policies in acsp/S-T system under real load of 25%.
Figure 5.1 shows that even with this low load, undercsp/S-T the BoTs of sizes 5-9 and
10-19 have a higher than average NSL, while the average MS increases monotonically
with the BoT size. This indicates that their users get higher than expected wait times for
their tasks compared to other system users. The main beneficiaries are the users submit-
ting very small (size 2-4) or very large BoTs (size over 200).

Comparison of policies with different information types

Figure 5.2 shows the performance of the scheduling policiesunder realistic load vary-
ing between 20% and 95%. The(K,K) and the(K,U) policies have the best balance

81

 0

 10000

 20000

 30000

 40000

all 2-4 5-9 10-19 50-99 200-499

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

 [
s
]

BoT Size Range

ECT
FPLT

RR
WQR4x
DFPLT
ECT-P
STFR

FPF

 0

 25

 50

 75

all 2-4 5-9 10-19 50-99 200-499

A
v
g

.
N

S
L

BoT Size Range

ECT
FPLT

RR
WQR4x
DFPLT
ECT-P
STFR

FPF

Figure 5.1: The performance of the scheduling policies in multicluster grids with
csp/S-T, under real load.

between MS and NSL. In general,ECT (K,K), FPLT (K,K), andFPF (K,U) per-
form better than the other policies. As the policies that include unknown (U) information
models rely on the quality of their uninformed heuristic, their performance ranges from
surprisingly good to surprisingly poor. The(U,K) policySTFR has the best overall NSL,
but average MS. The(K,U) policy FPF has the lowest overall MS, but poor NSL. The
(U,U) policy RR has a good MS, but poor NSL. TheWQR4x has poor MS and NSL, es-
pecially at high load. The performance of the ECT policy worsens when the task runtime
estimations are inaccurate (ECT-P), nevertheless, the performance of ECT-P is better than
especially the(U,U) policies.

5.4.2 The impact of the workload characteristics

In this section we assess the impact on performance of the workload characteristics
using the setup described in second line of Table 5.4. For each such characteristic,
we generate a synthetic workload imposing a system load of 60% using the workload
model described in Section 5.2, so that the values of the characteristics have the desired
statistical properties (e.g., a median BoT size of 25). Our main findings are summarized
below.

82

 0

 10000

 20000

 30000

 40000

20 30 40 50 60 75 95

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

System Load [%]

ECT
FPLT

RR
WQR4x
DFPLT
ECT-P
STFR

FPF

 0

 5

 10

 15

20 30 40 50 60 75 95

A
v
g

.
N

S
L

System Load [%]

ECT
FPLT

RR
WQR4x
DFPLT
ECT-P
STFR

FPF

Figure 5.2: The performance of the scheduling policies in multicluster grids with
csp/S-T, under realistic load.

Burstiness leads to poor performance incsp/S-T (Figure 5.3) We vary the BoT
arrival pattern with as possibilities a daily cycle based onthe workload model (Realistic),
the pattern with all BoTs arriving at the beginning of the simulation (”All at T=0”), and
the pattern with all BoT interarrival times being equal (Evenly Spread). Figure 5.3 shows
that the extreme of burstiness (”All at T=0”) leads to much higher average MS and NSL
values when compared to the other two patterns. The policieshave similar performance
results with Evenly Spread and Realistic case.

Impact of the BoT size (Figure 5.4) From the realistic workload model presented
in Section 5.2, we vary the BoT size to achieve median values between 10 and 50.
Figure 5.4 shows that the MS increases with the increase of the median of the BoT size.
Relative to a BoT median size of 10, the MS increase ranges from 37% (35%) forECT
(FPLT) to over 80% forWQR4x, which indicates that for some policies, the average MS
is less dependent from the BoT size than for others. The average NSL decreases for
STFR with the increase of the BoT size; the other policies do not exhibit this performance
improvement trend.

83

 0

 25000

 50000

 75000

Realistic All at T=0 Evenly Spread

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Arrival Pattern

ECT
FPLT

RR
WQR4x

FPF

 0

 25

 50

 75

 100

Realistic All at T=0 Evenly Spread

A
v
g

.
N

S
L

Arrival Pattern

ECT
FPLT

RR
WQR4x

FPF

Figure 5.3: The performance of the scheduling policies in multicluster grids with
csp/S-T, under various BoT arrival patterns.

Longer tasks lead to better NSL(Figure 5.5) From the realistic workload model
proposed in Section 5.2, we vary the task runtime to achieve mean values between 3
minutes and 3 hours. Figure 5.5 shows that the NSL tends to decrease with the increase of
task runtime, since for each BoT the effect of task inter arrival time on the NSL diminishes
with the increase of task runtime.

5.4.3 The impact of the dynamic system information

In this section we assess the impact of various inaccuracy values under the assumption
of null overall inaccuracy, that is, we make the optimistic assumption that while any
individual estimation may be highly inaccurate, the average estimation inaccuracy is 0%.

Under null overall inaccuracy, accurate per-task information is not needed to
schedule well(This finding may lead to new types of predictors for BoT scheduling that
would be useful in the context of independent tasks). We firstset the maximum inaccuracy
I to a value between 0% (perfect information) and 10000% (highinaccuracy). Then, for
each task runtime estimation we sample the estimation inaccuracyE from the uniform

84

 0

 5000

 10000

 15000

 20000

10 15 20 25 30 35 40 45 50

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Median BoT Size

ECT
FPLT

RR
WQR4x

STFR
FPF

 0

 5

 10

 15

 20

10 15 20 25 30 35 40 45 50

A
v
g

.
N

S
L

Median BoT Size

ECT
FPLT

RR
WQR4x

STFR
FPF

Figure 5.4: The performance of the scheduling policies in multicluster grids with
csp/S-T, for various median BoT sizes.

distribution [−I, +I]; the task runtime is set tomax(R + (E/100) × R, 1), whereR is
the actual task runtime, and any task is at least 1 second long. Figure 5.6 shows that in
general, under null overall inaccuracy the MS and NSL vary little with the increase of
inaccuracy. We attribute this result to the moderate systemload imposed on the system in
the experiment, i.e., 60%, and to the independence of tasks in BoTs.

5.4.4 The impact of the task selection policy

In this section we assess the impact of the task-selection policy on the system perfor-
mance. We use the setup described in the fourth line of Table 5.4: a csp resource
management architecture, theFPLT task-scheduling policy, and realistic workloads that
subject the system to a load between 20% and 95%. Our main findings are described
below.

The task-selection policy is important only in busy systemsFigure 5.7 shows that
for loads up to 50%, the performance of the system is almost identical for the seven
task-selection policies. This is not surprising: with a(K,K) scheduling policy, the

85

 0

 5000

 10000

 15000

 20000

3m 5m 15m 30m 1h 1.5h 3h

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Mean Task Runtime

ECT
FPLT

RR
WQR4x

STFR
FPF

 0

 5

 10

 15

 20

3m 5m 15m 30m 1h 1.5h 3h

A
v
g

.
N

S
L

Mean Task Runtime

ECT
FPLT

RR
WQR4x

STF
FPF

Figure 5.5: The performance of the scheduling policies in multicluster grids with
csp/S-T, for various mean task runtimes.

system resources are harnessed efficiently when much spare capacity exists. The fact
thatFLTP does not use replication is also important in establishing aload of 50% as the
threshold beyond which the task-selection policy does havean impact on performance.
With a policy that does use replication, this threshold would be lower, in proportion to
the average number of replications per task. Figure 5.7 alsoshows that the task-selection
policy has an important impact on performance for loads of 50% and higher; this impact
increases with the load.

S-BoT has much better performance than the other task-selection policies
Figure 5.7 depicts the NSL (MS) of all the task-selection policies for various system load.
For loads of 60% and higher, the average NSL (MS) forS-BoT is up to 16 (2) times
lower than the average NSL (MS) of the other policies. In particular,S-BoT outperforms
the task-selection policy most commonly used in practice, which is S-T. We attribute
the differences to the design of theS-BoT policy, which greatly favors the small BoTs
that are common in the workloads of grids. This is confirmed bythe set of columns
corresponding to 95% load in Figure 5.7.

86

 0

 5000

 10000

 15000

0 100 500 1000 5000 10000

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Task Runtime Estimation Inaccuracy [%]

ECT-RTE
FPLT-RTE

STF-RTE

 0.0

 2.5

 5.0

0 100 500 1000 5000 10000

A
v
g

.
N

S
L

Task Runtime Estimation Inaccuracy [%]

ECT-RTE
FPLT-RTE

STF-RTE

Figure 5.6: The performance of the scheduling policies in multicluster grids with
csp/S-T, when the inaccuracy of task runtime estimations varies.

System fairness costs: accounting system or performance(Figure 5.7) Introducing
fairness into a resource management system in general reduces the aggregate performance
of the system. We compare the four task-selection policies studied in this chapter that
consider fairness:S-U-T, S-U-BoT, S-U-GRR, S-U-RR. The first three of these may
all lead to one user blocking the system for a long time regardless of what the other users
do (e.g., when sending one or more large BoTs and getting selected); S-U-RR does
not suffer from this problem if all the users submit equally large BoTs. While system
blocking is a possibility, our study shows that this does nothappen in practice often
enough to be significant. From the four policies,S-U-T performs the best. The ordering
of BoTs by arrival time employed byS-U-BoT does not lead to better performance.
The round-robin ordering of users employed byS-U-GRR, which does not require an
accounting system to be present, leads in turn to up to 15% higher NSL thanS-U-T.
Finally, S-U-RR, which also does not require an accounting system, has up to 45%
higher NSL values thanS-U-T. To conclude, to have fairness a system must either setup
an accounting system, or it will pay in lower performance.

87

 0

 10000

 20000

 30000

20 30 40 50 60 75 95

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

System Load [%]

S-T
S-BoT

S-U-Prio
S-U-T

S-U-BoT
S-U-GRR

S-U-RR

 0

 3

 5

 8

 10

20 30 40 50 60 75 95

A
v
g

.
N

S
L

S-T
S-BoT

S-U-Prio
S-U-T

S-U-BoT
S-U-GRR

S-U-RR

System Load [%]

Figure 5.7: The performance of the task selection policies in multicluster grids with
csp/FPLT, under realistic load.

System QoS costs: level vs. performance(Figure 5.7) Offering guarantees about
the response time of the submitted tasks is expensive in terms of performance in a system
that does not support advance resource reservation. We compare the three task-selection
policies presented in this chapter that support QoS:S-U-Prio, S-U-GRR, S-U-RR.
S-U-Prio guarantees that the tasks of the user with the highest priority from the users
currently having queued tasks will be selected next.S-U-GRR guarantees that a user’s
task will be selected for execution at mostn rounds after submission, wheren is the total
number of users in the system, both with and without queued jobs. S-U-RR guarantees
that at least one of a user’s queued tasks is selected in the next n rounds; the rounds of
S-U-RR are on average much shorter than those ofS-U-GRR, asS-U-RR selects only
one task per round.S-U-Prio andS-U-RR have similar performance. Compared to
S-U-GRR, their performance is lower, by up to 20%. To conclude, thereis a trade-off
between the weak QoS guarantees but higher performance ofS-U-GRR, and the stronger
QoS guarantees but lower performance ofS-U-Prio andS-U-RR.

88

 0

 10000

 20000

 30000

20 30 40 50 60 75 95

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

sep-c
csp

fcondor

 0

 3

 5

 8

 10

20 30 40 50 60 75 95

A
v
g

.
N

S
L

System Load [%]

sep-c

csp
fcondor

System Load [%]

Figure 5.8: The impact of the system resource management architecture on performance
under realistic load, with theS-T (FPLT) selection (scheduling) policies.

5.4.5 The impact of the resource management architecture

In this section we assess the impact of the resource management architecture on the
system performance. We use the setup described in Table 5.4 (i.e., anS-T selection
policy, and theFPLT scheduling policy), and realistic workloads that subject the system
to a load between 20% and 95%.

Centralized, separated, or distributed? (Figure 5.8) The centralized policycsp
achieves the best performance. Conversely, the independentclusters policysep-c
achieves the worst performance. The distributed architecturefcondor exhibits mixed
NSL performance results: for loads below 50% its performance is similar to that of
sep-c, and, for loads above and including 50% its performance is similar to that of
sep-c. We observe that for loads above and including 50%fcondor andsep-c can-
not complete all tasks; for the 95% load they complete only 44% and 53% of the tasks,
respectively. We attribute the inability offcondor to complete more tasks to its fos-
tering of ”natural competition”: most of the tasks that would get blocked in a central
architecture (until other tasks are finished) are submittedin the distributed architecture to

89

the clusters, where they compete with each other for occupying the idle processors.

5.5 Related work

This work stands at the intersection of two directions of research: design of BoT schedul-
ing policies, and design of complete BoT scheduling systems.We have discussed
throughout the text the research most closely related for design of BoT scheduling poli-
cies [39, 82, 130]. The policies have been previously evaluated through simulation in
independent clusters environments (i.e.,sep-c in Section 5.1) using a per BoT schedul-
ing algorithm (i.e., algorithmS-BoT); the workload did not resemble the workloads of
real grids. Closest to our work, Casanova et al. [39] compare the performance of sev-
eral BoT scheduling policies in asep-c environment. They also present one class of
selection policies (S-BoT). In comparison with these results, our work focuses on the
systematic evaluation BoT scheduling in multicluster grids(resource management archi-
tecture, scheduling algorithm, scheduling policy), and onusing realistic workloads.

In contrast to our simulation-based approach, the theory ofdivisible loads [17] pro-
poses mathematical analysis tools to assess the performance of various BoT schedul-
ing algorithms for several distributed and centralized resource management architec-
tures [13, 14]. However, work using this theory [13, 14, 36, 85] does not consider the
information policies, most of the selection policies, and many of the resource manage-
ment architectures considered in this work; they also do notconsider realistic workloads.

5.6 Summary

In this chapter we have performed a realistic and systematicinvestigation of the perfor-
mance of bags-of-tasks scheduling in multicluster grids. We first proposed a taxonomy of
scheduling policies that focuses on information availability and accuracy, and we mapped
to this taxonomy several task scheduling policies three of which have not been investi-
gated previously. Then we explored the large design space ofbags-of-tasks scheduling in
multicluster grids along five axes: the task selection policy, the workload, the information
policy, the task scheduling policy, and the resource management architecture.

We conclude the following. The task scheduling policies that make use of the avail-
able task and resource information perform better. Although the task-selection policy is
important only in busy systems, theSelect-BoTpolicy has much better performance than
the other task selection policies. In order to achieve fairness while preserving the per-
formance, a task selection policy should account the past resource usages of the users.
Among the task selection policies that consider fairness, the Select-User-Taskspolicy
yields the best performance. In addition, we find that under null overall inaccuracy, that

90

is, our assumption that while any individual task runtime estimation may be highly inac-
curate, the average inaccuracy is 0, accurate per-task runtime information is not needed to
schedule well. Finally, in terms of the resource managementarchitecture, the centralized
policy (csp) achieves the best performance. Conversely, the independent clusters policy
(sep-c) achieves the worst performance.

Chapter 6

The performance of scheduling
workflows in multicluster grids

For convenience and cost-related reasons, scientists execute scientific workflows [19,60]
in distributed large-scale computational environments such as multicluster grids. How-
ever, executing scientific workflows in grids is a dynamic process that raises numerous
challenges. One of the most important of these is schedulingwith incomplete or dynamic
information about the workflows and the resource availability—the runtimes of, and the
amounts of data transferred between workflow tasks may be unknown a priori, and the
other grid users may impose a background load on the grid resources. It is the purpose of
this chapter to present a comprehensive and realistic investigation of the performance of
a wide range of dynamic workflow policies in multicluster grids.

A large body of work on workflow scheduling already exists. However, much of this
work focuses on parallel computing environments [125], which are very different from
grids, or considers static scheduling methods in which all tasks of a workflow are mapped
to resources before its execution starts [20,60,143]. Recent research [128,129,213,214]
does address adaptive approaches in which scheduling decisions are revised at runtime,
but it assumes the availability of perfectly accurate information about the workflow tasks
and the system resources, which is not true for dynamic systems such as grids (see Chap-
ter 7 for a thorough discussion of this topic). Moreover, fewresearch results have been
obtained for the realistic situations in which multiple workflows are submitted simulta-
neously to the grid, and when there exists contention for thesystem resources caused by
non-workflow (background) system load. Finally, previous investigations have largely
been based on either simulations or on real system experiments, but not on both.

In this chapter, we first introduce a framework for dynamic workflow scheduling that
includes a novel taxonomy of dynamic workflow scheduling policies based on the amount
of (dynamic) information used. We further map to this taxonomy seven workflow schedul-
ing policies that cover the full spectrum of dynamic information use. Secondly, we inves-

92

tigate the performance of these seven policies in various realistic and dynamic scenarios
using both simulations and experiments in real systems. Oneof the findings from our real-
system experiments that does not show in the simulations is that the performance may be
severely degraded because the head-nodes of the grid clusters may become overloaded
due to the large number of workflow tasks and file transfers they have to manage. To
solve the problem of head-node overload, we analyze the performance of task throttling,
that is, of limiting the per-workflow number of tasks concurrently present in the system.
Our results indicate that task throttling can prevent head-node overload while not unduly
decreasing the performance.

The remaining part of this chapter is organized as follows. In Section 6.1, we present
the framework for dynamic workflow scheduling, which includes the workflow model,
the system model, the scheduling policies, and the task throttling mechanisim. In Sec-
tion 6.2, we describe the experimental setup, while in Sections 6.3, and 6.4, we present
and discuss the results that we have performed in a simulatedenvironment and in the
DAS-3, respectively. Section 6.5 reviews related work on workflow scheduling in parallel
computing environments and grids. Finally, Section 6.6 summarizes the chapter.

6.1 The scheduling framework

In this section we present a framework for dynamic workflow scheduling in multicluster
grids.

6.1.1 Workflow model

We assume a workflow to be represented by a directed acyclic graph (DAG), in which
the nodes represent computational tasks and the directed edges represent communication.
We call a task having no predecessor tasks an entry task, and atask having no successor
tasks an exit task; a DAG may have several entry and exit tasks. We define the size of a
workflow as the total number of its tasks.

We assume that a task depends on each of its predecessors by means of a file. An
output file of a task can be the input file to several successor tasks. A task can be exe-
cuted only after all its predecessor tasks are completed andall the corresponding files are
available on its execution site.

In this chapter, both in the simulation-based experiments and the real experiments, we
use the the DAX (DAG in XML) abstract workflow description language of Pegasus [53]
to represent DAGs.

93

Table 6.1: Mapping scheduling policies to our information availability framework.U, K ,
andR stand for information that isUnknown (or ignored),Known a priori, and obtained
atRuntime by a policy, respectively.

Resource Information Task Information
Policy Status Processing Link Task File

Speed SpeedExecution Time Size
Round Robin U U U U U
Single Cluster R U U U U
All-Clusters R U U U U

All-Cls. File-Aware R U K U R
Coarsening R U K U K
Cluster Min. R K U U U
HEFT(-P) R K K K K

6.1.2 Multicluster grid model

In our multicluster grid model, we assume that processors are grouped in clusters. The
processors may have different performance across clusters, but within the same cluster
they are homogeneous. Clusters are fully connected with network links that can be het-
erogeneous in terms of bandwidth. Each cluster has its own Local Resource Manager
(LRM), and so its own local queue to which tasks arrive. Each LRMin the system exe-
cutes the same scheduling procedure upon the arrival of new tasks and on the completion
of tasks.

We consider a decentralized architecture for workflow scheduling in which each work-
flow submitted to the system is managed and scheduled by an individual broker/agent.
This broker incorporates a workflow execution engine and employs a scheduling policy
in order to map tasks to resources. The workflow engine submits tasks to the LRMs of the
clusters according to some schedule, and initiates the necessary file transfers. Finally, we
assume a monitoring service provides information about thestatus of the clusters (e.g.,
the numbers of idle resources and the loads).

6.1.3 Workflow scheduling policies

In this section we first propose a taxonomy for workflow scheduling policies based on
the information they consider regarding resources and workflow tasks. We then map to
our taxonomy seven dynamic workflow scheduling policies in most of which tasks are
assigned to resources only after they becomeeligible, i.e., after all of their predecessor
tasks are finished.

94

In our taxonomy, a particular piece of information regarding resources or workflow
tasks can be either unknown (U), known a priori (K), or obtained at runtime (R). We con-
sider the following pieces of information: for resources, their status, processing speed,
and inter-cluster link speeds, and for tasks, their execution time and the sizes of their
output files. Our taxonomy for workflow scheduling policies extends our taxonomy for
bags-of-tasks scheduling policies (see Section 5.1.4) by considering more detailed re-
source and task information, and it differs significantly from previous efforts [125, 212],
since their taxonomies classify policies based on algorithmic approaches rather than on
the information the policies take into account.

We consider seven dynamic workflow scheduling policies, andin Table 6.1 we show
how these policies map to our taxonomy. We describe these policies below in the order
of increasing information usage:

1. Round Robin submits the eligible tasks of a workflow to the system clusters in
round-robin order; the order of clusters is arbitrary.

2. Single Clustermaps every complete workflow to the least-loaded cluster at its
submission. The load of a cluster is defined as the total processor requirement of all jobs
running or queued in the cluster normalized by the cluster size. This policy executes
all tasks of a workflow in the same cluster in order to avoid inter-cluster file transfers.
However, this policy may increase the makespan of a workflow when the number of
eligible tasks, at any moment during its execution, is larger than the number of idle
processors in the cluster.

3. All-Clusters submits each eligible task to the least-loaded cluster. This policy
can exploit idle resources across the grid; however, the performance may degrade due to
inter-cluster file transfers.

4. All-Clusters File-Aware submits each eligible task to the cluster that minimizes
the transfer costs of the files on which it depends. The size ofan output file can be known
only after the task that creates it is completed. This policygives preference to the clusters
with idle processors.

5. Coarsening is, in fact, a technique used in multilevel graph partitioning prob-
lems [118, 139] that iteratively reduces the size of a graph by collapsing groups of nodes
and their internal edges. In each iteration, a group of nodesof the current graph is selected
and is combined into a single coarser node. The edges of the original graph between
nodes in the group disappear, but the edges that connect the corresponding coarse nodes
remain in the new graph [117]. We use the Heavy Edge Matching (HEM) [117] coarsen-
ing technique to group tasks that are connected with heavy edges, i.e., task dependencies

95

that correspond to relatively large files in a workflow. Aftercoarsening, the remaining
edges are conceivably be the task dependencies that correspond to relatively small files.
Our approach is to execute all the tasks of a group in the same cluster (where the first
task of that group is submitted to) with the aim to minimize the cost of inter-cluster file
transfers. After a workflow is coarsened, it is scheduled with the All-Clusters File-Aware
policy.

6. Cluster Minimization submits as many eligible tasks as possible to a cluster until
the cluster has no idle processors left before considering the next cluster. Therefore,
it aims to reduce the number of inter-cluster file transfers by minimizing the number
of clusters being used. It considers the clusters in descending order of their processing
speeds, and hence, it gives preference to faster resources.If none of the clusters have
idle processors, then the tasks are submitted to the clusterwhere the last task has been
scheduled.

7. Heterogeneous Earliest-Finish-Time (HEFT) [196]is a commonly cited list-
scheduling heuristic [53,206,208]. This policy initiallyorders all the tasks of a worklflow
in descending order of theirupward rankvalues. The upward rank of a task is calculated
as the sum of the execution time and the communication time (on a reference processor
and with a reference bandwidth) of the tasks that are on this task’s critical path, including
itself. Then in this order the policy maps each task to a processor which ensures its earliest
completion time.

In this chapter, we have modified the original HEFT policy such that it maps tasks to
clusters instead of processors, hence it operates at the grid level, and we have changed the
static task scheduling process to dynamic scheduling. Our implementation of the HEFT
policy operates as follows. Among the eligible tasks, at each step, it selects the task with
the highest upward rank value and assigns the selected task to the cluster that ensures
its earliest completion time. We assume that an informationservice runs on each cluster
that responds to queries regarding the estimated start times of workflow tasks. Then the
completion time of a workflow task on a cluster is estimated asthe sum of the estimated
start time, the estimated delay of transferring input files on which it depends, to that
cluster, and the execution time of the task on that cluster.

Although we assume the execution times of the workflow tasks are known a priori,
we consider two kinds of prediction information regarding the execution times of non-
workflow tasks (i.e., background load due to local users; seeSection 6.2.3 for details),
leading to two variations of this policy. TheHEFT policy makes use of perfectly accu-
rate task completion time predictions. In contrast,HEFT-P is provided task completion
time predictions that may be inaccurate; the execution times of the non-workflow tasks
submitted to a cluster are predicted using the Last-2 method[197], which predicts the

96

execution time of a task as the average of the last two previously observed task execution
times. We refer to Chapter 7 for details of this prediction scheme. The prediction service
simulates the scheduling policy of the LRM with the predictedtask execution times and
the actual execution times of the workflow tasks that have been submitted to the cluster
in order to determine when a new workflow task will start. Although perfectly accurate
estimations of task information is not realistic in grid settings, we use the HEFT policy in
order to observe the performance that can be achieved if suchinformation were available.

6.1.4 Task throttling

In grids, overload conditions may occur due to the bursty nature of task arrivals, as in
the case of executing large workflows. As a consequence, the execution performance of
the applications may deteriorate to unacceptable levels; response times may grow sig-
nificantly, and throughput may degrade. Furthermore, as we will demonstrate in Sec-
tion 6.4.2, the real system may become unstable when executing large workflows, as the
load on the head-nodes of the clusters severely increases due to the activity of the work-
flow execution engine [193], to the number of concurrent tasksubmissions [37,193], and
to the excessive number of concurrent inter-cluster file transfers.

A common way to achieve efficient overload control in traditional distributed systems
is to use admission control mechanisms [41,108]. In grids, however, instead of dropping
or rejecting tasks, it may be sufficient to delay the submission of some of the tasks, in the
expectation that the sites which to dispatch them will become less overloaded at a later
time. For instance, the Condor system [195] allows1 the system administrator to limit the
total number of concurrent tasks in the system. We call this mechanism,task throttling,
and apply it on a per-workflow basis. We define theconcurrency limitas the maximum
number of concurrent tasks that are dispatched (they can be running or queued) in a mul-
ticluster grid to all its clusters and at all times during theexecution of the workflow.

Task throttling may have non-trivial effects on schedulingperformance. For example,
although with task throttling tasks may be delayed by the workflow execution engine, this
may also lead to a decrease in the amount of inter-cluster communication, since there
will be fewer concurrent tasks, and they will possibly be spread to fewer clusters. Conse-
quently, the execution performance of the workflow may improve despite the additional
delay of the tasks.

1The Condor Manual: http://www.cs.wisc.edu/condor/manual/v7.5/
condor-V7_5_0-Manual.pdf

97

6.2 Experimental setup

In this section, we present the experimental setup used bothin the simulations and the
real experiments.

6.2.1 Experimental environments

Our goal is to emulate, both in simulations and in practice, realistic scenarios in which
we execute workflows on the DAS-3. The properties of the DAS-3clusters are shown in
Table 1.2, and the average inter-cluster bandwidth (MB/s) values are shown in Table 2.1.
Other relevant details on DAS-3 have been given in Section 1.4.1.

Simulated environment

In our computation model, we employ the SPEC CPU benchmarks model for task exe-
cution time [190], that is, the time it takes to finish a task isinversely proportional to the
performance of the processor it runs on. We assume that all LRMs of the clusters em-
ploy the FCFS policy. Once started, tasks run to completion, so we do not consider task
preemption or task migration during execution.

In our communication model, we assume that the file transfer delay of sending a file
from a predecessor to a successor task is zero if these two tasks are executed on the
same cluster. If a task depends on a file created on a differentcluster, we model the file
transfer delay as the ratio of the file size and the bandwidth of the inter-cluster link. If a
task depends on multiple files, then we model the total file transfer delay as the sum of
the individual file transfer delays. This means that we consider the worst case scenario
in which all file transfers are performed in series, althoughconcurrent inter-cluster file
transfers can perform better in reality [5]. Once a file is created in a cluster or transfered
from another cluster, it remains in place until the whole workflow is executed; hence, we
avoid redundant file transfers.

Real environment

For our experiments in the DAS-3, we have extendedKOALA with workflow execution
support. To this end, we have designed and implemented two components: a workflow
runner (WRunner), which can be considered as a workflow execution engine, and a work-
flow execution service (WES), which is responsible for interacting with the grid middle-
ware. A separate WRunner is responsible for each workflow submission; it manages the
dependencies between the tasks and the scheduling of workflow tasks. In our design, we
use a service-based approach for better scalability. Hence, there is a single WES on the

98

Figure 6.1: The system architecture to support workflow execution in KOALA .

head-node of each of the clusters that initiates the execution of all workflow tasks sched-
uled to that cluster. Figure 6.1 shows the architecture of the KOALA workflow execution
environment, and the interaction between the components.

After registration to the scheduler, a WRunner obtains system-wide status information
from the KOALA Information Service (KIS), and determines the execution sites of the
tasks according to the scheduling policy it employs. For each task of the workflow, the
WRunner copies input files and its executable to the execution site, and then delegates the
execution of the task to the WES on this site. The WES is responsible for submitting the
task to the middleware using the DRMAA [59] interface, and formonitoring its execution
with the callbacks provided by the middleware. The WES provides the task status to
WRunner upon its completion. If the task fails, the WRunner handles the failure by
resubmitting the task. If the task finishes successfully, upon notification, the WRunner
first transfers its output files to the submission site of the workflow, and then it updates the
set of eligible tasks. The WRunner continues this process until all tasks of the workflow
are completed.

Additional considerations

Although we try to model the DAS-3 multicluster grid as realistically as possible, in our
simulations there are some differences between our model and the real system:

• In our simulations, we do not model the head-nodes and the resource contention
that may occur on the head-nodes in the real system due to the file transfers. This
resource contention and the instability it causes has a significant effect on the per-
formance; as we demonstrate in Section 6.4.2.

99

 0

 20

 40

 60

 80

 100

June 2008 July 2008 Aug. 2008 Sep. 2008

U
ti
liz

a
ti
o
n
 [
%

]

Cluster-1
Cluster-2
Cluster-3
Cluster-4
Cluster-5

Overall

Figure 6.2: The overall utilization as well as the utilization in the individual clusters due to
the background load considered in the simulation-based experiments. This load refers to
the jobs submitted to the DAS-3 system during a period of fourmonths (June-September
2008).

• In our simulations, we consider a task as finished when its execution completes;
then, the eligible set of tasks is updated accordingly. But inthe real experiments,
we only consider a task as finished when its execution has completed and its output
files have been transferred back to the submission site; and only then the eligible
set of tasks is updated.

6.2.2 The workflows

We use synthetic but realistic workflow applications that are publicly available in [19].
The applications are based on four real scientific workflows:Montage, CyberShake, In-
spiral, and SIPHT. These workflows are composed of several structural components such
as pipeline, data distribution, data aggregation, and dataredistribution. For each of these
workflows, four synthetic applications are available2, with sizes of 30, 50, 100, and 1000
tasks.

We categorize a synthetic workflow assmall, if its size is at most 100, and aslarge, if
its size is 1000. With small workflows, the number of tasks that become eligible concur-
rently can all fit in a single cluster in our system; however, with large workflows, more
tasks may become eligible concurrently than can be accommodated by even the largest
cluster. We further categorize the workflows according to their communication versus
computation characteristics. Table 6.2 presents the categorization of the workflows and

2Available Pegasus Workflow Types:http://vtcpc.isi.edu/pegasus/index.php/
WorkflowGenerator

100

Table 6.2: Categorization of the workflows.

Workload Workflow Name- Avg. Makespan Avg. Total Size of
Type Size on a Referencethe Output Files of

Cluster [s] a Workflow [MB]
wf-small1 CyberShake-30, 220 2246

50,100
wf-small2 Inspiral-30,50 1260 23

Montage-100
wf-large1 CyberShake-1000 410 2866

Montage-1000
wf-large2 SIPHT-1000 3290 1150

Inspiral-1000

their characteristics. While the workflows inwf-small1andwf-large1are communication-
intensive, the workflows inwf-small2andwf-large2are more computation-intensive.

6.2.3 The workloads

In our experiments, we assume that two workloads are submitted to the system: a grid
workload, which comprises the workflow applications submitted by grid users, and a lo-
cal workload, which comprises the tasks submitted directlyto the clusters by local users
(background load). In our simulations, depending on the experimental scenario, we im-
pose a background load together with a grid workload in orderto attain realistic resource
availability conditions. The background load refers to thejobs submitted to the DAS-3
system during a period of four months (June-September 2008). Figure 6.2 illustrates the
system utilization of the background load. The corresponding workload trace is obtained
from the Grid Workloads Archive [102]. In the simulations, the tasks that belong to the
background load are submitted to the LRMs of their original execution locations. In our
DAS-3 system, users may submit tasks directly to the LRMs, bypassingKOALA . We
keep this non-workflow (background) load under control for performing controlled ex-
periments in the real environment. To this end, during our real system experiments, we
monitor the background load, and we maintain it between 30% and 40% in each cluster
(which is not the case in our simulations).

We classify our experiments as either single workflow or multi-workflow scheduling.
In the simulations of single workflow scheduling with background load, for each policy,
each of the workflows is scheduled only once and the average results are presented per
workload type (see Table 6.2). In the simulations with the background load, for each
workload type, we generate ten traces in each of which randomly selected workflow in-
stances arrive at six-hour intervals during a period of three (simulated) months. For each

101

policy-workload type pair, we run the ten corresponding experiments and present the av-
erage results. In the real system experiments (where there is always background load) of
single workflow scheduling, for each policy, each of the considered workflows is executed
ten times and we present the average results.

For multi-workflow scheduling, both for simulations and real experiments, several in-
stances of the same workflow application are submitted simultaneously (the exact number
varies across the experiments). We do not consider background load in the simulations of
multi-workflow scheduling.

6.2.4 The performance metrics

To assess the performance of the workflow scheduling policies, we use the following
traditional metrics [125]:

• TheMakespan (MS)of a workflow in a grid is the time elapsed from its submission
to the grid until the completion of its last task. For the multi-workflow scheduling
experiments, in which a number of concurrent instances of a workflow are submit-
ted to the grid, we consider the metricTotal Makespan, which is the time elapsed
from the submission of the instances until all the instancesare completed.

• TheNormalized Schedule Length (NSL)of a workflow in a grid is the ratio be-
tween its makespan and the time to execute (one of) its critical path(s).

• TheWait Time of a task is the time elapsed from when a task becomes eligibleuntil
the time it starts execution. It comprises two components: the File Transfer Delay
(FTD), which is due to waiting for input files to become available atthe execution
site, and the Queue Wait Time(QWT) , which is the time a task spends in the local
queue of the cluster to which it was submitted.

In addition to these metrics, we also consider the Number of inter-cluster File Trans-
fers per workflow(NFT).

6.3 Simulated environment results

In this section we present our experimental results of single workflow scheduling and
multi workflow scheduling, respectively.

6.3.1 Single workflow scheduling

We first evaluate the performance of the scheduling policiesthat we describe in Sec-
tion 6.1.3 under various experimental scenarios. Then, we investigate the impact of

102

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

wf-small1
No BG

wf-small2
No BG

wf-large1
No BG

wf-large2
No BG

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Round Robin
Single Cl.

All-Cls.
File-Aware

Coarsening
Cluster Min.

HEFT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

wf-small1
with BG

wf-small2
with BG

wf-large1
with BG

wf-large2
with BG

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Round Robin
Single Cl.

All-Cls.
File-Aware

Coarsening
Cluster Min.

HEFT
HEFT-P

 0

 1

 2

 3

 4

 5

wf-small1
No BG

wf-small2
No BG

wf-large1
No BG

wf-large2
No BG

A
v
g

.
N

S
L

Round Robin
Single Cl.

All-Cls.
File-Aware

Coarsening
Cluster Min.

HEFT

 0

 2

 4

 6

 8

 10

wf-small1
with BG

wf-small2
with BG

wf-large1
with BG

wf-large2
with BG

A
v
g

.
N

S
L

Round Robin
Single Cl.

All-Cls.
File-Aware

Coarsening
Cluster Min.

HEFT
HEFT-P

Figure 6.3:Simulations, single workflow scheduling:The performance of the workflow
scheduling policies in terms of the average makespan and theaverage NSL without and
with background load.

task throttling on the performance of dynamic workflow scheduling when executing large
workflows.

The performance of the scheduling policies

In addition to our experimental setup (in Section 6.2), we applied the Coarsening policy
only to wf-large1 and wf-large-2; the workflow sizes are shrunk to 100 and then scheduled
with the File-Aware policy. For wf-small1 and wf-small2, Coarsening is exactly the same
as the File-Aware policy. In addition, we applied the HEFT-Ppolicy only when we impose
background load in our experiments.

Figure 6.3 presents the performance of the workflow scheduling policies in terms of
the average makespan and the average NSL, without and with background load (denoted
by BG). Table 6.3 presents additional metrics such as the average task queue wait time,
the average task file transfer delay, and the average number of inter-cluster file transfers
performed per workflow. Finally, Figure 6.4 shows the cumulative distribution functions
of the makespan and the NSL when background load is imposed (only for wf-small1
and wf-large1). Below, we present a separate discussion for each of the experimental
scenarios.

103

 0

 20

 40

 60

 80

 100

100 1000 10000

C
D

F
 [

%
]

makespan [s]
 wf-small1 with BG

Round Robin
Single

All Cls.
File-Aware

Cluster Min.
HEFT

HEFT-P
 0

 20

 40

 60

 80

 100

100 1000 10000

C
D

F
 [

%
]

makespan [s]
 wf-large1 with BG

Round Robin
Single

All Cls.
Coarsening
File-Aware

Cluster Min.
HEFT

HEFT-P

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

C
D

F
 [

%
]

NSL
 wf-small1 with BG

Round Robin
Single

All Cls.
File-Aware

Cluster Min.
HEFT

HEFT-P
 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 128 256

C
D

F
 [

%
]

NSL
 wf-large1 with BG

Round Robin
Single

All Cls.
Coarsening
File-Aware

Cluster Min.
HEFT

HEFT-P

Figure 6.4:Simulations, single workflow scheduling:The cumulative distribution func-
tions of the makespan and the NSL with background load. The horizontal axis has a
logarithmic scale.

wf-small, without BG Load

The very first noticeable result is that the performance variation is small among the
policies. The reason is that, with any of the policies, except Round Robin, tasks are
executed mostly in a single cluster. When the system is not loaded, for small workflows,
selecting the appropriate cluster (e.g., according to processing speed) is a good strategy
to attain a better performance. Since the Cluster Minimization policy takes into account
the processing speed of the clusters, it is slightly better than the other policies, and yields
almost identical performance to that of HEFT, which is fed byperfectly accurate resource
and task information, and which we expect to perform best in any of the scenarios.

wf-small, with BG Load

In this scenario we see that Round Robin performs much worse in comparison
to the other policies. Round Robin maps tasks also to the most loaded clusters, and
consequently, some tasks experience large queue wait times. As this policy distributes
tasks across all clusters, it causes more inter-cluster filetransfers than the other policies
(see Table 6.3). The other policies perform similarly to each other, although Cluster
Minimization, HEFT and HEFT-P yield slightly better performance.

104

Table 6.3:Simulations, single workflow scheduling:The performance of the policies
without and with background load, in terms of the average task queue wait time (QWT
[s]), the average task file transfer delay (FTD [s]), and the average number of inter-cluster
file transfers performed per workflow (NFT). ’-’ indicates that no experiment has been
performed (see text).

Round Robin Single Cl. All-Cls. File Aware
Workload TypeQWT FTD NFT QWT FTD NFT QWT FTD NFT QWT FTD NFT

wf-small1 0 1.26 25 0 0 0 0 0.4 4 0 0 0
wf-small2 0 0.5 49 0 0 0 0 0.1 10 0 0 0
wf-large1 8 1.1 460 49 0 0 3.2 1.44 366 5 0.43 243
wf-large2 7.5 0.4 778 93 0 0 0.4 0.5 637 2 0.3 354

wf-small1+BG 525 1.23 26 0.03 0 0 0 1.2 6.7 3.3 0.01 0.1
wf-small2+BG 423 0.5 51 0.3 0 0 0.5 0.1 12 3 0.01 1.1
wf-large1+BG 682 1.2 455 113 0 0 573 3.1 392 42 0.4 229
wf-large2+BG 842 0.42 756 386 0 0 598 0.5 636 79 0.4 422

Coarsening Cluster Min. HEFT HEFT-P
Workload TypeQWT FTD NFT QWT FTD NFT QWT FTD NFT QWT FTD NFT

wf-small1 - - - 0 0 0 0 0 0 - - -
wf-small2 - - - 0 0 0 0 0.2 15 - - -
wf-large1 34 0.18 39 3.3 1.3 495 4 0.6 218 - - -
wf-large2 9.9 0.01 18 0.4 0.5 638 1.25 0.2 301 - - -

wf-small1+BG - - - 1.7 0.1 1.2 0 0 0 0 0 0
wf-small2+BG - - - 3.2 0.01 1.05 0 0.2 15 0.4 0.2 15
wf-large1+BG 93 0.3 58 42 1.4 466 9 0.5 290 9 0.5 290
wf-large2+BG 69 0.04 25.6 146 0.68 694 7.5 0.4 441 28 0.4 501

wf-large, without BG Load

When executing large workflows, many tasks may become eligible simultaneously,
which gives more room to make different scheduling decisions. Consequently, when
scheduling large workflows, we observe that the performancevaries considerably among
the policies, and even their relative performance varies with different workloads (Fig-
ure 6.3). For the case of wf-large1, Round Robin and All-Clusters are the two worst
performing policies, and Single Cluster and Coarsening are the two best performing poli-
cies. On the other hand, for the case of wf-large2, Single Cluster performs the worst,
while HEFT performs the best. We attribute this difference to the communication charac-
teristics of the workloads (see Table 6.2).

In general, we observe that both Round Robin, All-Clusters, andCluster Minimization
perform many inter-cluster file transfers (see Table 6.3). Coarsening is a trade-off be-

105

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

50 100 150 ∞

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Concurrency Limit (without BG)

File Aware (wf-large1)
Cluster Min. (wf-large1)

File Aware (wf-large2)
Cluster Min. (wf-large2)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

50 100 150 ∞

A
v
g

.
M

a
k
e

s
p

a
n

 [
s
]

Concurrency Limit (with BG)

File Aware (wf-large1)
Cluster Min. (wf-large1)

File Aware (wf-large2)
Cluster Min. (wf-large2)

Figure 6.5: Simulations, single workflow scheduling:The average makespan for the
File-Aware and the Cluster Minimization policies whentask throttling is applied.

tween low inter-cluster communication and high queue wait times. Although File-Aware
is better than Cluster Minimization in terms of reducing inter-cluster communication,
selecting faster resources pays off for Cluster Minimization even when the heterogeneity
in the system is low (the ratio of the fastest processor to theslowest is 1.25 in our
settings). Nevertheless, selecting the faster clusters may not be always an advantage if
such clusters are much smaller than a slower cluster when scheduling large workflows,
since in such a case tasks may be distributed to more clusters, and as a result the number
of inter-cluster communications may increase.

wf-large, with BG Load
When background load is imposed, we observe a substantial increase in the average

makespans and NSLs, respectively. The HEFT policy outperforms the other policies for
both of the workloads. However, the performance of the HEFT policy worsens when the
task completion time information is inaccurate (HEFT-P). File-Aware, Coarsening, and
Cluster-Minimization all yield similar performance results when scheduling wf-large2;
however, Coarsening is much better than the others when scheduling wf-large1, which
includes more communication-intensive workflows. As a consequence of spreading tasks
to many clusters, both Round Robin and All-Clusters suffer fromfile transfer delays as
well as from large queue wait times.

The impact of task throttling

In this section we evaluate the scheduling performance of the dynamic workflow schedul-
ing policies whentask throttlingis applied for each workflow submitted to the system.

To conduct our evaluation we modify our default setup as follows. We only consider
the workloads that contain large workflows, and run them bothwith and without back-
ground load. As scheduling policies we select, from the policies that perform relatively

106

Table 6.4:Simulations, single workflow scheduling:Percentage of change (Best, Worst)
in the performance of File-Aware and Cluster-Minimization,whentask throttling is ap-
plied, relative to the original performance of the policies.

Policy Change in the Change in
(Workload Type) Makespan [%] the NSL [%]

without BG Best Worst Best Worst
File-Aware (wf-large1) -15 +16 -9 +25
File-Aware (wf-large2) +17 +60 +18 +116

Cluster-Min. (wf-large1) -4 +50 -20 +9
Cluster-Min. (wf-large2) +11 +68 +16 +123

with BG
File-Aware (wf-large1) -50 -37 -40 -26
File-Aware (wf-large2) +4 +51 +6.5 +80
Cluster-Min (wf-large1) -30 -11 -27 -13
Cluster-Min (wf-large2) +4 +43 +15 +75

well in the previous section, the File-Aware and the Cluster-Minimization policies. In
our simulations, we do not model overload conditions for thehead-nodes of the clusters;
hence, we assess the impact of throttling on scheduling performance in ideal conditions.
We use, in turn, three values for the concurrency limit: 50, 100, and 150. While these
values are, as we show below, enough to understand the main impact of task throttling on
the performance of scheduling, it is outside the scope of this work to assess the optimal
concurrency limit.

Figure 6.5 shows the makespan performance of the policies for all values of the con-
currency limit, as well as when no task throttling is applied. Table 6.4 presents the best and
the worst performance results of the policies relative to their original performance out of
all concurrency limit scenarios (50, 100, and 150). We observe that the performance that
can be attained with task throttling is related both to the communication characteristics of
the workflows, and to the utilization in the system (see Table6.4). When scheduling work-
load wf-large1, which includes communication-intensive workflows, without background
load, the makespan (NSL) performance can be improved by 15% (20%), while it can be
improved by 50% (40%) when background load is imposed. On theother hand, when
scheduling the workload wf-large2, which is more computation-intensive, the makespan
(NSL) performance worsens for all the limit values, but the performance degradation is
smaller when background load is imposed than without background load.

6.3.2 Multi-Workflow scheduling

In the simulations of multi-workflow scheduling we considerthe Single Cluster, the File-
Aware (without and with task throttling), the Cluster Minimization (without and with task

107

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

N=5
 CyberS.

-100

N=50
 CyberS.

-100

N=5
 CyberS.

-1000

T
o

ta
l
M

a
k
e

s
p

a
n

 [
s
]

Single Cl.
File Aware

File Aware (with throttling)
Cluster Min.

Cluster Min. (with throttling)
HEFT

 0

 2

 4

 6

 8

 10

 12

 14

 16

N=5
 CyberS.

-100

N=50
 CyberS.

-100

N=5
 CyberS.

-1000

A
v
g

.
N

S
L

Single Cl.
File Aware

File Aware (with throttling)
Cluster Min.

Cluster Min. (with throttling)
HEFT

Figure 6.6:Simulations, multi-workflow scheduling: The performance of the schedul-
ing policies in terms of the total makespan [s] and the average NSL.N denotes the number
of application instances submitted together.

Table 6.5:Simulations, multi-workflow scheduling: The performance of the scheduling
policies in terms of the average task queue wait time (grid-level + local, QWT [s]), the
average task file transfer delay (FTD [s]), and the average number of inter-cluster file
transfers performed per workflow (NFT).

Single Cl. File Aware File Aware Cluster Min. Cluster Min. HEFT
with Throttling with Throttling

C.S.-100 QWT FTD NFT QWT FTD NFT QWT FTD NFT QWT FTD NFT QWT FTD NFT QWT FTD NFT

N=5 0 0 0 0 0.02 1.8 21+0 0 0 0 29 12 63+0 6.22 12.8 0.24 0.13 7.2
N=50 124 0 0 95 1.63 30 71+28 2 21 198 30 43 97+36 7 28 121 0.49 24

C.S.-1000

N=5 162 0 0 182 0.5 400 134+0 0.01 8 406 1 473 138+1 0.8 314 123 4.87 319

throttling), and the HEFT policies. We have used the CyberShake workflow application
with sizes of 100 and 1000. For each of the policies that we consider, we submit either 5
or 50 concurrent instances of the CyberShake-100 application, and we submit 5 concur-
rent instances of the CyberShake-1000 application. When we apply task throttling, the
concurrency limit per workflow submitted is set to 15 and 50 for the CyberShake-100,
and CyberShake-1000 applications, respectively.

Figure 6.6 presents the performance of the scheduling policies in terms of the total
makespan and the average NSL metrics. Table 6.5 presents additional metrics such as
the grid-level delay due to the task throttling, average task queue wait time, the average
task file transfer delay, and the average number of inter-cluster file transfers performed
per workflow. For the small workflow (CyberShake-100) case, HEFT outperforms the
other policies. Single Cluster and File Aware with task throttling yield similar perfor-
mance results and they outperform the rest of the policies. For the large workflow case
(CyberShake-1000), File Aware and Cluster Minimization bothwith task throttling have
better total makespan performance than the other policies.In terms of NSL, File Aware

108

and Cluster Minimization both without task throttling have the worst performance while
the other policies achieve a similar performance.

With the Single Cluster policy, workflows are balanced acrossclusters, and no inter-
cluster file transfer takes place. Task throttling decreases the amount of inter-cluster com-
munication (see Table 6.5), hence both the performance of the File-Aware and the Cluster
Minimization policies improve, and they even outperform HEFT for the large workflow
case. According to the results, for multi-workflow scheduling, a dynamic policy that takes
inter-cluster communication into account and that also applies task throttling should be
used. Alternatively, the Single Cluster policy may be preferred, depending on whether
the application is communication- or computation-intensive and on the background load
in the clusters, when the number of simultaneous workflow applications exceeds the num-
ber of clusters in the system.

6.3.3 Discussion

Our investigation shows that different system conditions,scenarios and workflow appli-
cations need different scheduling approaches in order to attain good application execution
performance.

In general, increasing information usage about the workflowtasks and the grid re-
sources improves the performance of the dynamic workflow scheduling policies. Al-
though HEFT, which is the omniscient policy, is unrealisticfor grids, HEFT-P, which
uses predicted resource availability information, is a good alternative to be used provided
that the application characteristics are known a priori, and that the prediction of the cluster
that will finish a task first is correct.

The policies that take inter-cluster communication into account achieve better per-
formance than the policies that do not. For instance, the Coarsening policy, and the
File-Aware policy with task throttling are good alternatives that can be considered in
the absence of complete task and resource information when scheduling communication-
intensive large workflows.

When many workflow applications are submitted together, balancing the workflows
across clusters separately or applying task throttling improves the performance, since both
approaches prevent high inter-cluster network traffic, which increases file transfer times
when many tasks are distributed across clusters.

6.4 Real system results

In this section we present the results of the experiments that we performed in DAS-3.
We only present the results for the Single Cluster, All-Clusters, and Cluster Minimiza-
tion policies since according to our simulation results, Round Robin performs the worst,

109

Table 6.6:Real system, single workflow scheduling:The performance of the scheduling
policies in terms ofaverage makespan(MS [s]), average queue wait time (QWT [s]),
average task file transfer delay (FTD [s]), and NSL.

Single Cluster All-Clusters Cluster Min.
Workload Type Workflow MS NSL QWT FTD MS NSL QWT FTD MS NSL QWT FTD

wf-small1 CyberShake-30 244.35 1.38 4.98 0.99 251.40 1.42 4.19 1.00 247.46 1.39 5.16 1.01
wf-small2 Montage-100 1380.49 1.29 4.67 2.08 1390.72 1.30 4.62 2.14 1387.43 1.30 5.05 2.15
wf-large1 CyberShake-10001321.67 6.51 36.08 0.05 1101.39 5.42 4.96 0.02 718.70 3.54 5.09 0.02

Table 6.7:Real system, multi-workflow scheduling:The performance of the schedul-
ing policies in terms oftotal makespan(MS [s]), average queue wait time (QWT [s]),
average task file transfer delay (FTD [s]), and NSL.

Single Cluster All-Clusters Cluster Min.
Workload Type Workflow MS NSL QWT FTD MS NSL QWT FTD MS NSL QWT FTD

wf-small1 CyberShake-30 328.92 1.85 4.61 1.01 331.89 1.87 5.46 1.02 330.14 1.86 3.57 1.02
wf-small2 Montage-100 2195.24 2.06 15.82 2.21 2377.00 2.23 17.29 2.27 3568.16 3.35 48.16 2.58
wf-large1 CyberShake-10001413.15 6.96 26.21 0.06 2859.89 14.08 103.41 0.12 1940.47 9.55 6.56 0.08

File-Aware has similar performance (in many cases) as Cluster Minimization, and HEFT
requires accurate resource and task information, which we find unrealistic for grid en-
vironments. Finally, we investigate the impact of task throttling with multi-workflow
scheduling with the aim of improving system stability and responsiveness.

6.4.1 Single workflow scheduling

We first evaluate the performance of the selected workflow scheduling policies using the
CyberShake-30 and the Montage-100 workflows for the wf-small1 and the wf-small2
workload type, respectively, and the CyberShake-1000 workflow for the wf-large1 work-
load type.

Table 6.6 shows the performance of the policies for single workflow scheduling exper-
iments. We observe that the policies perform similarly for small workflows, confirming
the simulations results for small workflows as shown in Figure 6.3 and Table 6.3. For the
large workflow, Cluster Minimization has the best performance, significantly outperform-
ing the Single Cluster and All-Clusters policies. Single Cluster has a higher queue wait
time than the other policies, unlike the simulation resultswhere All-Clusters has the high-
est queue wait time as shown in Table 6.3 (wflarge1 + BG). We attribute this difference to
the much higher variability of the background load used in the simulations.

110

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

C
D

F
 [

%
]

Queue Wait Time [s]

All-Clusters
Single Cluster

Cluster Minimization

Figure 6.7:Real system, multi-workflow scheduling:Cumulative distribution function
of the queue wait time of the CyberShake-1000 workflow tasks for all policies. The
horizontal axis has a logarithmic scale.

6.4.2 Multi-Workflow scheduling

In this section we evaluate the performance of the selected scheduling policies, and the
impact of task throttling on the performance of multi-workflow scheduling.

The performance of the scheduling policies

For the multi-workflow scheduling experiments we submittedfive instances of the same
workflow application simultaneously and only once. Table 6.7 shows the performance of
the policies for these experiments.

For small workflows, the relative performance order of the policies is the same as in
the single workflow scheduling experiments, except for the Montage-100 workflow for
which the Cluster Minimization policy has the worst performance. The reason is that
Cluster Minimization does not balance the load well comparedwith the other policies,
hence increasing the queue wait times.

For the large workflow, we observe that Single Cluster performs the best since all
workflows that are submitted simultaneously are mapped to a separate cluster, hence dis-
tributing the load better than the other policies, and no inter-cluster file transfers take
place. This result confirms the simulation results in Table 6.5 (last row). The All-Clusters
policy has worse performance than the other policies. The reason is twofold. First, the
All-Clusters policy causes the number of inter-cluster file transfers to increase. Secondly,
with the All-Clusters policy, many tasks suffer a large wait time, which is shown in Fig-
ure 6.7. Unlike for the other policies, around 37% of the tasks experience queue wait
times of more than 100 seconds. We also observe a significant difference in median per-
formance: the performance of the Cluster Minimization policy is roughly twice better

111

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

C
P

U
 L

o
a
d
 [
%

]

Time [m]

No Throttling
with Throttling (150 tasks)
with Throttling (25 tasks) 0

 10

 20

 30

 40

 50

 60

25 50 100 150

T
o

ta
l
M

a
k
e

s
p

a
n

 [
m

]

Concurrency Limit

40.2039.18

∞

 No
Throttling

Throttling

Figure 6.8: Real system, multi-workflow scheduling: The average CPU load of the
Delft cluster head-node when 5 instances of CyberShake-1000are submitted simulta-
neously (left), and the total makespan with and without throttling applied (right). The
vertical axis of the left graph has a logarithmic scale.

than that of the Single Cluster policy, and the performance ofthe Single Cluster policy
is roughly twice better than that of the All-Clusters policy.The performance difference
between the policies is more significant in the real experiments than in the simulations.
We attribute this observation to the resource contention inmany layers of the system (e.g.,
in the network, and file system), which gets even worse for large workflows.

One of the main reasons for poor performance for multi-workflow submissions of
large workflows is that the head-nodes become overloaded at such a scale. Figure 6.8
(left) shows the average CPU load of the Delft cluster head-node as reported by the system
for the multi-workflow scheduling experiments with the CyberShake-1000 workflow. The
CPU load is the value reported by the system’stop utility. A high CPU load exceeding
100% can result in the incapacity of the system to perform even the simplest operations
such as opening a socket or a file. This is the reason why we observe long delays in
initiating file transfers (not included in FTD), as the workflow engine connects to the head-
node of the execution site which is not responsive in overload situations. To overcome
the problems related to head-node overload, we next investigate throttling as a possible
solution.

The impact of task throttling

In this section we evaluate the impact of task throttling on the performance of multi-
workflow scheduling. To this end, we submit five instances of the CyberShake-1000
workflow application simultaneously and only once. We use 25, 50, 100 and 150 as
the concurrency limits. In contrast with the experiments presented in Section 6.3.1, we
use here only three of the five DAS-3 clusters, due to the unavailability of the two other
clusters.

112

We first look at the impact of the concurrency limit on performance. Figure 6.8 (right)
depicts the total makespan with and without task throttlingapplied. As the concurrency
limit increases from 25 to 150, we observe a decrease in the total makespan, converging
as the concurrency limit increases to the performance of thesystem when no throttling is
applied.

Second, we investigate the effects of using task throttlingon the head-node. Fig-
ure 6.8 (left) shows the average CPU load of the Delft cluster head-node, when the cluster
acts both as the submission site and as one of the execution sites. We observe in the fig-
ure a stable period where the CPU load is high due to the large number of running tasks
in the system. Although the throttled system with a concurrency limit of 150 tasks and
the initial system yield a similar total makespan (see Figure 6.8 (right)), the system with
task throttling exhibits a factor of 2 improvement in the average CPU load, which conse-
quently improves the system stability and responsiveness.When the concurrency limit is
set to 25, the average CPU load shows a further substantial decrease, leading to a factor
of 4 improvement over the system without task throttling, but then the total makespan
increases noticeably because of the low concurrency limit.

To conclude, task throttling with appropriate concurrencylimits prevents head-nodes
being overloaded and simultaneously preserves the execution performance of the work-
flow applications. This fact motivates future research on determining appropriate throt-
tling mechanisms and their associated parameters (e.g., the concurrency limit).

6.4.3 Discussion

For single workflow scheduling, the different policies havesimilar performance for small
workflows. However, for large workflows, the policies have different performance, and in
particular, the policies that minimize the inter-cluster communication have better perfor-
mance than the policies that do not.

For multi-workflow scheduling, selecting a single cluster per workflow for execution
yields the best performance. Policies distributing the tasks across clusters have worse per-
formance due to the increased inter-cluster communication. In addition, for large work-
flows, head-nodes may get overloaded, which consequently threatens the performance;
task throttling alleviates this problem.

6.5 Related work

An extensive body of research has focused on scheduling workflows in traditional parallel
systems, addressing both homogeneous [125] and heterogeneous [21] sets of processors.
The scheduling methods are usually static, that is, all tasks are mapped to processors be-
fore execution of the workflow starts, and they assume that perfectly accurate information

113

is available about the communication and the computation characteristics of the tasks. A
classification of static scheduling approaches is presented in [196]. Such scheduling solu-
tions, however, cannot be applied directly to multiclustergrids. First, they operate at the
processor level, while in grids the tasks are submitted to the local resource managers. Sec-
ond, they do not consider the dynamic resource availabilityexperienced in grids, which
also makes accurate predictions of computation and communication costs difficult. Nev-
ertheless, several studies [128,129,213,214] adapted previous static scheduling methods
by revising scheduling decisions at runtime taking the griddynamics into account.

There are several scientific workflow management systems that can operate in grids.
Some of the well-known ones are the Condor DAGMan [49], Pegasus [53], Karajan [206],
Kepler [6], and Askalon [208]. They employ various types of static and/or dynamic
scheduling methods. For more details we refer to the survey of Yu and Buyya [211].

Although most of the related work in grids deals with single workflow schedul-
ing [20,60,93,143], there are some studies that also address multi-workflow scheduling;
by comparison, our work puts forth a more comprehensive investigation. Zhao and Sakel-
lariou [216] present a method that combines several workflows into a single workflow,
then prioritizes the tasks and maps them to resources using astatic scheduling method.
Iverson et al. [106] demonstrate that scheduling each competing workflow with a dy-
namic policy in a decentralized way improves the overall performance.

In addition, several researchers have addressed data-aware workflow scheduling, in
which large data sets associated with scientific workflows are taken into account when
scheduling tasks. Park and Humphrey [162] propose a bandwidth allocation technique to
speed up file transfers. Bharathi and Chervenak [18] present several data staging tech-
niques for data intensive workflows, and demonstrate that decoupled data staging can
reduce the execution time of workflows significantly. Ramakrishnan et al. [170] evaluate
a dynamic method that minimizes the storage space needed by workflows by removing
data files at runtime when they are no longer needed.

In summary, our study complements and extends previous workin three main ways.
First, we consider dynamic policies with various information availabilities. Secondly,
we consider both single and multi-workflow scheduling in ourperformance evaluation.
Finally, we perform simulations with realistic scenarios,and we validate our findings
through experiments in the DAS-3 multicluster grid.

6.6 Summary

The performance of grid workflow scheduling policies affects an increasing number of
scientists. To understand this performance, in this chapter we have conducted a compre-
hensive and realistic performance evaluation of dynamic workflow scheduling policies in
multi-cluster grids. We have first introduced a scheduling taxonomy based on the amount

114

of information used in the scheduling process, and we have mapped seven scheduling
policies that span the full information spectrum to this taxonomy.

Secondly, we have investigated the performance of these policies in realistic scenarios
using both simulations and real system experiments. Overall, we found that different sys-
tem conditions and workflow applications need different scheduling approaches in order
to attain good application execution performance. Therefore, we believe it is important in
grids, as we do with ourKOALA grid scheduler [148], to support various scheduling poli-
cies from which the users can benefit considering the characteristics of their applications
and the system capabilities. Alternatively, a scheduling mechanism can be implemented
that switches dynamically the scheduling policy or the associated parameters, based on
the system state and the workflows to be scheduled. We also found that, for schedul-
ing communication-intensive workflows, the scheduling policies that take into account
inter-cluster communication achieve better performance than the policies that do not. For
example, the Coarsening policy, and the File-Aware policy with task throttling, that is,
limiting the per-workflow number of tasks concurrently present in the grid, are two good
options that can be considered in the absence of complete task and resource information.

Thirdly, our real system experiments have revealed performance problems that did not
show in the simulations. In particular, we found that the head-nodes of real grid clusters
may become unstable as the workflow size increases, leading to much lower performance.
To solve this problem, we have analyzed the performance of task throttling, and we have
shown that this approach keeps the system stable while delivering good performance.

Chapter 7

Evaluating prediction methods for grid
scheduling

Although grid systems can be cost-effective and easily scalable, their multi-site and het-
erogeneous resource structure, and their dynamic and heterogeneous workloads limit the
efficient use of the system resources. Moreover, the high variability of the job runtimes
and queue wait times make such systems difficult and often frustrating to use for the com-
mon user. Prediction methods, and in particular prediction-based scheduling, have been
employed to address these problems in parallel production environments, but their use for
large-scale distributed systems such as multicluster grids remains largely unexplored. In
this chapter we present a systematic investigation of prediction methods with application
to grid scheduling.

An extensive body of research has focused on devising and applying prediction meth-
ods for such quantities as job runtimes and job queue wait times [38], CPU load [215],
resource availability [158], and resource failure rates [115] in (large-scale) computer sys-
tems such as parallel systems and grids. The aim of such methods is to aid in the efficient
scheduling in such systems and to assist users in selecting resources for their jobs. For
instance, runtime predictions have been used to improve theperformance of backfilling in
batch queueing systems [197], and runtime and queue wait time predictions together can
guide the decisions of a grid scheduler as to which grid sitesto send jobs for execution.
What is missing so far from this research is a detailed investigation of the performance
of prediction methods for job runtime and queue wait time in grids, and of the benefit of
using predictions in grid scheduling. In this chapter we fillthis gap by applying simple
and widely used prediction methods to the job runtimes and queue wait times of nine
workload traces of research and production grids in the GridWorkload Archive [102],
and by assessing the benefit of using predictions in grid level scheduling via trace-based
simulations.

Our investigation is based on three guidelines. First, we target multicluster grid sys-

116

tems in which the processors are managed by space-sharing policies. Secondly, we restrict
ourselves to time series prediction methods, which make their predictions based on his-
torical data, usually in the form of the time-ordered set of past observations of, e.g., the
job runtimes. Thirdly, we classify jobs in different ways, and apply these methods to the
different job classes separately, in the hope to improve theperformance of the prediction
methods. Among the job classifications we will employ are grouping jobs per grid site,
per user, and per user and per site. In this way, we aim to give realistic answers to the
following research questions:

• How accurate are the simple but widely used time series methods in predicting
job runtimes in grids, and what is the impact of job classification on the accu-
racy of these predictions?We answer these two questions in Section 7.2, where
we assess the accuracy of five time series methods under four job classifications.

• What is the performance of queue wait time predictors in grids?We answer this
question in Section 7.3 by evaluating the performance of apoint-valuedpredictor
that simulates the local scheduling policy with the predicted job runtimes to predict
queue wait times of jobs, and by evaluating the performance of methods that predict
upper boundsfor the queue wait times of jobs.

• Can prediction-based grid scheduling policies perform better than grid
scheduling policies that do not use predictions?We answer this question in
Section 7.4, where we compare three grid-level scheduling policies in a simulated
environment. The prediction-based scheduling policy bases its decisions on job
runtime and queue wait time predictions (which are either assumed to be perfect or
potentially inaccurate), whereas the non-prediction-based policies balance the load
on the clusters or prefer faster resources.

7.1 Grid workload traces

For our investigation we use nine grid traces from the Grid Workloads Archive [102].
Each trace consists of ordered job entries according to their submission time which is in
UNIX timestamp format. All traces have complete information about the jobs’ submis-
sion times, runtimes, and requested numbers of nodes. Some of the traces lack other job
attributes such as queue wait time, application name, groupname, etc. None of the traces
contain information about user runtime estimates.

Table 7.1 summarizes the characteristics of the grid tracesthat we have used in
our work, and contrasts them to those of four traces taken from the Parallel Workloads
Archive [167]. The grid traces are gathered from four research grids and five production

117

Table 7.1: The characteristics of nine grid traces taken from the Grid Workloads Archive
and of four traces taken from the Parallel Workloads Archive. The sign “-” denotes miss-
ing information.

System Trace
Type Num. of Size Duration Size % of Parallel Num. of

Clusters [CPUs] [Months] [Tasks] Jobs Users
Grid Workloads Archive Traces [102]

DAS2 Research 5 400 18 1.1M 66% 333
Grid’5000 Research 15 ∼2500 27 1.0M 45% 470

DAS3 Research 5 544 18 2M 15% 331
SHARCNET Research 10 6828 12 1.2M 10% 412

AUVER Production 5 475 12 0.4M 0% 405
NORDU Production 75 2000 24 0.8M 0% 387

LCG Production - 24515 4 0.2M 0% 216
NGS Production 7 - 6 0.6M 0% 378

GRID3 Production 35 ∼3500 18 1.3M 0% 15
Parallel Workloads Archive Traces [167]

CTC SP2, PWA-6 Production 1 430 11 0.1M 56% 679
SDSC SP2, PWA-9 Production 1 128 24 0.1M 63% 437

LANL O2K, PWA-10 Production 1 2048 5 0.1M - 337
SDSC DS, PWA-19 Production 1 1664 13 0.1M 100% 460

grids. There are several differences between typical research and production grids. In re-
search grids, the workloads contain both parallel jobs and sequential jobs, and the system
utilizations are low (10%-30%), whereas in production grids, the workloads consist solely
of sequential jobs, and the system utilizations are much higher (over 60%) [98,100]. The
main differences between grids and paralel processing enviornments (PPEs) as we ob-
serve are the following: grid resources are spread across multiple sites, grid workloads
include fewer parallel jobs, and over the long term, the gridworkloads include many more
jobs than PPEs (by a factor of 2-20).

An important assumption of this chapter is that grids exhibit often bursty job arrivals.
We show that this is indeed the case in Figure 7.1, which depicts the numbers of job sub-
missions during five-minute intervals. We conclude that in addition to the grid workload
characteristics mentioned above, grid workloads are bursty, which provides even more
motivation for this study.

7.2 Job runtime predictions

In this section we investigate the performance of job runtime predictions in grids. We
first describe in Section 7.2.1 our methodology. Then, we describe in Section 7.2.2 our
experimental setup, and last we present and discuss in Section 7.2.3 the experimental
results.

118

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

May 2004 Sep. 2005 Nov. 2006

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(a) Grid’5000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

May 2005 Feb. 2006 Dec. 2006

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(b) DAS2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

May 2007 Feb. 2008 Oct. 2008

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(c) DAS3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Feb. 2006 Aug. 2006 Feb. 2007

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(d) SHARCNET

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Jan. 2006 July 2006 Jan. 2007

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(e) AUVER

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Oct. 2006 Feb. 2007 May. 2007

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(f) NORDU

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Nov 2005 Nov. 2005 Dec. 2005

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(g) LCG

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

June 2006 Oct. 2006 Jan. 2007

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(h) NGS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

May 2004 Sep. 2005 Nov. 2006

N
u

m
b

e
r

o
f

S
u

b
m

it
te

d
 J

o
b

s

(i) GRID3

Figure 7.1: The number of job submissions during five-minuteintervals in nine grid sys-
tems. All systems have bursty periods. The vertical axis is truncated at 1000 for better
visibility.

7.2.1 Methodology

The methodology we use for runtime predictions consists of three elements: the classifi-
cations of jobs we use, the way we simulate grid traces to compute runtime predictions,
and the actual runtime prediction methods, which we now describe in turn.

First, the job classification methods create classes according to job attributes such as
the execution site of a job, the user submitting it, etc. We consider the following four
classification methods for the jobs in a trace:

1. Site: The jobs are classified according to the site where they are executed.

2. User: The jobs are classified according to the user who submits them, irrespective
of the execution site.

119

3. User on Site: The jobs are classified according to both the user and the execution
site.

4. (User + Application Name + Job Size) on Site: The jobs are classified accord-
ing to the user, the application name, the job size (i.e., thenumber of processors
employed by the job), and the execution site.

Secondly, in the simulation of a trace, we go sequentially through the trace and we
compute for every next job its predicted runtime with the prediction method in place,
based on the history consisting of the runtimes of the jobs ofthe same class that have
submitted and finished before the current job under consideration. This means that during
the simulation, the time series for each of the job classes iscreated.

Thirdly, for each job, the prediction method predicts the runtime using the time series
data of the class the job belongs to that has already been created. We consider the follow-
ing prediction methods, which are applied to the time seriesof the runtimes of the jobs on
a per-class basis:

1. Exponential Smoothing (ES)predicts the runtime as a weighted moving average
of the observed job runtimes. A parameterα, with 0 ≤ α ≤ 1, is used to control
the sensitivity of the smoothing. We takeα to be equal to0.5 (e.g., see [54]). We
refer to [24] for details.

2. Running Mean (RM) predicts the runtime as the mean of all observed job run-
times.

3. Sliding Median (SM) predicts the runtime as the median of a sliding window of
observed job runtimes. We take 5 as the window size (e.g., see[209]).

4. Last predicts the runtime as the last previously observed job runtime.

5. Last2 [197] predicts the runtime as the average of the last two previously observed
job runtimes.

For the first three job classifications introduced above, we evaluate the performance of
all prediction methods on all traces. Then, we pick the best method for each trace and run
it with the last classification for those traces that includethe Application Name attribute
(all of the traces except LCG and NORDU). The Job Size attributeis considered only for
the research grid traces since only they include parallel jobs.

120

 0

 0.2

 0.4

 0.6

 0.8

 1

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

A
c
c
u
ra

c
y

GRID3NGSLCGNORDUAUVERSHARCNETDAS3GRID5000DAS2

Figure 7.2: The average accuracy of the job runtime prediction methods on the grid traces
under the Site classification.

 0

 0.2

 0.4

 0.6

 0.8

 1

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

A
c
c
u
ra

c
y

GRID3NGSLCGNORDUAUVERSHARCNETDAS3GRID5000DAS2

Figure 7.3: The average accuracy of the job runtime prediction methods on the grid traces
under the User classification.

7.2.2 Experimental setup

We have used the Grid Workloads Archive tools to process the grid traces. We have ex-
tended the tools so that the jobs in the traces are classified according to the classifications
described in the previous section.

To evaluate the accuracy of the runtime predictions, we consider the following metrics:

1. Theaccuracy, which is defined as in [197]:

accuracy =















1 if P = Tr,

Tr/P if P > Tr,

P/Tr if P < Tr.

(7.1)

whereP is the predicted job runtime andTr is the actual job runtime.

121

 0

 0.2

 0.4

 0.6

 0.8

 1

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

E

S

R

M

S

M

L
a
s
t

L
a
s
t2

A
c
c
u
ra

c
y

GRID3NGSLCGNORDUAUVERSHARCNETDAS3GRID5000DAS2

Figure 7.4: The average accuracy of the job runtime prediction methods on the grid traces
under the User on Site classification.

 0

 0.2

 0.4

 0.6

 0.8

 1

w

/o
 C

l

w

 C
l

w

/o
 C

l

w

 C
l

w

/o
 C

l

w

 C
l

w

/o
 C

l

w

 C
l

w

/o
 C

l

w

 C
l

w

/o
 C

l

w

 C
l

w

/o
 C

l

w

 C
l

A
c
c
u
ra

c
y

GRID3
(SM)

NGS
(Last)

AUVER
(Last2)

DAS3
(Last2)

SHARCNET
(ES)

GRID5000
(Last2)

DAS2
(Last2)

Figure 7.5: The average accuracy of the job runtime prediction methods on the grid traces
under the (User+Application Name+Job Size) on Site classification.

2. Theabsolute prediction error is the absolute difference between the predicted and
the actual runtime.

7.2.3 Results

For each of the nine traces, Figures 7.2, 7.3, and 7.4 presentthe average accuracy of
the prediction methods under the Site, the User, and the Useron Site classifications, re-
spectively. Figure 7.5 shows the average accuracy of the best methods under the (User +
Application Name + Job Size) on Site classification (w/o Cl: Best result from the other
classifications,w Cl: Result with this classification.).

As the historical data gets more specific, that is, going fromSite to (User + Appli-
cation Name + Job Size) on Site, the accuracy of the job runtime predictions increases
significantly. In particular, SHARCNET yields an outstandingjob runtime accuracy with

122

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 [
%

]

Accuracy

DAS2 (Last2)

DAS3 (Last2)

GRID5000 (Last2)

SHARCNET (ES)

(a) Research Grids

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 [
%

]

Accuracy

AUVER (Last2)

GRID3 (SM)

NGS (Last)

LCG (RM)

NORDU (RM)

(b) Production Grids

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

C
D

F
 [
%

]

Absolute Prediction Error [min]

DAS2 (Last2)

DAS3 (Last2)

GRID5000 (Last2)

SHARCNET (ES)

(c) Research Grids

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
D

F
 [
%

]

Absolute Prediction Error [min]

AUVER (Last2)

GRID3 (SM)

NGS (Last)

LCG (RM)

NORDU (RM)

(d) Production Grids

Figure 7.6: The cumulative distribution functions of the accuracy and absolute prediction
error for the best (method+classification) results for job runtimes. The horizontal axis for
the bottom row has a logarithmic scale.

the most specific classification. For the traces of DAS-2, DAS-3, and Grid’5000, Last2
performs better than the other prediction methods for all classifications. For the other
traces, we do not observe such a dominant method, and even thebest method for a trace
differs among the classifications. The results suggest thatgrid systems or even grid sites
should have their own specific prediction methods, since they may have different user
behaviors and different job and system characteristics.

Figure 7.6 presents the cumulative distributions of the accuracy and the absolute error
only for the best results (the method and classification thatgive the best accuracy for a
trace) for the traces of the research and production grids separately. We observe that in
most of the cases, the job runtimes are predicted more accurately and with lower absolute
errors in research grids than in production grids. The possible reasons include longer job
runtimes and higher utilizations in production grids. For SHARCNET, almost 70% of the
predictions have high accuracy (i.e., above 0.9), while forthe other traces this percentage
ranges between 20 to 30. Among the production grid traces, wesee that NGS and GRID3
exhibit a higher prediction accuracy and a lower absolute prediction error.

123

Table 7.2: The performance of the point-valued predictor ofqueue wait time for jobs that
have non-zero wait times (indicated by “non-zero jobs”).

Without Correction With Correction
Grid-Site % non-zero jobs Avg. Accuracy AWPE [min] Avg. Accuracy AWPE [min]

DAS-2 FS1 20 0.60 110 0.64 121
DAS-2 FS3 35 0.54 307 0.55 292
DAS-3 FS3 80 0.30 364 0.35 350
DAS-3 FS4 70 0.51 451 0.60 442

Grid5K G1/S1/C3 60 0.51 322 0.63 256
Grid5K G1/S6/C1 10 0.56 852 0.61 653
AUVER clrlcgce01 20 0.57 203 0.64 180
AUVER clrlcgce03 67 0.63 190 0.69 172

All in all, we find the job runtime prediction accuracy to be low and the absolute
prediction error to be high, even for the best results (except for SHARCNET). There are
several reasons for this poor performance. The first is the occurrence of burst submissions
that we observe in grids (e.g., see Figure 7.1); the same prediction error is made for all
the jobs submitted together or relatively close in time. Even though these jobs could be
similar in terms of runtime, they do not affect the predictions before they finish execution.
A second reason is the (lack of) stationarity of a time series. For good predictability, a
time series should be stationary [24], that is, it should have a constant long-term mean and
variance. We have performed several experiments using the Augmented-Dickey-Fuller1

(ADF) test [64] for checking stationarity on some of the timeseries that we use in this
chapter; unsurprisingly, we have found the time series to benon-stationary.

7.3 Queue wait time predictions

In this section we investigate the performance of queue waittime predictions in grids.
In Section 7.3.1 we evaluate the performance of a point-valued predictor that simulates
the local scheduling policy with predicted job runtimes to predict job queue wait times.
In Section 7.3.2 we evaluate the performance of two non-parametric statistical methods
that predict upper bounds for queue wait times with a specified confidence level. Such
non-parametric methods have the advantage of obviating theneed to know the internal
operation of local scheduling policies in predicting the queue wait times. We use the
traces of the DAS-2, DAS-3, Grid’5000, and AUVER grids. These are the systems/traces
of which we know their characteristics to model in our simulations in Section 7.3.1, and
that contain the queue wait time data that we need in the simulations in Section 7.3.2.

1We have obtained the tool for the ADF-test from http://www.web-reg.de/adfaddin.html

124

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 [
%

]

Accuracy

FS3 (corr)

FS4 (corr)

FS3

FS4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 [
%

]

Accuracy

clrlcgce01 (corr)

clrlcgce03 (corr)

clrlcgce01

clrlcgce03

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
1

10
2

10
3

10
4

10
5

C
D

F
 [
%

]

Absolute Prediction Error [min]

FS3 (corr)

FS4 (corr)

FS3

FS4
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

C
D

F
 [
%

]

Absolute Prediction Error [min]

clrlcgce01 (corr)

clrlcgce03 (corr)

clrlcgce01

clrlcgce03

Figure 7.7: The cumulative distribution functions of the accuracy and absolute prediction
error of the queue wait time predictions for the DAS-3 (left)and the AUVER (right)
traces with the Last2 method for runtime predictions; (corr) denotes that the correction
mechanism is applied to the job runtime predictions. The horizontal axis has a logarithmic
scale for the bottom row.

7.3.1 Point-Valued predictions

In our simulation model, each site has a local resource manager (LRM) that employs the
FCFS policy without backfilling. We assign jobs to their original execution sites. A point-
valued predictor runs on each site, and computes a queue waittime prediction for each
submitted job in a two-step process. First, the runtimes of all queued and running jobs
are predicted with the Last2 method and the (User + Application Name + Job Size) on
Site classification that is described in Section 7.2.1. Then, the scheduling policy of the
LRM is simulated with the predicted job runtimes to determinewhen the new job will
start. Whenever the runtime of a job turns out to be under-predicted, its predicted runtime
is doubled until the predicted value is larger than the actual runtime.

We also consider a prediction correction mechanism in whichupon completion of a
job, the predicted runtimes of both the queued and the running jobs that belong to the
same class as the completed job are updated with the Last2 method to include the runtime
of the completed job in the computation. We perform the experiments with and without
this correction mechanism.

125

Table 7.3: The accuracy of queue wait time prediction methods giving upper bounds.

BMBP
Grid-Sites AWPE [min] Avg. AccuracyUnder-predictionsPerfect-predictionsOver-predictions
DAS-2 FS1 16 0.50 8% 9% 83%
DAS-3 FS4 26 0.41 15% 4% 81%

AUVER clrlcgce01 376 0.20 12% 1% 87%
Grid5K G1/site1/c3 31 0.72 20% 0% 80%

Chebyshev
Grid-Sites AWPE [min] Avg. AccuracyUnder-predictionsPerfect-predictionsOver-predictions
DAS-2 FS1 52 0.21 8% 0% 92%
DAS-3 FS4 101 0.23 7% 1% 82%

AUVER clrlcgce01 1236 0.10 7% 0% 93%
Grid5K G1/S1/C3 1093 0.24 16% 0% 84%

Figure 7.7 shows the cumulative distribution functions of the accuracy and the abso-
lute prediction error of the point-valued queue wait time predictor for DAS-3 and AU-
VER; for clarity, we only present the results for the two sitesof each grid system to which
most of the jobs have been submitted. Table 7.2 presents the average values of the metrics
for all grids (AWPE refers to average absolute queue wait timeprediction error). In the
results, we only consider the jobs that have non-zero wait times.

We find the overall accuracy of the point-valued predictor tobe low, and the aver-
age absolute queue wait time prediction error to be high due to inaccurate job runtime
predictions. The prediction error in the queue wait times isaccumulated because the pre-
dictor simulates the local scheduling policy with inaccurately predicted runtimes. There
is an improvement ranging from 1% to 10% in average accuracy and from 1% to 16% in
average absolute prediction error when the prediction correction mechanism is applied.

7.3.2 Upper-Bound predictions

In this section we assess the accuracy of two upper-bound methods for queue wait time
predictions by means of trace-based simulations. These methods are the Binomial Method
Batch Predictor (BMBP) [23] and a predictor that makes use of Chebyshev’s inequal-
ity [192]. In our analysis, we use the wait times of the jobs that are completed in order to
predict the wait time of a new job. We do not simulate local scheduling policies since we
use real wait time and runtime data (from the traces). To evaluate the prediction methods,
we use the average accuracy, the average absolute prediction error, and the number of
under-predictions, perfect-predictions, and over-predictions as metrics.

BMBP predicts an upper-bound with a specified quantile and confidence level. It uses
the history of job queue wait times, and estimates the quantile of the wait time distribution

126

with the specified confidence level. It employs a change-point detection method in order
to take only a stationary part of the time series into account. By detecting the change-
points in the time series, BMBP trims the historical wait time data. BMBP also clusters
the jobs based on the numbers of processors they request, hence it uses the historical data
of similar jobs when making predictions. For further details on BMBP we refer to [23].

Chebyshev’s inequality states that regardless of the underlying distribution, the prob-
ability of a random variable differing from its mean by more thank standard deviations
is less than or equal to1/k2. We have implemented a predictor that uses this inequality;
it calculates the mean and the standard deviation of the waittime data of the completed
jobs to predict an upper bound for the wait time of a new job with a specified confidence
level (e.g.,µ + 2

√
5σ is the predicted wait time with a 95% confidence level, whereµ is

the mean andσ is the standard deviation of the historical wait time data).We trim and
update the historical data in a similar way as explained in [23].

In our analysis of the BMBP method, we use the BMBP trace-based simulator2, and
for Chebyshev’s inequality method we use our own tools. For BMBP, we consider a
quantile and confidence level of 95%, and we use 10% of the datafor training. Similarly,
for the predictor that uses Chebyshev’s inequality, we consider a confidence level of 95%.

The results are presented for a single site of each trace in Table 7.3. The number
of over-predictions when using Chebyshev’s inequality is larger than when using BMBP,
whereas the accuracy of BMBP is higher. There is a trade-off between the accuracy and
the tightness of the upper-bound. Both of these methods fail when the jobs arrive in bursts,
as the methods use the same predicted wait time value for all jobs in a burst.

We claim that user runtime estimates, if available, can alsobe used in predicting upper
bounds for queue wait times. To show this, we use a simple model for user runtime es-
timates that is proposed by Mu’alem and Feitelson [70]. The model assumes that a job’s
estimate is uniformly distributed within[R, 5R], whereR is the job’s actual runtime.
We use the runtime estimates of users together with the FCFS policy (to guarantee upper
bounds) to predict wait times. Figure 7.8 shows the real waittime values and the ones pre-
dicted with this approach for a bursty period of the DAS-3 FS4site. While guaranteeing
over-predictions, this approach results in slack estimates of queue wait time.

7.4 The performance of prediction-based grid scheduling

In this section we assess whether it is beneficial to use predictions for scheduling in grids.
To this end, we perform a set of simulations using workloads from the DAS-3 and AU-
VER grids to investigate whether prediction-based grid-level scheduling improves per-
formance over traditional grid-level scheduling policies. In Section 7.4.1 we explain the

2We have obtained the simulator from the Network Weather Service websitehttp://nws.cs.
ucsb.edu.

127

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 20 40 60 80 100 120 140

W
a

it
 T

im
e

 [
s
]

Job Identifier

Real Wait Time

Predicted Wait Time

Figure 7.8: Real and predicted queue wait times for a burst submission case taken from
DAS-3, site FS4.

experimental setup, in Sections 7.4.2 and 7.4.3 we describethe scheduling policies and
the performance metrics we use in our simulations, respectively, and in Section 7.4.4 we
present and discuss the experimental results.

7.4.1 The experimental setup

For our experiments we have modeled two multi-cluster grid environments, the DAS-
3 (research) and the AUVER (production) grids, using our event-based grid simulator
DGSim [104]. Table 7.4 shows the sizes of the clusters of eachsystem. In DAS-3, the
processing speeds of the compute nodes differ among clusters, but in AUVER, the nodes
are homogeneous in terms of processing speeds. To model the processor heterogeneity
across the clusters of the DAS-3, we employ the SPEC CPU benchmark model for job
runtimes [190].

In our model, each cluster has its own LRM, and so its own local queue to which
jobs arrive, and a global central scheduler with a global queue operates on top of the
cluster LRMs. The jobs are submitted to the global scheduler,which decides in which
cluster a job is going to run based on one of the scheduling policies that are explained
in Section 7.4.2. Irrespective of the policy in operation, the global scheduler considers
all jobs in its queue as the eligible set for scheduling. The LRMs of the clusters employ
the FCFS policy without backfilling. Once started, tasks run to completion, so we do not
consider task preemption or task migration during execution. For the experiments with
prediction-based policies, a prediction service runs on each of the clusters in order to
respond to the queries issued by the central scheduler regarding the predicted completion
time of a job; i.e., the sum of the predicted queue wait time ofa job and its predicted
runtime.

128

Table 7.4: The size of the clusters in DAS-3 and AUVER grids.

DAS-3 AUVER
Cluster Size Cluster Size

(Original Name) (Original Name)

C1 (FS0) 85 C1 (clrlcgce01)112
C2 (FS1) 32 C2 (clrlcgce02) 84
C3 (FS2) 41 C3 (clrlcgce03)186
C4 (FS3) 68 C4 (iut15) 38
C5 (FS4) 46 C5 (opgc) 55

Table 7.5: The workload characteristics used for assessingthe performance of prediction-
based grid scheduling.

Trace Period Number of JobsAvg. Utilization
DAS-3 July-Oct. 2008 ∼220,000 ∼30%

AUVER Aug.-Nov. 2006 ∼90,000 ∼70%

In our simulations we consider the busiest four-month period from the trace of each
system and submit it as the workload. Table 7.5 shows the properties of the workloads
that we have used in our experiments.

7.4.2 Scheduling policies

We compare the performance of the following policies which we find representative for
many other prediction-based and traditional policies proposed in the grid scheduling lit-
erature:

• TheEarliest Completion Time (ECT) [138] is a Gantt chart-based scheduling pol-
icy that submits each job to the cluster that leads to the earliest completion time
possible, taking into account the clusters’ queues. We consider two kinds of pre-
diction information leading to two variations of this policy. ECT-Perfect policy is
a theoretical omniscient policy whose predictions are always given with perfect ac-
curacy (equal to 1). In contrast,ECT-Last2 uses the point-valued predictor defined
in Section 7.3.1 (with corrections); hence, the predictions of ECT-Last2 may be
inaccurate.

• Load Balancer (LB) submits each job to the least-loaded cluster, where loadis
defined as the total processor requirement of all jobs running or queued in the cluster
normalized by the cluster size.

129

• Fastest Processor First(FPF) submits each job to the cluster that has the fastest
compute nodes among the clusters that have enough idle nodesto accommodate
the job. Different from the policies mentioned above, FPF does not forward jobs
as long as there are not enough idle nodes in any cluster; therefore, jobs are only
queued in the global queue.

7.4.3 Performance metrics

To assess the performance of the scheduling policies, we usethe following traditional
metrics:

• TheQueue Wait Time of a job is the time elapsed from the submission of the job
until the start of its execution.

• TheResponse Timeof a job is the sum of its queue wait time and its runtime.

• TheBounded Slowdown[72] of a job is defined as

max

(

1,
Tw + Tr

max(τ, Tr)

)

, (7.2)

whereTw andTr denote the queue wait time and the runtime of the job, respectively,
andτ denotes the threshold for the job runtimes. The bounded slowdown eliminates
the emphasis on short jobs due to having the runtime in the denominator. In our
analysis we have used a threshold value of 60 seconds.

Table 7.6: The performance of the three scheduling policies.

DAS-3 ECT-PerfectECT-Last2 LB FPF
Avg. Res. Time [s] 1320 1400 4318 1911
Avg. Wait Time [s] 105 186 3061 681
Avg. Boun. Slowd. 1.7 1.6 80 26

AUVER ECT-PerfectECT-Last2 LB FPF
Avg. Res. Time [s] 40951 41003 4095941334
Avg. Wait Time [s] 6515 6574 6534 6898
Avg. Boun. Slowd. 48 43.6 48 50.88

7.4.4 Results

The cumulative distribution functions of the queue wait time, the response time, and the
bounded slowdown are shown in Figures 7.9 and 7.10, and theiraverages are shown
Table 7.6.

130

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
D

F
 [
%

]

Queue Wait Time [s]

ECT-Perfect
ECT-Last2

LB
FPF

 98

 100

10
4

10
5

10
6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
D

F
 [
%

]

Response Time [s]

ECT-Perfect
ECT-Last2

LB
FPF 98

 100

10
4

10
5

10
6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F
 [
%

]

Bounded Slowdown

ECT-Perfect
ECT-Last2

LB
FPF

 99.5

 100

10
2

10
3

10
4

10
5

Figure 7.9: The cumulative distribution functions of the queue wait time, the response
time, and the bounded slowdown for DAS-3. The horizontal axis has a logarithmic scale.

We find that in DAS-3, the prediction-based scheduling policies (ECT-Perfect and
ECT-Last2) perform better than their traditional counterparts (LB and FPF), with espe-
cially the LB policy having very poor performance. It turns out that with LB, approxi-
mately 5% of the jobs have a queue wait time of more than 10,000seconds. On the other
hand, with the FPF policy, a small number of jobs suffer from queue wait times as high
as 10,000 seconds. In contrast, for AUVER, all policies have similar performance. LB
seems to perform slightly better than FPF in AUVER, which suggests that it can be a can-
didate for highly utilized systems when prediction-based policies are not considered. In
general, the performance of the considered policies is worse for the AUVER grid, which
is probably due to the higher utilization of the considered period compared to the DAS-3
(see Table 7.5).

Since the ECT-Perfect and ECT-Last2 policies have similar performance, both in the
DAS-3 and the AUVER experiments, we conclude that more accurate predictions do not
necessarily imply a better performance of grid scheduling.A similar result was previ-
ously obtained when using predictions for improving backfilling performance in parallel
production systems [197]. ECT-Perfect and ECT-Last2 yield similar performance results
even when their scheduling decisions differ; in Figure 7.11we see that the distribution of

131

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
D

F
 [
%

]

Queue Wait Time [s]

ECT-Perfect
ECT-Last2

LB
FPF 90

 100

10
4

10
5

10
6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
D

F
 [
%

]

Response Time [s]

ECT-Perfect
ECT-Last2

LB
FPF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
0

10
1

10
2

10
3

10
4

C
D

F
 [
%

]

Bounded Slowdown

ECT-Perfect
ECT-Last2

LB
FPF 90

 100

10
2

10
3

10
4

Figure 7.10: The cumulative distribution functions of the queue wait time, the response
time, and the bounded slowdown for AUVER. The horizontal axishas a logarithmic scale.

the tasks across clusters is very diverse when the jobs are scheduled with this two policies
in DAS-3, while the policies distribute the jobs similarly in AUVER. All in all, we claim
that the main concern of a prediction-based grid schedulingpolicy is the correct predic-
tion of the cluster that will finish a job first, rather than perfect prediction accuracy of the
job’s completion time.

7.5 Related work

Previous work on predictions has mainly focused on proposing novel prediction meth-
ods [23,56,57,182,209], on enhancing existing methods [55,179], and on making use of
predictions in space-shared parallel environments [126,197]. In contrast, we have focused
on the performance of job runtime and queue wait time predictions in grid environments.

In addition to various complex solutions proposed for job runtime predictions such
as analytical benchmarking/code profiling [105, 163, 210],genetic algorithms [181, 182],
and instance-based learning [116], simple time series methods have also received great
attention from the community due to their advantages such asease of implementation
and speed of delivering prediction results. In [55, 179], exponential smoothing is used

132

 0

 20000

 40000

 60000

 80000

 100000

C1 C2 C3 C4 C5

N
u
m

b
e
r

o
f
jo

b
s

Clusters

ECT-Perfect
ECT-Last2

LB
FPF

(a) DAS-3

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

C1 C2 C3 C4 C5

N
u
m

b
e
r

o
f
jo

b
s

Clusters

ECT-Perfect
ECT-Last2

LB
FPF

(b) AUVER

Figure 7.11: The distribution of jobs across the clusters ofDAS-3 and AUVER.

for predicting the runtimes of jobs. In [126], a prediction method based on linear re-
gression is proposed to predict the runtimes of parallel applications. Dobber et al. [56]
present a survey on prediction methods for job runtimes on space-shared processors, and
they propose a new prediction method, called Dynamic Exponential Smoothing, which
uses exponential smoothing and adapts dynamically to peaksand level changes in the job
runtimes. Feitelson et al. [197] show that even a simple timeseries prediction method im-
proves backfilling performance significantly when system-generated predictions replace
user-estimated runtimes. The Network Weather Service (NWS)[209] is a well-known
prediction service which is used to predict the performanceof computational grid re-
sources, with simple time series prediction methods. NWS tracks the accuracy of all
its predictors, and dynamically changes the prediction method to the one that gives the
highest accuracy.

The problem of predicting queueing delays of jobs in high performance computing
settings has also received constant attention from the research community. In [22], model-
fitting is used to model machine availability in desktop and enterprise grid computing
environments. To estimate when a cluster of a given size willbe available and hence
the runtime of the job at the head of the queue, Downey [57, 58]explore a log-uniform
distribution to model the remaining lifetimes of the jobs. This work shows that the queue
wait time of jobs can be predicted if the runtimes of jobs and the scheduling algorithm are
known. Similarly, in [182] the queue wait time of a job is predicted under the conditions
that the job runtimes and the local scheduling algorithm areknown. In this work, the
authors use a template-based approach to cluster the jobs, and then perform searches based
on genetic algorithms. Wolski et al. [159] propose QBETS, which is a non-parametric
time series method to predict bounds on the queue wait times of individual jobs in space-
shared parallel environments.

133

7.6 Summary

In this chapter we have studied job runtime and queue wait time prediction methods and
their application in grid scheduling. First, we have studied through trace-based analy-
sis the accuracy of well-known, simple time series prediction methods when predicting
job runtimes, and the impact of job classification on the accuracy of job runtime predic-
tions. We found that the low accuracy of time series prediction methods for grids can
be improved significantly by the use of such classifications.Secondly, we have analyzed
the performance of queue wait time predictors. We have shownthat current solutions
for queue wait time predictions that give upper-bounds cannot handle the common grid
workload characteristic of burst submissions. Thirdly, wehave compared with trace-based
simulations several prediction-based and traditional grid scheduling policies in order to
investigate the impact of predictions on the performance ofgrid-level scheduling. We
have found that a better accuracy of the predictions does notimply a better performance
of grid scheduling, and that for the highly utilized production grids the investigated poli-
cies perform similarly to each other.

134

Chapter 8

Conclusion

In this thesis we have studied application-oriented scheduling in multicluster grids. We
have designed, implemented and then evaluated various realistic and practical schedul-
ing policies for different application types in the DAS-3 multicluster grid system using
our KOALA scheduler, as well as in a simulated environment using realistic settings. In
Chapter 1 of this thesis, we have introduced the challenges addressed by our research. In
Chapter 2, we investigated the benefit of co-allocation for parallel applications. We com-
pared the performance of several co-allocation schedulingpolicies under various system
load settings. In Chapter 3, we extended ourKOALA grid scheduler with support for mal-
leable parallel applications. We proposed several policies to manage dynamic resource
allocation for such applications. In Chapter 4, we extendedKOALA with the support for
scheduling cycle scavenging applications, of which parameter sweeps are a prime exam-
ple. We proposed two policies that try to achieve fair-shareresource allocation among
cycle scavenging users. In Chapter 5, we investigated the performance of scheduling
bags-of-tasks in multicluster grids with realistic simulations. We explored the perfor-
mance impact of several elements such as the workload, the task selection policy, the task
scheduling policy, and the resource management architecture. In Chapter 6, we evalu-
ated the performance of dynamic workflow scheduling in multicluster grids with realistic
simulation-based experiments as well as experiments conducted in DAS-3. Finally, in
Chapter 7, we investigated the performance and benefit of predicting job execution times
and queue wait times in multicluster grids based on the traces collected from various
research and production grid environments.

In the remainder of this chapter we present the main conclusions of this thesis (Sec-
tion 8.1) and suggest directions for future work (Section 8.2).

136

8.1 Conclusions

Based on the research reported in this thesis we have drawn thefollowing major conclu-
sions:

1. Supporting application-oriented scheduling mechanisms and policies in a grid
scheduler is the key to achieve good application execution performance in multi-
cluster grids.

2. For the performance evaluation of scheduling policies ingrids, if possible, simula-
tions should be supported by experiments in real grid systems, since it is difficult
to model detailed system behavior for simulation purposes,which may reveal prob-
lems that do not show in simulations.

3. The benefit of co-allocation for parallel applications depends on various factors
such as the communication characteristics of the applications, the communication
and computation characteristics of the resources, the level of resource contention in
the system, and the grid software being used. Nevertheless,in systems where the
heterogeneity in inter-cluster communication speeds is high, using network perfor-
mance metrics in resource selection, such as the latency, increases the performance
of co-allocation for communication-intensive parallel applications.

4. Application malleability makes it easier to deal with thedynamic nature of multi-
cluster grid systems by growing or shrinking the resource allocation of applications
at runtime. In particular, malleability increases system utilization while decreasing
application execution times.

5. Integrating a mechanism for cycle scavenging seamlesslyinto grid-level schedul-
ing obviates the need for additional software installations on the compute nodes
or any modifications to the resource managers of the clusters, both of which are
administrative obstacles in multicluster grid systems.

6. The performance of scheduling bags-of-tasks in multicluster grids depends not only
on the task scheduling policy but also on the order that tasksare considered for
scheduling, and on the resource management architecture being used.

7. When executing large workflows, the head-nodes of real gridclusters may become
unstable, which as a result leads to much lower performance.To solve this problem,
task throttling can be applied, that is, limiting the per-workflow number of tasks dis-
patched to the system, since task throttling prevents the head-nodes from becom-
ing overloaded while largely preserving performance, at least for communication-
intensive workflows.

137

8. The simple but widely used time series methods for predicting job execution times,
and prediction methods that give upper-bounds for job queuewait times in mul-
ticluster grids, yield low accuracy in grids because of the frequent burst job sub-
missions that we observe. In addition, a better accuracy of the predictions does
not imply a better performance of grid scheduling. In fact, the main concern of a
prediction-based grid scheduling policy is the correct prediction of the cluster that
will finish a job first, rather than perfect prediction accuracy of the completion time
of a job.

8.2 Suggestion for future work

The research described in this thesis reveals several possibilities for further investigation
of application-oriented scheduling in multicluster grids:

1. In the Communication-Aware co-allocation policy, which is described in Chapter 2,
we leave the network performance metric selection (either latency or bandwidth) to
the users assuming that they know their applications’ communication characteristics
best. It would be more useful if the users could weigh these metrics depending on
their applications. However, to provide a uniform metric combining bandwidth and
latency for network evaluation is still an open problem [94].

2. In our design of support for scheduling malleable applications in Chapter 3, we have
not considered grow operations that are initiated by the applications. This feature
is mainly useful in case the parallelism patterns of the applications are irregular.
Incorporating such grow operations is however not straightforward. For instance, it
raises the design choice whether such grow operations should be mandatory or only
voluntary. Another element that we have not incorporated inour design, yet would
be interesting to add, is the malleability of co-allocated parallel applications.

3. The cycle scavenging system that we have presented in Chapter 4 can be a guideline
for those who want to develop their own light-weight cycle scavenging system for
their multicluster grid environment. In our design we restrict the number of active
cycle scavenging users to improve the overall service quality. However, this ad-
mission control is administrated manually; implementing adynamic solution that
will incorporate predictions of future availability of idle resources may improve the
overall service quality even further.

4. Our investigation of scheduling bags-of-tasks in Chapter5 can be extended by eval-
uating additional scheduling heuristics, in particular ofthe kind that do not assume
the a priori availability of workloads and resource information and collect this in-
formation dynamically.

138

5. In our experiments of Chapter 6, we have experienced that itis challenging to deter-
mine an ideal limit for task throttling when executing largeworkflows. If the limit is
too low or too high, application performance may degrade dueto the queueing and
due to the excessive amount of inter-cluster communication, respectively. This fact
motivates a future study of methods for dynamic task throttling mechanisms that
change the task limit at runtime considering both the application characteristics and
the system status.

6. Our evaluation of the performance of time series methods for predicting job run-
times and queue wait times in Chapter 7 does not completely answer the question
of how to improve those methods or devise new ones such that they consider burst
job submissions. In addition, it would be interesting to repeat such an investigation
using more complex methods than time series, such as machinelearning.

139

Bibliography

[1] IBM LoadLeveler: User’s Guide, 1993.http://publib.boulder.ibm.com/
infocenter/clresctr/vxrx/index.jsp.

[2] Attributes for communication between grid scheduling instances. pages 41–52,
2004.

[3] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, andC. Zoccolo. AS-
SIST as a research framework for high-performance grid programming environ-
ments. Technical Report TR-04-09, Universita di Pisa, Dipartimento di Informat-
ica, February 2004.

[4] J. Aldrich. R. A. Fisher and the making of maximum likelihood 1912-1922.Sta-
tistical Science, 12(3):162–176, 1997.

[5] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link. The globus striped GridFTP
framework and server. InSupercomputing, pages 54–64, 2005.

[6] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler:
An extensible system for design and execution of scientific workflows. InProc.
of the Scientific and Statistical Database Management Conference, pages 21–23,
2004.

[7] D. P. Anderson. BOINC: A system for public-resource computing and stor-
age. InProc. of the 4th IEEE/ACM International Conference on Grid Computing
(GRID’06), pages 4–10, 2004.

[8] Advanced School for Computing and Imaging.http://www.asci.tudelft.
nl/.

[9] F. Azzedin, M. Maheswaran, and N. Arnason. A synchronousco-allocation mech-
anism for grid computing systems.Cluster Computing, 7(1):39–49, 2004.

[10] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel,and R. Quilici.
Grid Computing: Software Environments and Tools, chapter Programming, De-
ploying, Composing, for the Grid. Springer-Verlag, January2006.

140

[11] R. Bajaj and D. P. Agrawal. Improving scheduling of tasks in a heterogeneous
environment.IEEE Transactions on Parallel and Distributed Systems, 15(2):107–
118, 2004.

[12] H. E. Bal, N. Drost, R. Kemp, J. Maassen, R. van Nieuwpoort, C.van Reeuwijk,
and F. J. Seinstra. Ibis: Real-world problem solving using real-world grids.
In Proc. of the International Symposium on Parallel and Distributed Processing
(IPDPS’09), pages 1–8, 2009.

[13] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and Y. Robert. Cen-
tralized versus distributed schedulers for multiple bag-of-task applications. In
Proc. of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS’06), 2006.

[14] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling divisi-
ble loads on star and tree networks: Results and open problems. IEEE Transactions
on Parallel and Distributed Systems, 16(3):207–218, 2005.

[15] F. Berman, R. Wolski, H. Casanova, and W. Cirne. Adaptive computing on the grid
using AppLeS. IEEE Transactions on and Distributed Systems, 14(4):369–382,
2003.

[16] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and
D. Zagorodnov. Adaptive computing on the grid using apples.IEEE Transactions
on Parallel and Distributed Systems, 14(4):369–382, 2003.

[17] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisible load theory: A new
paradigm for load scheduling in distributed systems.Journal of cluster Computing,
6(1):7–17, Jan. 2003.

[18] S. Bharathi and A. Chervenak. Data staging strategies andtheir impact on the
execution of scientific workflows. InProc. of the International Workshop on Data-
Aware Distributed Computing, page 5, 2009.

[19] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su,and K. Vahi. Char-
acterization of scientific workflows. InThe 3rd Workshop on Workflows in Support
of Large Scale Science, in conjunction with Supercomputing, 2008.

[20] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,and K. Kennedy. Task
scheduling strategies for workflow-based applications in grids. InProc. of the Fifth
IEEE International Symposium on Cluster Computing and the Grid (CCGrid’05),
pages 759–767, 2005.

141

[21] T. D. Braun, H. J. Siegel, N. Beck, L. L. B̈olöni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund.A com-
parison of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems.Journal of Parallel and Distributed
Computing, 61(6):810–837, June 2001.

[22] J. Brevik, D. Nurmi, and R. Wolski. Automatic methods for predicting ma-
chine availability in desktop Grid and peer-to-peer systems. In Proc. of the 4th
IEEE/ACM International Symposium on Cluster Computing and theGrid (CC-
GRID’04), pages 190–199, 2004.

[23] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on queuing delay for batch-
scheduled parallel machines. InAnnual Symposium on Principles and Practice of
Parallel Programming, pages 110–118, 2006.

[24] P. J. Brockwell and R. A. Davis.Introduction to Time Series and Forecasting.
Springer, March 2002.

[25] A. I. D. Bucur and D. H. J. Epema. The maximal utilization of processor co-
allocation in multicluster systems. InProc. of the 17th International Symposium
on Parallel and Distributed Processing (IPDPS’03), page 60.1, 2003.

[26] A. I. D. Bucur and D. H. J. Epema. The performance of processor co-allocation
in multicluster systems. InProc. of the third International Symposium on Cluster
Computing and the Grid (CCGRID’03), page 302, 2003.

[27] A. I. D. Bucur and D. H. J. Epema. Scheduling policies for processor coallocation
in multicluster systems.IEEE Transactions on Parallel and Distributed Systems,
18(7):958–972, 2007.

[28] J. Buisson, F. Andŕe, and J-L. Pazat. A framework for dynamic adaptation of
parallel components. InProc. of International Conference on Parallel Computing
(ParCo), pages 65–72, 2005.

[29] J. Buisson, F. Andŕe, and J.-L. Pazat. AFPAC: Enforcing consistency during the
adaptation of a parallel component.Scalable Computing: Practice and Experience
(SCPE), 7(3):83–95, sep 2006.

[30] J. Buisson, F. Andre, and J-L. Pazat. Supporting adaptable applications in grid
resource management systems. InProc. of the 8th IEEE/ACM International Con-
ference on Grid Computing (GRID’07), pages 58–65, 2007.

142

[31] J. Buisson, O. O. Sonmez, H. H. Mohamed, L. Wouter, and D. H. J. Epema.
Scheduling malleable applications in multicluster systems. In Proc. of IEEE In-
ternational Conference on Cluster Computing, pages 372–381, 2007.

[32] E. K. Burke, M. Dror, and J. B. Orlin. Scheduling malleabletasks with interdepen-
dent processing rates: Comments and observations.Discrete Applied Mathematics,
156(5):620–626, 2008.

[33] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a resource
management and scheduling system in a global computationalgrid. In Proc. of the
fourth International Conference on High Performance computing in Asia-Pacific
Region, pages 283–289, 2000.

[34] R. Buyya and M. Murshed. GridSim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing.Concurrency
and Computation: Practice and Experience (CCPE, 14(13):1175–1220, 2002.

[35] D. G. Cameron, A. P. Millar, C. Nicholson, R. Carvajal-Schiaffino, K. Stockinger,
and F. Zini. Analysis of scheduling and replica optimisation strategies for data
grids using OptorSim.Journal of Grid Computing, 2(1):57–69, 2004.

[36] T. E. Carroll and D. Grosu. A strategy proof mechanism forscheduling divisible
loads in bus networks without control processors. InProc. of the IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’06), 2006.

[37] H. Casanova. On the harmfulness of redundant batch requests. InProc. of the
15th IEEE International Symposium on High Performance Distributed Computing
(HPDC’06), pages 255–266, 2006.

[38] H. Casanova, F. Berman, G. Obertelli, and R. Wolski. The AppLeS parameter
sweep template: User-level middleware for the grid. InSupercomputing, pages
60–79, 2000.

[39] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for schedul-
ing parameter sweep applications in grid environments. InProc. of the Interna-
tional Heterogeneity in Computing Workshop, page 349, 2000.

[40] C. Castillo, G. N. Rouskas, and K. Harfoush. Efficient resource management using
advance reservations for heterogeneous grids. InProc. of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS’08), pages 1–12, 2008.

[41] L. Cherkasova and P. Phaal. Session-based admission control: A mechanism for
peak load management of commercial web sites.IEEE Transactions on Computers,
51:669–685, 2002.

143

[42] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: architecture and perfor-
mance of an enterprise desktop grid system.Journal of Parallel and Distributed
Computing, 63(5):597–610, 2003.

[43] T. Y. Choe and C. I. Park. A task duplication based scheduling algorithm with
optimality condition in heterogeneous systems. InProc. of the International Con-
ference on Parallel Processing Workshops.

[44] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade, R.Novaes, and
M. Mowbray. Labs of the world, unite!!!Journal of Grid Computing, 4(3):225–
246, 2006.

[45] W. Cirne, D. P. da Silva, L. Costa, E. Santos-Neto, F. V. Brasileiro, J. P. Sauv́e,
F. A. B. Silva, C. O. Barros, and C. Silveira. Running bag-of-tasksapplications on
computational grids: The MyGrid approach. InICPP, pages 407–, 2003.

[46] Southern California Earthquake Center.http://www.scec.org.

[47] K. Czajkowski, I. Foster, and C. Kesselman. Resource co-allocation in computa-
tional grids. InProc. of the 8th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC’99), page 37, 1999.

[48] D. P. da Silva, W. Cirne, and F. V. Brasileiro. Trading cycles for information: Using
replication to schedule bag-of-tasks applications on computational grids. InProc.
of the European Conference on Parallel Processing (Euro-Par’03), pages 169–180,
2003.

[49] Condor DAGMan.http://www.cs.wisc.edu/condor/dagman/.

[50] H. Dail, F. Berman, and H. Casanova. A decoupled scheduling approach for grid
application development environments.Journal of Parallel and Distributed Com-
puting, 63(5):505–524, 2003.

[51] H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S.Vadhiyar, J. Dongarra,
C. Liu, L. Yang, D. Angulo, and I. Foster. Scheduling in the grid application
development software project. InGrid resource management: state of the art and
future trends, pages 73–98. Kluwer Academic Publishers, 2004.

[52] The Distributed ASCI Supercomputer Project page.http://www.cs.vu.nl/

das/.

[53] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus:

144

a framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal, 13(3):219–237, 2005.

[54] M. Dobber, G. Koole, and R. Van Der Mei. Dynamic load balancing for a grid
application. InProc. of the International Conference on High Performance Com-
puting, pages 342–352, 2004.

[55] M. Dobber, G. Koole, and R. van der Mei. Dynamic load balancing experiments in
a grid. InProc. of the fifth IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05), pages 1063–1070, 2005.

[56] M. Dobber, R. van der Mei, and G. Koole. A prediction method for job runtimes
on shared processors: Survey, statistical analysis and newavenues.Performance
Evaluation, 64(7-8):755–781, 2007.

[57] A. B. Downey. Predicting Queue Times on Space-Sharing Parallel Computers. In
Proc. of the 11th International Symposium on Parallel Processing, pages 209–218,
1997.

[58] A. B. Downey. Using Queue Time Predictions for ProcessorAllocation. InProc. of
the Workshop on Job Scheduling Strategies for Parallel Processing, pages 35–57,
1997.

[59] Distributed Resource Management Application API (DRMAA). http://en.

wikipedia.org/wiki/DRMAA.

[60] R. Duan, R. Prodan, and T. Fahringer. Run-time optimisation of grid workflow
applications. InThe 7th IEEE/ACM International Conference on Grid Computing,
pages 33–40, 2006.

[61] C. Dumitrescu and I. Foster. GangSim: a simulator for grid scheduling studies.
In Proc. of the fifth IEEE International Symposium on Cluster Computing and the
Grid (CCGRID’05), pages 1151–1158, 2005.

[62] C. L. Dumitrescu, I. Raicu, and I. Foster. Usage SLA-basedscheduling in grids.
Concurrency and Computation: Practice and Experience, 19(7):945–963, 2007.

[63] Enabling Grids for E-sciencE Project page.http://eu-egee.com/.

[64] G. Elliott, T. J. Rothenberg, and J. H. Stock. Efficient tests for an autoregressive
unit root. Econometrica, 64(4):813–836, 1996.

[65] D. H. J. Epema, M. Livny, R. Dantzig, X. Evers, and J. Pruyne. A worldwide
flock of Condors: Load sharing among workstation clusters.Future Generation
Computer Systems, 12:53–65, 1996.

145

[66] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit,and R. Yahyapour. On
advantages of grid computing for parallel job scheduling. In Proc. of the second
IEEE International Symposium on Cluster Computing and the Grid (CCGRID’02),
pages 39–46, May 2002.

[67] C. Ernemann, B. Song, and R. Yahyapour. Scaling of workloadtraces. In D. G.
Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,Proc. of the Workshops on
Job Scheduling Strategies for Parallel Processing, volume 2862, pages 166–182,
2003.

[68] The Eternity Puzzle.http://www.eternityii.com.

[69] M. Evans, N. Hastings, and B. Peacock.Statistical Distributions. Wiley, 3rd edi-
tion, 2000.

[70] D. Feitelson and A. Weil. Utilization and predictability in scheduling the IBM SP2
with backfilling. InProc. of the 12th International Parallel Processing Symposium,
page 542, 1998.

[71] D. G. Feitelson and L. Rudolph. Toward convergence in jobschedulers for parallel
supercomputers. InProc. of Workshop on Job Scheduling Strategies for Parallel
Processing, pages 1–26, 1996.

[72] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong. The-
ory and practice in parallel job scheduling. In D. G. Feitelson and L. Rudolph,
editors,Job Scheduling Strategies for Parallel Processing, pages 1–34. Springer
Verlag, 1997.

[73] D. G. Feitelson and Larry Rudolph. Metrics and benchmarking for parallel job
scheduling. InProc. of the 12th International Parallel Processing Symposium &
9th Symposium on Parallel and Distributed Processing, volume 1459, pages 1–24,
1998.

[74] D. Fernandez-Baca. Allocating modules to processors ina distributed system.
IEEE Transactions on Software Engineering, 15(11):1427–1436, 1989.

[75] Folding@home Project page.http://folding.stanford.edu/.

[76] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.In-
ternational Journal of Supercomputer Applications, 11:115–128, 1996.

[77] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of thegrid: Enabling scalable
virtual organizations.International Jounral of Supercomputer Applications, 15(3),
2001.

146

[78] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.
Walker. Solving problems on concurrent processors. Vol. 1: Generaltechniques
and regular problems. Prentice-Hall, Inc., 1988.

[79] E. Frachtenberg and D. G. Feitelson. Pitfalls in parallel job scheduling evaluation.
In Proc. of the Workshops on Job Scheduling Strategies for Parallel Processing,
pages 257–282, 2005.

[80] E. Freeman, S. Hupfer, and K. Arnold.Javaspaces Principles, Patterns, and Prac-
tice: Principles, Patterns and Practices. The Jini Technology Series. Addison-
Wesley Longman, June 1999.

[81] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A compu-
tation management agent for multi-institutional grids. pages 237–246, 2002.

[82] N. Fujimoto and K. Hagihara. Near-optimal dynamic taskscheduling of indepen-
dent coarse-grained tasks onto a computational grid. InProc. of the International
Conference on Parallel Processing, pages 391–398, 2003.

[83] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D.J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a next
generation MPI implementation. InProc. of the 11th European PVM/MPI Users‘
Group Meeting, pages 97–104, Budapest, Hungary, 2004.

[84] Ganglia Monitoring System.http://ganglia.sourceforge.net/.

[85] N. Garg, D. Grosu, and V. Chaudhary. An antisocial strategy for scheduling mech-
anisms. InProc. of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05), 2005.

[86] Federal coordinating council for science, engineering, and technology. A Research
and Development Strategy for High Performance Computing, 1987.

[87] W. Gentzsch. Sun Grid Engine: Towards creating a compute power grid. InProc.
of the first IEEE International Symposium on Cluster Computingand the Grid
(CCGrid’01), pages 35–42, 2001.

[88] Lightweight middleware for grid computing.http://glite.web.cern.ch/
glite/.

[89] The Globus Toolkit.http://www.globus.org/toolkit/.

[90] Grid’5000 Project page.http://www.grid5000.org/.

147

[91] The Gridway metascheduler.http://gridway.org/.

[92] A. S. Grimshaw and Wm. A. Wulf. Legion - the next logical step toward the world-
wide virtual computer.Communications of the ACM, 40:252, 1996.

[93] L. He, Stephen A. Jarvis, D. P. Spooner, D. Bacigalupo, G.Tan, and G. R. Nudd.
Mapping DAG-based applications to multiclusters with background workload. In
Proc. of the Fifth IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’05), pages 855–862, 2005.

[94] S. Hongjie, F. Binxing, and Z. Hongli. A distributed architecture for network per-
formance measurement and evaluation system. InProc. of the Sixth International
Conference on Parallel and Distributed Computing Applications and Technologies,
pages 471–475, Washington, DC, USA, 2005. IEEE Computer Society.

[95] J. Hungershofer. On the combined scheduling of malleable and rigid jobs. In
Proc. of the 16th Symposium on Computer Architecture and HighPerformance
Computing, pages 206–213, 2004.

[96] J. Hungershofer, A. Streit, and J.-M. Wierum. Efficientresource management for
malleable applications. Technical Report TR-003-01, Paderborn Center for Parallel
Computing, December 2001.

[97] A. Iosup. A Framework for the Study of Grid Inter-Operation Mechanisms. PhD
thesis, Delft University of Technology, 2009.

[98] A. Iosup, C. Dumitrescu, D. H. J. Epema, H. Li, and L. Wolters. How are real
grids used? the analysis of four grid traces and its implications. InProc. of the
7th IEEE/ACM International Conference on Grid Computing (GRID’06), pages
262–269, 2006.

[99] A. Iosup and D. H. J. Epema. GRENCHMARK: A framework for analyzing, test-
ing, and comparing grids. InProc. of the sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’06), pages 313–320, 2006.

[100] A. Iosup, D. H. J. Epema, C. Franke, A. Papaspyrou, L. Schley, B. Song, and
R. Yahyapour. On grid performance evaluation using synthetic workloads. In
Proc. of the Workshop on Job Scheduling Strategies for Parallel Processing, pages
232–255, 2006.

[101] A. Iosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, and M. Livny. Inter-
Operating grids through delegated MatchMaking. InSupercomputing, 2007.

148

[102] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H. J. Epema.
The grid workloads archive.Future Generation Computer Systems, 24(7):672–686,
2008.

[103] A. Iosup, O. O. Sonmez, S. Anoep, and D. H. J. Epema. The performance of bags-
of-tasks in large-scale distributed systems. InProc. of International Symposium on
High Performance Distributed Computing (HPDC’08), pages 97–108, 2008.

[104] A. Iosup, O. O. Sonmez, and D. H. J. Epema. DGSim: Comparing grid resource
management architectures through trace-based simulation. In Proc. of the Euro-
pean Conference on Parallel Processing (Euro-Par’08), volume 5168 ofLNCS,
pages 13–25, 2008.

[105] M. A. Iverson and G. J. Follen. Run-time statistical estimation of task execution
times for heterogeneous distributed computing. InProc. of the ACM/IEEE Inter-
national Symposium on High Performance Distributed Computing, pages 263–270,
1996.

[106] M. A. Iverson and F.̈Ozg̈uner. Hierarchical, competitive scheduling of multiple
dags in a dynamic heterogeneous environment.Distributed Systems Engineering,
6(3):112–, 1999.

[107] M. A. Iverson, F. Ozguner, and L. C. Potter. StatisticalPrediction of Task Exe-
cution Times Through Analytic Benchmarking for Scheduling in a Heterogeneous
Environment.IEEE Transactions on Computers, 48:1374–1379, 1999.

[108] R. Iyer, V. Tewari, and K. Kant. Overload control mechanisms for web servers. In
Workshop on Performance and QoS of Next Generation Networks, pages 225–244,
2000.

[109] K. Jansen and H. Zhang. Scheduling malleable tasks with precedence constraints.
In Proc. of the 17th annual ACM symposium on Parallelism in Algorithms and
Architectures, pages 86–95, 2005.

[110] K. Jansen and H. Zhang. An approximation algorithm forscheduling malleable
tasks under general precedence constraints.ACM Transactions on Algorithms,
2(3):416–434, 2006.

[111] W. M. Jones, L. W. Pang, W. B. Ligon, and D. Stanzione. Bandwidth-aware co-
allocating meta-schedulers for mini-grid architectures.In Proc. of IEEE Interna-
tional Conference on Cluster Computing, pages 45–54, 2004.

149

[112] W. M. Jones, L. W. Pang, D. Stanzione, and W. B. Ligon. Jobcommunication
characterization and its impact on meta-scheduling co-allocated jobs in a mini-
grid. In Proc. of the IEEE International Symposium on Parallel and Distributed
Processing (IPDPS’04), volume 15, page 253b, 2004.

[113] Open Grid Forum: JSDL Specification 1.0.www.ggf.org/documents/GFD.
56.pdf.

[114] L. V. Kalé, S. Kumar, and J. DeSouza. A malleable-job system for timeshared
parallel machines. InProc. of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID’02), page 230, 2002.

[115] W. Kang and A. Grimshaw. Failure prediction in computational grids. InProc. of
the 40th Annual Simulation Symposium, pages 275–282, 2007.

[116] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive application-
performance modeling in a computational grid environment.In Proc. of Interna-
tional Symposium on High Performance Distributed Computing(HPDC’99), pages
47–54, 1999.

[117] G. Karypis and V. Kumar. Multilevel graph partitioning schemes. InProc. of the
International Conference on Parallel Processing, pages 113–122, 1995.

[118] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering.Journal of Parallel and Distributed Computing, 48:71–
95, 1998.

[119] J. Kay and P. Lauder. A fair share scheduler.Communications of the ACM,
31(1):44–55, 1988.

[120] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[121] T. Kielmann, H. E. Bal, S. Gorlatch, K. Verstoep, and R. F.H. Hofman. Net-
work performance-aware collective communication for clustered wide-area sys-
tems.Parallel Computing, 27(11):1431–1456, 2001.

[122] S. D. Kleban and S. H. Clearwater. Fair share on high performance computing sys-
tems: What does fair really mean? InProc. of the third IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID’03), page 146, 2003.

[123] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova. Characteriz-
ing resource availability in enterprise desktop grids.Future Generation Computer
Systems, 23(7):888–903, 2007.

150

[124] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Weglarz. Grid scheduling simula-
tions with GSSIM. InProc. of the 13th International Conference on Parallel and
Distributed Systems, pages 1–8, 2007.

[125] Y-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph
scheduling algorithms.Journal of Parallel and Distributed Computing, 59(3):381–
422, 1999.

[126] B.-D. Lee and J. M. Schopf. Run-Time Prediction of Parallel Applications on
Shared Environments. InProc. of IEEE International Conference on Cluster Com-
puting, pages 487–582, 2003.

[127] C. Lee and D. Talia. Grid programming models: Current tools, issues and direc-
tions. In G. Fox F. Berman and T. Hey, editors,Grid Computing: Making the
Global Infrastructure a Reality, pages 555–578. Wiley, 2003.

[128] J.-H. Lee, S.-H. Chin, H.-M. Lee, T.-M. Yoon, K.-S. Chung, and H.-C. Yu. Adap-
tive workflow scheduling strategy in service-based grids. In Proc. of the 2nd Inter-
national Conference on Grid and Pervasive Computing, pages 298–309, 2007.

[129] K. Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. A. Fernandes, and G. Mehta.
Adaptive workflow processing and execution in pegasus. InProc. of the 3rd Inter-
national Conference on Grid and Pervasive Computing, pages 99–106, 2008.

[130] Y. L. Lee and A. Y. Zomaya. Practical scheduling of bag-of-tasks applications on
grids with dynamic resilience.IEEE Transactions on Computers, 56(6):815–825,
2007.

[131] J. Li and R. Yahyapour. Negotiation model supporting co-allocation for grid
scheduling. InProc. of the 7th IEEE/ACM International Conference on Grid Com-
puting, pages 254–261, 2006.

[132] D. A. Lifka. The ANL/IBM SP scheduling system. InProc. of the Workshop on
Job Scheduling Strategies for Parallel Processing, pages 295–303, 1995.

[133] H. W. Lilliefors. On the Kolmogorov-Smirnov test for the exponential distribution
with mean unknown.Journal of the American Statistical Association, 64:387–389,
1969.

[134] M. Litzkow, M. Livny, and M. Mutka. Condor - A hunter of idle workstations. In
Proc. of the 8th International Conference of Distributed Computing Systems, pages
104–111, June 1988.

151

[135] J. Livny, H. Teonadi, M. Livny, and M. K. Waldor. High-throughput, kingdom-
wide prediction and annotation of bacterial non-coding rnas. PloS one, 3(9), 2008.

[136] The Load Sharing Facility. http://www.platform.com/products/

LSFfamily/.

[137] U. Lublin and D. G. Feitelson. The workload on parallelsupercomputers: modeling
the characteristics of rigid jobs.Journal of Parallel and Distributed Computing,
63(11):1105–1122, 2003.

[138] M. Maheswaran, S. Ali, H. Jay Siegel, D. Hensgen, and R. F. Freund. Dynamic
matching and scheduling of a class of independent tasks ontoheterogeneous com-
puting systems. InProc. of the Heterogeneity in Computing Workshop, pages 30–
44, 1999.

[139] N. Mansour, R. Ponnusamy, A. Choudhary, and G. C. Fox. Graph contraction for
physical optimization methods: a quality-cost tradeoff for mapping data on parallel
computers. InSupercomputing, pages 1–10, 1993.

[140] Maui scheduler. http://www.clusterresources.com/products/maui/.
Cluster Resources, Inc.

[141] C. McCann and J. Zahorjan. Processor allocation policies for message-passing
parallel computers. InProc. of the ACM SIGMETRICS conference on Measurement
and modeling of computer systems, pages 19–32, 1994.

[142] D. A. Menasće, D. Saha, S. C. S. Porto, V. Almeida, and S. K. Tripathi. Static and
dynamic processor scheduling disciplines in heterogeneous parallel architectures.
Journal of Parallel and Distributed Computing, 28(1):1–18, 1995.

[143] L. Meyer, D. Scheftner, J. Vockler, M. Mattoso, M. Wilde, and I. Foster. An oppor-
tunistic algorithm for scheduling workflows on grids. InProc. of the International
Meeting on High Performance Computing for Computational Science, pages 1–12,
2006.

[144] H. H. Mohamed.The Design and Implementation of theKOALA Grid Resource
Management System. PhD thesis, Delft University of Technology, 2007.

[145] H. H. Mohamed and D. H. J. Epema. An evaluation of the close-to-files proces-
sor and data co-allocation policy in multiclusters. InProc. of IEEE International
Conference on Cluster Computing, pages 287–298, 2004.

152

[146] H. H. Mohamed and D. H. J. Epema. The design and implementation of theKOALA

co-allocating grid scheduler. InProc. of the European Grid Conference, volume
3470 ofLNCS, pages 640–650, 2005.

[147] H. H. Mohamed and D. H. J. Epema. Experiences with theKOALA co-allocating
scheduler in multiclusters. InProc. of the 5th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’05), pages 784–791, 2005.

[148] H. H. Mohamed and D. H. J. Epema.KOALA : a co-allocating grid scheduler.
Concurrency and Computation: Practice & Experience, 20(16):1851–1876, 2008.

[149] Montage: An astronomical image engine.http://montage.ipac.caltech.
edu.

[150] J. T. Moscicki. DIANE - distributed analysis environment for GRID-enabled sim-
ulation and analysis of physics data. InProc. of the IEEE Nuclear Science Sympo-
sium Conference, pages 1617–1620.

[151] G. Mounie, C. Rapine, and D. Trystram. Efficient approximation algorithms for
scheduling malleable tasks. InProc. of the 11th ACM Symposium on Parallel Al-
gorithms and Architectures, pages 23–32, 1999.

[152] The Message Passing Interface (MPI) Standard.http://www.mcs.anl.gov/

research/projects/mpi/.

[153] Grid ready MPI Library: MC-MPI Project page.http://www.logos.ic.i.
u-tokyo.ac.jp/h_saito/mcmpi/.

[154] GridMPI Project page.http://www.gridmpi.org/.

[155] MPICH-G2 Project page.http://www3.niu.edu/mpi/.

[156] M. Mutka and M. Livny. Scheduling remote processing capacity in a workstation-
processing bank computing system. InProc. of the 7th International Conference
on Distributed Computing Systems, pages 2–9, Berlin, Germany, September 1987.

[157] Myricom Technologies.http://www.myri.com/.

[158] F. Nadeem, R. Prodan, T. Fahringer, and A. Iosup. A Framework For Resource
Availability Characterization And Online Prediction in theGrids. In CoreGRID
Integration Workshop, pages 209–224, 2008.

[159] D. Nurmi, J. Brevik, and R. Wolski. QBETS: Queue Bounds Estimation from Time
Series. InSIGMETRICS, pages 379–380, 2007.

153

[160] Open Grid Forum.http://www.gridforum.org/.

[161] A. K. Parekh and R. G. Gallager. A generalized processorsharing approach to
flow control in integrated services networks: the multiple node case.IEEE/ACM
Transactions on Networking, 2(2):137–150, 1994.

[162] S.-M. Park and M. Humphrey. Data throttling for data-intensive workflows. In
Proc. of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS’08), pages 1–11, 2008.

[163] D. Pease, A. Ghafoor, I. Ahmad, David L. Andrews, K. Foudil-Bey, T. E. Karpin-
ski, M. A. Mikki, and M. Zerrouki. PAWS: A performance evaluation tool for
parallel computing systems.IEEE Computer, 24(1):18–29, 1991.

[164] A. Plaat, H. E. Bal, and R. F. H. Hofman. Sensitivity of parallel applications
to large differences in bandwidth and latency in two-layer interconnects.Future
Generation Computer Systems, 17(6):769–782, 2001.

[165] The Portable Batch System.http://www.pbspro.com/.

[166] The Prime Number Application. http://www.mhpcc.edu/training/

workshop/mpi/samples/C/mpi_prime.c.

[167] The Parallel Workloads Archive Logs.http://www.cs.huji.ac.il/labs/
parallel/workload/logs.html.

[168] Changtao Qu. A grid advance reservation framework for co-allocation and co-
reservation across heterogeneous local resource management systems. InProc. of
the 7th International Conference on Parallel Processing andApplied Mathematics,
pages 770–779, 2007.

[169] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde.Falkon: a Fast and Light-
weight tasK executiON framework. InSupercomputing, pages 323–356, 2007.

[170] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi,
K. Blackburn, D. Meyers, and M. Samidi. Scheduling data-intensiveworkflows
onto storage-constrained distributed resources. InProc. of the 4th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid (CCGRID’04), pages
401–409, 2007.

[171] T. Roblitz and A. Reinefeld. Co-reservation with the concept of virtual resources.
In Proc. of the Fifth IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’05), pages 398–406, 2005.

154

[172] T. Röblitz, F. Schintke, and A. Reinefeld. Resource reservationswith fuzzy re-
quests: Research articles.Concurrency and Computing: Practice and Experience,
18(13):1681–1703, 2006.

[173] Rosetta@home Project page.http://boinc.bakerlab.org/rosetta/.

[174] J. Sauer. Modeling and solving multi-site schedulingproblems. In W. van Wezel,
R. J. Jorna, and A. M. Meystel, editors,Planning in Intelligent Systems: Aspects,
Motivations and Methods.

[175] J. M. Schopf. Ten actions when grid scheduling: the user as a grid scheduler. In
Grid resource management: state of the art and future trends, pages 15–23. Kluwer
Academic Publishers, 2004.

[176] F. J. Seinstra and J. M. Geusebroek. Color-based objectrecognition on a grid. In
ECCV Workshop on Computation Intensive Methods for Computer Vision, May
2006.

[177] F. J. Seinstra, J.-M. Geusebroek, D. Koelma, C. G. M. Snoek, M. Worring, and
A. W. M. Smeulders. High-performance distributed video content analysis with
parallel-horus.IEEE MultiMedia, 14(4):64–75, 2007.

[178] SETI@home Project page.http://setiathome.ssl.berkeley.edu/.

[179] K. H. Shum. Adaptive Distributed Computing through Competition. In Proc. of
the 3rd International Conference on Configurable DistributedSystems, page 220,
1996.

[180] D. P. Da Silva, W. Cirne, F. V. Brasileiro, and C. Grande. Trading cycles for infor-
mation: Using replication to schedule bag-of-tasks applications on computational
grids. InProc. of European Conference on Parallel Processing, pages 169–180,
2003.

[181] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times Using His-
torical Information. InProc. of the Workshop on Job Scheduling Strategies for
Parallel Processing, pages 122–142, 1998.

[182] W. Smith, V. Taylor, and I. Foster. Using Run-Time Predictions to Estimate Queue
Wait Times and Improve Scheduler Performance. InProc. of the Workshop on Job
Scheduling Strategies for Parallel Processing, pages 202–219, 1999.

[183] D. Snelling. UNICORE and the open grid services architecture. Grid Comput-
ing:Making the Global Infrastructure a Reality, pages 701–712, 2003.

155

[184] A. C. Sodan, C. Doshi, L. Barsanti, and D. Taylor. Gang scheduling and adap-
tive resource allocation to mitigate advance reservation impact. InProc. of the
6th IEEE/ACM International Symposium on Cluster Computing andthe Grid (CC-
GRID’06), pages 649–653, 2006.

[185] O. O. Sonmez, B. Grundeken, H. H. Mohamed, A. Iosup, and D. H. J. Epema.
Scheduling strategies for cycle scavenging in multicluster grid systems. InProc.
of the ninth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’09), pages 12–19, 2009.

[186] O. O. Sonmez, H. H. Mohamed, and D. H. J. Epema. On the benefit of proces-
sor co-allocation in multicluster grid systems.IEEE Transactions on Parallel and
Distributed Systems. to appear in 2010.

[187] O. O. Sonmez, H. H. Mohamed, and D. H. J. Epema. Communication-aware job
placement policies for theKOALA grid scheduler. InProc. of the second IEEE
International Conference on e-Science and Grid Computing, pages 79–86, 2006.

[188] O. O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, andD. H. J. Epema. Perfor-
mance analysis of dynamic workflow scheduling in multicluster grids. To appear
in the Proc. of the International Conference on High Performance and Distributed
Computing conference (HPDC’10).

[189] O. O. Sonmez, N. Yigitbasi, A. Iosup, and D. H. J Epema. Trace-based evaluation
of job runtime and queue wait time predictions in grids. InProc. of International
Symposium on High Performance Distributed Computing (HPDC’09), pages 111–
120, 2009.

[190] SPECCPU Team. SPEC CPU2006. Standard Performance.http://www.spec.

org/cpu2006/.

[191] V. Springel. The cosmological simulation code gadget-2. Monthly Notices of the
Royal Astronomical Society, 364(4):1105–1134, 2005.

[192] H. Stark and J. W. Woods.Probability, random processes, and estimation theory
for engineers. Prentice-Hall, Inc., 1986.

[193] C. Stratan, A. Iosup, and D. H. J. Epema. A performance study of grid workflow
engines. InProc. of the 9th IEEE/ACM International Conference on Grid Comput-
ing, pages 25–32, 2008.

[194] TeraGrid Project page.http://www.teragrid.org/.

156

[195] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
condor experience.Concurrency - Practice and Experience, 17(2-4):323–356,
2005.

[196] H. Topcuoglu, S. Hariri, and M. Y. Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing.IEEE Transactions on Parallel and
Distributed Systems, 13(3):260–274, 2002.

[197] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling using system-generated
predictions rather than user runtime estimates.IEEE Transactions on Parallel and
Distributed Systems, 18(6):789–803, 2007.

[198] G. Utrera, J. Corbalan, and J. Labarta. Implementing malleability on mpi jobs. In
Proc. of the 13th International Conference on Parallel Architectures and Compila-
tion Techniques, pages 215–224, 2004.

[199] S. Vadhiyar and J. Dongarra. Self adaptability in gridcomputing. Concurrency
and Computation: Practice and Experience, 17(2-4):235–257, February 2005.

[200] S. S. Vadhiyar and J. Dongarra. Srs: A framework for developing malleable and
migratable parallel applications for distributed systems. Parallel Processing Let-
ters, 13(2):291–312, 2003.

[201] S. S. Vadhiyar and J. J. Dongarra. A metascheduler for the grid. InProc. of the
11th IEEE International Symposium on High Performance Distributed Computing
(HPDC’02), page 343, 2002.

[202] R. F. van der Wijngaart. NAS parallel benchmarks version 2.4. Technical Report
NAS-02-007, NASA Advanced Supercomputing division, October 2002.

[203] R. van Nieuwpoort, G. Wrzesinska, C. J. H. Jacobs, and H. E.Bal. Satin: a high-
level and efficient grid programming model.ACM Transactions on Programming
Languages and Systems (TOPLAS), 32(3), 2010.

[204] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficientload balancing for
wide-area divide-and-conquer applications. InProc. of the 8th ACM SIGPLAN
symposium on Principles and Practices of Parallel Programming, pages 34–43,
2001.

[205] K. van Reeuwijk, R. van Nieuwpoort, and H. E. Bal. Developing java grid applica-
tions with ibis. InProc. of the European Conference on Parallel Processing, pages
411–420, 2005.

157

[206] G. von Laszewski and M. Hategan. Java CoG Kit Karajan/Gridant Workflow
Guide.http://www.cogkit.org.

[207] C. Weng and X. Lu. Heuristic scheduling for bag-of-tasks applications in combi-
nation with qos in the computational grid.Future Generation Computer Systems,
21(2):271–280, 2005.

[208] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific workflows in
the ASKALON grid environment.Special Interest Group on Management of Data,
34(3):56–62, 2005.

[209] R. Wolski. Experiences with predicting resource performance on-line in computa-
tional grid settings. InSIGMETRICS, pages 575–611, 2006.

[210] J. Yang, I. Ahmad, and A. Ghafoor. Estimation of execution times on heteroge-
neous supercomputer architectures. InInternational Conference on Parallel Pro-
cessing, pages 219–226, 1993.

[211] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid comput-
ing. ACM Special Interest Group On Management of Data, 34(3):44–49, 2005.

[212] J. Yu, R. Buyya, and R. Kotagiri.Workflow Scheduling Algorithms for Grid Com-
puting. Springer, Berlin Germany, 2008.

[213] Z. Yu and W. Shi. An adaptive rescheduling strategy forgrid workflow applica-
tions. InProc. of the International Parallel & Distributed Processing Symposium
(IPDPS’10), page 115, 2007.

[214] Y. Zhang, C. Koelbel, and K. Cooper. Hybrid re-scheduling mechanisms for work-
flow applications on multi-cluster grid. InProc. of the 9th IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid’09), pages 116–123, 2009.

[215] Y. Zhang, W. Sun, and Y. Inoguchi. Predict task runningtime in grid environments
based on cpu load predictions.Future Generation Computer Systems, 24(6):489–
497, 2008.

[216] H. Zhao and R. Sakellariou. Scheduling multiple DAGs onto heterogeneous sys-
tems. InHeterogeneity in Computing Workshop, April 2006.

158

159

Acknowledgments

It is a pleasure to acknowledge the people who have contributed to this thesis. First and
foremost, I would like to thank my research supervisor, DickEpema, who has supported
me throughout my doctoral study with his patience and knowledge while allowing me the
room to work in my own way.

I offer my sincerest gratitude to Henk Sips, the head of the department of Software
Technology and my promoter, who has been always there to listen and give advice.

I also thank the rest of my graduate committee members for their constructive com-
ments on this thesis, and clearing their busy schedules to participate in my defense session.

I am indebted to my colleagues Hashim Mohamed, Alexandru Iosup, and Nezih
Yi ğitbaşı for their support, contributions, and true friendship. Hashim’s and Alex’s men-
torship, and Nezih’s enthusiasm have all facilitated my research. This dissertation could
not have been accomplished without them.

It was a pleasure to work with Catalin Dumitrescu, Mathieu Jan, and J́eŕemy Buisson
who were all once visitor researchers in our group. The outcome of our collaborative
work constitutes an important part of this thesis. Special thanks go to Bart Grundeken,
a former MSc student in our group, for his hard work in our cycle scavenging project.
Many thanks to Paulo Anita for solving all our DAS-related problems. I am very grateful
to all my colleagues at the PDS floor, who made it a convivial place to work.

My friends Zülküf Genç and Zekeriya Erkin deserve special mention for all their
support and friendship that they have given me during my study in TU Delft. I am sure
the (non-)scientific chats we had at 3pm tea-hours at the canteen of the EWI building
contributed to this thesis one way or another. I wish you guyssuccess with your thesis.

My special thanks go to my friend Fatmaİnan (Fatoş), who helped me in translating
the summary (samenvatting) of this thesis into Dutch.

Delft is a safe, attractive, and historic town, but boring unless you have good friends
who can turn it into a vibrant city. In this sense, I owe my gratitude to my former house-
mates (aka Ternate Boys), all the good friends I have made during my stay in Delft as
well as the ones who visited me, and in particular my footballteammates in DIY and
Veteranspor.

My deepest gratitude goes to my family for their unflagging support and love through-

160

out my life. Last but not least, thanks to Beste Ertürk, my beloved girlfriend who has
always supported me with love and patience (as well as with delicious food) during the
writing of this thesis.

161

Summary

Grid computing appeared in the mid 1990s with the vision of sharing geographically
dispersed large computational resources for executing computation-intensive scientific
applications. Today, we can name numerous grid projects that run successfully to solve
challenging scientific problems such as the grid project of European Organization for
Nuclear Research (CERN), which combines thousands of computers worldwide (over
200 sites in about 30 countries) to store and analyze huge amounts of data, which are
produced by the Large Hadron Collider (LHC) at CERN.

The resources in a grid system are typically heterogeneous since they belong to dif-
ferent administrative domains, and they are managed by proprietary policies. To cope
with this heterogeneity, a grid relies on a layer of middleware, which offers transparent
access to the distributed resources and simplifies the collaboration between organizations.
Grids also need high-level scheduling systems that use gridmiddleware in order to map
application tasks to resources and then manage their execution on behalf of users. How-
ever, scheduling in grids is challenging due to the dynamic nature of the grid resources
as well as to the lack of control of those resources. The wide variety in the structural
and the communication characteristics of the applicationssubmitted to grids further com-
plicate grid scheduling, and may lead to poor or unpredictable performance unless these
characteristics are taken into account.

In this thesis we address the challenge of designing and analyzing realistic and
practical application-oriented scheduling mechanisms inmulticluster grid systems.
Application-oriented scheduling focuses on the optimization of user-centric performance
criteria, such as application execution time, with methodsthat are specialized for differ-
ent types of applications. In this thesis we cover a wide-range of grid application types,
including parallel applications that may need co-allocation or malleability, bags-of-tasks
that can benefit from cycle scavenging, and workflow applications that may push the
system to its limits with their computation and data requirements. We investigate the per-
formance of our scheduling mechanisms and policies in a realmulticluster grid system,
the DAS, using ourKOALA multicluster grid scheduler, as well as with simulations using
realistic scenarios.

In Chapter 1 of this thesis we give an overview of application-oriented scheduling

162

in multicluster grids, in particular, we focus on the challenges of application-oriented
scheduling addressed by this thesis. In addition, we describe the testbed that we have
used in our implementations and experiments.

In Chapter 2 we assess the benefit of processor co-allocation for parallel applications,
that is, the simultaneous or coordinated allocation of processing resources at multiple
clusters to single applications. We conduct our investigation on DAS-3 using ourKOALA

grid scheduler, as well as in a simulated environment using our DGSim tool. We evaluate
the impact of various factors on the performance of co-allocation such as the commu-
nication characteristics of the parallel applications, the communication and computation
characteristics on the resources, the level of resource contention in the system, and the
scheduling policy that maps the tasks of a parallel application to the resources. Notably,
we find that for very communication-intensive parallel applications, co-allocation is dis-
advantageous since it increases execution times extremely. In addition, we demonstrate
that in systems where the heterogeneity in inter-cluster communication speeds is high,
using network performance metrics in resource selection, such as the latency, increases
the performance of co-allocation for communication-intensive parallel applications.

In Chapter 3 we extend ourKOALA grid scheduler with support for malleable par-
allel applications that are able to use varying amounts of resources such as processors
during their execution. We propose two malleability management policies, Favor Previ-
ously Started Malleable Applications (FPSMA) and Equi-Grow&Shrink (EGS), to man-
age dynamic resource allocation in the scheduler for malleable applications that have
already been running in the system. FPSMA distributes any additional processors to the
malleable applications starting from the application thathas started earliest, while EGS
spreads them equally among all running malleable applications. Each of these policies
can be coupled with one of two approaches which either favor running or queued mal-
leable applications when additional resources become available. Our experiments show
that using malleability helps to increase system utilization as well as to decrease the ex-
ecution times of parallel applications. We also find that therelative performance of our
malleability management policies varies according to the design choice as to when to
initiate a malleability management policy.

In Chapter 4 we extendKOALA with support for scheduling cycle scavenging applica-
tions, of which parameter sweeps are a prime example. The implemented cycle scaveng-
ing mechanism inKOALA runs alongside the regular grid scheduling, being unobtrusive
to the jobs of higher priority. We propose two policies that try to achieve fair-share re-
source allocation among cycle scavenging users. The first policy distributes or reclaims
the idle processing nodes evenly among cycle scavenging users, regardless of the cluster
these idle nodes belong to. The second policy, on the other hand, partitions or reclaims
the idle nodes evenly such that each cycle scavenging user isassigned an equal share of
idle nodes on each cluster. We show with experiments conducted in the DAS-3 that the

163

latter policy outperforms the former in terms of fairness.
In Chapter 5 we present a detailed and systematic evaluation of the performance of

scheduling bags-of-tasks in multicluster grids through realistic simulations. First, we
propose a taxonomy of scheduling policies for bags-of-tasks that focuses on informa-
tion availability and accuracy. Then, we explore the large design space of bag-of-task
scheduling along five axes, which are the task selection policy, the workload, the infor-
mation policy, the task scheduling policy, and the resourcemanagement architecture. We
demonstrate that the task scheduling policies that make useof the available task and re-
source information perform better. We also find that the taskselection policy is important
only in busy systems, and we find that in terms of the resource management architecture,
the centralized policy achieves the best performance.

In Chapter 6 we present a comprehensive and realistic investigation of the perfor-
mance of a wide range of dynamic workflow policies in multicluster grids. We first intro-
duce a scheduling taxonomy based on the amount of (dynamic) information used in the
scheduling process, and we map to this taxonomy seven scheduling policies that cover the
full spectrum of dynamic information use. Then we investigate the performance of these
policies in realistic scenarios using both simulations andreal system experiments. We find
that none of the policies delivers good performance across all the investigated scenarios,
and we find that task throttling, that is, limiting the per-workflow number of tasks dis-
patched to the system, prevents the cluster head-nodes frombecoming overloaded while
not unduly decreasing the runtime performance.

In Chapter 7 we investigate the performance and benefit of predicting job execution
times and queue wait times in multicluster grids with simulations using traces collected
from various research and production grid environments. Our analysis reveals that the
time series methods for predicting job execution times, andprediction methods that give
upper-bounds for job queue wait times, yield low accuracy because of the frequent burst
job submissions that we observe in grids. In addition, we investigate whether prediction-
based grid-level scheduling policies can have better performance than policies that do not
use predictions. We find that a better accuracy of the predictions does not imply a better
performance of grid scheduling.

164

165

Samenvatting

Grid computing ontstond in de jaren 1990 met als visie het delen van grote hoeveelheden
geografisch gespreide rekenkracht voor het uitvoeren van rekenintensieve wetenschap-
pelijke applicaties. Tegenwoordig kunnen er meerdere grid-projecten worden genoemd
die succesvol complexe wetenschappelijke problemen kunnen oplossen, zoals het Grid-
project van de Europese Organisatie voor Kernonderzoek (CERN), dat duizenden com-
puters over de hele wereld met elkaar verbindt (meer dan 200 vestigingen in ongeveer 30
landen) om de grote hoeveelheden data te kunnen opslaan en analyseren die geproduceerd
worden door de Large Hadron Collider (LHC) bij CERN.

De recources in een grid-systeem zijn typisch heterogeen omdat ze behoren tot ver-
schillende administratieve domeinen, en ieder worden beheerd volgens hun eigen policy.
Om te kunnen omgaan met deze heterogeniteit, zijn grids gebaseerd op een laag van mid-
dleware, die transparante toegang biedt tot de gedistribueerde resources en die de samen-
werking tussen organisaties vereenvoudigt. Grids hebben tevens hoog-niveau schedul-
ing systemen nodig die gebruik maken van grid middleware om resources te kunnen
toewijzen aan de taken van applicaties en vervolgens de uitvoering daarvan te beheren
namens de gebruikers. Echter, scheduling in grids is een uitdaging vanwege de dyna-
mische aard van de grid resources alsmede het gebrek aan controle over deze resources.
De grote verscheidenheid in de structuur en communicatie-kenmerken van de applicaties
aangeboden aan grids maakt grid scheduling nog complexer, en kan leiden tot slechte of
onvoorspelbare prestaties, tenzij met deze kenmerken rekening wordt gehouden. In dit
proefschrift gaan we de uitdaging aan van het ontwerpen en analyseren van realistische
en praktische applicatie-georiënteerde scheduling mechanismen in multicluster grid sys-
temen. Applicatie-georiënteerde scheduling richt zich op de optimalisatie van gebrui-
kersgerichte prestatiecriteria, zoals de verwerkingstijd van applicaties, met methoden die
zijn gespecialiseerd voor verschillende soorten applicaties. In dit proefschrift bestrijken
we een breed scala van grid applicatietypen, zoals parallelle applicaties die co-allocatie
of “kneedbaarheid” nodig kunnen hebben,bags-of-tasksdie kunnen profiteren vancycle-
scavenging, en workflow applicaties die het systeem met hun vereisten aan reken- en
datacapaciteit tot het uiterste kunnen dwingen. We onderzoeken de prestaties van onze
scheduling mechanismen en policies in een echt multicluster grid-systeem, de DAS, met

166

behulp van onzeKOALA multicluster grid scheduler, en met simulaties met behulp van
realistische scenario’s.

In Hoofdstuk 1 van dit proefschrift geven we een overzicht van applicatie-
georïenteerde scheduling in multicluster grids, en richten we ons met name op de uitda-
gingen van applicatie-georiënteerde scheduling die aangepakt worden in dit proefschrift.
Daarnaast beschrijven we het testbed dat we hebben gebruiktin onze implementaties en
experimenten.

In Hoofdstuk 2 beoordelen we de voordelen van processor co-allocatie voor paral-
lelle applicaties, dat wil zeggen, de gelijktijdige of gecoördineerde allocatie van proces-
soren in meerdere clusters aan individuele applicaties. Wevoeren ons onderzoek uit op
de DAS-3 gebruikmakend van onzeKOALA grid scheduler, evenals in een gesimuleerde
omgeving met behulp van onze DGSim simulator. We evalueren het effect van de ver-
schillende factoren op de prestaties van co-allocatie, zoals de communicatiekenmerken
van parallelle applicaties, de communicatie- en de computionele kenmerken van de re-
sources, het niveau van de resource contentie in het systeem, en de scheduling policy
die resources toewijst aan de taken van een parallelle applicatie. We concluderen dat
voor zeer communicatie-intensieve parallelle applicaties co-allocatie nadelig is, omdat de
verwerkingstijdtijd er enorm door toeneemt. Bovendien laten we zien dat in systemen
waarin de heterogeniteit in inter-cluster communicatiesnelheden hoog is, het gebruik van
netwerkprestatiemetrieken in de resource-selectie, zoals delatency, de prestaties van co-
allocatie voor communicatie-intensieve parallelle applicaties verbetert.

In Hoofdstuk 3 breiden we onzeKOALA grid scheduler uit met ondersteuning voor
kneedbare parallelle applicaties die in staat zijn om wisselende hoeveelheden resources
zoals processoren tijdens hun executie te gebruiken. We stellen hiervoor twee policies
voor, Favor Previously Started Malleable Applications (FPSMA) en Equi-Grow&Shrink
(EGS), om dynamische resource-allocatie in de scheduler tebewerkstelligen voor kneed-
bare applicaties die reeds gedraaid hebben in het systeem. FPSMA verdeelt extra pro-
cessoren over de kneedbare applicaties beginnend met de applicatie die als eerste is ge-
start, terwijl EGS deze gelijkelijk verdeelt over alle draaiende kneedbare applicaties. Elk
van deze policies kan gekoppeld worden aan een van de twee benaderingen die extra
vrijkomende resources ofwel aan draaiende ofwel aan wachtende kneedbare applicaties
toewijzen. Onze experimenten tonen aan dat het gebruik van kneedbaarheid helpt om de
bezettingsgraad van het systeem te verhogen, en tevens om deverwerkingstijd van paral-
lele applicaties te reduceren. We hebben tevens gemerkt datde relatieve prestaties van
onze twee policies varieert naar gelang de ontwerpkeuze vanhet tijdstip van het initïeren
van zo’n policy.

In Hoofdstuk 4 breiden weKOALA uit met ondersteuning voor de scheduling van
cycle-scavengingapplicaties, waarvanparameter sweepseen goed voorbeeld zijn. Het
in KOALA gëımplementeerdecycle-scavengingmechanisme draait naast de reguliere grid

167

scheduling, onzichtbaar voor de jobs met een hogere prioriteit. Wij stellen twee policies
voor die proberen omfair-shareresource-allocatie tussen de gebruikers vancycle scav-
engingte bereiken. De eerste policy verdeelt of vordert processoren gelijkelijk over de
gebruikers vancycle-scavenging, ongeacht de cluster waartoe ze behoren. De tweede
policy daarentegen partitioneert of vordert de processoren gelijkelijk over alle gebrui-
kers vancycle scavengingin iedere cluster. We tonen met experimenten uitgevoerd in de
DAS-3 aan dat de tweede policy beter presteert dan de eerste in termen van fairness.

In Hoofdstuk 5 presenteren we een gedetailleerde en systematische evaluatie van de
prestaties van de scheduling policies voorbags-of-taksin multicluster grids door mid-
del van realistische simulaties. Ten eerste stellen we een taxonomie voor van scheduling
policies voorbags-of-tasksdie is gebaseerd op de beschikbaarheid en nauwkeurigheid van
informatie. Vervolgens onderzoeken we de grote ontwerpruimte van bag-of-task schedul-
ing langs vijf assen, te weten de policy voor taakselectie, de werklast, de informatie-
policy, de taak scheduling policy, en de architectuur voor het beheer van de resources.
We laten zien dat de taak scheduling policies die gebruik maken van de beschikbare in-
formatie omtrent taken en resources beter presteren. Wij laten tevens zien dat de policy
voor taakselectie alleen van belang is in drukke systemen, en we laten zien dat de gecen-
traliseerde policy in termen van de resource management architectuur zorgt voor de beste
prestaties.

In Hoofdstuk 6 presenteren we een uitvoerig en realistisch onderzoek naar de
prestaties van een breed scala aan dynamische workflow policies in multicluster grids.
We introduceren eerst een scheduling taxonomie gebaseerd op de hoeveelheid (dyna-
mische) informatie die gebruikt wordt in het scheduling proces, en we categoriseren
zeven scheduling policies die het volledige spectrum van dynamisch informatiegebruik
bestrijken aan de hand van deze taxonomie. Vervolgens onderzoeken we de prestaties
van deze policies in realistische scenario’s met behulp vanzowel simulaties als met echte
systeemexperimenten. Wij laten zien dat geen van de policies goede prestaties levert in
alle onderzochte scenario’s, en dat taakthrottling, dat wil zeggen het beperken van het
aantal taken per workflow dat in het systeem draait, voorkomtdat dehead nodesvan de
clusters worden overbelast zonder de verwerkingstijden van de workflows al te zeen te
verslechteren.

In Hoofdstuk 7 onderzoeken we de prestaties en de voordelen van het voorspellen
van de verwerkingstijden en wachttijden van jobs in multicluster grids met simulaties met
behulp vantracesvan verschillende onderzoeks- en productiegrids. Onze analyse toont
aan dat tijdreeksmethoden voor het voorspellen van verwerkingstijden en voorspellings-
methoden die bovengrenzen geven voor wachttijden, niet ergnauwkeurig zijn vanwege de
frequenteburstsin de job-aankomsten in grids. Daarnaast onderzoeken we of grid-level
scheduling policies gebaseerd op voorspellingen betere prestaties leveren dan policies die
geen voorspellingen gebruiken. We vinden dat een grotere nauwkeurigheid van de voor-

168

spellingen niet leidt tot betere prestaties in grid scheduling.

169

About the author

Ömer Ozan S̈onmez was born in Istanbul, Turkey, on September 6th, 1980. He received
a BSc degree in computer engineering fromİstanbul Technical University, Turkey, in
2003, and MSc degree in computer science from the Koç University, Turkey, in 2005. In
November 2005, he joined the Parallel and Distributed Systems Group of Delft University
of Technology, Delft, The Netherlands, as a PhD student.

His research interests focus on resource management and scheduling in multiclus-
ter systems and in particular grids. Throughout his academic career, he assisted several
courses, gave lectures, and supervised an MSc student. He has several publications in
prestigious conference proceedings and journals. Since November 2009, he has been
working as a researcher in the same department where he pursued his PhD.

Ozan’s main personal enjoyments and interests are throwingbarbecue parties, having
Belgian beers with friends, traveling, watching movies, andwatching&playing football.

List of referred publications

Journal papers

• O. O. Sonmez, H. H. Mohamed, and D. H. J. Epema. On the Benefit of Processor
Co-Allocation in Multicluster Grid Systems.to appear in IEEE Transactions on
Parallel and Distributed Systems.

• O. O. Sonmez, and A. Gursoy. A Novel Economic-Based Scheduling Heuristic
for Computational Grids.Journal of High Performance Computing Applications,
21(1), pages. 21-29, 2007.

Conference papers

• O. O. Sonmez, M. N. Yigitbasi, S. Abrishami, A. Iosup, and D.H.J. Epema. Per-
formance Analysis of Dynamic Workflow Scheduling in Multicluster Grids. to
appear in Proc. of the ACM/IEEE International Symposium on High Performance
Distributed Computing (HPDC’10).

170

• O. O. Sonmez, M. N. Yigitbasi, A. Iosup, and D. H. J. Epema. Trace-Based Eval-
uation of Job Runtime and Queue Wait Time Predictions in Grids. In Proc. of the
ACM/IEEE International Symposium on High Performance Distributed Computing
(HPDC’09), pages. 111-120, 2009.

• O. O. Sonmez, B. Grundeken, H. H. Mohamed, A. Iosup, and D. H. J.Epema.
Scheduling Strategies for Cycle Scavenging in MulticlusterGrid Systems.In Proc.
of the 9th IEEE International Symposium on Cluster Computing and the Grid (CC-
Grid’09), pages. 12-19, 2009.

• A. Iosup, O. O. Sonmez, and D. H. J. Epema. DGSim: Comparing Grid Resource
Management Architectures Through Trace-Based Simulation.In Proc. of the Eu-
ropean Conference on Parallel Processing (Euro-Par’08), pages. 13-25, 2008.

• A. Iosup, O. O. Sonmez, S. Anoep, and D. H. J. Epema. The Performance of
Bags-of-Tasks in Large-Scale Distributed Computing Systems. In Proc. of the
ACM/IEEE International Symposium on High Performance Distributed Computing
(HPDC’08), pages. 97-108, 2008.

• A. Iosup, M. Jan, O. O. Sonmez, and D. H. J. Epema. On the Dynamic Resource
Availability in Grids. In Proc. of the IEEE International Conference on Grid Com-
puting, pages. 26-33, 2007.

• A. Iosup, M. Jan, O. O. Sonmez, and D. H. J. Epema. The Characteristics and
Performance of Groups of Jobs in Grids,In Proc. of the European Conference on
Parallel Processing (Euro-Par’07)pages. 382-393, 2007.

• J. Buisson, O. O. Sonmez, H. H. Mohamed, W. Lammers, and D. H. J.Epema.
Scheduling Malleable Applications in Multicluster Systems, In Proc. of the IEEE
International Conference on Cluster Computing, pages. 372-381, 2007.

• C. Dumitrescu, A. Iosup, O. O. Sonmez, H. H. Mohamed, and D. H. J. Epema.
Virtual Domain Sharing in e-Science based on Usage Service Level Agreements.
In Proc. of the CoreGrid Symposium, pages. 15-25, 2007.

• O. O. Sonmez, H. H. Mohamed, and D. H. J. Epema, Communication-Aware Job
Placement Policies for the Koala Grid Scheduler.In Proc. of the IEEE International
Conference on e-Science, pages. 79-87, 2006.

• O. O. Sonmez, A. Gursoy, Comparison of Pricing Policies for a Computational
Grid Market. In Proc. of the International Conference on Parallel Processing and
Applied Mathematics, pages. 766-773, 2005.

