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Chapter 1

Introduction

The term ‘grid computing’ was coined in the mid 1990s to décthe seamless, se-
cure, and coordinated sharing of geographically disteuwomputer systems in order to
solve computationally demanding problems in science,re@ging, and industry [77].
The name grid has been given as an analogy to the power gridghva idea that com-
putational resources should be obtained as swiftly asralatenergy by only plugging
into a grid. Over the last decade, numerous national andniaienal grid computing
systems have been deployed worldwidgpically joining multiple, geographically dis-
tributed, autonomous cluster systems with high-speed-aida interconnections. The
EGEE Grid [63] across Europe, TeraGrid [194] in the USA, Gi®0 [90] in France,
and the DAS system [52] in the Netherlands, which will be dbésd in detail in Sec-
tion 1.4.1, are some examples of such systems. Varioustsicicmmunities—from
fields as diverse as high energy physics, earth sciencedifasdiences- use these grid
systems to run their applications, which have widely ddfdrcharacteristics that pose
unique resource requirements to the grid.

The underlying challenges of grid computing, includingorgge transparency, secu-
rity, application execution and file management, have besdhaddressed by grid middle-
ware solutions [88, 89, 92, 183]. Grids also need high-lsebkduling (meta-scheduling)
systems [33, 38, 91, 148] that use grid middleware in ordenap application tasks to
resources and then manage their execution on behalf of. ugéinde vast numbers of
powerful computers exist in grids, the problem of assigringputations and data to
them in such a way as to optimize application performancecisadienging task due to
the complex nature of the grid systems, as well as to the conmation and structural
characteristics of the applications. Further compligatims situation are the competing
needs of users. In this thesis we address the challengeighdesand analyzing realis-
tic and practical application-oriented scheduling meddras in multicluster grid systems.
Application-oriented scheduling in grids aims to optimizer-centric performance cri-

1A broad list of grid projects is available at: http://wwwdgomputing.com/



teria, such as application execution time, with methodsigpeed for different types of
applications. However, the vast amount of research on egifn-oriented scheduling
methods in grids does not propose practical solutions dits tmnrealistic assumptions
about grid environments. The grid community still needdisga grid-level scheduling
solutions—preferably deployed and evaluated in real systerttgat would improve the
execution performance of certain types of applicationsortiter to address this need, in
this thesis, we propose various application-oriented cueliveg policies, most of which
we have implemented and evaluated in a real multicluster gmvironment, in addition
to simulation-based experiments in which we use realisgnarios.

The remaining part of this chapter is organized as followsSéction 1.1, we give an
overview of scheduling in multicluster grids, while in Sect1.2, we describe the com-
mon application types that we encounter in grids. In Secti@nwe present the problem
statement of this thesis. In Section 1.4, we describe théatudter grid system, the grid
scheduler, and the simulation environment that we have insear implementations and
experiments. Finally, in Section 1.5, we present the rebezontributions and outline the
structure of this thesis.

1.1 An overview of scheduling in multicluster grids

Today’s grid computing systems vary widely in the techn@e@g@nd standards they use,
as well as in their structure and usage scenarios. Howdweegiim is very similar in all
of these cases, that is, exploiting a diverse set of ressuogether for the sake of the
efficient execution of applications. Therefore, resour@agement, and in particular
scheduling, plays an important role in obtaining bettercexen performance for the
applications. In this section, we present the main conaggsheduling in multicluster
grids through a generic scheduling framework.

1.1.1 Key aspects and organization

Grid scheduling can be defined as the process of assigniagqajyid resources that span
multiple administrative sites. This process is typicalbnd with the goal of minimizing
the turn around time of a job. We refer to a job as the appbecatihat a user wants to
execute in a grid. In addition, we refer to a site as a set afgssing and data resources,
as well as a local resource manager (scheduler), which nutiseofront-end machine of
the site, in a single administrative unit. Figure 1.1 dep&cgeneric scheduling framework
for multicluster grids. Below, we describe the main elemgihis local resource manager,
the grid middleware, and the grid scheduler, which togetheke up this framework.
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Figure 1.1: A generic scheduling framework for multiclusjeds.

Local resource manager

Resources in a single site are managed by a Local Resource &fafhdjM), which
provides low-level resource allocation and schedulinglierjobs of both local and grid
users. A local user can use the resources of the local sites stiliated with, while a
grid user can use resources from multiple such sites to wdhierhas granted access. An
LRM has exclusive control over its resources, that is, no bsbe scheduled on those
resources without using the LRM. Jobs that are submitted tdRvi are initially placed
into queues until there are enough idle computing nodesr@gssors) to execute the
jobs. After that, the LRM dispatches the jobs to the assigmel®s, and then manages the
job execution until its completion, and finally, returns tiesults to the submitting party.
LRMs can be queried to retrieve information about the propeudf the system that they
manage, and information about the queued and scheduled kbdsever, the level of
detail of the information provided can be limited if systeoligy restrictions apply.

Most LRMs, including the Portable Batch System (PBS-Pro) [1&% Sun Grid
Engine (SGE) [87], LoadLeveler [1], and the Load Sharinglfga¢LSF) [136], focus on
maximizing processor throughput and utilization, and miaing the average wait time
and response time of jobs. Typical installations of such LRIs the first-come first-
served (FCFS) with backfilling [70,132] as the schedulinggyoFCFS simply considers
jobs for dispatch in their arrival order, while backfilling an optimization of FCFS that
tries to balance the goals of utilization and maintaining B@Fder. Backfilling requires
users to provide information in advance on the maximum jaxretion time. While the
job at the head of the queue is waiting, backfilling allowssjetith smaller processor



requirements to be dispatched, provided that they wouldlelaty the execution of the
job at the head of the queue. In addition to traditional joesluling policies, some of
the LRMs (e.g., PBS-Pro [165] and Maui [140]) also support namheanced techniques,
including advance reservations, cycle scavenging, péedsding, and job checkpointing
and restart.

LRMs are typically designed for single administrative donsaiand are usually con-
figured in a way to give priority to the jobs of the local usevethe jobs of grid users.
The agreements on the usage of the resources among thes plaati@re involved in the
grid are usually defined by Service Level Agreements (SLB2).[These agreements de-
fine specific policies that state who can access the resqimaesand when the resources
can be used, and other such criteria.

Grid middleware

Grid computing often requires the use of a middleware softw@mitigate the complexity
of integrating distributed autonomous systems. Grid ne@iddie intermediates between
grid applications and the grid hardware infrastructurel terefore, it hides the under-
lying physical infrastructure from the users and from thstvaajority of programmers.
In doing so, grid middleware offers transparent access toda wariety of distributed
resources to users and simplifies the collaboration betwegamizations.

Grid middleware such as the Globus Toolkit [76, 89], Legi®8][ UNICORE [183],
and gLite [88] have contributed a lot to the growth of gridsdimplifying grid access
and usage. Among these middlewares, the Globus Toolkieibdéist known, and it is the
one that we use in some of the work of this thesis. Globus cepa set of modules
each of which defines an interface that users and higherdeveices can use to invoke
that module’s mechanisms [89]. These modules implemeidiaionental services, such as
resource management, security, data management, and cocatens. For instance, the
Globus Resource Allocation Manager (GRAM) allows interfgdia different LRMs for
locating resources, and for submitting, monitoring, antceding jobs on remote compute
resources. The Globus Security Infrastructure (GSI) magubvides basic authentica-
tion mechanisms that can be used to validate the identityotif bsers and resources.
GSI supports delegation of credentials for computatioas itivolve multiple resources
and/or sites. This allows a user to sign-on only once (sisigle-on) to use grid resources
at multiple sites. The Monitoring and Discovery System (MJIsSthe information ser-
vice component of the Globus Toolkit, and it provides infatran about the available
resources on the grid and their status. Finally, GlobusigesvGridFTP, which is a high-
performance data transfer tool that is optimized for higindwidth wide-area networks.

Grid middleware solutions provide a set of services thatifate application execu-
tion on grids; however, these grid middleware services dawake any scheduling de-



cisions that require application-specific knowledge [Shftead, users and higher-level
services such as grid schedulers are expected to make aggudicly decisions that re-
quire application knowledge, and they use those middles@améces to allocate resources
and run their applications according to scheduling deossio

Grid Scheduler

For a common grid user it might be difficult and tedious to nalyufind and allocate
all the resources needed to execute an application. To atkaims process, grids need
high-level scheduling systems [2]. A typical grid schedglsystem provides an interface
to users for expressing job requirements, for submittitog jdor scheduling jobs across
the grid, for launching jobs for execution, for error handliand for recovery during the
execution of the job. It uses grid middleware services terfate to different LRMs.

Grid-level scheduling involves three main phases [175].e Titst phaseresource
discoveryinvolves creating a list of potential execution sites tihatuser submitting the
job has access to. All of the sites in this list must also mejdb requirements specified
by the user. The set of possible job requirements can be veadtand can vary among
jobs. It may include static details such as an operatingesysir a specific hardware
architecture, as well as dynamic details such as numberaafepsors or a minimum
bandwidth allocation.

The second phassite selectioninvolves determining the execution site, among the
potential sites, on which the job will run. In order to attdiatter job execution per-
formance, efficient scheduling methods are required totifyetme proper site for a job
based on the information obtained from a grid informatiovise. The grid information
service gathers information from individual sites throutglsoftware sensors. The sched-
uler queries the information service to get static (e.gsouece capabilities) or dynamic
information (e.g., existing reservations, queue lengsiebeduled jobs, future resource
availabilities) about the clusters, to be used in decisiaking. A grid information ser-
vice can be provided by the underlying grid middleware,,&xpbus MDS [89], as well
as in the form of a third-party tool, e.g., Ganglia [84], orwstm implementation. In
general, scheduling jobs in a distributed system is an NRpbete problem [74], and
therefore, the proposed grid scheduling methods are maglyistics except for some
special cases [11,43]. In practice, a grid scheduler mayegaired to handle different
types of jobs using different scheduling policies. Foramst, some jobs may require
Quality of Service (QoS) support while others may requirst leéfort service. Other ex-
amples can be given by considering the structural propeofi¢he jobs. In Section 1.2,
we elaborate on the characteristics of the applicatiortstba@ncounter in grids, and that
grid schedulers should take into account in order to probetéer performance. In addi-
tion, the scheduler also has to consider local site polieeste may specify a maximum



percentage of the resources, in terms of number of resoantk8me, to be allocated for
grid use.

In the third phasejob executionthe job is submitted to the LRM of the selected
site. The preparation phase of the submission may includgp séle staging, reserva-
tion claiming, or other such tasks that are required to peefiae resource to execute
the job. Submitting a job in grids can be very complicatedase of a lack of stan-
dards for job submission since grid middleware servicestijnosly on local-parameter
fields [175]. The ongoing work in the Global Grid Forum [16@[daesses this need for
common job submission APIs with the Distributed Resource ag@ment Application
API (DRMAA) [59]. After the job is submitted, the status of tjub (e.g., failed, queued,
running, or finished) is communicated to the scheduler byahesubmission service. Fi-
nally, after the job is executed, the output files there are any associated with the job
are transfered to the designated locations.

Most jobs in grids use the resources of only one site. Howesmme types of jobs,
e.g., jobs that run parallel applications, may take adygnfeom running on resources
in multiple sites. Therefore, jobs may require co-allomatii.e., the simultaneous or co-
ordinated allocation of resources at multiple sites [4%,186]. However, co-allocation
presents a challenge to the grid scheduler, that is, guesegt the availability of re-
sources in different sites at the job’s start time. The mwatghtforward strategy to do so
is to reserve processors at each of the selected sites. IRk do support reservations,
this strategy can be implemented by having the schedulairohtlist of available time
slots from each LRM, reserve a common time slot for all job congmts, and notify the
LRMs of this reservation. In the absence of processor reBemnsaechanisms, alternative
solutions are required in order to achieve co-allocati@6]1

Scheduling in grids can be done at the application levehajlg, or as a combination
of the two. Application-level grid schedulers, such as MidiG [33] and AppLeS [15,
38], schedule an application on submission, based on thenattion available regarding
the resources. A separate scheduler instance runs for gatibagion submitted, and
information about other applications that are already mmpnor being simultaneously
submitted, are ignored due to the lack of a central contrdbb@ schedulers, such as
GridWay [91] and GrADS [201], on the other hand, considepiinfation about other
jobs. Since they acquire more knowledge about the statugisytstem, they can make
more informed decisions. OWOALA grid scheduler [144, 148], which will be described
in Section 1.4.2, allows a combination of global and appiicelevel scheduling. Once
resources are allocated for a job by the grid-level polieidepending on the job type as
we will explain in Section 1.2 the scheduling of the tasks that make up the job can be
delegated to the application-level policies.



1.1.2 Challenges in grid scheduling

In traditional parallel computing systems, scheduling well-studied problem. The

schedulers of such systems are tightly coupled with theesysand have full control

of the resources that they manage. In contrast, grid sceexlbave no control over
the resources that are dispersed across multiple adnaitivstdomains. Therefore, the
scheduling methodologies and policies proposed for thtstivaal parallel systems can-
not directly be applied to grid environments. Below we idgntine main challenges in

grid scheduling, which make it more difficult than traditedrscheduling, and which we
take into account in the scheduling mechanisms and polibegswe have designed and
implemented in the work of this thesis.

1. Lack of control over resources.Grid schedulers have to make resource selection
decisions in an environment where they have no control dwetdcal resources;
they have to interface to information services about resmawailability, and to
LRMs to schedule jobs. Each individual site making up a grig tmave a different
owner, has its own user community, and has its own autonorbBl4. The site
owners are often not willing to give up the autonomy of theaess but will only al-
low access to their resources through a grid schedulerntefaces to their LRM
according to specific usage rules. Moreover, the LRMs may dédferent prop-
erties and capabilities. For instance, some LRMs may sugutwdnce resource
reservation, while others support queuing-based schegludr some may support
job checkpointing and migration, while others do not.

2. Characteristics of grid resources. Typically, resources in a grid system are het-
erogeneous in terms of hardware, e.g., processor aralmgeclisk space, network,
software, e.g., operating system, libraries, and systear®agement, e.g., security
set-up, usage SLAs. Moreover, the availability of resosiinea grid system varies
frequently. In addition to failures, resources may be ated (or released) by con-
current users, and resource owners may add or withdraw risnurces to/from
the resource pool at any time. This dynamic nature of theureges, together with
the heterogeneity, makes it difficult for grid schedulergtedict the behavior of
applications on grids.

3. Lack of complete control over jobs. Grid schedulers do not have full control
over the entire set of jobs in a grid; local jobs and jobs stteahiby multiple grid
schedulers have to co-exist in a grid. The jobs that are ¢ézdan a single site in
a grid may be submitted through the local scheduler or tHi@mny of a number of
grid schedulers. This means that a grid scheduler has tortetkaccount jobs from
multiple sources when deciding on where a particular jolukhaun.
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1.2 Job models in grids

Ever more scientists use grid computing to meet the reso@eds of their applications.
For instance, many applications of grand challenge probl@8], such as protein fold-
ing, financial modeling, earthquake simulation, and clenaeather modeling, are being
executed on grid systems in order to make use of the vast nushbesources. Such ap-
plications in grids can be implemented using differentwaft libraries (the well-known
grid programming libraries are presented in the work of Led &alia [127]), such as
MPI [152], Ibis [12,205], JavaSpaces [80], and ProActive][1n addition, grid applica-
tions often need to be represented with a job model, suchrafiggabags-of-tasks, and
workflow (see Figure 1.2), to facilitate their execution idg. In this section we describe
the common job models in grids, which we also use throughvosithesis.

The description of a job varies according to the job desiorpanguage being sup-
ported by the grid scheduler or the grid middleware. A job roagprise several tasks,
which can be scheduled independently or together deperafinipe job model or the
scheduling policy being used. A grid scheduling system s¢ednplement appropriate
mechanisms to be able to handle application schedulingxawigon with regard to the
different job models that we explain below.

A parallel job is composed of several tasks which can be dégddn parallel. Tasks
run on a number of computational nodes in parallel, and eagdaanformation using some
underlying library, such as MPI [152] or Ibis [12,205]. Pébjobs can be classified as
rigid, moldable, and malleable [71]. A rigid job requires xefi number of processors.
When the number of processors can be adapted only at thefdtagtexecution, the job is
called moldable. Similar to rigid jobs, the number of prames for moldable jobs cannot
be changed during runtime. Jobs that have the flexibilityheinge the number of assigned
processors during their runtime, that is, that can grow oinkhare called malleable.
Parallel applications can be made malleable using specdgramming models, such as
Ibis-Satin [203], and theyNAcO Framework [28,30]. For a parallel job, a grid scheduler
has to deal with the job’s programming library, includingasbling the list of resources
the job is executed on for an MPI job, or adding the locatiorthef nameserver to the
parameters of an Ibis job.



A bags-of-tasks (BoT) is composed of independent tasks #rabe scheduled and
executed in any order without needing inter-task commuioicaParameter sweep appli-
cations (PSAs) are a special type of BoT with tasks that eaebute the same program
but with different parameters. There are various impor&mt applications in grids,
including data mining, massive searches, Monte Carlo sitonls, fractal calculations
(such as Mandelbrot), and image processing applicatiansh(as tomographic recon-
struction) [207].

Workflows constitute another commonly used job model in maowiplex grid appli-
cations. In general, workflows are represented as direcigdiagraphs (DAGS), where
the nodes represent tasks to be performed and the edgesamfprependencies between
tasks. For a workflow job, the scheduler needs to take intowatdssues like task inter-
dependencies, advanced reservations, and fault-tokerbasides the job’s programming
model. Important workflow applications in grids include Mage (astronomy applica-
tion) [149], CyberShake (earthquake analysis applica{@®], and SIPHT (bioinformat-
ics application) [135].

Irrespective of their models, applications may pose dffiéicommunication require-
ments. For instance, some applications are communicattensive, requiring large
volumes of data movement among the tasks, while other agtigits are computation-
intensive, requiring minor, or no data movement at all. lis tespect, a grid scheduler
should take into account the communication charactesistithe applications in order to
improve their execution performance.

1.3 Problem statement

Grid scheduling is challenging due to the heterogeneity taeddynamic nature of the
grid resources as well as to the lack of control of those nessu The wide variety
in the structural and the communication characteristicthefapplications submitted to
grids further complicate grid scheduling, and may lead torp unpredictable perfor-
mance unless these characteristics are taken into accodbetefore, we need efficient
scheduling mechanisms and policies in grids that are Sipesziafor different common

grid application types such as parallel applications, bEgasks, and workflows.

In this thesis our aim is to propose and implement scheduliaghanisms and poli-
cies for different application types, and to investigateittiperformance in a real multi-
cluster grid system, the DAS, using okoALA multicluster grid scheduler, as well as
with simulations using realistic scenarios. We study gabesluling for a wide range
of grid application types including parallel applicatiotit may need co-allocation or
malleability, bags-of-tasks that can benefit from cycleveoging, and workflows. More
specifically, in this thesis we aim to answer the followingearch questions:

How beneficial is processor co-allocation in multicluster gds? In multicluster
grid systems, parallel applications may benefit from preceso-allocation, that is, the
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simultaneous allocation of processors in multiple clissteAlthough co-allocation al-
lows the allocation of more processors than available imglsicluster, it may severely
increase the execution time of applications due to theivelstslow wide-area com-

munication. Despite various simulation-based perforreagealuation studies on co-
allocation [25,27,66,111, 172], and efforts to supporadloeation in a real multicluster
grid scheduler [144,145,147,148,187], we still lack a ctatgounderstanding of to which
extent processor co-allocation is beneficial in real gridis.this end, we will perform

a comprehensive investigation on the benefit of processaillooation in multicluster

grids.

How to schedule malleable applications in multicluster grils? Application mal-
leability, that is, the property of parallel applicatiolsuse varying amounts of resources
such as processors during their execution, is potentialgraversatile and beneficial fea-
ture. Malleability facilitates dealing with the dynamictaee of multicluster grid systems.
Despite several approaches that have been proposed toplwédtiel malleable applica-
tions [28, 114,198, 199], virtually no existing multiclestor grid infrastructure is able to
benefit from this property. Most of the previous work on sahied) malleable applica-
tions does not meet the challenges that appear in the caftentlticluster systems. We
will address such issues as the selection of a suitable garciite for each malleable
application, resilience to background load due to locatsjsend prioritizing malleable
applications for dynamic resource allocation operatiores, (growing and shrinking in
terms of number of resources being used).

How to run large-scale cycle-scavenging applications padily yet efficiently in
multicluster grids? Cycle scavenging is the underlying technology of desktogstat
enables harnessing idle CPU cycles to solve large-scalatdgicigoroblems. The same
concept can be applied to multicluster grid environmentgte users the opportunity of
executing such large-scale computation intensive agpita at a low priority without
being in the way of regular grid users or local users. AltHougrious cycle scaveng-
ing systems [7,44,134] exist, they all necessitate additisoftware installations on the
compute nodes or modifications to the LRM of the clusters, bbthhich would be ad-
ministrative obstacles in multicluster grid systems. Wik address the question of how to
incorporate/integrate cycle scavenging into grid schexduh a seamless way without the
need for modifying LRMs or for (pre-)installing any additarsoftware on the compute
nodes.

What is the performance of bags-of-task scheduling in multluster grids? In
contrast to the workloads of tightly coupled parallel comipy systems, a considerable
part of the workloads submitted to multicluster grids cetssof bags-of-tasks (BoT) [98].
Therefore, a realistic performance analysis of schedWiags in multicluster grids is
important. Although many scheduling policies for BoTs hagetproposed for a variety
of systems, most of these policies have been proposed fahtigoupled systems, or at
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least, they do not consider heterogeneous resources. Wisehetions that can be applied
in practice in multicluster grid systems [39, 82, 130, 18§§wane that the scheduler has
either no information or mostly accurate information atdisposal. We will tackle the
guestion of what is the performance of BoT scheduling in rolister grids by proposing
realistic scheduling policies and evaluating them witradetl realistic scenarios.

What is the performance of dynamic workflow scheduling in muticluster grids?
Scientists increasingly rely on grid workflows for execgticomplex mixtures of tasks
with data dependencies. Previous research on workflow sthgd20, 21,93, 125, 196]
considers usually static scheduling methods in which wovktiasks are mapped to re-
sources before their execution. Static scheduling, hokvdees not consider the dynamic
nature of multicluster grids, and besides, it assumes thdeqtly accurate information
is available about the system resources and the workflovs taghkich is an unrealistic
assumption for grids. Motivated by this fact, we will presarrealistic investigation on
the performance of dynamic workflow scheduling in multicbugyrids.

What is the performance of job runtime and queue wait time pralictions in
grids? Grids bring about not only the advantages of an economy dé sbat also the
challenges of resource and workload heterogeneity. A cuesee of these two forms of
heterogeneity is that job runtimes and queue wait times igidyhvariable, which gen-
erally reduces application performance and makes gridiswlifto use by the common
scientist. Predicting job runtimes and queue wait timesh®en widely studied for tra-
ditional parallel environments [23,56,57,107]. We willdaess the question of how the
proposed prediction methods perform in grids, whose resostructure and workload
characteristics are very different from those in parajstems. Such an analysis points
the grid research community in the right direction to immrdiae predictability of job
runtimes and queue wait times in grids.

1.4 The testbeds

In this section we present the background information diggrthe DAS system [52],
theKOALA grid scheduler [144,148], and the Delft Grid Simulator [[L@hich we have
used for our implementations and experiments in this thesis

1.4.1 The DAS system

The Distributed ASCI Supercomputer (DAS) [52] is an expernitakcomputer testbed
in the Netherlands that is exclusively used for researchasallel, distributed, and grid
computing. The system was built for the Advanced School fan@ating and Imaging
(ASCI) [8], a Dutch research school in which several unitersiparticipate. The DAS
system is now in its third generation (DAS-3) after the first @econd generations have
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Table 1.1: The distribution of the nodes over the DAS-2 @rsst

| Cluster Location| Nodes|
Vrije University 72
U. of Amsterdam| 32
Delft University 32
Utrecht University 32
Leiden University| 32

Table 1.2: The properties of the DAS-3 clusters.

| Cluster Location| Nodes Speed | Structure| Interconnect |

Vrije University | 85 | 2.4 GHz| dual-core | Myri-10G & GbE
U. of Amsterdam| 41 |2.2 GHz| dual-core | Myri-10G & GbE
Delft University | 68 | 2.4 GHz| single-core GbE
MultimediaN 46 | 2.4 GHz| single-corg Myri-10G & GbE
Leiden University 32 | 2.6 GHz| single-corg Myri-10G & GbE

proven to be successes. Part of our research in this thesibd®an conducted on the
second (DAS-2) and on the third (DAS-3) generation of the B&Stem. Therefore, we
describe only the last two generations of the DAS system.

The DAS-2, which was in use between 2002 and 2006, consi$t2d(nodes, or-
ganized into five dual-processor clusters of identical 1 Gttiel Pentium Il processors.
The distribution of the nodes over the clusters is given iold4..1. The clusters were in-
terconnected by the Dutch university backbone (100 Mbrg) the nodes within a cluster
were connected by Myrinet LAN [157] (1.2 Gb/s). On each oft¢hesters, the Sun Grid
Engine (SGE) [87] was used as the local resource manager.wW#&SEonfigured to run
applications on the nodes in an exclusive fashion, i.e pats-shared mode.

The DAS-3 was installed late 2006. The main difference betwthe DAS-3 and
the previous DAS systems is the degree of heterogeneitgiprés the system in terms
of processor speed, processor structure, and network. A$eIconsists of 272 nodes
organized into five dual-processor clusters as shown ireThl with a mixture of single-
core and dual-core AMD Opteron processors. As the same sables, the DAS-3 has
a minor level of processor speed heterogeneity. All DASt3ters have 1 Gb/s and 10
Gb/s Ethernet, as well as a high speed Myri-10G [157] inteneat, except for the cluster
in Delft, which has only Ethernet interconnects. As in the®2, each of the clusters is
managed by SGE in space-shared mode.
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Figure 1.3: The layered architecture of theALA grid scheduler.

In the DAS systems, each of the DAS clusters is an autonomtisms with its own
file system. Therefore, in principle files (including applion executables) have to be
moved explicitly between users’ working directories infeliént clusters. In addition,
simple usage rules are enforced in the DAS systems that osesshedulers have to
consider. The most important of these are that any apmicatnnot run for more than
15 minutes from 08:00 to 20:00, and that execution must bfopeed on the compute
nodes, never on the head nodes. The DAS systems can be sedasagpi@totyping
computational grid environment, with its structure andgespolicies designed to enable
grid research.

1.4.2 The KOALA grid scheduler

The KOALA grid scheduler [144, 148]is designed for multicluster systems such as the
DAS, with the aim of implementing mechanisms and policiesttheduling various grid
application types.KOALA served scientists in the DAS-2 between 2005 and 2007, and
since May 2007, it has been in operation in the DAS-3 system.

KOALA was initially designed to schedule parallel applicatiomattmay need co-
allocation, that is, the simultaneous allocation of preoes in multiple clusters. In
the study of this thesis, we have extendemaLA with support for scheduling parallel
malleable applications [31], parameter sweep applicat[@B5], and workflow applica-
tions [188]. Below, we describe the main building blockxafaLA . For further details
we refer the reader to [148] and [144].

2TheKOALA grid scheduler project page: http://www.st.ewi.tudelfkoala/
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Architecture of KOALA

KOALA has a layered architecture that allows us to develop didagers independently,
which can then work together. ThALA layered architecture consists of four layers:
theschedulertherunners frameworktherunners and thesubmission engineas shown
in Figure 1.3.

The KOALA scheduler is responsible for scheduling jobs received filoerkoALA
runners or any third-part job submission tools with its stthig policies that are used to
map jobs on suitable execution sites. In general, the ctaieehich scheduling policy
to be used is initiated by the runners and therefore, it casdtected by the users for
every submitted job separately. The scheduler is supptneah information service,
which monitors the status of resources by means of procesgbnetwork information
providers and a file replica location service.

To address the challenge of grid application deploymeanLA has the concept of
runners, which are job submission and monitoring toolstebéint runners can be written
to support the unique characteristics of different applicatypes by using th&oALA
runners framework. The runners framework hides the heggreity of the grid by pro-
viding to the runners a runtime system and its corresponsiigf APIs for commonly
used job submission operations such as interfacing withkthve. A scheduler for job
scheduling, the transfer of input files, deploying jobs oikdgrmonitoring and respond-
ing to failures, and the transfer of output files back to thiensigsion site. In addition,
the runners framework has fault tolerance mechanisms #altwith the reliability is-
sues of the grid infrastructure. Relying on the runners fraamk, the runners provide the
environment for users to develop per-application type dolezs that can be specially tai-
lored to match the needs of applications such as PSAs andlawsk The runners have
complete freedom to implement their own mechanisms for giiation level opera-
tions, or alternatively, to use the default implementatitrat are provided by the runners
framework.

The last layer consists of the submission engines, whichharé-party tools that
use the runners to submit jobsk@ALA. These tools include workload generation and
submission tools (e.g., Grenchmark [99]), workflow engifeg., Karajan [206]), and
user scripts.

KOALA is nottied to any particular operating system or grid mida@ies. For instance,
the currentimplementation &ALA can use both Globus GRAM [89] and DRMAA [59]
services for job submission and monitoring operations @DRAS-3 system. The job
management operations in tR®ALA scheduler, including scheduling policies, queue
operations, interactions with the runners and middlewareices, differ according to the
type of the application submitted, and hence the type ofdheer used. In Chapters 2,
3, 4and 6, we present the additional necessary informatidh@® operation oKOALA
with regard to the subjects covered in those chapters.
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1.4.3 The Delft grid simulator

In grid research, scientists often use simulations in otderonduct performance eval-
uation experiments. In real grid systems, experiments eaveby time consuming and
very difficult to reproduce, since it is hard to attain the satircumstances in such a
dynamic environment. Therefore, simulations are criteslthey facilitate the assess-
ment large numbers of experimental settings in a reasorabtaunt of time. Despite
many efforts, today’s grid simulators [34, 35,61, 112, 1&4] lack important features in
system modeling, experiment setup, and experiment maregeo this end, we have
implemented our own grid simulator, the Delft Grid Simula(BGSim) [104]. When
compared to previous simulation tools, DGSim focuses marthe simulation process,
with better support for synthetic trace generation and asd,for exploring large design
spaces [104]. Besides, DGSim enables us to implement séhgagdlicies at different
levels, including the cluster, the application, and ther Iseel. We tested and validated
DGSim in [104] as part of our previous work. In Chapters 2, 5ar@] 7, we extend and
use DGSim for our performance evaluation experiments.

1.5 Research contributions and thesis outline

In this thesis we propose and investigate applicationatedscheduling solutions in mul-
ticluster grids. The main chapters aim to answer the reBeprestions formulated in Sec-
tion 1.3, respectively. In Chapters 2, 3, and 4, we perforrmipaeal experiments with
KOALA at DAS, and in Chapters 5, 6, and 7, we perform mostly simuidb@sed exper-
iments with our DGSim tool. Below we describe the structure e main contributions
of this thesis.

Assessing the benefit of processor co-allocation (Chapte).2We investigate the
performance of processor co-allocation in multiclustedgfor parallel applications that
range from computation-intensive to communication-istemunder various system load
settings. Further, we compare the performance of sevdratisting policies that we have
specifically designed for parallel applications that mag e-allocation. We demonstrate
that considering latency in the resource selection phapeowes the performance of co-
allocation, especially for communication-intensive flatapplications. The content of
this chapter is based on our research published in [186, 187]

A scheduling framework for malleable applications (Chapte 3). We present an
architecture and an actual implementation of the supponnileability in multicluster
grid schedulers with the help of tllerNACO framework [28] for application malleability.
We propose two policies to manage dynamic resource altwtébr malleable applica-
tions that already started; one which spreads any additpoaessors to the malleable
jobs that have been running the longest, and one that sptieaaisequally over all run-
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ning malleable jobs. Our experimental evaluation showdtiggner system utilization and
shorter job execution times can be achieved when mallgakslused. We also find that
the relative performance of our two malleability managenpaticies varies according to
the design choice as to when to initiate a malleability manaent policy. The content of
this chapter is based on our research published in [31].

A scheduling framework for cycle scavenging applications Chapter 4). We
present an integrated design of cycle scavenging supporaischeduling architecture
for multicluster grids. The implemented cycle scavengireghanism runs alongside the
regular grid scheduling, being unobtrusive to the jobs ghbr priority (both local and
grid jobs). Our mechanism obviates the need for additioofihare installations on the
compute nodes or any modifications to the resource managjtirs olusters. We exclu-
sively target Parameter Sweep Applications (PSASs) to rucyake scavenging jobs. In
addition, we propose two best-effort cycle scavenginggoesi that try to achieve fair-
share resource allocation among cycle-scavenging usérs.cntent of this chapter is
based on our research published in [185].

The performance of bag-of-tasks scheduling (Chapter 5\Me propose a taxonomy
of scheduling policies for bags-of-tasks that focuses doriation availability and ac-
curacy, we also present two new task scheduling policies.eXjore the large design
space of bags-of-task scheduling in multicluster gridsiglfive axes: the task selection
policy, the input workload, the information policy, the kascheduling algorithm, and the
resource management architecture. Notably, we find thiatsiglection policy is impor-
tant only in busy systems. In addition, we find that a certealiresource management
architecture achieves the best performance for bag-&&tagplications. The content of
this chapter is based on our research published in [103].

The performance of dynamic workflow scheduling (Chapter 6). We introduce
a framework for dynamic workflow scheduling that includesoaal scheduling taxon-
omy to which we map seven policies that cover the full spectnf information use.
We explore the performance of these seven policies in a camepisive study that also
distinguishes between single and multiple (concurrentkil@mv submissions. Notably,
we find that there is no single grid workflow scheduling poleiyh good performance
across all the investigated scenarios, and we find that kaskling, that is, limiting the
per-workflow number of tasks dispatched to the system, ptsvihie head-nodes from
becoming overloaded while not unduly decreasing the pedoce. The content of this
chapter is based on our research published in [188].

The performance of prediction methods for grid scheduling (Qapter 7). We
present an analysis of the performance and benefit of preglictb execution times and
queue wait times in multicluster grids based on traces gathifom various research
and production grid environments. We find that time seriethous for predicting job
execution times, and prediction methods that give uppents for job queue wait times,



17

yield low accuracy due to the common occurrence of burst ydissssions in grids. In
addition, we have investigated whether prediction-bagettigvel scheduling policies
can have better performance than policies that do not usicgions. We find that a
better accuracy of the predictions does not imply a bettdopaance of grid scheduling.
The content of this chapter is based on our research putlliatj@89].

Chapter 8 summarizes the thesis, presents its conclusions, ancaiediseveral re-
search directions originating from this thesis.
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Chapter 2

Co-Allocation for parallel applications

In multicluster grids, parallel applications may benefinfr using processors in multiple
clusters simultaneously, that is, they may use processatlacation. This potentially
leads to higher system utilizations and lower queue waiesitny allowing parallel jobs
to run when they need more processors than are availablengla sluster. Despite such
benefits, with processor co-allocation, the execution tohearallel applications may
severely increase due to wide-area communication overfmedg@rocessor heterogeneity
among the clusters. In this chapter, we investigate thefliexigorocessor co-allocation
(hereafter, we use 'co-allocation’ to refer to 'processotatiocation’), despite its draw-
backs, through experiments performed in the DAS-3 mubiglugrid environment, using
our KOALA grid scheduler. In addition, we perform simulation-basgpleeiments using
our DGSim tool to extend our findings obtained in the real emment.

Our investigation on the benefit of co-allocation in mulistler grids involves the
following components: First, we present an analysis of thpact of the inter-cluster
communication technology of a system on the co-allocatemigomance of parallel ap-
plications. Secondly, we investigate when co-allocatiomulticluster grids may yield
lower average job response times through experiments tinatvorkloads of real MPI
applications as well as synthetic applications which vaoynf computation-intensive to
communication-intensive. Finally, we compare the perfamoe of co-allocation policies
that we have designed and implementedd@aLA , which are the Communication Aware
(CA) policy that takes either inter-cluster bandwidth oelaty into account when decid-
ing on co-allocation, and the Flexible Cluster Minimizatjwlicy (FCM) that only takes
the numbers of idle processors into account when co-allaggdbs. Notably, we find
that for parallel applications whose slowdown due to therhatuster communication is
low, co-allocation is advantageous when the resource nbatein the system is mod-
erate. However, for very communication-intensive patafgplications, co-allocation is
disadvantageous since it increases execution times éxelgsdn addition, we demon-
strate that considering latency in the resource selectiase improves the performance



20

of co-allocation, especially for communication-interesparallel applications.

The remaining part of this chapter is organized as follovetiSn 2.1 presents a job
model for parallel applications that may run on co-allodatsources. In Section 2.2, we
explain the parallel job management and the main mechan@neglize co-allocation in
our KOALA grid scheduler. In Section 2.3, we present the schedulitigies of KOALA
for co-allocation. In Sections 2.4, 2.5, and 2.6, we pretientesults of our experiments.
In Section 2.7, we discuss the challenges and issues ofirgnlco-allocation in real
multicluster grids. Section 2.8 reviews related work orafloeation. Finally, Section 2.9
summarizes the chapter.

2.1 A job model for parallel applications

In this section we present our job model for parallel appidces that may need processor
co-allocation. In our model, a job comprises either one oltipla componentshat can
be scheduled separately (but simultaneously) on potgntéferent clusters, and that
together execute a single parallel application. A job dpecifor each component its
requirements and preferences, such as its size (the nurir@cessors or nodes it needs)
and the names of its input files. A job may or may not specifyetkecution sites where
its components should run. In addition, a job may or may ndicete how it is split up
into components. Based on these distinctions, we considee fbb request structures,
fixedrequestsnon-fixedrequests, antlexiblerequests, as depicted in Figure 2.1.

In a fixed request, a job specifies the sizes of its componedtthe execution site on
which the processors must be allocated for each componertheéother hand, in a non-
fixed request, a job also specifies the sizes of its componaumt# does not specify any
execution site, leaving the selection of these sites, wiely be the same for multiple
components, to the scheduler. In a flexible request, a jop gmécifies its total size
and allows the scheduler to divide it into components (ofddume total size) in order to
fit the job on the available execution sites. With a flexiblguest, a user may impose
restrictions on the number and sizes of the componentsnBtarice, a user may want to
specify for a job a lower bound on the component size or anmipmend on the number
of components. By default, this lower bound is one and thissufgound is equal to
the number of execution sites in the system. Although it igaithe user to determine
the number and sizes of the components of a job, some apptisahay dictate specific
patterns for splitting up the application into componeh#s)ce, complete flexibility is not
suitable in such a case. So, a user may specify a list of gptbhow a job can be split
up, possibly ordered according to preference.

These request structures give users the opportunity afdaddvantage of the system
considering their applications’ characteristics. Fotanse, a fixed job request can be
submitted when the data or software libraries at differéugters mandate a specific way
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Figure 2.1: The job request types supportekbyLA.

of splitting up an application. When there is no such affiniggrs may want to leave the
decision to the scheduler by submitting a non-fixed or a flexdb request. Of course, for
jobs with fixed requests, there is nothing a scheduler cao dohedule them optimally;
however, for non-fixed and flexible requests, a scheduleuldremploy scheduling poli-
cies (calledob placement policies the context ofkOALA) in order to optimize some
criteria.

2.2 Parallel job management and co-allocation support
in KOALA

The KOALA grid scheduler is capable of scheduling and co-allocatemglgel jobs em-
ploying either the Message Passing Interface (MPI) or [b#5205] parallel communica-
tion libraries. In this chapter we only consider MPI jobs,iefhhave to be compiled with
the Open-MPI [83] library. Open-MPI, built upon the MPI-2egjification, allows<OALA
to combine multiple clusters to run a single MPI applicatipnautomatically handling
both inter-cluster and intra-cluster messaging.

The parallel jobs that may need co-allocation are handlegdiLA as follows. Upon
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submission of a parallel job, theoALA scheduler uses one of its job placement poli-
cies (see Section 2.3) to try to place job components onldeitxecution sites, which
requires the sites having enough idle processing nodesamaaccommodate these job
components. If the placement of the job succeeds and inpstdile required, the sched-
uler informs the runner, that is, the job submission tooljnitate the third-party file
transfers from the selected file sites to the execution sitdbe job components. If a
placement try failskOALA places the job at the tail of the placement queue, which holds
all jobs that have not yet been successfully placed. Thedsdderegularly scans the
queue from head to tail to see whether it is able to place any or each job in the
gueue its number of placement tries is recorded, and whemthimber exceeds a certain
threshold value, the submission of that job fails.

In order to realize co-allocatiomOALA uses an atomic-transaction approach [47] in
which job placement only succeeds if all the componentsab&an be placed at the same
time. This necessitates the simultaneous availabilithefdesired numbers of idle nodes
in multiple clusters. Since the local schedulers in the CAS+hich are all SGE [87], do
not support advance reservatioreALA employs an on-spot node allocation mechanism.
In order to allocate nodes for the job componeRt3ALA uses its Component Manager
(KCM), which is a daemon process that runs on the head node bfste; and that
interfaces the SGE through the DRMAA [59] interface.

For each component that is mapped to a cluster by the schethderunner first
launches a KCM on the head node of that cluster. The runneida®this KCM the
number of nodes to claim, and for how long they should be @dimThen, the KCM
submits one or more placeholder scripts to the SGE [87] tihdhe DRMAA interface.
The SGE schedules the placeholder script(s) to a set of dies:y@nd then each of these
placeholder scripts reports back thestnameof its node to the KCM. Subsequently, the
KCM compiles a list of the node hostnames it receives from thegholder scripts and
sends them to the runner. Finally, the runner uses the nostedroes, received from
all KCMs, to launch the job on multiple clusters by using theresponding OpenMPI
command and parametérsThe runner maps two application processes per node, since
all the clusters in our testbed comprise nodes of dual psaees Upon job completion,
the runner gathers the results and presents them to the user.

2.3 Job placement policies

TheKOALA job placement policies are used to decide where the comp®oénon-fixed
and flexible jobs should be sent for execution. In this sectie present three job place-
ment policies 0KOALA, which are the Worst Fit, the Flexible Cluster Minimizatiamd

1An example on how to execute an OpenMPI application maniratlye DAS-3 system is presented at
http://www.cs.vu.nl/das3/openmpi-tcp.shtml



23

the Communication-Aware placement policy. Worst Fit is tleéadlt policy ofKOALA
which serves non-fixed job requests. Worst Fit also makdegiesense in the absence of
co-allocation, when all jobs consist of a single compon&he two other policies, on the
other hand, serve flexible job requests and only apply todkh&llocation case.

2.3.1 The Worst Fit policy

The Worst Fit (WF) policy aims to keep the load across cludtatanced. It orders the
components of a job with a non-fixed request type accordinigtoeasing size and places
them in this order, one by one, on the cluster with the largeshaining) number of idle
processors, as long as this cluster has a sufficient numbélegirocessors. WF leaves
in all clusters as much room as possible for later jobs, amatdneit may result in co-
allocation even when all the components of the considerkedvould fit together on a
single cluster.

2.3.2 The Flexible Cluster Minimization policy

The Flexible Cluster Minimization (FCM) policy is designedfwvthe motivation of min-
imizing the number of clusters to be combined for a given Ipgr@b in order to reduce
the number of inter-cluster messages. FCM first orders trstassiaccording to decreas-
ing number of idle processors and considers componentrpkaiein this order. Then
FCM places on clusters one by one a component of the job of gizal €0 the number
of idle processors in that cluster. This process continmdisthe total processor require-
ment of the job has been satisfied or the number of idle procegsthe system has been
exhausted, in which case the job placement fails (the jobpom@ant placed on the last
cluster used for it may be smaller than the number of idlegssaors of that cluster).

Figure 2.2 illustrates the operation of the WF and the FCM padifor a job of total
size 24 in a system with 3 clusters, each of which has 16 idlegasors. WF successively
places the three components (assumed to be of size 8 eachpoffaxed job request on
the cluster that has the largest (remaining) number of @viglprocessors, which results
in the placement of one component on each of the three ctugderthe other hand, FCM
results in combining two clusters for a flexible job of the satotal size (24), splitting the
job into two components of sizes 16 and 8, respectively.

2.3.3 The Communication-Aware policy

The Communication-Aware (CA) placement policy takes eitlardwvidth or latency into
account when deciding on co-allocation. The performanceanéllel applications that
need relatively large data transfers are more sensitivaridwidth, while the performance
of parallel applications which are dominated by inter-gssx communication are more



24

C1(16) C2 (16) C3 (16)
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Flexible Job Component

Component Placement Order

Figure 2.2: An example comparing the WF and the FCM placemditiga

sensitive to latency. In this thesis we only consider thieetatase, and we run the CA
policy with the latency option.

The latencies between the nodes of each pair of clustergigytstem are kept in the
information service oKOALA and are updated periodically. CA first orders the clusters
according to increasing intra-cluster latency, and chétkkis order whether the com-
plete job can be placed in a single cluster. If this is not dssCA computes for each
cluster the average of all of itater-cluster latencies, including its owntra-cluster la-
tency, and orders the clusters according to increasinge\althis average latency. As in
the FCM policy, CA then splits up the job into components of sikqual to the numbers
of idle processors of the clusters in this order (again tsedamponent of the job may
not completely fill up the cluster on which it is placed).

In fact, the CA policy does not guarantee the best solutioméoproblem of attain-
ing the smallest possible execution time for a co-alloca@@llel application, since this
problem is NP complete. However, it is a reasonable hearigtismall-scale systems.
For larger systems, a clustering approach can be consideradhich clusters with low
inter-cluster latencies are grouped together, and ceailon is restricted to those groups
separately.
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2.4 The impact of system properties on co-allocation per-
formance

In this section, we evaluate the impact of the inter-clustgnmunication characteristics
and the processor speed heterogeneity of a multiclustéeraysn the execution time
performance of a single parallel application that runs ocalt@cated processors.

2.4.1 The impact of inter-cluster communication

In a multicluster grid environment, it is likely that the emtcluster communication is
slower than the intra-cluster communication in terms oériay and bandwidth, which
are the key factors that determine the communication padace of a network. This
slowness, in fact, depends on various factors such as #reannect technology that en-
ables the inter-cluster communication among the procedsaparallel application, the
distance between the clusters, the number and capabditigee network devices, and
even the network configuration. Therefore, depending onctitemunication require-
ments of a parallel application, the inter-cluster lateang bandwidth may have a big
impact on its execution time performance.

In this section, we first present the results of experimemtsrfeasuring the commu-
nication characteristics of our testbed, and then we ptékenmesults of experiments for
assessing the impact of inter-cluster communication onwgian time performance.

With the DAS-3 system, we have the chance to compare therpafce of the Myri-
10G [157] and the Gigabit Ethernet (GbE, 1Gb/s) intercohtesshnologies. When the
cluster in Delft is involved in the co-allocation of a pa&dijob, GbE is used for the entire
inter-cluster communication, since it does not supportféséer Myri-10G technology.
For all other cluster combinations, for co-allocation M$AG is used, even though they
all support GbE. Table 2.1 shows the average intra-clustdriater-cluster bandwidth
(in MB/s) and the average latency (in ms) as measured betweeoompute nodes of
the DAS-3 clusters (the values are diagonally symmetridhesSE measurements were
performed with an MPI ping-pong application that measuhesaverage bi-directional
bandwidth, sending messages of 1 MB, and the average btidimatlatency, sending
messages of 64 KB, between two (co-)allocated nodes. Theumszasnts were per-
formed when the system was almost empty. With Myri-10G, #tericy between the
nodes is lower and the bandwidth is higher in comparisonda@ése with GbE. The mea-
surements also indicate that the environment is heteragesria terms of communication
characteristics even when the same interconnection témiwas used. This is due to
characteristics of the network structure such as the distamd the number of routers
between the nodes. For example, the clusters Amsterdam aitarddiaN are located
in the same building, and therefore, they achieve the bést-ahuster communication.
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Table 2.1: The average bandwidth (in MB/s, top humbers) atahd¢y (in ms, bottom
numbers) between the nodes of the DAS-3 clusters (for Deltien see text).

’ Clusters H Vrije Amsterdam Delft MultimediaN Leideb

Vrije 561 185 45 185 77
0.03 0.4 1.15 0.4 1.0
Amsterdam| 185 526 53 512 115
0.4 0.03 1.1 0.03 0.6
Delft 45 53 115 10 -
1.15 1.1 0.05 1.45 -
MultimediaN|| 185 512 10 560 115
0.4 0.03 1.45 0.03 0.6
Leiden 77 115 - 115 530
1.0 0.6 - 0.6 0.03

We were not able to perform measurements between the dustBelft and Leiden due
to a network configuration problem; hence, we excluded ettiecluster in Delft or the
cluster in Leiden in all of our experiments.

The synthetic parallel application that we use in our exeadtime experiments per-
forms one millionMPI_AllGather all-to-all communication operations each with a mes-
sage size of 10 KB. The job running this application has a teited of 32 nodes (64
processors), and we let it run with fixed job requests with gonents of equal size on all
possible combinations of one to four clusters with the feifgy restrictions. We either
exclude the cluster in Delft and let the inter-cluster comioation use the Myri-10G net-
work, or we include the cluster in Delft, exclude the one iides, and let the inter-cluster
communication use GbE.

Figure 2.3 shows the execution time of the synthetic apiitinaaveraged across all
combinations of equal numbers of clusters. Clearly, the @@t time increases with
the increase of the number of clusters combined. Howeverinitrease is much more
severe, and the average execution time is much higher, when$aused—co-allocation
with Myri-10G adds much less execution time overhead. Theselts indicate that the
communication characteristics of the network are a crueient in co-allocation, es-
pecially for communication-intensive parallel applicais. However, the performance of
co-allocation does not solely depend on this aspect foyp#s of parallel applications,
as we will explain in the following section.
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Figure 2.3: The execution time of a synthetic co-allocatd®l Bpplication, depending on
the interconnect technology used and the number of clustenbined.

2.4.2 The impact of heterogeneous processor speeds

Unless an application developer does take into accountepsot speed heterogeneity
and optimizes his applications accordingly, the executiore of a parallel application
that runs on co-allocated clusters may be limited by the dpé¢he slowest processor,
due to the synchronization of the processes. This is a magovlghck of co-allocation
especially for computation-intensive parallel applicas which do not require intensive
inter-cluster communications.

In order to investigate the impact of heterogeneous procesgeeds on co-allocation
performance, we have run a synthetic parallel applicatoonlining the cluster in Leiden
(which has the fastest processors, see Table 1.2) with dattie @ther clusters in the
DAS-3 system and quantified the increase in the executiomdver running the applica-
tion only in Leiden. The synthetic parallel applicationfoeems ten million floating point
operations without any I/O operations and inter-processrasanications except the nec-
essary MPI initialization and finalization calls. As theuks in Table 2.2 indicate, there
is a slight increase in the execution time ranging from 7%#& Hue to the minor level
of processor speed heterogeneity in DAS-3. Therefore,ignstindy we do not consider
the slowdown due to heterogeneous processor speeds in liziepoNevertheless, the
FCM policy can easily be enhanced such that it does considgrtitessor speeds when
co-allocating in systems where this slowdown can be high.
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Table 2.2: The execution time of a synthetic application nvbe-allocating the cluster in
Leiden with each of the other clusters.

Cluster Leiden Leiden- Leiden- Leiden- Leiden-

combination Vrije  Delft MultiMediaN Amsterdam
Execution time[s] 30 32 32 32 35
Percentage of increase - 7% 7% 7% 17%

2.5 Co-Allocation versus no co-allocation

In this section, we investigate when co-allocation for pakapplications may be bene-
ficial over disregarding co-allocation. In Section 2.5.F present the applications that
we have used in our experiments. In Section 2.5.2, we presehtiscuss the results
of the experiments conducted in the DAS-3 system. We havenpeed additional ex-
periments in a simulated DAS-3 environment, in order to stigate the performance of
co-allocation for a wide range of situations. We present@nduss the results of these
simulation-based experiments in Section 2.5.3.

2.5.1 The applications

For the experiments, we distinguish between computatind-cammunication-intensive
parallel applications. We have used three MPI applicatidfrsme Number[166],
Poisson[148], and Concurrent Wavd78], which vary from computation-intensive to
communication-intensive.

The Prime Number application finds all the prime numbers wpdven integer limit.
In order to balance the load (large integers take more wahid),odd integers are as-
signed cyclically to processes. The application exhibitbarrassing parallelism; collec-
tive communication methods are called only to reduce tha dbthe number of primes
found, and the data of the largest prime number.

The Poisson application implements a parallel iteratigoiadhm to find a discrete
approximation to the solution of a two-dimensional Poissquoation on the unit square.
For discretization, a uniform grid of points in the unit sggiavith a constant step in both
directions is considered. The application uses a red-l8kaiss-Seidel scheme, for which
the grid is split up into “black” and “red” points, with evergd point having only black
neighbors and vice versa. The parallel implementation nigoses the grid into a two-
dimensional pattern of rectangles of equal size among theipating processes. In each
iteration, the value of the each grid point is updated as etiom of its previous value and
the values of its neighbors, and all points of one color asgedl first followed by the
ones of the other color.
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Figure 2.4: The average execution times of the applicati@pending on the number of
clusters combined.

The Concurrent Wave application calculates the amplitugmuofts along a vibrating
string over a specified number of time steps. The one-dirnaatdomain is decomposed
by the master process, and then distributed as contiguoag&sbf points to the worker
processes. Each process initializes its points based o &usiction. Then, each process
updates its block of points with the data obtained from itgymieor processes for the
specified number of time steps. Finally, the master procelscts the updated points
from all the processes.

The runtimes of these applications in the DAS-3 are showngarg 2.4. Each appli-
cation has been run several times on all combinations oferisigexcluding the cluster in
Delft; the interconnect technology is Myri-10G) as fixed jalguests with a total size of
32 nodes and components of equal size (except for the casgutdrs, in which we sub-
mit components of sizes 10-10-12 nodes), and the resultsiteen averaged. The results
demonstrate that as the Concurrent Wave application is a comeation-intensive appli-
cation, its execution time with multiple clusters increasgarkedly, from 200 seconds as
a single cluster to 750 seconds when combining four clustEne Poisson application
suffers much less from the wide-area communication overhehile the Prime Number
application is not affected by it at all, since it is a compigta-intensive parallel applica-
tion.

2.5.2 Experiments in the real environment

In this section we present our experiments on the DAS-3. \Wedxplain our experimen-
tal setup and then discuss the results.
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Experimental setup

In our experiments, we use three workloads that each cootdyrone of the applications
presented in Section 2.5.1. In the experiments in which nallozation is employed,
the workloads are scheduled with the WF policy, and in the exmnts in which co-

allocation is used, the workloads are scheduled with the FGIMyp(and all job requests
are flexible).

We consider jobs with total sizes of 8, 16 and 32 nodes, sotlieajobs can fit on
any cluster in the system in case of no co-allocation; thal ®re of a job is randomly
chosen from this considered set of total sizes. For everlcapion, we have generated a
workload with an average inter-arrival time determineduatsa way that the workload is
calculated to utilize approximately 40% of the system orraye. The realqbserved uti-
lization attained in the experiments depends on the pokaydused, since the theoretical
calculation of the utilization (i.e., theet utilizatior) is based on the average single-cluster
execution times of the applications. When there is no cazatlon, there is no wide-area
communication, and the real and the net utilizations cdieciThe job arrival process is
Poisson.

We use the tools provided within the GrenchMark project [@9¢nsure the correct
submission of our workloads to the system, and run each waddor 4 hours, under the
policy in question. We have excluded the cluster in Delft] Hre interconnect technology
IS Myri-10G.

In the DAS-3 system, we do not have control over the backgtdoad imposed on
the system by other users. These users submit their (ndipjgbs straight to the lo-
cal resource managers, bypassk@pLA. During the experiments, we monitored this
background load and we tried to maintain it between 10% afd &6ross the system by
injecting or killing dummy jobs to the system. We consider experimental conditions
no longer to be satisfied when the background load has exde&i% for more than 5
minutes. In such cases, the experiments were aborted aeateep

In order to describe the performance metrics before preggour results, we first
discuss the timeline of a job submissionHALA as shown in Figure 2.5. The time
instant of the successful placement of a job is calleglasement timeThestart timeof
a job is the time instant when all components are ready tout&ed he total time elapsed
from the submission of a job until its start time is thait timeof a job. The time interval
between the submission and the placement of a job shows therdmf time it spends in
the placement queue, i.e., thaeue time The time interval between the placement time
and the start time of a job is itartup overhead
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Figure 2.6: Real Experiments: The average job response {ajesnd the percentages of
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Results

We will now present the results of our experiments for conmgathe performance with
and without co-allocation with the WF and FCM policies, respety, for workloads of
real MPI applications. Figure 2.6(a) shows the average ¢sbanse time broken down
into the wait time and the execution time for the workloadslbthree applications, and
Figure 2.6(b) shows the percentages of co-allocated jobs.

First of all, we have observed in our experiments that thiwgiaoverhead of jobs is 10
seconds on average regardless of the number of clustersroeafor it, and hence, from
the values of the wait time shown in Figure 2.6(a), we conelint the wait time is dom-
inated by the queue time. Compared to what we have observe@hibus DUROC [89]
and the MPICH-G2 [155] library for co-allocation [187], th&RIMAA-SGE [59] interface
and the Open-MPI [83] library for co-allocation yield a muokver startup overhead, by
a factor of 5 on average.

Figure 2.6(a) indicates that for the workloads of the Prime& Boisson applications,
the average job response time is lower when the workloadsareduled with FCM
compared to when they are scheduled with WF; however, thagegob response time is
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higher for the workload of the Wave application with FCM. THeNF policy potentially
decreases the job wait times since it is allowed to split iy jo any way it likes across
the clusters. Given that the execution times of the Prime bamand Poisson applications
only slightly increase with co-allocation, the substdmgaluction in wait time results in
a lower average job response time.

For the Wave application, co-allocation severely incredabe execution time due to
high inter-cluster communication. As a consequence, tleemied utilization also in-
creases, causing higher wait times. Together, this leadiégtter response times. As
Figure 2.6(b) indicates, a relatively small fraction30%) of co-allocation is respon-
sible for the aforementioned differences in the averagergsiponse times between no
co-allocation and co-allocation.

We conclude that in case of moderate resource contentien 40% workload +
10-30% background load), co-allocation is beneficial fompatation-intensive paral-
lel applications (e.g., Prime) and for communication-nsige applications whose slow-
down due to the inter-cluster communication is low (e.gis&m). However, for very
communication-intensive parallel applications (e.g.vé)aco-allocation is disadvanta-
geous due to the severe increase in the execution time. Inegkiesection, we further
evaluate the performance of no co-allocation vs. co-allonaunder various workload
utilization levels using simulations.

2.5.3 Experiments in the simulated environment

In this section, as in the previous section, we first explagnexperimental setup and then
present and discuss the results of our simulations.

Experimental setup

We have used the DGSim grid simulator [104] for our simuladii@sed experiments.
We have modeled theoALA grid scheduler with its job placement policies, the DAS-3
environment, and the three MPI applications based on taalraxecution times in single
clusters and in combinations of clusters. We have also reddelsynthetic application
whose communication-to-computation ratio (CCR) can be matlifiée define the CCR
value for a parallel application as the ratio of its total conmication time to its total
computation time, when executed irsigle cluster We set the total execution time of
the application to 180 s. in a single cluster irrespectivgCR. For instance, for a
CCR value of 1.0, both the communication and the computatiohgbdhe application
take 90 s; for a CCR value of 0.5, these values are 60 s., and YZBex the application
runs on co-allocated clusters, the communication part ikiplied by a specific factor
that is calculated from the real runs of the synthetic apgibm on the corresponding co-
allocated clusters, and the total execution time of theiegipbn increases accordingly.
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Figure 2.7: Simulation Experiments: Percentage of chandba average job response
time in reverse scale (a) for the workloads of the MPI appilices when they are sched-
uled with FCM in comparison to when they are scheduled with Wi, the observed
utilization versus the net utilization (b) when the worldsare scheduled with FCM.

As in Section 2.5.2, we use workloads that each contain améyad MPI or the syn-
thetic applications. In the experiments in which no co-dlion is employed, the work-
loads are scheduled with the WF policy, and in the experimanthich co-allocation is
used, the workloads are scheduled with the FCM policy. Fomihikloads of the Wave
application, we also consider the case in which FCM is limttedombine two clusters
at most.

We consider jobs with total sizes of 8, 16 and 32 nodes, sotlieajobs can fit on
any cluster in the system in case of no co-allocation; thal ®te of a job is randomly
chosen from this set of considered total sizes. For everlicapion, we have generated
seventeen workloads with net utilizations ranging from 10%0% in steps of 5%. The
job arrival process is Poisson. We assume that there is rkgimmd load in the system.
Each workload runs for 24 simulated hours, under the pohcguestion, and we have
again excluded the cluster in Delft.

Results

Figure 2.7(a) shows the percentage of change in the aveshgegponse time (AJRT) for
the workloads of the MPI applications when they are schetlwieh FCM in comparison
to when they are scheduled with WF. Figure 2.7(b) illustrakesobserved utilization
vs. the net utilization for the same workloads when they ateduled with FCM. In
Table 2.3, for each policy-workload pair, we present theutidization interval in which
saturation sets in and jobs are stacked in the queue and themes constantly increase
without bounds.

When the resource contention is relatively low (up to 40%bhwhe job sizes included
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in the workloads, most jobs are placed in single clustersaut a need for co-allocation,
hence we observe no difference in the average job respones.tiFor the computation-
intensive Prime application, the performance benefit o&lbocation increases with the
increase of the contention in the system, since jobs havatolenger in the placement
gueue in case of no co-allocation. In addition, as Table B&vs the workload of the
Prime application causes saturation at lower utilizatimhgn co-allocation is not con-
sidered; the saturation point is in between 85-90% netzatitbn for WF W-Prime, and
between 90-95% for FCM W-Prime.

We observe that for the Poisson application, co-allocas@udvantageous up to 75%
net utilization, since the lower wait times compensate lf@r increase of the execution
times. However, beyond this level, saturation sets in am$eguently, the average job
response times increase.

For the Wave application, the extreme execution time irsgres the jobs with co-
allocation increases the observed utilization in the sysés shown in Figure 2.7(b),
which as a result, causes an early saturation (see also Za)le In addition, we see
that limiting co-allocation to two clusters yields a bettesponse time performance than
in case of no limit. However, the benefit is minor.

In order to compare real and simulation experiments, indabl we present the net
utilizations imposed by the workloads in the real and theugation experiments where
the percentages of change in the average job response tiatek.nit turns out that the
net utilization in the real experiments is lower than theutéization in the correspond-
ing simulation experiments, which is probably due to thekigaound load in the real
experiments having different characteristics than thekleads of MPI applications.

Figure 2.8 shows the change in the average job response dintbef workloads of
the synthetic application with various CCR values. Comparimgresults to those of
the real MPI applications, we see that W-Prime matches CCRV@&.Rpisson matches
CCR-0.25, and W-Wave matches CCR-4. The results with the worklnfatie synthetic
application exhibit the following. First, parallel appitons with very low CCR values
(i.e., 0.10) always benefit from co-allocation. Secondlydpplications with CCR values
between 0.25 and 0.50, co-allocation is beneficial to a iceetetent; with the increase
of the contention in the system, the performance benefit éfllozation decreases and
after some point it becomes disadvantageous. Finally,gpli@ations with CCR values
higher than 0.50, co-allocation is disadvantageous stricereases the job response times
severely.

2.6 The performance of the placement policies

Although we have observed that it would be really advantageto schedule
communication-intensive applications on a single clustan the perspective of the exe-
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Figure 2.8: Simulation Experiments: Percentage of chandbe average job response
time for the workloads of the synthetic application (witlffelient CCR values) when they
are scheduled with FCM in comparison to when they are scheéavite WF.

Table 2.3: The net utilization intervals in which the poheyprkload pairs induce satura-
tion.

Policy-Workload Utilization Interval
WF {W-Prime, W-Poisson, W-Waye 85-90%
FCM W-Prime 90-95%
FCM W-Poisson 80-85%
FCM W-Wave [No Limit] 70-75%
FCM W-Wave [Limit:2] 75-80%

cution time (see in Figure 2.4), users may still prefer doeation when more processors
are needed than available on a single cluster. In this seatie compare the FCM and

CA policies in order to investigate their co-allocation pemhance for communication-

intensive parallel applications.

2.6.1 Experiments in the real environment

In this section we present our experiments in the DAS-3. \Bediplain our experimental
setup and then discuss the results.

Experimental setup

In our experiments in this section, we use workloads cormgisnly the Concurrent
Wave application [78], with a total job size of 64 nodes (128gessors). We have gen-
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Table 2.4: The net utilizations in the real and the simutatxperiments where the
changes in AJRTs match.

Workload | Change in Net Utilization Net Utilization
the AJRT (in Real Experiments) (in Simulations)

W-Prime -16% 40% + BG Load 75-80%
W-Poisson  -5% 40% + BG Load 65%
W-Wave +50% 40% + BG Load 70%
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Figure 2.9: Real Experiments: Performance comparison df@ and CA policies.

erated a workload with an average inter-arrival time deieech in such a way that the
workload is calculated to utilize approximately 40% of tlystem on average. The job
arrival process is Poisson.

We handle the background load in the way mentioned in Se&isr2. We run the
workload for 4 hours, under the policy in question. In the et of experiments, we have
excluded the cluster in Delft, and in the second set of erpamnts we have excluded the
cluster in Leiden and included the one in Delft; the interuect technology used by a job
is GbE when the cluster in Delft is involved in its co-allacat and Myri-10G otherwise.

Results

Figure 2.9 shows the performance of the FCM and CA policies wdwdreduling the
workload of the Wave application on the sets of clusters authand with the one in
Delft.

In terms of the average job response time, the CA policy otdpes the FCM pol-
icy, irrespective of the involvement of the cluster in Dglfthich has a slow inter-cluster
communication speed. The difference in response time ienadel (50 s.) or major (230
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Figure 2.10: Simulation Experiments: Performance consparof the FCM and CA poli-
cies.

s.) depending on whether the cluster in Delft is excludedfoanication speed has a low
variability across the system) or included in the experitea¢communication speed has a
high variability across the system), respectively.

The CA policy tries to combine clusters that have faster iolester communica-
tion (e.g., the clusters in Amsterdam and MultimediaN). ldger, as it is insensitive to
communication speeds, the FCM policy may combine clusteiis siower inter-cluster
communication, which consequently increases the job resptimes. The increase is
more severe when the cluster in Delft is included in the erpemts, since it is involved
in many of the co-allocations for the jobs due to its large siz

We conclude that considering inter-cluster latency in dalieg communication-
intensive parallel applications that require co-allomatis useful, especially when the
communication speed has a high variability across the syshe the following section,
we extend our findings in the real environment by evaluategaerformance of the FCM
and CA policies under various resource contention levelssimallated DAS-3 environ-
ment.

2.6.2 Experiments in the simulated environment

In this section, again, we first explain the experimentaljgaind then present and discuss
the results of our simulations.

Experimental setup

In our simulations, we use workloads comprising only the Coremt Wave application,
with total job sizes of 32, 48, and 64 nodes; the total size jpbais randomly chosen
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from this set. We have generated thirteen workloads withutiBzations ranging from
20% to 80% in steps of 5%. The job arrival process is Poissama¥gume that there is
no background load in the system. Each workload runs forrdlsited hours, under the
policy in question.

In the first set of experiments, we have excluded the clustBeift, and in the second
set of experiments we have included the cluster in Delft axatuded the one in Leiden.

Results

Figure 2.10(a) and 2.10(b) illustrate the average job nespame results of the FCM and
CA policies scheduling the workloads of the Wave applicatinrihe set of clusters either
excluding the one in Delft or including it, respectively.

The CA policy outperforms the FCM policy for almost all utiltzan levels in both
sets of experiments. As the utilization increases, the gdayden the results of the two
policies becomes wider. When the cluster in Delft is exclydld system is saturated
between 75-80% net utilization level; however, when it dudled, the system is saturated
between 60-70% net utilization, which is much less. Thearas that co-allocating the
cluster in Delft increases the job response times more sigver

We also see that the simulation results are consistent Wehréal experiments as
the difference in the performance of the two policies is miacger when the cluster in
Delft is included than when the cluster in Delft is exclud@&tiis fact supports our claim
that taking into account inter-cluster communication siseenproves the performance,
especially when the communication speed has a high vatyehdross the system.

To conclude, the results provide evidence that we should dosters that have slow
inter-cluster communication speeds when co-allocatioeeled. In other words, in large
systems we should group clusters with similar inter-clusmmunication speeds, and
restrict co-allocation to those groups separately.

2.7 Challenges with supporting co-allocation

Although we have demonstrated a case for supporting caadltm in a real environment
with ourKOALA grid scheduler, there are still many issues to be considesfte proces-
sor co-allocation may become a widely used phenomenon itiatmgker grids and grid
schedulers. In this section, we discuss some of these isslated to communication
libraries, processor reservations and system reliability
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2.7.1 Communication libraries

There are various communication libraries available [83-1155, 203] that enable co-
allocation of parallel applications. However, all thededries have their own advantages
and disadvantages; there is no single library we can namieeasost suitable for co-
allocation. Some include methods for optimizing interster communication, some in-
clude automatic firewall and NAT traversal capabilitiesgd @ome may depend on other
underlying libraries. Therefore, it is important to supps®veral communication libraries
as we do with thekoALA grid scheduler (e.g., MPICH-G2 [155], OpenMPI [83], and
Ibis [203, 205]).

2.7.2 Advance processor reservations

The challenge with simultaneous access to processors itpleutlusters of a grid lies
in guaranteeing their availability at the start time of aplagation. The simplest strategy
IS to reserve processors at each of the selected clustethe lbcal schedulers of the
clusters do support advance reservations, this strategpeamplemented by having a
grid scheduler obtain a list of time slots from each LRM, resex common time slot for
all job components, and notify the LRMs of this reservationfdstunately, a reservation-
based strategy in grids is currently limited due to the faat bnly few local schedulers
support advance reservations (e.g., PBS-pro [165], Maui])14in the absence of an
advance reservation mechanism good alternatives areredguiuch as the mechanism
explained in Section 2.2, in order to achieve co-allocation

2.7.3 System reliability

The single most important distinguishing feature of gridcampared to traditional par-
allel and distributed systems is their multi-organizagéilbcharacter, which causes forms
of heterogeneity in the hardware and software across toeress. This heterogeneity, in
turn, makes failures appear much more often in grids tharashittonal distributed sys-
tems. In addition, grid schedulers or resource managenysteras do not actually own
the resources they try to manage, but rather, they intettaoaultiple instances of local
schedulers in separate clusters who are autonomous andavhaltiferent management
architectures, which makes the resource management afiffiallenge.

We have experienced in our work amALA that even only configuring sets of pro-
cessors in different administrative domains in a coopezatsearch environment is not
a trivial task. Due to incorrect configuration of some of tlegles, during almost all our
experiments, hardware failed and jobs were inadvertebibytad. To accomplish the ex-
periments that we have presented in this study, we have spestthan half a year and we
have submitted more than 15,000 jobs to get reliable restdesclaim that co-allocation
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in large-scale dynamic systems such as grids requires g@lonts for configuration
management as well as good fault tolerance mechanisms.

2.8 Related work

Various advance reservation mechanisms and protocolsujgposting processor co-
allocation in grid systems have been proposed in the lilezd®, 40,131, 168, 174, 184].
Performance studies on co-allocation, however, mostldistlin simulated environ-
ments; only a few studies investigate the problem in realesys. In this section, we
discuss some of the studies that we find most related to ou. wor

Bucur et al. [25—-27] study through simulations processaalémzation in multiclusters
with space sharing of rigid jobs for a wide range of such patens as the number and
sizes of the job components, the number of clusters, thecsetime distribution, and
the number of queues in the system. Parallel to our reshky, find that co-allocation
Is beneficial as long as the number and sizes of job compgremdisthe slowdown of
applications due to the wide-area communication, aredidit

Ernemann et al. [66] present an adaptive co-allocationritgo that uses a simple
decision rule to decide whether it pays to use co-allocattwra job, considering the
given parameters such as the requested run time and thestedqumimber of resources.
The slow wide-area communication is taken into account bararpeter by which the
total execution time of a job is multiplied. In a simulationvéonment, co-allocation is
compared to keeping jobs local and compared to only shaoiad &mong the clusters,
assuming that all jobs fit in a single cluster. One of the mgtartant findings is that
when the application slowdown does not exceed 1.25, it payse co-allocation.

Roblitz et al. [171, 172] present an algorithm for reservimgnpute resources that
allows users to define an optimization policy if multiple datates match the specified
requirements. An optimization policy based on a list of s criteria, such as end time
and cost, ordered by decreasing importance, is tested im@ation environment. For
the reservation, users can specify the earliest start tiledatest end time, the duration,
and the number of processors. The algorithm adjusts theesteg duration to the actual
processor types and numbers by scaling it according to thedsgp, which is defined
using speedup models or using a database containing reéevatues. This algorithm
supports so-called fuzziness in the duration, the stas,tthre number of processors, and
the site to be chosen, which leads to a larger solution space.

Jones et al. [111] present several bandwidth-aware coadittn meta-schedulers for
multicluster grids. These schedulers consider netwotization to alleviate the slow-
down associated with the communication of co-allocated.jobor each job modeled,
its computation time and average per-processor bandwetjbirement is assumed to
be known. In addition, all jobs are assumed to perform alft@lobal communication
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periodically. Several scheduling approaches are comparadsimulation environment
consisting of clusters with globally homogeneous processthe most significant result
is that co-allocating jobs when it is possible to allocatargé fraction (85%) of on a
single cluster, provides the best performance in allewigthe slowdown impact due to
inter-cluster communication.

The Grid Application Development Software (GrADS) [50,26fhables co-allocation
of grid resources for parallel applications that may hageificant inter-process commu-
nication. For a given application, during resource sedeGtiGrADS first tries to reduce
the number of workstations to be considered according tio #vailabilities, computa-
tional and memory capacities, network bandwidth and Iatémformation. Then, among
all possible scheduling solutions the one that gives theémum estimated execution time
is chosen for the application. Different from our work, Gr8Rssumes that the perfor-
mance model of the applications and mapping strategiesl@ady available or can be
easily created. While Dail et al. present the superiorityhef approach within GrADS
over user-directed strategies, we handle the co-allatg@tioblem for various cases, and
present a more in-depth analysis.

In addition to the benefit of co-allocation from a system’susers’ point of view,
various study also addresses the performance of a singddlamated parallel applica-
tion [121, 164, 204]. A study by Seinstra et al. [176] presentork on the co-allocation
performance of a parallel application that performs th& tdsvisual object recognition
by distributing video frames across co-allocated nodedange-scale grid system, which
comprises clusters in Europe and Australia. The applindtess been implemented using
the Parallel-Horus [177] tool, which allows researchersnuitimedia content analysis
to implement high-performance applications. The expentaeresults show the benefit
of co-allocation for such multimedia applications thatuieg intensive computation and
frequent data distribution.

2.9 Summary

In this chapter we have investigated the benefit of process@ilocation in a real mul-
ticluster grid system, DAS-3, using oUDALA grid scheduler as well as in a simulated
environment using our DGSim tool. Initially, we have assedhie impact of inter-cluster
communication characteristics of a multicluster systemthm execution time perfor-
mance of a single co-allocated parallel application. Thee,have evaluated the co-
allocation performance of a set of parallel applicatioret tlange from computation- to
communication-intensive, under various utilization citiods. Finally, we have evalu-
ated two scheduling policies for co-allocating communaaintensive applications. We
conclude the following.

First, the execution time of a single parallel applicationreases with the increase
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of the number of clusters combined. This increase depengsmeach on the commu-
nication characteristics of the application, and on theristuster communication char-
acteristics and the processor speed heterogeneity of téiged clusters. Secondly,
for computation-intensive parallel applications, casedition is very advantageous pro-
vided that the differences between the processor speedssatire system are small.
For parallel applications whose slowdown due to the intester communication is low,
co-allocation is advantageous when the resource conteitithe system is moderate.
However, for very communication-intensive parallel apalions, co-allocation is disad-
vantageous since it increases execution times too muclallysim systems with a high
variability in inter-cluster communication speeds, takimetwork metrics (in our case the
latency) into account in cluster selection increases t@®prance of co-allocation for
communication-intensive parallel applications.

Although there is a large opportunity for many scientificgd@l applications to ben-
efit from co-allocation, there are still many issues thatdneebe overcome before co-
allocation can become a widely employed solution in futurdticluster grid systems.
The difference between inter- and intra-cluster commuiunaspeeds, efficient commu-
nication libraries, advance processor reservations, gstdm reliability are some of these
challenges.



Chapter 3

Malleability for parallel applications

In multicluster grids, resource availability may vary besea of resource failures, because
resources may be allocated or released by concurrent @sefd)ecause organizations
may add or withdraw parts of their resources to/from theuss®pool at any time. In any
of these cases, application malleability, that is, the prypof applications to deal with
a varying amount of resources during their execution, alapplications to benefit from
appearing available resources, while gracefully relepsesources that are reclaimed
by the environment. Allowing resource allocation to varyidg execution, malleabil-
ity gives a scheduler the opportunity to revise its decisieven after applications have
started executing. Increasing the flexibility of applioas by shrinking their resource
allocations, malleability allows new applications to s&woner, possibly with resources
that are not going to be usable during their whole executMaking applications able
to benefit from the resources that appear during their ex@chy growing their resource
allocations, malleability also helps applications teratésooner. In addition to these
very general advantages, malleability makes it easier &with the dynamic nature of
large-scale distributed execution environments such dsahister grid systems. Several
approaches have been proposed to build parallel malleppleations [28,114,198,199],
and to schedule them in traditional parallel systems [95198, 151]. However, previous
work does not address how to build mechanisms to scheduddiglanalleable applica-
tions in the context of a multicluster grid scheduler.

In this chapter we present an architecture and an actuakmmaitation of the sup-
port for malleability in ourkoALA grid scheduler with the help of theyNACO frame-
work [28, 30] for application malleability. We propose twoligies to manage malleabil-
ity in the scheduler for malleable jobs that have alreadynbra@aning in the system; one
which hands out any additional processors to the mallealble hat have been running
the longest, and one that spreads them equally over all adigobs. Each of these
policies can be coupled with one of two approaches whicleefttvor running or queued
malleable jobs when additional resources become availableen, we evaluate these
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policies and approaches in combination with the worst fitlieharing scheduling policy
of KOALA with experiments in the DAS-3 environment. These experisishow that a
higher utilization and shorter job execution times can b@exed when malleability is
used.

The rest of this chapter is organized as follows. Sectionp8ekents the aspects of
supporting malleability to be considered by a multiclugped scheduler. Section 3.2 de-
scribes how we support malleability KDALA , and details the malleability management
approaches and policies that we propose. Section 3.3 pseEnexperimental setup,
and Section 3.4 discusses our experimental results. &etforeviews related work on
scheduling malleable applications. Finally, Section 3uGisiarizes the chapter.

3.1 Aspects of supporting malleability

In this section we state the aspects of supporting malialilat should be taken into
account by a grid scheduler. The aspects that we considepaoification of malleable
jobs, initiative of change, and obligation to change, retipely.

3.1.1 Specification of malleable jobs

A malleable job may specify thminimumandmaximurmumber of processors it requires.
The minimum value is the minimum number of processors a @mdléejob needs to be
able to run; the job cannot shrink below this value. The maxmvalue is the maximum
number of processors a malleable job can handle; allocatioge than the maximum
value would just waste processors. We do not assume shepaizéndicating the number
of processors by which a malleable application can grow dnkhs defined. We leave
the determination of the amount of growing and shrinkinght® protocol between the
scheduler and the application (see Section 3.2).

3.1.2 Initiative of change

Another aspect that we consider is the party that takes ttiative of changing the size

of a malleable job (shrinking or growing). Either the apation or the scheduler may
initiate grow or shrink requests. An application may do sceewithe computation it is

performing calls for it. For example, a computation can beeed of more processors
before it can continue. On the other hand, the scheduler reaidel that a malleable

job has to shrink or grow based on the availability of freecessors in the system. For
example, the arrival of new jobs to a system that is heavagénl may trigger a scheduler
to requests currently running malleable jobs to shrink.
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Figure 3.1: Overview of the architecture of theNACO framework for adaptability.

3.1.3 The obligation to change

Requests for changing the size of a malleable job may or maaw& to be satisfied. A
voluntarychange means that the change does not have to succeed ootloesessarily
have to be executed; it is merely a guideline. mfandatorychange, however, has to
be accommodated, because either the application canrngatavithout the change, or
because the system is in direct need of the reclaimed prasess

3.2 Designing support for malleability in KOALA

In this section, we present our design for supporting mbleeapplications irKOALA.
First, we describe theyNnAco framework that we use to implement malleable applica-
tions. Then, we explain how we include tb&NACO framework into thekOALA mul-
ticluster scheduler, and finally, we present our approaahdsolicies for managing the
execution of malleable applications, respectively.

3.2.1 The DYNACO framework and its use for malleability

DYNACO [28]* is a generic framework for building dynamically adaptaljpplacations.
As its architecture shows in Figure 3yNACO decomposes adaptability into four com-
ponents, similarly to the control loop suggested in [120je dbservecomponent mon-
itors the execution environment in order to detect any ealexhange; relying on this
information, thedecidecomponent makes the decision about adaptability. It decide
when the application should adapt itself and which stratdgyuld be adopted. When
the strategy in use has to be changed, gla component plans how to make the ap-
plication adopt the new strategy; finally, tegecutecomponent schedules actions listed
in the plan, taking into account the synchronization wite #pplication code. Being a
framework,DYNACO is expected to be specialized for each application. In@a&r, de-
velopers must provide the decision procedure, the degmmipf planning problems, and
the implementation of adaptation actions.

IbYNACoO is available at the following website: http://dynaco.gfesinria.fr
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Figure 3.2: The architecture of the Malleable Runner witthNACO in the KOALA multi-
cluster scheduler.
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In addition, developers of theyNACO framework proposedFPAC [29] as an imple-
mentation of theexecutecomponent that is specific to SPMD applications. As reported
in [28], DYNACO andAFPAC have been successfully used to make several existing MPI-
based applications malleable. While not being restrictethito class of applications,
DYNACO contributes to reduce the cost of transforming existinglbarapplications into
malleable ones when it is combined with tools suchBBAC.

3.2.2 Supporting DYNACO applications in KOALA

In order to supporbYNACO-based applications iROALA, we have designed a specific
runner called the Malleable Runner (MRunner); its architectsishown in Figure 3.2. In
the MRunner, the usual control role of the runner over theiegiabn is extended in order
to handle malleability operations. For that purpose a cetsphstance obYNACO is
included in the MRunner on a per-application basis. A frodtevhich is common to all
of the runners, interfaces the MRunner to the scheduler. \Weaadalleability manager
in the scheduler, which is responsible for triggering cleangf resource allocations.

In the DYNACO framework, the frontend is reflected as a monitor, which gges
events when it receivagrow andshrink messages from the scheduler. Resulting events
are propagated throughout tbheNACO framework and translated into the appropriate
messages to Globus GRAM [89], which is the job submission daeimat we use in this
study, and to the application. The frontend catches thdtsestiadaptations in order to
generate acknowledgments back to the scheduler. It alsitesdhe scheduler when the
application voluntarily shrinks below the amount of alltehprocessors. Since GRAM
is not able to manage malleable jobs as discussed in [30]MfRenner manages the
malleable job as a collection of GRAM jobs of size

Upon growth, the MRunner submits new jobs to GRAM. When it rezgactive
messages from GRAM, it transmits the new collection of ac®RAM jobs (i.e. the
collection of held resources) to the application. In oraderagduce the impact on the ex-
ecution time, interactions with GRAM overlap with the exaecontof the application and
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suspension of the application does not occur before allekeurces are held. To do so,
GRAM submissions launch an empty stub rather than the apipiice program. The
stub is turned into an application process during the psooegnagement phase, when
resources are recruited by the application. That latteratjpm is faster than submit-
ting a job to GRAM as it is relieved from tasks such as securifpeement and queue
management. Conversely, upon shrink, the MRunner first rasl@rocessors from the
application; then when it receivaetirunkfeedback messages, it releases the correspond-
ing GRAM jobs. Again, interactions with GRAM overlap the exagon, which resumes
immediately.

3.2.3 Job management

In this study we assume that every malleable job is executedsingle cluster, and so,
no co-allocation takes place. Therefore, contrary to oualfe job model described in
Section 2.1, all the components of a job are scheduled orgéesituster.

Upon submission of a parallel job «woALA, whether it is rigid or malleable, the
initial placement is performed by one of the existing plaeatpolicies as described
in Section 2.2. In the placement phase of malleable jobsinitial number of proces-
sors required is determined considering the number ofaailprocessors in the system.
Specifically, given a malleable job, the placement poliplese it if the number of avail-
able processors is at least equal to the minimum procesgoireenent of the application.

In the job management context, the malleability managezspansible for initiating
malleability management policies that decide on how to gyoshrink malleable applica-
tions. Below, we propose two design choices as to when tataithalleable management
policies, which give Precedence to Running Applications oxagting ones (PRA) or vice
versa (PWA), respectively.

In the PRA approach, whenever processors become availablastance, when a job
finishes execution, first the running applications are cersid. If there are malleable jobs
running, one of the malleability management policies isated in order to grow them;
any waiting malleable jobs are not considered as long asaat e running malleable
job can still be grown. In this approach malleable jobs areenshrunk unless a priority
setting is considered between rigid and malleable jobs.

In PWA approach, when the next job in the queue cannot be glabe scheduler
applies one of the malleability management policies foingiimg running malleable jobs
in order to obtain additional processors. Those shrinkatpmrs are mandatory. If it is
however impossible to get enough available processorglier @o place that queued job,
taking into account the minimum sizes of the running jobentthe running malleable
jobs are considered for growing by one of the malleable mamagt policies. Whenever
processors become available, the placement queue is scanosler to find a job to be
placed.
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In both approaches, in order to trigger job management, ¢thediiler periodically
polls thekoALA information service. In doing so, the scheduler is able ke iato ac-
count dynamically the background load due to other usens iétleey bypaskoOALA. In
addition, in order not to stress execution sites when grgwiralleable jobs, and there-
fore, in order to leave always a minimal number of availalslecpssors to local users, a
threshold is set over whickOALA never expands the total set of the jobs it manages.

3.2.4 Malleability management policies

The malleability management policies, which we will delseribelow, determine the
means of shrinking and growing of malleable jobs duringrtlesecution. Since each
malleable job is executed in a single cluster the policiesagplied for each cluster sepa-
rately.

Favor Previously Started Malleable Applications (FPSMA)

The FPSMA policy favors previously started malleable jolgenever the policy is ini-
tiated by the malleability manager. FPSMA starts growiragrfrthe earliest started mal-
leable job and starts shrinking from the latest startedemnblke job. In thegrow proce-
dure, first, malleable jobs running on the considered dhisstged in the increasing order
of their start time, then the value of the number of procestmbe allocated on behalf of
malleable jobs is offered to the subsequent job in the sdigedn reply to this offer (the
job itself considers its maximum number of processors reguent), a desired number of
processors are allocated on behalf of that job. Then, theyp@bdates the number of idle
processors and continues to offer processors to the sulrsigqbs in the list. Thahrink
procedure runs in a similar fashion; the differences withgtow procedure are that the
jobs are sorted in the decreasing order of their start timé,rather than allocation, the
compromised number of processors are waited to be released.

Equi-Grow & Shrink (EGS)

The EGS policy attempts to balance processors over madigalbs. When it is initiated
by the malleability manager, it distributes available gssors (or reclaims needed pro-
cessors) equally over all of the running malleable jobs.asecthe number of processors
to be distributed or reclaimed is not divisible by the numbkrunning malleable jobs,
the remainder is distributed across the least recentlyestgobs, or reclaimed from the
most recently started jobs, respectively.
The EGS policy is similar to the well-known equipatrtitionlioy [141], which has

originally been proposed as a dynamic processor allocatbeme for malleable paral-
lel applications running in traditional parallel systeri$ie two policies, however, differ
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Figure 3.3: The execution times of the two malleable appboa depending on the num-
ber of used processors.

in the following points. While our EGS policy distributes edjy available processors
among running jobs, the equipartition policy distributgsi@ly the whole set of proces-
sors among running jobs. Consequently, EGS is not expectedke at each time all of
the malleable jobs have the same size, while equipartita@sd But equipartition may
combine grow and shrink messages, while EGS consisteitigregrows or shrinks all of
the running malleable jobs.

3.3 Experimental setup

In this section we describe the setup of the experimentsstbdiave conducted in DAS-3
in order to evaluate the support and the scheduling policiesialleable jobs irKOALA.
First, we will present the malleable applications, and tverwill describe the details of
the workloads that we have used in our experiments.

3.3.1 Malleable applications

For the experiments, we rely on two applications that haeslmeade malleable withy-
NACO. These applications are the NAS Parallel Benchmark FT [20Rich is a bench-
mark for parallel machines based on a fast Fourier transfanmerical kernel, and GAD-

GET [191], which is a legacy-body simulator. Further details on how these applications

were made malleable can be found in [28]. Figure 3.3 showsthevexecution times of
the two applications scale with respect to the number ofgssars on the Delft cluster
(see table 1.2). With two processors, GADGET takes ten regjuvhile FT lasts two
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minutes. The best execution times are respectively fouuteshfor GADGET and one
minute for FT.

While GADGET can execute with an arbitrary number of procesdéT only accepts
powers of two. As we have already stated, we propose thatctiedsiler does not care
about such constraints, in order to avoid to make it implena@nexhaustive collection
of possible constraints. Consequently, when respondingde @nd shrink messages,
the FT application accepts only the highest power of two @geors that does not exceed
the allocated number. Additional processors are volugtegleased to the scheduler. In
addition, the FT application assumes processors of equgdete power, while GADGET
includes a load-balancing mechanism.

3.3.2 The workloads

The workloads that we employ in our experiments combinewlweapplications of Sec-
tion 3.3.1 with a uniform distribution. Their minimum size set to 2 processors, while
the maximum size is 46 for GADGET and 32 for FT. In both cas@$ j®bs are sub-
mitted. Jobs are submitted from a single client site; noistagperation is ordered even
when processors are allocated from remote sites.

Regarding Figure 3.3, the maximum sizes we have chosen agegtban the sizes
for which we have observed the minimum execution times. @alderate choice comes
from the following. Applications are not supposed to schkegame in all of the clusters,
which may be heterogeneous. In addition, users may not beeaithe speedup behavior
of their applications. Hence, the maximum size of a malle@b should not be the size
that gives to the best execution time of the application y@articular cluster.

For the PRA-based experiments, we have used two followindads. Workload
W, is composed exclusively of malleable jobs, while workld&g, is randomly com-
posed of 50% of malleable jobs and 50% rigid jobs. In both sasger-arrival time is
2 minutes. Rigid jobs are submitted with a size of 2 processord malleable jobs with
an initial size of 2 processors. In our experimeRSALA employs the Worst-Fit policy.

Apart from workloadlV,,, or W,,,., the only background load during the experiments
is the activity of concurrent users. This background loaesdaot disturb the measures.
When analyzing the PWA approach, we have used two workldggdsand W, ., which
derive respectively fromi,,, andW,,,.. In these workloads, inter-arrival time is reduced
down to 30 seconds in order to increase the load of the system.
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3.4 Experimental results

In this section we will present the results of our experirseor both the Precedence
to Running Applications (PRA) and the Precedence to Waitinglidations (PWA) ap-
proaches.

3.4.1 Analysis of the PRA approach

Figure 3.4 compares the FPSMA and EGS policies for mallggioianagement in the
context of the PRA approach for job management, i.e., whes gob never shrunk. For
this experiment, we have done 4 runs for each combinatiomadleability management
policy (one of FPSMA or EGS) and a workload (eith&}, or W,.,,,).

Figures 3.4(a) and 3.4(b) show for each combination how gybsdistributed with
regard to their average and maximum size. In both figurel,watrkloadiV,,,,., which has
50% rigid jobs with only 2 processors, relatively few malisjobs retain their initial size
of 2 during their execution. In addition, we observe that agithe policies, EGS tends
to give more processors to the malleable jobs than FPSMA, ibderms of average and
maximum number of processors per job. On one hand, with FP3Wért applications
(like FT in our experiments) may terminate before it is thieim to grow, i.e., before
previously started jobs terminate. They are thus stuckeat thinimal size. On the other
hand, EGS makes all jobs grow every time it is initiated. Hem®ven jobs that have been
started recently do grow, and only few jobs do not grow beybed minimal size.

Figures 3.4(c) and 3.4(d) show the distributions of the etien time and the response
time, respectively. Two groups of jobs appear clearly: ¢hwgh execution times and re-
sponse times less than 200 s, and those for which these tireegeater than 400 s.
Those two groups correspond to the two applications in theklvads (respectively FT
and GADGET). In both cases, we observe thatlfhig workload results in better perfor-
mance than th&/,,,,. workload, which means that malleability makes applicaiactually
perform better. Furthermore, with the FPSMA policy, forlbof the workloads, the tail
of the performance distribution cuts off far before thart tifavith the EGS policy.

Figure 3.4(e) shows the utilization of the DAS-3 during atpdrthe experiments.
With workloadV,,,, which includes only malleable jobs, the EGS policy leads bhigher
utilization. In fact, as we have already observed, thisqyaiends to make jobs larger in
terms of their size. For the same reason, the utilizatiomglsdr with workloadV,,, than
with W,,,,..

Finally, Figure 3.4(f) shows the activity of the malleatyilmanager. As expected, the
number of grow operations is much higher when all jobs ardeable (workloadV,,).

It is also higher with the EGS policy than with FPSMA. Eachéithe policy is triggered,
EGS makes all of the running malleable jobs grow, while FPSdiy does so with the
ones that have started earlier.
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3.4.2 Analysis of the PWA approach

Figure 3.5 compares the FPSMA and EGS policies in the coofekte PWA approach
for job management, i.e., when the scheduler can also shralleable jobs. With the
PWA approach, the load of the system has a direct impact oefteetiveness of the
malleability manager. If on the one hand the system is oaddd, all of the jobs are
stuck at their minimal size and malleability managemenbbezs ineffective, while if on
the other hand the system load is low, no job is shrunk and P&¥awes exactly the same
as PRA. We have therefore used worklo&id§ andW,. , which increase the load of the
system.

Figure 3.5(f) shows that beyond a certain time, the mallggbnanager becomes
unable to trigger any other change than initial placemejald. Similarly, Figures 3.5(a)
and 3.5(b) show that many of the jobs are stuck at their mihsiz®, irrespective of
the workload and the malleability management policy beisgdu This phenomenon is
more pronounced with the EGS policy, which means that lodanisang is achieved as
expected.

Figure 3.5(c) shows that the execution time is almost theestomthe four cases.
Most of the GADGET jobs have an execution time of 600s, 30%¢érdghan with PRA.
This difference results from what we observe about the sizéejobs. Figure 3.5(d)
shows that the response time is far worse for the combinafitime EGS policy andV,,
workload due to higher wait time. This result confirms theteysoverload observed on
Figure 3.5(e) as a high utilization. Favouring long-rumgnjobs, FPSMA has reduced
enough the execution time of GADGET jobs to maintain the Isafficiently low.

I

3.5 Related work

Simulation-based studies [32,109, 110, 151] on the sciveglof malleable applications
in cluster systems often neglect the issues that arise liemgaonments such as the effec-
tive scalability of applications and the cost of growing brisking in terms of resource
allocation at runtime. Besides, the previous research hawveansidered the combina-
tion of malleability management and load sharing policiess clusters, which is an
issue specific to multicluster grids. In this section we dgscseveral implementations of
malleable applications and their scheduling in clustetesys.

Several approaches have been used to make parallel ajppigatalleable. While
GrADS [201] relies on the SRS [200] framework, AppLeS [16] &8ISIST [3] propose
to build applications upon intrinsically malleable skelet. With AMPI [114], malleabil-
ity is obtained by translating MPI applications to a largentner of CHARM++ objects,
which can be migrated at runtime. Utrera et al. [198] progos@ake MPI applications
malleable by folding several processes onto each processor
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A couple of works have studied how to schedule malleableiegipdns in combi-
nation with making parallel applications malleable. Amahgm, AppLeS [16] and
GrADS [199] are somewhat specific as they propose that agijits are responsible to
schedule themselves on their own. However, this approasbésthe question of how the
system behavior and performance would be, in case severaloent malleable applica-
tions compete for resources. Furthermore, as those apg@eaely on checkpointing, it is
unclear how an application gets its resources back whewéds to try a new allocation.
System-wide schedulers, suchkasaLA do not suffer from these drawbacks.

Some other approaches rely on a system-wide scheduler.9porréing to the under-
lying execution model, AMPI uses an equipartition policpigh ensures that all jobs get
almost the same number of processors; while the policy iB][l9based on folding and
unfolding the jobs (i.e., doubling or halving the number bbb@ated processors). How-
ever, those two approaches rely on the properties of thelenying execution model.
For instance, equipartition assumes that any applicationbe executed efficiently with
any number of processors, as it is the case with AMPI; whildiig restricts the number
of processes to be divisible by the number of processorsr{@tpower of 2 for practical
reasons), which is the only way to fold efficiently non-mabé& applications. A more
general approach such as the one we propose is more appeaprtae context of mul-
ticluster grids. McCann and Zahorjan [141] further discimsfolding and equipartition
policies. According to their experiments, folding pres=rwell efficiency; while equipar-
tition provides higher fairness. They also propose a magiolicy in order to increase
the fairness of the folding policy. However, rotation is akhimpracticable in the context
of multicluster grids.

As fairness does not imply efficiency in terms of allocatedcessors, a biased
equipartition policy is proposed in [96] such that the cuative speedup of the system
is maximized. The policy further considers both mallealvie agid jobs in a single sys-
tem [95], and it guarantees to allocate a minimum numberafgssors to each malleable
job, such that they are not ruled out by rigid jobs. Howevemulticluster grids it is com-
mon that some of the users bypass the global grid scheduierpiblem of making the
scheduler take into account that incurred background leadt addressed in this study.

3.6 Summary

In this chapter we have presented the design and a real ireptation of the support
for malleability in ourkoALA grid scheduler using theyNACO framework [28, 30] for
application malleability. We have proposed two malle@piinanagement policies, Favor
Previously Started Malleable applications (FPSMA) andiEsow&Shrink (EGS), for
malleable applications. FPSMA distributes idle process$orthe malleable jobs starting
from the job that have started earliest, while EGS spreazta #qjually among all running
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malleable jobs. We have also proposed two design choicesrsen to initiate malleable
management policies, which give precedence to runningaaialk applications over wait-
ing ones (PRA) or vice versa (PWA), respectively. We haveuated these policies and
design choices running experiments with workloads of nahlie and rigid parallel appli-
cations in DAS-3. Our experiments show that malleabilitproves the execution time
of the parallel applications. In addition, when PRA is pregdrthe FPSMA policy out-
performs the EGS policy, while they perform similarly wheWR is preferred. PWA
behaves exactly the same as PRA unless the load in the syshégh.is



Chapter 4

Cycle scavenging for parameter sweep
applications

Cycle scavenging is the underlying technology of desktodsgand volunteer comput-
ing projects (such as Seti@Home [178]), which enables lsamg idle CPU cycles of
desktop workstations to solve large-scale scientific @wisl in a variety of research ar-
eas. The same concept can be applied to multicluster gridlomments to give users
the opportunity of executing such large-scale computatitensive applications at a low
priority without being in the way of regular grid users ordbasers. In this chapter we
present scheduling strategies for the support of cyclessamg in multicluster grid sys-
tems, and evaluate the performance of the implemented@uduboth from the user and
the system perspectives.

Today, many grids exhibit significant job submission bubsteveen periods of rela-
tive idleness [98]. Many users perform observational saheg, that is, they postpone
the submission of relatively low-priority jobs until a ctes becomes (largely) idle. This
attitude, however, may lead to resource contention whearakguch users crowd the
same idle cluster, and may delay the execution of more irapbjbbs unless some form
of administrative support for job and user priorities is logpd. Cycle scavenging, on
the other hand, obviates the need for establishing prictédgses, which can be a time-
consuming and error-prone administrative operation. 8tpg cycle scavenging in a
grid system would enable users to execute long-runningagins (e.g., 3-D rendering,
molecular docking, and game solving applications) at theki priority without violating
the resource usage rules enforced in the system.

In this chapter we extend owioALA grid scheduler with cycle scavenging support.
The implemented cycle scavenging mechanism runs alongsedeegular grid schedul-
ing, being unobtrusive to the jobs of higher priority (babicdl and grid jobs). Although
cycle scavenging infrastructures do exist [7, 44, 134], mechanism obviates the need
for additional software installations on the compute noatesny modifications to the re-
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source managers of the clusters (e.g., SGE [87]), both attwlvould be administrative
obstacles in multicluster grid systems. We exclusivelgeatarge-scale applications that
can be modeled as Parameter Sweep Applications (PSAs) ssreytle scavenging (CS)
jobs. We enable single PSAs to run across multiple clustemsl&neously, that is, in a
co-allocated fashion.

The scheduling architecture for cycle scavenging that wee hacorporated into
KOALA comprises two levels. At the grid level, scheduling pobkcren to ensure fair
distribution of idle resources among CS users in a dynamigdasand at the application
level, CS users can customize the scheduling policies inrdodenprove the perfor-
mance of their applications. We have designed two bestteffcle scavenging schedul-
ing policies that enforce fair resource sharing between &8sus a dynamic fashion.
The policies do not need to keep track of the past usages @f$hesers. The first policy
distributes or reclaims the idle nodes evenly among CS usegardless of the site these
idle nodes belong to. The second policy, on the other hantitipas or reclaims the idle
nodes evenly such that each CS user is assigned an equal Sitbeenodes on each site.
We show with experiments conducted in the DAS-3 multiclusterironment that the lat-
ter policy outperforms the former in terms of fairness. Wsgberform experiments to
demonstrate the efficiency of the implemented system ind@frscheduling overhead.

The rest of the chapter is structured as follows. Sectioredplains the requirements
for the support of cycle scavenging in a multicluster gridestuler. Section 4.2 presents
the implemented scheduling architecture and the schagpditicies for cycle scavenging.
Section 4.3 presents the experiments that we have perfolonassess the performance
of the implemented cycle scavenging scheduling policiestin 4.4 reviews the related
work, and finally, Section 4.5 summarizes the chapter.

4.1 Requirements for supporting cycle scavenging

In this section we state the requirements of cycle scavegr(@) that should be taken into
account by a grid resource manager or a grid scheduler toestigiefficient allocation of
idle resources. These requirements are fair-share sehggdalproper notion of idleness
of processing nodes, and unobtrusiveness, respectively.

4.1.1 Fair-Share scheduling

As we know from desktop grids or volunteer computing envinents, CS applications
are high throughput computing applications that consist@¢pendent sequential tasks,
which scale to many thousands of nodes, and require largarasiof computation. Con-
sidering the size of these applications, the schedulinghar@sm should try to achieve
fair-share resource allocation among the users submi@i®gasks, so that it prevents
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some users monopolizing all free resources for a consitieeebount of time, leaving
space for users having relatively light workloads.

Fair-Share scheduling, in fact, was originally proposedni@naging resource allo-
cation of processes on time-sharing uniprocessor systeh®s.[ The application of the
fair-share resource allocation to a distributed systenerg much dependent on how the
system administrators define the fair share. A study ingastig this issue in cluster sys-
tems [122] shows that unless the jobs on a cluster are flexilikrms of space (number
of nodes) and time (checkpointable), fair-share is not ttbéehieve real-time fairness as
it can on a uniprocessor; rather, it becomes a best-efforicee

Due to the fact that tasks of a CS application may be preempi@ayaime, giving a
hard completion time guarantee for a CS application is alnmogossible; nevertheless,
users submitting CS applications may be more interesteceimate of receiving partial
results, that is, the throughput, since their jobs congistdependent sequential tasks. To
improve such performance, scheduling at the applicatiesl hould be considered as a
separate layer under the fair-share resource allocatiense. Such a layered architecture
would provide modularity and flexibility.

4.1.2 Notion of idleness

A grid scheduler would possibly schedule CS tasks whenew@aware of idle nodes on
clusters. However, the existence of idle resources may @dh® only prerequisite for
acquiring those resources to run tasks of a CS application.nwheonsider a resource
as idle may be subject to the additional administrativeqoedi of each site. For instance,
a site may only be willing to run such tasks when a certaingrgage of its resources are
idle and simultaneously there are no local jobs waiting exgbeue, or site administrators
may want to set time limits such as allowing CS tasks to run anlyights. In addition,
site administrators may need to set usage limits due to msasach as cooling costs,
which would increase by running long-lasting CS applicatiaha high utilization.

4.1.3 Unobtrusiveness

From the system perspective, we need to ensure that planshguaning CS tasks are
unobtrusive to the jobs of higher priority; a grid scheduias to make immediate pre-
emption possible without causing significant delays whenaon-CS jobs demand the
nodes allocated to CS jobs. These high priority jobs in a lultiter grid can be defined
as the non-CS jobs that are directly submitted to local resonranagers by local users,
and the non-CS jobs that are submitted to a grid schedulertéyigers.
When a CS task is canceled due to a high priority job by the gidualer, it has

to return back to a task pool so that it can be re-schedulechegkpointing mechanism
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would be useful not to lose many computations; however, wead@onsider checkpoint-
ing as it lies outside the focus of this chapter. Instead,a@gd users to implement their
own application level checkpointing solutions.

4.2 Designing support for cycle scavenging in KOALA

In this section we present our design for supporting cycéacging (CS) IrKOALA.
First, we explain the application model, then we descrilgedystem architecture, and
finally, we present the fair-share policies and schedulirtheapplication level, respec-
tively.

4.2.1 Application model

For this study we consider in particular high-throughputleations that conform to the
Parameter Sweep Application (PSA) model. A PSA can be defisedsingle executable
that is run for a range of parameters for a large number ofgimehe PSA model is
well suited for our problem since on the one hand many lacgdesscientific applications
are structured in this way, and on the other hand PSAs arefleifple to be run as CS
jobs in a multicluster grid environment. We support OGFanslardized Job Description
Language (JSDL 1.0 [113]) to which we have added an exterisioparameter sweeps
such that users can submit PSAs as single entities by spegifyput files for parameter
extraction and representing the ranges of parameters ps éwdists of comma-separated
values.

We treat PSAs as malleable applications that can grow amlskdginamically in terms
of the number of compute nodes they execute on. Moreover,lla BSAs to run in
multiple clusters simultaneously, i.e., in a co-allocateshion. ThekOALA scheduler
has been modified to handle PSAs in a different way than reguid jobs (we explain
this in the next section in more detail). A job componenthiatycle scavenging context,
represents the set of tasks of a PSA that are running in the skluster. The job compo-
nents are dynamically created at run time according to tteeantions with the scheduler
rather than being statically specified at submission time.

4.2.2 System architecture

In order to support cycle scavenging KDALA, we have implemented two additional
components, a specifikoALA runner called theCS-Runnerand a glide-in mecha-
nism [81] called thd_.auncher Figure 4.1 illustrates the interaction between these com-
ponents and the existingbALA components that together achieve cycle scavenging. The
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fair-share scheduling policies have been incorporatetheneikisting scheduler compo-
nent. ThekoALA Component Manager (KCM) is our job submission daemon that runs
as a separate copy per job component on the head node of teemamding cluster. The
KCM interfaces to a local resource manager (that is SGE [8DAS-3) through the
standardized DRMAA [59] interface. We have added to the KCMfthmetionality of
notifying thekoALA Information Service (KIS) about local (non-CS) job subnossi.

Along with scheduling regular grid jobs, the scheduler spansible for allocating and
reclaiming idle nodes among active CS-Runners, based on ithéhtare policy in use.
The fair-share policies decide on which CS-Runners are gairizetoffered additional
nodes (i.e.grow), or are going to be forced to release nodes &lejnk), from which
clusters, and how many (see Section 4.2.3). A CS-Runner mayweea grow request
whenever the scheduler becomes aware of idle nodes in onereratusters through the
KIS. On the other hand, a CS-Runner may receive a shrink refpuaeste of two reasons.
First, a CS-Runner may be forced to release nodes that it aexugienever a non-CS
job (at the local or grid level) demands those nodes. Segpddpending on the fair-
share policy deployed, it may also be asked to release nodgsen up space for other
CS-Runners.

The CS-Runner is entitled to manage the scheduling and mmgtof CS tasks (each
task refers to a parameter) on behalf of a user on the alldddiie resources. It initiates
Launchers on the idle nodes to delegate the execution oftfaeters. For simplicity, in
this study we restrict users to have a single CS-Runner at aiemee, each CS-Runner
process in the system corresponds to a different user. Wiaenefpts a grow offer, a CS-
Runner submits a request to the KCM to initiate Launchers ondikenodes allocated
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by the scheduler, and then the parameter values are suthrtottbe Launchers, based
on the application level policy in use (see Section 4.2.4omJsuccessful execution of a
parameter, a Launcher sends back the result to the assb€i&t&unner. Upon receiving
a shrink message, the Launchers are preempted accordihg taatincher preemption
policy deployed in the CS-Runner (see Section 4.2.4).

The Launcher runs an executable for the given set of paramietsequential order
that otherwise would be submitted one by one to the schedihermotivation behind the
Launcher mechanism is to reduce the overhead by decre&simyimber of job submis-
sions which would put a considerable burden on the head no@gsarameter study, and
to have more control on application level scheduling in theRi@ner (see Section 4.3.1
for the performance results). If compute nodes have malppbcessors, a CS-Runner can
optionally initiate a separate Launcher per processorderio improve the performance
(i.e., the throughput).

In fact, the idea of enabling the rapid execution of many job<xlusters, creating a
virtual pool of resources and bypassing the local resour@eager, has previously been
realized with several implementations such as the Condole@h mechanism [81], My-
Grid’s virtual cluster approach [45], DIANE [150], and thalkon framework [169]. The
Launcher adopts the same idea; however, it differs frometmeschanisms in terms of
functionality as it is specialized to run complete PSAs aglsi entities. For instance, it
saves statistical information about the parameters thasitun, and is able to send partial
results on completion or periodically.

4.2.3 Fair-Share policies

Our solution to fair-share resource allocation is to partithe idle resource space equally
among the active CS-Runners. We have designed two best-giieshare policies that
are based on the well-knowiquipartition policy [141], which has originally been pro-
posed as a dynamic processor allocation scheme for madl@albéllel applications run-
ning in a single cluster.

The first policy, Equipartition-All, tries to distribute the idle nodes (or reclaims the
required number of nodes) evenly among the active CS-Runmees grid-wide basis
(see Figure 4.2). Whenever some of the nodes are reclaimedfe€S jobs, the policy
does not repartition the idle nodes allocated to the CS-Rsroezqualize the numbers
of idle nodes they occupy. Instead, the policy gives backrdntaimed nodes to the
corresponding CS-Runners after the non-CS jobs are finished.

The second policyEquipartition-PerSite partitions the idle nodes on a per-cluster
basis. It tries to allocate or reclaim nodes evenly in eaghbtel to or from the active CS-
Runners. There is no need for repartitioning with the Equitan-PerSite policy, since
each CS-Runner has the same number of nodes before and afteio§time nodes are
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Figure 4.2: The distribution of the idle nodes among the CSrRus with the
Equipartition-All and the Equipartition-PerSite polisie

reclaimed for higher priority jobs.

In comparison to the Equipartition-PerSite policy, the ipgutition-All policy may
not treat users equally due to the heterogeneity of the nagelilities and the possi-
bly different background loads on the clusters becauseaa lor grid-level jobs. We
investigate this issue and its effects in Section 4.3.2.

In case there are too many CS users competing for the limitetbats of idle re-
sources, the overall throughput can substantially deeraath our dynamic fair-share
policies. Therefore, we apply admission control to limé titumber of active CS-Runners
to improve the overall service quality.

4.2.4 Scheduling at the application level

The default scheduling solution that we have implementéakssdpplication level is based
on a pure pull model. Each Launcher requests from its CS-Rummnex parameter to
execute when it becomes idle. When the scheduler sends & sheissage, the desired
numbers of Launchers are preempted, and the uncompletathgtars are placed back
into the parameter pool of the CS-Runner. The Launcher preempoblicy preempts the
Launchers starting from the one that has pulled a parametst iacently, to the one that
has pulled a parameter earliest, with the intention to lese tomputation. The reason we
prefer the pull model instead of the push model is that thiedatecessitates a CS-Runner
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to frequently poll its Launchers for idleness.

We provide an API with which users can customize the CS-Ruraret,the men-
tioned scheduling solutions according to their applic&iacharacteristics and require-
ments. One such example might be resubmitting the preengbsdo the sites where
input files already exist (in case the parameters are in@s)filn order to reduce unnec-
essary file transfers.

4.3 The performance of the cycle scavenging system

In this section we evaluate, in the DAS-3 testbed, the pevémice of the cycle scavenging
system and the scheduling strategies that we have incaegt@ALA .

4.3.1 The impact of the task submission mechanism

In our first experiment we demonstrate the performance daising the Launcher mech-
anism over submitting the tasks (parameters) of a PSA asatefdasks to a grid system.
We use a synthetic application that takes the same time, &fhds, to execute each of
its parameters. We consider a single cluster with 32 nodebkyary the application size
(number of parameters) as powers of 2 between 32 and 4096ubketsthe application
using the CS-Runner with and without the Launchers for eaeh &iar the former case,
the Launchers are initiated once and pull equal numbersrahpeters to execute. For the
latter, the parameters are submitted as separate tasksdadhmiddieware whenever the
CS-Runner is notified of idle nodes by the scheduler. Duringeiperiments we ensure
that no other jobs run in the cluster.
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Figure 4.3 shows the results in terms of thrakespanof the application. The
makespan of a PSA can be defined as the difference betweemhet the earliest
submission of one of its tasks, and the time of the latest ¢etiop of one of its tasks.
The ideal case assumes no overhead in the system, thatas)fsé? tasks are placed
on the nodes and started immediately. With using Launchieesperformance is close
to the ideal case, irrespective of the application size. l@nather hand, as the size of
the application increases, the difference becomes much wmsible between the regular
submission of tasks and the ideal case. It leads to a differehapproximately one and
a half hour when running the application of size 4096. Predithat the executable and
the input files reside in the execution site, there are twacgsuof this difference: the
task startup overhead, which is 5 seconds per task on ayenage¢he information delay
due to the polling nature of monitoring resources. The nooimg period is 60 seconds in
the experiment, which can be considered as a realistic goititoring setting (see, e.g.,
Ganglia [84]).

4.3.2 Performance of the fair-share policies

In our second experiment, we compare the performance ofqug&rtition-All and the
Equipartition-PerSite policies. We assume that three C&gsbmit the same application
with the same parameter range. The parameter sweep afmpliest use is a program that
we have implemented to solve a rewarding puzzle (2M.US®xriy-11 [68], which is
played on a square board with 16X16 spaces. The goal is te plaof the 256 pieces on
the board in such a way that the patterns on adjacent sidefhmi@inding a solution is
computationally hard; a brute-force technique requirdbans of CPU years. Our solver
performs random walks to yield the best solution that it daesed on the parameters
given.

Although local job submissions force CS-Runners to releadeson this experiment,
we mainly attributed preemptions to grid job submissione We two synthetic work-
loads, with different arrival patterns, in order to represhe jobs of regular grid users.
The first workloadWBlock periodically imposes for ten minutes a steady load of 40% on
the system with a period of 20 minutes; the load is distridbuten-uniformly across the
clusters. The second workload/Burst imposes a 40% load (again non-uniform across
the clusters) with burst submissions of 1 minute repeatedyel0 minutes. The moti-
vation behind using such workloads is to observe the pedana of the policies under
dynamic loads, which is a typical case for grids.

Each experiment is terminated after 1 hour. We monitor tlagl Idue to local jobs
in each cluster, and ensure that this background load islystad does not disturb the
experiments. We use the tools provided within the GrenclkiMaoject [99] to create
the workloads and to ensure the correct submission of thahmetgystem. We use with
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Table 4.1: Performance of the CS policies under the WBIlock voakl

Equipartition-All Equipartition-PerSite
Throughput  Num. of  Avg. Num.Throughput  Num. of  Avg. Num.
[tasks/min] Preemptions of Nodes[tasks/min] Preemptions of Nodes

CS User-1 1.68 346 23 2.55 323 37
CS User-2 3.3 304 45 2.4 321 37
CS User-3 1.92 333 28 2.7 323 37

KOALA the Worst-Fit policy (see Section 2.3) in order to scheduégobs of these work-
loads.

Figure 4.4 shows the performance results of the Equipamtiill and the
Equipartition-PerSite policies in terms of the number ompteted tasks (parameters)
during the experiments, and Table 4.1 presents the thraugtipe number of preemp-
tions, and the average number of nodes allocated to each CSousghe experiments
with WBIock. With the Equipartition-All policy, we observe dhthe number of tasks
completed (as well as the metrics in Table 4.1) per CS usees@onsiderably. With
both workloads, the load is distributed in an unbalanced a@pss the clusters. As a
consequence, with the Equipartition-All policy, CS usersowlappen to occupy more
processors than other users in the heavily loaded clusgefigr more due to frequent
preemptions. This phenomenon, on the other hand, does fiect #ie CS users when
the Equipartition-PerSite policy is used. That policy ajwallocates an equal number of
nodes in each cluster to each CS user, and therefore, each C&ouse suffer or benefit
equally from the behavior of non-CS jobs in a particular @ustn this experiment, we
have also verified that all the CS users receive almost the aamants of CPU time with
the Equipartition-PerSite policy. The reason for the srddferences in the number of
completed tasks are due to Launcher failures (the failechtlaers are restarted immedi-
ately when noticed by the CS-Runners) and to the executionvamation of the solver
application due to the randomness it includes.

4.3.3 Unobtrusiveness of the cycle scavenging system

In order to assess the unobtrusiveness of our CS system, weepeaformed extensive
test runs to quantify the additional delay that local jobd aan-CS grid jobs experience
before they start execution due to reclaiming of the nodesmied by CS-Runners. For
non-CS jobs submitted twOALA, we observe an additional delay between 2 and 8 sec-
onds before they start execution. Local jobs, however, mapee an additional delay
between 8 and 15 seconds. KCM polls the local resource mamatiea period of 10

seconds to be aware of recent local job submissions. Thisilbotes most to the addi-
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Figure 4.4: Number of tasks completed per CS user for the timsHiare policies.

tional delay that local jobs experience. To decrease thienggberiod would of course
decrease the delay, but we have observed that periods Ibared0 seconds increase the
processor load on the head node of the cluster in questicidzmably.

4.4 Related work

There are various platforms that make desktop grids or ve&rcomputing possible as
well as some that enable cycle scavenging at the organmzktve! to put idle cycles to
good use.

The BOINC [7] platform facilitates volunteer computing prois (e.g., Fold-
ing@home [75], Rosetta@home [173], and Seti@home [178]). NEOprovides tools
that allow participants to remotely install a client softean a large numbers of desktops,
and to attach the client software to accounts on multiplgepts. With BOINC, desktop
owners are able to specify how their resources can be ald@hong the projects. An-
other similar platform is Entropia [42], which can be digfiished from its counterparts
by its binary sandboxing technology for ensuring securitg anobtrusiveness, and its
architecture which incorporates physical node managemesdurce scheduling, and job
management layers. OurGrid [44] is an open platform thablesadifferent research
labs to share their idle computational resources when eedarGrid relies on a peer-
to-peer incentive mechanism, calldigtwork of Favorswhich aims to make it in each
participant’s best interest to donate idle cycles, alonth \preventing free riding. With
OurGrid, each user runs a broker-agent which competes witr agents to schedule the
jobs over the resources on behalf of the user. Thereforees chot provide fair-share
resource allocation among users. The Condor [134] platfoas mitially designed to
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scavenge compute cycles on large collections of idle dpsktachines, but it has also
been extended to operate as a batch scheduler on top of @rdystem and as a resource
broker on top of Globus [89] based grids [81]. In addition ésktop computers, it is also
possible with Condor to scavenge idle nodes in a cluster bfiguoing each node such
that they can execute Condor jobs when no job is running whachbieen submitted by
the local resource manager of the cluster. Condor does ngt &@alitional scheduling,
rather it uses a central matchmaking mechanism in whichgadsesources are matched
according to their requirements specified with so-called€§Aals. As the fair-share pol-
icy, Condor runs th&p-Down[156] algorithm to protect the rights of light users when a
few heavy users try to monopolize all resources. The algoritelies on the information
of past resource usage rates of users.

In this study we have not considered past usage, since ownnaftfair-share parti-
tions the idle resources evenly among users dynamicallgahtime. In addition, to de-
ploy any of the platforms mentioned above in a multiclusted gystem requires per-node
installations or configurations in the local resource mansgf clusters, which could be
impossible due to administrative restrictions. In cortirdee system we have presented in
this chapter does not require any such installations or fications, rather, it seamlessly
integrates the notion of cycle scavenging into grid-lewdlesiuling.

4.5 Summary

In this chapter we have presented the design and the analyi® support for cycle
scavenging in multicluster grids. We have incorporatecedahing strategies for cycle
scavenging in OUKOALA grid scheduler. We have implemented two best-effort faare
polices that dynamically partition the idle nodes amongahtive CS users. We have
compared these policies with experiments conducted in lanreliicluster grid system.
The results show that a dynamic cycle scavenging policy lghdistribute the idle nodes
from each cluster in equal amounts to the active CS users ar tocensure fairness. In
addition, we have performed experiments to show that théemented system is efficient
in terms of scheduling overhead, and, is unobtrusive todrighority jobs.



Chapter 5

The performance of bags-of-tasks in
multicluster grids

Even though the local and wide-area interconnections irtiochuster grid systems have
improved markedly as in our DAS system, and efficient widgaatommunications li-

braries are now available such as MPI variants and Ibis [20%5]irns out that a large

fraction of the jobs in the workloads imposed on such sysierdse to sequential appli-
cations, often submitted in the form of Bags-of-Tasks (BoB) [92] (see also Chapter 7
for a broader discussion). The reasons for this phenomeretha relatively high net-

work latencies, the complexities of parallel programmingdels, and the nature of the
scientific computational work (e.g., repeated simulatigasameter sweeps).

In this chapter we present a realistic and systematic iigag&in of the performance
of scheduling BoTs in multicluster grids. What distinguisloes study from previous
efforts is that we use a workload model for BoTs with which waeyate realistic traces
for our evaluation, and that we explore the large designespabag-of-task scheduling
in multicluster grids along five axes, which are the task&®la policy, the workload, the
information policy, the task scheduling policy, and theorese management architecture.

The rest of this chapter is organized as follows. In Sectidn e propose a sys-
tematic approach to evaluating the scheduling of BoTs insgndth this approach we
identify three scheduling policies that have not been itigated previously, which are
the Earliest Completion Time with task runtime Predictiahg Fastest Processor First,
and the Shortest Task First with Replication policies. Int®ed.2, we present the work-
load model for BoTs. In Sections 5.3 and 5.4, we investigagtrformance of BoTs in
multicluster grids. In Section 5.5, we review the relatedkymn BoT scheduling. Finally,
in Section 5.6, we summarize the chapter.
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5.1 A scheduling model for BoTs

In this section we present a scheduling model for BoTs in rlukter grids consisting of
four components. In Section 5.1.1, we describe the moddlseodystem and of the jobs
submitted to it. The system model considers clusters ofuress. In Section 5.1.2, we
present the resource management architectures, whichradtuse to the set of clusters
as to how their resources are jointly managed. Deciding kvkasks to run where is
in our model a two-step process: first from the waiting taskthe system ameligible
setis created using one of thiask selection policie€Section 5.1.3), and then the tasks
from the eligible set are mapped to resources using one dab#lescheduling policies
(Section 5.1.4).

Our model extends the current state-of-the-art in seveagbwThe resource manage-
ment architecture and the task selection policies haveewt kxplicitly included in pre-
vious BoT scheduling models. For the task scheduling paljg@esvious models [39,130]
have considered that the resource performance (e.g.,,SpR&CINnt2006 value [190]) or
the task runtime are not (accurately) known by the schedylalicy, but that at least one
of them is accurately known. In contrast to these models,noaniel considers that at
the same time the information about both the processor pesaioce and the task runtime
may be inaccurate or even missing.

5.1.1 System and job model

In our model we assume that the computing resources (pras@sse grouped in clus-
ters. The processors may have different performance achasters, but within the same
cluster they are homogeneous. The workload of the systesisterof jobs submitted by
various users; each of the jobs is a bag of sequential tasksifdy only one). We employ
the SPEC CPU benchmarks model for application execution[i®@, that is, the time it
takes to finish a task is inversely proportional to the pentmce of the processor it runs
on (see also Section 5.3). Upon their arrival into the systerasks are queued, waiting
for available resources on which to be executed. Once diadsks run to completion,
so we do not consider task preemption or task migration dugkecution. Instead, tasks
can be replicated and canceled, or migrated before they star

5.1.2 Resource management architectures

The complete set of clusters is operated as one large-ssaibated computing system
using a resource management architecture which dictategats are distributed across
the resources in the system. In our model, each of the ctuster its own local resource
manager (RM), but other RMs may be employed to build a completeitacture. A
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global resource manager (GRM) is an RM that can submit taskexzution to another
RM.

Each RM in the system executes the same scheduling proceplornetie arrival of
new BoTs and on the completion of tasks. The scheduling ptoeed as follows. First,
the RM calls the task-selection policy, which selects from BMs current queue the
eligible setof tasks. Then, the scheduler executes the eligible seg tisrtask-scheduling
policy, which in turn sorts the eligible set and/or rankstgources to create a schedule.
Only after all the tasks in the schedule are completed is agligible set generated.

In this work we use three resource management architectumesased on indepen-
dent clusters, one centralized, and one decentralized wBe&describe these architec-
tures:

1. SEParated Clusters §ep- c): Each cluster operates separately with its own local
RM and its own local queue to which jobs arrive. Each user céams#uasks to
exactly one RM.

2. Centralized Scheduler with Processor monitoring¢sp): Each cluster operates
separately with its own local RM and its own local queue to Whabs arrive. In
addition, a GRM with a global queue operates on top of the etustal RMs. The
users submit tasks only to the global system queue. WhenobalgRM observes
that a cluster has idle resources, it moves some of the taskiseoglobal queue
to that cluster. The information about the number of freecessors is gathered
periodically by a monitoring service.

3. Condor-like, with Flocking (f condor ): This models a Condor-like architecture
with flocking capabilities [65]. Similarly tesep- ¢, each cluster operates sepa-
rately with its own local RM and its own local queue to whichgadrrive. How-
ever, here each user can submit tasks to any RMs. A user kelepstthug tasks
to the same RM while that RM starts the tasks immediately; whskststart to be
gueued, the user will switch to another RM, in round-robineord

In our model, a GRM may submit at most one task at a time to an&hk the target
RM will in this case receive BoTs with one task. This ensurestti@GRM can control
the order in which its tasks are considered at the remote RNk that forsep- ¢ there
iIs no GRM, but there exist local users.

5.1.3 Task selection policies

The RM uses its task selection policy to select from the RM'slgeieue theligible set
of tasks. We investigate in this work seven task selectiditips, the first two of which
do not take into account the user who submits a task:
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1. S- T The Select-Tasks policy selects all the tasks in the sydt@meach arriving BoT,
the set of its tasks is added to the eligible set.

2.S-BoT The Select-BoTs policy selects BoTs in the order of their atrivwhen the
eligible set has become empty, the set of tasks of the sdl8«i€ are considered
the new eligible set.

3.S- U Pri o The Select-User-Priority policy assumes that each usérarsystem has
a unique priority. It selects all the tasks of the user withhighest priority. Ideally,
each user has a unique priority, which distinguishes thesusssource usage rights
from any other’s. In practice, a system will be configuredhwitst a few (e.g., up
to four) distinct priorities. We use in this work the ideakégsario; in many settings,
its performance gives an upper bound of the performanceegbtthctical scenario.

4.S-U- T The Select-User-Tasks policy aims at the equal sharingsafurees among
the system users: It first selects the user with the lowestires consumption, and
then it selects all the tasks of the selected user.

5.S- U- BoT Similarly to S- U- T, the Select-User-BoT policy aims at the equal sharing
of resources among the system users: It first selects theitbeéhe lowest resource
consumption, then it orders the selected user’s BoTs in tindar of arrival into an
ordered set. From this set, the tasks of the first BoT are ceresidhe new eligible
set.

6. S- U- GRR The Select-User-Global-Round-Robin algorithm selects & nser in
round-robin order. It then adds all waiting tasks of thisrusethe eligible set.
If a user submits additional BoTs during his turn, the coroesling tasks will not
be considered for selection during this turn.

7. S- U RR The Select-User-Round-Robin policy is a variation of S-U-GRReke only
one task is selected per user at each round. Under S-U-RR, a Bsided¥l will re-
ceive complete service after exactly N rounds. This algaorits similar to the WFQ
algorithm for scheduling packets over the network [161thwihe main difference
of tasks not having a known runtime at selection time, as spgdo network pack-
ets having a pre-assigned number of bits to transfer.

For all task-selection policies that require it, the resewwronsumption is simply com-
puted as the sum of the past usage and usage of currenthhgutaisks. The usage of a
task is computed as the CPU time spent by it until its comptefibe current moment)
for tasks that have (not yet) completed. Given the rangeeofihtimes of the tasks in our
traces and experiments, a precision on the order of secem®ugh for computing and
accurately measuring these CPU time values.
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Table 5.1: An information availability frameworkK, H, andU stand for information
Known a-priori, based on Historical data, and Unknown, eesigely. The scheduling
policies marked with have not been previously studied in the context of BoT sclieglul

Task Information
K H U
K | ECT [138], FPLT [142] | ECT-P* FPF
MaxMin [39]
Resource |H DFPLT [48] - -
Information MQD [130]
U STFR - RR [82]
WQR [48]

5.1.4 Task scheduling policies

There exist many scheduling policies for BoT workloads ig¢ascale distributed sys-
tems [39, 48, 82, 130]. We categorize such policies accgrttirthe information policy
used for resources and tasks, where a piece of informatimbeaither fully Known K),
known from Historical recordsH), or fully Unknown (). In this work we consider only
two pieces of information (thaformation sex the performance of a processor and the
execution time of a task (e.g., on a reference processogn,Tdntask-scheduling policy
can be characterized in terms of its information usage bple (&, 7'), with R and7’ the
information policy for resources and for tasks, respettivé/e map several scheduling
policies to this characterization in Table 5.1. Most of tkeseng scheduling policies are
either(U,U) or (K, K); in practice, Condor [195] uses by default @h U) policy, Ap-
pLeS supports sever@ll, U) and (K, K') heuristics [16], MyGrid implements ait/, U)
policy [45]. Scheduling policies for BoT of typeé/, K), (K,U), (U, H), (H,U), and
(H, H) have not been addressed in the literature of BoT scheduling.

To address the main goal of this work, a systematic approactvaluating BoT
scheduling in grids, we propose one simple policy for eactheftypesU, K), (K, U),
and (K, H). The(U, K) and(K, U) policies give an upper bound of the achievable per-
formance of(U, H) and (H, U) policies, respectively. The scheduling policies used in
this chapter are described below:

1. Earliest Completion Time (ECT) (K, K) : The ECT policy assigns each task to the
resource (cluster or processor) that leads to the earbaspletion time possible. If
the resource is a cluster, it also takes into account théerlsgjueue when comput-
ing the earliest completion time. It is a Gantt chart-basdeduling policy [39].

2. Fastest Processor Largest Task (FPLTY K, K) : The FPLT policy assigns the
largest task to the fastest processor available.
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3. Round-Robin with Replication (RR) (U,U) : The RR policy first assigns all the
tasks to processors, in the initial order of the eligible gdter finishing all tasks
in the eligible set, it replicates tasks at most once on tkeuees that become
available, in round-robin order.

4. Work Queue with Replication (WQR) (U,U) : The Work Queue with Replication
policy differs from RR in that it can replicate tasks sevenalets instead of only
once. The number of replicas is appended to name of the siahggwlicy, e.g.,
WQR-1 replicates tasks once (and is identical to RR).

5. Dynamic Fastest Processor Largest Task (DFPLT) H, K) : The DFPLT policy as-
sumes that the resource performance is dynamic over timgh®oompletion of
a task, the performance of the resource on which the task we=uted is (re-)
computed, and the resource receives a performance rank.pohcy assigns the
largest task to the resource with the highest performamde ta this work DFPLT
is exactly the same as FPLT since we do not incorporate arpeafoce model for
resources in our simulation model.

6. ECT with task runtime Prediction (ECT-P) (K, H) : The ECT-P policy operates
similarly to ECT, but uses predicted instead of real taskimmtvalues. We re-
fer to Chapter 7 for the details of the prediction scheme tleatige with this policy.

7. Shortest Task First with Replication (STFR) (U, K) : The STFR policy always as-
signs the shortest task first. After finishing all tasks inehgible set, it replicates
tasks at most once on the resources that become availabbeirid-robin order.

8. Fastest Processor First (FPF)Y K, U) : The FPF policy assigns the tasks in the initial
order of the eligible set. Each task is assigned to the feawadable processor.

The information set can be extended to more dimensions tUmtrtyo. However,
the two selected pieces of information already foster mmmat customization, e.g., the
execution time of a task can be extended to include the jalps®id removal. If the job
execution model of the system does not allow for the decogmf job data from the job
execution, as is the case for many cluster managers useddtiqa, the execution time of
a task can also include the data transfer time to/from theuwi@ place. Similarly, the
execution time can include the setup of a virtual environintieat is needed for executing
a job.

5.2 The workload model for bags-of-tasks

In this section we present the workload model for BoTs in roluster grids that is pro-
posed in [97,101], and that we use in this study.
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Table 5.2: Characteristics of the seven grid traces used lidata the BoT workload
model.

System Trace
Trace Name Size || Duration| Size
ID [CPUs] || [Years] | [tasks]
T1 DAS-2 400 1.5 1.1M
T2 Grid5000 | ~2500 2.5 1.0M
T3 NGS 378 3 0.6M
T4 AuverGrid 475 1 0.4M
T5 || SHARCNET| 6,828 1 1.1M
T6 LCG 24,515 0.03 | 0.2M
T7 NorduGrid | ~2000 2 0.8M

Table 5.3: The parameter values for the best fits of the statislistributions to the BoT
model for the seven studied traces. N, LN, W, and G stand ®mntirmal, lognormal,
Weibull, and gamma distributions, respectively. Z staratstiie Zipf distribution with
two parameterse and the number of unique users (ranks).

Task
ART [s.] \

User
Ranking

Bag-Of-Tasks
| Daily Cycle |

Trace

ID IAT [s.] Size RTV [s.]

T1
T2
T3
T4
T5

Z(1.25,333)
Z(1.39,481)
Z(1.30,379)
- (see text)
Z(1.25,412)
T6 || Z(1.32,216)
T7 || Z(1.36,387)

W(4.06,7.91)
W(4.27,8.42)
W(4.94,8.48)
W(3.87,7.33)
W(4.17,7.65)
W(4.05,6.48)

N(1.97,8.00)

G(2.62,0.13)
W(1.57,20.54
W(1.64,25.42
W(1.72,25.49
W(2.44,28.99
W(1.71,23.86
W(1.62,22.18

W(1.75,2.91)
G(2.47,1.64)
W(2.02,1.58)
W(1.78,1.51)
W(1.37,1.89)
N(1.33,2.71)
W(1.80,2.17)

N(1.78,3.87)
N(2.31,4.97)
N(3.50,3.51)
G(3.55,0.47)
N(3.06,7.45)
LN(1.82,0.34)
N(2.76,9.04)

W(1.64,10.21
N(5.54,9.56)
G(1.79,0.29)
N(6.41,11.73)
W(1.93,13.65
W(2.85,14.21
W(2.86,16.58

[ Avg [[Z(1.31,368)] W(4.25,7.86] W(1.79,24.16] W(1.76,2.11]] N(2.73,6.1) | W(2.05,12.25)

5.2.1 Model overview

The model for BoTs focuses on four aspects: The submitting (&#ction 5.2.2), the
BoT arrival patterns (Section 5.2.3), the BoT size (Secti@¥9), and the intra-BoT (task)
characteristics (Section 5.2.5).

Seven grid workload traces from the Grid Workloads Archi@&MA) are used to
validate the BoT modél Table 5.2 summarizes the characteristics of the sevearagst
and their traces.

The real (trace) data corresponding to each of the chaistaterare fitted to the fol-
lowing candidate distributions, each of which has low coerjty [69] and is used ex-
tensively in the analysis of computer systems: exponeritigler-exponential, normal,

1The GWA makes traces available tesearchers at:

http://gwa.ewi.tudelft.nl/

(anonymized) grid workload
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log-normal, gamma, and Weibull.

The fitting process uses the Maximum Likelihood EstimatidlLE) method [4],
which delivers good accuracy for the large data samplesfgpecworkload traces. Then,
goodness-of-fit tests are used to assess the quality of ting fior each distribution, and
to establish a best fit for each of the model parameters. Fdr eandidate distribution
with the parameters found during the fitting process, thethgsis is formulated that the
data are derived from itlje null-hypothesisf the goodness-of-fit test). The Kolmogorov-
Smirnov test (KS-test) [133] is used for testing the nulpbthesis. The KS-test statistic
D estimates the maximal distance between the CDF of the erapdistribution of the
input data and that of the fitted distribution. The null-hisis is rejected iD is greater
than the critical value obtained from the KS-test table. Kigetest is robust in outcome
(i.e., the value of theD statistic is not affected by scale changes, like using tgaic
values). The KS-test has the advantage over other traditgmodness-of-fit tests, like
the t-test or the chi-square test, of making no assumptiautathe distribution of the
data. The KS-test can disprove the null-hypothesischohotprove it. However, a lower
value of D indicates better similarity between the input data and datapled from the
theoretical distributions.

For each model characteristic, the candidate distributith the lowestD value is
selected for each workload trace; the parameters of thdibdgtributions are recorded
as an instance of the model of the respective trace. Thetsdldcstributions for each
trace and their parameters are depicted in Table 5.3. Trdcdo&s not include user
information.

The model produces parameters for an “average system” agy/#hem that has the
average properties of the seven systems considered in thnks Wsing the average sys-
tem properties we can generate synthetic yet realistiesragithout using a single real
system as a reference. The average system properties lhaskiollows. For each model
characteristic, a candidate distribution that has the $v\aeerage) value over all seven
traces is selected as the average system fit. When for twodageadiistributions the dif-
ference of theitD values is below 0.01, the distribution closest to the avesygtem fit is
selected. The data for each trace are then fit independenthetcandidate distribution,
resulting in a set of best fit parameters. The parametersecdthrage system represent
the average of this set. The 'Avg’ row in Table 5.3 presenggthrameters of the average
system.

5.2.2 Submitting user

The Zipf distribution was fitted to the user ranking basedhmirtrelative job submission
frequencies. First, the users are ranked based on numbebwitsed jobs in descending
order (the lowest rank is equal to the number of unique usettseitrace). The probabili-
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ties associated with each rank are calculated by dividiagitmber of submitted jobs for
each user of that rank by the total number of jobs in the trace.

5.2.3 BoT arrival patterns

The BoT arrival patterns are modeled in two steps: first theriatrival time (1AT) be-
tween consecutive BoT arrivals during peak hours, and thehAh variations caused by
the daily submission cycle.

Similar to the results in [98], the hours between 8AM and S5R#&ifaund to be “peak
hours”, with significantly more arrivals than during thetrekthe day. Only the data for
BoTs arriving during the peak hours are considered when nmagile |AT. According to
established modeling practice [137], a logarithmic transiation with base 2 is applied
to these data to reduce the range and the effect of extremesydhis does not affect the
quality of the data fitting. The Weibull distribution is sefed as the average system fit
and as the best fit for six of the seven traces.

The daily cycle is modeled similarly to [137]. First, the dasplit into 48 slots of 30
minutes each, then the number of BoT arrivals during eacheod&slots is counted, and
finally this data set is fitted against the candidate distiaims. The Weibull distribution
is selected as the average system fit.

5.2.4 BoT size

Similarly to IAT modeling, a base-two logarithmic trangfwation is applied before fitting
to the batch size (i.e., the number of tasks in a BoT). The Wealmal the normal distri-
butions are tied, followed closely by gamma; the Weibultritsition is selected as the
average system fit due to the higher number of best fits fovithaial traces: five against
one.

The average BoT size per trace is between 5 and 50, while themaaxBoT size
can be on the order of thousands. Depending on size, nirgesla$ BoTs are defined: of
size 2-4, of size 5-9, of size 10-19, of size 20-49, of siz&90ef size 100-199, of size
200-499, of size 500-999, and of size 1000 and over. In addid Small (Medium) class
is defined encompassing the BoTs that fall in the classes 2+%-&110-19 and 20-49).

5.2.5 Intra-BoT characteristics

The modeled intra-BoT characteristics are the average tagkre (ART) and the task
runtime variability (RTV), both measured in seconds. Samiyl to IAT modeling, a base-
two logarithmic transformation is applied before fittingthe task runtime. The normal
distribution is the average system fit and the best fit for fivine seven traces.
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The intra-BoT task runtime variability is defined as the vacia of runtimes of the
tasks belonging to the same BoT. The Weibull distributiorhes average system fit and
the best fit for four of the seven traces.

5.3 Experimental setup

This section describes the setup of the experiments in@est4.

5.3.1 The simulated environment

The experiments are performed in a simulated environmecdrepassing two multi-
cluster environments, the DAS-3 and Grid’5000 grids, footaltof 20 clusters and over
3500 processors, which is motivated by the current work ¢@rioperating the corre-
sponding real environments. For our simulations, we hatenebed our DGSim tool [104]
with the task-selection and task-scheduling policies dlesd in Section 5.1. In addition,
we have extended DGSim to support heterogeneous processeagls; the processing
speed of the resources used in simulation correspond tdRBE $190] values of the real
DAS-3 and Grid’5000 resources, and their relative perforoearanges between 1.0 and
1.75.

5.3.2 The performance metrics

To assess the performance of BoT scheduling in multiclustids gve use the following
metrics:

Makespan (MS), which for a BoT is defined as the the time elapsed fromuksrassion
to the system until the completion of its last task.

Normalized Schedule Length(NSL), which for a BoT is defined as the ratio of its
Makespan and the sum of its tasks’ runtime on a referenceepsoc. The NSL is
the extension of the slowdown used for jobs in traditionahpating systems [73].
Lower NSL values are better, in particular NSL values beloavel desired.

5.3.3 The workloads

Each of the 20 clusters of the combined system receives apamtient stream of jobs
(input workload). The input workloads used in our experitseare either one month-
long traces collected from the individual grids startingd@ntical moments in timeréal
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traces, or synthetic traces that reflect the properties of gridklemds (ealistic tracey?.
The need for realistic traces is twofold. First, traces e@rirom one system cannot be
used unmodified on a different system [67, 79] (e.g., the jdlbrgssion depends on the
original circumstances); the seven traces used in this woginate from seven different
grids. Furthermore, modifying the real traces (e.g., byisgar duplicating their jobs)
may lead to input that does not actually represent a reatistce; scheduling results are
highly sensitive to such changes [67]. Second, given treedfithe explored design space
(see Section 5.4), performing the experiments for eachnaas becomes unmanageable.
The use of real traces is required for validation purposegyivte evidence that results
obtained with real and with realistic traces are similar.

Unless otherwise noted, the realistic traces use the paeawveues of the average
system given in row “Avg” of Table 5.3. Our workloads havevbe¢n 20,000 and 175,000
tasks, with an average of over 60,000 tasks (the median rs68y@00 tasks).

5.3.4 Simulation assumptions

We have made the following five assumptions in the experimdritst, we assume that
the network between the clusters is perfect and has zemclateéSecond, because all
tasks are sequential, all sites employ the FCFS policy, withackfilling. Third, multi-
processor machines (which do occur in the DAS-3 and Griddy®&have and can be
used as sets of single-processor machines without a pexfm@penalty. Fourth, all load
arrives directly at the RMs of the resource management acthite which is in place,
with no jobs bypassing those RMs. Finally, we assume thag thwer no resource failures,
because in light of the model for cluster-based grids [98] ahthe model for desktop
grids of Kondo et al. [123], an environment with resourcéuf&s is equivalent to a smaller
environment, provided that the average resource avatiafiration is not lower than the
runtime of the jobs.

Table 5.4: The design space coverage of the experimentsrieesin this section. The
characteristics in bold indicate the main focus of eachicect

Res.Mgmt. | Selection| Scheduling  Workload System Information
Section Architecture| Policy Policy | Characteristics Load Inaccuracy
Section 5.4.1 csp ST all real, realistic | ~25%, 20-95% no
Section 5.4.2 csp ST all synthetic 60% no
Section 5.4.3 csp ST all realistic 60% yes
Section 5.4.4 csp all FPLT realistic 20-95% no
Section 5.4.5 all ST FPLT realistic 20-95% no

2We use throughout this chapter the formulatiealistic tracesin place ofrealistic synthetic traceto
accentuate the difference between the traces used in thisamd the unrealistic synthetic traces used in
previous studies.
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5.4 The performance of bags-of-tasks

In this section we present an investigation of the perforreanf BoTs in multicluster
grids. We cover with over 1200 trace-based simulations gydepace with five axes and
more than 2 million points: We consider 7 task-schedulintices, 77 tuples of values
describing the workload (witl® the number of parameters in the workload model and
the number of values of each), 2 values for information ingacy (yes or no), 8 task-
selection policies, and 3 resource management archiessttire exploration further uses
3 types of workloads (real, realistic, synthetic), for 7teys loads. To explore this design
space efficiently, we assess in the subsections below iniitinra set of experiments for
each parameter the impact on performance of varying thergges along one of the axes
of the design space; Table 5.4 shows an overview of what equdrienent covers.

Most of the results present average values of the BoT MS amitshr metrics un-
der various system loads, and as such are mostly useful teyftem administrator or
to the user submitting a workload with characteristics @lpsnatch those of the average
workload. However, Sections 5.4.1 and 5.4.2 present @etadsults for different BoT
sizes and task runtimes; thus, they are also useful to uiagkeliag the performance per-
ceived by users whose workload characteristics are significdifferent than the average
workload.

5.4.1 The impact of the task scheduling policy

In this section we assess the impact on performance of thedatihg policy using the
setup described in the first line of Table 5.4. Our main findiage summarized below.

Small and Medium-Sized BoTs have a high NSL even under low load

We simulate the task-scheduling policies issp/S- T system under real load of 25%.
Figure 5.1 shows that even with this low load, undep/S- T the BoTs of sizes 5-9 and
10-19 have a higher than average NSL, while the average M&ases monotonically
with the BoT size. This indicates that their users get highantexpected wait times for
their tasks compared to other system users. The main bewefgcare the users submit-
ting very small (size 2-4) or very large BoTs (size over 200).

Comparison of policies with different information types

Figure 5.2 shows the performance of the scheduling polereter realistic load vary-
ing between 20% and 95%. TH&', K) and the(K, U) policies have the best balance
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Figure 5.1: The performance of the scheduling policies inticluster grids with
csp/S- T, under real load.

between MS and NSL. In gener&CT (K, K), FPLT (K, K), andFPF (K,U) per-
form better than the other policies. As the policies thaliide unknown {/) information
models rely on the quality of their uninformed heuristicgithperformance ranges from
surprisingly good to surprisingly poor. Th&, K') policy STFR has the best overall NSL,
but average MS. ThéK, U) policy FPF has the lowest overall MS, but poor NSL. The
(U,U) policy RR has a good MS, but poor NSL. ThM#R4x has poor MS and NSL, es-
pecially at high load. The performance of the ECT policy waossethen the task runtime
estimations are inaccurate (ECT-P), nevertheless, thempeaihce of ECT-P is better than
especially théU, U) policies.

5.4.2 The impact of the workload characteristics

In this section we assess the impact on performance of th&leeat characteristics

using the setup described in second line of Table 5.4. Fon sach characteristic,
we generate a synthetic workload imposing a system load & G8ing the workload

model described in Section 5.2, so that the values of theactexistics have the desired
statistical properties (e.g., a median BoT size of 25). Ounrfiadings are summarized
below.



o0
N

40000

Hq———
FPLT ===
RR
WQR4x
DFPLT ==
ECT-P ———
STFR
FPF oo

10000 [ Ju Al

Avg. Makespan [s]

20 30 40 50 60 75
System Load [%)]

ECT mmm
FPLT ===
RR
WQR4x
DFPLT &3
ECT-P C—
] STFR —
R— FPF oo

Avg. NSL

. DS S U SRR N |
20 30 40 50 60 75 95

System Load [%]

Figure 5.2: The performance of the scheduling policies inticluster grids with
csp/S- T, under realistic load.

Burstiness leads to poor performance ircsp/S- T (Figure 5.3) We vary the BoT
arrival pattern with as possibilities a daily cycle basedreworkload model (Realistic),
the pattern with all BoTs arriving at the beginning of the diation ("All at T=0"), and
the pattern with all BoT interarrival times being equal (Bye®pread). Figure 5.3 shows
that the extreme of burstiness ("All at T=0") leads to muchhar average MS and NSL
values when compared to the other two patterns. The pol@es similar performance
results with Evenly Spread and Realistic case.

Impact of the BoT size (Figure 5.4) From the realistic workload model presented
in Section 5.2, we vary the BoT size to achieve median valuésds:n 10 and 50.
Figure 5.4 shows that the MS increases with the increaseeantdian of the BoT size.
Relative to a BoT median size of 10, the MS increase ranges fitfh (35%) forECT
(FPLT) to over 80% folWQR4x, which indicates that for some policies, the average MS
is less dependent from the BoT size than for others. The a@e&). decreases for
STFRwith the increase of the BoT size; the other policies do noit®ithis performance
improvement trend.
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Figure 5.3: The performance of the scheduling policies inticluster grids with
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Longer tasks lead to better NSL(Figure 5.5) From the realistic workload model
proposed in Section 5.2, we vary the task runtime to achieeamvalues between 3
minutes and 3 hours. Figure 5.5 shows that the NSL tends tease with the increase of
task runtime, since for each BoT the effect of task inter aftime on the NSL diminishes
with the increase of task runtime.

5.4.3 The impact of the dynamic system information

In this section we assess the impact of various inaccuracgesainder the assumption
of null overall inaccuracy, that is, we make the optimistss@amption that while any
individual estimation may be highly inaccurate, the averagtimation inaccuracy is 0%.

Under null overall inaccuracy, accurate per-task information is not needed to
schedule well(This finding may lead to new types of predictors for BoT schieduhat
would be useful in the context of independent tasks). Wedesthe maximum inaccuracy
I to a value between 0% (perfect information) and 10000% (mghcuracy). Then, for
each task runtime estimation we sample the estimation umacg £ from the uniform
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Figure 5.4: The performance of the scheduling policies intioluster grids with
csp/S- T, for various median BoT sizes.

distribution[—1, +1]; the task runtime is set tmax(R + (£/100) x R, 1), whereR is
the actual task runtime, and any task is at least 1 second leiggre 5.6 shows that in
general, under null overall inaccuracy the MS and NSL vatielwith the increase of
inaccuracy. We attribute this result to the moderate systachimposed on the system in
the experiment, i.e., 60%, and to the independence of tadBeTs.

5.4.4 The impact of the task selection policy

In this section we assess the impact of the task-selectiboypan the system perfor-
mance. We use the setup described in the fourth line of Taldle &csp resource
management architecture, tRELT task-scheduling policy, and realistic workloads that
subject the system to a load between 20% and 95%. Our maimd@imdire described
below.

The task-selection policy is important only in busy system&igure 5.7 shows that
for loads up to 50%, the performance of the system is almasttical for the seven
task-selection policies. This is not surprising: with( &, K) scheduling policy, the
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Figure 5.5: The performance of the scheduling policies intioluster grids with
csp/S-T, for various mean task runtimes.

system resources are harnessed efficiently when much sppeeity exists. The fact
thatFLTP does not use replication is also important in establishitapad of 50% as the
threshold beyond which the task-selection policy does l@vanpact on performance.
With a policy that does use replication, this threshold wdo# lower, in proportion to
the average number of replications per task. Figure 5.7<llews that the task-selection
policy has an important impact on performance for loads & 3td higher; this impact
increases with the load.

S- BoT has much better performance than the other task-selection glicies
Figure 5.7 depicts the NSL (MS) of all the task-selectiongies$ for various system load.
For loads of 60% and higher, the average NSL (MS)3eBoT is up to 16 (2) times
lower than the average NSL (MS) of the other policies. Inipalar,S- BoT outperforms
the task-selection policy most commonly used in practickiclvis S- T. We attribute
the differences to the design of tise BoT policy, which greatly favors the small BoTs
that are common in the workloads of grids. This is confirmedHhsy set of columns
corresponding to 95% load in Figure 5.7.
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Figure 5.6: The performance of the scheduling policies intioluster grids with
csp/S- T, when the inaccuracy of task runtime estimations varies.

System fairness costs: accounting system or performan¢Eigure 5.7) Introducing
fairness into a resource management system in generake®theeaggregate performance
of the system. We compare the four task-selection polidiedied in this chapter that
consider fairnesss- U- T, S- U- BoT, S- U- GRR, S- U- RR. The first three of these may
all lead to one user blocking the system for a long time rdgasdof what the other users
do (e.g., when sending one or more large BoTs and gettingtedleS- U- RR does
not suffer from this problem if all the users submit equallyge BoTs. While system
blocking is a possibility, our study shows that this does Im@ppen in practice often
enough to be significant. From the four polici&€s,U- T performs the best. The ordering
of BoTs by arrival time employed b$- U- BoT does not lead to better performance.
The round-robin ordering of users employed yU- GRR, which does not require an
accounting system to be present, leads in turn to up to 15%ehiySL thanS- U- T.
Finally, S- U- RR, which also does not require an accounting system, has up%o 4
higher NSL values tha8- U- T. To conclude, to have fairness a system must either setup
an accounting system, or it will pay in lower performance.
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Figure 5.7: The performance of the task selection policesulticluster grids with
csp/FPLT, under realistic load.

System QoS costs: level vs. performancgigure 5.7) Offering guarantees about
the response time of the submitted tasks is expensive irstefiperformance in a system
that does not support advance resource reservation. Weatertige three task-selection
policies presented in this chapter that support @3J Pri o, S- U- GRR, S- U- RR.

S- U- Pri o guarantees that the tasks of the user with the highest fyrioom the users
currently having queued tasks will be selected n&«tlU- GRR guarantees that a user’s
task will be selected for execution at mastounds after submission, whetas the total
number of users in the system, both with and without queulesl 8 U- RR guarantees
that at least one of a user’s queued tasks is selected in he:meunds; the rounds of
S- U- RR are on average much shorter than thos&-df> GRR, asS- U- RR selects only
one task per roundS- U- Pri o andS- U- RR have similar performance. Compared to
S- U- GRR, their performance is lower, by up to 20%. To conclude, ther@ trade-off
between the weak QoS guarantees but higher performarg®d bfGRR, and the stronger
QoS guarantees but lower performancé&ot)- Pri o andS- U- RR
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Figure 5.8: The impact of the system resource managemehiteattire on performance
under realistic load, with th8- T (FPLT) selection (scheduling) policies.

5.4.5 The impact of the resource management architecture

In this section we assess the impact of the resource managerahitecture on the
system performance. We use the setup described in Tabla.&.4anS- T selection

policy, and the=PLT scheduling policy), and realistic workloads that subjbet $ystem
to a load between 20% and 95%.

Centralized, separated, or distributed? (Figure 5.8) The centralized poliaysp
achieves the best performance. Conversely, the indepemtleters policysep- ¢
achieves the worst performance. The distributed archite¢étcondor exhibits mixed
NSL performance results: for loads below 50% its perforneaiscsimilar to that of
sep- ¢, and, for loads above and including 50% its performancenslai to that of
sep- c. We observe that for loads above and including 5086ndor andsep- ¢ can-
not complete all tasks; for the 95% load they complete onBb4hd 53% of the tasks,
respectively. We attribute the inability éfcondor to complete more tasks to its fos-
tering of "natural competition”: most of the tasks that wabglet blocked in a central
architecture (until other tasks are finished) are submittéde distributed architecture to
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the clusters, where they compete with each other for ocagpyie idle processors.

5.5 Related work

This work stands at the intersection of two directions oéegsh: design of BoT schedul-
ing policies, and design of complete BoT scheduling systeriide have discussed
throughout the text the research most closely related feigdeof BoT scheduling poli-
cies [39, 82, 130]. The policies have been previously evatughrough simulation in
independent clusters environments (is&p- ¢ in Section 5.1) using a per BoT schedul-
ing algorithm (i.e., algorithn®- BoT); the workload did not resemble the workloads of
real grids. Closest to our work, Casanova et al. [39] compaeérformance of sev-
eral BoT scheduling policies in sep- ¢ environment. They also present one class of
selection policies%- BoT). In comparison with these results, our work focuses on the
systematic evaluation BoT scheduling in multicluster g(r@source management archi-
tecture, scheduling algorithm, scheduling policy), andisimg realistic workloads.

In contrast to our simulation-based approach, the theodivi$ible loads [17] pro-
poses mathematical analysis tools to assess the perfoenmdna@rious BoT schedul-
ing algorithms for several distributed and centralizedovese management architec-
tures [13, 14]. However, work using this theory [13, 14, 3, 8oes not consider the
information policies, most of the selection policies, andny of the resource manage-
ment architectures considered in this work; they also da@ansider realistic workloads.

5.6 Summary

In this chapter we have performed a realistic and systenratgstigation of the perfor-
mance of bags-of-tasks scheduling in multicluster gride.fWgt proposed a taxonomy of
scheduling policies that focuses on information availgbéind accuracy, and we mapped
to this taxonomy several task scheduling policies three lwtkwvhave not been investi-
gated previously. Then we explored the large design spalsags-of-tasks scheduling in
multicluster grids along five axes: the task selection gotiee workload, the information
policy, the task scheduling policy, and the resource mamageé architecture.

We conclude the following. The task scheduling policieg thake use of the avail-
able task and resource information perform better. Alttnotng task-selection policy is
important only in busy systems, tiselect-BoTpolicy has much better performance than
the other task selection policies. In order to achieve &msnwhile preserving the per-
formance, a task selection policy should account the pasturee usages of the users.
Among the task selection policies that consider fairndss Select-User-Taskgolicy
yields the best performance. In addition, we find that unddlraverall inaccuracy, that
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Is, our assumption that while any individual task runtimeneation may be highly inac-
curate, the average inaccuracy is 0, accurate per-taskiimtformation is not needed to
schedule well. Finally, in terms of the resource manageraetecture, the centralized
policy (csp) achieves the best performance. Conversely, the indepenliesters policy
(sep-9 achieves the worst performance.



Chapter 6

The performance of scheduling
workflows in multicluster grids

For convenience and cost-related reasons, scientistatexsdentific workflows [19, 60]
in distributed large-scale computational environmenthsas multicluster grids. How-
ever, executing scientific workflows in grids is a dynamicqass that raises numerous
challenges. One of the most important of these is schedwiditigincomplete or dynamic
information about the workflows and the resource availgbiithe runtimes of, and the
amounts of data transferred between workflow tasks may beawrk a priori, and the
other grid users may impose a background load on the gridiress. It is the purpose of
this chapter to present a comprehensive and realistictigegi®n of the performance of
a wide range of dynamic workflow policies in multiclusterdgi

A large body of work on workflow scheduling already exists.wewer, much of this
work focuses on parallel computing environments [125],ckare very different from
grids, or considers static scheduling methods in whiclaaks of a workflow are mapped
to resources before its execution starts [20, 60, 143]. Reesnaarch [128,129,213,214]
does address adaptive approaches in which schedulingatecare revised at runtime,
but it assumes the availability of perfectly accurate infation about the workflow tasks
and the system resources, which is not true for dynamicsygsseich as grids (see Chap-
ter 7 for a thorough discussion of this topic). Moreover, f@search results have been
obtained for the realistic situations in which multiple Wihows are submitted simulta-
neously to the grid, and when there exists contention fosyts¢em resources caused by
non-workflow (background) system load. Finally, previongeistigations have largely
been based on either simulations or on real system expesirizr not on both.

In this chapter, we first introduce a framework for dynamiakflow scheduling that
includes a novel taxonomy of dynamic workflow schedulingges based on the amount
of (dynamic) information used. We further map to this taxoyseven workflow schedul-
ing policies that cover the full spectrum of dynamic infotroa use. Secondly, we inves-
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tigate the performance of these seven policies in variocaisstee and dynamic scenarios
using both simulations and experiments in real systems.odifke findings from our real-

system experiments that does not show in the simulatiommsighe performance may be
severely degraded because the head-nodes of the gridrsluséy become overloaded
due to the large number of workflow tasks and file transferg tleve to manage. To
solve the problem of head-node overload, we analyze thenmeaice of task throttling,

that is, of limiting the per-workflow number of tasks con@antly present in the system.
Our results indicate that task throttling can prevent heade overload while not unduly
decreasing the performance.

The remaining part of this chapter is organized as followsSéction 6.1, we present
the framework for dynamic workflow scheduling, which inchsdthe workflow model,
the system model, the scheduling policies, and the tasktlihgpmechanisim. In Sec-
tion 6.2, we describe the experimental setup, while in 8ast6.3, and 6.4, we present
and discuss the results that we have performed in a simuéteidonment and in the
DAS-3, respectively. Section 6.5 reviews related work onkftow scheduling in parallel
computing environments and grids. Finally, Section 6.6rsanizes the chapter.

6.1 The scheduling framework

In this section we present a framework for dynamic workflolwestuling in multicluster
grids.

6.1.1 Workflow model

We assume a workflow to be represented by a directed acy@phgiDAG), in which
the nodes represent computational tasks and the direces eepresent communication.
We call a task having no predecessor tasks an entry task, t@sét aaving no successor
tasks an exit task; a DAG may have several entry and exit ta&ksdefine the size of a
workflow as the total number of its tasks.

We assume that a task depends on each of its predecessorsabyg ofe file. An
output file of a task can be the input file to several successist A task can be exe-
cuted only after all its predecessor tasks are completedlatite corresponding files are
available on its execution site.

In this chapter, both in the simulation-based experimemtisthe real experiments, we
use the the DAX (DAG in XML) abstract workflow description Guage of Pegasus [53]
to represent DAGS.
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Table 6.1: Mapping scheduling policies to our informatiemitability framework.U, K,
andR stand for information that ilnknown (or ignored)K nown a priori, and obtained
atRuntime by a policy, respectively.

Resource Information Task Information
Policy Status Processing Link Task File

Speed  SpeedeExecution Time Size
Round Robin U U U U U
Single Cluster R U U U U
All-Clusters R U U U U
All-Cls. File-Aware| R U K U R
Coarsening R U K U K
Cluster Min. R K U U U
HEFT(-P) R K K K K

6.1.2 Multicluster grid model

In our multicluster grid model, we assume that process@sgyesuped in clusters. The
processors may have different performance across clustarsvithin the same cluster
they are homogeneous. Clusters are fully connected witharnktinks that can be het-
erogeneous in terms of bandwidth. Each cluster has its ovealLResource Manager
(LRM), and so its own local queue to which tasks arrive. Each LiR¥he system exe-
cutes the same scheduling procedure upon the arrival of kg ind on the completion
of tasks.

We consider a decentralized architecture for workflow sahed in which each work-
flow submitted to the system is managed and scheduled by andinal broker/agent.
This broker incorporates a workflow execution engine andleyspa scheduling policy
in order to map tasks to resources. The workflow engine sgliasks to the LRMs of the
clusters according to some schedule, and initiates theseapgefile transfers. Finally, we
assume a monitoring service provides information abousthtus of the clusters (e.g.,
the numbers of idle resources and the loads).

6.1.3 Workflow scheduling policies

In this section we first propose a taxonomy for workflow schiedupolicies based on

the information they consider regarding resources and flaavikiasks. We then map to
our taxonomy seven dynamic workflow scheduling policies wstof which tasks are

assigned to resources only after they becaiigible, i.e., after all of their predecessor
tasks are finished.
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In our taxonomy, a particular piece of information regagdiesources or workflow
tasks can be either unknown (U), known a priori (K), or obediat runtime (R). We con-
sider the following pieces of information: for resourcdwit status, processing speed,
and inter-cluster link speeds, and for tasks, their exenuiime and the sizes of their
output files. Our taxonomy for workflow scheduling policiedends our taxonomy for
bags-of-tasks scheduling policies (see Section 5.1.4)dmgidering more detailed re-
source and task information, and it differs significantlynfr previous efforts [125, 212],
since their taxonomies classify policies based on algmithapproaches rather than on
the information the policies take into account.

We consider seven dynamic workflow scheduling policies,iantable 6.1 we show
how these policies map to our taxonomy. We describe theseiggbelow in the order
of increasing information usage:

1. Round Robin submits the eligible tasks of a workflow to the system clisster
round-robin order; the order of clusters is arbitrary.

2. Single Clustermaps every complete workflow to the least-loaded clustetsat i
submission. The load of a cluster is defined as the total psacgequirement of all jobs
running or queued in the cluster normalized by the clustss.siThis policy executes
all tasks of a workflow in the same cluster in order to avoi@mtluster file transfers.
However, this policy may increase the makespan of a workfldverwthe number of
eligible tasks, at any moment during its execution, is lap@an the number of idle
processors in the cluster.

3. All-Clusters submits each eligible task to the least-loaded cluster.s pbiicy
can exploit idle resources across the grid; however, thiepeance may degrade due to
inter-cluster file transfers.

4. All-Clusters File-Aware submits each eligible task to the cluster that minimizes
the transfer costs of the files on which it depends. The sia@@utput file can be known
only after the task that creates it is completed. This paiiggs preference to the clusters
with idle processors.

5. Coarseningis, in fact, a technique used in multilevel graph partitraniprob-
lems [118, 139] that iteratively reduces the size of a grapbdilapsing groups of nodes
and their internal edges. In each iteration, a group of notitee current graph is selected
and is combined into a single coarser node. The edges of thmalrgraph between
nodes in the group disappear, but the edges that conneocbtitespgonding coarse nodes
remain in the new graph [117]. We use the Heavy Edge MatclhiidM) [117] coarsen-
ing technique to group tasks that are connected with heaygsdle., task dependencies
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that correspond to relatively large files in a workflow. Aft&rarsening, the remaining
edges are conceivably be the task dependencies that camcegprelatively small files.
Our approach is to execute all the tasks of a group in the sdustec (where the first
task of that group is submitted to) with the aim to minimize ttost of inter-cluster file
transfers. After a workflow is coarsened, it is schedulethwie All-Clusters File-Aware

policy.

6. Cluster Minimization submits as many eligible tasks as possible to a cluster until
the cluster has no idle processors left before considehegnext cluster. Therefore,
it aims to reduce the number of inter-cluster file transfersybnimizing the number
of clusters being used. It considers the clusters in desogruider of their processing
speeds, and hence, it gives preference to faster resoufcesne of the clusters have
idle processors, then the tasks are submitted to the clu$tere the last task has been
scheduled.

7. Heterogeneous Earliest-Finish-Time (HEFT) [196]s a commonly cited list-
scheduling heuristic [53,206,208]. This policy initialyders all the tasks of a worklflow
in descending order of theirpward rankvalues. The upward rank of a task is calculated
as the sum of the execution time and the communication timea(eeference processor
and with a reference bandwidth) of the tasks that are ondklsg critical path, including
itself. Then in this order the policy maps each task to a meaewhich ensures its earliest
completion time.

In this chapter, we have modified the original HEFT policylstitat it maps tasks to
clusters instead of processors, hence it operates at thiegel, and we have changed the
static task scheduling process to dynamic scheduling. @pleimentation of the HEFT
policy operates as follows. Among the eligible tasks, ahesiep, it selects the task with
the highest upward rank value and assigns the selectedddble tcluster that ensures
its earliest completion time. We assume that an informagemvice runs on each cluster
that responds to queries regarding the estimated stars$ tifn@orkflow tasks. Then the
completion time of a workflow task on a cluster is estimatethassum of the estimated
start time, the estimated delay of transferring input fileswhich it depends, to that
cluster, and the execution time of the task on that cluster.

Although we assume the execution times of the workflow tas&saown a priori,
we consider two kinds of prediction information regardihg &xecution times of non-
workflow tasks (i.e., background load due to local users;Seaion 6.2.3 for details),
leading to two variations of this policy. THeEFT policy makes use of perfectly accu-
rate task completion time predictions. In contr&$EFT-P is provided task completion
time predictions that may be inaccurate; the executiondiofehe non-workflow tasks
submitted to a cluster are predicted using the Last-2 meh®d], which predicts the
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execution time of a task as the average of the last two preljabserved task execution
times. We refer to Chapter 7 for details of this predictionesoR. The prediction service
simulates the scheduling policy of the LRM with the predictask execution times and
the actual execution times of the workflow tasks that have lsedmitted to the cluster
in order to determine when a new workflow task will start. Altigh perfectly accurate
estimations of task information is not realistic in gridisegs, we use the HEFT policy in
order to observe the performance that can be achieved ifistarimation were available.

6.1.4 Task throttling

In grids, overload conditions may occur due to the burstyirgadf task arrivals, as in
the case of executing large workflows. As a consequence xgwigon performance of
the applications may deteriorate to unacceptable levelpanse times may grow sig-
nificantly, and throughput may degrade. Furthermore, as Wedemonstrate in Sec-
tion 6.4.2, the real system may become unstable when ergdatige workflows, as the
load on the head-nodes of the clusters severely increagse®dine activity of the work-
flow execution engine [193], to the number of concurrent sagémissions [37,193], and
to the excessive number of concurrent inter-cluster filesiers.

A common way to achieve efficient overload control in tramhial distributed systems
is to use admission control mechanisms [41,108]. In gridsjgver, instead of dropping
or rejecting tasks, it may be sufficient to delay the subrorssif some of the tasks, in the
expectation that the sites which to dispatch them will bezdess overloaded at a later
time. For instance, the Condor system [195] alldwise system administrator to limit the
total number of concurrent tasks in the system. We call thegshanismtask throttling
and apply it on a per-workflow basis. We define ttmmcurrency limitas the maximum
number of concurrent tasks that are dispatched (they camimeng or queued) in a mul-
ticluster grid to all its clusters and at all times during éxecution of the workflow.

Task throttling may have non-trivial effects on schedulyggformance. For example,
although with task throttling tasks may be delayed by thekflow execution engine, this
may also lead to a decrease in the amount of inter-clustermzonication, since there
will be fewer concurrent tasks, and they will possibly beesjak to fewer clusters. Conse-
guently, the execution performance of the workflow may imeprdespite the additional
delay of the tasks.

The Condor Manual: http://ww. cs. wi sc. edu/ condor/ manual /v7. 5/
condor - V7_5_0- Manual . pdf
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6.2 Experimental setup

In this section, we present the experimental setup usedibdtie simulations and the
real experiments.

6.2.1 Experimental environments

Our goal is to emulate, both in simulations and in practieajistic scenarios in which
we execute workflows on the DAS-3. The properties of the DAS®48ters are shown in
Table 1.2, and the average inter-cluster bandwidth (MB/klegare shown in Table 2.1.
Other relevant details on DAS-3 have been given in Sectiéril.

Simulated environment

In our computation modewe employ the SPEC CPU benchmarks model for task exe-
cution time [190], that is, the time it takes to finish a taskigersely proportional to the
performance of the processor it runs on. We assume that alld BiMhe clusters em-
ploy the FCFS policy. Once started, tasks run to completionye do not consider task
preemption or task migration during execution.

In our communication modeWwe assume that the file transfer delay of sending a file
from a predecessor to a successor task is zero if these tke &me executed on the
same cluster. If a task depends on a file created on a diffehester, we model the file
transfer delay as the ratio of the file size and the bandwititheointer-cluster link. If a
task depends on multiple files, then we model the total filestfier delay as the sum of
the individual file transfer delays. This means that we atersthe worst case scenario
in which all file transfers are performed in series, althoaghcurrent inter-cluster file
transfers can perform better in reality [5]. Once a file isated in a cluster or transfered
from another cluster, it remains in place until the whole kilorv is executed; hence, we
avoid redundant file transfers.

Real environment

For our experiments in the DAS-3, we have extendedLA with workflow execution
support. To this end, we have designed and implemented twipaoents: a workflow
runner (WRunner), which can be considered as a workflow exatatigine, and a work-
flow execution service (WES), which is responsible for intérg with the grid middle-
ware. A separate WRunner is responsible for each workflow sagsom; it manages the
dependencies between the tasks and the scheduling of wettisféis. In our design, we
use a service-based approach for better scalability. Heheee is a single WES on the
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Figure 6.1: The system architecture to support workflow etten in KOALA.

head-node of each of the clusters that initiates the exatofiall workflow tasks sched-
uled to that cluster. Figure 6.1 shows the architecture @kthaLA workflow execution
environment, and the interaction between the components.

After registration to the scheduler, a WRunner obtains systahe status information
from the KOALA Information Service (KIS), and determines the executidessof the
tasks according to the scheduling policy it employs. Fohdask of the workflow, the
WRunner copies input files and its executable to the executi®resid then delegates the
execution of the task to the WES on this site. The WES is resplenfsir submitting the
task to the middleware using the DRMAA [59] interface, andrifamitoring its execution
with the callbacks provided by the middleware. The WES presithe task status to
WRunner upon its completion. If the task fails, the WRunner hesdhe failure by
resubmitting the task. If the task finishes successfullgnupotification, the WRunner
first transfers its output files to the submission site of tekflow, and then it updates the
set of eligible tasks. The WRunner continues this processalhtasks of the workflow
are completed.

Additional considerations

Although we try to model the DAS-3 multicluster grid as retially as possible, in our
simulations there are some differences between our moddhareal system:

¢ In our simulations, we do not model the head-nodes and tlwres contention
that may occur on the head-nodes in the real system due tdeheafisfers. This
resource contention and the instability it causes has dfisigmt effect on the per-
formance; as we demonstrate in Section 6.4.2.
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Figure 6.2: The overall utilization as well as the utilizatin the individual clusters due to
the background load considered in the simulation-basedrarpnts. This load refers to

the jobs submitted to the DAS-3 system during a period of foanths (June-September
2008).

¢ In our simulations, we consider a task as finished when itswgian completes;
then, the eligible set of tasks is updated accordingly. Buhéreal experiments,
we only consider a task as finished when its execution has letespand its output

files have been transferred back to the submission site; alydizen the eligible
set of tasks is updated.

6.2.2 The workflows

We use synthetic but realistic workflow applications that publicly available in [19].
The applications are based on four real scientific workfloMientage, CyberShake, In-
spiral, and SIPHT. These workflows are composed of sevetaitatal components such
as pipeline, data distribution, data aggregation, and raligtribution. For each of these
workflows, four synthetic applications are availZpMith sizes of 30, 50, 100, and 1000
tasks.
We categorize a synthetic workflow amall if its size is at most 100, and &wge, if

its size is 1000. With small workflows, the number of tasks texome eligible concur-
rently can all fit in a single cluster in our system; howeveithvarge workflows, more
tasks may become eligible concurrently than can be accomteddy even the largest
cluster. We further categorize the workflows according &rticommunication versus
computation characteristics. Table 6.2 presents the @aregion of the workflows and

2Available Pegasus Workflow Typedit t p: // vt cpc. i si . edu/ pegasus/i ndex. php/
Wor kf | owGener at or
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Table 6.2: Categorization of the workflows.

Workload || Workflow Name-| Avg. Makespan Avg. Total Size of
Type Size on a Referencethe Output Files of
Cluster [s] | a Workflow [MB]
wf-smalll|| CyberShake-30, 220 2246
50,100

wf-small2|| Inspiral-30,50 1260 23
Montage-100

wf-largel || CyberShake-1000 410 2866
Montage-1000

wf-large2 SIPHT-1000 3290 1150
Inspiral-1000

their characteristics. While the workflowswf-smalllandwf-largelare communication-
intensive, the workflows imf-small2andwf-large2are more computation-intensive.

6.2.3 The workloads

In our experiments, we assume that two workloads are sudxhitt the system: a grid
workload, which comprises the workflow applications subecitoy grid users, and a lo-
cal workload, which comprises the tasks submitted dirdctihe clusters by local users
(background load). In our simulations, depending on theegrpental scenario, we im-
pose a background load together with a grid workload in oralattain realistic resource
availability conditions. The background load refers to jiles submitted to the DAS-3
system during a period of four months (June-September 2@0glire 6.2 illustrates the
system utilization of the background load. The correspogeaiorkload trace is obtained
from the Grid Workloads Archive [102]. In the simulationkettasks that belong to the
background load are submitted to the LRMs of their origin@aesion locations. In our
DAS-3 system, users may submit tasks directly to the LRMsabgimgkoALA. We
keep this non-workflow (background) load under control ferfprming controlled ex-
periments in the real environment. To this end, during oal sgstem experiments, we
monitor the background load, and we maintain it between 30&040% in each cluster
(which is not the case in our simulations).

We classify our experiments as either single workflow or mwitirkflow scheduling.
In the simulations of single workflow scheduling with baakgnd load, for each policy,
each of the workflows is scheduled only once and the averaydtseare presented per
workload type (see Table 6.2). In the simulations with thekiggound load, for each
workload type, we generate ten traces in each of which rahdsetected workflow in-
stances arrive at six-hour intervals during a period ofél{smulated) months. For each
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policy-workload type pair, we run the ten correspondingeekpents and present the av-
erage results. In the real system experiments (where thedevays background load) of
single workflow scheduling, for each policy, each of the edexed workflows is executed
ten times and we present the average results.

For multi-workflow scheduling, both for simulations andlregperiments, several in-
stances of the same workflow application are submitted samebusly (the exact number
varies across the experiments). We do not consider backdroad in the simulations of
multi-workflow scheduling.

6.2.4 The performance metrics

To assess the performance of the workflow scheduling peliciee use the following
traditional metrics [125]:

e TheMakespan (MS)of a workflow in a grid is the time elapsed from its submission
to the grid until the completion of its last task. For the mulorkflow scheduling
experiments, in which a number of concurrent instances arkflow are submit-
ted to the grid, we consider the metfiiotal Makespan, which is the time elapsed
from the submission of the instances until all the instamcescompleted.

e TheNormalized Schedule Length (NSL)of a workflow in a grid is the ratio be-
tween its makespan and the time to execute (one of) itsarpiath(s).

e TheWait Time of atask is the time elapsed from when a task becomes eligtile
the time it starts execution. It comprises two componetis:Rile Transfer Delay
(FTD), which is due to waiting for input files to become availabléhet execution
site, and the Queue Wait Til{@®WT), which is the time a task spends in the local
gueue of the cluster to which it was submitted.

In addition to these metrics, we also consider the Numbenteficluster File Trans-
fers per workflo{NFT).

6.3 Simulated environment results

In this section we present our experimental results of singbrkflow scheduling and
multi workflow scheduling, respectively.

6.3.1 Single workflow scheduling

We first evaluate the performance of the scheduling polithes we describe in Sec-
tion 6.1.3 under various experimental scenarios. Then, nwvestigate the impact of
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Figure 6.3:Simulations, single workflow scheduling:The performance of the workflow
scheduling policies in terms of the average makespan anavéirage NSL without and
with background load.

task throttling on the performance of dynamic workflow saligd) when executing large
workflows.

The performance of the scheduling policies

In addition to our experimental setup (in Section 6.2), wpligpl the Coarsening policy
only to wf-largel and wf-large-2; the workflow sizes are stkto 100 and then scheduled
with the File-Aware policy. For wf-smalll and wf-small2, Gsaning is exactly the same
as the File-Aware policy. In addition, we applied the HEFpeHcy only when we impose
background load in our experiments.

Figure 6.3 presents the performance of the workflow schegdydolicies in terms of
the average makespan and the average NSL, without and vakigitmaund load (denoted
by BG). Table 6.3 presents additional metrics such as theageeask queue wait time,
the average task file transfer delay, and the average nurhbgeocluster file transfers
performed per workflow. Finally, Figure 6.4 shows the curtiwéadistribution functions
of the makespan and the NSL when background load is imposdd far wf-smalll
and wf-largel). Below, we present a separate discussionafdn ef the experimental
scenarios.
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wf-small, without BG Load

The very first noticeable result is that the performanceatiam is small among the
policies. The reason is that, with any of the policies, exd@pund Robin, tasks are
executed mostly in a single cluster. When the system is ndeldaor small workflows,
selecting the appropriate cluster (e.g., according togssiag speed) is a good strategy
to attain a better performance. Since the Cluster Minimazagolicy takes into account
the processing speed of the clusters, it is slightly beltizn the other policies, and yields
almost identical performance to that of HEFT, which is fegbyfectly accurate resource
and task information, and which we expect to perform beshindad the scenarios.

wf-small, with BG Load

In this scenario we see that Round Robin performs much worseorimparison
to the other policies. Round Robin maps tasks also to the masketb clusters, and
consequently, some tasks experience large queue wait.tifkeshis policy distributes
tasks across all clusters, it causes more inter-clustetrditesfers than the other policies
(see Table 6.3). The other policies perform similarly toheather, although Cluster
Minimization, HEFT and HEFT-P yield slightly better penfisance.
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Table 6.3:Simulations, single workflow scheduling: The performance of the policies
without and with background load, in terms of the averagk tageue wait time (QWT
[s]), the average task file transfer delay (FTD [s]), and trexrage number of inter-cluster
file transfers performed per workflow (NFT). ’-’" indicatesatmo experiment has been
performed (see text).

Round Robin Single CI. All-Cls. File Aware
Workload TypeQWT\FTD\NFT QWT\FTD\NFT QWT\FTD\NFT QWT\FTD\NFT
wf-smalll 0 |[126 25| 0 | O | O 0 (04| 4 0O 0|0
wf-small2 0O |[05/49| 0 | O | O 0O (01|10 O |O|O
wf-largel 8 11460 49 | 0 | O || 3.2 (1.44366|| 5 |0.43 243
wf-large2 | 7504|778 93 | O | 0 || 0.4 |0.5|637|| 2 |0.3|354
wf-smalll+BG 525(1.23 26 || 0.03| 0 | O 0 |[1.2]6.7] 3.3|0.010.1
wf-small2+BG 423 05|51 03| 0 | 0 || 05(0.2| 12| 3 |0.0111
wf-largel+BG 682 | 1.2 |455| 113| 0 | O || 573|3.1|392|| 42 |0.4|229
wf-large2+BG 842 (0.42/ 756| 386| 0 | O || 598 | 0.5|636|| 79 |0.4|422
Coarsening || Cluster Min. HEFT HEFT-P
Workload TypeQWT\FTD\NFT QWT\FTD\NFT QWT\FTD\NFT QWT\FTD\NFT\
wf-smalll - - - 0 0| O 0|00 - - -
wf-small2 - - - 0 0|0 0 [0.2] 15| - - -

wf-largel | 34 |0.18 39 || 3.3 |1.3[{495| 4 |0.6|218| - - | -
wif-large2 | 9.9 |0.01 18 || 0.4 | 0.5|638|1.25| 0.2|301| - -] -

wf-smalll+BG - - - 17(01{12) 0 | 0] O 0O|0]O
wf-small2+BG - - - || 3.2]0.01j1.05 0 |0.2] 15| 0.4]0.2| 15
wf-largel+BG 93 | 0.3| 58 | 42 |1.4|466| 9 |0.5|290| 9 |0.5]/290
wf-large2+BG| 69 |0.04/25.6| 146 |0.68 694| 7.5 | 0.4|441| 28 | 0.4|501

wif-large, without BG Load

When executing large workflows, many tasks may become edigilshultaneously,
which gives more room to make different scheduling decsio®onsequently, when
scheduling large workflows, we observe that the perform&ades considerably among
the policies, and even their relative performance varigh @ifferent workloads (Fig-
ure 6.3). For the case of wf-largel, Round Robin and All-Clsstee the two worst
performing policies, and Single Cluster and Coarsening & éxb best performing poli-
cies. On the other hand, for the case of wf-large2, Singlet@uyserforms the worst,
while HEFT performs the best. We attribute this differerecthie communication charac-
teristics of the workloads (see Table 6.2).

In general, we observe that both Round Robin, All-Clusters Glaster Minimization
perform many inter-cluster file transfers (see Table 6.3)ar€ening is a trade-off be-
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Figure 6.5: Simulations, single workflow scheduling: The average makespan for the
File-Aware and the Cluster Minimization policies whiersk throttling is applied.

tween low inter-cluster communication and high queue viiaigés. Although File-Aware
is better than Cluster Minimization in terms of reducing ratkister communication,
selecting faster resources pays off for Cluster Minimizaggen when the heterogeneity
in the system is low (the ratio of the fastest processor tostbeest is 1.25 in our
settings). Nevertheless, selecting the faster clustegsmotbe always an advantage if
such clusters are much smaller than a slower cluster whesdathg large workflows,
since in such a case tasks may be distributed to more cluatedsas a result the number
of inter-cluster communications may increase.

wf-large, with BG Load

When background load is imposed, we observe a substantiabise in the average
makespans and NSLs, respectively. The HEFT policy outpmddhe other policies for
both of the workloads. However, the performance of the HE®&licp worsens when the
task completion time information is inaccurate (HEFT-H)e4fAware, Coarsening, and
Cluster-Minimization all yield similar performance resulvhen scheduling wf-large2;
however, Coarsening is much better than the others when slohgavf-largel, which
includes more communication-intensive workflows. As a eguence of spreading tasks
to many clusters, both Round Robin and All-Clusters suffer ffidentransfer delays as
well as from large queue wait times.

The impact of task throttling

In this section we evaluate the scheduling performanceeodiyimamic workflow schedul-
ing policies whertask throttlingis applied for each workflow submitted to the system.

To conduct our evaluation we modify our default setup a®bed. We only consider
the workloads that contain large workflows, and run them lath and without back-
ground load. As scheduling policies we select, from theguedi that perform relatively
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Table 6.4:Simulations, single workflow scheduling:Percentage of change (Best, Worst)
in the performance of File-Aware and Cluster-Minimizatiarmentask throttling is ap-
plied, relative to the original performance of the policies

Policy Change inthg Change in
(Workload Type) Makespan [%] the NSL [%0]
without BG Best Worst | Best Worst

File-Aware (wf-largel) | -15 +16 -9 425
File-Aware (wf-large2)| +17  +60 | +18 +116
Cluster-Min. (wf-largel) -4 +50 | -20 +9
Cluster-Min. (wf-large2) +11  +68 | +16 +123

with BG
File-Aware (wf-largel)| -50 -37 | -40 -26
File-Aware (wf-large2) | +4 +51 |+6.5 +80
Cluster-Min (wf-largel)| -30 -11 | -27  -13
Cluster-Min (wf-large2) +4 +43 | +15 +75

well in the previous section, the File-Aware and the Clusarimization policies. In
our simulations, we do not model overload conditions forltkad-nodes of the clusters;
hence, we assess the impact of throttling on schedulingpeance in ideal conditions.
We use, in turn, three values for the concurrency limit: 510,land 150. While these
values are, as we show below, enough to understand the mpatirof task throttling on
the performance of scheduling, it is outside the scope sfilurk to assess the optimal
concurrency limit.

Figure 6.5 shows the makespan performance of the policredlfealues of the con-
currency limit, as well as when no task throttling is appli@dble 6.4 presents the best and
the worst performance results of the policies relative ®rtbariginal performance out of
all concurrency limit scenarios (50, 100, and 150). We oles#rat the performance that
can be attained with task throttling is related both to thmmnication characteristics of
the workflows, and to the utilization in the system (see Ta¢. When scheduling work-
load wi-largel, which includes communication-intensivakflows, without background
load, the makespan (NSL) performance can be improved by P8%), while it can be
improved by 50% (40%) when background load is imposed. Orother hand, when
scheduling the workload wf-large2, which is more compotaintensive, the makespan
(NSL) performance worsens for all the limit values, but tleefprmance degradation is
smaller when background load is imposed than without bazk load.

6.3.2 Multi-Workflow scheduling

In the simulations of multi-workflow scheduling we considee Single Cluster, the File-
Aware (without and with task throttling), the Cluster Minimation (without and with task
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Figure 6.6:Simulations, multi-workflow scheduling: The performance of the schedul-
ing policies in terms of the total makespan [s] and the aveNgL. N denotes the number
of application instances submitted together.

Table 6.5:Simulations, multi-workflow scheduling: The performance of the scheduling
policies in terms of the average task queue wait time (gridll + local, QWT [s]), the
average task file transfer delay (FTD [s]), and the averagebeun of inter-cluster file
transfers performed per workflow (NFT).

Single CI. File Aware File Aware Cluster Min. Cluster Min. HEFT
with Throttling with Throttling
C.S.-100| QWT[FTD[NFT|[QWT[FTD[NFT[ QWT [FTD[NFT|[QWT[FTD[NFT| QWT [FTD[NFT|[[QWT[FTD[NFT
N=5 0 0| O 0 |0.02/ 1.8 21+0| 0 | O 0 | 29| 12 || 63+0(6.22{12.8|| 0.24|0.13| 7.2
N=50 | 124 0 | O 95 |1.63| 30 |[71+28 2 | 21 || 198 | 30 | 43 ||97+36/ 7 | 28 || 121 [0.49| 24
C.S.-100

[ N=5 [162] 0 | 0 [[182]0.5]400[[134+0[0.01] 8 [ 406 | 1 [473][138+1] 0.8 314[[ 123 [4.87] 319]

throttling), and the HEFT policies. We have used the Cybek&haorkflow application
with sizes of 100 and 1000. For each of the policies that waiden, we submit either 5
or 50 concurrent instances of the CyberShake-100 applicadiod we submit 5 concur-
rent instances of the CyberShake-1000 application. When ply sk throttling, the
concurrency limit per workflow submitted is set to 15 and 50tfee CyberShake-100,
and CyberShake-1000 applications, respectively.

Figure 6.6 presents the performance of the schedulingipslin terms of the total
makespan and the average NSL metrics. Table 6.5 presernt®addmetrics such as
the grid-level delay due to the task throttling, averag& tasgeue wait time, the average
task file transfer delay, and the average number of intestetuile transfers performed
per workflow. For the small workflow (CyberShake-100) caseFHButperforms the
other policies. Single Cluster and File Aware with task ttiirg yield similar perfor-
mance results and they outperform the rest of the policies.the large workflow case
(CyberShake-1000), File Aware and Cluster Minimization hwith task throttling have
better total makespan performance than the other politmeerms of NSL, File Aware
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and Cluster Minimization both without task throttling hawe tworst performance while
the other policies achieve a similar performance.

With the Single Cluster policy, workflows are balanced acagsters, and no inter-
cluster file transfer takes place. Task throttling decre#fs® amount of inter-cluster com-
munication (see Table 6.5), hence both the performancesdfita-Aware and the Cluster
Minimization policies improve, and they even outperformMEor the large workflow
case. According to the results, for multi-workflow schedglia dynamic policy that takes
inter-cluster communication into account and that alsdieppask throttling should be
used. Alternatively, the Single Cluster policy may be pnefdy depending on whether
the application is communication- or computation-inteesand on the background load
in the clusters, when the number of simultaneous workflowiegijions exceeds the num-
ber of clusters in the system.

6.3.3 Discussion

Our investigation shows that different system conditi@tgnarios and workflow appli-
cations need different scheduling approaches in ordetdamagood application execution
performance.

In general, increasing information usage about the worktimsks and the grid re-
sources improves the performance of the dynamic workflovedaling policies. Al-
though HEFT, which is the omniscient policy, is unrealigbc grids, HEFT-P, which
uses predicted resource availability information, is adyakbernative to be used provided
that the application characteristics are known a priow, that the prediction of the cluster
that will finish a task first is correct.

The policies that take inter-cluster communication intecamt achieve better per-
formance than the policies that do not. For instance, the Seoarg policy, and the
File-Aware policy with task throttling are good altern&sv/that can be considered in
the absence of complete task and resource information wieadaling communication-
intensive large workflows.

When many workflow applications are submitted together,rzatey the workflows
across clusters separately or applying task throttlingawgs the performance, since both
approaches prevent high inter-cluster network traffic,clvhincreases file transfer times
when many tasks are distributed across clusters.

6.4 Real system results

In this section we present the results of the experimentsvileaperformed in DAS-3.
We only present the results for the Single Cluster, All-Clisstand Cluster Minimiza-
tion policies since according to our simulation results, RbRobin performs the worst,
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Table 6.6:Real system, single workflow schedulingThe performance of the scheduling
policies in terms ofaverage makespan(MS [s]), average queue wait time (QWT [s]),
average task file transfer delay (FTD [s]), and NSL.

Single Cluster All-Clusters Cluster Min.
Workload Type Workflow MS [NSL]QWTJ[FTD]|| MS [NSL[QWT[FTD|[ MS [NSL[QWTJ[FTD
wif-smalll CyberShake-30| 244.35|1.38| 4.98 | 0.99|| 251.40|1.42| 4.19|1.00|| 247.46|1.39| 5.16 | 1.01
wf-small2 Montage-100 |1380.49 1.29| 4.67 | 2.08||1390.72 1.30| 4.62 | 2.14|/1387.43 1.30| 5.05 | 2.15
wi-largel | CyberShake-10001321.67 6.51|36.08( 0.05|(1101.39 5.42| 4.96 | 0.02|| 718.70| 3.54| 5.09 | 0.02

Table 6.7:Real system, multi-workflow scheduling: The performance of the schedul-
ing policies in terms ofotal makespan(MS [s]), average queue wait time (QWT [s]),

average task file transfer delay (FTD [s]), and NSL.

Single Cluster All-Clusters Cluster Min.
Workload Typg  Workflow MS [NSL[QWT[FTD|| MS [NSL]QWT [FTD[| MS [NSL[QWTJ[FTD
wf-smalll CyberShake-30| 328.92|1.85| 4.61 | 1.01|| 331.89| 1.87 | 5.46 | 1.02|| 330.14|1.86| 3.57 | 1.02
wf-small2 Montage-100 |2195.24 2.06|15.82| 2.21|/2377.00 2.23 | 17.29|2.27|| 3568.16 3.35|48.16| 2.58
wi-largel |CyberShake-10001413.15 6.96(26.21| 0.06|| 2859.89 14.08|103.41] 0.12{| 1940.47 9.55| 6.56 | 0.08

File-Aware has similar performance (in many cases) as Glidt@mization, and HEFT
requires accurate resource and task information, which meeunrealistic for grid en-
vironments. Finally, we investigate the impact of task ttirmy with multi-workflow
scheduling with the aim of improving system stability angpensiveness.

6.4.1 Single workflow scheduling

We first evaluate the performance of the selected workflowdalng policies using the
CyberShake-30 and the Montage-100 workflows for the wf-sinaiid the wf-small2
workload type, respectively, and the CyberShake-1000 wawkfibr the wif-largel work-
load type.

Table 6.6 shows the performance of the policies for singl&kfkamv scheduling exper-
iments. We observe that the policies perform similarly foa#i workflows, confirming
the simulations results for small workflows as shown in Fegéu3 and Table 6.3. For the
large workflow, Cluster Minimization has the best performarsignificantly outperform-
ing the Single Cluster and All-Clusters policies. Single Glustas a higher queue wait
time than the other policies, unlike the simulation resuttere All-Clusters has the high-
est queue wait time as shown in Table 6.3 (wflargel + BG). Wibaté this difference to
the much higher variability of the background load used edimulations.
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Figure 6.7:Real system, multi-workflow scheduling: Cumulative distribution function
of the queue wait time of the CyberShake-1000 workflow tasksafopolicies. The
horizontal axis has a logarithmic scale.

6.4.2 Multi-Workflow scheduling

In this section we evaluate the performance of the seledeedsiling policies, and the
impact of task throttling on the performance of multi-wodk#l scheduling.

The performance of the scheduling policies

For the multi-workflow scheduling experiments we submified instances of the same
workflow application simultaneously and only once. Tablé$hows the performance of
the policies for these experiments.

For small workflows, the relative performance order of thégues is the same as in
the single workflow scheduling experiments, except for thendge-100 workflow for
which the Cluster Minimization policy has the worst perforrne@. The reason is that
Cluster Minimization does not balance the load well compavét the other policies,
hence increasing the queue wait times.

For the large workflow, we observe that Single Cluster perfothe best since all
workflows that are submitted simultaneously are mapped éparate cluster, hence dis-
tributing the load better than the other policies, and nerkatuster file transfers take
place. This result confirms the simulation results in Tabe(Bst row). The All-Clusters
policy has worse performance than the other policies. Thsaris twofold. First, the
All-Clusters policy causes the number of inter-cluster fismsfers to increase. Secondly,
with the All-Clusters policy, many tasks suffer a large waitd, which is shown in Fig-
ure 6.7. Unlike for the other policies, around 37% of the saskperience queue wait
times of more than 100 seconds. We also observe a signifidéeredce in median per-
formance: the performance of the Cluster Minimization ppol& roughly twice better
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Figure 6.8: Real system, multi-workflow scheduling: The average CPU load of the
Delft cluster head-node when 5 instances of CyberShake-a@®&ubmitted simulta-
neously (left), and the total makespan with and withouttthng applied (right). The

vertical axis of the left graph has a logarithmic scale.

than that of the Single Cluster policy, and the performanctefSingle Cluster policy

is roughly twice better than that of the All-Clusters polichhe performance difference
between the policies is more significant in the real expentéhan in the simulations.
We attribute this observation to the resource contentionany layers of the system (e.g.,
in the network, and file system), which gets even worse fgeavorkflows.

One of the main reasons for poor performance for multi-wovkfsubmissions of
large workflows is that the head-nodes become overloadedcht & scale. Figure 6.8
(left) shows the average CPU load of the Delft cluster heatkr@s reported by the system
for the multi-workflow scheduling experiments with the Cy®lake-1000 workflow. The
CPU load is the value reported by the systetrop utility. A high CPU load exceeding
100% can result in the incapacity of the system to perfornméfie simplest operations
such as opening a socket or a file. This is the reason why we\@gmg delays in
initiating file transfers (not included in FTD), as the wodkflengine connects to the head-
node of the execution site which is not responsive in overkgituations. To overcome
the problems related to head-node overload, we next imagstithrottling as a possible
solution.

The impact of task throttling

In this section we evaluate the impact of task throttling ba performance of multi-
workflow scheduling. To this end, we submit five instanceshef CyberShake-1000
workflow application simultaneously and only once. We use &% 100 and 150 as
the concurrency limits. In contrast with the experimentsspnted in Section 6.3.1, we
use here only three of the five DAS-3 clusters, due to the uladwigty of the two other
clusters.
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We first look at the impact of the concurrency limit on perfamme. Figure 6.8 (right)
depicts the total makespan with and without task throtthpglied. As the concurrency
limit increases from 25 to 150, we observe a decrease in thertmkespan, converging
as the concurrency limit increases to the performance adybEm when no throttling is
applied.

Second, we investigate the effects of using task throtttinghe head-node. Fig-
ure 6.8 (left) shows the average CPU load of the Delft clustadhnode, when the cluster
acts both as the submission site and as one of the execuisn ¥Ve observe in the fig-
ure a stable period where the CPU load is high due to the langdeuof running tasks
in the system. Although the throttled system with a conawydimit of 150 tasks and
the initial system yield a similar total makespan (see FeduB (right)), the system with
task throttling exhibits a factor of 2 improvement in the rage CPU load, which conse-
quently improves the system stability and responsiven&$gn the concurrency limit is
set to 25, the average CPU load shows a further substantisdatss; leading to a factor
of 4 improvement over the system without task throttlingt then the total makespan
increases noticeably because of the low concurrency limit.

To conclude, task throttling with appropriate concurrelieyts prevents head-nodes
being overloaded and simultaneously preserves the erecpérformance of the work-
flow applications. This fact motivates future research owemheining appropriate throt-
tling mechanisms and their associated parameters (eegcoticurrency limit).

6.4.3 Discussion

For single workflow scheduling, the different policies haimilar performance for small

workflows. However, for large workflows, the policies haviéatent performance, and in
particular, the policies that minimize the inter-clustenanunication have better perfor-
mance than the policies that do not.

For multi-workflow scheduling, selecting a single cluster porkflow for execution
yields the best performance. Policies distributing thikdaross clusters have worse per-
formance due to the increased inter-cluster communicatioaddition, for large work-
flows, head-nodes may get overloaded, which consequemtdgténs the performance;
task throttling alleviates this problem.

6.5 Related work

An extensive body of research has focused on schedulingfleakin traditional parallel
systems, addressing both homogeneous [125] and hetemgej# ] sets of processors.
The scheduling methods are usually static, that is, allstas& mapped to processors be-
fore execution of the workflow starts, and they assume th&¢ iy accurate information
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Is available about the communication and the computati@maciteristics of the tasks. A
classification of static scheduling approaches is predentd 96]. Such scheduling solu-
tions, however, cannot be applied directly to multiclugpeds. First, they operate at the
processor level, while in grids the tasks are submitteddddbal resource managers. Sec-
ond, they do not consider the dynamic resource availalaktyerienced in grids, which
also makes accurate predictions of computation and conuaton costs difficult. Nev-
ertheless, several studies [128,129, 213, 214] adaptetpeestatic scheduling methods
by revising scheduling decisions at runtime taking the dgidamics into account.

There are several scientific workflow management systenisémeoperate in grids.
Some of the well-known ones are the Condor DAGMan [49], Pegsl), Karajan [206],
Kepler [6], and Askalon [208]. They employ various types tdtis and/or dynamic
scheduling methods. For more details we refer to the suri/&¥y and Buyya [211].

Although most of the related work in grids deals with singlerkilow schedul-
ing [20, 60, 93, 143], there are some studies that also asldnaki-workflow scheduling;
by comparison, our work puts forth a more comprehensivesinyation. Zhao and Sakel-
lariou [216] present a method that combines several worlsflmio a single workflow,
then prioritizes the tasks and maps them to resources usstafia scheduling method.
Iverson et al. [106] demonstrate that scheduling each congpworkflow with a dy-
namic policy in a decentralized way improves the overalfgrenance.

In addition, several researchers have addressed data-aweakflow scheduling, in
which large data sets associated with scientific workflovestaken into account when
scheduling tasks. Park and Humphrey [162] propose a batiaaildcation technique to
speed up file transfers. Bharathi and Chervenak [18] preseatadedata staging tech-
niques for data intensive workflows, and demonstrate thebw@ed data staging can
reduce the execution time of workflows significantly. Ramstknian et al. [170] evaluate
a dynamic method that minimizes the storage space neededtiflows by removing
data files at runtime when they are no longer needed.

In summary, our study complements and extends previous indtikkee main ways.
First, we consider dynamic policies with various inforroatiavailabilities. Secondly,
we consider both single and multi-workflow scheduling in performance evaluation.
Finally, we perform simulations with realistic scenariesid we validate our findings
through experiments in the DAS-3 multicluster grid.

6.6 Summary

The performance of grid workflow scheduling policies aféeat increasing number of
scientists. To understand this performance, in this chaptehave conducted a compre-
hensive and realistic performance evaluation of dynamidkfhaw scheduling policies in

multi-cluster grids. We have first introduced a schedulagthomy based on the amount
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of information used in the scheduling process, and we havegpethseven scheduling
policies that span the full information spectrum to thisotaamy.

Secondly, we have investigated the performance of thessgmin realistic scenarios
using both simulations and real system experiments. Qyermlfound that different sys-
tem conditions and workflow applications need differentestthing approaches in order
to attain good application execution performance. Theegfwe believe it is important in
grids, as we do with oukOALA grid scheduler [148], to support various scheduling poli-
cies from which the users can benefit considering the chertatits of their applications
and the system capabilities. Alternatively, a scheduliginanism can be implemented
that switches dynamically the scheduling policy or the esded parameters, based on
the system state and the workflows to be scheduled. We alsul fithat, for schedul-
ing communication-intensive workflows, the schedulingiges that take into account
inter-cluster communication achieve better performaheaa the policies that do not. For
example, the Coarsening policy, and the File-Aware policthwask throttling, that is,
limiting the per-workflow number of tasks concurrently gesin the grid, are two good
options that can be considered in the absence of complétamasresource information.

Thirdly, our real system experiments have revealed pedoga problems that did not
show in the simulations. In particular, we found that thedarades of real grid clusters
may become unstable as the workflow size increases, learimgaeh lower performance.
To solve this problem, we have analyzed the performances&fttaottling, and we have
shown that this approach keeps the system stable whileeti@lgzgood performance.



Chapter 7

Evaluating prediction methods for grid
scheduling

Although grid systems can be cost-effective and easilyabdal their multi-site and het-
erogeneous resource structure, and their dynamic andgetezous workloads limit the
efficient use of the system resources. Moreover, the higlhidity of the job runtimes
and queue wait times make such systems difficult and oftestréting to use for the com-
mon user. Prediction methods, and in particular prediebased scheduling, have been
employed to address these problems in parallel productiginaments, but their use for
large-scale distributed systems such as multiclustesgathains largely unexplored. In
this chapter we present a systematic investigation of ptiedi methods with application
to grid scheduling.

An extensive body of research has focused on devising angiagmprediction meth-
ods for such quantities as job runtimes and job queue wa#gif88], CPU load [215],
resource availability [158], and resource failure rateb]lin (large-scale) computer sys-
tems such as parallel systems and grids. The aim of such deeithto aid in the efficient
scheduling in such systems and to assist users in seleetsoginces for their jobs. For
instance, runtime predictions have been used to improvedtfermance of backfilling in
batch queueing systems [197], and runtime and queue waatgnedictions together can
guide the decisions of a grid scheduler as to which grid sttesend jobs for execution.
What is missing so far from this research is a detailed ingastin of the performance
of prediction methods for job runtime and queue wait timeridg and of the benefit of
using predictions in grid scheduling. In this chapter wethils gap by applying simple
and widely used prediction methods to the job runtimes arelguwvait times of nine
workload traces of research and production grids in the ®faakload Archive [102],
and by assessing the benefit of using predictions in grid ksleeduling via trace-based
simulations.

Our investigation is based on three guidelines. First, wgetamulticluster grid sys-
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tems in which the processors are managed by space-shaliciggpdaSecondly, we restrict
ourselves to time series prediction methods, which makie pinedictions based on his-
torical data, usually in the form of the time-ordered set atpobservations of, e.g., the
job runtimes. Thirdly, we classify jobs in different waysideapply these methods to the
different job classes separately, in the hope to improveérrmance of the prediction
methods. Among the job classifications we will employ areuging jobs per grid site,
per user, and per user and per site. In this way, we aim to gikstic answers to the
following research questions:

e How accurate are the simple but widely used time series metlis in predicting
job runtimes in grids, and what is the impact of job classificdion on the accu-
racy of these predictions?We answer these two questions in Section 7.2, where
we assess the accuracy of five time series methods undeotoalgssifications.

e What s the performance of queue wait time predictors in grics? We answer this
guestion in Section 7.3 by evaluating the performance pbiat-valuedpredictor
that simulates the local scheduling policy with the prestigbb runtimes to predict
gueue wait times of jobs, and by evaluating the performahoeethods that predict
upper boundgor the queue wait times of jobs.

e Can prediction-based grid scheduling policies perform beer than grid
scheduling policies that do not use predictions?We answer this question in
Section 7.4, where we compare three grid-level schedulatigips in a simulated
environment. The prediction-based scheduling policy $atsedecisions on job
runtime and queue wait time predictions (which are eitheuased to be perfect or
potentially inaccurate), whereas the non-predictioretdgmlicies balance the load
on the clusters or prefer faster resources.

7.1 Grid workload traces

For our investigation we use nine grid traces from the GridRkidads Archive [102].
Each trace consists of ordered job entries according to shimission time which is in
UNIX timestamp format. All traces have complete informatabout the jobs’ submis-
sion times, runtimes, and requested numbers of nodes. Sottne wwaces lack other job
attributes such as queue wait time, application name, gnaope, etc. None of the traces
contain information about user runtime estimates.

Table 7.1 summarizes the characteristics of the grid trédlcaswe have used in
our work, and contrasts them to those of four traces taken tree Parallel Workloads
Archive [167]. The grid traces are gathered from four researids and five production
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Table 7.1: The characteristics of nine grid traces takem fitee Grid Workloads Archive
and of four traces taken from the Parallel Workloads ArchiMee sign “-” denotes miss-
ing information.

System Trace
Type Num. of  Size | Duration Size % of Parallel Num. of
Clusters [CPUs]| [Months] [Tasks] Jobs Users
Grid Workloads Archive Traces [102]
DAS2 Research 5 400 18 1.1M 66% 333
Grid’5000 Research 15 ~2500 27 1.0M 45% 470
DAS3 Research 5 544 18 2M 15% 331
SHARCNET Research 10 6828 12 1.2M 10% 412
AUVER Production 5 475 12 0.4M 0% 405
NORDU Production 75 2000 24 0.8M 0% 387
LCG Production - 24515 4 0.2M 0% 216
NGS Production 7 - 6 0.6M 0% 378
GRID3 Production 35 ~3500 18 1.3M 0% 15
Parallel Workloads Archive Traces [167]
CTC SP2, PWA-6 | Production 1 430 11 0.1M 56% 679
SDSC SP2, PWA-9| Production 1 128 24 0.1M 63% 437
LANL O2K, PWA-10 | Production 1 2048 5 0.1M - 337
SDSC DS, PWA-19| Production 1 1664 13 0.1M 100% 460

grids. There are several differences between typical relseand production grids. In re-
search grids, the workloads contain both parallel jobs andential jobs, and the system
utilizations are low (10%-30%), whereas in production grithe workloads consist solely
of sequential jobs, and the system utilizations are muchdri¢pver 60%) [98,100]. The
main differences between grids and paralel processingpenvients (PPEs) as we ob-
serve are the following: grid resources are spread acro$iiplaisites, grid workloads
include fewer parallel jobs, and over the long term, the giodkloads include many more
jobs than PPEs (by a factor of 2-20).

An important assumption of this chapter is that grids extofien bursty job arrivals.
We show that this is indeed the case in Figure 7.1, which tkehie numbers of job sub-
missions during five-minute intervals. We conclude thatddition to the grid workload
characteristics mentioned above, grid workloads are yyungtich provides even more
motivation for this study.

7.2 Job runtime predictions

In this section we investigate the performance of job ruatnedictions in grids. We
first describe in Section 7.2.1 our methodology. Then, wemlas in Section 7.2.2 our
experimental setup, and last we present and discuss ino8et2.3 the experimental
results.
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Figure 7.1: The number of job submissions during five-minuitervals in nine grid sys-
tems. All systems have bursty periods. The vertical axisusdated at 1000 for better

visibility.

7.2.1 Methodology

The methodology we use for runtime predictions consistfiae elements: the classifi-
cations of jobs we use, the way we simulate grid traces to cbenuntime predictions,
and the actual runtime prediction methods, which we nowrdesa turn.
First, the job classification methods create classes aicgptd job attributes such as
the execution site of a job, the user submitting it, etc. Wesater the following four
classification methods for the jobs in a trace:

1. Site: The jobs are classified according to the site where they>aeuted.

2. User. The jobs are classified according to the user who submits,tireespective
of the execution site.
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3. User on Site The jobs are classified according to both the user and theugga
site.

4. (User + Application Name + Job Size) on Site The jobs are classified accord-
ing to the user, the application name, the job size (i.e.ntmaber of processors
employed by the job), and the execution site.

Secondly, in the simulation of a trace, we go sequentialtgugh the trace and we
compute for every next job its predicted runtime with thedscgon method in place,
based on the history consisting of the runtimes of the jobthefsame class that have
submitted and finished before the current job under coraider. This means that during
the simulation, the time series for each of the job classeeisted.

Thirdly, for each job, the prediction method predicts thetime using the time series
data of the class the job belongs to that has already beetedra&le consider the follow-
ing prediction methods, which are applied to the time saxidise runtimes of the jobs on
a per-class basis:

1. Exponential Smoothing (ES)predicts the runtime as a weighted moving average
of the observed job runtimes. A parameterwith 0 < « < 1, is used to control
the sensitivity of the smoothing. We taketo be equal td).5 (e.g., see [54]). We
refer to [24] for details.

2. Running Mean (RM) predicts the runtime as the mean of all observed job run-
times.

3. Sliding Median (SM) predicts the runtime as the median of a sliding window of
observed job runtimes. We take 5 as the window size (e.g[26€3).

4. Last predicts the runtime as the last previously observed jobman

5. Last2[197] predicts the runtime as the average of the last twoipusly observed
job runtimes.

For the first three job classifications introduced above, veduate the performance of
all prediction methods on all traces. Then, we pick the bethod for each trace and run
it with the last classification for those traces that incltize Application Name attribute
(all of the traces except LCG and NORDU). The Job Size attritsutensidered only for
the research grid traces since only they include paralbts.jo
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7.2.2 Experimental setup

We have used the Grid Workloads Archive tools to process tigetigaces. We have ex-

tended the tools so that the jobs in the traces are classd@xding to the classifications
described in the previous section.

To evaluate the accuracy of the runtime predictions, weidenghe following metrics:

1. Theaccuracy, which is defined as in [197]:

1 ifP=1,,
accuracy = T./P if P>T,, (7.1)
P/T. if P<T.

whereP is the predicted job runtime arid is the actual job runtime.
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2. Theabsolute prediction error is the absolute difference between the predicted and
the actual runtime.

7.2.3 Results

For each of the nine traces, Figures 7.2, 7.3, and 7.4 prélserdverage accuracy of
the prediction methods under the Site, the User, and the &s8&ite classifications, re-
spectively. Figure 7.5 shows the average accuracy of theniethods under the (User +
Application Name + Job Size) on Site classificatioviq Cl: Best result from the other
classificationsy Cl: Result with this classification.).

As the historical data gets more specific, that is, going f&ite to (User + Appli-
cation Name + Job Size) on Site, the accuracy of the job renpredictions increases
significantly. In particular, SHARCNET yields an outstandjal runtime accuracy with
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the most specific classification. For the traces of DAS-2, EBA&nd Grid’5000, Last2

performs better than the other prediction methods for alésifications. For the other
traces, we do not observe such a dominant method, and evéeshenethod for a trace
differs among the classifications. The results suggesittdisystems or even grid sites
should have their own specific prediction methods, sincg thay have different user
behaviors and different job and system characteristics.

Figure 7.6 presents the cumulative distributions of theiemxy and the absolute error
only for the best results (the method and classification ghet the best accuracy for a
trace) for the traces of the research and production griparagely. We observe that in
most of the cases, the job runtimes are predicted more aetueand with lower absolute
errors in research grids than in production grids. The jpbsseasons include longer job
runtimes and higher utilizations in production grids. FBfARCNET, almost 70% of the
predictions have high accuracy (i.e., above 0.9), whilgHerother traces this percentage
ranges between 20 to 30. Among the production grid tracesg@¢hat NGS and GRID3
exhibit a higher prediction accuracy and a lower absoluggliotion error.
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Table 7.2: The performance of the point-valued predictayuafue wait time for jobs that
have non-zero wait times (indicated by “non-zero jobs”).

Without Correction With Correction
Grid-Site % non-zero jobs Avg. Accuracy| AWPE [min] | Avg. Accuracy| AWPE [min]
DAS-2 FS1 20 0.60 110 0.64 121
DAS-2 FS3 35 0.54 307 0.55 292
DAS-3 FS3 80 0.30 364 0.35 350
DAS-3 FS4 70 0.51 451 0.60 442
Grid5K G1/S1/C3 60 0.51 322 0.63 256
Grid5K G1/S6/C1 10 0.56 852 0.61 653
AUVER clrlcgce01 20 0.57 203 0.64 180
AUVER clrlcgce03 67 0.63 190 0.69 172

All in all, we find the job runtime prediction accuracy to bevi@and the absolute
prediction error to be high, even for the best results (ext@lSHARCNET). There are
several reasons for this poor performance. The first is theroence of burst submissions
that we observe in grids (e.g., see Figure 7.1); the samecpicgderror is made for all
the jobs submitted together or relatively close in time. rEtleugh these jobs could be
similar in terms of runtime, they do not affect the predingdefore they finish execution.
A second reason is the (lack of) stationarity of a time serle® good predictability, a
time series should be stationary [24], that is, it shouldetegonstant long-term mean and
variance. We have performed several experiments using tigen@nted-Dickey-Fullér
(ADF) test [64] for checking stationarity on some of the tisexies that we use in this
chapter; unsurprisingly, we have found the time series todrestationary.

7.3 Queue wait time predictions

In this section we investigate the performance of queue tivag predictions in grids.
In Section 7.3.1 we evaluate the performance of a pointeeajuredictor that simulates
the local scheduling policy with predicted job runtimes tedict job queue wait times.
In Section 7.3.2 we evaluate the performance of two nonrpanac statistical methods
that predict upper bounds for queue wait times with a spekcdanfidence level. Such
non-parametric methods have the advantage of obviatingekd to know the internal
operation of local scheduling policies in predicting theege wait times. We use the
traces of the DAS-2, DAS-3, Grid’5000, and AUVER grids. Th@se the systems/traces
of which we know their characteristics to model in our sintiokas in Section 7.3.1, and
that contain the queue wait time data that we need in the atmuk in Section 7.3.2.

We have obtained the tool for the ADF-test from http://wwebareg.de/adaddin.html
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7.3.1 Point-Valued predictions

In our simulation model, each site has a local resource near(&@&M) that employs the
FCFS policy without backfilling. We assign jobs to their onigl execution sites. A point-
valued predictor runs on each site, and computes a queudinvaiprediction for each
submitted job in a two-step process. First, the runtimedlafweued and running jobs
are predicted with the Last2 method and the (User + Appbcaliame + Job Size) on
Site classification that is described in Section 7.2.1. Tlies scheduling policy of the
LRM is simulated with the predicted job runtimes to determivieen the new job will
start. Whenever the runtime of a job turns out to be underigiesd] its predicted runtime
is doubled until the predicted value is larger than the dctugime.

We also consider a prediction correction mechanism in whpbn completion of a
job, the predicted runtimes of both the queued and the rgnjois that belong to the
same class as the completed job are updated with the Last®dietinclude the runtime
of the completed job in the computation. We perform the expents with and without
this correction mechanism.
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Table 7.3: The accuracy of queue wait time prediction mettgidng upper bounds.

BMBP

Grid-Sites AWPE [min]|Avg. AccuracyUnder-predictiongerfect-prediction®©ver-prediction

DAS-2 FS1 16 0.50 8% 9% 83%

DAS-3 FS4 26 0.41 15% 4% 81%
AUVER clrlcgce01] 376 0.20 12% 1% 87%
Grid5K G1/sitel/c3 31 0.72 20% 0% 80%

Chebyshev

Grid-Sites  |AWPE [min]|Avg. AccuracyUnder-prediction®erfect-prediction®©ver-predictions

DAS-2 FS1 52 0.21 8% 0% 92%

DAS-3 FS4 101 0.23 7% 1% 82%
AUVER clrlcgce01 1236 0.10 7% 0% 93%
Grid5K G1/S1/C3 1093 0.24 16% 0% 84%

Figure 7.7 shows the cumulative distribution functionshef iccuracy and the abso-
lute prediction error of the point-valued queue wait timedctor for DAS-3 and AU-
VER,; for clarity, we only present the results for the two si&sach grid system to which
most of the jobs have been submitted. Table 7.2 presentsdnage values of the metrics
for all grids (AWPE refers to average absolute queue wait preeliction error). In the
results, we only consider the jobs that have non-zero waégi

We find the overall accuracy of the point-valued predictobéolow, and the aver-
age absolute queue wait time prediction error to be high duedccurate job runtime
predictions. The prediction error in the queue wait timescsumulated because the pre-
dictor simulates the local scheduling policy with inacdahapredicted runtimes. There
Is an improvement ranging from 1% to 10% in average accuradyf@m 1% to 16% in
average absolute prediction error when the predictiorection mechanism is applied.

7.3.2 Upper-Bound predictions

In this section we assess the accuracy of two upper-bounklogefor queue wait time
predictions by means of trace-based simulations. Thedeagetre the Binomial Method
Batch Predictor (BMBP) [23] and a predictor that makes use of @ted/’s inequal-
ity [192]. In our analysis, we use the wait times of the jobat lre completed in order to
predict the wait time of a new job. We do not simulate localkstiliing policies since we
use real wait time and runtime data (from the traces). Tauaalthe prediction methods,
we use the average accuracy, the average absolute pradéctmr, and the number of
under-predictions, perfect-predictions, and over-ptuis as metrics.

BMBP predicts an upper-bound with a specified quantile and dentie level. It uses
the history of job queue wait times, and estimates the gleawitthe wait time distribution
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with the specified confidence level. It employs a changetm@tection method in order
to take only a stationary part of the time series into accoiyt detecting the change-
points in the time series, BMBP trims the historical wait tiregad BMBP also clusters
the jobs based on the numbers of processors they requesg iheses the historical data
of similar jobs when making predictions. For further det@ih BMBP we refer to [23].

Chebyshev’s inequality states that regardless of the unidgrtlistribution, the prob-
ability of a random variable differing from its mean by mohan i standard deviations
is less than or equal tb/k%. We have implemented a predictor that uses this inequality;
it calculates the mean and the standard deviation of thetinagt data of the completed
jobs to predict an upper bound for the wait time of a new jolhwitspecified confidence
level (e.g. + 2v/50 is the predicted wait time with a 95% confidence level, wheie
the mean and is the standard deviation of the historical wait time datlke trim and
update the historical data in a similar way as explained 3}.[2

In our analysis of the BMBP method, we use the BMBP trace-basealation?, and
for Chebyshev’s inequality method we use our own tools. For BMB® consider a
guantile and confidence level of 95%, and we use 10% of thefdateaining. Similarly,
for the predictor that uses Chebyshev’s inequality, we c@rs confidence level of 95%.

The results are presented for a single site of each tracelile Ta3. The number
of over-predictions when using Chebyshev’s inequality igéathan when using BMBP,
whereas the accuracy of BMBP is higher. There is a trade-offde the accuracy and
the tightness of the upper-bound. Both of these methods feshvthe jobs arrive in bursts,
as the methods use the same predicted wait time value fatellin a burst.

We claim that user runtime estimates, if available, canla¢sased in predicting upper
bounds for queue wait times. To show this, we use a simple hiodaser runtime es-
timates that is proposed by Mu’alem and Feitelson [70]. Tlel@hassumes that a job’s
estimate is uniformly distributed withifiR, 5R], where R is the job’s actual runtime.
We use the runtime estimates of users together with the FCkKY [film guarantee upper
bounds) to predict wait times. Figure 7.8 shows the real tva# values and the ones pre-
dicted with this approach for a bursty period of the DAS-3 E&4. While guaranteeing
over-predictions, this approach results in slack estimatgueue wait time.

7.4 The performance of prediction-based grid scheduling

In this section we assess whether it is beneficial to use gfeds for scheduling in grids.
To this end, we perform a set of simulations using workloadmfthe DAS-3 and AU-

VER grids to investigate whether prediction-based gneklescheduling improves per-
formance over traditional grid-level scheduling policiés Section 7.4.1 we explain the

2We have obtained the simulator from the Network Weather iSenwebsiteht t p: / / nws. cs.
ucsb. edu.
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experimental setup, in Sections 7.4.2 and 7.4.3 we destirdbecheduling policies and
the performance metrics we use in our simulations, respygtiand in Section 7.4.4 we
present and discuss the experimental results.

7.4.1 The experimental setup

For our experiments we have modeled two multi-cluster gndrenments, the DAS-
3 (research) and the AUVER (production) grids, using oumewased grid simulator
DGSim [104]. Table 7.4 shows the sizes of the clusters of sggstem. In DAS-3, the
processing speeds of the compute nodes differ among dubtdrin AUVER, the nodes
are homogeneous in terms of processing speeds. To modetdbespor heterogeneity
across the clusters of the DAS-3, we employ the SPEC CPU ber&khmodel for job
runtimes [190].

In our model, each cluster has its own LRM, and so its own loc&ug to which
jobs arrive, and a global central scheduler with a globalugueperates on top of the
cluster LRMs. The jobs are submitted to the global schedulbich decides in which
cluster a job is going to run based on one of the schedulinigipslthat are explained
in Section 7.4.2. Irrespective of the policy in operatidme global scheduler considers
all jobs in its queue as the eligible set for scheduling. TRMs of the clusters employ
the FCFS policy without backfilling. Once started, tasks modmpletion, so we do not
consider task preemption or task migration during exeautieor the experiments with
prediction-based policies, a prediction service runs arhes the clusters in order to
respond to the queries issued by the central schedulediagahe predicted completion
time of a job; i.e., the sum of the predicted queue wait tima ¢db and its predicted
runtime.
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Table 7.4: The size of the clusters in DAS-3 and AUVER grids.

DAS-3 AUVER
Cluster Size Cluster Sizeg

(Original Name (Original Name
C1(FSO) | 85| C1(clrlcgce01)112
C2(FS1) | 32| C2(clrlcgce02) 84
C3(FS2) |41 ||C3(clrlcgce03)186
C4 (FS3) 68 C4 (iutl5) | 38
C5(FS4) |46 C5(opgc) | 55

Table 7.5: The workload characteristics used for assesisegerformance of prediction-

based grid scheduling

Trace Period Number of Jobg\vg. Utilization
DAS-3 || July-Oct. 2008 ~220,000 ~30%
AUVER|/Aug.-Nov. 2006  ~90,000 ~70%

In our simulations we consider the busiest four-month gefiom the trace of each
system and submit it as the workload. Table 7.5 shows theeptiep of the workloads

that we have used in our experiments.

7.4.2 Scheduling

We compare the performance of the following policies whiahfimd representative for
many other prediction-based and traditional policies psagl in the grid scheduling lit-

erature:

e TheEarliest Completion Time (ECT) [138] is a Gantt chart-based scheduling pol-
icy that submits each job to the cluster that leads to theesartompletion time
possible, taking into account the clusters’ queues. Weidenswo kinds of pre-
diction information leading to two variations of this polidccCT-Perfect policy is
a theoretical omniscient policy whose predictions are géngven with perfect ac-
curacy (equal to 1). In contragiCT-Last2 uses the point-valued predictor defined
in Section 7.3.1 (with corrections); hence, the predidiohECT-Last2 may be

inaccurate.

normalized by th

policies

e cluster size.

Load Balancer (LB) submits each job to the least-loaded cluster, where Isad
defined as the total processor requirement of all jobs rgmigueued in the cluster
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e Fastest Processor Firs{FPF) submits each job to the cluster that has the fastest
compute nodes among the clusters that have enough idle hm@sommodate
the job. Different from the policies mentioned above, FPEgnot forward jobs
as long as there are not enough idle nodes in any clustegftiner jobs are only

queued in the global queue.

7.4.3 Performance metrics

To assess the performance of the scheduling policies, wehesmllowing traditional

metrics:

e TheQueue Wait Time of a job is the time elapsed from the submission of the job
until the start of its execution.

e TheResponse Timeof a job is the sum of its queue wait time and its runtime.

e TheBounded Slowdown[72] of a job is defined as

max (1

T+ T,
"max(7,T,) )’

(7.2)

whereT,, and7, denote the queue wait time and the runtime of the job, resjedct
andr denotes the threshold for the job runtimes. The boundediglaiv eliminates
the emphasis on short jobs due to having the runtime in therderator. In our
analysis we have used a threshold value of 60 seconds.

Table 7.6: The performance of the three scheduling policies

DAS-3 ECT-PerfecECT-Last2 LB | FPF
Avg. Res. Time [s] 1320 1400 |4318|1911
Avg. Wait Time [s] 105 186 |3061| 681
Avg. Boun. Slowd 1.7 1.6 80 | 26

AUVER ECT-PerfecECT-Last2 LB | FPF
Avg. Res. Time [s] 40951 41003 |4095941334
Avg. Wait Time [s] 6515 6574 | 6534|6898
Avg. Boun. Slowd 48 43.6 48 |50.88

7.4.4 Results

The cumulative distribution functions of the queue waitdirthe response time, and the
bounded slowdown are shown in Figures 7.9 and 7.10, and d@kenages are shown

Table 7.6.
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Figure 7.9: The cumulative distribution functions of theege wait time, the response
time, and the bounded slowdown for DAS-3. The horizontad &es a logarithmic scale.

We find that in DAS-3, the prediction-based scheduling pesiECT-Perfect and
ECT-Last2) perform better than their traditional countetpé.B and FPF), with espe-
cially the LB policy having very poor performance. It turngtahat with LB, approxi-
mately 5% of the jobs have a queue wait time of more than 10s666nds. On the other
hand, with the FPF policy, a small number of jobs suffer framewe wait times as high
as 10,000 seconds. In contrast, for AUVER, all policies hanelar performance. LB
seems to perform slightly better than FPF in AUVER, which ssggthat it can be a can-
didate for highly utilized systems when prediction-baseticges are not considered. In
general, the performance of the considered policies iseviaisthe AUVER grid, which
is probably due to the higher utilization of the consideredgd compared to the DAS-3
(see Table 7.5).

Since the ECT-Perfect and ECT-Last2 policies have simildopmance, both in the
DAS-3 and the AUVER experiments, we conclude that more atepredictions do not
necessarily imply a better performance of grid scheduliAgsimilar result was previ-
ously obtained when using predictions for improving batkfyl performance in parallel
production systems [197]. ECT-Perfect and ECT-Last2 yietdlar performance results
even when their scheduling decisions differ; in Figure Z&lsee that the distribution of
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Figure 7.10: The cumulative distribution functions of theege wait time, the response
time, and the bounded slowdown for AUVER. The horizontal &sis a logarithmic scale.

the tasks across clusters is very diverse when the jobs laeesied with this two policies
in DAS-3, while the policies distribute the jobs similarty AUVER. All in all, we claim
that the main concern of a prediction-based grid schedyoligy is the correct predic-
tion of the cluster that will finish a job first, rather than fget prediction accuracy of the
job’s completion time.

7.5 Related work

Previous work on predictions has mainly focused on progpsemvel prediction meth-
ods [23,56,57,182,209], on enhancing existing methodsl[BY, and on making use of
predictions in space-shared parallel environments [124, 1n contrast, we have focused
on the performance of job runtime and queue wait time prigfistin grid environments.
In addition to various complex solutions proposed for johtime predictions such
as analytical benchmarking/code profiling [105, 163, 2§@hetic algorithms [181, 182],
and instance-based learning [116], simple time series adsthave also received great
attention from the community due to their advantages suokaae of implementation
and speed of delivering prediction results. In [55, 179hanential smoothing is used
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Figure 7.11: The distribution of jobs across the cluste®A8-3 and AUVER.

for predicting the runtimes of jobs. In [126], a predictioretimod based on linear re-
gression is proposed to predict the runtimes of paralleliegtpons. Dobber et al. [56]
present a survey on prediction methods for job runtimes acesghared processors, and
they propose a new prediction method, called Dynamic ExpiisdleSmoothing, which
uses exponential smoothing and adapts dynamically to meakievel changes in the job
runtimes. Feitelson et al. [197] show that even a simple sarees prediction method im-
proves backfilling performance significantly when systezngrated predictions replace
user-estimated runtimes. The Network Weather Service (N[2®)] is a well-known
prediction service which is used to predict the performasiceomputational grid re-
sources, with simple time series prediction methods. NW&kgdhe accuracy of all
its predictors, and dynamically changes the predictiorhoto the one that gives the
highest accuracy.

The problem of predicting queueing delays of jobs in highfggenance computing
settings has also received constant attention from thargseommunity. In [22], model-
fitting is used to model machine availability in desktop amdegprise grid computing
environments. To estimate when a cluster of a given size beilavailable and hence
the runtime of the job at the head of the queue, Downey [57e%Blore a log-uniform
distribution to model the remaining lifetimes of the job$igwork shows that the queue
wait time of jobs can be predicted if the runtimes of jobs dredcheduling algorithm are
known. Similarly, in [182] the queue wait time of a job is piedd under the conditions
that the job runtimes and the local scheduling algorithmkar@wn. In this work, the
authors use a template-based approach to cluster the jabhen perform searches based
on genetic algorithms. Wolski et al. [159] propose QBETS,clhis a non-parametric
time series method to predict bounds on the queue wait tifiesliwidual jobs in space-
shared parallel environments.
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7.6 Summary

In this chapter we have studied job runtime and queue waé prediction methods and
their application in grid scheduling. First, we have stddibrough trace-based analy-
sis the accuracy of well-known, simple time series predictnethods when predicting
job runtimes, and the impact of job classification on the eacy of job runtime predic-
tions. We found that the low accuracy of time series preglictnethods for grids can
be improved significantly by the use of such classificati@econdly, we have analyzed
the performance of queue wait time predictors. We have shbancurrent solutions
for queue wait time predictions that give upper-bounds oaihandle the common grid
workload characteristic of burst submissions. Thirdlyhage compared with trace-based
simulations several prediction-based and traditional gaheduling policies in order to
investigate the impact of predictions on the performancgraf-level scheduling. We
have found that a better accuracy of the predictions doesmpy a better performance
of grid scheduling, and that for the highly utilized prodoatgrids the investigated poli-
cies perform similarly to each other.
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Chapter 8

Conclusion

In this thesis we have studied application-oriented schimglin multicluster grids. We
have designed, implemented and then evaluated varioustieand practical schedul-
ing policies for different application types in the DAS-3 hizluster grid system using
our KOALA scheduler, as well as in a simulated environment usingsteasettings. In
Chapter 1 of this thesis, we have introduced the challengdr®sasked by our research. In
Chapter 2, we investigated the benefit of co-allocation foalpe applications. We com-
pared the performance of several co-allocation schedplatigies under various system
load settings. In Chapter 3, we extended waaLA grid scheduler with support for mal-
leable parallel applications. We proposed several palitiemanage dynamic resource
allocation for such applications. In Chapter 4, we exterkledLA with the support for
scheduling cycle scavenging applications, of which patansveeps are a prime exam-
ple. We proposed two policies that try to achieve fair-shrasource allocation among
cycle scavenging users. In Chapter 5, we investigated therpgance of scheduling
bags-of-tasks in multicluster grids with realistic sintidas. We explored the perfor-
mance impact of several elements such as the workload,gkea¢dection policy, the task
scheduling policy, and the resource management archigecta Chapter 6, we evalu-
ated the performance of dynamic workflow scheduling in mluster grids with realistic
simulation-based experiments as well as experiments avediun DAS-3. Finally, in
Chapter 7, we investigated the performance and benefit ofgpiregljob execution times
and queue wait times in multicluster grids based on the $raodlected from various
research and production grid environments.

In the remainder of this chapter we present the main corarssof this thesis (Sec-
tion 8.1) and suggest directions for future work (Sectid).8.
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8.1 Conclusions

Based on the research reported in this thesis we have draviolltweing major conclu-
sions:

1.

Supporting application-oriented scheduling mechasismd policies in a grid
scheduler is the key to achieve good application executefopmance in multi-
cluster grids.

For the performance evaluation of scheduling policiegrids, if possible, simula-
tions should be supported by experiments in real grid systemce it is difficult
to model detailed system behavior for simulation purpos@s;h may reveal prob-
lems that do not show in simulations.

. The benefit of co-allocation for parallel applicationgpe€leds on various factors

such as the communication characteristics of the appbiestithe communication
and computation characteristics of the resources, thédévesource contention in
the system, and the grid software being used. Neverthetesgstems where the
heterogeneity in inter-cluster communication speedsghk,hising network perfor-
mance metrics in resource selection, such as the laterrgases the performance
of co-allocation for communication-intensive parallepipations.

Application malleability makes it easier to deal with thgamic nature of multi-
cluster grid systems by growing or shrinking the resourtaation of applications
at runtime. In particular, malleability increases systditization while decreasing
application execution times.

Integrating a mechanism for cycle scavenging seamléssygrid-level schedul-
ing obviates the need for additional software installatiom the compute nodes
or any modifications to the resource managers of the clydtets of which are
administrative obstacles in multicluster grid systems.

. The performance of scheduling bags-of-tasks in muktelugrids depends not only

on the task scheduling policy but also on the order that tas&sconsidered for
scheduling, and on the resource management architectung used.

. When executing large workflows, the head-nodes of realdwsters may become

unstable, which as a result leads to much lower performarsolve this problem,
task throttling can be applied, that is, limiting the perrgftow number of tasks dis-
patched to the system, since task throttling prevents thd-hedes from becom-
ing overloaded while largely preserving performance, asiéor communication-
intensive workflows.
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8. The simple but widely used time series methods for priedjgbb execution times,
and prediction methods that give upper-bounds for job guweaietimes in mul-
ticluster grids, yield low accuracy in grids because of tlegfient burst job sub-
missions that we observe. In addition, a better accurachefpredictions does
not imply a better performance of grid scheduling. In falsg main concern of a
prediction-based grid scheduling policy is the correctjtion of the cluster that
will finish a job first, rather than perfect prediction acayaf the completion time
of a job.

8.2 Suggestion for future work

The research described in this thesis reveals severabildss for further investigation
of application-oriented scheduling in multicluster grids

1. Inthe Communication-Aware co-allocation policy, whistdescribed in Chapter 2,
we leave the network performance metric selection (eigaenicy or bandwidth) to
the users assuming that they know their applications’ comeoation characteristics
best. It would be more useful if the users could weigh theseiosedepending on
their applications. However, to provide a uniform metrientbning bandwidth and
latency for network evaluation is still an open problem [94]

2. In our design of support for scheduling malleable apfibics in Chapter 3, we have
not considered grow operations that are initiated by thdéi@dmwns. This feature
Is mainly useful in case the parallelism patterns of the iappbns are irregular.
Incorporating such grow operations is however not stréagivard. For instance, it
raises the design choice whether such grow operationsgbeuhandatory or only
voluntary. Another element that we have not incorporateslindesign, yet would
be interesting to add, is the malleability of co-allocatedatiel applications.

3. The cycle scavenging system that we have presented in&Hagan be a guideline
for those who want to develop their own light-weight cyclawenging system for
their multicluster grid environment. In our design we riestthe number of active
cycle scavenging users to improve the overall service uakllowever, this ad-
mission control is administrated manually; implementindyaamic solution that
will incorporate predictions of future availability of ielresources may improve the
overall service quality even further.

4. Our investigation of scheduling bags-of-tasks in Chaptzan be extended by eval-
uating additional scheduling heuristics, in particulatref kind that do not assume
the a priori availability of workloads and resource infotioa and collect this in-
formation dynamically.
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5. In our experiments of Chapter 6, we have experienced tisatliallenging to deter-
mine an ideal limit for task throttling when executing lakgerkflows. If the limitis
too low or too high, application performance may degradetduke queueing and
due to the excessive amount of inter-cluster communicatespectively. This fact
motivates a future study of methods for dynamic task thrgtmechanisms that
change the task limit at runtime considering both the appbn characteristics and
the system status.

6. Our evaluation of the performance of time series methodgredicting job run-
times and queue wait times in Chapter 7 does not completelyartbe question
of how to improve those methods or devise new ones such tepictmsider burst
job submissions. In addition, it would be interesting toa@such an investigation
using more complex methods than time series, such as mdelimeng.
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Summary

Grid computing appeared in the mid 1990s with the vision @&risly geographically
dispersed large computational resources for executingpatation-intensive scientific
applications. Today, we can name numerous grid projectstimasuccessfully to solve
challenging scientific problems such as the grid project wfolpean Organization for
Nuclear Research (CERN), which combines thousands of conspuenrdwide (over
200 sites in about 30 countries) to store and analyze hugesshof data, which are
produced by the Large Hadron Collider (LHC) at CERN.

The resources in a grid system are typically heterogendoas they belong to dif-
ferent administrative domains, and they are managed byriptapy policies. To cope
with this heterogeneity, a grid relies on a layer of middlesyavhich offers transparent
access to the distributed resources and simplifies thebool#ion between organizations.
Grids also need high-level scheduling systems that usengiddleware in order to map
application tasks to resources and then manage their éxeart behalf of users. How-
ever, scheduling in grids is challenging due to the dynamicire of the grid resources
as well as to the lack of control of those resources. The wateety in the structural
and the communication characteristics of the applicatsamsnitted to grids further com-
plicate grid scheduling, and may lead to poor or unpredietpbrformance unless these
characteristics are taken into account.

In this thesis we address the challenge of designing andyzngl realistic and
practical application-oriented scheduling mechanismsmialticluster grid systems.
Application-oriented scheduling focuses on the optimarabdf user-centric performance
criteria, such as application execution time, with methibds are specialized for differ-
ent types of applications. In this thesis we cover a wideyeaof grid application types,
including parallel applications that may need co-allamatr malleability, bags-of-tasks
that can benefit from cycle scavenging, and workflow appboatthat may push the
system to its limits with their computation and data requieats. We investigate the per-
formance of our scheduling mechanisms and policies in amedticluster grid system,
the DAS, using oukOALA multicluster grid scheduler, as well as with simulationsgs
realistic scenarios.

In Chapter 1 of this thesis we give an overview of applicatoented scheduling
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in multicluster grids, in particular, we focus on the chatfles of application-oriented
scheduling addressed by this thesis. In addition, we desche testbed that we have
used in our implementations and experiments.

In Chapter 2 we assess the benefit of processor co-allocatigafallel applications,
that is, the simultaneous or coordinated allocation of @ssing resources at multiple
clusters to single applications. We conduct our investigadn DAS-3 using OUKOALA
grid scheduler, as well as in a simulated environment usimd& Sim tool. We evaluate
the impact of various factors on the performance of co-alion such as the commu-
nication characteristics of the parallel applicationg, ¢bmmunication and computation
characteristics on the resources, the level of resourceecbon in the system, and the
scheduling policy that maps the tasks of a parallel apptinab the resources. Notably,
we find that for very communication-intensive parallel apgaions, co-allocation is dis-
advantageous since it increases execution times extrenmedddition, we demonstrate
that in systems where the heterogeneity in inter-clustemnsanication speeds is high,
using network performance metrics in resource selectioch s the latency, increases
the performance of co-allocation for communication-istea parallel applications.

In Chapter 3 we extend owoOALA grid scheduler with support for malleable par-
allel applications that are able to use varying amounts sbusces such as processors
during their execution. We propose two malleability mamaget policies, Favor Previ-
ously Started Malleable Applications (FPSMA) and Equi@&Shrink (EGS), to man-
age dynamic resource allocation in the scheduler for malkkeapplications that have
already been running in the system. FPSMA distributes aditiadal processors to the
malleable applications starting from the application thas$ started earliest, while EGS
spreads them equally among all running malleable apptinati Each of these policies
can be coupled with one of two approaches which either fawoning or queued mal-
leable applications when additional resources becomdadai Our experiments show
that using malleability helps to increase system util@ats well as to decrease the ex-
ecution times of parallel applications. We also find thatrélative performance of our
malleability management policies varies according to tasigh choice as to when to
initiate a malleability management policy.

In Chapter 4 we extendoALA with support for scheduling cycle scavenging applica-
tions, of which parameter sweeps are a prime example. Thieingnted cycle scaveng-
ing mechanism iKOALA runs alongside the regular grid scheduling, being unobvius
to the jobs of higher priority. We propose two policies thgttb achieve fair-share re-
source allocation among cycle scavenging users. The fitistypdistributes or reclaims
the idle processing nodes evenly among cycle scavenging,usgardless of the cluster
these idle nodes belong to. The second policy, on the othet, hgartitions or reclaims
the idle nodes evenly such that each cycle scavenging uassigned an equal share of
idle nodes on each cluster. We show with experiments coaduntthe DAS-3 that the
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latter policy outperforms the former in terms of fairness.

In Chapter 5 we present a detailed and systematic evaluatitre gerformance of
scheduling bags-of-tasks in multicluster grids througalistic simulations. First, we
propose a taxonomy of scheduling policies for bags-ofdaklat focuses on informa-
tion availability and accuracy. Then, we explore the largsigh space of bag-of-task
scheduling along five axes, which are the task selectiortydhe workload, the infor-
mation policy, the task scheduling policy, and the resoure@agement architecture. We
demonstrate that the task scheduling policies that makefube available task and re-
source information perform better. We also find that the s&d&ction policy is important
only in busy systems, and we find that in terms of the resouar@agement architecture,
the centralized policy achieves the best performance.

In Chapter 6 we present a comprehensive and realistic igetgth of the perfor-
mance of a wide range of dynamic workflow policies in multstir grids. We first intro-
duce a scheduling taxonomy based on the amount of (dynanfarmation used in the
scheduling process, and we map to this taxonomy seven dalgpgdalicies that cover the
full spectrum of dynamic information use. Then we investghe performance of these
policies in realistic scenarios using both simulationsead system experiments. We find
that none of the policies delivers good performance acrbs$iseainvestigated scenarios,
and we find that task throttling, that is, limiting the pervkfbow number of tasks dis-
patched to the system, prevents the cluster head-nodedfrooming overloaded while
not unduly decreasing the runtime performance.

In Chapter 7 we investigate the performance and benefit oiginegl job execution
times and queue wait times in multicluster grids with sintiolas using traces collected
from various research and production grid environmentsr &alysis reveals that the
time series methods for predicting job execution times, @ediction methods that give
upper-bounds for job queue wait times, yield low accuraayabse of the frequent burst
job submissions that we observe in grids. In addition, westigate whether prediction-
based grid-level scheduling policies can have better padace than policies that do not
use predictions. We find that a better accuracy of the piiedgidoes not imply a better
performance of grid scheduling.
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Samenvatting

Grid computing ontstond in de jaren 1990 met als visie hegrdean grote hoeveelheden
geografisch gespreide rekenkracht voor het uitvoeren leennetensieve wetenschap-
pelijke applicaties. Tegenwoordig kunnen er meerdere-gmgecten worden genoemd
die succesvol complexe wetenschappelijke problemen kuopkssen, zoals het Grid-
project van de Europese Organisatie voor Kernonderzoek (GEf duizenden com-

puters over de hele wereld met elkaar verbindt (meer dan @8gingen in ongeveer 30
landen) om de grote hoeveelheden data te kunnen opslaaalgseren die geproduceerd
worden door de Large Hadron Collider (LHC) bij CERN.

De recources in een grid-systeem zijn typisch heterogeatabme behoren tot ver-
schillende administratieve domeinen, en ieder wordendrehelgens hun eigen policy.
Om te kunnen omgaan met deze heterogeniteit, zijn gridssgeld op een laag van mid-
dleware, die transparante toegang biedt tot de gedisaideaesources en die de samen-
werking tussen organisaties vereenvoudigt. Grids hebdens hoog-niveau schedul-
ing systemen nodig die gebruik maken van grid middleware egsources te kunnen
toewijzen aan de taken van applicaties en vervolgens dearityg daarvan te beheren
namens de gebruikers. Echter, scheduling in grids is eeagiiig vanwege de dyna-
mische aard van de grid resources alsmede het gebrek aanlemver deze resources.
De grote verscheidenheid in de structuur en communicatererken van de applicaties
aangeboden aan grids maakt grid scheduling nog complax&greleiden tot slechte of
onvoorspelbare prestaties, tenzij met deze kenmerkemirek&ordt gehouden. In dit
proefschrift gaan we de uitdaging aan van het ontwerpen alyseren van realistische
en praktische applicatie-geériteerde scheduling mechanismen in multicluster grid sys-
temen. Applicatie-gecénteerde scheduling richt zich op de optimalisatie van wgebr
kersgerichte prestatiecriteria, zoals de verwerkingstn applicaties, met methoden die
zijn gespecialiseerd voor verschillende soorten appéisatin dit proefschrift bestrijken
we een breed scala van grid applicatietypen, zoals pdea#ipplicaties die co-allocatie
of “kneedbaarheid” nodig kunnen hebbéags-of-taskslie kunnen profiteren varycle-
scavenging en workflow applicaties die het systeem met hun vereistenreken- en
datacapaciteit tot het uiterste kunnen dwingen. We oneééerode prestaties van onze
scheduling mechanismen en policies in een echt multiclgsid-systeem, de DAS, met
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behulp van onz&oALA multicluster grid scheduler, en met simulaties met behaip v
realistische scenario’s.

In Hoofdstuk 1 van dit proefschrift geven we een overzicht vapplicatie-
georénteerde scheduling in multicluster grids, en richten we met name op de uitda-
gingen van applicatie-ge@mteerde scheduling die aangepakt worden in dit proefschri
Daarnaast beschrijven we het testbed dat we hebben geliraikze implementaties en
experimenten.

In Hoofdstuk 2 beoordelen we de voordelen van processotlecatie voor paral-
lelle applicaties, dat wil zeggen, de gelijktijdige of géodineerde allocatie van proces-
soren in meerdere clusters aan individuele applicatiesva®een ons onderzoek uit op
de DAS-3 gebruikmakend van ongeALA grid scheduler, evenals in een gesimuleerde
omgeving met behulp van onze DGSim simulator. We evalueetreffiect van de ver-
schillende factoren op de prestaties van co-allocatielsz& communicatiekenmerken
van parallelle applicaties, de communicatie- en de coropete kenmerken van de re-
sources, het niveau van de resource contentie in het systzehe scheduling policy
die resources toewijst aan de taken van een parallellecapipeli We concluderen dat
VOor zeer communicatie-intensieve parallelle applisatie-allocatie nadelig is, omdat de
verwerkingstijdtijd er enorm door toeneemt. Bovendienratee zien dat in systemen
waarin de heterogeniteit in inter-cluster communicagdisaden hoog is, het gebruik van
netwerkprestatiemetrieken in de resource-selectiesztelatency de prestaties van co-
allocatie voor communicatie-intensieve parallelle apaties verbetert.

In Hoofdstuk 3 breiden we onzeoALA grid scheduler uit met ondersteuning voor
kneedbare parallelle applicaties die in staat zijn om viésgke hoeveelheden resources
zoals processoren tijdens hun executie te gebruiken. Werstdervoor twee policies
voor, Favor Previously Started Malleable Applications 9fA) en Equi-Grow&Shrink
(EGS), om dynamische resource-allocatie in de schedulswerkstelligen voor kneed-
bare applicaties die reeds gedraaid hebben in het systeB@®MA verdeelt extra pro-
cessoren over de kneedbare applicaties beginnend met tieatippdie als eerste is ge-
start, terwijl EGS deze gelijkelijk verdeelt over alle dexade kneedbare applicaties. Elk
van deze policies kan gekoppeld worden aan een van de twesldramgen die extra
vrijkomende resources ofwel aan draaiende ofwel aan wadatkneedbare applicaties
toewijzen. Onze experimenten tonen aan dat het gebruik naadbaarheid helpt om de
bezettingsgraad van het systeem te verhogen, en tevens wenvaerkingstijd van paral-
lele applicaties te reduceren. We hebben tevens gemerklediagiatieve prestaties van
onze twee policies varieert naar gelang de ontwerpkeuzaestijdstip van het inigren
van zo’n policy.

In Hoofdstuk 4 breiden w&OALA uit met ondersteuning voor de scheduling van
cycle-scavengingpplicaties, waarvaparameter sweepsen goed voorbeeld zijn. Het
in KOALA gémplementeerdeycle-scavengingiechanisme draait naast de reguliere grid
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scheduling, onzichtbaar voor de jobs met een hogere m@ibritvij stellen twee policies
voor die proberen onfair-shareresource-allocatie tussen de gebruikers exatie scav-
engingte bereiken. De eerste policy verdeelt of vordert processgelijkelijk over de
gebruikers varctycle-scavengingongeacht de cluster waartoe ze behoren. De tweede
policy daarentegen partitioneert of vordert de processgedijkelijk over alle gebrui-
kers vancycle scavengin@ iedere cluster. We tonen met experimenten uitgevoerein d
DAS-3 aan dat de tweede policy beter presteert dan de eeitsarien van fairness.

In Hoofdstuk 5 presenteren we een gedetailleerde en sysseima evaluatie van de
prestaties van de scheduling policies vbags-of-takan multicluster grids door mid-
del van realistische simulaties. Ten eerste stellen weaa@mbmie voor van scheduling
policies vooibags-of-taskdie is gebaseerd op de beschikbaarheid en nauwkeurigheid va
informatie. Vervolgens onderzoeken we de grote ontwenpielvan bag-of-task schedul-
ing langs vijf assen, te weten de policy voor taakselecteeywerklast, de informatie-
policy, de taak scheduling policy, en de architectuur voetr ieheer van de resources.
We laten zien dat de taak scheduling policies die gebruikemalan de beschikbare in-
formatie omtrent taken en resources beter presteren. Wi k@vens zien dat de policy
voor taakselectie alleen van belang is in drukke systenrewgedaten zien dat de gecen-
traliseerde policy in termen van de resource managememtectuur zorgt voor de beste
prestaties.

In Hoofdstuk 6 presenteren we een uitvoerig en realistisclexoek naar de
prestaties van een breed scala aan dynamische workflowgsoiit multicluster grids.
We introduceren eerst een scheduling taxonomie gebasged# doeveelheid (dyna-
mische) informatie die gebruikt wordt in het scheduling ga®, en we categoriseren
zeven scheduling policies die het volledige spectrum varadysch informatiegebruik
bestrijken aan de hand van deze taxonomie. Vervolgens ooelen we de prestaties
van deze policies in realistische scenario’s met behulpzearel simulaties als met echte
systeemexperimenten. Wij laten zien dat geen van de pelgoede prestaties levert in
alle onderzochte scenario’s, en dat taltottling, dat wil zeggen het beperken van het
aantal taken per workflow dat in het systeem draait, voorkiehtdehead nodesan de
clusters worden overbelast zonder de verwerkingstijdendeaworkflows al te zeen te
verslechteren.

In Hoofdstuk 7 onderzoeken we de prestaties en de voordelerhgt voorspellen
van de verwerkingstijden en wachttijden van jobs in mulstér grids met simulaties met
behulp vantracesvan verschillende onderzoeks- en productiegrids. Onzlyssm#oont
aan dat tijdreeksmethoden voor het voorspellen van veimgskjden en voorspellings-
methoden die bovengrenzen geven voor wachttijden, nietarg/keurig zijn vanwege de
frequenteburstsin de job-aankomsten in grids. Daarnaast onderzoeken wedbfayel
scheduling policies gebaseerd op voorspellingen betestaires leveren dan policies die
geen voorspellingen gebruiken. We vinden dat een grotarekeurigheid van de voor-
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spellingen niet leidt tot betere prestaties in grid schiedul
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