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Abstract

In agricultural studies it is often important to predict the performance of genetically different plants. To make
sure predictions are done well, it is necessary to make sure they are not influenced by effects of the field on
which they are planted. These field effects or spatial effects are in practice often quite complicated and can
be due to a wide variety of reasons. To get a better view of these field effects a good mathematical model is
desired. In this paper a model is presented which helps to find these field effects. This model tries to estimate
the field effect by comparing data of the same plant on different positions of the field. Data is obtained in a
finite amount of positions, which means that the model finds the field effect in a finite amount of positions as
well. This field effect is found using a cross-validation technique obtained from Tikhonov regularization. The
field effect in a finite amount of positions is extended to a field effect in every position of the field. To do this in
a good way a kernel method is used, the advantage of which is that it does not depend on a mesh. This kernel
method is here applied with a kernel function that is based on Gaussian distribution. This model is applied to
several fields of crops to get a view of the performance of the model on real data.
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Introduction

In agricultural fields it is common to have genetically different plants and plants with different production ori-
gin. Plants of the same genotype and production origin are planted at different, often random, locations in the
test field to avoid the so-called field effect. The field effect can be caused by a wide variety of things, ranging
from nutrients in the soil being different across the field to shadows causing some parts of the field to receive
less sunlight. The exact causes of the field effect are not important for this research, which is mainly concerned
with the removal of the field effect from the measured phenotype data and thus giving a better estimate of the
performance of different plants.

There exists substantial research into the field effect and multiple models have been proposed to improve the
crop/phenotype estimates. Examples of this can be found in (Rodriguez-Alvarez et al., 2018) and (Salvador
et al., 2022). These models usually try to estimate both a fixed and a random effect on the field. Using these
effects a model is build that is able to estimate the expected phenotype from the data at different locations.
The approach in this project is slightly different. The fields that are observed in this project have plants of
different production origin. The field is divided into small parts (plots), with each plot containing the same
amount of plants. Thus, for each production-origin group of plants, called batch, multiple plots exist at differ-
ent positions of the field.

By comparing the mean phenotype of the plants from the same batch, the field effect can be estimated, as this
should be the only thing causing the differences in mean phenotype for these plants, apart from the statistical
error, which is expected to be small. Using this estimated field effect all data can be virtually moved to one po-
sition of the field. After this virtual movement or replanting, the results for different batches can be compared
better. Because of the checking how plants do in another position this model is called the Replanting Model.
In this project the reconstruction of the field effect is performed with a kernel method. This method is usually
used in machine learning to find relations between large sets of data (Hofmann et al., 2008).

The advantage of the kernel method is that it can represent and reconstruct a function of the field effect with-
out the need to construct a mesh on the basis of plot centroids. Such meshes often turn out to be highly
irregular and affect the quality of results.

This report starts of by fully explaining how the model works in Chapter 1. In Chapter 2 the kernel method is
introduced. In Chapter 3 the structure of the data is explained in detail. Along with this one of the parameters,
that is needed to find the field effect and heavily relies on the data, is found. Chapter 4 is devoted to finding
another important parameter of the model. In Chapter 5 the results of the kernel method on some fields are
presented.



Chapter 1

Replanting model

In this project we will be looking at a model which we call the Replanting Model. The idea of this model is to
transform all obtained data to one point on the field and compare the yield that would be observed there. This
process of transforming the data will here be called virtual replanting. Because of this virtual replanting all
field conditions should become the same, which means that the spatial field effect would be removed.
To model the fields, the fields are divided into small plots of land. On each plot several plants are planted,
divided over ridges. Every plant has a position on the field, which is denoted by r = (x, )T, for some x and y
within the boundaries of the field. To give a plot on which several plants are planted a position the average of
these positions is taken. This average position is called a centroid and this is the point in which data about the
plot is obtained. The amount of plots on the field is denoted by P.
The plants planted on the field are genetically different, which can influence the yield of a plant quite strongly.
The plants are of several varieties, and every variety is divided into batches. Crops within the same batch are
assumed to be exactly the same and thus there is assumed to be no difference between plants of the same
batch, other than statistical error. The crops are divided into B batches and on each plot plants of the same
batch are planted. This means that there are % = K plots for each batch of plants. The plants are planted across
the field in groups of the same race, resulting in large parts of the field being planted with the same race. For
each variety there are multiple groups of plots and these groups are placed across the field in no particular
order. In each of these groups one plot of each batch is planted. These plots are again placed in no particular
order.
An example of the way in which the plots are planted can be seen in Figure 1.1. Here each variety of plants, in
this case potatoes of different varieties, is given by a different colour. This will be done in this way for all the
figures of the fields presented in this report. Each plot is marked with the number of the batch of the potato
that is planted. The values on the axes denote the position of the plot.

To form a good model for this problem we will first look at a probabilistic model. Using this probabilistic
model a statistical model is made, from which, using regularization, an equation is obtained that can be solved
to obtain the function for the field effect.

1.1 Probabilistic model

Let Y3, be arandom variable that gives the yield of a batch b. This random variable has a conditional probability
density function pp(y|r,). For this density function we assume a spatial transformation. Using this spatial
transformation the distribution of batch b atlocation r, can be obtained in terms of the distribution at another
location r,. This transformation is given by

Pur(YIrp) = d1p(po + 1yirg), 1.1
where ¢ and ¢, are functions of r,, and rg, with ¢; (rp,r4) > 0.

For these functions it is assumed that the multiplicative part, ¢, is equal to 1, which means that only the
additive transformation remains. This gives

Pr(yIrp) = ppldo + ylrg). (1.2)
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Composition of field: Montfrin 2021 2021_04_26
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Figure 1.1: An example of a field with different varieties of crops. Each color gives one race, the numbers denote the different batches.

This probability distribution can be used to express the expectations and variance of the yield in different
locations. For example the expectation of Y}, atr, is obtained from

E[Yplrgl = fypb(yqu) dy (1.3)

Now we can express the expectation and variance in another position, r4, in terms of this.

E[Vplrp] = f yop(ylrp) dy

=fypb(¢>o+yqu) dy (1.4)
= [Co0+yrputvirg g+ )
= —¢o +E[Yplrgl
And for variance
Var [Yplrp| =f(y—lE[YbIrp])2 pp(yIrp)dy
:](—¢O+y’+(p0—[E[Yb|rq])2 by It d (~do+) (1.5)

= f () —E[YpIry])* pp(y'Irg) Ay = Var[YVyr,].

Now Equation 1.4 can be written out for both E[Y}|rp] and E[Y}|ry4]. Along with what is obtained in Equation
1.5 the following is obtained:

E[Yplrpl = —po(rp,xg) +E[YVplrgl
E[Yplrgl = —po(rg,xp) +E[Yplr)) (1.6)
Var [ Yj|rp,] = Var [ Yy|ry]

From this it is found that ¢y must be such that

—Po(rp,rq) = Polrg,rg) (1.7)

To satisfy this function, it can be chosen such that ¢o(rp,r4) = y(ry) — y(ry) for some function y. Obviously
the function can also be chosen in another way, but this representation is able to find the function on a finite



amount of locations. Since the data is always obtained on a finite number of locations this is good enough.
With this Equations 1.4 and 1.5 can be rewritten in terms of y

y(rp) +ElYplrpl =y(xrg) + E[Yplrg]

1.8
Var [Yp|r, | = Var [ Yplrg] (1.8)

To now accomplish the set goal of virtually replanting the data, this y function must be found.

1.2 Statistical model

Of each plant the size of the canopy is measured using aerial pictures. From these aerial pictures the size of
the leaves of the plants can be calculated. The size of these leaves, also called the canopy, gives a good ap-
proximation for the size of the plant itself and thus for the yield when harvesting the plants. Using this canopy
data for each plot the average, E,(r), and the standard deviation, S;(r) can be obtained. These are estimates
of the actual expectation, E[Y}|r], and standard deviation Std[Yp|r]. This average and standard deviation are
obtained in one place on a plot, called the centroid of the plot. This centroid is gives the average positions of
the plants planted on a plot. It is assumed that the statistical error between these estimates Ej(r) and Sy (r)
and E[Yp|r] and Std[Y}|r] are approximately normally distributed. These errors can be denoted by € and €.
As the standard deviation will not be used any further in this model, €5 will not be used and ¢ will be used for
eg. In this research we do not go further into these errors, as we will be relying on a cross-validation technique
to find the function y, which will be explained later on.

Now as the data is only obtained in a finite number of points, the centroid points, the y-function will also only
be obtained in these same finite number of centroids. This is not what is desired, as this y-function is desired
to be found in any position on the field. To find y(r), we need to introduce so called basis functions, given by
Vy, (r), which will help to get y(r) for any r on the field. With y,, as the value of y in the position of the centroid
of plot p and basis function V), (r) for the same plot, which is a function of the position in which y is desired,
Y (r) can be obtained, by summing over these terms for all plots:

P
MOEDIAG) (1.9)
p=1

The term V), (r) can be obtained in several ways, but is usually obtained using Finite Element Method basis
functions (Hughes et al., 2005). The problem with these functions is that they depend on a mesh of the field,
which can be very bad. The way to make a mesh for a field like this is by forming triangles between two
neighbouring plots in one row and one neighbouring plot from the next row. Because the plots of the fields
often are not always placed nicely next to each other, these triangles are not always of the same form. An
example of this is the first and second row in Figure 1.1. In these rows the distance between the centers of the
first plots of the two rows is quite large. This results in triangles that have one side that is much larger than the
other two. This gives a triangle that is much different from the triangles obtained between plots from other
rows. A mesh like this, with large differences between the different partitions can influence the results in a bad
way.
From the probabilistic relations established in Equation 1.8 and the experimental data we can obtain the linear
system for one batch b

YD) =y ) + Epe)) = Ep ) = e (r) = en (1) (1.10)

For each plot p in this batch there can be K different equations of this form, comparing with each possible g
within the same batch. One of these equations obviously would not give any useful information, as it would
have r,, twice, which would just give 0 on both sides. This leaves K — 1 useful equations to determine K vari-
ables, which gives an underdetermined system.

These K — 1 equations can be written in several different ways and to do this one of the plots must be chosen
to be compared with all the other plots. The positions of the plots can be numbered rgb) . -r%’). Then the first
plot, at position rib), is chosen as the plot with which the others are compared. How this numbering is done is
not very important and does not influence the result. From this the following equations are obtained:

Y& =y ) + Ep ) - By ) = &5 (r{”) — £, (™)
(1.11)

ya") =y + Bpa”) - Bpeld) = e (r{”) - 3 (r)

4



This can be rewritten to a matrix equation:

1 -1 0 -« o]frae®®y [1 -1 0o - o] (EE?) 1 -1 0 - 0] ([ep@?

1 0 -1 -« offyae®| |t 0o -1 -« o]|Ea«? 1 0 -1 - 0]]|ea?

. . R . : =

1 0 0 - -1 Y(r%])) 1 0 0 - -1 Eb(rg)) 1 0 0 - -1 gb(r(Kb))
(1.12)

This results in an equation without the fully written matrices and vectors that looks like this
Rpyp + RpEp = Rpep (1.13)

Where the variables assigned here denote the matrices and vectors from the equation above.
These vectors and matrices can be expanded upon to form a system for all batches together. To do this we let
R be the Kronecker product of an identity matrix /5 and the Rj, matrices for all batches:

R=Ig®Ry,. (1.14)

This gives a non-square matrix R: R € R®“B)*P_ Vectors y, E and ¢ are made by combining vectors y;, Ej, and
€p, for all batches. These vectors are all vectors of length P. This gives a matrix-vector system for all data:

Ry+RE=Re (1.15)

1.3 Regularization

The system obtained in the previous section is, as was already seen, underdetermined. This is because of the
R matrix being a non-square matrix. Because of this and the presence of the statistical error € minimizing
Ry + RE will lead to over-fitting. To avoid over-fitting a method is obtained from Tikhonov regularization (van
Wieringen, 2015). Here a parameter 7 is introduced, which is the regularization parameter. Using this a way
to find y is found.

Y= argmnin Fy(y)

1 , 7 , (1.16)
Fy(y) = -IIRy + RE||5 + —[ IVy(m)|©dQ
2 2 Ja
The vector y that satisfies this equation can be found by solving the Euler-Lagrange equation
(RTR+nD)y, = -RTRE, (1.17)

where the matrix D is introduced. This Euler-Lagrange equation is derived in Appendix A The matrix D in this
system is a stiffness matrix, which can be obtained in several ways. The most common way to do this is using
the Finite Element Method (Reddy, 2006).

For this parameter 7 still a optimal value must be found, which is done using cross-validation. How this is
done exactly will be further explained in Chapter 4.



Chapter 2

Kernel Method with the Gaussian Kernel

In the previous chapter we saw that there were some terms in the equations which were obtained from ap-
plying the Finite Element Method, like the term V), (r) in Equation 1.9 and the matrix D in Equation 1.17. The
problem with FEM is that there will always be effects of the mesh visible in the y-function, especially on fields
where it is hard to make a good mesh, like the fields used in this project. This is not desired, as the approxima-
tion of the y function is wanted to be as good as possible. Thus it is desired to find a method which performs
better.

A proposed method for this is the so called kernel method, which is often used in machine learning (Hofmann
et al., 2008). For this a function « (ry,r2) is introduced, where the r; and r, are two positions on a field. Using
these the term V},(r) in the y-function, introduced in 1.9, can be given by V), (r) = x (r,1p,). These new V), are not
influenced by a mesh, which means that they can give a more accurate approximation of the field effect.

The kernel function is usually chosen to be a radial basis function, so that

k(r1,12) = k(|r] —ra) 2.1

where |r] —r2| gives the vector norm or distance, given by [r| =/ r)% + rf.

The addition of the kernel function transforms the system 1.12 into the following system

RKy+ RE=-Re (2.2)
Here the matrix K is given by the kernel «, by

[Klp,q =x(rp,1q), (2.3)

where r), and r, are the positions plots which correspond to the entry of K at position [p, g].
This changes the function to be minimized to

1
Fy(y) = =|IRKy + REJ|5 + Qf [Vyn @)% dr 2.4
2 2 Jr2
With Euler-Lagrange equation
(KTRTRK +nD)y = -K"RTRE 2.5)
Where matrix D is given by
[Dlp,q = fRz Vi (r,rp) -V (r,1q) dr (2.6)

From this equation y can be found at the positions of the centroids, at which data is obtained. Then Equation
1.9, with now terms V), obtained from the kernel function, can be used to find y in any position.

This kernel function can be chosen in various ways. In this research we will focus on one kernel function, the
Gaussian kernel. This proposed kernel, based on a Gaussian distribution, is given by

x(ry,r2,0) 1 e ( Iry —r2|2) 2.7
,T2,0) = xXp | — , .
Lr2 2702 P 202
with o > 0. This gives K-matrix
Kl o=~ exp- T2 Tal 2.8)
P4 ong2 P 202 )

6



2.1 Stiffness matrix

The stiffness matrix D for the Gaussian kernel can be found by calculating its elements using the Equation 2.6.
For the Gaussian kernel we have:

r - Ir1—rz|2)
Vk(ry,re,0) = — exp|———|. 2.9
(ry,12,0) Py ( 252 (2.9)
Putting this in Equation 2.6 gives the following terms for the D-matrix
1
Dpg= ppy 8[ (r—rp)-(r— rq)exp( — (Ir—rpl+Ir—ry| )) (2.10)
Now we set (r—rp) = r’. Then this can be worked out in the following way
D 1 (' +r,—rg)ex —i(lr’|2+|r’+r —r |2) dr
P47 28 Juo p T EXP| =55 P Tq
1
4712(78[ I exp(—g[erl +|rp—rq| +2r - (rp—rq))) (2.11)

1
+1' - (rp —rq) exp (_F (2|1-’|2 +r, —rql2 +2r - (rp —rq))) dr

Now to make the terms look simpler, |r'| = r and Irp —r4l. When doing this one can obtain, from the dot
product, that r’ - (rp —rq) = rscos(f), where 6 is the angle between the two vectors. With this the equation for
D can be rewritten as

1 T g 1 2,2
[D]p'qsz0 fo r exp(—F(Zr +5 +2rscos(9)))

(2.12)
1
+r?scos(6) exp (—2—2 (2r% + 5% + 2rscos(9))) dodr
o
In this integral the modified Bessel function can be recognised (Arfken et al., 2013), with
2
f exp (—r—z Cose) do =2nly (r_;)
0 o o
21 rs rs (2.13)
fo cos(0) exp (_P cos@) do=-2rl (;)
This gives
(D, = 1 ox (_ $2 )[ Sl(rs)ex ( rz)
P~ Hnas P T 502 0\ g2) P 752
) (2.14)
o (TS r
—srolh (;) exp (—;) dar
Here Iy and I give the Bessel functions of the first kind, with series representation
rsy sy 1 4,
fo (?) B ”;0 (?) 4"pnln!
(2.15)

I (2) _ dly(z)

oo —
=y (1)2” P20 on
o? dz o? 4" pln!

z=rsla? np=1

Now we can rewrite 2.14 in a way such that is two integrals, one over the Iy function and one over the I
function:
D] e ( —Sz)(foo (53] e ( —rz)d
= Xp|— r Xp|— r
P4~ 50g8 P\ T2 0 05z )P

[l Z)e

We will elaborate these two integrals separately. We will start of with the integral for the I Bessel’s function,
where we will substitute the series expansion for the Bessel’s equation

(2.16)

2

/oor310(rs)exp( )dr—f Z —rznexp(—r—) dr (2.17)
0 o2 4" nln! o2 )

7



Here we can interchange the summation and integration, since for r € [0,00), positive o and s, which we both
assume to be positive, this is allowed. This gives us the series

X sy 1 oo r?
Y (=) —f p2nes exp(——z) dr (2.18)
—0\o 4"n'n! Jo o
The integral within this series is known and can be evaluated giving
& sy2n 1
2 -]

4nplpl 2g—2n—4

r2
T(n+2,-—)
o

[e.0]

(2.19)
Here I'(a, x) gives the incomplete Gamma function, which can be evaluated at 0 and co, with I'(12+2,0)
and I'(n + 2,00) = 0. Putting this in 2.19 gives

i ,0) = (n+1)!
X sy 1 1 r2 1% 2n 1
- ,;O(F) 4"nln! 2g—2n-4 F(n+2,—;)] 02)

4nplpl 2g—2n—4 (n+1)!

(i)ZH (n+1)!

o2) 2-4"plplg—2n—4

3

I
P18
e

(=}

I
018

B
I
[=)

SZn

n+1
0 202n=4 4y

(2.20)

agl HM8

n+1 on

3
(=}
[\S)
IS
£
S
<)
N
S
S

This last sum is a known series, with

o0

n+1 on 1 S\ o .,
Z A’ "= —exp(rtz)a (40° +57) (2.21)
So now we have the first integral, we will do the same for the second part
00 2 © 2n-1 2 2
27 (TS _r ( ) _en op _r
fo ST Il(az)exp( Uz)dr— ; exp

4"n!n!r ;) ar (2.22)
Again summation and integration can be interchanged to obtain

X s\2m-l 2p [ r?
Y () f r2”+1exp(——2) dr (2.23)
o 4"n'n! Jo o
Now we can evaluate this integral in the same way as in Equation 2.19, to get

i ( s )2’1*1 n 1
n=1 02

4nplp! g—2n-2

r2 1™
F(n+l,——2)]
o

(2.24)
0
Now we can do the same with this as we have done in Equation 2.20

i ( )an n

T 1 r? °°_°° s\2n-1  p 1 |
47 plp) g—2n-2 (n+1-5%) _n;l(?) 4 2022
X (s 2l nn!
a ,;1 (;) 4" plplg—2n—4
- (2.25)
X s \2n-1 n
L) s
— io“ LSZn—l
= o?n—4qnp)
Again this sum is known, with
i n ooy 1 ( s? )
————
= g?n=24np) 1P\ 102

(2.26)



Now we can put this back in Equation 2.16, to obtain
exp|-—||-exp|—|0“(4o“ +5°)——exp|—5|s
2108 P (7252 8 P (302 4 P (302

1 e ( s )e ( $ )(102(402+52) s)
8no8 P 202 P 402 )\2

[Dlp,q =

= ex ( s + s )(102(402+32) s)

"~ 8nod P 202 40?%)\2 227
2
S I 55 4)

= exp|——= || -0°s"—s+20

8no? p( 402)(2

Irp—1qg” (1

== (—% (Eazlrp—rqlz—|rp—rq|+204)

2.2 Properties of the K and D matrices

In Section 2.1 two different matrices were obtained, the K- and D- matrices, given by

1 Ity —rgl?
Klpa = 5557 XP (_ 202

| 2 (2.28)
1 I, —rIq 1
[Dlp,q= o exp (— 152 )(Eazlrp—rqlz—lrp—rq|+204 .

It is desireable to know more about the properties of these matrices.

First of all it is the case that these matrices are square P x P matrices, where P is the number of plots. Sec-
ondly it is easily visible that both matrices are symmetric, since |r, —r4| = [r; —rpl, and thus [K], 4 = [Kl4,p
and [D]y4 = [Dlg,p. Since [r, —1p| = 0, the values on the diagonal of both matrices can be obtained, with
Klp,p = ﬁ and [D]p,p = ﬁ. It is also certain that both matrices have only real and positive entries. For K
this is always the case and for D this follows from the way in which o was chosen in the previous section. Since
both matrices only have real values these matrices are Hermitian matrices.

2.2.1 Positive entries of D -matrix

To make the model work well, it is desired to have all of the entries of the matrices be non-negative. For K this
is obviously always the case, as both o and |r,, —r,| are positive. For D this is less obvious. The entries of D are,
ifforany s =|r, —r4l and o,

2
exp(—s—) (10252—s+204 =0 (2.29)
8ol 402 )\2
So if .
5ozsz—s+za4 >0, (2.30)
since —— exp (—i) >0
8no® 402 :
Equation 2.30 can be solved with equality, and then we obtain two zeroes
2-V4-160"
S1=—————
20 (2.31)
2+V4-1606
2T T 0

Now it is desired to know for which s and which o Equation 2.30 does hold. It is immediately clear that if
4 —-160° < 0, the roots of this equation are complex, which means that %0232 —s+20* > 0 for any real s. This
follows from the fact that ¢ > 0, and thus 26* > 0. So for s = 0 this equation is possible. Since the function
has no real root and is positive in one point, it is positive everywhere. Thus Equation 2.30 holds for all real s if

_ 6 25 1
4—-160°<0,0ro” > e



Next it is desired to know when Equation 2.30 holds for o2 < i. It is known that between the two zeroes

found, s; and s, in Equation 2.31, the polynomial in Equation 2.30 is negative, so if s > s, or s < 57 for all s then
Equation 2.30 does hold. Now o can be chosen in a way such that, for all s which are obtained with the data
thatis being used, s > s. It turns out that this is possible, but with one exception, s = 0 (so whenr, =r;), which
is always present in the matrix D. Now it is observed that Equation 2.30 holds for s = 0, since o is positive. This
means that this exception does not cause trouble, as the desired property will still be satisfied.
Now since it is that o > 0,

2+v4

202

5 < ;7 (2.32)

So <

S < —.
o2
If we now let m = miqn(lr,[J —14l), so the minimal distance between the centroids of two plots on the field and
p,
thus the minimal value s can have with the obtained data, then we desire to have that m > s,. Now o can be
chosen such that this is the case.
Here m> s, if m = (%,soifazz Zoro=,/%.

This gives us the desired bounds for o2 and o

(2.33)

g=1\—
m

No upper bound for o exists for this property, as it was obtained earlier that Equation 2.30 is always positive
for large values of o.

&N‘SIN

2.2.2 Positive definiteness of the K- and D -matrix

Something else that is desirable to know whether the matrices are positive definite. This is because these types
of matrices have some computational advantages. To show that they are positive definite it suffices to show
that they are strictly diagonally dominant, which is the case for some matrix A

|App| > Z |Api|; (2.34)
i#p
So if the entry on the diagonal is larger than the sum of the entries of the rest of the row, for each row, then the
matrix is strictly diagonally dominant. A strictly diagonally dominant matrix with only real and positive entries
is always positive definite.
It will be shown that, using a bound for o, both K and D can satisfy this property. This will be shown in the
following two lemmas.

2
Lemma 2.2.1. Ifo? < ln(’g—fl), where m = rgiqn(lrp —14|) and P is the number of plots, then matrix K is strictly

diagonally dominant, and since K only has positive real entries, it is positive definite.

Proof. Suppose g2 < %, then
2
In(n-1) <—
202
.
n—-1< exp(?)
1 1 (2.35)
— >
n—1 exp(?)
2

m
1>(n-1) exp(—ﬁ)

_r:l2 2
Now here it can be noted that exp (—%) < exp (—2’%), since |rp —r;| > m and the negative exponential

|rp_ri|2
202

decreases if its argument becomes larger. Thus (n — 1) exp (—%) > Y ixp€Xp (— ), for any p, where p
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is the index of one plot on the field and i is the index of another plot. Thus this is a sum over the distances
between one plot, p, and all other plots.
From this it is obtained that

Ity —1;/?
1>Y exp (—’”—2’) (2.36)
izp 20
Multiplying both sides with 5—— now gives
1 1 Irp —r;l?
> exp| - 2.37
2102 l;’] 2702 P ( 20?2 (.37

Here the left hand side denotes the diagonal values of matrix K and the right hand side denotes the sum over
the non-diagonal values in some row, which corresponds to the plot with index p. As this holds for any p, and
thus for any row of K, it is obtained that K is strictly diagonally dominant. O

The same can be done for matrix D, although it is a bit more complicated, by proving the following lemma

3ARD_1)
Lemma2.2.2. Letm = I})liqn(h‘p —r14l) Let x be such that léf},}:;) <x< ln(f;q_l) and P < exp(%) +1. Then let y be
such that
(xIn(P-1))3
>In T_P+2 +1 (2.38)

Then if 4 o2 < @ m, matrix D is strictly diagonally dominant, and since D only has positive real entries, it is
positive definite.

Proof. Itis assumed that
(xIn(P-1))3
>In T—P+2 +1 (2.39)

Which is the same as ,
T

y> Y +1 (2.40)
This can be rewritten to
(xIn(P-1))3
(Y e
y In(P-1) 16
1 ((xln(P—l))3 )
> +1
(P-1¥1! 16

(2.41)

P-1 ((xln(P—l))3 )

> +1
exp(In(P -1))Y 16

(xIn(P-1))3 )

Mo |

1>(P-1)exp (—yln(P—l))( T

Now since P < exp %' +1, from which it is obtained that 7 > 6In(P-1). With this and the fact that the right hand
side of the equation decreases as the argument 61n(P — 1) increases, for P > 20 Equation 2.41 can be rewritten
as

yoy(m
1>(P—1)exp(—;m)(l—6+l). (2.42)

From the conditions on g2 two things follow. Firstly, from ¢ > -+, it follows that (’1"—63 + 1) (% — 5o+ 1)

Secondly, from o2 < @ m, it follows that exp (— Lm)>exp (— —) Using this Equation 2.42 can be rewritten as
2 2
m m m
1>(P-1)ex 1 (2.43)
(P=Dexp ( ) (402 204 )
Here a term 2% can be taken in front, which results in
P-1 m>\(1 , , m
1> exp|-—||zo°m° - — +1]. (2.44)
204 p( 402)(2 o? )



Now, since m = min(|r, —rg4l),
p.q

P-1 m2\(1 , , m ) 1 ey —1;f? (1 ) , 4)
exp|l-———=||zom"—— +1|> exp|———||=-0°|r, —r;|“—|r, —r;| + 207 |. 2.45
204 p( 402)(2 o2 ,;, 2mo? P 402 2 Iy —xil” = lrp —xil (2.45)

The right hand side of the inequality in Equation 2.43 is decreasing if m becomes larger for m > 6In(n — 1), so
from this and Equation 2.44 it can be obtained that

1> Z ! ex |rp—ri|2 (102|r r~|2 ¥ I"|+20’4) (2.46)
iz 2mgt O 402 2 Pt Pt ) )
Now both sides can be multiplied with ﬁ, to obtain
! > Z ! ex Irp—rilz (lazlr r-|2 |r r-|+204) (2.47)
4ot iz 810t P 402 2 Pt Pt ’

Here it is observed that the left hand side is exactly the entry on the diagonal of D and the right hand side is
the sum over all non-diagonal entries in the same row. Because this inequality holds for the assumed bounds
on g, m and P, matrix D is strictly diagonally dominant and thus positive definite. O

The bounds in this lemma seem to be more complicated than they actually are. Both P and m can be
obtained immediately from the data at hand, thus an upper bound of x can be found quite easily. Using that it
can be observed that y can be obtained, and that the upper bound for o is as large as possible if y is as small as
possible. Thus y can always be chosen such that it is a small as possible to satisfy Equation 2.38, which can be
obtained from an equality in this equation. From this the upper bound for o can be obtained by maximizing
the function obtained from ﬁ. This maximum is, nearly always, attained at the largest value for x.

Now it has to be noted that the bounds for o found using these lemmas are not necessarily the smallest bounds
for o, but these bounds are very useful for finding actual bounds. When m and P are obtained from data on
the field actual bounds for positive definiteness can be found using iteration. This is done in Chapter 3.
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Chapter 3

Composition of data

3.1 Obtained data

To test this model data on crops is needed. This data is obtained from three potato fields, two in The Nether-
lands and one in France. The data consists of canopy data for each ridge on the field, obtained on several days
in multiple years for each field. Along with the canopy data data is obtained for the positions of the ridges,
which means that the fields can be reconstructed. For each field in each year one of the days is chosen to be
further observed.

The fields from which the data is obtained are located in Montfrin in France and SPNA and Veenklooster, both
in The Netherlands. These fields are observed in three different years, 2019, 2020 and 2021, resulting in nine
different datasets. Each field consists of plots of four ridges, with 6 crops in each ridge. On each field six dif-
ferent varieties of potatoes are planted. Exact properties of these varieties are not important, only that all are
different types of potatoes. Each variety is planted on one sixth of the plots on the field.

On each of the fields the same batches are planted on the same amount of plots. There are 180 batches planted
on 4 plots each. This mean that on each field 720 plots are planted. This gives the parameters which were used
in Chapter 1 to be:

¢ Amount of plots P =720
¢ Amount of batches B = 180
¢ Plots per batch K =4

Since For each of the fields the data is such that K =4, it is possible to construct the blocks of which the matrix
R consists. This gives
1 -1 0 0

—
(=)
|
—
(=)

(3.1)

Something else that can be observed immediately on the field is the minimal distance between the centroids,
which was already used in Chapter 2 and denoted by m. The crops are planted roughly the same each year.
This should mean that the coordinates of the plots and distances between them are the same for different
years as well, but unfortunately this is not the case. Sometimes crops are planted slightly different across the
years, which means that the coordinates vary between the years. Along with this the data is scaled differently
in different years. It is possible to rescale the data such that the fields are similar for each year, but even then
there will always be differences between the years. Because of this it is chosen to not scale the fields, and
use the original data. The only problem that occurs with this is that then for each year the bounds for o are
different and thus have to be found separately.

In Figures 3.1, 3.2 and 3.3 the three different fields can be seen in the way they were planted in 2021.

In Figure 3.4 the canopy data of the field in Montfrin in 2021 can be seen. Here a dark green color means a low
yield and a light green color means a high yield. On fields like these it is desired to find spatial effect and to
correct the data, such that the data is similar across the field. Similar data is available for all the fields, and can
be found in Appendix B.
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Composition of field: Montfrin 2021 2021_04_26
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Figure 3.1: Field composition of the field in Montfrin in 2021

Composition of field: SPNA 2021 2021 _06_28
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Figure 3.2: Field composition of the field in SPNA in 2021
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Composition of field: Veenklooster 2021 2021 06 11
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Figure 3.3: Field composition of the field in Veenklooster in 2021

Raw canopy data: Montfrin 2021 2021_04_26
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Figure 3.4: Raw data of the field in Montfrin in 2021. A dark shade denotes a low yield, a light color a high yield.
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3.2 Finding the o parameter

3.2.1 Bounds for o

In Chapter 2 methods were established for finding an upper and lower bound for o. These bounds depend
on the distance between plots and the amounts of plots on the field. The amount of plots is always the same,
but the distance between plots differs across the different fields and across the years. This means that nine
different bounds for o must be obtained. Here the calculation, using the lemmas in Chapter 2, for these bounds
will be done for the field in Montfrin in the year 2021. The bounds obtained by doing this calculation for the
other fields can be seen in the fourth (lower bound) and fifth (upper bound) columns of Table 3.1.
Now in the Lemmas 2.2.1 and 2.2.2 some restrictions were made to make sure the lemmas work for any type of
matrix. This means that the bounds obtained from these lemmas are not necessarily the largest and smallest
values of o for which the matrices are positive definite. It is not even the case that the largest value for which
the matrices are diagonally dominant, which is used in the lemmas, is also the largest value for which the
matrices are positive definite. Now the most important is the upper bound of g, since the values for o which
will be used must be large. The reason for this is that the kernel function, introduced in Equation 2.3, goes to
zero quickly if o is small and |r; —r»| increases. This means that the term V), introduced in Chapter 1 and given
for the Kernel Method by

Vp(r) =x(r,rp,0) (3.2)

will become to small if o is small. If this term is very small the field effect will be observed as zero in any point
where no data is observed. If this is the case the entire purpose of this method is lost, since this method is used
to find the field effect in points in which no data is known.

By iterating over increasingly large o an estimation for the true upper bound can be found. This iteration is
started with o as the value of upper bound found from calculation and increases until a ¢ is found for which
one of the matrices is not positive definite anymore. For each o the matrices K and D are computed and
the eigenvalues of these matrices are calculated. Then the positive definiteness of these is checked by check-
ing whether the smallest eigenvalues (and thus all eigenvalues) are positive. If the matrices have no negative
eigenvalues, they are positive definite, since both are symmetric matrices (Horn and Johnson, 1985). How-
ever, if one of the eigenvalues is negative, the matrix is not positive definite. The upper bound obtained from
this is usually found to be about 5 to 10 times as large as the upper bound which is obtained earlier. In the sixth
column these actual upper bounds for positive definiteness can be seen for the different fields.

3.2.2 Choiceof o

These bounds are used to choose a fixed value for o with which the field effect is estimated. This o must be
fixed in a way in which it gives as much information about the field effect as possible and that the information
that is obtained is accurate.
First suppose that o is chosen to be small. If o is chosen to be small, it can be obtained that the Gaussian
kernel x (r,rp, 0) is very small for r and r, except of course if r = r,. Now this means that V), (r) will be small for
any r that is not r,. The field effect y(r) was found from the sum over the product of V) (r) and the field effect
in the centroid positions, y(rp),
P
y() = YpVp(x). (3.3)
p=1

Since V) (r) is very small if r # rp, this field effect is very small everywhere, except in the centroid locations.
This means that the only information that is obtained from the field effect is the field effect in the centroid
locations. This information was already known, as these where given by the y,, which means that this method
does not add any new information if o is chosen to be small.
Secondly suppose o is chosen to be as large as possible, so very close to the upper bound found before. Then
it is obtained that the information obtained on the field effect will not be very accurate. What this information
and the accuracy of the information exactly is will be further explained in Section 4.2. To make sure that o is
chosen to be not too large and not too small, o is chosen at around half of the upper bound obtained before. In
Chapter 4 it is obtained that this choice gives enough information about the field effect and that the obtained
information is quite accurate. Thus the values for o that are chosen are half of the upper bound found by it-
eration, rounded to the nearest integer. The values that are chosen for all the fields can be seen in the seventh
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column of Table 3.1.

For these values of o the matrices K and D both look very close to diagonal matrices. The non-diagonal ele-
ments are often more than a factor 100 smaller than the diagonal elements. Even when choosing o closer to
the upper bounds found by iteration the matrices will look close to diagonal. The only elements that are then
somewhat of the same order as the values on the diagonal are the values on the first of diagonal. Although this
might seem strange this is often what is seen in stiffness matrices for other methods as well.

- Upper bound for
Field Year .Mlnlmal Lower bound o o from Upper b'ound' for o used
Distance (m) . o from iteration
calculation
2019 48.2 0.082 2.64 19.4 10
Montfrin 2020 234.4 0.131 11 96.7 48
2021 2277 0.133 10.7 90.1 45
2019 96.7 0.20 4.91 38.6 19
SPNA 2020 251.75 0.126 11.7 100.9 50
2021 245 0.128 11.42 99.6 50
2019 184.9 0.147 8.83 73 37
Veenklooster 2020 239.6 0.129 11.19 100 50
2021 378.4 0.102 17.0 149.8 75

Table 3.1: Bounds for o on the different fields

3.2.3 Calculation on Montfrin 2021

Here the calculation from which the values in the table for Montfrin 2021 will be done more extensively. For
the Montfrin field in 2021, m =~ 227.1 and P = 720.
From this the lower bound for ¢ can be obtained fairly easily. In the lemmas in Chapter 2 it was found that o

must be such that g2 = % oro =,/ %. This means that for this field o = ﬁ ~ 0.133. Now since o is chosen

to be large, this bound is easily satisfied.
In the lemmas in Chapter 2 it can be seen that Lemma 2.2.2 is far more restrictive than Lemma 2.2.1. This
means that if a upper bound is found that satisfies Lemma 2.2.2, it will nearly always satisfy Lemma 2.2.1 as
well. Thus we will first look at the lemma with the most restrictive conditions, Lemma 2.2.2, and then check
whether the other lemma is satisfied as well.

s . .1 . . x Y16(P=1)
In Lemma 2.2.2 it is obtained that D is diagonally dominant if o < iy where x and y are such that ;7= <

In(P-1)
X< == and

((xln(P— 1)
>ln|——

—P+2) +1 (3.4)
16

These can be found using the values for m and P, m = 227.1 and P = 720. This means that x must be such that

31 A510
lnlg'f;)g <x< 1§(2771'$) , which can be rounded to 3.43 < x < 34.5. Now we must find y such that it satisfies

3
> n IO 71g) 1 35)

and such that the upper bound for ﬁm, is maximal. Thus a maximum for 4i must be found, since m is
constant. Now from the way in which x is chosen we know for the following for the term inside the logarithm:

. V16-719
In(719)
xIn(719) > V16-719

3 (3.6)
(xIn(719)) > 719
16

(xIn(719))3
16

-718>1.
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From this it follows that the logarithm in the bound for y is positive, and thus y has a lower bound of at least 1.
From this lower bound and the fact that ﬁ decreases if y increases for some fixed x if y > 1, it follows that the

maximum is always attained at the smallest possible value for y for a given x. Thus the maximum of ﬁ is the
maximum of

X

4(in (GO _ 718) 41
X

41n ((xIn(719)3 —718) +4°

glx) =
(3.7)

gx)=

It can be observed that g(x) is an increasing function, so the maximum is attained at the maximal value of x,
here given by -5 ~ 34.5. This gives a upper bound for ﬁ at g(34.5) ~ 0.499.

Thus we can use bounds for o as % < 02 < 0.499m. For the m obtained from the data this gives 0.0176 < 02 <
113.4, or 0.133 < 0 < 10.7. Now it is easy to check that this value satisfies lemma 2.2.1 as well. For this lemma

o must be such that o2 < %. Here we can see that this would mean that 02 < 7838.85 or o < 88.53. This
means that the upper bound found lemma 2.2.2 satisfy lemma 2.2.1 as well.

Now we can try iteration over o from this value of 10.7 upward, to find the true largest value for which K and
D are positive definite. By doing this it is obtained that for o = 90.1 both K and D are positive definite, but for
o =83.1, D is not. This means that o = 90.1 is used as the iteratively found upper bound. From this a ¢ is cho-
sen at around half of this upper bound, so o = 45. The reasoning behind this choice will be further explained
in Chapter 5.

In Figure 3.5 the values of the smallest eigenvalue and the eigenvalues with smallest magnitude (smallest ab-
solute value of eigenvalues) can be seen for both matrices. The red lines give the smallest eigenvalues and
eigenvalues of smallest magnitude for K, which correspond to the axis on the right. The blue lines for D,
which correspond to the axis on the left. As can be seen in the figure is that as long as the eigenvalues are
positive, the two lines of the same matrix coincide. For matrix K this is the case for all sigma used here. The
dashed green line denotes the upper bound obtained from calculation. The orange one gives the largest value
for which both matrices are diagonally dominant. The purple dashed line gives the actual upper bound for
diagonal dominance, as found above. In Figure 3.5a this is done for a large range, starting before the upper
bound found from the calculation and ending after the bound obtained from iteration on positive definite-
ness. In Figure 3.5b the same is done, but on a smaller interval. There it is clearly visible that the smallest
eigenvalue of D becomes negative, around o = 90.1, which was also the bound found from iteration. It is also
visible that this is slightly larger the largest value which gives diagonal dominance.

From this the eventual value of o is chosen to be o = 45. For this value the matrices K and D are visualised
in Figure 3.6 and 3.7. There we see that the off-diagonal entries are very small compared to the diagonal ele-
ments. From a calculation the same can be obtained. On this field a minimum distance of 227.7 was found.
This minimum distance gives the largest off-diagonal values when put in the equations which gave the terms
for the matrices K and D, Equations 2.8 and 2.27. We will let [K],, and [D],, be the terms that correspond to
this. Now this gives

.
= expl-—
" ogg2 P 202
1 ( 227.72)
= exp |-
27 - 452 P 2.452
=22-10710 58
_ _m_z l 2 2 4 .
[D]m—8 3 €Xp 152 20 m-—m+20
o g
1 227.72\ (1, ) A
= 5 P T 5-45 2277 —227.7+2-45
=24-10710
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The same can be done for a diagonal term, which means that the distance is 0. This gives

1 2
Klpp = 5252 &P (_2-452)

=7.85-107°
[D]ppz—exp(—ﬂ)(1-452-227.72—227.7+2-04

P 8m-08 4-02 J\2

=1.94-1078

This further confirms the large difference between the diagonal and of diagonal entries.

Smallest Eigenvalues of K and D matrices for different o

0.08 4 —— Smallest EV D F0.16
—— Smallest Magnitude EV D
—— Smallest EV K
0.071 —— Smallest Magnitude EV K [o-14
——- Upper Bound from Lemmas
0.06 4 Upper Bound Diag. Domi. [ g.12
——- Upper Bound Pos. Dev.
[a} I X
3 H 3
E 0.05 1 : r0.10 H
© H ©
> >
c ! g
S 0.04 i F0.08 &
w 1 w
I | ]
< | <
= 0.034 | F0.06 5
£ 1 £
] 1 ]
1
0.02 4 : F 0.04
1
1
0.01 1 i Fo.02
1
1
1
0.00 A 1 I 0.00
L
[0} 20 40 60 80 100
o
(@)
1e—-10 Smallest Eigenvalues of K and D matrices for different o le-5
—— Smallest EV D
54 . F2.4
— Smallest Magnitude EV D
—— Smallest EV K
4 —— Smallest Magnitude EV K o>
——- Upper Bound from Lemmas )
Upper Bound Diag. Domi.
—== Upper Bound Pos. Dev.
o 31 F2.0wv
n 0
4] @
=] =
T g
5 27 F18 ¢
[=)) o
o w
o "
] ol
< 19 F162
© T
£ £
(2] (9]
o1 F1a
17 F12
—2

T T T
80 85 920 95 100 105 110

Figure 3.5: Smallest Eigenvalues for different o on a (a) large scale and (b) further zoomed in
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Figure 3.6: Visualisation of D-matrix for Montfrin 2021 with o = 45
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Figure 3.7: Visualisation of D-matrix for Montfrin 2021 with o = 45
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Chapter 4

Finding an optimal value for the 1
parameter

4.1 Finding 7 using cross-validation

In Chapter 2 a method to find an approximation of the field effect, here often denoted y, was discussed. This
method had a parameter about which nothing was know yet, denoted by 7. For this parameter an optimal
value is tried to be found.

In the previous chapter a good way to choose o was proposed. This is one of two parameters needed to accom-
plish the goal that is wanted to be accomplished. In Chapter 1 the Euler-Lagrange equation was introduced, in
Equation 1.17, on which was expanded upon in Chapter 2 using the kernel method. This gave

(KTRTRK +nD)y = —-K"RT RE, (4.1)

which was already found in Equation 2.5. Now using the o that is chosen it is possible to form the matrices K
and D. This leaves one parameter, the 1, which must be found. The optimal value for this parameter will be
found using cross-validation. For this the matrix R will be split in a training and a validation part. This split
can be made in three different ways. In each batch three plots were being compared to a fourth plot (in the
way that it was used before plot 2, 3 and 4 were compared to plot 1). One of these three is taken and used as
validation, the other two will be used as training. An example in which matrix R can be split can be seen here,
where plot 3 is used as validation. There the second row is taken out and forms the validation matrix, resulting
in a 2 x 4 training matrix and a 1 x 4 validation matrix.

1 -1 0 O

Roe=|y o 0o -1

, Rpy=[1 0 -1 0]. 4.2)

Of course this does not necessarily have to be the second row; it can also be the other two. This means that
there are three ways to split the matrices in training and validation. All three will be used here, giving three
processes of cross-validation.

For both validation and training Equation 4.1 can be solved for some chosen value of 7. Using this an optimal
value for 1 can be found. To find this optimal value for 7 there is being iterated over different values of n and
each time Equation 4.1 is solved for the training part. This gives a solution v, for which it is desired to know
whether this is a good solution. To find out whether a solution is a good solution, and to eventually find the
optimal solution, residuals are used.

For this method two residuals are calculated, one for training denoted by p; = p(E, y5, Rp;) and one for valida-
tion p, = p(E, ¥y, Rpy), so for training Ry, is used and for validation Rj,,. These residuals are obtained from the

following formula
|RE+ RKyy|

E) YR = ) 4.3
p(E, vy, R) RE] (4.3)
where | -| gives the £2-norm.
The residuals for both training and validation are calculated using the y;, found from solving the system

(K" R}, Ry K +nD)yn = —K" R}, RyE, 4.4)
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which is exactly the same as the one in Equation 4.1, but with Rj; instead of R. This is done three times, once
for each cross-validation process obtained from the different ways in which R can be split. This means that
for each value of i three different y;, are found, resulting in three different values for both the training and val-
idation residual. From these three values the averages are calculated, resulting in a average residual for both
training and validation. From doing this it will become clear for which value of 7 the average residual of the
validation is the smallest. The y;, that corresponds to this 77 then should give the best estimate of the field effect.

In Figure 4.1 the residuals for both training and validation can be seen for the field in Montfrin in 2021. The
blue lines show the training, the orange ones the validation. Both training and validation are calculated three
times, since each of the rows of R, is used as validation once. Each one of these times is shown by the dashes
lines. The two solid lines give the average of the three residuals, one for each of the averages of validation and
training. As can be seen the training residual starts of very small, when 7 is very small as well. This is exactly
what is to be expected when looking at Equation 4.1. If there 7 is close to 0, y becomes such that it perfectly
estimates the values of E when using Ry,. This is because if i1 is small the influence of nD is very small. The
problem there is that it does not necessarily estimate E as good when using Rj,; instead. The optimal value for
7 is found to be 0.05, which gives a residual of 0.776. Both are indicated by the green dashed lines.

For the obtained optimal 1 the total residual can be calculated by using the full matrix R in Equation 4.3,
instead of the split training or validation matrix. This is the residual of the estimate of the entire vector of data
E that is obtained from y. This total residual gives how much of the difference in yield can be attributed to
spatial effect and how much to statistical error. For the field in Montfrin in 2021 this total residual is 0.18 for
this optimal value of 17 on this field. This means that 82 % of the difference in yield can be attributed to spatial
effect. The other 18 % can not be explained by this model and is thus attributed to statistical error.

The values of optimal 7, minimal validation residual and the corresponding total residual have been found for
the other fields as well and are shown in Table 4.1.

Some puzzling results can be observed in the rows of the table corresponding to SPNA 2020 and Veenklooster
2020. There the values of i) are incredibly small which means that the obtained y is a very good approximation
of the training data. At the same time, the residual graph obtained for these fields is not smooth around the
optimal 7, as can be seen in Figure 4.3, where the residuals for SPNA in 2020 can be seen. The results for
Veenklooster 2020 are similar. The validation residual for these fields hardly changes with n and oscillates on
the level of numerical noise. This behaviour might have to do with the canopy data or the geometry of the
fields. Whatever the reason, these fields represent obvious outliers and will not be considered further in this
project. Figures for the residuals of the other seven fields are shown in Appendix B.

4.2 Further justification of the choice of o

In Section 3.2.2 it was mentioned that o must not be chosen too close to the upper bound. This has to do
with the residuals that are obtained from cross-validation. If o were to be chosen closer to its upper bound
the residuals get much worse without improving the interpretability. For some fields it even turns out to be
impossible to find an optimal value for 1. The validation residual will stay at or be close to 1, which means
that the total residual becomes large as well. The interpretation obtained from this would be that all, or nearly
all, of the difference in yield data has to be attributed to statistical error, and that the obtained field effect does
not say anything. An example of this can be seen in Figure 4.2. There the residuals of the field in Montfrin in
2019 is visible with a o chosen close to the upper bound obtained from Table 3.1. This upper bound was 19.4,
so o is chosen to be 18. In this figure it can be seen that while the validation residual stays larger than 1, the
training residual grows to 1 as well. This means that before an optimal value for 7 is found, the total residual is
already is way to large. For example from this Figure 4.2 a total residual of 0.98 is obtained, which means the
obtained field effect only explains 2% of the observed difference, with the rest coming from statistical errors. A
field effect which only explains 2% of the differences is of course not very useful.
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CV residuals: Montfrin-2021
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Figure 4.1: Residuals of training and validation of the field in Montfrin in 2021
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Figure 4.2: Residuals of training and validation of the field in Montfrin in 2019 with a to large o
Field Year Optimal n Validation Residual Total Residual
2019 3.4 0.96 0.70
Montfrin 2020 4.2 0.93 0.58
2021 0.052 0.77 0.18
2019 0.068 0.80 0.10
SPNA 2020 10 0.77 26-10°1
2021 0.44 0.89 0.31
2019 3.1 0.87 0.22
Veenklooster | 2020 1.45-1071" 0.70 22-1071
2021 0.30 0.91 0.49

Table 4.1: Optimal values of 7 and their residuals
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CV residuals: SPNA-2020
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Figure 4.3: Residuals of training and validation of the field in SPNA in 2020
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Chapter 5

Results

5.1 Field effect

With values for 7 and o found, everything is obtained to solve Equation 4.1 for y. The y gives the field effect in
the positions in which the data was known, so the y, which we saw before in Chapter 1. Using these the field
effect in any position on the field can be obtained from

P
y@® =) ypVp. (5.1)
p=1

As we saw before in Chapter 2 these V), can be obtained easily from the kernel with
Vp(®) =x(llr—rplD. (5.2)

This will be used to find the field effect and virtually replant the data on the different fields. Here two fields will
be discussed more extensively, one with a small total residual in Table 4.1 and one with a larger total residual
in Table 4.1. For the one with the a small total residual much of the differences in canopy can be attributed to
field effect and thus the field effect obtained on this field should give a lot of information. For a field with a
large total residual this is not the case. There most of the differences in canopy of plots of the same batch must
be attributed to statistical errors, which means that the information obtained from the field effect gives less
information that is useful.

For the fields that are not further discussed here the results can be found in Appendix B. The field in Montfrin
in 2021 is chosen as the field with small total residual. From the fields where nothing strange happens to the
values of 7, so all fields except for SPNA 2020 and Veenklooster 2020, Montfrin 2021 has the second smallest
total residual. The only nicely working field which has a smaller total residual is SPNA 2019. Montfrin 2021 is
chosen over SPNA 2019 because Montfrin 2021 has already been used in all other examples and because the
visualisation of Montfrin looks better than the one of SPNA.

The field that is chosen as the field with large total residual is the field in Montfrin in 2019. This is the field with
the largest total residual, as obtained in Table 4.1.

5.1.1 Replanting with small total residual

Using Equation 5.1 the field effect can be found easily in any position on the field. To visualise this function
a uniform grid is made on the field and in each point of this grid y(r) is calculated. For the field in Montfrin
in 2021, where the total residual has a relatively small value of 0.18, the field-effect function can be seen in
Figure 5.1. There a blue color means that the plot is effected positively by field effect and requires a negative
correction. Thus the data observed, which is visible in Figure 3.4, for such a plot is higher than the expectation
for that batch. This means that such a plot after spatial correction will have a smaller canopy. A red color means
the exact opposite: the field effect influences these plots negatively and thus after correction these plots will
have a larger canopy.

Now that the field effect is found the virtual replanting can be done. Using this virtual replanting the mean
canopy for each plot is transformed to a value that would have been observed if this plot was located at a
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field-effect function y(x, y), Montfrin 2021 2021_04 26
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Figure 5.1: Field Effect Function on the field in Montfrin in 2021

different location. One plot is chosen as the target location where all plants are virtually moved to. This gives
an estimate for the field as if all plants were planted in one location. In this one location the field effect is a
fixed value. Thus if all plants were planted in this one location and there would be no statistical noise, then
there would be no field effect observed. This means that in the virtually replanted data the differences between
the plots of the same batch are mostly caused by statistical errors.

The replanting of a plot is done by taking the difference between the field effect of said plot and the target
location. This gives the difference in yield that can be attributed to spatial effect. By subtracting this found
difference from the obtained data of the plot that is replanted corrected data can be found. This corrected data
gives the canopy which would be found if the plot that is being replanted were planted at the target location.
Everything is now found to do the replanting that was desired to do. In Figure 5.2a the original data for Montfrin
2021 can be seen once again, just like in Figure 3.4. Now four plots are marked with an orange dot and four
with a red dot. The plots with a dot of the same color are planted with plants from the same batch, batch 31 for
the orange dots and batch number 65 for the red dots. For these batches the original and corrected data will be
observed. The plot marked by the red diamond is the target location, to which all plants are being replanted.
In Figure 5.2b the data can be seen after spacial correction. The same plots are marked with orange as in Figure
5.2a. Between the figures no immediate difference is seen, but we can compare some of the obtained values
for the marked batches.

In Table 5.1 on the right the values for batch 65 can be seen before and after replanting. For this batches the
original values and the values after replanting behave exactly in the way one would expect. The small values
have increased and the large values have decreased, dragging all values towards a average values.

For the other batch, batch number 31, this is not the case. There the large values are corrected to even larger
values. This is unexpected behaviour and might have to do with the model not functioning perfectly or with
statistical errors.

26



Raw canopy data: Montfrin 2021 2021_04_26
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Spatially corrected canopy data: Montfrin 2021 2021_04_26
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Figure 5.2: Original (a) and spatial corrected (b) data on the field in Montfrin in 2021 with plots marked for replanting and marked target

location

. Spatial . Spatial
Index 2;15(1:;:;1 Corrected Index gzlr‘lgg;} Corrected
Canopy Canopy
1 883.4 762.0 1 322.4 382.0
2 363.7 386.2 2 456.2 406.0
3 1506.5 1622.3 3 734.2 693.6
4 728.4 741.6 4 303.2 341.1

Table 5.1: Original and spatially connected data for batch 31(left) and batch 65 (right)

5.1.2 Replanting with a large total residual

It is also interesting to see what happens with the model when applied to a field with a performance that is not
as good. Therefore the same things applied to Montfrin 2021 will be applied to Montfrin 2019.
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In Figure 5.3 the field effect on this field can be seen. This figure shows the same as Figure 5.1, with a blue color
meaning a positive influence from field effect and a red color meaning a negative influence from field effect.
Here it can immediately be seen that the values of the influences of the field are small compared to the ones
found in Figure 5.1. Where in Figure 5.1 this ranged from -550 to 350, in Figure 5.3 it only ranges from -150 to
100. This might have to do with the fact that the field effect explains a far smaller portion of the differences in
data and a larger portion is explained by statistical error

In Figure 5.4 the original data and the replanted data can be seen. Again two batches are marked of which the
values can be seen in Table 5.2. Now the batches which are used are batch 60, in orange in the figures and in
the table on the left, and batch 65, in red in the figures and in the table on the right.

For both batches we see that for most of the indices the corrected data is greater than the original data. In
seven of the eight plots given here this is the case and this is also observed in other batches. This corresponds
with Figure 5.3, where more red is visible than blue, meaning that the corrections mostly are positive.

field-effect function y(x, y), Montfrin 2019 19 04 _2019
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Figure 5.3: Field Effect Function on the field in Montfrin in 2019
. Spatial . Spatial
Index Original Corrected Index Original Corrected
Canopy Canopy
Canopy Canopy
1 1097.2 1187.7 1 168.7 346.4
2 1025.2 971.4 2 105.4 209.1
3 896.7 1000.5 3 338.0 450.7
4 986.9 1080.9 4 2474 289.0

Table 5.2: Original and spatially connected data for batch 60(left) and batch 65 (right)
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Raw canopy data: Montfrin 2019 19_04 2019
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Figure 5.4: Original (a) and spatial corrected (b) data on the field in Montfrin in 2019 with plots marked for replanting and marked target
location

29



5.2 Correlation

In the previous section we saw some values for original and corrected data already, but it is desired to know
more about these values to be able to get a conclusion from it.

Something else that can be used to find out how well the model performs is researching the correlation be-
tween the data on the different fields. On fields that are planted in the same year the same batches are planted,
so there the correlation is expected to give some good information. This correlation is calculated both between
the original data of the fields and between the corrected data obtained using the kernel method. The way to
calculate correlation is by using Pearson correlation, where the correlation between two vectors of data, x and
¥, can be found using

e nY Xiyi— Y Xi Y Vi . (5.3)

V2 - x?/nLy - (S y)’

In Table 5.3 the correlations for the different years can be seen for the original data set. In Table 5.4 the correla-
tions for the corrected data can be seen. Obviously in all tables the values on the diagonal are equal to 1, since
the correlation of a vector with itself is one. The tables also are symmetric, as for two vectors the correlations
r(x,y)=r(y,x).

From these tables a couple of observations can be made that are unexpected. The first of this is that there is
negative correlation between the Montfrin 2021 and the other two fields in 2021. This is unexpected, as a batch
that performs well on one field is expected to perform well on another field as well. This negative correlation
would suggest that the better a batch performs on Montfrin in 2021, the worse it does on the other fields.
Something else that is unexpected is that the correlation does not improve for the corrected data. The cor-
relation in most cases even decreases after the correction. This is not the behaviour that is expected, as the
correction for field effect should give data that is closer to the expectation of the batches. This might suggest
that the model that is used does not work perfectly.

2019 Montfrin SPNA Veenklooster
Montfrin 1 0.528 0.579
SPNA 0.528 1 0.543
Veenklooster 0.579 0.543 1
2020 Montfrin SPNA Veenklooster
Montfrin 1 0.602 0.273
SPNA 0.602 1 0.176
Veenklooster 0.273 0.176 1
2021 Montfrin SPNA Veenklooster
Montfrin 1 -0.093 -0.174
SPNA -0.093 1 0.658
Veenklooster -0.174 0.658 1

Table 5.3: Correlations of original data in three different years, 2019 (top) 2020 (middle) and 2021 (bottom)
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2019 Montfrin SPNA Veenklooster
Montfrin 1 0.485 0.531
SPNA 0.485 1 0.543
Veenklooster 0.531 0.496 1
2020 Montfrin SPNA Veenklooster
Montfrin 1 0.598 0.185
SPNA 0.598 1 0.138
Veenklooster 0.185 0.138 1
2021 Montfrin SPNA Veenklooster
.OMontfrin 1 -0.091 -0.215
SPNA -0.091 1 0.642
Veenklooster -0.215 0.642 1

Table 5.4: Correlations of corrected data in three different years, 2019 (top) 2020 (middle) and 2021 (bottom)
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Conclusions and recommendations

In this project ways to find field effects on fields of crops using yield or canopy data were researched. For this
a model was introduced, the replanting model, which compares the values of a phenotype parameter of plots
with the plants of the same production origin at different locations in the field. The main goal of this project
was to apply this model in a way such that a function for the field effect could be found that does not depend
on a mesh of the field. The kernel method with the Gaussian kernel function allowed to find the field effect
function without the use of a mesh of the field. An explicit expression for the elements of the stiffness matrix
corresponding to the Gausssian kernel was derived. This matrix is employed as a gerularization term for con-
trolling the smoothness of the field-effect function.

In the process of finding the field effect some limitations where found. The choice of the kernel-function pa-
rameter o appears to be limited by an upper bound that makes sure that all matrices stay positive definite.
Keeping the representation and stiffness matrices positive definite allowed to employ the regularization the-
ory without modifications. However, without these constraints there might be ways to obtain better results.
The results for the field effects that where found were still far from perfect. In the spatially corrected data no
clear improvement was visible and the inter-field correlation got worse after spatially correcting the data. This
suggests that some parts of the method to find the field effect function are not working as expected and should
be improved.

For example, the ways in which the optimal parameters o and 7 are determined. Here this was done by find-
ing a value for o for which the computations certainly could be done, since the K and D matrices remained
positive definite, and then finding an optimal value for 7. This could be done differently, for example, by fixing
1 and finding an optimal value of o or even by looking at o above the bound for positive definiteness.
Another recommendation is trying out other kernel functions. Another kernel function was already consid-

ered:
1

‘l'p_l'n:ﬂ2 @r
(1+ et

The problem with this kernel turned out to be the construction of the D-matrix. The integral obtained for the
entries of this matrix could not be evaluated explicitly. This kernel function could be promising if the entries
of this matrix are found.

In any case, the kernel method presents a viable alternative for finding and visualising field effects without
influence or even the need of a mesh.

K(rp,rq, @) = (5.4)
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Appendix A

Derivation of the Euler-Lagrange Equation

Itis desired find an equation that finds a minimum for the functional F;, (y). This should find a y which satisfies

OF,

OF _, A1)
Jyq

forgel,...P.
For this we first derive the partial differential of F;(y).

dF,

L 0 [(RKy + RE)" (RKy + RE)]
0yq 204 ' !

10
+n| ==—

dr
Q2 ayq

P P
( yvap&J-(E:yvap&J
p=1

p=1

= [i(RKy+RE)T
0yq

(RKy + RE)
P 0 P
+17f YpVv (r)-—( YpVv (r))dr
\ p; P oy p; pVUp A2)

p P

= [(1!?1()T],1,:(1?1<«y+RE)+nfQ > yvap(r).(Z 6p,qv:/p(r)) dr
p=1 p=1
P

= [(RK)T]q,;(RKy+RE)+nL Z YpVp(r)-Vig(r) dr
p=1

P
= [(RK)T]q,;(RKy+RE) +7n Z yprva(r) Vv, (r)dr
p=1

Now here the [(RK)T] g, denotes the g-th row of the matrix. By putting these all together the Euler-Lagrange
equation of Chapter 1 is obtained:
(KTRTRK +nD)y, = —RT RE, (A.3)

The D-matrix is the stiffness matrix with the elements

[D]p,q:Lva(r)-Vvq(r) dr. (A.4)
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Appendix B

Extra Figures

This appendix includes all figures for fields which were not already included in the report. This means for most
fields the graph of the residuals, the field effect the original data and the corrected data. For some fields only
a selection of those is included here, as the others were already included in the report. None of the figures for
Montfrin 2021 are included at all, as these were all visible in the main report.

B.1 Montfrin 2019
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Figure B.1: Residuals of training and validation of the field in Montfrin in 2019

The field effect, the original data and the corrected data all were visible in the main report so they won’t be
included here.
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B.2 Montfrin 2020

CV residuals: Montfrin-2020
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Figure B.2: Residuals of training and validation of the field in Montfrin in 2020

field-effect function y(x, y), Montfrin 2020 20200422

Gaussian Kernel with 0 =48

5000 A

6000 A

7000 A

8000 A

9000 A

10000 A

11000 4

12000 1

-77.5 -58.1 —38.8 —-19.4 0.0 15.0 30.0 45.1 60.1

Figure B.3: Field Effect Function on the field in Montfrin in 2020
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Raw canopy data: Montfrin 2020 20200422
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Spatially corrected canopy data: Montfrin 2020 20200422
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Figure B.4: Original (a) and spatial corrected (b) data on the field in Montfrin in 2020 with marked target location
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B.3 SPNA 2019

CV residuals: SPNA-2019
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Figure B.5: Residuals of training and validation of the field in SPNA in 2019

field-effect function y(x, y), SPNA 2019 2019-06-19
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Figure B.6: Field Effect Function on the field in SPNA in 2019
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Raw canopy data: SPNA 2019 2019-06-19
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Spatially corrected canopy data: SPNA 2019 2019-06-19
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Figure B.7: Original (a) and spatial corrected (b) data on the field in SPNA in 2019 with marked target location



B.4 SPNA 2020

The residuals of SPNA 2020 were included in the main report.

field-effect function y(x, y), SPNA 2020 20200615
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Figure B.8: Field Effect Function on the field in SPNA in 2020
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Raw canopy data: SPNA 2020 20200615
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Spatially corrected canopy data: SPNA 2020 20200615
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Figure B.9: Original (a) and spatial corrected (b) data on the field in SPNA in 2020 with marked target location



B.5 SPNA 2021
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Figure B.10: Residuals of training and validation of the field in SPNA in 2021

field-effect function y(x, y), SPNA 2021 2021 _06_28
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Figure B.11: Field Effect Function on the field in SPNA in 2021
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Raw canopy data: SPNA 2021 2021_06_28
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Spatially corrected canopy data: SPNA 2021 2021_06_28
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Figure B.12: Original (a) and spatial corrected (b) data on the field in SPNA in 2021 with marked target location
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B.6 Veenklooster 2019

CV residuals: Veenklooster-2019
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Figure B.13: Residuals of training and validation of the field in Veenklooster in 2019
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field-effect function y(x, y), Veenklooster 2019 2019-05-29
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Figure B.14: Field Effect Function on the field in Veenklooster in 2019
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Raw canopy data: Veenklooster 2019 2019-05-29  Spatially corrected canopy data: Veenklooster 2019 2019-05-29
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Figure B.15: Original (a) and spatial corrected (b) data on the field in Veenklooster in 2019 with marked target location
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B.7 Veenklooster 2020
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Figure B.16: Residuals of training and validation of the field in Veenklooster in 2020
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field-effect function y(x, y), Veenklooster 2020 2020-06-10
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Figure B.17: Field Effect Function on the field in Veenklooster in 2020
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Raw canopy data: Veenklooster 2020 2020-06-10
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Spatially corrected canopy data: Veenklooster 2020 2020-06-10

Figure B.18: Original (a) and spatial corrected (b) data on the field in Veenklooster in 2020 with marked target location
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B.8 Veenklooster 2021

CV residuals: Veenklooster-2021
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Figure B.19: Residuals of training and validation of the field in Veenklooster in 2021
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, Veenklooster 2021 2021 06 11
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Figure B.20: Field Effect Function on the field in Veenklooster in 2021

50



Raw canopy data: Veenklooster 2021 2021_06_11 Spatially corrected canopy data: Veenklooster 2021 2021 06 11
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Figure B.21: Original (a) and spatial corrected (b) data on the field in Veenklooster in 2021 with marked target location
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