
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Completely FROST-ed
IoT issued FROST signature
for Hyperledger Fabric blockchain

Mostafa Khattat

ii

Completely FROST-ed
IoT issued FROST signature

for Hyperledger Fabric blockchain

by

Mostafa Khattat

Thesis Committee:
Thesis Advisor: Prof.dr. Georgios Smaragdakis

Daily Supervisor: Dr. Kaitai Liang

Daily Co-Supervisor: Dr. Roland Kromes

Committee Member: Dr. Qing Wang

Faculty: Electrical Engineering, Mathematics and Computer Science, Delft

i

Acknowledgement

I would like to express my sincere gratitude to all who contributed to the successful completion of my

master’s thesis.

Special thanks are extended to Dr. Roland Kromes for his exceptional mentorship and invaluable

support. His expertise helped shape the foundation of this thesis and his insightful feedback and

constructive criticism helped me to navigate through various obstacles encountered during the research

process. I am sincerely grateful for his understanding and flexibility during unforeseen delays, which

allowed me to successfully complete my master’s thesis.

My thanks also extend to my thesis advisor Prof.dr Georgios Smaragdakis, and my daily supervisor Dr.

Kaitai Liang for their insightful feedback and constructive contributions.

Finally, I would like to express my heartfelt gratitude to my family and friends. Their unconditional love,

patience, and continuous support have been a constant source of strength throughout this endeavor.

Mostafa Khattat
Delft, April 2024

ii

iii

Contents

Acknowledgement ii

Abstract 1

1 Introduction 2
1.1 Problem Description and Motivation . 3

1.2 Contributions . 4

1.3 Paper Structure . 4

2 Preliminaries 5
2.1 Digital Signatures . 5

2.1.1 ECDSA Signature . 6

2.1.2 Schnorr Signature . 6

2.2 FROST: Flexible Round-Optimized Schnorr Threshold Signatures 7

2.3 Blockchain . 9

2.3.1 Types of Blockchain . 9

2.3.2 Consensus Algorithms . 9

2.3.3 Smart Contracts . 11

2.4 Hyperledger Fabric . 12

2.4.1 The Membership Service Provider . 12

2.4.2 Overview of registration and enrollment . 13

3 Blockchain And IoT 15
3.1 Blockchain Integration with IoT . 15

3.2 Applications and Use Cases . 16

3.3 Threshold Signatures For IoT Blockchain . 16

4 Related Work 18
4.1 Lindell (2018) . 19

4.2 GG20 (2020) . 20

4.3 Damgard (2022) . 21

4.4 DKLS (2019) . 23

4.5 CMP (2020) . 24

4.6 RDCC (2022) . 25

4.7 Robustness in FROST . 26

4.8 Summary . 27

5 Proposed Protocol 29
5.1 Setup of the network architecture . 29

5.2 Registering and Enrolling with a Certificate Authority . 29

5.3 Transaction generation and signing API . 31

iv

Contents v

5.4 Technical details about the APIs . 32

6 Experiments And Results 33
6.1 Experiment 1: FROST in IoT devices . 33

6.1.1 Setup . 33

6.1.2 Methodology . 33

6.1.3 Results . 34

6.2 Experiment 2: Integration of FROST with Hyperledger Fabric 35

6.2.1 Setup . 35

6.2.2 Methodology . 37

6.2.3 Results . 37

7 Discussions 39

8 Conclusion 40

References 41

Abstract

Threshold signatures play a crucial role in the security of blockchain applications. An efficient threshold

signature can be applied to enhance the security of wallets and transactions by enforcing multi-device-

based authentication, as this requires adversaries to compromise more devices to recover the key.

Additionally, threshold signatures can protect user privacy, for instance, by enabling anonymous

transaction signing on behalf of a group of users sharing a blockchain wallet. This study conducts a

comprehensive analysis of threshold signature schemes, identifying FROST as the premier choice due

to its performance efficiency, improved energy consumption, and practical feasibility on mid-range IoT

devices and smartphones as demonstrated through empirical testing. Furthermore, we introduce a

protocol for integrating FROST with Hyperledger Fabric v3.0, aimed at enhancing IoT devices’ ability to

interact with blockchain networks through efficient transaction signing. Our experiments reveal that an

IoT network of five devices, under optimal network conditions, can sign a transaction and commit it to

the Hyperledger Fabric network within 3.2 seconds, leveraging a 2-second batch timeout configuration.

1

1
Introduction

In the evolving landscape of digital transformation, the integration of blockchain technology in various

sectors has become a key point for both industry and academia. With over 40% of organizations

worldwide adopting blockchain for digital currencies, asset tracking, and digital identification, the need

for efficient and secure transaction signing mechanisms has never been more critical [13].

The conventional approach to managing digital signatures and keys in blockchain applications

involves storing the cryptographic keys on a single device. This method, while straightforward,

introduces a single point of failure; that is, if the device is compromised, the keys - and consequently,

the digital assets or permissions they protect - are at risk [3].

One alternative solution to mitigate the risk of a single point of failure is to allow a group of signers

to produce a joint signature on a common message. The most straightforward and trivial approach to

creating a multi-signature involves each signer generating an individual signature with their private

key and then aggregating these signatures, this method results in a multi-signature size that increases

linearly with the number of signers. This allows for the verification of the signature’s validity using the

message and the collective public keys of all participating signers [31].

While the traditional multi-signatures are functional, they are insufficient in terms of scalability

and efficiency, leading to increased verification time and storage requirements on the blockchain.

Additionally, this approach can potentially lead to privacy issues, as it reveals the identities of the

signers.

This will set the stage for our investigation into threshold signature schemes, particularly the FROST

algorithm, to find a suitable alternative, especially in the context of the Internet of Things (IoT) devices.

Threshold signatures, or "t-of-n" signatures, offer a more streamlined approach where a single signature,

verifiable by a common public key, suffices for transaction validation. This does not only reduces the

blockchain’s storage but also increases security by distributing the signing capability among multiple

participants or devices.

In this work, we provide a comprehensive survey of recent threshold signatures, focusing on two

approaches: ECDSA- and Schnorr-based schemes. We show the performance, characteristics differences

and a summary of key and signature generation. Additionally, it is important for the algorithms running

on IoT devices to be energy efficient. We evaluate how FROST performs in terms of energy consumption

compared to two other popular threshold signature schemes, namely GG20 [27] and DKLS [20].

2

1.1. Problem Description and Motivation 3

Sign Transaction

Using FROST

Blockchain

User 1

User 2

User 3

User 4

(a) Multi-User (b) Multi-Device

Figure 1.1: Frost threshold signature use cases in blockchain context

1.1. Problem Description and Motivation
The integration of blockchain technology in IoT applications presents unique challenges, notably in

terms of resource constraints and efficiency. Our work is motivated by the need to address the limitations

of ECDSA-based threshold signatures, which are characterized by their high execution time, high

energy consumption, and operational complexity. With potentially thousands of devices needing to

authenticate transactions or communications securely, the scalability of the signing mechanism becomes

crucial. The traditional approaches, especially those involving multi-signatures, lack the scalability.

By focusing on FROST, a Schnorr signature-based scheme, we aim to explore its adaptability and

performance benefits, particularly in IoT environments. Despite the predominant use of ECDSA in

current blockchain technologies, the promising characteristics of FROST, coupled with the architectural

flexibility of permissioned blockchains such as Hyperledger Fabric, present a compelling case for our

research.

Furthermore, this work is inspired by applying two real-life use case scenarios in the context of an

IoT-Blockchain system in which integrating FROST threshold signature can make it feasible. Figure 1.1

shows an overview of the two use cases. Below we explain each in more detail.

Multi-Device Scenario
In the first scenario, the Multi-device wallet, we focus on enhancing the security of a blockchain wallet

by distributing its secret key across multiple devices owned by a single user. The Multi-Device scenario

illustrates a form of distributed multi-factor authentication (MFA) within the IoT blockchain applications.

These devices can be a smartwatch, smartphone or laptop. For example, by using a 2-out-of-5 threshold

signature scheme, the protocol requires collaboration among at least two out of five devices to authorize

a transaction with the blockchain wallet’s secret key. This approach ensures the security of the wallet

against unauthorized access. The distributed nature of the secret key across devices introduces a layer of

protection that is resilient to the compromise of any single device, ensuring that the blockchain wallet’s

integrity is maintained even in the event of partial security breaches [54].

Multi-User Scenario
The second scenario, the Multi-user wallet, focuses on enhancing privacy protection and enabling

shared ownership of a blockchain wallet among multiple users. In this configuration, the secret key of

a blockchain wallet is divided among the participants. For instance, utilizing a 3-out-of-5 threshold

signature scheme requires the cooperation of at least three out of five users to execute a transaction,

1.2. Contributions 4

thus enabling joint control over the shared wallet. This model not only strengthens the privacy of

users but also introduces an anonymous signing process. Within this framework, users collaboratively

produce a single signature for the transaction. This collective signature is indistinguishable from those

generated by individual users. Importantly, the blockchain, which performs the usual verification

process, is unaware that the signature is the product of a collaborative effort among multiple users. The

key to this anonymity lies in the off-chain generation of the threshold signature. Unlike traditional

multi-signatures, which are processed on-chain and can reveal the involvement of multiple signers,

the off-chain approach of threshold signatures conceals the fact that the signature was generated by a

group. As a result, the generated signature, verifiable by the blockchain wallet’s public key, hides the

identities and the exact number of users involved in the transaction, thus providing anonymity and

preventing any external party from deducing the internal dynamics of the wallet’s ownership [54].

1.2. Contributions
The main contributions to this work are as follows:

• A comprehensive survey of recently proposed threshold schemes, ECDSA and Schnorr, in IoT

context.

• We provide APIs deployed on top of Hyperledger Fabric SDK, enabling transaction signing with

the FROST signature algorithm and the registration of a group of devices to the Hyperledger

Fabric network.

• Evaluating energy consumption of three threshold signature schemes, GG20, DKLS, and FROST, in

IoT devices. We provide insights into their operational efficiencies. This aspect of our research not

only highlights FROST’s suitability for IoT devices but also emphasizes its potential to revolutionize

transaction signing in blockchain networks.

• Deployment of an IoT-enabled Android-based application combining FROST, and Hyperledger

Fabric SDK.

• Testing FROST signature verification on Hyperledger Fabric v3.0.

1.3. Paper Structure
The rest of the paper is organized as follows: Chapter 2 describes the preliminaries of digital signatures,

FROST signature, blockchain technologies overview and an overview of Hyperledger Fabric and its

components. Chapter 3 presents Blockchain and IoT. Furthermore, chapter 4 provides a state-of-the-art

survey of threshold signatures. Moreover, our proposed protocol is presented in chapter 5. The

experiments and results of the proposed protocol are provided in chapter 5. Finally, chapter 7 discusses

and chapter 8 concludes the paper.

2
Preliminaries

In this section, we describe the preliminaries of digital signatures, the FROST signature, and blockchain

technologies and highlight the Hyperledger Fabric blockchain.

2.1. Digital Signatures
Digital signatures play an important role in ensuring the authenticity and integrity of electronic

documents and transactions. Essentially, a digital signature is a cryptographic mechanism that verifies

the origin and integrity of digital messages or documents. Similar to handwritten signatures, digital

signatures provide a means for individuals or entities to sign electronic documents [66].

A digital signature involves the use of asymmetric cryptography, where a pair of keys, namely a

private key and a public key, are utilized. The private key is known only to the signer and is used to

generate the signature, while the corresponding public key is shared openly and used to verify the

signature.

Signing
To sign a document, the signer uses their private key to generate a unique cryptographic hash of the

document. This hash, along with other relevant information, is encrypted using the signer’s private key

to produce the digital signature.

Verification
To verify the signature, the recipient of the document uses the signer’s public key to decrypt and

obtain the hash value. Subsequently, the recipient independently computes the hash of the received

document. If the computed hash matches the decrypted hash obtained from the signature, the signature

is considered valid, confirming the document’s authenticity and integrity.

In this section, we explore two digital signature schemes: the Elliptic Curve Digital Signature Algorithm

(ECDSA) and the Schnorr Signature.

5

2.1. Digital Signatures 6

2.1.1. ECDSA Signature
The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve variant of the Digital

Signature Algorithm (DSA). Below, we briefly explain the procedure for generating and verifying an

ECDSA signature [32]:

Suppose Alice wants to sign a message 𝑚 and send the signature to Bob. They both agree on the

elliptic curve parameters (𝐺, 𝑛)where 𝐺 is a base point on the curve and 𝑛 is the multiplicative order

of 𝐺 and is prime. Furthermore, Alice generates a pair of public key 𝑄𝐴 and a private key 𝑑𝐴 where

𝑄𝐴 = 𝑑𝐴 × 𝐺. Finally, to verify if Alice’s signature is valid, Bob must have a copy of her public key 𝑄𝐴.

Signature Generation
1. Select a cryptographic secure pseudorandom integer 𝑘 where 1 ≤ 𝑘 ≤ 𝑛 − 1

2. Compute the curve point (𝑥1 , 𝑦1) = 𝑘 × 𝐺.

3. Compute 𝑟 = 𝑥1 mod 𝑛. If 𝑟 = 0 then start over.

4. Compute 𝑘−1
mod 𝑛.

5. Compute 𝑒 = HASH(𝑚) where 𝑚 is the message and HASH is a cryptographic hash function e.g.,

SHA-3 [49].

6. Compute 𝑠 = 𝑘−1(𝑒 + 𝑑𝑟)mod 𝑛. If 𝑠 = 0 then start over.

7. The signature for the message 𝑚 is the pair (𝑟, 𝑠).

Signature Verification
1. Verify that 𝑟 and 𝑠 are integers where 1 ≤ 𝑟, 𝑠 ≤ 𝑛 − 1. Otherwise, reject the signature.

2. Compute 𝑒 = 𝐻𝐴𝑆𝐻(𝑚) where HASH is the same cryptographic hash function used in the

signature generation.

3. Compute 𝑤 = 𝑠−1
mod 𝑛.

4. Compute 𝑢1 = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑟𝑤 mod 𝑛.

5. Compute 𝑋 = 𝑢1𝐺 + 𝑢2𝑄. If 𝑋 = 𝑂, then reject the signature where 𝑂 is the identity element.

6. Compute 𝑣 = 𝑥1 mod 𝑛 where 𝑋 = (𝑥1 , 𝑦1).

7. if and only if 𝑣 = 𝑟 then accept the signature.

2.1.2. Schnorr Signature
The Schnorr Signature is one of the earliest discrete logarithmic-based signature schemes derived

from the Schnorr identification scheme [61, 60]. Pointcheval and Stern proved the security under the

assumption of Discrete Logarithm [51, 50] in the Random Oracle Model [12]. Originally the Schnorr

signature was covered by patent US4995082A [59] . However, the patent expired in February 2010.

Similar to ECDSA, we first generate a pair of public and private key

• Select the private key 𝑥 from 𝑍𝑞 \ {0}.

• Compute the public verification key 𝑦 = 𝑔𝑥 .

2.2. FROST: Flexible Round-Optimized Schnorr Threshold Signatures 7

Signature Generation
To sign a message 𝑚:

1. Chose a random 𝑘 from 𝑍𝑞 .

2. Compute 𝑟 = 𝑔𝑎 .

3. Compute 𝑒 = 𝐻𝐴𝑆𝐻(𝑚 | |𝑟)where | | denotes concatenation or padding.

4. Compute 𝑠 = 𝑘 + 𝑒𝑥 mod 𝑞.

5. The signature for the message 𝑚 is the pair (𝑠, 𝑒).

Signature Verification
Given a message 𝑚 and a signature (𝑠, 𝑒):

1. Compute 𝑟𝑣 = 𝑔𝑠𝑦𝑒 .

2. Compute 𝑒𝑣 = 𝐻𝐴𝑆𝐻(𝑟𝑣 | |𝑚).

3. if and only if 𝑒𝑣 = 𝑒 then accept the signature.

2.2. FROST: Flexible Round-Optimized Schnorr Threshold Signa-
tures

FROST is a threshold signature scheme built upon the Schnorr signature algorithm. FROST requires

only two rounds of communication for both key generation and the signing protocol. Additionally, it

offers the potential for optimization to a single round by incorporating a preprocessing step that can be

performed before the message is known [35]. The core characteristic of FROST is its trade-off between

network efficiency and robustness. However, not all participants are honest. There are cases where

some misbehaving participants do not follow the protocol or contribute malformed values during the

protocol. While FROST is capable of identifying misbehaving participants (primarily during the signing

phase), it comes at the cost of potentially having to re-run the signing protocol when misbehavior is

detected [35]. Below, we explain briefly the FROST key generation and signing algorithm:

A semi-trusted signature aggregator (𝑆𝐴) can be used to reduce the communication overhead. The

role of (𝑆𝐴) doesn’t give more privileges than the adversary and can be performed by either any of the

participants or a third party as long as they know the participants’ public key shares. The 𝑆𝐴 has the

responsibility to report the misbehaving participants and to publish the group’s signature at the end of

the protocol.

However, in some scenarios where having a central 𝑆𝐴 is not feasible, FROST can be used without

a signature aggregator. Participants need to simply perform a broadcast instead of using a 𝑆𝐴 for

coordination.

The FROST protocol consists of two sub-protocols:

• Key generation in which all participants collaboratively generate a group’s private key with a

corresponding public key. Note that the group’s private key is never constructed. Instead, each

participant receives a long-lived private share which will be used to compute a verification share.

• Signing in which any subset of participants equal to or greater than the threshold can sign a

message.

Below, we describe these two sub-protocols in more detail.

2.2. FROST: Flexible Round-Optimized Schnorr Threshold Signatures 8

Key Generation
FROST builds upon Pedersen’s Distributed Key Generation (DKG) protocol [48], where each participant

concurrently executes Feldman’s Verifiable Secret Sharing (VSS) [24]. FROST requires participants to

prove knowledge of their secret shares through zero-knowledge proofs [28], specifically instantiated

as Schnorr signatures to protect against potential rogue-key attacks in a setting where the threshold

setting 𝑡 ≥ 𝑛/2 [11].

In the first round of key generation, after participants collectively agree on the threshold value 𝑡

and the total number of participants 𝑛, each participant 𝑃𝑖 chooses a secret value 𝑎𝑖0 along with 𝑡 − 1

random coefficients. These coefficients are utilized to generate a polynomial of degree 𝑡 − 1.

Each participant 𝑃𝑖 computes a zero-knowledge proof (ZKP) for their 𝑎𝑖0 and constructs a vector of

public commitments for all coefficients. Participants broadcast their ZKPs and commitment vectors,

and each participant verifies the received ZKPs using the first component of the public commitment. If

verification fails, the protocol is aborted.

In the second round of key generation, each participant securely sends to every other participant a

secret share which is the shares of their secret 𝑎𝑖0. The shares are validated by each participant using

the public commitment vector. The protocol aborts if the validation check fails.

Finally, participants compute their long-lived private signing shares and their public verification

shares 𝑌𝑖 . The group public key 𝑌 is derived from the first component of the public commitment vector

contributed by each participant.

Signing Protocol
The signing protocol for FROST is divided into a pre-processing phase and a single-round signing phase

(or combined into a two-round protocol). FROST prevents known forgery attacks, notably addressing

the threat posed by Drĳvers et al. [23]. The binding technique ensures that each participant’s response

is linked to a specific message, set of participants, and commitments used in a signing operation,

preventing malicious actions without restricting concurrency.

Pre-processing Phase: This phase can be executed before the message is known and is designed to

support multiple signing operations (𝜋). During this phase, each participant calculates 𝜋 private

single-use nonces (𝑑𝑖 𝑗 , 𝑒𝑖 𝑗) along with their corresponding public commitments (𝐷𝑖 𝑗 , 𝐸𝑖 𝑗), which are then

broadcasted to all other participants.

Signing Phase: In this phase, a message 𝑚 is known, and at least 𝑡 signers are selected to sign the

message. Each signer selects the first available commitment for every other participant with their

corresponding identifier 𝑖 in the format 𝐵 = (𝐷𝑖 , 𝐸𝑖 , id𝑖) and constructs an ordered list of tuples <𝐵, 𝑚>.

Subsequently, signers calculate a set of binding values 𝜌𝑖 = 𝐻1(𝑖 , 𝑚, 𝐵𝑖) using a hash function 𝐻1.

• The group commitment 𝑅 is computed alongside the challenge 𝑐 = 𝐻2(𝑅,𝑌, 𝑚), utilizing another

hash function 𝐻2.

• Each participant calculates their response 𝑧𝑖 = 𝑑𝑖 + (𝑒𝑖 · 𝜌𝑖) + 𝜆𝑖 · 𝑠𝑖 · 𝑐, where 𝑠𝑖 represents the

long-lived secret share and 𝜆𝑖 is the Lagrange coefficient for id𝑖 within the set of signers.

• Participants transmit their respective 𝑧𝑖 values to all other participants.

Aggregation and Verification: Following reception of 𝑧𝑖 values, participants verify the validity of each

𝑧𝑖 using their public verification share 𝑌𝑖 . Once verified, the group’s response is computed as 𝑧 =
∑
𝑖 𝑧𝑖 .

Group Signature: The group’s signature on message 𝑚 is represented as (𝑅, 𝑧), which can be verified

using the standard Schnorr verification algorithm alongside the group’s public key 𝑌.

2.3. Blockchain 9

2.3. Blockchain
Blockchain is a decentralized and distributed ledger consisting of a sequence of blocks to keep track of

all transaction records. These blocks are chained together using a cryptographic hash of a previously

created block which guarantees causality. This means if someone wants to submit the same transaction

twice, they have to change all the blocks before the latest block since the first block is called the Genesis

block and has no parent.

2.3.1. Types of Blockchain
A blockchain network can be divided into three main categories based on their permission: public,

private and consortium [70, 19]. Public blockchains are open to everyone, and allow any user to

participate in the core activities of the network such as validating transactions, reading and consensus

process resulting in immutable data storage [68]. In this type of blockchain, the entire node must

agree on the appended blocks which means it takes more time to process and record the block to the

blockchain [40]. Bitcoin [43] and Ethereum [25] are examples of such public blockchain networks.

A private blockchain, on the other hand, is controlled by a centralized network and only some

nodes are allowed to join the consensus process. The private blockchain can have a higher throughput

compared to the public blockchains since it the validation happens by fewer nodes with a high processing

power as opposed to a large number of nodes in public blockchain networks which could be running

on less powerful systems [74]. In this type of network, the consortium or the company running the

blockchain can easily modify the network such as changing the rules, reverting the transactions, etc.

Furthermore, since the validators are known the risk of a 51% attack [8] does not apply. Hyperledger

Fabric is an example of such a private blockchain network [6].

Consortium blockchains represent an interesting architectural model that combines the transaction

efficiency and privacy features of private blockchains with the decentralized governance characteristic

of public blockchains. The key distinction between private and consortium blockchains lies in their

governance structure and infrastructure. In private blockchains, a single entity has full control

over the entire system, while consortium blockchains distribute authority among multiple members.

Consequently, the infrastructure of private blockchains tends to be centralized, resembling traditional

distributed databases where data is replicated across nodes owned by a single entity. On the other

hand, consortium blockchains are deployed in a decentralized fashion across multiple hardware nodes

managed by different owners or companies. Furthermore, data within consortium blockchains is

not necessarily homogeneous among consortium nodes, as certain transactions can be kept private

and shared only among specific subsets of participants, resulting in knowledge fragmentation across

the network. This nuanced approach to governance and data sharing makes consortium blockchains

well-suited for collaborative endeavors involving multiple stakeholders with varying levels of trust and

authority [19].

2.3.2. Consensus Algorithms
Reaching an agreement within a blockchain network, especially where nodes are inherently untrustwor-

thy and the environment is decentralized, is a challenging Byzantine Generals (BG) problem [36]. The

BG problem illustrates the difficulty of achieving unanimous agreement in a distributed system where

some participants may act maliciously or fail to communicate. In the context of blockchain, this issue is

compounded by the fact that once transactions are added to a block and the block is verified by the

network, it becomes immutable or in the case of public blockchains deleting these records is not feasible.

2.3. Blockchain 10

The network is designed to function reliably even amidst adversarial users in a trustless environment.

Over time, a variety of consensus algorithms have been developed, each designed to address specific

challenges of decentralization, security, and efficiency. Although the number and complexity of these

algorithms continue to grow with the evolution of blockchain technology, we focus on some of the

widespread adoption options in the blockchain networks such as Proof of Word (PoW), Proof of Stake

(PoS) and Practical Byzantine Fault Tolerance (PBFT).

Proof of Work (PoW)
Proof of Work (PoW), a consensus mechanism first introduced by Satoshi Nakamoto in 2009 and

foundational to Bitcoin’s operation, represents a strategy for achieving consensus in decentralized

networks [43]. At its core, PoW requires nodes, or miners, to perform extensive computational work to

solve mathematic calculations. This process, known as mining, involves calculating a hash value for

the block header, which includes a unique number called a nonce. The objective is to find a nonce that

results in a hash value meeting a specific condition, such as having a certain number of leading zeros.

This condition ensures that the solution is difficult to achieve but easy for the network to verify.

The hash function itself is designed to be a one-way, computationally demanding task that validates

the transactions within a block. When a miner successfully solves the puzzle, they broadcast the block

to the network, which then verifies the solution. If accepted, the new block is added to the blockchain,

and the miner is rewarded [57]. Additionally, the difficulty of the puzzles can be adjusted, offering

scalability to accommodate network growth.

However, the PoW mechanism is not without its drawbacks. The intensive computational effort

required for mining consumes a significant amount of energy, raising concerns about sustainability

[74]. Furthermore, the reliance on specialized hardware for mining concentrates power among those

who can afford such equipment, potentially compromising the decentralized ethos of blockchain. The

time-consuming nature of puzzle-solving also limits transaction throughput, making PoW less suited

for networks that demand high transaction volumes and speeds [5].

In response to some of the drawbacks regarding intensive computational effort, alternative PoW

protocols, such as Primecoin, have been developed to ensure that the computational work performed

during mining has secondary applications, such as searching for chains of prime numbers valuable for

mathematical research [33].

Proof of Stake (PoS)
Proof of Stake (PoS) emerged as a consensus algorithm to address the significant energy consumption and

inefficiency inherent in Proof of Work (PoW) systems. Introduced with the Peercoin cryptocurrency in

2011, PoS represents a more sustainable and scalable approach to blockchain consensus by determining

the creator of the next block through mechanisms that consider the user’s stake in the cryptocurrency

[10].

Unlike PoW, which relies on computational power to validate transactions and create new blocks,

PoS selects validators based on the amount of cryptocurrency they hold and are willing to "stake" as

collateral. This process can involve various combinations of random selection, the stake’s size, and its

age, reducing the need for energy and computation-intensive mining activities. Consequently, validators

in PoS systems are rewarded not through new cryptocurrency creation but via transaction fees [57].

However, PoS is not without its drawbacks. Centralization concerns arise since the system inherently

favors those with larger stakes, potentially leading to a dominance of the network by wealthier nodes.

Furthermore, the "nothing at stake" problem posits a scenario where validators have little to lose in

acting maliciously, such as by supporting multiple blockchain forks to receive more transaction fees [57].

2.3. Blockchain 11

Some solutions have been proposed to overcome some of the drawbacks of PoS. For example, in

Peercoin [34] protocol, block generation is based on coin age. In this approach, the probability of mining

the next block linearly increases by the amount of unspent coins.

Despite some of the benefits of the PoS approach such as higher transaction throughput, reduced

block creation times, independence from specialized hardware and being more energy-efficient and

scalable compared to the PoW, it is not trivial to transition from PoW to PoS as can be seen by the ongoing

effort of Ethereum’s gradual shift from Ethash (a PoW algorithm) [25] to Casper (a PoS algorithm) [72].

Practical Byzantine Fault Tolerance (PBFT)
Practical Byzantine Fault Tolerance (PBFT) addresses the Byzantine General’s Problem, an issue in

distributed computing systems where nodes must agree on a single course of action, even in the presence

of malicious actors. This consensus mechanism is particularly relevant in today’s digital ecosystem,

where the increasing reliance on online services amplifies the potential impact of software errors and

malicious attacks [17].

PBFT operates on a state machine replication model, ensuring that all nodes in the network agree on

the state of the system. It achieves consensus through a voting process where a block is added to the

chain only if more than two-thirds of the nodes express a favorable opinion. This threshold allows the

system to tolerate up to one-third of the nodes acting maliciously or failing. For instance, in a network

with one malicious node, at least four nodes must reach an agreement for consensus to be achieved.

This mechanism enables PBFT to provide a faster and more cost-effective solution to consensus than

Proof of Work, without requiring any form of asset stake as in Proof of Stake [57].

Despite its advantages, including energy efficiency and high throughput, PBFT faces challenges such

as potential delays due to the requirement for comprehensive voting across all nodes.

2.3.3. Smart Contracts
Smart contracts, conceptualized by Nick Szabo, execute contracts with the terms of the agreement

between parties directly written into lines of code [67]. The code and the agreements contained therein

exist across a distributed, decentralized blockchain network. Smart contracts permit trusted transactions

and agreements to be carried out among disparate, anonymous parties without the need for a central

authority, legal system, or external enforcement mechanism.

Zheng et al. divides the life cycle of smart contracts into four phases [76]:

• Creation: The process begins with the negotiation of contract terms among the involved parties,

including obligations, rights, and prohibitions. Lawyers or counselors draft the initial agreement

in natural language, which software engineers then translate into computer code. This phase is

iterative, involving multiple rounds of discussion to refine the contract details, ensuring that all

parties’ expectations are met and accurately represented in the final smart contract [75].

• Deployment: Once the smart contract is ready, it is deployed on a blockchain platform. Due to

the immutable nature of blockchain, any modifications post-deployment require the creation of a

new contract [75].

• Execution: The smart contract actively monitors and evaluates the contractual conditions after

deployment. When specific conditions are met, the contract automatically executes the agreed-

upon functions. This phase emphasizes the autonomous execution of contracts based on predefined

logic, ensuring that all actions are recorded as immutable transactions on the blockchain [75].

2.4. Hyperledger Fabric 12

• Completion: Upon execution, the smart contract updates the state of all parties involved and

unlocks the previously frozen digital assets, facilitating the transfer of assets from one party

to another as per the contract terms. This final phase marks the fulfillment of the contractual

obligations and the conclusion of the smart contract’s lifecycle, with all relevant transactions and

updated states securely stored on the blockchain [75].

2.4. Hyperledger Fabric
Hyperledger Fabric is one of the most popular permissioned blockchains designed to meet the needs of

enterprise and business applications, preserving the advantageous features of blockchain technology

while addressing aspects that may be less suited for enterprise environments [37].

Hyperledger Fabric serves as a distributed ledger platform and facilitates the execution of distributed

applications written in general-purpose programming languages such as GO, Java, and NodeJS.

Hyperledger Fabric introduces a different approach for transactions known as execute-order-validate

[7].

At its core, the Fabric consists of multiple nodes that form a network. These nodes communicate

with each other and execute programs, known as smart contracts or chaincode, maintain state, and

manage ledger data.

The nodes in the Fabric fulfill three distinct roles: client, peers, and Ordering Service Nodes (OSNs).

Clients submit transaction proposals, peers execute, and validate transactions, and maintain the state

and the ledger data. Further, the OSNs collectively ensure consistency and integrity throughout the

system. They provide communication services such as "broadcast" and "deliver" calls to establish order

on transactions. Note that the orderer nodes are unaware of the application state and do not partake in

transaction execution or validation, simplifying the consensus process and allowing for modularity in

consensus protocol selection.

The system state which reflects the latest state of the blockchain is represented as a versioned key-

value store (KVS), where chaincode manipulates data through "put" and "get" operations. Meanwhile,

the ledger serves as a comprehensive record of all valid and invalid state changes, organized into blocks

by the ordering service.

Additionally, Fabric supports the concept of channels, enabling the creation of multiple blockchains

connected to the same ordering service. Each channel functions as an independent blockchain with its

own set of members, allowing for state partitioning [7].

2.4.1. The Membership Service Provider
Since Fabric is a permissioned network, participants in the blockchain network need to prove their

identity. The Membership Service Provider (MSP) manages identities and roles within the network,

ensuring that participants can prove their identity and authorization to interact with the blockchain.

MSP uses a public key infrastructure (PKI) to establish a chain of trust, allowing Certificate Authorities

to issue identities in the form of digital certificates. Each identity is associated with specific roles such

as admin, peer, client, or orderer. These identities are recognized by the network and used to endorse

transactions and validate the integrity of network actions. Moreover, the MSPs permit the recognition

of revoked identities, enhancing security measures by preventing unauthorized access or actions within

the network.

2.4. Hyperledger Fabric 13

Figure 2.1: Current process of registering and enrolling a user in Fabric

2.4.2. Overview of registration and enrollment
In Hyperledger Fabric, the Certificate Authority (CA) is responsible for dispensing X.509 certificates,

which serve as digital identities for network participants. The Fabric CA provides two essential features:

registration of identities, and issuance of enrollment certificates.

During registration, the CA administrator assigns an enroll ID and secret (similar to a username and

password) to an identity, along with specifying its role, affiliation, country, and any required attributes.

Once the identity is registered, the Fabric CA generates a pair of public/private keys for the user.

Together with the parameters provided by the CA administrator, the user generates a certificate Signing

Request (CSR). The CSR contains three main components:

• Certificate Request Information: This section contains the enroll ID, public key, host, serial

number, and other relevant user information.

• Signature Algorithm: The signature algorithm identifier e.g, ECDSA, ED25519, etc.

• Digital Signature: The signature on the certificate requests information that is signed by the

user’s private key.

Figure 2.2 shows an example of a CSR. Finally, the CSR will be processed by the Fabric CA to generate

a public X509 certificate and will be sent back to the user and the MSP. The private key, however, is

kept by the user and is used to sign a transaction. The other nodes on the network can then verify the

transaction proposal by using the public X509 certificate stored in MSP. Figure 2.1 shows an overview of

this process.

Admin identities within the network are also subject to registration and enrollment processes. Admin

identities are registered and enrolled with an "organization CA," which generates identity certificates

for both admins and nodes. Additionally, nodes within the network are required to be registered and

2.4. Hyperledger Fabric 14

Figure 2.2: An example of a CSR

enrolled with a TLS CA to create a public/private TLS key pair for securing communications. This TLS

key pair is utilized by nodes for signing and encrypting communications.

3
Blockchain And IoT

The Internet of Things (IoT) is an expansive network that extends internet connectivity beyond traditional

devices like computers and smartphones to a vast array of objects, devices, sensors, and everyday

items. This concept, first introduced by British technology pioneer Kevin Ashton in 1999, envisioned a

world where physical objects could be connected to the Internet via sensors, thereby enabling automatic

identification and data collection without human intervention. Initially, the focus was on enhancing

corporate supply chains through Radio-Frequency Identification (RFID) tags, illustrating the potential

to streamline inventory management by tracking goods through Internet-Connected tags [55].

However, the vision is expanded beyond its initial focus. IoT represents the idea of enhancing

connectivity and interaction among a wide range of devices, from consumer electronics to industrial

equipment, through Internet Protocol (IP) technology. This enhanced connectivity facilitates the

autonomous operation of devices, allowing them to perceive their environment, analyze data, and make

decisions or communicate with other connected entities to optimize their function [42].

IoT applications cover a vast array of daily activities and industrial operations, characterized by the

interaction between end devices and networking technologies. Two critical attributes of IoT systems are

their heterogeneity and decentralization [53]. These two features make IoT devices a great candidate for

decentralized computing and clustering algorithms. Integrating blockchain within the IoT structure

can be utilized to ensure the security and integrity of data since the data stays immutable and can be

tracked at any time through the blockchain network.

3.1. Blockchain Integration with IoT
The integration of blockchain technology with the IoT addresses security challenges heightened by

the expanding IoT vision. As the number of IoT devices increases, they become prime targets for

various cyber threats, including Distributed Denial-of-Service (DDoS) attacks, eavesdropping, and

man-in-the-middle (MITM) attacks, among others [14, 52, 41]. The centralized nature of traditional

IoT security frameworks, presents a single point of failure, exposing the network to additional risks

concerning accessibility, authorization, and privacy [65].

Blockchain’s decentralized architecture offers a robust solution to these vulnerabilities. By distributing

validation across different nodes, blockchain reduces the risk of falsified validations and the feasibility

of DDoS attacks through consensus mechanisms that apply transaction fees [30]. This decentralized

15

3.2. Applications and Use Cases 16

approach not only enhances data integrity but also ensures that security measures are not solely

dependent on third-party entities.

Blockchain can be used to enforce access control policies within IoT networks. Innovative blockchain-

supported models have been proposed for improving network security by enabling access permissions

through custom cryptocurrencies [73] or access control based on tokens where different roles can

be assigned to users and control protocols [46]. These approaches, among others, demonstrate how

blockchain can facilitate access management, prevent unauthorized access, and enhance the security of

communications among IoT devices.

Furthermore, the immutable nature of blockchain allows the integrity of data and mitigates data

integrity threats. For example, Boudguiga et al. proposed a mechanism to manage firmware updates

in IoT devices, by using a consortium blockchain to update and record the firmware update in a

peer-to-peer environment [15]. Additionally, the decentralized nature of blockchain can inherently

improve the availability of services within IoT systems. Blockchain can be used to provide a resilient

and fault-tolerant infrastructure against DDoS attacks [47].

3.2. Applications and Use Cases
Recently, there have been a lot of studies around applications and use cases of incorporating blockchain

technologies into IoT systems [4]. These applications emphasize blockchain’s built-in advantages,

including its unchangeable nature, resilience to faults, ability to execute smart contracts, cryptographic

protection, decentralized governance, and assurance of data integrity and authentication. It’s noteworthy

that certain applications opt in for specific blockchains designed specifically for their requirements,

instead of relying on open-source options like Ethereum and Hyperledger Fabric [58].

A lot of Innovations in blockchain-based smart home applications have been proposed with a focus

on enhancing security, privacy, and data integrity. Proposals range from decentralized key management

systems for device interaction to Ethereum-based implementations for monitoring and accessing home

appliances, emphasizing user privacy and system efficiency. Dorri et al. proposed a blockchain-based

case study of a smart home. In this setting, the smart devices may communicate directly with each

other or some external entities outside of the smart home. For instance, a motion sensor can detect some

movement and signal the light bulb to turn on, facilitated by a miner that distributes a shared key for

direct communication among devices. After a device receives and confirms the key as a valid key, it can

then directly interact with other devices [21].

In the healthcare sector, IoT devices such as smartphones, wearables, or sensors implanted in

patients are utilized in various ways, including early detection of medical issues, emergency alerts, and

computer-assisted rehabilitation. These devices, alongside data collected from hospitals and diagnostic

tools, enable automated healthcare management [62]. Therefore, it is important to develop a privacy-

preserving IoT-based healthcare system to ensure the security and privacy of data. Blockchain can be

used to address key challenges in healthcare data management, including data sharing, interoperability,

and privacy. Projects like "MeDShare" [69] are proposed to solve the data sharing of medical data from

different sources in a trust-less environment via blockchain. In the MeDShare project, the data can be

traced and access to individuals in case of permission violation can be revoked [69].

3.3. Threshold Signatures For IoT Blockchain
In the landscape of blockchain-based applications for IoT devices, the concept of threshold signatures

offers a robust solution for distributed trust and key management within IoT blockchain networks.

3.3. Threshold Signatures For IoT Blockchain 17

However, to the best of our knowledge, there are only a limited number of research explored threshold

signatures for IoT blockchain ecosystems.

Yu et al. proposed STCChain, a Shamir’s threshold cryptography approach that utilizes blockchain

for industrial Internet of things (IIoT) key data. The problem is the limited storage capacity of IoT

devices, data collected by these devices are usually stored in the cloud. However, the key used for

data encryption or decryption is either directly stored on an IoT device which makes it vulnerable

to side-channel attacks or managed by a third-party organization, which has security and privacy

implications. To mitigate this issue, the private key is split between the IoT devices and the edge gateway

using the Shamir secret sharing algorithm and encrypted using the public key of each device. Each

encrypted key fragment is then published to the blockchain for storage [71].

Furthermore, Ricci et al. proposed a threshold scheme and benchmarked their solution on an

ARM-based board to represent the IoT environment [54]. In section 4.6 we explain the proposed scheme

and the result of the experiment in more detail.

Note that, the above-mentioned researches fall short of demonstrating and testing their solution

through practical implementations in a real-world blockchain framework such as Hyperledger Fabric on

IoT networks.

In contrast to the limited exploration of threshold signatures within blockchain-based IoT applications,

the significance of our work lies in its practical integration with Hyperledger Fabric within IoT devices.

This integration showcases the feasibility and benefits of threshold signatures, specifically FROST, in

blockchain-based IoT networks.

4
Related Work

It is only recently that extensive research has begun to explore the concept of threshold signatures in the

context of blockchain technologies. In evaluating related work on threshold signatures, we consider the

following key criteria relevant for practical deployments:

• Core Algorithm: We examine the core algorithm used as the basis for the threshold signature

scheme, specifically ECDSA or Schnorr.

• Performance: A threshold signature scheme is mostly affected by network latency. The number of

communication rounds plays an important role in this regard. In each round of communication, a

participant can either send a message to another participant or broadcast a message to every other

participant in the group. We consider both the key generation and signing phase of the algorithm.

• Majority Setting: We analyze the assumption setting regarding the majority of participants. Two

scenarios are considered: the honest majority assumption and the dishonest majority assumption.

In the honest majority assumption, more than half of the participants are assumed to be honest

and follow the protocol as intended. With a majority honest assumption in a (𝑡 , 𝑛) threshold

setting, the supported value for 𝑡 is 𝑡 ≤ (𝑛 − 1)/2.

On the other hand in the majority dishonest setting, it is assumed that up to 𝑛 − 1 out of 𝑛

participants in a (𝑛, 𝑛) threshold setting may behave maliciously or be compromised. For example,

in a (8, 10) threshold setup, the protocol must be secure even if up to 7 out of 10 participants are

malicious.

• Identifiable Aborts: This criterion focuses on the ability to identify where a signatory member

stops or deviates from the protocol. This can be useful to either punish the malicious user or just

exclude them from the signing procedure.

• Online Non-Interactivity: It implies that after the message is known, each signatory can generate

their individual partial signature without requiring interaction with any other signatory.

In this section, we discuss signature algorithms primarily implemented for blockchain and cryp-

tocurrency applications, including one used in an IoT-blockchain-based system.

18

4.1. Lindell (2018) 19

4.1. Lindell (2018)
Lindell and Nof [39] presented one of the earliest efficient protocols for providing threshold ECDSA.

This protocol replaces Paillier additive homomorphic encryption with the in-the-exponent version of

ElGamal encryption. It requires five rounds of communication for key generation and 8 for signing.

In the presence of malicious adversaries and static corruptions, the protocol adheres to a standard

for instances where there is no honest majority, ensuring security with abort.

Lindell uses 𝐹𝑚𝑢𝑙𝑡 a helper functionality to perform multiplication functionality from additive shares.

This helper function allows participants to securely multiply two values together.

Key Generation
Each participant 𝑃𝑖 performs the following steps:

• 𝑃𝑖 sends (init, G, q) to 𝐹𝑚𝑢𝑙𝑡 to run the initialization phase.

• 𝑃𝑖 sends (input, 𝑠𝑖𝑑𝑔𝑒𝑛) to 𝐹𝑚𝑢𝑙𝑡 and receives (input, 𝑠𝑖𝑑𝑔𝑒𝑛 , 𝑥𝑖).

• 𝑃𝑖 waits to receive (input, 0) to 𝐹𝑚𝑢𝑙𝑡 .

• 𝑃𝑖 sends (element - out, 0) to 𝐹𝑚𝑢𝑙𝑡 .

• 𝑃𝑖 receives (element - out, 0, Q) from 𝐹𝑚𝑢𝑙𝑡 .

• 𝑄 is stored locally as the ECDSA public key.

Signing Protocol
Each participant performs the following steps upon input Sign(sid, m) where sid is a unique session id:

• 𝑃𝑖 sends (input, sid || 1) and (input, sid || 2) to 𝐹𝑚𝑢𝑙𝑡 and receives (input, sid || 1, 𝑘𝑖) and (input,

sid||2, 𝑝𝑖). The values 𝑘𝑖 and 𝑝𝑖 denote the current cumulative sum of 𝑘 and 𝑝, respectively.

• After receiving (input, sid || 1) and (input, sid || 2) from 𝐹𝑚𝑢𝑙𝑡 , participant 𝑃𝑖 sends (mult, sid

|| 1, sid || 2) and (element-out, sid || 1) to 𝐹𝑚𝑢𝑙𝑡 .

• 𝑃𝑖 receives (mult-out, sid || 1, sid || 2, r) and (element-out, sid || 1, R) from 𝐹𝑚𝑢𝑙𝑡 where 𝑟 = 𝑘 ∗ 𝑝
and 𝑅 = 𝑘 ∗ 𝐺

• 𝑃𝑖 computes 𝑅 = (𝑟𝑥 , 𝑟𝑦) and 𝑟 = 𝑟𝑥 mod 𝑞.

• 𝑃𝑖 sends (affine, 0, sid || 3, r, 𝑚′) to 𝐹𝑚𝑢𝑙𝑡 , where sid || 3 will be associated with 𝑚′ + 𝑥 ∗ 𝑟 mod 𝑞.

• 𝑃𝑖 sends (mult, sid || 2, sid || 3) to 𝐹𝑚𝑢𝑙𝑡 .

• 𝑃𝑖 receives (mult-out, sid || 2, sid || 3, b) from 𝐹𝑚𝑢𝑙𝑡 , where 𝑏 = 𝑝 ∗ (𝑚′ + 𝑥 ∗ 𝑟)mod 𝑞.

• 𝑃𝑖 computes 𝑠′ = 𝑟−1 ∗ 𝑏 mod 𝑞 and 𝑠 = 𝑚𝑖𝑛{𝑠, 𝑞,−𝑠}.

• 𝑃𝑖 outputs (𝑟, 𝑠).

Identifiable Aborts
This protocol does not support identifying malicious parties.

4.2. GG20 (2020) 20

Performance
The Paillier-based protocol was implemented in C++ and tested locally, without considering network

latency, on a 2.3 GHz, 8-core Intel(R) i9. The key generation and signing protocol were tested ranging

from 2 to 20 parties. With 2 parties, it takes 5 ms for key generation and 206 ms for the signing protocol.

For 20 parties, it is 55 ms and 3675 ms for the key generation and signing protocol respectively.

The ultimate goal of Lindell’s protocol was to showcase practical key generation, signing, and

distribution for multiparty threshold ECDSA signature schemes. However, as an early pioneer, this

protocol lacks some features such as identifying aborts and online non-interactivity."

4.2. GG20 (2020)
Gennaro and Goldfeder [27] improved the efficiency of GG18 [26] by reducing the number of communi-

cation rounds and new mechanisms to identify and deal with misbehaving parties who deviate from

the protocol. Furthermore, the protocol assumes the majority of participants to be dishonest.

Key Generation
The key generation algorithm, based on a protocol similar to [26], is augmented to identify misbehaving

parties. The protocol comprises three phases and 4 rounds of communications, including 3 rounds of

communications for Feldman-VSS [9]:

• phase 1: Each player 𝑝𝑖 selects a random value 𝑢𝑖 from the set 𝑧𝑞 . They compute [𝐾𝐺𝐶𝑖 , 𝐾𝐺𝐷𝑖] =

𝑐𝑜𝑚(𝑔𝑢𝑖) using the commitment algorithm 𝑐𝑜𝑚. Finally, they broadcast 𝑘𝑔𝑐𝑖 and the public key 𝑒𝑖 for

Paillier’s cryptosystem.

• phase 2: Each player 𝑝𝑖 broadcasts 𝐾𝐺𝐷𝑖 , with 𝑦𝑖 being the value decommitted by 𝑝𝑖 . The player

𝑝𝑖 performs a (𝑡 , 𝑛) feldman-vss of the value 𝑢𝑖 , treating 𝑦𝑖 as the "free term in the exponent". The

public key is set to the product of all participants’ public keys 𝑦 = 𝜋𝑖𝑦𝑖 . Each player adds the private

shares received during the 𝑛 Feldman vss protocols. The resulting values 𝑥𝑖 form a (𝑡 , 𝑛) Shamir’s secret

sharing [64] of the secret key 𝑥 =
∑
𝑖 𝑢𝑖 .

• phase 3: Let 𝑛𝑖 = 𝑝𝑖𝑞𝑖 be the rsa modulus associated with ei. Each player pi proves in zero-knowledge

(zk) that they know 𝑥𝑖 using Schnorr’s protocol [60].

Signing Protocol
The signing protocol, executed with the hash of the message 𝑚 and the output of the previously

described key generation protocol, unfolds in seven phases. Notably, the key generation protocol is a

𝑡-out-of-𝑛 protocol with the secret key 𝑥 shared using (𝑡 , 𝑛) Shamir secret-sharing:

• Phase 1: Each Player 𝑃𝑖 selects random values 𝑘𝑖 , 𝛾𝑖 from 𝑍𝑞 . Compute [𝐶𝑖 , 𝐷𝑖] = 𝐶𝑜𝑚(𝑔𝛾𝑖) using the

commitment algorithm 𝐶𝑜𝑚 and broadcast 𝐶𝑖 . Define 𝑘 =
∑
𝑘𝑖 and 𝛾 =

∑
𝛾𝑖 .

• Phase 2: Each pair of players 𝑃𝑖 , 𝑃𝑗 engages in two multiplicative-to-additive share conversion

subprotocols. Player 𝑃𝑖 computes 𝛿 and 𝜎 a (𝑡 , 𝑡 + 1) additive share of 𝑘𝛾 and 𝑘𝑥 respectively.

• Phase 3: Each player 𝑃𝑖 broadcasts 𝛿𝑖 and collectively reconstructs 𝛿 =
∑
𝑖∈𝑆 𝛿𝑖 = 𝑘𝛾. Each player

computes 𝑇𝑖 = 𝑔𝜎𝑖 ℎℓ𝑖 with ℓ𝑖 ∈ 𝑍𝑞 proving in ZK that he knows 𝜎𝑖 and ℓ𝑖 .

• Phase 4: Each Player 𝑃𝑖 broadcasts the values decommitted by 𝑃𝑖 namely, 𝐷𝑖 , and 𝑖 . The player

computes 𝑅 = 𝑔𝑘
−

1
and 𝑟 = 𝐻′(𝑅).

• Phase 5: Each player 𝑃𝑖 broadcasts 𝑅𝑖 = 𝑅𝑘𝑖 and a zero-knowledge proof of consistency between 𝑅𝑖

and 𝐸𝑖(𝑘𝑖). If 𝑔 ≠ Π𝑖∈𝑆𝑅𝑖 , the protocol aborts.

• Phase 6: Each player 𝑃𝑖 broadcasts 𝑆𝑖 = 𝑅𝜎𝑖
and a zero-knowledge proof of consistency between 𝑆𝑖

and 𝑇𝑖 . If 𝑦 ≠ Π𝑖∈𝑆𝑆𝑖 the protocol aborts.

4.3. Damgard (2022) 21

• Phase 7: Each player 𝑃𝑖 broadcasts 𝑠𝑖 = 𝑚𝑘𝑖 + 𝑟𝜎𝑖 and sets 𝑠 =
∑
𝑠𝑖 . If the signature (𝑟, 𝑠) is correct for

𝑚, the players accept, otherwise they abort.

Online Non-Interactivity
The GG20 protocol can be divided into an offline preprocessing stage and an online stage. During

preprocessing, additive shares of 𝑠 are derived from additive sharings of 𝑥 and 𝑘. A distributed

verification check is conducted on these shares of 𝑠 in the preprocessing phase, eliminating the need for

online interactivity. In the online phase, where the message 𝑚 is known, players only require scalar

multiplication and one communication round, resulting in lower communication costs.

Identifiable Aborts
The protocol distinguishes between aborts during the preprocessing and online stages. If an abort

occurs, players reveal their random choices made during the protocol to verify behavior and identify

bad players. Identifying misbehavior, even in cases where players slightly deviate from the protocol.

Abort possibilities exist in both the KeyGen and Sign protocols, with the identification and removal of

misbehaving players.

Performance
The GG20 was benchmarked locally, without considering network latency, using a 2018 Macbook Pro

laptop with a 2.3 GHZ Intel Core i5 processor and 16 GB RAM. The signing protocol was tested ranging

from about 500𝑚𝑠 with 2 parties to 4000𝑚𝑠 with 10 parties.

4.3. Damgard (2022)
Damgård et al. [18] introduced a schema with the assumption of an honest majority with 𝑛 parties and

a threshold condition of 𝑡 ≤ (𝑛 − 1)/2. It uses a pre-processing phase to enable non-interactive signing

operations. It requires 3 rounds of communication for the key generation algorithm and 4 rounds of

communication for the signing algorithm, including 3 offline rounds that can be computed before the

message is known as a pre-signature. Moreover, this protocol doesn’t provide a fairness or termination

guarantee. However, it can be extended with 2 additional pre-processing rounds to achieve fairness.

Computing Powers of a Point:
The 𝑃𝑂𝑊𝑂𝑃𝐸𝑁 is a subprotocol to reveal the value 𝑦 = 𝑔𝑥 given a sharing [𝑥] and a generator 𝑔 ∈ 𝐺.

The protocol is as follows:

• Each participant 𝑃𝑖 sends 𝑦𝑖 = 𝑔𝑥𝑖 to all other parties. Let 𝑓 be the unique degree-𝑡 polynomial defined

by the shares of the 𝑡 + 1 honest parties, where 𝑓 (0) = 𝑥.

• Upon receiving all 𝑔𝑥 𝑗 for each 𝑦 𝑗 ∈ {𝑦𝑡+2 , 𝑦𝑡+3 , ..., 𝑦𝑛}, 𝑃𝑖 verifies the consistency of 𝑦 𝑗 with the

degree-𝑡 polynomial defined by the initial 𝑡 + 1 values 𝑦1 , 𝑦2 , ..., 𝑦𝑡+1.

• If verification is successful, 𝑃𝑖 concludes that 𝑦1 , ..., 𝑦𝑡+1 are valid points on 𝑓 . The participant 𝑃𝑖 then

uses Lagrange interpolation "in the exponent" on 𝑦1 , 𝑦2 , ..., 𝑦𝑡+1 to compute 𝑦 = 𝑔𝑥 = 𝑔 𝑓 (0).

Assuming that discrete logarithms in 𝐺 are hard and the requirement 𝑛 ≥ 2𝑡 + 1 holds, which means at

least 𝑡 + 1 parties are honest. If any of the 𝑡 corrupted parties attempt to cheat in the second step, all

honest parties will abort.

4.3. Damgard (2022) 22

Key Generation
The key generation algorithm aims to have the parties generate a sharing [𝑥] of a uniformly random

value 𝑥 ∈ Z𝑞 and reveal to each participant 𝑦 = 𝑔𝑥 . To generate [𝑥], the parties run [𝑥] ← RSS(𝑡) to

obtain a sharing of a random value 𝑥 ∈ Z𝑞 over a random polynomial. To obtain 𝑦 = 𝑔𝑥 , the parties will

run the protocol 𝑦 ← POWOPEN(𝑔, [𝑥]).
Using the Shamir sharing protocol instead of verifiable secret sharing (VSS), enables the key

generation protocol to abort if a malicious participant 𝑃𝑖 causes [𝑥] to be an inconsistent share.

The protocol guarantees that if two parties output a public key, they output the same public key 𝑦.

Note that no honest participant 𝑃𝑖 reveals their value 𝑔𝑥𝑖 until he has received shares 𝑥 𝑗 from all other

parties 𝑃𝑗 . This means that the corrupt parties 𝑃𝑗 have to "commit" to their values 𝑥(𝑗) before they see 𝑦.

In addition, all subsets of 𝑡 + 1 honest parties that receive output will receive shares of the same private

key 𝑥 satisfying 𝑔𝑥 = 𝑦.

Signing Protocol
Assuming that the key generation has been done and all participants agree on the message 𝑚, the

signing protocol is as follows:

• Each participant generates [𝑎] using Shamir sharing and then compute [𝑤] = [𝑎][𝑘] and open [𝑤]
using 𝑃𝑂𝑊𝑂𝑃𝐸𝑁 .

• To ensure the correctness of [𝑤], compute an authenticator𝑊 = 𝑔𝑎𝑘 using 𝑃𝑂𝑊𝑂𝑃𝐸𝑁 with 𝑔𝑘 as the

base.

• Compute the signature value [𝑠] = [𝑘−1](𝑚 + 𝑟[𝑥]), where 𝑚 is the (hashed) message, and 𝑟 = 𝐹(𝑔𝑘).
• Verify the resulting signature (𝑟, 𝑠) on the message 𝑚 using the public key 𝑦.

Online Non-Interactivity
In the basic variant of this algorithm, after the participants receive the message 𝑚, the sharing of the

signature can be computed using only local operations without interacting with other participants.

In the online phase, the protocol lacks fairness termination guarantees. Fairness means that the

adversary could potentially see the signature (𝑟, 𝑠) and abort the protocol before other honest parties

receive the signature. Note that this does not count as forgery since it happens with messages the honest

parties intended to sign. However, participants may retry on abort and the adversary could end up

with multiple valid signatures on the same message 𝑚 without the honest parties being aware. The

protocol can achieve fairness by extending the pre-processing with 2 additional rounds.

Identifiable Aborts
This protocol doesn’t support identifying malicious parties.

Performance
The protocol was benchmarked in both LAN and WAN settings using a client-server setup. Each

participant uses one CPU core to execute the protocol.

In the LAN setup, the key generation algorithm took 40𝑚𝑠 with 2 participants and 66𝑚𝑠 with 4

participants.The signing protocol took 54𝑚𝑠 for 2 participants and 109𝑚𝑠 with 4 participants. In the

WAN setup, the key generation algorithm took 1.22𝑠 with 2 participants and 1.48𝑠 with 4 participants.The

signing protocol took 2.2𝑠 for 2 participants and 2.7𝑠 with 4 participants.

4.4. DKLS (2019) 23

4.4. DKLS (2019)
Doerner et al. [20] is the only threshold scheme in this section with a non-constant number of signing

rounds i.e., 6 + log 𝑡. This schema is only non-interactive in the pre-processing phases and requires one

round of online activity once the message is known. This protocol assumes the majority of participants

to be dishonest.

Key Generation
This protocol, parameterized by the party count 𝑛, threshold size 𝑡, and elliptic curve (𝐺, 𝐺, 𝑞),
utilizes functionalities for two-party multiplication (2PMul), modular inverse sampling (ModInv), and

committed zero-knowledge proofs for discrete logarithms (ZKP_DL). The protocol involves public key

generation where each party 𝑃𝑖 samples a random polynomial point 𝑝(𝑖) of degree 𝑡 − 1. Interactions

between parties result in each party computing a point on the polynomial 𝑝. The joint public key is

computed using zero-knowledge proofs for commitment.

• Each party 𝑃𝑖 samples a random polynomial 𝑝𝑖 of degree 𝑡 − 1.

• For all pairs of parties, they exchange polynomial evaluations with other parties

• Each party 𝑃𝑖 computes its point: 𝑝(𝑖) = ∑
𝑗∈[𝑛] 𝑝 𝑗(𝑖)

• Each party 𝑃𝑖 computes the commitment 𝑇𝑖 = 𝑝(𝑖) · 𝐺 and sends to other participants

• Each party 𝑃𝑖 receives 𝑇𝑗 for each 𝑗 ∈ [𝑛]. Abort the protocol if the ZKP_DL fails

• The parties compute the shared public key using any subset 𝐽 ⊆ [𝑛]with |𝐽 | = 𝑡:
𝑝𝑘 =

∑
𝑗∈𝐽 𝜆

𝐽

𝑗
(0) · 𝑇𝑗 where 𝜆𝐽

𝑗
(𝑦) is party 𝑃𝑖 ’s Lagrange coefficients for interpolating 𝑝 at location 𝑦

Signing Protocol
This signing protocol is parameterized by the party count 𝑛, threshold size 𝑡, a subset of parties 𝑃 ⊆ [𝑛],
elliptic curve (𝐺, 𝐺, 𝑞), and a statistical security parameter 𝑠. It relies on functionalities such as two-party

multiplication (2PMul), modular inverse sampling (ModInv), and commitment (FC). Each party in the

subset 𝑃 generates a signature 𝜎 for a given message 𝑚.

• Each party 𝑃𝑖 invokes t-party Modular Inverse Sampling to obtain (𝑢𝑖 , 𝑣𝑖 , 𝑅)
• Each party 𝑃𝑖 computes its Lagrange coefficient and the additive share of the secret key 𝑠𝑘𝑖 .

• Each pair of parties 𝑃𝑖 and 𝑃𝑗 performs Two-party multiplication (2PMul) with input {𝑠𝑘𝑖 , 𝑣𝑖} and

{𝑣 𝑗 , 𝑠𝑘 𝑗} and receive output shares {𝑤 𝑗 ,1

𝑖
, 𝑤

𝑗 ,2

𝑖
} and {𝑤 𝑖 ,1

𝑗
, 𝑤 𝑖 ,2

𝑗
} respectively.

• Each party 𝑃𝑖 computes 𝑤𝑖 = 𝑠𝑘𝑖 · 𝑣𝑖 +
∑
𝑗∈𝑃(𝑤

𝑗 ,1

𝑖
, 𝑤

𝑗 ,2

𝑖
)

• Each party 𝑃𝑖 computes Γ2

𝑖
= 𝑣𝑖 · 𝑝𝑘 − 𝑤𝑖 · 𝐺 and Γ3

𝑖
= 𝑤𝑖 · 𝑅 and commits both values

• Upon receiving commitments from all other parties, each 𝑃𝑖 collects other parties’s decommitments

and aborts if the sum of all is not equal to zero or 𝑝𝑘

• Each party 𝑃𝑖 calculates 𝑠𝑖𝑔𝑖 = 𝐻(𝑚) · 𝑣𝑖 + 𝑟𝑥 · 𝑤𝑖 and broadcasts 𝑠𝑖𝑔𝑖

• Each party aggregates the partial signatures to calculate the message signature.

Online Non-Interactivity
In the Sign protocol, the only element dependent on the message 𝑚 is the final protocol message

generated which is computed by 𝑠𝑖𝑔𝑖 and broadcasted. The reconstruction of the signature, performed

in the last step using all parties’ final messages, requires knowledge of 𝑟𝑥 , 𝑝𝑘, and the messages

themselves. Consequently, the protocol is non-interactive in the preprocessing model. If parties

preprocess the protocol up to Step 7 before 𝑚 is known, completing the protocol (online phase) requires

only one round. In this round, parties simultaneously transmit one 𝑍𝑞 element each to those requiring

the output. This approach is nearly optimal in terms of communication cost, with the overhead being

proportional to the ratio between 𝑞 = and the security level of the elliptic curve (𝐺, 𝐺, 𝑞) in bits.

4.5. CMP (2020) 24

Identifiable Aborts
This protocol doesn’t support identifying malicious parties.

Performance
The protocol was benchmarked in both LAN and WAN settings. In the LAN setting, a set of 256 nodes

in Google’s South Carolina data center was used where all parties resided on individual machines in the

same data center. The latency was on the order of a few tenths of a millisecond. The number of parties

(𝑛) ranges from 2 to 256. The key generation took from 60𝑚𝑠 to 2000𝑚𝑠 and the signing algorithm took

from 500𝑚𝑠 to 16000𝑚𝑠.

Furthermore, a set of benchmarks was performed on a group of 3 Raspberry Pi model 3𝐵+, quad-

core ARM processor clocked at 1.4𝐺𝐻𝑧, to demonstrate the performance of the protocol on small

low-powered devices. In a 3-out-of-3 setting, the key generation algorithm took 1390𝑚𝑠 and the signing

algorithm took 93𝑚𝑠.

4.5. CMP (2020)
Canetti et al. [16] introduced a threshold scheme with two protocols. The protocols are distinguished by

the number of communication rounds and the identification process for detecting malicious parties.

In the first protocol, the signing protocol takes 4 rounds but the identification process is less efficient

and is quadratic in the number of participants (with 𝑂(𝑛2) complexity). In the second protocol, the

identification process is more efficient i.e., it is only linear in the number of parties (with𝑂(𝑛) complexity)

but the signing protocol takes 7 rounds of communication.

Each protocol offers two variants: one for online signing and one for non-interactive signing. The

online variant requires the participants to do the pre-signing and signing phase for each new signature,

while the offline variant allows for pre-signing before the message is known. Further, this protocol

employs zero-knowledge proofs, which introduce an efficiency bottleneck.

Key Generation
The key generation phase involves each party 𝑃𝑖 ∈ 𝒫 sampling 𝑥𝑖 ← 𝐹𝑞 and sending the public-key

share 𝑋𝑖 = 𝑔𝑥𝑖 to all other parties. Additionally, each party provides a Schnorr proof of knowledge for

the exponent. The public key is then computed as 𝑋 =
∏

𝑗 𝑋𝑗 . To enhance malicious security, parties

commit to their public-key share 𝑋𝑖 and the first message 𝐴𝑖 of the Schnorr proof using an oracle. This

prevents the adversary from influencing the private-key distribution and commits the adversary to the

first Schnorr proof message for later witness extraction in the reduction process.

Upon receiving all relevant values and detecting no inconsistencies, the final public key 𝑋 is

computed as the product of all public key shares 𝑋𝑗 , and the secret key shares 𝑥𝑖 along with the public

key shares 𝑋 are stored.

Signing Protocol
For the signing protocol, we only look at the version with 4 rounds of communication (3 rounds of

pre-signing plus 1 round of online signing).

Presigning: In the three-round version of the pre-signing protocol, parties are instructed to send their

Γ𝑖 ’s in round two (with the relevant proof) and then compute and send Δ𝑖 = Γ𝑘𝑖 in round three (with

the relevant proof).

Identification Process: In this version of the protocol, the identification process is conceptually simpler

but computationally more demanding. In case of failure, the parties proceed as follows:

4.6. RDCC (2022) 25

1. For each 𝑗 ≠ 𝑖, reprove that {𝐷𝑗 ,𝑖} 𝑗≠𝑖 are well-formed according to Π
aff-p

ℓ
, for ℓ ≠ 𝑗.

2. Compute 𝐻𝑖 = enc𝑖(𝑘𝑖 · 𝛾𝑖) and prove in zero knowledge that 𝐻𝑖 is well-formed with respect to 𝐾𝑖

and 𝐺𝑖 .

3. Prove in zero knowledge that 𝛿𝑖 is the plaintext value modulo 𝑞 of the ciphertext obtained as

𝐻𝑖 ·
∏

𝑗≠𝑖 ·𝐷𝑖 , 𝑗 · 𝐹𝑗 ,𝑖 .

Signing: Once the (hash of the) message 𝑚 is known, on input (sign, ℓ , 𝑖 , 𝑚) for the ℓ -th revealed point

on the curve, the signing boils down to retrieving the relevant data and computing the right signature

share. Namely, retrieve (ℓ , 𝑅, 𝑘, 𝜒), compute 𝑟 = 𝑅 |𝑥-axis, and send 𝜎𝑖 = 𝑘𝑚 + 𝑟𝜒 mod 𝑞 to all. Erase the

tuple (ℓ , 𝑅, 𝑘, 𝜒).

Online Non-Interactivity
To sign non-interactively, the parties need to prepare some number of pre-signatures in an offline stage.

For a pre-signing parameter 𝐿 ∈ N, the parties run the pre-signing phase 𝐿 times concurrently and obtain

pre-signing data. Later, for each signature request using pre-signing data (𝑙 , 𝑅𝑙 , 𝑘 𝑖𝑙 , 𝜒
𝑖
𝑙
) and message

msg, the parties run the signing phase for the relevant input to generate a signature. The parties then

erase the pre-signing tuple (𝑙 , . . .). It is important to ensure that, as part of the refresh stage, any unused

pre-signatures are discarded. Alternatively, it is possible to keep the pre-signing data as long as it is

appropriately refreshed.

Identifying Aborts
The identification of corrupted parties in case of non-malicious failures involves two distinct processes.

The first, less efficient method incurs an 𝑂(𝑛2) penalty and requires proving in zero-knowledge that

the transmitted values were consistent with the entire transcript when nonces or signature strings

were malformed. The second, more efficient method, incurs three extra rounds during the pre-signing

stage but only requires 𝑂(𝑛) computation. It involves opening relevant ciphertexts to check if the right

message was sent, allowing parties to identify the culprit without revealing the master secret key and

without the need to store the entire transcript for the online phase. The challenge lies in verifying

the well-formedness of pseudo-keys, specifically �̄�𝑖 and 𝑌𝑖 , which are essential for signature-share

verification.

4.6. RDCC (2022)
Ricci et al. proposed a Schnorr-based threshold signature aiming to be applied to Blockchain technologies

[54]. The key generation (setup) algorithm involves collaboration among 𝑛 signers to establish a

polynomial 𝑓 (𝑥) of degree 𝑡 − 1, with 𝑠𝑘 =
∑
𝑘𝑖 as the constant term, where 𝑠𝑘 is the secret key used in

the signature. The setup procedure consists of two rounds of communication. The signing algorithm is

divided into two phases and requires three rounds of communication between the main device and the

secondary devices. In the last round, the main device aggregates all signature fragments and produces

a Schnorr signature. This protocol assumes that the majority of participants are dishonest. Furthermore,

the algorithm does not support Identifiable Aborts and Online Non-Interactivity.

In this signature protocol, there are two main entities: the Signer, responsible for generating

signatures collaboratively with co-signers, and the Verifier, a Blockchain node that receives and validates

user transactions. The Signer operates with a Main Device (MD) for signing transactions and Secondary

Devices (SD) for co-signing. The Verifier ensures the validity of signatures in Blockchain transactions.

4.7. Robustness in FROST 26

Let 𝐷𝑗 be the signer’s device performing the protocol. Each 𝐷𝑗 owns a secret key share 𝑘 𝑗 where

𝑗 = 1, . . . , 𝑛.

Key Generation
The scheme is based on Shamir protocol [64] and, therefore, requires that 𝑛 signers agree on a polynomial

𝑓 (𝑥) of degree 𝑡 − 1 that has 𝑠𝑘 =
∑
𝑘𝑖 as the constant term. Note that 𝑠𝑘 is the secret key used in the

signature. The Setup algorithm consists of two phases:

1. (Λ𝑗 , 𝑝𝑘, 𝑝𝑘 𝑗 , 𝑝𝑘𝑝,𝑗) ← ParGen← (𝑛, 𝑡, 𝜅) : each device 𝐷𝑗 for 𝑗 = 1, . . . , 𝑛 does as follows and with

respect to a security parameter 𝜅:

• Generate at random 𝑑
(𝑗)
1
, . . . , 𝑑

(𝑗)
𝑡−1

,

• Generate the Paillier’s key pair (𝑝𝑘𝑝,𝑗 , 𝑠𝑘𝑝,𝑗),
• Generate at random 𝑘 𝑗 ∈ Z𝑞𝐸𝐶 ,

• Compute 𝑝𝑘 𝑗 = 𝑔𝑘 𝑗 .

The values Λ𝑗 = (𝑘 𝑗 , 𝑑(𝑗)
1
, . . . , 𝑑

(𝑗)
𝑡−1
, 𝑠𝑘𝑝,𝑗) are privately stored in each device, whereas (𝑝𝑘 𝑗 , 𝑝𝑘𝑝,𝑗) are

made public. An agreed user computes the common key 𝑝𝑘 =
∏𝑛

𝑖=1
𝑝𝑘𝑖 (i.e., Blockchain wallet public

key).

2. (𝛼 𝑗 , 𝑓 (𝛼 𝑗)) ← PolyEval← (Λ𝑗 , 𝑝𝑘𝑝, 𝑗) The algorithm outputs for each device 𝐷𝑗 the pair (𝛼 𝑗 , 𝑓 (𝛼 𝑗))
where 𝛼 𝑗 = 𝑗 is publicly known, and 𝑓 (𝛼 𝑗) is kept secret.

Signing Protocol
The Signing algorithm consists of two phases:

Session Key: For each device 𝐷𝑗 in the set of signers, compute the session key 𝑠 𝑗 and store it privately:

𝑠 𝑗 = 𝑓 (𝛼 𝑗) ∗Π𝑚
𝛼𝑚

𝛼𝑚 − 𝛼 𝑗
mod 𝑞𝐸𝐶

where 𝑚 is the other signer’s index.

Signature: Each device 𝐷𝑗 commits to its random value 𝑟 𝑗 and sends the commitments 𝑐 𝑗 to the Main

Device (MD). MD aggregates the commitments to receive the common commitment 𝑐. Then, 𝑐 is sent

back to the Secondary Devices (SDs) along with the signing message 𝑚 (Blockchain transaction). Each

𝐷𝑗 generates its signature fragment (𝑧 𝑗) on 𝑚. Finally, MD aggregates all signature fragments to produce

the Schnorr signature 𝜎 = (𝑒 , 𝑧) on the Blockchain transaction, which is sent for validation.

Performance
In the experimental evaluation, one single Raspberry Pi 4 with 4GB of RAM represented the Signer

MD and SDs devices, and the Verifier’s device. The testing program was written in C. The benchmark

revealed that the Key Generation algorithm was the most time-consuming, taking around 1 second for

(𝑡 = 5, 𝑛 = 5) and about 4 seconds for a (𝑡 = 10, 𝑛 = 9) setting. The signing algorithm required about

10𝑚𝑠. Communication overhead was not considered in the above measurements.

4.7. Robustness in FROST
In the context of cryptographic protocols, particularly those involving multiple signers, the concept

of robustness is defined by the ability of a signing protocol to successfully generate a valid signature

with the participation of up to 𝑛 signers, despite the presence of a dishonest majority of (𝑡 − 1 ≥ 𝑛/2)

attempting to obstruct the process. This definition underscores a scenario where the protocol remains

operational and achieves its goal of producing a valid signature, as long as there are 𝑡 honest signers

4.8. Summary 27

present, even if the rest (up to 𝑛 − 𝑡) are acting maliciously to prevent the completion of the signing

process. In instances where 𝑡1 signers are malicious, the number of remaining honest signers (𝑛(𝑡1))
may fall below the threshold needed to generate a signature, illustrating a practical limitation in the

protocol’s ability to guarantee liveness in all circumstances where unforgeability is still assured [54].

González et al. [29] introduces some improvements to the original FROST scheme. The proposed

protocol achieves the ability to identify cheating participants in the key generation phase, allowing the

participants to check the validity of complaints against potentially cheating participants, leading to the

exclusion of cheaters without aborting the key generation protocol. This will ensure robustness in the

key generation algorithm.

Additionally, [29] presents a static public key for the FROST allowing regular key redistribution

between participants while keeping the resulting distributively generated key unchanged. The group’s

established public and private keys remain unchanged for the lifetime of signers while only the signing

shares of each participant are updated over time. This approach facilitates the verification process of

the generated threshold signature, requiring signers to communicate their public key to the verifier

only once during the group’s lifetime. The set of participants can also be updated while the key would

remain unchanged.

Furthermore, the ROAST protocol [56] addresses the robustness limitation of the FROST signing

protocol. This protocol ensures that a signing session involving up to 𝑛 signers will succeed and produce

a valid signature when 𝑡 honest signers are present, even if all remaining signers in the session are

malicious. ROAST, acting as a wrapper for FROST or any other threshold signature that turns them into

a scheme with robust and asynchronous signing protocol that as long as the underlying signing protocol

meets three conditions: has one preprocessing round and one signing round, provides identifiable

aborts, and is unforgeable under concurrent signing sessions.

4.8. Summary
Table 4.1 summarizes our contribution of providing the literature survey of the threshold signatures in

the blockchain context, highlighting their features and providing their fair comparison.

Among the various threshold signature schemes discussed above, FROST offers a compelling choice

for our work. Built upon the Schnorr signature algorithm, FROST demonstrates efficient performance

with only two rounds of communication for both key generation and the signing protocol. Its potential

optimization to a single round signing through preprocessing aligns well with our goal of minimizing

communication overhead. Minimizing communication overhead is essential in IoT device interactions,

as energy consumption due to radio module activation and delays involved in different communication

protocols such as BLE, Wi-Fi, LoRaWAN strongly influence the device’s overall energy consumption.

While FROST mainly emphasizes network efficiency, it also includes a mechanism for detecting

misbehavior, such as when a participant provides a malformed share. In such cases, the remaining

honest participants can identify the misbehavior, abort the protocol, and take corrective actions, such as

excluding the misbehaving participant from subsequent rounds, although this may require restarting

the protocol [35]. These qualities make FROST a strong candidate for the efficient utilization of Internet

of Things (IoT) devices in blockchain applications, which is central to our research focus. It is worth

noting that the protocols [56, 29] utilize FROST as a main component, with reasonable overhead in

terms of communication rounds. Given that one of our primary objectives is to develop an efficient

blockchain-based IoT-based threshold signatures protocol we select FROST signature as the core element

4.8. Summary 28

Protocol Core algorithm Performance Majority

Identifiable

Aborts

Online

Non Interactivity

Lindell (2018) [39] ECDSA

Key Gen: 5 rounds

Signing: 8 rounds

Dishonest

GG20 (2020) [27] ECDSA

Key Gen: 4 rounds

Signing: 7 rounds

Dishonest ✓ ✓

Damgard (2022) [18] ECDSA

Key Gen: 3 rounds

Signing: 4 rounds

Honest

𝑡 ≤ (𝑛 − 1)/2 ✓

DKLS (2019) [20] ECDSA

Key Gen: 8 rounds

Signing: 6 + log(𝑡) Dishonest ✓

CMP (2020) [16] ECDSA

Key Gen: 3 rounds

Key Refresh: 3 rounds

Signing: 4 rounds

Dishonest ✓ ✓

RDCC (2022) [54] Schnorr

Key Gen: 2 rounds

Signing: 3 rounds

Dishonest

ROAST (2022) [56] Schnorr

Key Gen: N/A

Signing: > 3 rounds

Dishonest ✓

ICE-Frost (2023) [29] Schnorr

Key Gen: 2 rounds

Complaint Management: 2 rounds

Signing: 2 rounds

Dishonest ✓ ✓

FROST (2020) [35] Schnorr

Key Gen: 2 rounds

Signing: 2 rounds

Dishonest ✓ ✓

Table 4.1: Summary of threshold signatures and their characteristics

of our proposed protocol. Furthermore, we assume that as our proposed solution is designed to work

with FROST, the aforementioned FROST-based protocols will also be compatible with our solution, but

a reasonably higher latency might occur.

5
Proposed Protocol

In this chapter, we specify the setup in which our IoT-enabled FROST signing operates. This setup

functions in conjunction with the Hyperledger Fabric blockchain network. We also elaborate on

our implementation to enable registration and enrollment for a new group of signer devices in the

Hyperledger Fabric network, particularly when the registration and enrollment procedure involves the

Fabric Certificate Authority. Finally, we demonstrate the entire transaction submission process, covering

transaction generation and signing by the devices using FROST and its submission to the blockchain

network.

5.1. Setup of the network architecture
In our proposed protocol’s setup, we consider the following scenario:

• There exist 𝑛 users, denoted as 𝑢1 , 𝑢2 , . . . , 𝑢𝑛 , who have already used the FROST algorithm to

establish a group 𝐺. Each user possesses the group’s public key 𝑝𝑘𝑔 and their partial secret key

𝑠𝑘𝑖 , all obtained from the FROST distributed key generation algorithm.

• The group 𝐺 is configured with a threshold of 𝑡 where 2 ≤ 𝑡 ≤ 𝑛. This threshold specifies the

minimum number of participants required to collaboratively sign a transaction.

• A secure communication channel exists among the users that allows for broadcasting or sending a

message between any two users.

• Regardless of which user within the group 𝐺 initiates a registration process or a transaction

submission, no user has any power over other participants within the group.

• There exists a channel set up and running on the Fabric network and Fabric-CA is used to register,

enroll and generate the certificates for clients.

5.2. Registering and Enrolling with a Certificate Authority
In this section, we describe the registration and enrollment process of a new group identity corresponding

to the group of IoT devices using FROST.

29

5.2. Registering and Enrolling with a Certificate Authority 30

IoT Channel

(Group)
IoT device

(running our FROSTCSR)
Admin CA

1.Request for enroll ID and secret

2.Return enroll ID and secret

3. Generate unsigned CSR

Fabric CA

Server

5. Digital signature
6. Enroll with the signed CSR

7. The X.509 signing certificate

sign_csr()

4. Request to sign CSR collaboratively

register_user()

generate_x509_cert()

8. Share X.509 signing certificate

Figure 5.1: The registration and enrollment flow

In Section 2 we described the generic procedure of registration and enrollment of a new identity

via Hyperledger Fabric Certificate Authority (CA). In the default procedure, Fabric CA generates the

private-public key pair for a new user. However, in our approach, using Fabric CA to generate the

private-public key pair of the group 𝐺 is not feasible. In the FROST signature protocol, each signer

possesses a share of the group’s private key, which is collectively generated by each participant of

the signatory group. Additional details about the FROST key generation algorithm can be found in

Section 2. Therefore, the recommended approach is as follows: Initially, a user initiates the registration

process by requesting an enroll ID and the corresponding secret from the admin of a CA. In the next

step, the user uses their enroll ID and public key to create a Certificate Signing Request (CSR) and sign

it using their private key. It is important to note that with this approach the private key will never be

shared with the admin CA.

The main challenge in threshold signature scenarios is sending the CSR to the Fabric CA without

disclosing the group’s shared secret key. In the current version of Fabric SDK (V2.5), the private key of

the user is used to generate and sign the CSR and finalize the enrollment process. The CSR contains

three main components [44]: Certificate Request Information: This section contains the enroll ID, public

key, host, serial number, and other relevant user information. Signature Algorithm: The signature

algorithm identifier e.g, ECDSA, ED25519, etc. Digital Signature: The signature on the certificate request

information which is signed by the user’s private key.

To address the aforementioned challenge, we have developed an API named FROSTCSR in Go on top

of the Fabric SDK core. This API enables one of the users within the group to generate an unsigned CSR

document without requiring the private key.

In our proposed protocol which is depicted in Figure 5.1, the registration and enrollment process

begins with a user delegated by group of users, 𝐺, and this user is denoted as 𝑢𝑑. The delegated user

runs our FROSTCSR API, which initiates the enrollment by sending a registration request to the admin

of the CA. The CA admin assigns a unique enrollment ID and a corresponding secret to the user. Using

the enroll ID and group’s public key, the user generates an unsigned CSR. The CSR contains information

such as the enroll ID, the group’s public key, and the signature algorithm identifier i.e., ED25519. The

5.3. Transaction generation and signing API 31

IoT Channel

(Group)

sign_tx()

IoT device or ui

(Initiating the

transaction)

Fabric

Network

1. Initiate the transaction

2. Request to sign the transaction

3. Return the signed transaction
4. Request to submit the transaction

5. Return the acknowledgement

Smart Contract

pocess

Figure 5.2: The transaction flow

CSR is sent to the other signers within the group to collaboratively sign it. Note after signing the CSR,

the user 𝑢𝑑 can not change the content of the CSR since it causes the verification algorithm to fail.

Finally, the user 𝑢𝑑 sends the signed CSR to the Fabric CA server to complete the enrollment. Once

the Fabric CA verifies the signature, it will generate an X.509 sign certificate and return it to the user.

The user 𝑢𝑑 can broadcast the signed certificate to the other members. Note that possession of a signed

certificate by a user is not sufficient to submit a transaction. The transaction still needs to be signed by at

least 𝑡 members of the group.

5.3. Transaction generation and signing API
In the context of our proposed protocol depicted in Figure 5.1, consider a scenario where the user 𝑢𝑖

proposes a transaction to be submitted to the Fabric network. Since no one in the group 𝐺 has access

to the private key required for message signing, a customized signing procedure must be employed

within the Fabric gateway interface to facilitate transaction submission. Fabric SDK includes an interface

called Gateway, which provides tools for interacting with the blockchain network. In this interface,

the client can submit a custom signing message which in our protocol is replaced by the Frost sign

algorithm. User 𝑢𝑖 sends the unsigned transaction proposal to the other participants within the group.

This allows other participants to review and approve the transaction. The transaction proposal requires

to be approved, and thus signed by at least 𝑡 participants. After, obtaining the aggregated signature,

user 𝑢𝑖 is authorized to submit the transaction proposal to the Hyperledger Fabric network. Figure 5.2

shows the transaction flow.

In conclusion, we can affirm that the registration and enrollment is enabled with our proposed

FROSTCSR API, alongside with the modified Fabric SDK enabling the signature proposal creation and

its signature via FROST i.e., a group of users/IoT sign the transaction proposal. Our solution therefore

does not require the modification of Hyperledger Fabric v3.0 core functionalities/source codes.

5.4. Technical details about the APIs 32

IoT device

Hyperledger Fabric Network

Fabric Gateway

Interface

IoT device

FROST

(RUST)

Hyperledger Fabric

SDK

(GO)

FFI

Interface

Android

IoT device

Figure 5.3: The Architecture Overview

5.4. Technical details about the APIs
The first component of our system is the FROST implementation in Rust language, which builds upon

the ZF FROST library to support core FROST key generation and signing algorithms. Specifically, we

used the ED25519 curve variation for generating signatures, ensuring compatibility with the standard

ED25519 signature verification algorithm. While the core ZF FROST library lacks native support for

communication channels, we extended its capabilities in our implementation. In our work, we eliminated

the role of the signature aggregator (SA) and replaced it with a broadcast communication to simplify

the coordination process [35]. To enable communication between the participants, we developed a

Transmission Control Protocol (TCP) layer on top of the ZF FROST library using data serialization. In

this setup, devices can either broadcast messages to all connected peers or direct messages to a specific

device within the group. Given that all devices operate on the local network environment, we omitted

the Transport Layer Security (TLS) protocol in this communication channel.

Furthermore, we implemented FROSTCSR in the Go programming language to generate unsigned

CSR which later will be sent to other participants to be collaboratively signed. The signed CSR is used

by Fabric CA to enroll identities within the Hyperledger Fabric Network. Additionally, for transaction

submission, we leveraged the Fabric Gateway 1.3.2 interface that is part of the Fabric SDK. This interface

allows users to use custom signing routines for signing transactions. In our case, we integrated the

FROST implementation in Rust to be used in the Fabric Gateway interface using the Foreign Function

Interface (FFI) feature of Rust. FFI acts like a bridge that enables interoperability between different

programming languages. Specifically, it allows the Go language to call a function written in Rust

through a shared library or module. FFI allows for the exchange of data between the two languages.

In our implementation, we used raw pointers to byte arrays to pass messages from Go routine to the

FROST signing routine in Rust and return the signatures generated by FROST to the Go routine.

Finally, we used a terminal emulator on Android to compile and execute both our FROST imple-

mentation and FROST𝐶𝑆𝑅 natively on the Android platform. This approach minimized overhead and

enabled us to efficiently run and test our API implementation. Figure 5.3 shows an overview of all

components used in the implementation. Note that all IoT devices follow the same structure. Further, in

Figure 5.3 we used Android as an example of an IoT device.

6
Experiments And Results

In this section, we provide details about two experiments conducted to evaluate the performance and

feasibility of our proposed approach.

6.1. Experiment 1: FROST in IoT devices
In the initial experiment, our focus is on conducting a comparative analysis of FROST alongside two

other popular threshold signature schemes namely, GG20 [27] and DKLS [20]. The primary objectives of

this experiment are the evaluation of performance metrics and the measurement of energy consumption

of the three algorithms when executed on resource-constrained IoT devices.

6.1.1. Setup
Hardware: We used four Raspberry Pi 2 devices, each equipped with a 900MHz Cortex-A7 CPU and 1

GB of RAM. These devices were running Arch Linux for ARM with Linux kernel version 6.1. Further,

we used the OTII Arc Pro power meter device to measure the energy consumption of the Raspberry PI

while running each algorithm. The power meter has a sample rate of 50𝑘𝑠𝑝𝑠.

Network Environment: To ensure optimal network conditions for our experiment, we conducted our

experiment on a 1Gbps LAN network. The four Raspberry Pi devices are connected to the network via

an Ethernet cable.

Software: For the core implementation of the FROST key generation and signing algorithm, we used ZF

FROST library version 0.7.0 which is implemented in Rust. However, for our experiments, we need

to run both key generation and signing algorithms distributively on each device. Further, we decided

to avoid the application of the signing aggregator. Therefore, we extended the ZF FROST library to

add support for both requirements: the distributed key generation/signing algorithm and signing

aggregator removal. More details in section 5.4. Furthermore, to measure the energy consumption we

used the OTII 3 app.

6.1.2. Methodology
To measure the energy consumption, one of the Raspberry PIs was connected to the power meter device.

The power meter device provided precise control over the voltage supplied to the Raspberry PI while

33

6.1. Experiment 1: FROST in IoT devices 34

Scheme Signing Energy Consumption

FROST 57 ms 0.09 J
DKLS 147 ms 0.26 J

GG20 23.3 sec 36.8 J

Table 6.1: Energy Consumption of various threshold signature with 4 participants

simultaneously measuring the voltage and current consumed by the device. This setup allows for

accurate monitoring of energy consumption during the execution of the algorithms.

To mark the precise start and end times of the algorithms, a GPIO pin on the Raspberry PI was

connected to the GPIO interface of the OTII device. Sending signals through the GPIO pin from the

Raspberry PI to the power meter device enabled precise measurement of the algorithm’s runtime phase.

The device measures one sample of current and voltage per microsecond.

The energy consumption is calculated by multiplying the average power, derived from the current

and voltage measurements, by the total time taken to execute the algorithm.

6.1.3. Results

Figure 6.1: Running times of FROST

The results of the first experiment, as depicted in Figure 6.1, showcase the performance of both

key generation and signing algorithms across varying threshold configurations. The key generation

algorithm exhibits a relatively consistent performance across different threshold configurations and the

number of devices, with an average execution time of approximately 22 milliseconds. In contrast, the

signing algorithm demonstrates a linear relationship with the number of devices participating in the

signing protocol, with the execution time increasing proportionally to the number of devices.

Table 6.1 presents a comparison of the energy consumption of the three threshold signature schemes

with four participants. Notably, FROST demonstrates significantly lower energy consumption compared

6.2. Experiment 2: Integration of FROST with Hyperledger Fabric 35

Figure 6.2: Current Consumption of FROST

to DKLS and GG20. Specifically, FROST exhibits a runtime of 57 milliseconds for signing, consuming

only 0.09 joules of energy. In contrast, DKLS requires 147 milliseconds and consumes 0.26 joules, while

GG20’s signing algorithm takes 23.3 seconds and consumes a substantial 36.8 joules of energy.

The comparison highlights that FROST takes approximately three times less time than DKLS and

about 400 times less time compared to GG20. This significant reduction in execution time translates into

lower energy consumption over time, making FROST a more efficient choice for IoT applications.

Additionally, Figure 6.2, Figure 6.3, and Figure 6.4 provide a visual representation of the current

consumption of all three algorithms during both key generation and signing phases. These figures offer

insights into the energy consumption patterns of each algorithm, further confirming the efficiency of

FROST in IoT environments.

Overall, the results confirm that FROST is a feasible choice for deployment in IoT applications,

offering a balance of performance and energy efficiency.

6.2. Experiment 2: Integration of FROST with Hyperledger Fabric
In the second experiment, we focused on integrating FROST with the Hyperledger Fabric blockchain

network to assess its performance in the context of transaction submissions by IoT devices.

6.2.1. Setup
Hardware: We used the four Raspberry Pi 2 devices similar to subsection 6.1.1. Additionally, we

used an Android smartphone with an octa-core CPU clocked at 3.19 GHz (Cotex-X2 + Cortex-A710 +

Cortex-A510) and 12 GB of RAM. The smartphone was running Android version 13 with Linux kernel

5.10. To ensure consistency and avoid performance hit, all the experiment codes have been compiled

and executed natively on the respective devices.

Network Environment: In addition to the network configuration of subsection 6.1.1, the Android device

6.2. Experiment 2: Integration of FROST with Hyperledger Fabric 36

Figure 6.3: Current Consumption of DKLS

Figure 6.4: Current Consumption of GG20

6.2. Experiment 2: Integration of FROST with Hyperledger Fabric 37

is connected to the network via WiFi 5. Furthermore, to run the Hyperledger Fabric network, we used a

laptop equipped with a 10-core Apple M1 processor, running at the clock speed of 2.0 − 3.2 GHz and 32

GB of RAM. Further, the FABRIC network runs on the same local network as the other devices.

Software: We used the same ZF FROST library as mentioned in subsection 6.1.1. Furthermore, we

used Hyperledger Fabric 3.0 SDK. Within our Hyperledger Fabric network, we configured a single

channel with a single ordering and two organizations, each owning one peer. We mainly used the

default configuration for both peers and orderer including a Batch-timeout of 2 seconds among others.

Further, each node runs within its dedicated docker container, running Linux Kernel 5.15.

6.2.2. Methodology
The second experiment was conducted using the four Raspberry Pi 2 devices and an additional Android

smartphone, that executed our modified Fabric SDK equipped with the modified version of the FROST

library with support for communication between 5 devices, and without the signature aggregator. One

of the Raspberry Pi devices is used to initiate the process by creating a transaction and requesting to

collaboratively sign the transaction. This device is responsible for submitting the signed transaction to

the network. Similar to the previous experiment, we used various threshold configurations but with

𝑛 = 5 devices, i.e., 5 is the maximal number of devices. Finally, the Fabric v3.0 blockchain was used

with the support for ED25519 signature verification. In both experiments, the results are measured by

taking the average of 10 trials while having different configurations.

6.2.3. Results

Figure 6.5: Transaction submission time using FROST within the Hyperledger Fabric

Figure 6.5 illustrates the time required to submit a single transaction to Hyperledger Fabric v3.0

using a threshold signature with FROST. The transaction contains a call to a smart contract function,

which stores a unique integer value on the general ledger. In this experiment, we used the default batch

timeout of 2 seconds and batch size of maximum 10 messages, for the orderer. A new block will be

6.2. Experiment 2: Integration of FROST with Hyperledger Fabric 38

added to the blockchain if either the upper batch size limit is reached or the maximum number of

transactions a single block can hold [22].

The results reveal a linear relationship between the number of signers and the time required to

submit a transaction. Despite variations in the number of signers, the transaction submission times

consistently adhere to the batch timeout of 2 seconds. When compared to findings from previous studies

[63], our observed transaction submission times align within a similar range, affirming the effectiveness

of FROST within the Hyperledger Fabric environment.

7
Discussions

Our study provides a detailed examination of threshold signature schemes, with a particular focus on

the standout performance of the FROST algorithm, especially relevant in IoT contexts. We have shown

that FROST’s efficiency makes it highly suitable for use in mid-range IoT devices and smartphones, and

its integration with Hyperledger Fabric v3.0 is practical. However, our research also points to limitations

that require further exploration.

One such limitation is our experiments’ exclusive reliance on LAN network conditions. Future

research will need to explore the impact of varied network environments, e.g., WAN on FROST’s

performance to better understand its robustness and reliability in real-world settings.

Additionally, while FROST demonstrates efficient performance and effective communication rounds,

its robustness requires further examination. The robustness is defined as the ability to guarantee a

successful signing session with the presence of at least 𝑡 honest signers, even if all remaining signers are

malicious and try to prevent the honest participants from creating a valid signature. Notably, in the

FROST protocol, the presence of 𝑡 honest signers does not inherently guarantee the successful conclusion

of a signing session. For instance, in a scenario with 𝑡 + 1 signers where one signer is disruptive, FROST

can identify the disruptive participant. However, the entire signing session will fail and require a restart.

To address this challenge, the ICE-FROST [29] and ROAST [56] protocols present a promising

approach for improving the robustness of the FROST threshold signature scheme in the key and

signature generation methods respectively. ICE-FROST enables robustness and support for static public

keys in the key generation algorithm. Similarly, by satisfying the prerequisites of one preprocessing

round and one online signing round, ROAST ensures that a signing session involving up to 𝑛 signers

will succeed and produce a valid signature as long as there are 𝑡 honest signers are present, even if all

remaining signers are disruptive.

As we look to the future, our research aims to not only refine the implementation of FROST within

IoT and blockchain ecosystems but also to explore the integration of resilience mechanisms such as

ICE-FROST and ROAST ensuring that threshold signature scheme can meet the demands of security,

efficiency, and robustness in increasingly complex and varied application scenarios.

39

8
Conclusion

The integration of blockchain technologies into IoT applications introduces a set of challenges, notably

in the management of digital signatures and keys. The practice of storing cryptographic keys on a single

device creates a single point of failure. Moreover, the traditional multi-signature schemes not only

compromise user privacy by revealing the identities of signers but also suffer from scalability issues.

Furthermore, the application of conventional ECDSA-based threshold signatures is not efficient in the

context of IoT devices, due to the high energy consumption and execution time.

To address these challenges, our study has successfully demonstrated the integration and advantages

of the FROST signature protocol within IoT networks for signing transactions on the Hyperledger

Fabric blockchain. Through our investigation, by comparing FROST with existing solutions, we have

shown the benefits of adapting FROST within IoT blockchain environments, notably its reduced energy

requirements and shorter execution times, making it particularly well-suited for mid-range IoT devices

and smartphones.

The empirical findings of our integration of FROST with Hyperledger Fabric indicate the efficiency of

FROST signatures, with group signatures executed in 58ms on Cortex-A7 CPU-based IoT architectures

and a FROST-signed Fabric transaction commitment time of 3.2 seconds (with a 2-second batch timeout)

in a 5 out of 5 device scenario. Furthermore, our proposal also facilitates the registration of a FROST

group public key in Hyperledger Fabric v3.0 without compromising the group’s private key.

These results demonstrate that FROST offers reasonable latency and energy consumption within

a network of IoT and Hyperledger Fabric, leading us to conclude that IoT and Hyperledger Fabric

blockchain technologies are now "Completely FROST-ed". Our open-source implementation can be

found on GitHub 1.

Finally, our contribution has been recognized by the research community, as the core research

article of this master thesis was published in the IEEE International Conference on Blockchain and

Cryptocurrency (IEEE/ICBC) 2024, one of the premier conferences in the field of blockchain.

1https://github.com/mkhattat/Frost-Fabric-IoT

40

https://github.com/mkhattat/Frost-Fabric-IoT

References

[1] 2017 IEEE European Symposium on Security and Privacy Workshops, EuroS&P Workshops 2017, Paris,
France, April 26-28, 2017. IEEE, 2017. isbn: 978-1-5386-2244-5. url: https://ieeexplore.ieee.

org/xpl/conhome/7966454/proceeding.

[2] 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019.

IEEE, 2019. isbn: 978-1-5386-6660-9. url: https://ieeexplore.ieee.org/xpl/conhome/8826229/

proceeding.

[3] Hal Abelson et al. “The risks of key recovery, key escrow, and trusted third-party encryption”. In:

World Wide Web J. 2 (1997), pp. 241–257.

[4] Omar Alfandi et al. “A survey on boosting IoT security and privacy through blockchain”. In:

Cluster Computing 24.1 (Mar. 2021), pp. 37–55. issn: 1573-7543. doi: 10.1007/s10586-020-03137-8.

url: https://doi.org/10.1007/s10586-020-03137-8.

[5] Shikah J. Alsunaidi and Fahd A. Alhaidari. “A Survey of Consensus Algorithms for Blockchain

Technology”. In: 2019 International Conference on Computer and Information Sciences (ICCIS). 2019,

pp. 1–6. doi: 10.1109/ICCISci.2019.8716424.

[6] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system for permissioned

blockchains”. In: Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April
23-26, 2018. Ed. by Rui Oliveira, Pascal Felber, and Y. Charlie Hu. ACM, 2018, 30:1–30:15. doi:

10.1145/3190508.3190538. url: https://doi.org/10.1145/3190508.3190538.

[7] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system for permissioned

blockchains”. In: Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April
23-26, 2018. Ed. by Rui Oliveira, Pascal Felber, and Y. Charlie Hu. ACM, 2018, 30:1–30:15. doi:

10.1145/3190508.3190538. url: https://doi.org/10.1145/3190508.3190538.

[8] Fredy Andres Aponte-Novoa et al. “The 51% Attack on Blockchains: A Mining Behavior Study”.

In: IEEE Access 9 (2021), pp. 140549–140564. doi: 10.1109/ACCESS.2021.3119291. url: https:

//doi.org/10.1109/ACCESS.2021.3119291.

[9] Michael Backes, Aniket Kate, and Arpita Patra. “Computational Verifiable Secret Sharing Revis-

ited”. In: Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.
Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes in Computer Science.

Springer, 2011, pp. 590–609. isbn: 978-3-642-25384-3. doi: 10.1007/978-3-642-25385-0_32. url:

https://doi.org/10.1007/978-3-642-25385-0%5C_32.

[10] Imran Bashir. Mastering blockchain. Packt Publishing Ltd, 2017.

41

https://ieeexplore.ieee.org/xpl/conhome/7966454/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7966454/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8826229/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8826229/proceeding
https://doi.org/10.1007/s10586-020-03137-8
https://doi.org/10.1007/s10586-020-03137-8
https://doi.org/10.1109/ICCISci.2019.8716424
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/ACCESS.2021.3119291
https://doi.org/10.1109/ACCESS.2021.3119291
https://doi.org/10.1109/ACCESS.2021.3119291
https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1007/978-3-642-25385-0%5C_32

References 42

[11] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. “Randomness Re-use in Multi-recipient

Encryption Schemeas”. In: Public Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings. Ed. by

Yvo Desmedt. Vol. 2567. Lecture Notes in Computer Science. Springer, 2003, pp. 85–99. isbn:

3-540-00324-X. doi: 10.1007/3-540-36288-6_7. url: https://doi.org/10.1007/3-540-

36288-6%5C_7.

[12] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for Design-

ing Efficient Protocols”. In: CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. Ed. by Dorothy E. Denning

et al. ACM, 1993, pp. 62–73. isbn: 0-89791-629-8. doi: 10.1145/168588.168596. url: https:

//doi.org/10.1145/168588.168596.

[13] Raynor de Best. Blockchain technology use cases in organizations worldwide as of 2021. https :

//www.statista.com/statistics/878732/worldwide-use-cases-blockchain-technology/.

2021.

[14] Aniruddha Bhattacharjya et al. “Security Challenges and Concerns of Internet of Things (IoT)”.

In: Cyber-Physical Systems: Architecture, Security and Application. Ed. by Song Guo and Deze

Zeng. Cham: Springer International Publishing, 2019, pp. 153–185. isbn: 978-3-319-92564-6. doi:

10.1007/978-3-319-92564-6_7. url: https://doi.org/10.1007/978-3-319-92564-6_7.

[15] Aymen Boudguiga et al. “Towards Better Availability and Accountability for IoT Updates by Means

of a Blockchain”. In: 2017 IEEE European Symposium on Security and Privacy Workshops, EuroS&P
Workshops 2017, Paris, France, April 26-28, 2017. IEEE, 2017, pp. 50–58. isbn: 978-1-5386-2244-5. doi:

10.1109/EUROSPW.2017.50. url: https://doi.org/10.1109/EuroSPW.2017.50.

[16] Ran Canetti et al. “UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts”. In:

CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA,
November 9-13, 2020. Ed. by Jay Ligatti et al. ACM, 2020, pp. 1769–1787. isbn: 978-1-4503-7089-9.

doi: 10.1145/3372297.3423367. url: https://doi.org/10.1145/3372297.3423367.

[17] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance”. In: Proceedings of the Third
USENIX Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana,
USA, February 22-25, 1999. Ed. by Margo I. Seltzer and Paul J. Leach. USENIX Association, 1999,

pp. 173–186. isbn: 1-880446-39-1. url: https://dl.acm.org/citation.cfm?id=296824.

[18] Ivan Damgård et al. “Fast threshold ECDSA with honest majority”. In: J. Comput. Secur. 30.1 (2022),

pp. 167–196. doi: 10.3233/JCS-200112. url: https://doi.org/10.3233/JCS-200112.

[19] Omar Dib et al. “Consortium blockchains: Overview, applications and challenges”. In: Int. J. Adv.
Telecommun 11.1 (2018), pp. 51–64.

[20] Jack Doerner et al. “Threshold ECDSA from ECDSA Assumptions: The Multiparty Case”. In:

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. IEEE, 2019, pp. 1051–1066. isbn: 978-1-5386-6660-9. doi: 10.1109/SP.2019.00024. url:

https://doi.org/10.1109/SP.2019.00024.

[21] Ali Dorri et al. “Blockchain for IoT security and privacy: The case study of a smart home”. In:

2017 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom
Workshops 2017, Kona, Big Island, HI, USA, March 13-17, 2017. IEEE, 2017, pp. 618–623. isbn:

978-1-5090-4338-5. doi: 10.1109/PERCOMW.2017.7917634. url: https://doi.org/10.1109/

PERCOMW.2017.7917634.

https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/3-540-36288-6%5C_7
https://doi.org/10.1007/3-540-36288-6%5C_7
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://www.statista.com/statistics/878732/worldwide-use-cases-blockchain-technology/
https://www.statista.com/statistics/878732/worldwide-use-cases-blockchain-technology/
https://doi.org/10.1007/978-3-319-92564-6_7
https://doi.org/10.1007/978-3-319-92564-6_7
https://doi.org/10.1109/EUROSPW.2017.50
https://doi.org/10.1109/EuroSPW.2017.50
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.3233/JCS-200112
https://doi.org/10.3233/JCS-200112
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/PERCOMW.2017.7917634
https://doi.org/10.1109/PERCOMW.2017.7917634
https://doi.org/10.1109/PERCOMW.2017.7917634

References 43

[22] Julian Dreyer, Marten Fischer, and Ralf Tönjes. “Performance analysis of hyperledger fabric 2.0

blockchain platform”. In: Proceedings of the Workshop on Cloud Continuum Services for Smart IoT
Systems. CCIoT ’20. Virtual Event, Japan: Association for Computing Machinery, 2020, pp. 32–38.

isbn: 9781450381314. doi: 10.1145/3417310.3431398. url: https://doi.org/10.1145/3417310.

3431398.

[23] Manu Drĳvers et al. “On the Security of Two-Round Multi-Signatures”. In: 2019 IEEE Symposium
on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1084–1101.

isbn: 978-1-5386-6660-9. doi: 10.1109/SP.2019.00050. url: https://doi.org/10.1109/SP.2019.

00050.

[24] Paul Feldman. “A Practical Scheme for Non-interactive Verifiable Secret Sharing”. In: 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987.

IEEE Computer Society, 1987, pp. 427–437. isbn: 0-8186-0807-2. doi: 10.1109/SFCS.1987.4. url:

https://doi.org/10.1109/SFCS.1987.4.

[25] Wood G. “Ethereum: a secure decentralised generalised transaction ledger”. In: Ethereum project
yellow paper 151.2014 (2014), p. 1. url: https://cir.nii.ac.jp/crid/1370294643848527233.

[26] Rosario Gennaro and Steven Goldfeder. “Fast Multiparty Threshold ECDSA with Fast Trustless

Setup”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by David Lie et al. ACM,

2018, pp. 1179–1194. isbn: 978-1-4503-5693-0. doi: 10.1145/3243734.3243859. url: https:

//doi.org/10.1145/3243734.3243859.

[27] Rosario Gennaro and Steven Goldfeder. “One Round Threshold ECDSA with Identifiable Abort”.

In: IACR Cryptol. ePrint Arch. (2020), p. 540. url: https://eprint.iacr.org/2020/540.

[28] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Complexity of Interactive

Proof Systems”. In: SIAM J. Comput. 18.1 (1989), pp. 186–208. doi: 10.1137/0218012. url:

https://doi.org/10.1137/0218012.

[29] Alonso González et al. “Identifiable Cheating Entity Flexible Round-Optimized Schnorr Threshold

(ICE FROST) Signature Protocol”. In: IACR Cryptol. ePrint Arch. (2021), p. 1658. url: https:

//eprint.iacr.org/2021/1658.

[30] Harry Halpin and Marta Piekarska. “Introduction to Security and Privacy on the Blockchain”.

In: 2017 IEEE European Symposium on Security and Privacy Workshops, EuroS&P Workshops 2017,
Paris, France, April 26-28, 2017. IEEE, 2017, pp. 1–3. isbn: 978-1-5386-2244-5. doi: 10.1109/EUROSPW.

2017.43. url: https://doi.org/10.1109/EuroSPW.2017.43.

[31] K. ITAKURA. “A public-key cryptosystem suitable for digital multisignature”. In: NEC Research
and Development 71 (1983), pp. 1–8. url: https://cir.nii.ac.jp/crid/1572543025896144128.

[32] Don Johnson, Alfred Menezes, and Scott A. Vanstone. “The Elliptic Curve Digital Signature

Algorithm (ECDSA)”. In: Int. J. Inf. Sec. 1.1 (2001), pp. 36–63. doi: 10.1007/S102070100002. url:

https://doi.org/10.1007/s102070100002.

[33] Sunny King. “Primecoin: Cryptocurrency with prime number proof-of-work”. In: July 7th 1.6

(2013).

[34] Sunny King and Scott Nadal. “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake”. In:

self-published paper, August 19.1 (2012).

https://doi.org/10.1145/3417310.3431398
https://doi.org/10.1145/3417310.3431398
https://doi.org/10.1145/3417310.3431398
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://cir.nii.ac.jp/crid/1370294643848527233
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859
https://eprint.iacr.org/2020/540
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://eprint.iacr.org/2021/1658
https://eprint.iacr.org/2021/1658
https://doi.org/10.1109/EUROSPW.2017.43
https://doi.org/10.1109/EUROSPW.2017.43
https://doi.org/10.1109/EuroSPW.2017.43
https://cir.nii.ac.jp/crid/1572543025896144128
https://doi.org/10.1007/S102070100002
https://doi.org/10.1007/s102070100002

References 44

[35] Chelsea Komlo and Ian Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold Sig-

natures”. In: Selected Areas in Cryptography - SAC 2020 - 27th International Conference, Halifax,
NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers. Ed. by Orr Dunkelman,

Michael J. Jacobson Jr., and Colin O’Flynn. Vol. 12804. Lecture Notes in Computer Science.

Springer, 2020, pp. 34–65. isbn: 978-3-030-81651-3. doi: 10.1007/978-3-030-81652-0_2. url:

https://doi.org/10.1007/978-3-030-81652-0%5C_2.

[36] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. “The Byzantine Generals Problem”.

In: ACM Trans. Program. Lang. Syst. 4.3 (1982), pp. 382–401. doi: 10.1145/357172.357176. url:

https://doi.org/10.1145/357172.357176.

[37] Dongcheng Li, W. Eric Wong, and Jincui Guo. “A Survey on Blockchain for Enterprise Using

Hyperledger Fabric and Composer”. In: 6th International Conference on Dependable Systems and Their
Applications, DSA 2019, Harbin, China, January 3-6, 2020. IEEE, 2019, pp. 71–80. isbn: 978-1-7281-

6057-3. doi: 10.1109/DSA.2019.00017. url: https://doi.org/10.1109/DSA.2019.00017.

[38] David Lie et al., eds. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. ACM, 2018. isbn: 978-1-4503-5693-0.

url: http://dl.acm.org/citation.cfm?id=3243734.

[39] Yehuda Lindell and Ariel Nof. “Fast Secure Multiparty ECDSA with Practical Distributed Key

Generation and Applications to Cryptocurrency Custody”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. Ed. by David Lie et al. ACM, 2018, pp. 1837–1854. isbn: 978-1-4503-5693-0. doi:

10.1145/3243734.3243788. url: https://doi.org/10.1145/3243734.3243788.

[40] Eliza Mik. “Smart contracts: terminology, technical limitations and real world complexity”. In:

Law, Innovation and Technology 9.2 (2017), pp. 269–300. doi: 10.1080/17579961.2017.1378468.

eprint: https://doi.org/10.1080/17579961.2017.1378468. url: https://doi.org/10.1080/

17579961.2017.1378468.

[41] Natalia G. Miloslavskaya and Alexander I. Tolstoy. “Internet of Things: information security

challenges and solutions”. In: Clust. Comput. 22.1 (2019), pp. 103–119. doi: 10.1007/S10586-018-

2823-6. url: https://doi.org/10.1007/s10586-018-2823-6.

[42] Daniel Minoli and Benedict Occhiogrosso. “Blockchain mechanisms for IoT security”. In: Internet
Things 1-2 (2018), pp. 1–13. doi: 10.1016/J.IOT.2018.05.002. url: https://doi.org/10.1016/

j.iot.2018.05.002.

[43] Satoshi Nakamoto et al. “Bitcoin: A peer-to-peer electronic cash system”. In: (2008).

[44] Magnus Nyström and Burt Kaliski. “PKCS #10: Certification Request Syntax Specification Version

1.7”. In: RFC 2986 (2000), pp. 1–14. doi: 10.17487/RFC2986. url: https://doi.org/10.17487/

RFC2986.

[45] Rui Oliveira, Pascal Felber, and Y. Charlie Hu, eds. Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018. ACM, 2018. url: http://dl.acm.org/citation.

cfm?id=3190508.

[46] Aafaf Ouaddah, Anas Abou El Kalam, and Abdellah Ait Ouahman. “FairAccess: a new Blockchain-

based access control framework for the Internet of Things”. In: Secur. Commun. Networks 9.18

(2016), pp. 5943–5964. doi: 10.1002/SEC.1748. url: https://doi.org/10.1002/sec.1748.

https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0%5C_2
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/DSA.2019.00017
https://doi.org/10.1109/DSA.2019.00017
http://dl.acm.org/citation.cfm?id=3243734
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1080/17579961.2017.1378468
https://doi.org/10.1080/17579961.2017.1378468
https://doi.org/10.1080/17579961.2017.1378468
https://doi.org/10.1080/17579961.2017.1378468
https://doi.org/10.1007/S10586-018-2823-6
https://doi.org/10.1007/S10586-018-2823-6
https://doi.org/10.1007/s10586-018-2823-6
https://doi.org/10.1016/J.IOT.2018.05.002
https://doi.org/10.1016/j.iot.2018.05.002
https://doi.org/10.1016/j.iot.2018.05.002
https://doi.org/10.17487/RFC2986
https://doi.org/10.17487/RFC2986
https://doi.org/10.17487/RFC2986
http://dl.acm.org/citation.cfm?id=3190508
http://dl.acm.org/citation.cfm?id=3190508
https://doi.org/10.1002/SEC.1748
https://doi.org/10.1002/sec.1748

References 45

[47] Kazim Rifat Ozyilmaz and Arda Yurdakul. “Designing a Blockchain-Based IoT With Ethereum,

Swarm, and LoRa: The Software Solution to Create High Availability With Minimal Security

Risks”. In: IEEE Consumer Electron. Mag. 8.2 (2019), pp. 28–34. doi: 10.1109/MCE.2018.2880806.

url: https://doi.org/10.1109/MCE.2018.2880806.

[48] Torben P. Pedersen. “A Threshold Cryptosystem without a Trusted Party (Extended Abstract)”. In:

Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application of of Cryptographic
Techniques, Brighton, UK, April 8-11, 1991, Proceedings. Ed. by Donald W. Davies. Vol. 547. Lecture

Notes in Computer Science. Springer, 1991, pp. 522–526. isbn: 3-540-54620-0. doi: 10.1007/3-540-

46416-6_47. url: https://doi.org/10.1007/3-540-46416-6%5C_47.

[49] Wouter Penard and Tim van Werkhoven. “On the secure hash algorithm family”. In: Cryptography
in context (2008), pp. 1–18.

[50] David Pointcheval and Jacques Stern. “Security Arguments for Digital Signatures and Blind

Signatures”. In: J. Cryptol. 13.3 (2000), pp. 361–396. doi: 10.1007/S001450010003. url: https:

//doi.org/10.1007/s001450010003.

[51] David Pointcheval and Jacques Stern. “Security Proofs for Signature Schemes”. In: Advances in
Cryptology - EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding. Ed. by Ueli M. Maurer. Vol. 1070. Lecture

Notes in Computer Science. Springer, 1996, pp. 387–398. isbn: 3-540-61186-X. doi: 10.1007/3-540-

68339-9_33. url: https://doi.org/10.1007/3-540-68339-9%5C_33.

[52] Rajat Rathi et al. “Security Challenges Controls in Cyber Physical System”. In: 2020 IEEE 9th
International Conference on Communication Systems and Network Technologies (CSNT). 2020, pp. 242–

247. doi: 10.1109/CSNT48778.2020.9115778.

[53] Chenshan Ren et al. “Distributed Online Optimization of Fog Computing for Internet of Things

Under Finite Device Buffers”. In: IEEE Internet Things J. 7.6 (2020), pp. 5434–5448. doi: 10.1109/

JIOT.2020.2979353. url: https://doi.org/10.1109/JIOT.2020.2979353.

[54] Sara Ricci et al. “Threshold Signature for Privacy-Preserving Blockchain”. In: Business Process
Management: Blockchain, Robotic Process Automation, and Central and Eastern Europe Forum. Ed.

by Andrea Marrella et al. Lecture Notes in Business Information Processing. Cham: Springer

International Publishing, 2022, pp. 100–115. isbn: 978-3-031-16168-1. doi: 10.1007/978-3-031-

16168-1_7.

[55] Karen Rose, Scott Eldridge, and Lyman Chapin. “The internet of things: An overview”. In: The
internet society (ISOC) 80 (2015), pp. 1–50.

[56] Tim Ruffing et al. “ROAST: Robust Asynchronous Schnorr Threshold Signatures”. In: Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022. Ed. by Heng Yin et al. ACM, 2022, pp. 2551–2564. isbn: 978-1-4503-

9450-5. doi: 10.1145/3548606.3560583. url: https://doi.org/10.1145/3548606.3560583.

[57] Mehrdad Salimitari and Mainak Chatterjee. “An Overview of Blockchain and Consensus Protocols

for IoT Networks”. In: CoRR abs/1809.05613 (2018). arXiv: 1809.05613. url: http://arxiv.org/

abs/1809.05613.

[58] Shivam Saxena, Bharat Bhushan, and Mohd Abdul Ahad. “Blockchain based solutions to secure IoT:

Background, integration trends and a way forward”. In: J. Netw. Comput. Appl. 181 (2021), p. 103050.

doi: 10.1016/J.JNCA.2021.103050. url: https://doi.org/10.1016/j.jnca.2021.103050.

https://doi.org/10.1109/MCE.2018.2880806
https://doi.org/10.1109/MCE.2018.2880806
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6%5C_47
https://doi.org/10.1007/S001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9%5C_33
https://doi.org/10.1109/CSNT48778.2020.9115778
https://doi.org/10.1109/JIOT.2020.2979353
https://doi.org/10.1109/JIOT.2020.2979353
https://doi.org/10.1109/JIOT.2020.2979353
https://doi.org/10.1007/978-3-031-16168-1_7
https://doi.org/10.1007/978-3-031-16168-1_7
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1145/3548606.3560583
https://arxiv.org/abs/1809.05613
http://arxiv.org/abs/1809.05613
http://arxiv.org/abs/1809.05613
https://doi.org/10.1016/J.JNCA.2021.103050
https://doi.org/10.1016/j.jnca.2021.103050

References 46

[59] Claus P Schnorr. Method for identifying subscribers and for generating and verifying electronic signatures
in a data exchange system. US Patent 4,995,082. Feb. 1991.

[60] Claus Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptol. 4.3 (1991),

pp. 161–174. doi: 10.1007/BF00196725. url: https://doi.org/10.1007/BF00196725.

[61] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 1989, Proceedings. Ed. by Gilles Brassard. Vol. 435. Lecture Notes in Computer

Science. Springer, 1989, pp. 239–252. isbn: 3-540-97317-6. doi: 10.1007/0-387-34805-0_22. url:

https://doi.org/10.1007/0-387-34805-0%5C_22.

[62] Sureshkumar Selvaraj and Suresh Sundaravaradhan. “Challenges and opportunities in IoT

healthcare systems: a systematic review”. In: SN Applied Sciences 2.1 (Dec. 2019), p. 139. issn: 2523-

3971. doi: 10.1007/s42452-019-1925-y. url: https://doi.org/10.1007/s42452-019-1925-y.

[63] Salma Shalaby et al. “Performance Evaluation of Hyperledger Fabric”. In: IEEE International
Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020, Doha, Qatar, February 2-5, 2020.

IEEE, 2020, pp. 608–613. isbn: 978-1-7281-4821-2. doi: 10.1109/ICIOT48696.2020.9089614. url:

https://doi.org/10.1109/ICIoT48696.2020.9089614.

[64] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–613. doi: 10.1145/

359168.359176. url: https://doi.org/10.1145/359168.359176.

[65] Sabrina Sicari et al. “Toward Data Governance in the Internet of Things”. In: New Advances in the
Internet of Things. Ed. by Ronald R. Yager and Jordán Pascual Espada. Cham: Springer International

Publishing, 2018, pp. 59–74. isbn: 978-3-319-58190-3. doi: 10.1007/978-3-319-58190-3_4. url:

https://doi.org/10.1007/978-3-319-58190-3_4.

[66] S.R. Subramanya and B.K. Yi. “Digital signatures”. In: IEEE Potentials 25.2 (2006), pp. 5–8. doi:

10.1109/MP.2006.1649003.

[67] Nick Szabo. “The idea of smart contracts”. In: Nick Szabo’s papers and concise tutorials 6.1 (1996),

p. 199.

[68] Don Tapscott and Alex Tapscott. “The impact of the blockchain goes beyond financial services”.

In: Harvard business review 10.7 (2016).

[69] Qi Xia et al. “MeDShare: Trust-Less Medical Data Sharing Among Cloud Service Providers via

Blockchain”. In: IEEE Access 5 (2017), pp. 14757–14767. doi: 10.1109/ACCESS.2017.2730843. url:

https://doi.org/10.1109/ACCESS.2017.2730843.

[70] Rebecca Yang et al. “Public and private blockchain in construction business process and information

integration”. In: Automation in Construction 118 (2020), p. 103276. issn: 0926-5805. doi: https:

//doi.org/10.1016/j.autcon.2020.103276. url: https://www.sciencedirect.com/science/

article/pii/S0926580520301886.

[71] Keping Yu et al. “A Blockchain-Based Shamir’s Threshold Cryptography Scheme for Data

Protection in Industrial Internet of Things Settings”. In: IEEE Internet Things J. 9.11 (2022), pp. 8154–

8167. doi: 10.1109/JIOT.2021.3125190. url: https://doi.org/10.1109/JIOT.2021.3125190.

[72] Vlad Zamfir. Introducing Casper “the Friendly Ghost”. https://blog.ethereum.org/2015/08/01/

introducing-casper-friendly-ghost. 2015.

https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0%5C_22
https://doi.org/10.1007/s42452-019-1925-y
https://doi.org/10.1007/s42452-019-1925-y
https://doi.org/10.1109/ICIOT48696.2020.9089614
https://doi.org/10.1109/ICIoT48696.2020.9089614
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-319-58190-3_4
https://doi.org/10.1007/978-3-319-58190-3_4
https://doi.org/10.1109/MP.2006.1649003
https://doi.org/10.1109/ACCESS.2017.2730843
https://doi.org/10.1109/ACCESS.2017.2730843
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103276
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103276
https://www.sciencedirect.com/science/article/pii/S0926580520301886
https://www.sciencedirect.com/science/article/pii/S0926580520301886
https://doi.org/10.1109/JIOT.2021.3125190
https://doi.org/10.1109/JIOT.2021.3125190
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost

References 47

[73] Yu Zhang and Jiangtao Wen. “The IoT electric business model: Using blockchain technology for

the internet of things”. In: Peer-to-Peer Netw. Appl. 10.4 (2017), pp. 983–994. doi: 10.1007/S12083-

016-0456-1. url: https://doi.org/10.1007/s12083-016-0456-1.

[74] Zibin Zheng et al. “An Overview of Blockchain Technology: Architecture, Consensus, and Future

Trends”. In: 2017 IEEE International Congress on Big Data, BigData Congress 2017, Honolulu, HI,
USA, June 25-30, 2017. Ed. by George Karypis and Jia Zhang. IEEE Computer Society, 2017,

pp. 557–564. isbn: 978-1-5386-1996-4. doi: 10.1109/BIGDATACONGRESS.2017.85. url: https:

//doi.org/10.1109/BigDataCongress.2017.85.

[75] Zibin Zheng et al. “An overview on smart contracts: Challenges, advances and platforms”. In:

Future Gener. Comput. Syst. 105 (2020), pp. 475–491. doi: 10.1016/J.FUTURE.2019.12.019. url:

https://doi.org/10.1016/j.future.2019.12.019.

[76] Zibin Zheng et al. “Blockchain challenges and opportunities: a survey”. In: Int. J. Web Grid Serv.
14.4 (2018), pp. 352–375. doi: 10.1504/IJWGS.2018.10016848. url: https://doi.org/10.1504/

IJWGS.2018.10016848.

https://doi.org/10.1007/S12083-016-0456-1
https://doi.org/10.1007/S12083-016-0456-1
https://doi.org/10.1007/s12083-016-0456-1
https://doi.org/10.1109/BIGDATACONGRESS.2017.85
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1016/J.FUTURE.2019.12.019
https://doi.org/10.1016/j.future.2019.12.019
https://doi.org/10.1504/IJWGS.2018.10016848
https://doi.org/10.1504/IJWGS.2018.10016848
https://doi.org/10.1504/IJWGS.2018.10016848

	Acknowledgement
	Abstract
	Introduction
	Problem Description and Motivation
	Contributions
	Paper Structure

	Preliminaries
	Digital Signatures
	ECDSA Signature
	Schnorr Signature

	FROST: Flexible Round-Optimized Schnorr Threshold Signatures
	Blockchain
	Types of Blockchain
	Consensus Algorithms
	Smart Contracts

	Hyperledger Fabric
	The Membership Service Provider
	Overview of registration and enrollment

	Blockchain And IoT
	Blockchain Integration with IoT
	Applications and Use Cases
	Threshold Signatures For IoT Blockchain

	Related Work
	Lindell (2018)
	GG20 (2020)
	Damgard (2022)
	DKLS (2019)
	CMP (2020)
	RDCC (2022)
	Robustness in FROST
	Summary

	Proposed Protocol
	Setup of the network architecture
	Registering and Enrolling with a Certificate Authority
	Transaction generation and signing API
	Technical details about the APIs

	Experiments And Results
	Experiment 1: FROST in IoT devices
	Setup
	Methodology
	Results

	Experiment 2: Integration of FROST with Hyperledger Fabric
	Setup
	Methodology
	Results

	Discussions
	Conclusion
	References

