
Synthetic X-Ray
Image Generation
Using FPGA-Based

Hardware
Acceleration

by

P.J. Aanhane

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday March 7, 2025 at 14:00

Student number: 4644581
Project duration: May, 2024 - March, 2025
Thesis committee: Dr. ir. C. Strydis TU Delft, Chair

Dr. ir. R. Remis TU Delft, Core
R. de Jong, BSc. Philips Medical Systems, supervisor
Dr. ir. Z. Al-Ars TU Delft, supervisor

An electronic version of this thesis is available at https://repository.tudelft.nl/

https://repository.tudelft.nl/

Abstract

Synthetic image generation involves the creation of artificially generated images that are indistinguish-
able from real ones. This field is an answer to challenges in the world of data acquisition, where the
need for data is outpacing the availability. In cooperation with Philips Medical Systems, the generation
of synthetic X-ray images is studied. Using datasets derived from such images, equipment testing and
physician training can be improved. Additionally, training data can be generated for machine learning
purposes.

The generation of synthetic X-ray images has been an area of research since at least 1994. The images
have traditionally been generated using ray-tracing techniques on CPUs or GPUs. While effective,
these methods are computationally expensive and demand high memory bandwidths. More recently,
machine learning techniques have been explored for X-ray image generation. These approaches are
promising. However, they require large labelled datasets which are often unavailable and the quality
of the results is difficult to predict.

The aim of this thesis is to investigate whether hardware acceleration using a field programmable gate
array (FPGA) can solve the challenges other methods face. Specifically, it discusses an architecture
that can handle the large amount of computations in parallel. The memory architecture required to
handle the high bandwidth demands is also explained. The performance of the proposed architecture
is studied to see whether it is a viable solution.

By simulating the traversal of rays through a voxelized model, an attenuation map was computed which
can be used to determine X-ray intensities on a detector. The design separates computational tasks
between a host machine and an FPGA, with an optimized High Bandwidth Memory architecture to
maximize data throughput. Results demonstrated that the simulation produced realistic images with
minimal error (2.26% - 3.00% deviation from CPU results), and performance is dependant on the de-
tector resolution, achieving frame rates between 123 and 378 frames per second which are well above
the goal of 60 frames per second. If more performance is required, upsampling can be used to speed
up image generation by 33% at an increased error of 0.6% for an upsampling factor of two. These
findings highlight the advantages of FPGA acceleration for deterministic, high-speed synthetic image
generation without the need for large labelled datasets as required by machine learning algorithms.

i

Preface

During my master studies, my interest in computer hardware continued to grow. My study programme
was filled with as many performance- and architecture related courses as possible. Outside of my
studies, I have worked as a software developer because of my enjoyment of programming. These
interests came together perfectly in the research topic for this thesis. Being able to apply them in the
field of medical technologies proved to be very satisfactory. Effectively using hardware to accelerate
software is something I will definitely be spending more time on in the future.

I consider myself lucky to have been able to work on a topic which remained interesting for the entire
nine month period. After the usual start-up problems everybody experiences, as soon as the project
gained direction I have been nothing but enthusiastic. This made the months fly by and I am proud of
what I was able to achieve.

I am grateful to everyone who supported me throughout my studies and this project. This includes my
family, friends, and roommates, who patiently listened to my many discussions on the topic. I also want
to thank my fellow TASTI team members for their valuable insights. A special thanks to Melis Umay
Tekbas for her support in developing the hardware and to Klaus Juergen Engels for his deep knowledge
and helpful guidance on the physical characteristics of X-rays and their simulation. I am also thankful
to Per Knops for his assistance in transferring the project and for his openness to all my questions.

I would also like to thank my supervisor Zaid Al-Ars for his supporting role in the project and his helpful
feedback. Finally, a special word of gratitude to my supervisor from Philips, Rob de Jong. You have
taught me a lot about everything ranging from medical imaging to FPGAs, and I really enjoyed our
many off-topic discussions on things like computers and cameras. I could not have done it without you
and I look back on this internship with a lot of enjoyment, regardless of the four-hour-long travel days.

P.J. Aanhane
Rotterdam, February 2025

ii

Contents

Abstract i

Preface ii

Nomenclature iv

1 Introduction 1
1.1 Challenge . 2
1.2 Research questions . 2
1.3 Thesis outline . 2

2 Background 3
2.1 X-rays and imaging systems . 3

2.1.1 X-ray generation . 3
2.1.2 Matter interaction . 4
2.1.3 Imaging systems . 5

2.2 FPGA . 5
2.3 Related work . 6

3 Simulation outline and algorithm explanation 8
3.1 Simulation model . 8

3.1.1 Simulation arrangement . 8
3.1.2 Source . 10
3.1.3 Voxel model . 10
3.1.4 Detector . 11
3.1.5 Computational model . 11

3.2 Algorithm . 12
3.2.1 Projection step . 12
3.2.2 Computation step . 14
3.2.3 Detector step . 15

4 System architecture 17
4.1 Requirements . 17
4.2 System design . 17

4.2.1 Host machine . 17
4.2.2 FPGA components . 19
4.2.3 Memory components . 19

5 System implementation 21
5.1 Processor . 21
5.2 Ray generator . 22
5.3 Engines . 23

5.3.1 Computations . 24
5.3.2 Engine memory . 25

5.4 Ray scaler . 25
5.4.1 First order approximation . 26
5.4.2 Second order approximation . 28
5.4.3 Final approximation . 28
5.4.4 Hardware implementation . 28

5.5 Detector . 30
5.5.1 Error definition . 31
5.5.2 Interpolation . 31

iii

Contents iv

5.5.3 Upsampling . 33

6 Memory architecture 35
6.1 HBM architecture . 35
6.2 Request manager . 35
6.3 Response manager . 37
6.4 Memory layout . 37

6.4.1 Small model . 39
6.4.2 Medium model . 39
6.4.3 Large model . 40

6.5 Model compression . 40
6.5.1 Error function . 41
6.5.2 Strategy 1 . 42
6.5.3 Strategy 2 . 42
6.5.4 Comparison . 44

7 Results and analysis 47
7.1 Material error . 47
7.2 CPU- and FPGA-based result comparison . 49
7.3 FPGA performance . 50

7.3.1 Theoretical performance . 52
7.3.2 Measured performance . 52
7.3.3 Analysis . 52

7.4 Upsampling error . 53

8 Conclusion and recommendations 56
8.1 Conclusion . 56
8.2 Recommendations . 57

References 58

Nomenclature

List of abbreviations

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

CLB Configurable Logic Block

CT Computed Tomography

DDR Double Data Rate

DRR Digitally Reconstructed Radiographs

DSP Digital Signal Processing

FIFO First In First Out

FPD Flat Panel Detector

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GAN Generative Adversarial Network

GPU Graphics Processing Units

HBM High Bandwidth Memory

ISO Isocenter

LUTRAM Lookup Table Random Access Memory

PCIe Peripheral Component Interconnect Express

RISC Reduced Instruction Set

SDRAM Synchronous Dynamic Random-Access Memory

SID Source-Image-Distance

TASTI Application-Tailored Synthetic Image Generation

URAM Ultra Random Access Memory

Engine variables

xstep/ystep Horizontal or vertical distance between projection pixels

xinc/yinc Increment in x or y position between layers

xinc_step/yinc_step Change in x or y increment between projection pixels

xinc_start/yinc_start Increment in x or y position for the first projection pixel

xinc_start/yinc_start Increment in x or y position for the first projection pixel

xmin/ymin Lowest x or y coordinate of the projected boundary

xmax/ymax Highest x or y coordinate of the projected boundary

v

1
Introduction

Synthetic image generation involves the creation of artificially generated images that are indistinguish-
able from real ones. This field is an answer to challenges in the world of data acquisition for machine
learning and artificial intelligence applications. As the demand for high-quality datasets continues to
grow, reliance on real data alone proves increasingly impractical. In the healthcare industry especially,
gathering real-world data can be unsafe for the patient, unethical, or restrictive due to privacy legislation
protecting against sharing sensitive data. Synthetic data offers a good alternative, enabling the usage
of safe, high-quality, and privacy compliant datasets that can be used in the development of the smart
systems of tomorrow.

This thesis is part of an internship project at the Dutch company Philips Medical Systems. The project
is part of TASTI (Application-TAilored SynThetic Image generation) [32], which is a European funded
initiative with the goal of developing a modular framework of transferable technology to innovate syn-
thetic image generation tailored towards applications in several industries. Philips has been an indus-
try leading expert in medical imaging systems and has done a lot to innovate the healthcare industry.
The interventional X-ray department aims to improve patient healthcare and build systems that can
save lives. These systems have strict real-time processing requirements which are often solved using
streaming-based processing. At the TU Delft EEMCS Computer Engineering group, a lot of effort has
gone into techniques that can meet these demands, ranging from the development of stream-based
processing for image processing applications [16] to composable streaming interfaces defined using
software [10].

For Philips specifically, the TASTI project is about creating a virtual testing platform using synthetic
image generation, for which three different applications have already been identified:

1. Equipment testing: Synthetic images can simplify the process of system integration tests. Real
tests require the X-ray source, which can be inconvenient. The restriction because of safety,
though justified, can also be time consuming. Through elimination of the X-ray source while
maintaining the ability to produce an image, system development can be accelerated and quality
is maintained.

2. Physician training: A virtual environment that simulates the operation of medical equipment
accurately allows a physician to gain hands-on experience in a safe setting without relying on
harmful radiation sources or involving actual patients. Such a platform ensures risk-free training,
making the process both efficient and accessible.

3. AI data generation: Computer vision algorithms are employed for the purpose of system val-
idation. They can be used to judge image quality and perform simple medical analysis. Such
algorithms require large datasets for training purposes. These can be generated using the virtual
testing platform.

1

1.1. Challenge 2

1.1. Challenge
The virtual platform currently under development consists of an exam room containing the controls
and a technical room containing a system cabinet for simulations. This simulation is CPU-based and
operates on a full-body model, also known as a phantom. Currently, it produces about 5 frames per
second, which is insufficient for real-time performance.

The bottleneck of the simulation lies in the high memory throughput necessary to produce each frame.
Without optimizations, generating a frame using a whole-body phantom requires a memory transfer of
approximately 2 GB. To achieve a speed of 60 frames per second, a transfer rate of 120 GB per second
would be required. Such speeds are infeasible for regular PC hardware. This estimate does not even
consider the huge amount of calculations required for processing this data.

1.2. Research questions
The aim of this Master’s thesis is to determine whether computational- and memory throughput chal-
lenges existing solutions face can be addressed using hardware acceleration kernels. Specifically, it
seeks to investigate whether a custom FPGA architecture can be used for real-time synthetic image
generation of X-ray images at the rate of existing detectors. To answer this question, the following
sub-questions are posed:

1. What system architecture is needed to support real-time generation of synthetic X-ray images?
2. What memory architecture is required to handle the high data throughput?
3. What is the maximum performance achievable using FPGAs and does it satisfy the necessary

application performance?

1.3. Thesis outline
This thesis will start with some background information in Chapter 2. It will give a short introduction
on X-ray radiation and imaging systems. It will also explain the FPGA. Next, Chapter 3 will show
the steps and components required to simulate an accurate X-ray image. The following chapters talk
about the architecture. Chapter 4 explains the design of the system and introduces the architecture.
In Chapter 5, the implementation of the components is discussed. This includes both the software and
hardware components. How the memory communication is implemented is mentioned in Chapter 6.
Finally, Chapter 7 provides an analysis of the simulation results and Chapter 8 will conclude the thesis.

2
Background

In this chapter, the required background knowledge is discussed to provide context into X-ray based
imaging systems. In Section 2.1, the physics behind X-rays is summarized and the concept of X-ray
imaging systems is introduced. Section 2.2 will provide an explanation on FPGAs, heavily utilised in
this thesis. Section 2.3 will cover related work.

2.1. X-rays and imaging systems
The history of medical and industrial X-rays and the evolution of the technology of its sources has been
ongoing for about 125 years. The first indirect discovery has been attributed to Julius Pluecker, who
reported a greenish fluorescence on a glass wall while studying Geissler discharge tubes in a partial
vacuum [8]. This glow is characteristic evidence of electrons hitting a wall and producing X-rays, but
the underlying mechanism was not yet known at the time . In 1895, while experimenting with electric
current in cathode-ray tubes, Wilhelm Röntgen observed similar effects and theorized that electrons
striking the glass tube produced unknown radiation. He called the phenomenon X-radiation because
of its uncertain nature and connection to light [13].

X-rays are electromagnetic radiation. Electromagnetic radiation transports energy, also called radiant
energy, through space using waves and photons just like radio waves, visible light or microwaves. As
with all forms of light, X-rays are characterized by their frequency or wavelength. In literature, most
sources define the wavelength range of X-rays to be between 0.01 nanometres and 10 nanometres
[31] [21]. This corresponds to an energy range of 100 eV up to 100 keV.

2.1.1. X-ray generation
There are twomain ways X-rays are generated. The first is related to their initial discovery. This method,
known as Bremsstrahlung derived from the German word for slowing down, involves the interaction
of high-speed electrons with the anode of an X-ray tube. Electrons are accelerated by the tube’s
acceleration voltage, moving them from the negative cathode to the positive anode. When these high-
energy electrons collide with the anode material, they are decelerated and deflected by the electric
fields of the atoms in the anode. The deceleration produces X-rays with a continuous energy spectrum
[21].

Characteristic X-rays are produced when high-energy electrons eject inner-shell electrons from atoms
in the anode material, creating vacancies. To stabilize, electrons from outer shells transition into these
vacancies, releasing X-ray photons with energies equal to the difference between the two shell levels.
These energies are unique to the atomic structure of the target material, resulting in a discrete spectrum
with sharp peaks corresponding to specific transitions [21]. When the continuous and discrete spectra
are combined, the spectrum shown in Figure 2.1 is produced. An X-ray beam consisting of radiation
with multiple energy levels is referred to as polychromatic. When only a single energy level is present,
it is called monochromatic.

3

2.1. X-rays and imaging systems 4

Figure 2.1: Energy spectrum produced by a tungsten tube [21].

2.1.2. Matter interaction
X-rays have the ability to penetrate matter, but the amount is dependent on both the material as well
as the X-ray energy. In the energy range that is used for medical imaging, there are three kinds of
relevant interactions, described in [21], that can occur when X-rays pass through matter. The first two
are physical and occur when X-rays collide with either nucleons or electrons. The third happens when
X-rays are influenced by an electric field.

These interactions can lead to radiation absorption, but are also responsible for scattering. Both are
responsible for X-ray attenuation. The linear attenuation coefficient µ is a material property and a
measure for how much the intensity of an X-ray beam is reduced the further it penetrates matter. The
linear attenuation takes the density of a material into account, expressed at µ

ρ . Figure 2.2 shows how
the mass attenuation can change depending on the material and the X-ray photon energy. Using the
linear attenuation of amaterial, the Lambert-Beer’s law [21] describes the radiation intensity as it passes
through a material:

I = I0e
−

∫ l
0
µ(x)dx (2.1)

where I0 describes the incident X-ray intensity, l the thickness of the material, and µ(x) the linear
attenuation at x.

Figure 2.2: Plot which shows the linear attenuation for
different materials and different energies [28].

Figure 2.3: Illustration describing the Compton effect,
where an incident photon strikes an outer shell electron,

scattering the photon [15].

2.2. FPGA 5

Source

Detector

Figure 2.4: Philips Azurion 7 B20/15 bi-plane imaging system showing the location of the source and the detector, adapted
from [1].

In the case of scatter, the most prevalent for high-energy radiation is Compton scattering [15]. The
cause of this type of scattering is an incident X-ray photon hitting an electron which ejects it from its
orbit. The photon is also scattered. The ejected electron is referred to as the recoil electron. The
scattered photon will have both a different direction as well as a different energy. Figure 2.3 shows an
illustration of the phenomenon.

2.1.3. Imaging systems
Figure 2.4 shows an interventional X-Ray system by Philips with its most important components. The
process begins at the X-ray tube, also known as the source. The source produces the radiation which
moves through the subject. In medical imaging, low energy X-rays are removed using a thin metal plate
as a filter. This is because the low energy rays are largely absorbed by a patient, resulting in a higher
patient dose without improving the image quality. The type of beam is referred to as a cone beam, due
to its outward portraying direction [21].

In modern systems, the flat panel detector (FPD) has become the standard. FPDs can either directly
or indirectly capture the radiation. Direct conversion FPDs contain an X-ray sensitive photoconductor
which detects the presence of radiation. Indirect conversion FPDs contain a scintillating layer which first
converts X-ray photons into visible light. The detectors used by Philips have indirect conversion FPDs.
The detector is covered by an anti-scatter grid, which limit the degrading effects of this phenomenon. A
diagram of the detector used in Philips systems can be seen in Figure 2.5. Note the scintillating layer,
shown in blue, that covers the detector matrix.

2.2. FPGA
An FPGA is a type of integrated circuit which is designed to be reconfigurable. Unlike traditional logic
devices such as application-specific integrated circuits (ASICs), the connections between logic gates
and components on an FPGA can be modified after the chips have been produced. This ability makes
FPGAs suitable devices for prototyping high-performance applications.

Reconfiguration is achieved through an array of fixed configurable logic blocks (CLBs) and flexible
interconnects that can be configured to perform either complex operations or to serve as simple logic
gates. The structure is shown in Figure 2.6. FPGAs can also include static hardware ranging from
dense memory arrays to dedicated hardware multipliers which can be incorporated in a design through
the interconnect [17]. FPGAs are useful for prototyping high-performance applications and can support
most designs, provided it has the required resources available. Highly parallel parts of an application
can efficiently be implemented with custom logic. This is different from a conventional CPU where one

2.3. Related work 6

Figure 2.5: Diagram showing the components that make up a detector [34].

Figure 2.6: Structure within an FPGA [25].

is restricted by the hardware implementation which cannot be altered after production.

2.3. Related work
The generation of synthetic X-ray imagery is not a novel field, with research on rendering techniques
and computational algorithms dating back to at least 1994. Over the past two decades, there has been
a strong focus on digitally reconstructed radiographs (DRRs) as the primary method for simulating X-
ray images. DRRs are computational approximations of X-ray images. They are based on 3D imaging
datasets derived from computed tomography (CT) or reconstructed rotational X-ray images. There are
several approaches to the usage of these dataset for the image generation process.

It was discovered early on that approaches involving the simulation of rays moving through the model,
also known as ray tracing, are computationally expensive and require a high memory bandwidth. [27]
describes the usage of attenuation fields that extend ray tracers, allowing most computations to be
performed in a preprocessing step. This method significantly accelerates DRR generation. The at-
tenuation field are more memory efficient than storing precomputed DRR tables used in conventional
methods. Using this approach, a speed of roughly twenty images per second can be achieved.

In order to speed up the computations, graphics processing units (GPUs) are a good candidate due
to the large number of processing cores available. [29] achieves a performance of approximately 100
images per second through algorithmic simplifications and specialized ray casting techniques. [33]
optimizes DRR rendering on GPUs and evaluates performance across four commercially available
devices. They were able to achieve a performance ranging from 190 to 370 images per second. Both

2.3. Related work 7

techniques used small models however of approximately 60 MB, which means the models used were
either not very large or not very detailed.

More modern approaches advocate the usage of machine learning algorithms to aid the X-ray image
generation process. The problem with these techniques is that they rely on large amounts of labelled
images which are rarely available. To address this, [9] introduces a multi-stage Generative Adversarial
Network (GAN) to generate synthetic images with semantic labels for data augmentation. This ap-
proach performs well on small datasets. [24] attempts to generate synthetic CT images from Magnetic
Resonance Imaging (MRI) data using GANs with cycle consistency. Cycle consistency refers to the
similarity between images translated from one domain to another, and back to the initial domain. The
implementation included additional improvements such as perceptual loss, coordinated convolutional
layers, and super-resolution techniques. Both methods report accurate images compared to other
methods, though no note is made of relevant performance metrics.

3
Simulation outline and algorithm

explanation

In this chapter an outline of the simulation setup will be provided. This outline includes a description
of the simulation model, including some definitions and the components modelled by the system. Fur-
thermore, the algorithm itself is explained which consists of a projection step, a computation step, and
a detector step.

3.1. Simulation model
In order to simulate an X-ray image, three important components need to be simulated. These three
components, visible in Figure 3.1, are the source, physical model, and detector. The source should
accurately represent how X-rays are produced and how they move through physical space. The model
serves as a stand-in for the subject and describes how X-rays are altered as they penetrate material.
The detector is responsible for registering the X-ray intensities which are used to produce the final
image.

3.1.1. Simulation arrangement
To set up the simulation of X-ray images, the spatial arrangement of the components is critical. Fig-
ure 3.2 shows the arrangement and coordinate system used in the simulation. The source is positioned
to emit X-rays directed towards the model. The model is placed at the centre, with the frontal bottom-left
corner placed at the origin. Behind the model, the detector is placed to capture the X-rays measuring
their intensity to construct the final image.

The isocentre (ISO) is defined as the point around which the source and detector rotate. it is not a fixed
point but it can move as well. The movement is dictated by the rotation and translation of the source
and detector with respect to the model. For the purpose of consistency, all simulations used throughout
this thesis have placed the ISO at the centre of the model. Any realistic position is supported however.
The ISO-to-source distance is also fixed in all simulations. The source-to-image distance (SID) can
vary however, affecting the shape of the beam. This is summarised in table 3.1.

Table 3.1: Value range of SID and ISO to source.

Parameter Value
SID 89.5 - 119.5 cm

ISO to Source 81 cm

8

3.1. Simulation model 9

Figure 3.1: Diagram showing the source, model, and detector which need to be modelled in the simulation [18].

isocentre

SID

ISO to
Source

Z

X

Source

Model

Detector

(0,0)

Figure 3.2: Diagram showing the arrangement of the components in the coordinate system.

3.1. Simulation model 10

Figure 3.3: Example voxel model of a skull. This model
is used throughout this thesis.

0

1

2

0
1

2

Figure 3.4: Example of how the voxel model is
constructed out of individual layers or planes.

3.1.2. Source
The source is defined by a three-dimensional vector containing an X, Y, and Z component. Throughout
the simulation this vector can be transformed, as a real imaging system can also move to different
positions. This transformation, which can be a combination of rotation and translation, also affects the
trajectory of the rays that the source produces.

The source is modelled as a single point in space and produces a pyramid-shaped beam consisting of
individual rays. The simulated source is a simplification compared to its physical counterpart because
of two reasons. First, the beam produced by the source is modelled as radiation with an energy of 75
keV. As explained in Chapter 2, this means the beam is monochromatic rather than polychromatic. This
assumption simplifies the simulation by eliminating the need to account for the varying absorption of X-
rays at different energy levels. This approximation is considered valid because, as shown in Figure 2.2,
the linear attenuation coefficients for soft tissue, fat, and bone show a similar dependency on the X-ray
energy for higher levels. However, this simplification is not able to represent physical effects like beam
hardening, which is an increase in the mean energy of the X-ray spectrum as radiation moves through
an object. Artifacts caused by such effects like cupping and streak artifacts [3] are therefore not visible.

Second, the simulated source produces radiation which does not scatter. This is not representative of
a physical system, which predominantly suffers from Compton scatter in the medical imaging energy
range [15]. Compton scatter is not only a source of noise, but can also cause artifacts in densematerials
appearing as blurs in the image [14]. Because such effects do not dominate the final image, is was not
considered for this thesis and its inclusion is recommended as future work.

3.1.3. Voxel model
The model depicts the subject of the imaging process. In the simulation, the model consists of a large
amount of voxels, also known as three-dimensional pixels, containing linear attenuation coefficients
which describe how the X-ray intensity is reduced as rays move through the voxel. Throughout this
thesis, a voxel model of a skull is used. This model is shown in Figure 3.3. The model is divided
into layers which are traversed from the front to the back. This is shown in Figure 3.4. There are
little restrictions on the size of the model. It can both be a cube or a rectangular cuboid. The only
requirement is that all layers run parallel to each other. The skull model has a size of 384 x 297 x 384
voxels. The largest model which must be supported has a size of 1024 x 1024 x 1024 voxels. In case
the model is larger than this, a slice can be created which fits within these dimensions. As long as the
rays do not pass voxels outside of this slice, these voxels can safely be ignored. In case the source
and detector move, the slice can be reconstructed.

The voxel values of the model represent linear attenuation coefficients. Initially, these coefficients

3.1. Simulation model 11

0b0010

0b0110

0b1010

0b1111

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

0.00 cm2

0.12 cm2

0.15 cm2

0.17 cm2

0.18 cm2

0.19 cm2

0.20 cm2

0.23 cm2

0.25 cm2

0.28 cm2

0.29 cm2

0.31 cm2

0.35 cm2

0.39 cm2

0.41 cm2

0.45 cm2

Model Materials

Figure 3.5: Example of the voxel model compression concept, adapted from [19]. Each voxel contains an index into a
materials table, greatly reducing the memory footprint.

are represented using 32-bit floating point numbers making the range of possible values practically
continuous. This is inconvenient for two reasons. First, floating point operation require a large area
of dedicated hardware. Second, many voxels which are close to each other will have values in a
similar range because they represent the same physical material like tissue or bone. If these sets of
roughly equivalent voxels can be grouped, the memory footprint can be decreased if the groups can
be referenced using a single number instead of 32 bits.

To implement this, the model is limited to 16 different material values. This limit means that a material
can be referenced by a 4-bit integer acting as the index for a lookup table instead. This lookup table
contains the actual linear attenuation coefficient represented using fixed point notation for efficient
processing. An uncompressed model of 1024 x 1024 x 1024 voxels would require roughly 4.3 GB of
storage. A model utilizing the compression trick only requires 536 MB of storage. The compression
concept is illustrated in Figure 3.5.

The compression of the model is a trade-off between processing speed and representation accuracy.
The main advantage is a large reduction in memory bandwidth, enabling faster processing. However,
averaging attenuation coefficients introduces some error compared to the original model. In Chapter 6,
various strategies will be explored to minimize this error while maintaining performance. If the resulting
error is deemed too large, future work could explore the impact of increasing the material count on
image quality and system performance.

3.1.4. Detector
The detector is the final component in the simulation. Its functionality is not modelled, but it is still an
important part of our representation. This is because it plays a large part in the generation of the X-ray
beam. The detector is treated as a rectangle for simplicity, but it does not need to be. Different shapes
would work as well. The detector is based on the Allura Xper FD20, which has a size of 293.2 x 398.2
millimetres.

The detector is defined by a centre point and horizontal- and vertical spans. Based on this information,
the detector corners can be accurately represented. The most significant parameter of the detector
is its resolution, which directly influences the quality and computational complexity of the simulation.
Each pixel in the detector corresponds to a single ray traced from the X-ray source, resulting in a
computational complexity which is linear to the number of detector pixels.

3.1.5. Computational model
At its core, the simulation is about calculating the intensity of a ray using the Lambert-Beer law stated
in Equation 2.1. A line integral needs to be evaluated to determine the intensity. The voxel model is
discrete, so the integral can be replaced by a simple summation:

I = I0e
−

∑
µx,y,z·lx,y,z (3.1)

3.2. Algorithm 12

Projection step Computation step Detector step

Source Model DetectorProjection
plane

Figure 3.6: Overview of the 3 steps making up the algorithm, adapted from [19].

where µx,y,z represents the linear attenuation coefficient of a specific voxel and lx,y,z the length of the
path through this voxel.

For the purpose of computational efficiency, only a single voxel per layer is considered. This voxel
contains the longest path segment of the ray. The contribution of neighbouring voxels are ignored and
the length of the ray through those voxels are added to the voxel under consideration. Thus, since
the angle of a ray does not change as it moves through the model, for each particular ray its length
through every intersected voxel is constant. Therefore, Equation 3.1 can be further simplified to include
a constant length L, shown in Equation (3.2)

I = I0e
−L·

∑
µx,y,z (3.2)

Equation 3.2 shows that the intensity of a ray can be calculated if the scaled sum of linear attenuation
coefficients is known. This is not a costly operation. The summation of the attenuation coefficients is
the expensive part. The goal of the algorithm is therefore to compute this sum for every ray efficiently.
The end result is a two-dimensional matrix containing the total linear attenuation for every ray, referred
to as the attenuation map.

3.2. Algorithm
This section explains the algorithm used to compute the attenuation map for a given voxel model and
detector, outlining the steps involved in the process. The algorithm is structured into three steps: the
projection step, the computation step, and the detector step. These steps are shown in Figure 3.6.
The projection step focuses on projecting the detector onto the voxel model in order to determine the
boundary of the beam. This boundary is used to calculate a grid of projection pixels which mark the
entry points of the rays in the model. The computation step handles the propagation of the rays through
the model, determining the cumulative linear attenuation on the projection plane. Finally, the detector
step is responsible for transforming the attenuation map from the projection plane onto the detector.

3.2.1. Projection step
In the first step of the algorithm, the detector is projected onto the first model layer. This step is important
because the projection confines the X-ray beam. Figure 3.7a shows a visualization of how the detector
can be projected onto the first model layer.

There are a couple of parameters that influence the size and shape of the projection. The first is the
SID, which determines the size of the projection which is shown in figure 3.8a. The closer the detector
is to the voxel model, the larger the projection will be for a given detector shape. The second parameter
is the orientation of the source and detector. They are able to rotate around the ISO centre inside of
the model. Rotation along either the X- or Y-axis influences the shape of the projection, as shown in
figure 3.8b and figure 3.8c.

3.2. Algorithm 13

(a) Illustration showing how the detector can be projected onto the first
model layer.

Projection boundary

Projected detector

Projection pixel

(b) End result of the projection step which
shows the projection pixels based on the

projected detector.

Figure 3.7: Illustration of projected detector and resulting projection grid.

(a) SID determines projection size

Projection Plane

98°

(b) Orientation determines projection shape
(c) Resulting trapezium shape

caused by rotation

Figure 3.8: Effects of distance and orientation of the detector on the projected projection.

3.2. Algorithm 14

Figure 3.9: Using simple trigonometry, a point can be projected on the first model layer based on the source and the detector.

Before the detector can be projected, the position of the source and the detector in three-dimensional
space must be known. For the first image, this position is equal to the initial configuration. For the other
images, the positions need to be adjusted according to the provided trajectory if present. In the case
of translation, all relevant positions can simply be moved since they all move an equal amount. In the
case of rotation, a few calculations are required to determine the new position.

Based on Euler’s rotation theorem [20], an arbitrary three-dimensional rotation can be split up into three
two-dimensional rotations. To achieve this, a standard rotation matrix described by [36] is used. This
results in the following equations:

Rx(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
z
y

]
Ry(ϕ) =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

] [
x
z

]
Rz(ψ) =

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

] [
x
y

] (3.3)

Once the position is known, the detector can be projected onto the first layer. The equations shown in
Equation 3.4 can be derived from the setup shown in Figure 3.9.

px =
−sz

dz − sz
∗ (dx − sx) + sx

py =
−sz

dz − sz
∗ (dy − sy) + sy

(3.4)

Once the detector has been projected a boundary can be constructed. This boundary covers the
projection with some additional padding, which benefits the detector step. Within this boundary a grid
can be constructed. This grid determines the entry points of the ray in the model. An example of this
grid is shown in Figure 3.7b.

3.2.2. Computation step
In the computation step the traversal of rays through the voxel model is simulated. The path of the
rays is based on the result from the projection step. Equally spaced rays are generated with their entry
points chosen at the centre of the projection pixels shown in Figure 3.7b. For every voxel intersected by
a ray, the linear attenuation coefficient corresponding to this voxel is added to the sum of the previous
layers. Figure 3.10 shows how a set of rays move through the centred model.

The attenuation coefficients provided by the model are based on a length of one unit, which would
describe a path perpendicular to the xy voxel plane. Because the ray can move angulated against the
voxel plane normal, the end result needs to be scaled according to the length of the ray in a voxel in
accordance with Equation 3.2. Let

−→
R (α, β) be the path of a ray through a voxel in the z-direction, where

α and β describe the slope in the x- and y-direction respectively. The length of a segment is then equal
to the magnitude of this vector, shown in Equation 3.5. x̂, ŷ, and ẑ are the unit vectors. An example of
an attenuation map produced by the computation step can be seen in Figure 3.12.

3.2. Algorithm 15

30 20 10 0 10 20 30
5

0

5

Figure 3.10: Side view of a set of rays (red) as they move through a model (light blue), generated with code from [19].

Engine 0 Engine 1 Engine 2 Engine 3

Figure 3.11: Path which a ray traces through the model. In this illustration, one engine is responsible for two model layers. The
yellow voxels represent intersected voxels. The blue voxel is not considered.

−→
R (α, β) = αx̂+ βŷ + ẑ

l = |
−→
R (α, β)| =

√
α2 + β2 + 1

(3.5)

Many rays can be simulated in parallel through the use of compute engines. These engines, described
in detail in Chapter 5, are responsible for contiguous model layers and compute the path and accu-
mulated attenuation for a given ray. Figure 3.11 shows an example of the path of a ray through a
voxel model. It is important to note that in this algorithm only a single voxel per layer is considered.
This is a simplification however, because in reality up to three voxels can be crossed at a time in three-
dimensional space. As a suggestion for future work, quantifying and possibly reducing the error caused
by this simplification can be investigated.

3.2.3. Detector step
After the computation step, an attenuation map of the X-rays has been produced. This map is based on
the projection plane, which is the exit plane of the final model layer. The rays are equally spaced in this
plane. This is a result of the computation step. However, the detector pixels which detect the X-rays
are not equally spaced. Their location can significantly differ from the projection pixels based on the
amount of padding used to construct the boundary and rotation of the system. Figure 3.13a shows an
example of an attenuation map for approximately 15 degrees of rotation around the y-axis. This map is
in the projection plane. The orange line shows the border of the detector projected onto this plane. All
detector pixels are within this boundary. To determine the attenuation registered by these pixels, they
have to be interpolated based on the projection pixels. Section 5.5 will explain this process in more
detail.

Using interpolation, intensities from one pixel grid are resized to another by estimating the intensities
at the interpolated positions. Several algorithms are available to do this. In order to make a decision,
three different algorithms will be explored. The three different algorithms are discussed in detail in
Section 5.5.

3.2. Algorithm 16

0 100 200 300 400 500
0

100

200

300

400

500

Figure 3.12: Example of an attenuation map produced by the computation step.

0 100 200 300 400 500
0

100

200

300

400

500

(a) Attenuation map on the projection plane. The orange line
indicates the projected detector.

0 100 200 300 400 500
0

100

200

300

400

500

(b) Attenuation map interpolated to the detector plane.

Figure 3.13: Attenuation before and after the detector step, generated with approximately 15◦ of vertical rotation.

The first interpolation method is the nearest neighbour interpolation. Several variations of this algorithm
exist. For this thesis the easiest variant will be considered, which simply finds the nearest pixel and
assigns its value to the pixel to be interpolated. The second interpolation which will be studied is the
bilinear interpolation. It is a well known extension of a linear approximation to two-dimensional space.
Using this approach, an interpolated value is based on four points surrounding it. The third interpolation
method which will be studied is the Lanczos interpolation. This technique is proven to work well in three-
dimensional reconstruction in the context of medical volumes [22] and is based around the Lanczos
kernel.

4
System architecture

In this chapter, an overview of the system architecture will be provided, starting with a list of require-
ments that serve as the foundation for the design. Based on these requirements, a design is presented
which is also motivated by the need for real-time behaviour.

4.1. Requirements
As outlined in Chapter 1, the purpose of the simulator is to replicate the experience of a real imaging
system, delivering realistic X-ray images. Ultimately, the goal is to generate image passable as real im-
ages at speeds on par with real imaging systems, providing a safe and effective alternative for machine
testing and operator training. Based on this goal the following list of requirements can be established.

1. The hardware must target the Alveo U50 Data Accelerator card;
2. The simulator must support models up until a depth of 1024 voxels;
3. The simulator must support a resolution of at least 512 projection pixels;
4. The simulator must produce realistic results in the operating range of a real X-ray system;
5. The simulator must produce images at a speed of 60 images per second;
6. The accuracy of the implementation must be precise up to 1/16th of a projection pixel;

4.2. System design
An overview of the main system components needed to meet the requirements and achieve real-time
behaviour can be seen in Figure 4.1. The diagram specifies two independently operating regions. The
host machine is connected to the X-ray system and accepts simulation parameters. The FPGA is
connected to the host through the Peripheral Component Interconnect Express (PCIe) and computes
the X-ray attenuation maps.

4.2.1. Host machine
The host machine is a Linux PC which houses the FPGA and handles all forms of communication.
Its main responsibility is supplying the FPGA with the correct simulation data. This data includes the
following information:

• The voxel model;
• The material values of the voxel model;
• The source position;
• The detector position and resolution;
• The trajectory describing the change in source-detector orientation and position.

17

4.2. System design 18

ALVEO U50 CARD

HOST

FPGA CHIP
Processor

Dual Port RAM

Ray Generator

Compute Engines

HBM IP

Memory

Interconnect

PCIe Interface

Read Manager Ray Scaler

Figure 4.1: Diagram showing the main components of the system. It shows how the host interfaces with the FPGA and how
the components required to run the algorithm are interconnected.

The voxel model and material values need to be send ahead of time to the FPGA. The largest model
has a compressed size of 536.9 MB. One model covers approximately 22.5 degrees of rotation in each
direction. If this range is exceeded, the model needs to be recalculated in order to adjust the orientation
such that the total rotation does not exceed the 22.5 degree limit. This can be done ahead of time. For
every base model, the material values only need to be send once. The host must however make sure
that each model is present on the FPGA ahead of time. The model data is stored in the memory of the
Alveo U50 card. The material values are stored in Lookup Table Random Access Memory (LUTRAM)
blocks within each engine, later referred to as the parameter RAM.

The other parameters are inputs which define the simulation configuration. The positions of the source
and the detector determine the path the rays take through the model. The resolution of the detector
defines the amount of rays which are simulated, which has a large impact on the image quality. The
trajectory describes how the source-detector orientation changes between frames. These parameters
only need to be send once to the FPGA, as long as the trajectory does not change and the source-
detector orientation is within the specified range. The inclusion of the trajectory parameter means the
simulation configuration can be updated on the FPGA. This decreases the amount of communication
between the systems, which is necessary to achieve real-time behaviour. The input parameters are
stored in Block RAM (BRAM) connected to a processor on the FPGA. Communication with the host is
also supported through the BRAM.

Detector
The final stage of the X-ray image simulation algorithm involves transforming the produced attenuation
map onto the detector. While the majority of the simulation is implemented on the FPGA, the detector
step is performed on a PC. This stage begins by taking the output from the FPGA, an attenuation map,
and interpolating it to account for distortions introduced by the projection onto the model.

Although this process could be implemented on an FPGA, it is not timing-critical and involves relatively
few calculations, making it more practical to handle on a PC. Additionally, performing this step on a
PC enables post-processing operations, such as filtering and upsampling, which can enhance image
quality. This approach also provides flexibility for future extensions, such as integrating GPU-based
processing to further accelerate or enhance the simulation pipeline.

4.2. System design 19

4.2.2. FPGA components
The FPGA handles the execution of the simulation. It should independently operate as a pipeline,
requiring as little directions from the host machine as possible. To realize the algorithm outlined in
Section 3.2 in hardware, the system shown in Figure 4.1 was created. The diagram shows the most
important components and how they are connected.

As described in the previous section, the initial parameters and model data are send to the FPGA
through a PCIe interface and the interconnect of the chip. The parameters are stored in memory blocks
exposed to a micro controller. These blocks allow for bidirectional communication between the FPGA
and the host, though this has not yet been realized for this project. The model data is stored in memory
chips on the Alveo U50 card.

Processor
The first task of the FPGA is to project the detector onto the model. Because this step requires complex
operations which are expensive to implement accurately in hardware like trigonometric functions, it
is implemented using a MicroBlaze processor. The MicroBlaze is a 32-bit soft-core processor and
has many different hardware configurations. It can be optimized for area or performance and can be
configured to include additional hardware like fast multipliers. It can be programmed using C allowing
a flexible implementation of the non-critical parts of our system. Once the micro controller has finished
processing the initial parameters, its output is communicated to the rest of the system. For the ray
generator component this includes the projection boundary which confines the rays. For the compute
engines, this includes the material values stored in the parameter RAM and a line offset.

Ray generator
The ray generator is responsible for providing the input to the compute engines. It does this by calcu-
lating where a ray enters the model as well as how the position of a ray changes between model layers.
This information is all the engines need to determine how the ray traverses the model.

Compute engines
The compute engines play a crucial role in the system. They calculate the sum of attenuation coeffi-
cients for specified ray directions and positions and update the position of rays as they move through
the model. Their functionality and implementation was first introduced in [19].

Each engine handles eight model layers. The engines form a chain. This means that the number of rays
which can be processed concurrently is equal to the number of engines in the system. The engines
requests voxel lines from memory in advance to accelerate processing. They operate in groups of
sixteen. Within a group, the engines are connected to the same read manager. They must wait for
their memory requests to be processed if other requests are handled first. This can potentially delay
individual computations.

Ray scaler
The ray scaler handles the final step of the computational model explained in Section 3.1.5. This step
includes properly scaling the computed attenuation according to the length of a ray segment. This is
because the attenuation calculated by the engines assume a ray length of one unit. It is important
that the ray scaler does not introduce any latency in the system, because every single ray must be
processed by this component. Therefore, a fast implementation of this component is important.

4.2.3. Memory components
Earlier work focused on the Versal FPGA device, where memory bandwidth proved to be a significant
bottleneck. Based on request and access times gathered through simulations, engines had to be run
at half their possible speed in order to prevent delays. To address this issue, the Alveo U50 Data Accel-
erator card was considered due to its High Bandwidth Memory (HBM) architecture. This architecture
is well-suited for the application, as it can handle large volumes of data in parallel, benefiting from the
highly predictable access patterns of the processing engines.

As shown in Figure 4.2, the Alveo U50 card features two 32 Gb HBM stacks, composed of DDR4 (Dou-
ble Data Rate) memory chips. Each stack consists of sixteen pseudo channels, each with a dedicated
memory interface and a capacity of 2 Gb. These channels can be accessed almost entirely in parallel,

4.2. System design 20

Figure 4.2: Alveo U50 HBM two stack configuration [5]

Table 4.1: Summary of the amount of bits returned for a given model width.

Model Width Bits 32-byte Bursts
256 1024 4
384 1536 6
512 2048 8
1024 4096 16

significantly improving data throughput. However, engines are not directly connected to the memory in-
terface. Instead, a read manager is responsible for the retrieval of voxel lines requested by the engines,
providing access to the corresponding pseudo channel.

Read manager
In software, the operating system is responsible for handling thememorymanagement of an application.
In an FPGA, this is the responsibility of the application itself. The read manager is therefore one of the
most important components in the system. One read manager is responsible for serving voxel data to
sixteen engines at most. It sits between the engines and the Alveo U50 memory.

Compute engines can request a model line with a single request. Memory is returned in bursts of 256
bits. The read managers must therefore be able to handle these bursts and return them in the correct
order to the compute engines. Table 4.1 shows how many bits are returned per line for a given model
width and the number of bursts during which this happens.

5
System implementation

This chapter will discuss the implementation details of the system. Specifically, it will explain the hard-
ware and software components required for the computation of an attenuation map. An overview of the
hardware components and their connections are shown in Figure 5.1. The details of the read manager
and memory are discussed in Chapter 6.

Engine

16x

HBM Stack

AXI_00

AXI_01

ProcessorRay Generator

Ray Scaler

Request
Manager

Response
Manager

Read Manager

Figure 5.1: Functional diagram showing how the components discussed in this chapter are related. The number of
components will vary depending on the model size.

5.1. Processor
The purpose of the processor is to take the parameters supplied by the host machine and compute the
input parameters for the simulation. It is implemented using the MicroBlaze Micro Controller System
IP supplied by Xilinx. The MicroBlaze is a 32-bit Reduced Instruction Set (RISC) soft-core processor
with a three-stage pipeline. It has an integrated IO module which can be used to communicate with the
rest of the system.

The MicroBlaze calculates a set of parameters used by the ray generator component to generate the
rays. It calculates an initial vertical offset which describes the entry point of the first ray for the engines.
Additionally, it sends the material coefficients used for the attenuation computations to the engines. The
processor operates at 100 MHz. The other hardware components operate at 400 MHz. To prevent data
hazards from interfering with the communication, clock domain crossing logic is required. This logic
consists of double buffering the MicroBlaze IO bus and generating a simple ready-valid handshake in
the corresponding clock domain using a pulse generator provided by Xilinx [6]. Figure 5.2 shows how
the processor is connected to the other components.

21

5.2. Ray generator 22

Table 5.1: Execution time of different parts of the algorithm running on the MicroBlaze.

Task Time
Precompute trigonometric values 123 µs
Update source and detector according to the trajectory 239 µs
Project detector points onto the model 178 µs
Construct boundary used for ray generation parameters 3 µs
Compute ray generation parameters 59 µs
Send ray generation parameters over IO bus 2 µs
Calculate and send vertical offsets to engines 255 µs
Total: 859 µs

100 MHz

Ray Generator

400 MHz

BRAM Engines

Host Data

Processor

IO Dec

IO Dec

CDC

Figure 5.2: Diagram showing how the processor is connected to the rest of the system.

Software
The software, implemented in C, must be fast due to its placement in the critical path. This is because
the projection step of the algorithm described in Section 3.2 is executed for every image. The projection
step can be executed in advance while the engines are handling the computation step. If the host
parameters change however, the result will have to be recomputed. To determine the available time
to run the code, consider the worst-case scenario where new parameters arrive just before the new
frame is required. This means the processor and the engines have to complete their work within 16.5
ms in order to achieve the desired performance of 60 images per second. To provide the engines with
a wide margin to complete their work, the processor should finish its part of the algorithm within 2 ms.

Execution begins with fetching parameters from the host. However, as host/FPGA communication has
not yet been realized for this thesis, it is not discussed further. The execution times of the remain-
ing operations for the projection step have been measured using simulation and are summarized in
Table 5.1. Based on the total duration, completion within 2 ms is easily achieved. To ensure a fast
execution time, the algorithm uses fixed point numbers for all computations. This speeds up the exe-
cution dramatically, since the processor does not have a Floating Point Unit (FPU) for the arithmetic.
To determine the number of fractional bits required, the fixed point implementation was compared with
a floating point implementation. The number of fractional bits was adjusted until the requirement of ac-
curacy up to 1/16th the size of a projection pixel was met. In addition to the fixed point implementation,
an approximation of the sine- and cosine function is also implemented in the software. The values are
computed once and reused for each vector that needs to be rotated. The approximation was confirmed
to meet the level of accuracy required.

5.2. Ray generator
The ray generator component supplies the engines with data about the X-rays, including the x- and
y-position within a model layer as well as their respective changes, known as the x- and y-increments.

5.3. Engines 23

To determine this for every ray, knowledge of the projected boundary as well as positional information
from the processor is used.

It operates based on a state machine. When the reset signal drops, the ray generation component
waits for the necessary parameters as mentioned in Section 5.1. It receives these parameters through
an IO decoder attached to the IO bus of the processor. Once all parameters have been received, the
IO status signal is asserted and rays can be generated.

X- and y-position
The rays are generated from the bottom-left to the top-right corner of the boundary. To compute the
initial position of the ray, the xstep and ystep parameters are introduced. These parameters are equal to
the width and height of a projection pixel respectively. They are computed by the processor and equal
to the width or height of the boundary divided by the resolution in the same direction. The initial x- and
y-position are calculated according to Equation (5.1), where xmin and ymin are the bottom-left corner
of the boundary.

x = xmin + 0.5 · xstep
y = ymin + 0.5 · ystep

(5.1)

For each additional ray the x-position is incremented by the xstep parameter as long as it is within the
boundary. If the horizontal boundary is passed, the x-position is restored to the initial x-position and
the y-position is incremented. If the vertical boundary is passed, all rays have been generated.

X- and y-increment
The x- and y-increment values, which describe how the x- and y-positions change as the rays move
between layers, are calculated using a similar process. The initial increment values are however pro-
vided by the processor, since they require a division operation to calculate. All additional values are
determined by adding an increment_step value to the previous increment value. To proof that this is
valid, consider two adjacent projection points on the xz-plane. The first x-increment value can trivially
be calculated using Equation (5.2), where Pn and Pn−1 are neighbouring projection points, S is the
source, and Dsmd is the source-model-distance.

Pn−1 : xincrement =
Pn−1,x − Sx

Dsmd
(5.2)

If Pn is rewritten in terms of Pn−1 it is shown that the increment value changes by a constant factor,
which has previously been referred to as the increment_step. This is shown in Equation (5.3). The
same relation holds for the y-increment of a ray.

Pn : xincrement =
Pn,x − Sx

Dsmd

=
Pn−1,x + xstep − Sx

Dsmd

=
Pn−1,x − Sx

Dsmd
+
xstep
Dsmd

(5.3)

5.3. Engines
The compute engines, introduced in a different Master’s thesis [19], are responsible for computing the
path of X-rays through a model. An overview of the components within the engine can be seen in
Figure 5.3. Most of the functional details of the compute engines will not be covered in this thesis.
However, in the context of the entire system an understanding of its basic functionality is required.
Figure 5.4 shows a diagram describing the simplified interface of a single engine.

5.3. Engines 24

URAM
Manager

URAM Parameter
RAM

DSP
Manager

DSP

Data signals

Control signals

Computation signals

Figure 5.3: Diagram showing the components which make up a compute engine [19]. The most important components are the
URAM manager, which handles all control signals within the engine, and the DSP manager, which handles the control signals

of the addition component.

Compute
Engine

model data

accumulated attenuation

control signals

accumulated attenuation

control signals

position informationposition information

Previous
Engine

Next
 Engine

Figure 5.4: Simplified diagram describing the interface of a compute engine.

5.3.1. Computations
The compute engines are responsible for executing the computation step of the algorithm, as described
in Section 3.2.2. The engines are connected in a chain, each responsible for calculating the path of a
ray through eight model layers. The number of cascaded engines is therefore dependent on the depth
of a model. A model with a depth of 256 layers requires 32 engines. The largest model supported
has a depth of 1024 layers, which means 128 engines would be required. The three main pieces of
information exchanged between engines are as follows:

• Partial results: Since the engines operate in a cascaded fashion, each engine takes the partial
result of a previous engine and computes a new partial result which includes the eight layers it is
responsible for.

• Position information: In order to determine the ray position within a layer, four values describing
the position of a ray are shared between engines. These values include the x- and y-coordinate
of a ray within a layer, as well as an x- and y-increment describing how the coordinate changes
between layers. This logically means that the output position of a ray is equal to the sum of the
input position and eight layer increments.

• Control signals: To facilitate the communication between engines some control signals are
required. These signals describe when an engine is ready to receive data from the previous
engine or to send it to the next one.

5.4. Ray scaler 25

read pointer

write pointer

7
6
5
4
3
2
1
00x1 0x1 0x1 0x1 0x3 0x3 0x3 0x3 0x1 0x1 0x1 0x1

0x1 0x1 0x1 0x1 0x3 0x3 0x3 0x3 0x1 0x1 0x1 0x1

Engine URAM

Figure 5.5: Implementation of the engine line buffers. The number in the boxes indicate the line numbers. The colour indicates
the buffer a line is stored in.

Table 5.2: URAM addressing structure. P[n] denotes the nth plane bit, L[n] denotes the nth line bit, and I[n] denotes the nth
index bit.

22 - 11 10 9 8 7 6 5 4 3 2 1 0
0 P[2] P[1] P[0] L[1] L[0] I[5] I[4] I[3] I[2] I[1] I[0]

5.3.2. Engine memory
In order to compute results, each engine is responsible for fetching the voxels it requires. It does this
by utilizing a set of buffers which can each store an entire line of voxels which are requested ahead
of time. Each engine has four line buffers per model layer, meaning 32 lines in total can be buffered.
The aim of the buffers is to store lines before they are required. Using this approach, the amount of
time an engine spends waiting on voxels to be retrieved is limited. The buffers are implemented as
circular buffers within an UltraRAM (URAM) block. URAM blocks are the largest dedicated on-chip
storage elements on an FPGA and have plenty of memory to hold all the lines. The circular buffer
implementation means they have a read and write pointer as shown in Figure 5.5. When a line has
been read, meaning no more rays will pass through it, the read pointer is incremented. When a line
has been read from memory the write pointer is incremented, as long as it will not overwrite the read
pointer. Every line only needs to be read once, since the rays traverse the model from the bottom to
the top for any given plane.

A URAM block is a specialized memory resource available in FPGAs. URAM is designed to provide
high-capacity and high-performance on-chip memory. A single URAM block offers 288 Kb (36 KB) of
memory, which is significantly larger than a Block RAM block which has 36 Kb (4 KB). Each engine has
its own URAM block to implement the buffers. The URAM is accessed using a 23-bit address. There
are three bits required to select the relevant plane. Two are required to select a line buffer. The data
line of a URAM block is 64 bits. This means a block of sixteen voxels can be accessed at once. Since
the largest line contains 1024 voxels, there are log2(1024/16) = 6 bits required to index a block in the
buffer. Based on these parameters the URAM addressing structure shown in Table 5.2 can be defined.
This structure needs to be followed by the read manager, since it is responsible for writing the correct
voxels to these addresses.

Before the engines can process rays, they must first be initialised with parameters provided by the
processor. These parameters include the material coefficients used to decompressed the voxel values.
These parameters are supplied by the host application and stored in the parameter RAM within the
engines. Additionally, each engine requires a vertical offset to determine the entry point of the first
ray for each of the layers an engine is responsible for. This offset is necessary in order to request the
correct voxel lines in advance.

5.4. Ray scaler
The final operation within the FPGA is the scaling of the computed attenuation by the engines. This is
done by the ray scaling component, which takes the output of the final engine and scales it based on
the length of the ray. Based on the Pythagorean theorem, x_inc (∆x) and y_inc (∆y) , this length can

5.4. Ray scaler 26

(0, -447.5)
ISO

(-199.1, 447.5)

(199.1, 447.5)

z
y

(a) Configuration of the source and detector drawn at scale for the
smallest SID.

(12.7, 489.6)

(-355.2, 337.2)

ISO

(171.3, -413.4)

(b) Configuration of the source and detector after 22.5◦ of rotation.

Figure 5.6: Setup resulting in the largest angle of the rays for an ISO placed at the centre. This angle occurs for the smallest
SID with maximum rotation.

be computed using Equation (5.4).

L(∆x,∆y) =
√
1 + ∆x2 +∆y2 (5.4)

This computation requires both a square root operation as well as two square operations. This is
not feasible for the hardware implementation due to the latency and circuit area such mathematical
operations introduce. In order to still be able to scale the ray a length approximation is required. The
approximation has to fulfil a few criteria in order to be useful:

1. Accuracy: The approximation must not introduce significant error in the computed attenuation.
Therefore, the average error may not exceed 2%;

2. Speed: The approximation may not be expensive to compute and add any latency. This means
that the approximation must be able to process rays immediately. Therefore, only operations
which can be pipelined and take a single cycle can be used;

3. Resources: The approximation may not use an excessive amount of resources.

In order to adhere to the speed requirement, the length of the ray will be approximated using a linear
function. The additions required for such a function can be implemented in a single cycle using little
resources. There will be a delay of one cycle for every addition, but this will not be noticeable at the
output. The approximation needs to be valid for every ∆x < 1.0 and ∆y < 1.0, since the engines
do not support a higher increment. To verify that this increment is never exceeded, the maximum
increment can be computed using some trigonometry and knowledge about the physical system. The
maximum increment of the rays occur for the smallest SID with maximum rotation applied to the source
and detector. This situation is drawn in Figure 5.6. The smallest SID is 895 millimetres. The largest
span of the detector, resulting in the maximum ray increment, is 199.1 millimetres. This information
is based on the system specifications provided in Section 3.1.4. The maximum rotation for which a
model is still valid is 22.5◦. Based on these parameters, if the ISO is positioned at the centre of the
system the maximum increment is equal to |−369.6−189.1

321.4−−405.0 | = 0.70. This means the range for which the
approximation is valid will never be exceeded.

5.4.1. First order approximation
The first approximation is reliant on the fact that 1 + ∆x2 +∆y2 ≈ 1 + ∆x+∆y. This is true because
the constant is the dominating term, especially for small values. Assuming this approximation is valid,
the square root operation is not yet considered. To approximate this with an addition operation as well,
a correction coefficient α can be included.

Before the coefficient is explained, a mathematical definition to select the appropriate coefficient based
on ∆x and ∆y is required. This will be referred to as the coefficient index. First, ∆x and ∆y are
represented in fixed point notation. Let us assume they are positive, so the sign can be ignored. If the

5.4. Ray scaler 27

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Le
ng

th

Figure 5.7: True ray length for a given ∆x and ∆y.

number of coefficients is equal to 2n, the coefficient index can be computed using Equation (5.5). As
an example, consider the index if ∆x = 0.45312510 = 0.0111012. If 16 coefficients are stored, which is
24, the index is equal toMSB4(0.0111012) =

⌊
24 · 0.0111012

⌋
= 01112 = 7

MSBn(∆x2) = ⌊2n ·∆x2⌋
MSBn(∆y2) = ⌊2n ·∆y2⌋

(5.5)

Alpha
The coefficient α, which is based on∆x and∆y, is used to account for the fact that

√
1 + ∆x2 +∆y2 ≤

1 + ∆x + ∆y. To calculate the correction coefficient α, the difference between the actual length and
the approximation without correction is calculated as shown in Equation (5.6). Since α will be stored
in memory on the FPGA, only a discrete number of coefficients can be stored. This is indicated by the
indices i and j, which are computed based on the prior coefficient index definition. Figure 5.7 shows
the true length of a ray for a given ∆x and ∆y. The low-resource memory implementations within
an FPGA store multiples of 64 32-bit words. This means 64 coefficients can be stored at a low cost.
The error should be the same in both directions. A grid of eight by eight equally spaced ∆xi and ∆yi
values is therefore used to calculate the corresponding correction coefficients. Equation (5.7) shows
the resulting linear approximation.

αij = (
√
1 + ∆x2i +∆y2j)− (1 + ∆xi +∆yj) (5.6)

L(∆x,∆y) ≈ 1 + ∆x+∆y − αij (5.7)

Figure 5.8 shows a comparison between the true length computed using Equation (5.4) and its estimate
using Equation (5.7). There is a clear grid visible. At the 64 sample points within the grid, the error
is 0.0. This is because those sample points can perfectly be compensated using the precomputed
αij term. However, everywhere else there is still a significant error present. The average error of this
approximation is 6.02%. The maximum error is 21.78%. This error is too significant and the estimate
therefore needs to be refined. The straight contour lines in Figure 5.8a do not match the curves in
Figure 5.7. This indicates that the estimate can be improved by adding a correction for the square
operation as well.

5.4. Ray scaler 28

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

0.90

1.05

1.20

1.35

1.50

1.65

1.80

1.95

Le
ng

th

(a) First order approximation of ray length for given ∆x and
∆y.

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

0

3

6

9

12

15

18

21

24

Er
ro

r [
%

]

(b) Approximation error as a percentage compared to the
true length.

Figure 5.8: Comparison between the true length and the first order approximation of the length for a given ∆x and ∆y.

5.4.2. Second order approximation
For the second order approximation, we further refine the estimate by adding two additional terms.
These terms, βk and βl, compensate the error introduced by the estimate of the square operation.

Beta
The β correction term can be computed in advance using the relation shown in Equation (5.8). Similar to
the αij term, β is not continuous since it is stored in physical memory. The indices k and l are computed
based on the prior definition. β is stored using the same memory block consisting of 64 x 32-bit words.
Because β is based on only a single variable-both∆x and∆y are individually compensated-the number
of coefficients that can be stored can be doubled to 128 if the precision of a single term is dropped from
32 bits to 16 bits. A coefficient can then be addressed using an odd number of bits, which was not
possible for the αij term.

βk = ∆x2k − xk

βl = ∆y2l − yl
(5.8)

Using both the α and β correction terms, the new approximation is shown in Equation (5.9). A compar-
ison between the true length and the estimate using the new approximation can be seen in Figure 5.9.
The grid in the error plot is still apparent, but the overall error has decreased significantly. For this
approximation, the average error is 4.72%. The maximum error is 17.73%. Again, the error is still too
significant. To achieve the desired accuracy, more correction coefficients are needed. This requires
an increase in memory.

L(∆x,∆y) ≈ 1 + ∆x− βk +∆y − βl − αij (5.9)

5.4.3. Final approximation
To ensure the approximation is valid for the chosen range, the number of stored coefficients can be
increased. This means more points can be represented accurately, lowering the overall error. To
achieve the desired accuracy, the number of α coefficients had to be increased from 64 to 1024. The
number of βk and βl coefficients were increased from 128 to 256. Figure 5.10 shows the comparison
between the true length and the estimate with these additional coefficients. The average error of this
estimate is 1.25%. The maximum error is 4.40%. This means the error of the approximation is now in
the acceptable range.

5.4.4. Hardware implementation
The ray scaler must be able to process a new ray every cycle. The additions in Equation (5.9) are
therefore split into several stages. The individual stages can be computed in a single cycle. The

5.4. Ray scaler 29

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

0.90

1.05

1.20

1.35

1.50

1.65

1.80

1.95

2.10

Le
ng

th

(a) Second order approximation of ray length for given ∆x
and ∆y.

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r [
%

]

(b) Approximation error as a percentage compared to the
true length.

Figure 5.9: Comparison between the true length and the second order approximation of the length for a given ∆x and ∆y.

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

0.90

1.05

1.20

1.35

1.50

1.65

1.80

1.95

Le
ng

th

(a) Second order approximation with additional coefficients
for given ∆x and ∆y.

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

Er
ro

r [
%

]

(b) Approximation error as a percentage compared to the
true length.

Figure 5.10: Comparison between the true length and the second order approximation of the length with additional coefficients.

5.5. Detector 30

1

pcout
R R R

Figure 5.11: Hardware implementation of the ray scaler which computes the length of a ray for a given x- and y-increment.

correction terms are precomputed and stored in read-only memory elements. These can be accessed
in a single cycle as well. Using this approach, the rays are scaled without introducing any latency, apart
from a delay which is not noticeable at the output.

Since αij is based on ∆x and ∆y, both are used to compute the address which contains the corre-
sponding correction coefficient. There are 256 coefficients, so the four most significant bits of both ∆x
and ∆y are required to form the address. To determine βk and βl, the eight most significant bits from
∆x and ∆y are used, since there are 256 coefficients for both as well.

The implementation of the ray scaler is shown in Figure 5.11. There are three cycles required to com-
pute the approximation. The linear attenuation, computed by the engines and supplied using the pcout
line of the final engine, therefore needs to be delayed three cycles using registers. Afterwards, it can
be multiplied by the length using a Digital Signal Processing (DSP) multiplier element.

5.5. Detector
The goal of the detector step is to produce the final attenuation map used to create an X-ray image.
The total attenuation computed for each ray by the engines is based on the projection plane which is
always parallel to the model plane. However, in most configurations this is not the case for the detector
plane. Therefore, the attenuation needs to be interpolated based on the detector pixels. That is why
the detector step is introduced in the algorithm.

As mentioned in Section 4.2.1, this step is implemented in software instead of in hardware on the FPGA.
This is because the step is not timing-critical due to the relatively small amount of calculations required.
To support this decision, an additional post-processing step will be conducted to evaluate whether an
attenuation map can be upsampled while maintaining accuracy. Given that the computational cost
of the algorithm scales linearly with the number of projection pixels, this technique offers significant
potential for time savings.

Both techniques require interpolation algorithms. Three interpolation methods will be introduced and
compared in this section. Themethods investigated are the bilinear interpolation, the nearest neighbour
interpolation, and the Lanczos interpolation. Using a computer simulation, an attenuation map can be
generated directly on the plane of the detector. This map can then be used to evaluate the interpolation
techniques using the error definition explained in Section 5.5.1.

5.5. Detector 31

Detector pixel
Projection pixel

Figure 5.12: Illustration of how the true location of the detector pixels vary compared to the projection pixels.

5.5.1. Error definition
In order to evaluate a simulation result, the error can be computed based on a reference map. Con-
sider a reference attenuation map and a candidate attenuation map, both consisting of N rows andM
columns containing detector pixels. Let Xi,j be the attenuation value of the reference pixel in row i
and column j. Let xi,j be the attenuation value for the same pixel of the map being compared. P99 is
the 99th percentile value of the maximum attenuation of the reference map and is used to normalize
the data. The usage of percentile normalisation removes outliers. The error ϵi,j of a simulated pixel
compared to a reference pixel is then defined according to Equation (5.10). This error will be referred
to as the normalized difference throughout this thesis.

ϵi,j =
Xi,j − xi,j

P99
(5.10)

The study of perceived image quality, which is about the level of accuracy captured by imaging systems,
is an entire field on its own. The human eye is complex and it is difficult to define what criteria a realistic
result would meet. As shown in [12], there is no single objective metric which judges the quality of
an image well in every situation. For this thesis the simple Mean Absolute Error (MAE), shown in
Equation (5.11), was chosen. The MAE provides a single figure to summarize the error of a map based
on the 99th percentile attenuation value.

MAE =
1

N ·M

N∑
i=1

M∑
j=1

|ϵi,j | (5.11)

5.5.2. Interpolation
Figure 5.12 illustrates the variation between detector pixels and the corresponding points targeted by
the rays. The part of the detector closest to the model exhibits the least amount of distortion. Detector
pixels in this region are relatively well-aligned with the ray targets. The part of the detector further away
from the model experiences the most amount of distortion. Here, the difference between the detector
pixel and the projection pixel is larger.

The process begins with generating a detector pixel grid by determining the exact positions of the
detector pixels on the projection plane. The attenuation at these grid points are then interpolated using
the output from the compute engines.

5.5. Detector 32

x1 x x2

Q21R1Q11y1

y

y2 Q12 R2

P

Q22

Figure 5.13: Application of the bilinear interpolation algorithm. The green dot is the value to be interpolated. The red dots
show the known values [35].

Nearest neighbour interpolation
The nearest neighbour interpolation method finds, as the name implies, the pixel in the projection grid
closest to the detector pixel which needs to be interpolated. The detector pixel is assigned the value
of this neighbour. The method is computationally efficient and easy to implement, though it is possible
that blocky artifacts start to appear [26].

Bilinear interpolation
The bilinear interpolation method can be formulated as a weighted mean of a set of points surrounding
the point to be interpolated. Consider a point P as shown in Figure 5.13. The set of points surrounding
it are marked as Q11, Q12, Q21, and Q22. If f(x, y) denotes the the interpolated value at (x, y), the
bilinear interpolation can be written as Equation (5.12) [35]. The coefficients wij are defined according
to Equation (5.13). Using f(x, y), every point on the detector grid can be interpolated.

f(x, y) ≈ w11f(Q11) + w12f(Q12) + w21f(Q21) + w22f(Q22) (5.12)

w11 =
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)

w12 =
(x2 − x)(y − y1)

(x2 − x1)(y2 − y1)

w21 =
(x− x1)(y2 − y)

(x2 − x1)(y2 − y1)

w22 =
(x− x1)(y − y1)

(x2 − x1)(y2 − y1)

(5.13)

Lanczos interpolation
Lanczos interpolation is a popular image resampling and resizing technique often used in image pro-
cessing. The technique is based on the Lanczos kernel, which is a dynamic kernel based around the
sinc function which needs to be recomputed for every value to be interpolated. This method is known for
its ability to produce high-quality results with minimal artifacts when scaling and transforming images.

The interpolation process involves a convolution filter which is applied to an image. The filter is defined
as a sum of sinc functions. It is windowed to limit the influence of far-off pixels and improve computa-
tional efficiency. The one-dimensional kernel used for the filter is given by Equation (5.14) [22], where
x is the real value to be interpolated and si is a real value from the source image. The parameter a
dictates the number of lobes of the sinc function which are used. It also defines the size of the kernel.

5.5. Detector 33

Table 5.3: Mean and maximum MAE of different interpolation methods for a 0.0◦ to 22.5◦ range of horizontal- and vertical
rotation.

Method Mean Max.
Nearest neighbour 0.25% 0.27%
Bilinear 0.17% 0.19%
Lanczos (a = 4) 0.89% 0.92%
Lanczos (a = 7) 0.46% 0.49%

[22] shows that a kernel size of 2 can lead to ringing artifacts. These did not occur for kernel sizes of
3 and 4. For a = 4, most interpolation methods should be outperformed.

S(x) =

⌊x⌋+a∑
⌊x⌋−a+1

siL(x− i)

L(x) =

{
sinc(x)sinc(x/a) if − a < x < a

0 otherwise

(5.14)

Since Lanczos resampling uses a separable filter, the result in the horizontal direction can be multiplied
by the result in the vertical direction in order to achieve a two-dimensional result. This means that the
final interpolated value at S(x, y) can be calculated using Equation (5.15).

S(x, y) =

⌊y⌋+a∑
j=⌊y⌋−a+1

⌊x⌋+a∑
i=⌊x⌋−a+1

siL(x− i)L(y − j) (5.15)

Interpolation results
The interpolation methods are compared for the total 22.5 degree range of horizontal- and vertical rota-
tion. For this experiment, the axis of rotation was placed at the centre of the voxel model. For a given
rotation, a reference attenuation map is generated first. For this reference, the projected detector pixels
are used as targets for the simulated rays. Because the same points are used in the interpolation, their
actual value can be calculated this way. This is different from the regular simulation, where the targets
are based on the projection points. Based on the reference, the MAE of the interpolated attenuation
maps can be determined.

For each interpolation method, both the maximum and average MAE were evaluated, with the results
summarized in Table 5.3. Among the tested methods, bilinear interpolation demonstrated the best
performance, achieving the lowest error rates. Surprisingly, the Lanczos method performed the worst,
with noticeable artifacts at a kernel size of four. While increasing the kernel size slightly reduced the
error, it remained higher than that of other methods. It did remove the artifact. Simulation images
suggest that the Lanczos method struggles to accurately interpolate high-contrast regions, particularly
at the boundary between the skull and air, leading to significant errors in these areas. In contrast,
other interpolation techniques handle these transitions more effectively. Given that bilinear interpolation
produces the smallest error, averaging just 0.17% of the maximum reference attenuation, it has been
selected for the final implementation.

5.5.3. Upsampling
In an effort to improve the computational efficiency of the algorithm, the potential use of upsampling
was investigated. The goal was to determine whether simulating a lower-resolution detector and subse-
quently upsampling it could maintain an acceptable image quality while reducing computational costs.
This approach leverages the fact that the computational complexity of the algorithm scales linearly with
the number of detector pixels. By simulating fewer pixels, significant time savings could be achieved,
provided that the quality of the upsampled image remains comparable to that of a higher-resolution
simulation.

5.5. Detector 34

Table 5.4: Comparison of average MAE over a range of 0.0 to 22.5 degrees of rotation in the horizontal- and vertical direction
for various upsampling methods (upsampled to 512 x 512).

Resolution r Nearest Neighbour Bilinear Lanczos (a = 7)
512 x 512 1.00 0.25% 0.17% 0.46%
486 x 486 1.10 0.26% 0.17% 0.48%
458 x 458 1.25 0.27% 0.18% 0.49%
428 x 428 1.43 0.28% 0.18% 0.51%
396 x 396 1.67 0.30% 0.19% 0.54%
362 x 362 2.00 0.32% 0.20% 0.57%
323 x 323 2.51 0.35% 0.22% 0.62%
280 x 280 3.34 0.39% 0.24% 0.69%
256 x 256 4.00 0.41% 0.25% 0.74%
228 x 228 5.04 0.45% 0.27% 0.83%

The same interpolation methods from Section 5.5.2 were used to investigate the feasibility of upsam-
pling. First, a reference attenuation map was generated at a resolution of 512 by 512 pixels. Similar
to the approach taken in Section 5.5.2, this reference was generated on the detector plane and does
not require an interpolation step. Next, attenuation maps were generated at lower resolutions. These
resolutions were determined by the upsampling factor, which is defined as r =

Nref

Nup
, where r is the

upsampling factor, Nref is the number of simulated pixels at the reference resolution, and Nup is the
number of simulated pixels at the lower resolution which is upsampled. Several factors were tested
ranging from one, meaning no upsampling is performed, to five, meaning the original resolution is more
than halved.

The quality of the upsampled attenuation maps were quantified using the MAE metric. The maps were
generated for a range of 0.0 to 22.5 degrees in both the horizontal- and vertical direction and the
MAE compared to the reference was calculated. These errors were averaged in order determine the
feasibility of the different upsampling techniques. The average error for the different upsampling factors
and methods can be seen in Table 5.4.

All upsampling methods introduce a small error. The error seems to increase as the upsampling factor
grows. This result can be expected, because more pixels need to be interpolated. Again, the bilinear
method outperforms the other upsampling methods. Because the error introduced using upsampling
in the detector step is of the same magnitude compared to no upsampling, it will be considered a viable
approach to increasing the performance of the simulation.

6
Memory architecture

This chapter covers the memory architecture of the application. Section 6.1 will discuss the memory
present on the Alveo U50 card. Section 6.2 will cover how the requests for voxel lines from the engines
are handled. Section 6.3 explains how these requests are answered. Section 6.4 will talk about the
layout of the voxel model in memory and Section 6.5 discusses how the voxel model is compressed
into the different material values.

6.1. HBM architecture
In order to understand the memory architecture of the system, it is important to understand the physical
memory architecture of the Alveo U50 card. This card contains an AXI HBM Memory Controller which
provides access to a 1024-bit wide HBM stack. There are two stacks present on the card. The FPGA
targeted is referred to as a 4H device, meaning it has two HBM stacks which both have a capacity of
8 GB. The reported bandwidth of a single stack is 201 GB/s [4]. The internal structure of such a stack
is visible in Figure 6.1. Each HBM stack is divided into eight independent memory channels, with each
channel further subdivided into two 64-bit pseudo channels.

Pseudo channels
The pseudo channels are the lowest subdivision of memory. They divide each memory channel into two
independent 64-bit wide buses which allow two separate operations to occur simultaneously within a
single channel. This increases the effective utilisation of the bus by reducing the latency and improving
parallelism. One pseudo channel contains 1/16th of the stack capacity and is responsible for 1/16th of
the total throughput. The pseudo channels are exposed through sixteen AXI ports. Each port operates
at a 4:1 clock ratio, meaning a port width of 256 bits is required.

Each port can be configured to provide access to the entire HBM addressing space, referred to as
global addressing, but this comes with a latency penalty. To prevent this, the system is setup in such
a way that this is not necessary. Each pseudo channel will be managed by a read manager which is
responsible for managing the memory access of up to sixteen engines. Since it is known in advance
which layers of the model are relevant to these engines, access to different pseudo channels is never
required.

6.2. Request manager
A request manager handles requests from up to sixteen engines and translates them into AXI addresses.
As shown in Figure 6.2, the read manager receives the requested line and layer from each engine.
Since a model can have up to 1024 lines, ten bits are needed to address them. One read manager
is in charge of 16 · 8 = 128 layers, so seven bits are required. This means that a request consists
of seventeen bits in total. These requests are stored in first in first out buffers, also known as FIFOs,
with each engine having its own FIFO. An engine can have at most one outstanding request, but using
FIFOs to store the requests provides flexibility to change this in the future if desired.

35

6.2. Request manager 36

8 GB HBM Stack

B0 B1

B2 B3

B4 B5

B6 B7

B8 B9

B10 B11

B12 B13

B14 B15

ADD
CMD

PC 0

B0 B1

B2 B3

B4 B5

B6 B7

B8 B9

B10 B11

B12 B13

B14 B15

ADD
CMD

PC 1

64 I/O 64 I/O64 I/O 64 I/O

MC0 MC1 MC2 MC3 MC4 MC5 MC6 MC7

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

R
M

FPGA Interconnect

Figure 6.1: Overview of the pseudo channels within the HBM architecture, inspired by [7].

Engine 0

plane & line

16x

Request FIFO 0

16x

araddr

Request FIFO 0

16x

HBM
Stack

arid

Request Manager

Priority Encoder

sel

RID FIFO

Response Manager

plane & line

Data Buffer

rid
engine id

rdatauram data

uram address

Figure 6.2: Diagram showing how read- and response manager return the voxel data to the engines from the HBM.

6.3. Response manager 37

32

8

64

Engines

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

0x0

0x1

0x2

0

0x0

0x1

0x2

1

0x0

0x1

0x2

2

0x0

0x1

0x2

3

0x0

0x1

0x2

4

0x0

0x1

0x2

5

0x0

0x1

0x2

6

0x0

0x1

0x2

7

...

...

Voxels

256

Figure 6.3: Implementation of the memory buffers which convert the 256-bit responses from the HBM to 64-bit blocks for the
engines. The numbers in the voxels indicate the buffer number.

Once a request is available, a priority encoder is responsible for deciding which request to handle first.
It does this based on a round-robin schedule where each engine has an equal priority. Once a request
has been selected it is converted into an AXI address. The read address port, abbreviated as araddr,
supplies this address on the HBM interface. Since the memory controller supports multiple outstanding
requests, a read address identifier is also provided which can be used to identify the response later.
This ”arid” tag is simply the engine number.

6.3. Response manager
The response manager is responsible for handling responses from the HBM memory, transforming
bursts of 256 bits into 64-bit responses for the engines. Similar to the request manager, it receives
requests from the engines. These are required for computing the URAM destination addresses for
the responses. The request- and response manger and their relation to the engines are depicted in
Figure 6.2.

Two critical signals managed by the response manager are AXI read identifier and read data signals,
abbreviated as ”rid” and ”rdata”. The rid signal can be used to identify the address to which a response
belongs, as described in Section 6.2. Through the use of this tag, the initial request can be recovered
ensuring the correct data is delivered to the corresponding engine. Since the rid corresponds to the
engine number, the request in the corresponding FIFO number is used to compute the URAM address.

Data buffers play a significant role in handling HBM responses, as engines are not capable of managing
the high throughput directly. Therefore, the response stream must be managed to prevent bottlenecks
or loss of data. As shown in Table 4.1, the response manager must handle up to sixteen 32-byte bursts.
Since 32 bytes are returned every cycle, each burst is stored in eight 4-byte wide memory blocks, as
illustrated in Figure 6.3.

Voxels need to be returned in the correct order. The data lines are rearranged to facilitate this, since
one byte is included from every buffer in the response. Adjacent voxel pairs are therefore placed in
adjacent buffers because one byte contains two voxels. This is indicated by the numbers in the voxels
in Figure 6.3. Based on the request, a URAM address can be computed which adheres to the engine’s
addressing method shown in Table 5.2. The line and layer information is derived from the request, and
the buffer index is tracked by the response manager.

6.4. Memory layout
An HBM stack consists of stacks of DDR4 chips. DDR4 memory chips are a type of SDRAM (Syn-
chronous Dynamic Random-Access Memory) that offer higher speed and efficiency compared to pre-
vious generations like DDR3.

6.4. Memory layout 38

Figure 6.4: Illustration showing the memory bank groups and memory banks used in the DDR4 memory implementation [11].

Memory Banks
Memory banks are subdivisions within a DRAM module that allow for parallel access to different sec-
tions of memory. Each bank can be accessed independently, which helps improving memory access
efficiency and reducing latency. When a memory request is made, the memory controller reads the row
of data into the sense amplifier of the corresponding bank leaving the others untouched. This allows
having simultaneous rows of data open in each bank.

Bank Groups
Bank groups are a feature introduced in DDR4 to further enhance memory performance. They were
introduced to lower the amount of words that need to be prefetched for each memory access. The
term prefetch describes how many words are read for each column command. Memory requested
from banks within the same group can be accessed quicker, resulting in memory that can be managed
more efficiently, reducing contention and improving overall performance. A pseudo channel consists of
four bank groups, each containing four banks. A representation of the internal structure can be seen
in Figure 6.4.

AXI address
A custom address map can be created which maps the AXI address bits to the physical ports on the
HBM interface. An AXI address is 29 bits, of which the most significant bit is always zero. The lowest
five bits should also be zero because of the 32 byte alignment requirement for the AXI port. If this is
ignored, multiple memory commands are required for a single read operation, decreasing performance
by more than 50%. An AXI address consists of the following physical ports:

• CA[5:1]: Five column address bits. Column address bit 0 is unused because it is implicitly in-
cluded to get an internal bus width of 64;

• RA[13:0]:Fourteen row address bits;
• BA[1:0]: Two bank address bits;
• BG[1:0]: Two bank group address bits.

Reading from memory consists of precharging a row and accessing the column. Once a row is read,
each column can be accessed with low latency. However, if a different row needs to be accessed within
the same bank, a new precharge command is required. There is a large latency associated with this.
The HBM supports one active row per bank, with protocol access times between banks in different bank
groups being lower compared to accesses within the same bank group. The currently active row within
a bank must be precharged before a different row within that bank can be activated. It is recommended
to perform multiple column accesses within an activated row before changing the row, as this results
in a high page hit rate and higher efficiency [5].

The memory supports a DDR4 option called bank group interleaving. With this option enabled, the
memory controller commands can be executed on two bank groups in parallel, alleviating some latency
associated with the protocol. This is because, while one bank is being accessed after a row has been

6.4. Memory layout 39

precharged, a different bank can precharged with the same command [2]. To use this option the least
significant bid of the AXI address must be mapped to the least significant bank group bit.

Because the application is memory bound, a memory layout tailored to the access pattern of the ap-
plication is important to achieve the highest possible bandwidth. This layout will differ slightly between
model sizes due to the different sizes in data transfer. First, the memory access pattern of the applica-
tion will be discussed. This pattern does not differ between model sizes. Next, a layout which supports
this pattern will be provided for each model size.

Access pattern
Before an address map can be created, the memory access pattern must be understood. To do this, the
worst possible case for the memory access pattern is considered. This is analogous to a detector which
projection covers the entire model, and the source being infinitely far way from the detector resulting in
the rays travelling in parallel to each other. This is the worst possible case because every voxel of the
model will need to be read in this scenario. Based on this situation, three important observations can
be made:

• Observation 1: Lines at the front of the model are accessed before lines at the back of the model;
• Observation 2: In the simulation, lines at the same height are likely to be accessed at the same
time. This is especially true for layers which are close to each other;

• Observation 3: Each line within a layer only needs to be accessed once.

Based on these observations and knowledge about the memory architecture the following strategy can
be constructed:

1. The line number should decide the row within a memory bank, because once a line has been
accessed for every layer, it will never have to be precharged again, preventing the associated
latency;

2. The layer number should decide the memory bank and column within a row. This way, accessing
similar lines leave the row untouched. This prevent additional precharge commands.

3. Bursts should stay within the same page of memory, because this can be processed faster by the
memory controller.

6.4.1. Small model
For the smallest model, which is 384 voxels wide, a burst length of six is required to read an entire line
of voxels. This means that the three least significant bits of the AXI address cannot be mapped to a
line or layer since they are implicitly incremented by the memory controller on every read.

Address map
The goal of the address map is to minimise the response time for engine requests. This is done by
minimising the amount of precharge commands from the memory controller. To achieve this, the ad-
dress map in Table 6.1 is proposed. This map utilises the bank group interleaving option by placing
the BG0 bit in the least significant bit position. The three least significant layer bits are assigned to the
remaining column bits. This means that a given line is stored in the same row for every layer within an
engine.

Using this memory layout, a read bandwidth of 12.069 GB/s is achieved. This means approximately
96% of the maximum throughput is achieved.

6.4.2. Medium model
For the medium model, which is 512 voxels wide, a burst length of eight is required to read an entire
line of voxels. This means that the four least significant bits of the AXI address cannot be mapped to
a line or layer since they are implicitly incremented by the memory controller on every read.

Address map
The address map for the medium model is similar to the previous address map. However, because an
additional bit is required to accommodate the burst length of eight, an extra column bit is required. The

6.5. Model compression 40

Table 6.1: Table showing the address map for the small model (384 x 297 x 384).

AXI address bit Physical address bit Model address bit
5 BG0 0

7 - 6 CA2 - CA1 0
10 - 8 CA5 - CA3 layer[2] - layer[0]
11 BA0 layer[3]
12 BA1 layer[4]
13 BG1 layer[5]
14 RA0 layer[6]

24 - 15 RA10 - RA1 line[9] - line[0]
28 - 25 NA 0

Table 6.2: Table showing the address map for the medium model (512 x 512 x 512).

AXI address bit Physical address bit Model address bit
5 BG0 0

8 - 6 CA3 - CA1 0
10 - 9 CA5 - CA4 layer[1] - layer[0]
11 BA0 layer[2]
12 BA1 layer[3]
13 BG1 layer[4]

15 - 14 RA1 - RA0 layer[6] - layer[5]
24 - 15 RA10 - RA2 line[9] - line[0]
28 - 25 NA 0

resulting address map can be seen in Table 6.2.

Using this memory layout, a read bandwidth of 12.114 GB/s is achieved. This means approximately
96% of the maximum throughput is achieved, which is comparable to the smallest model.

6.4.3. Large model
For the largest model, which is 1024 voxels wide, a burst length of sixteen is required to read an
entire line of voxels. This means that, similar to the medium model, the four least significant bits of the
AXI address cannot be mapped to a line or layer since they are implicitly incremented by the memory
controller on every read.

Address map
Initially the same layout for the medium model was attempted, because the number of bits required for
the burst is the same. However, tests showed that this layout did not perform as well as for the other
model. It is difficult to say what caused this drop in performance. This is because the implementation
is encrypted and cannot be inspected. It is possible that the effects of timing calibration performed
by modern memory controllers are more noticeable due to the longer transaction lengths. Switching
memory bankmore frequently resolved the drop in performance. This was done by leaving an additional
column bit untouched. The resulting address map can be seen in Table 6.3.

Using this memory layout, a read bandwidth of 12.088 GB/s is achieved. This means approximately
96% of the maximum throughput is achieved. This is the same as the other model sizes.

6.5. Model compression
As explained Section 3.1, it is infeasible to store the model in the original float representation due to its
size and the impracticality of the required arithmetic on the FPGA. Therefore, the model is compressed
into a four bit value used as an index into a lookup table of sixteen material values. These material
values represent attenuation coefficients. It is important that the material values are chosen carefully.
Incorrect values can lead to significant errors in the simulated attenuation map. For example, when

6.5. Model compression 41

Table 6.3: Table showing the address map for the large model (1024 x 1024 x 1024).

AXI address bit Physical address bit Model address bit
5 BG0 0

9 - 6 CA4 - CA1 0
10 CA5 layer[0]
11 BA0 layer[1]
12 BA1 layer[2]
13 BG1 layer[3]

16 - 14 RA2 - RA0 layer[6] - layer[4]
24 - 17 RA10 - RA3 line[9] - line[0]
28 - 25 NA 0

0.0 0.1 0.2 0.3 0.4
Linear attenuation [cm^-1]

102

103

104

105

106

107

Fr
eq

ue
nc

y

Frequency

Figure 6.5: Histogram showing the frequency of linear attenuation coefficients in the skull model.

voxels indicating bone are misrepresented the skull can appear to be thicker or thinner than is actually
the case. When tissue is misrepresented, subtle features of the brain might no longer be visible.

For the original voxel model, 256 different attenuation coefficients are considered. In order to determine
the material values used in the simulation, the model needs to be compressed into sixteen different
values. This can be done through binning. Linear attenuation coefficients which are roughly equivalent
are grouped and assigned a single value. The material is represented by this single value.

A naive decision, referred to as strategy 0, would be to chose sixteen equally sized bins. This does not
work, because the linear attenuation coefficients are not distributed uniformly across all voxels. There
is a high variance in the number at which they occur. This is shown by Figure 6.5, which depicts the
log of the frequency.

As Figure 6.5 shows, the most occurring voxels are either air, dense bone, or tissue with a linear attenu-
ation coefficient of 0.194 cm−1. Bins which contain these voxels must be narrow, since misrepresenting
their value would result in a large error. However, for the other bins it is not very obvious. In order to
determine the different bins, two strategies are explored and compared.

6.5.1. Error function
Before the strategies can be compared, the error for any given assignment needs to be defined. In the
original voxel model 256 values are considered. These are represented by xi, where i ∈ {0, 1, ..., 255}.

6.5. Model compression 42

A certain value xi occurs ci times, where i ∈ {0, 1, ..., 255}. Next, consider some function f(i) which
assigns an attenuation value in xi to Xj with j ∈ {0, 1, ..., 15}. Xj represents a bin. The number of
voxels in such a bin is simply the sum of voxels assigned to these bins, defined in Equation (6.1).

Cj =
∑

i∈f−1(j)

ci, j ∈ {0, 1, ..., 15} (6.1)

The value corresponding to a bin is defined as the average value of voxels in this bin, which is shown
in Equation (6.2)

µj =

∑
i∈f−1(j) cixi

Cj
, j ∈ {0, 1, ..., 15} (6.2)

For a single voxel, the error is equal to the absolute difference between the original value and the newly
assigned value. The error of a bin is then equal to the sum of errors of each voxel in this bin. The total
error is the sum of the bin errors. This is expressed in Equation (6.3).

ej =
∑

i∈f−1(j)

|xici −Xjci| , j ∈ {0, 1, ..., 15}

E =
∑

j∈{0,1,...,15}

ej
(6.3)

6.5.2. Strategy 1
For the first strategy, bins where created which contain an approximately equal amount of voxels. This
is not entirely possible due to some frequency peaks as shown in Figure 6.5. These peaks where
assigned their own narrow bin. By definition, the error in these bins is low because the assigned value
is close or even equal to the original value.

Once the peaks are assigned, the remaining voxels between the peaks can be assigned to approxi-
mately equally sized bins. Note that this was done manually, making the strategy not easily repeatable.
Figure 6.6 shows the resulting bins created by this strategy. The red lines indicate the boundary of
the range of a certain bin. Table 6.4 shows both the material value as well as the error based on this
assignment. The materials are assigned in increasing order of attenuation.

6.5.3. Strategy 2
The second strategy, inspired by [37], seeks to minimize the total bin error, as defined in Equation (6.3),
by optimizing the material assignment. This approach is valid because the assignment must be optimal
for every subset of voxels. While minimizing the average bin error might yield results similar to the
first strategy, where frequency peaks are assigned their own narrow bins, such an approach can lead
to an unnecessarily high error because frequently occurring voxels are prioritised. It is not able to
compensate the error in one bin using the value of another. In contrast, strategy 2 minimizes the
difference between the actual model and the compressed voxel model by treating all voxels equally.
Consequently, the sum of linear attenuation coefficients experienced by each X-ray beam is as accurate
as possible, hopefully ensuring a highly precise attenuation map.

The algorithm implementing this strategy is a random search-based optimization algorithm, as outlined
in Listing 6.1. It begins with an initialization step, where the bins are assigned equal widths, and the error
for this configuration is computed. This serves as the initial global best assignment. The optimization
proceeds iteratively, aiming to refine the bin assignment to minimize the error.

During each iteration, the algorithm preserves the current best assignment from all previous iterations.
Within the iteration, a loop generates new candidate assignments by randomly varying the widths of
the bins in the current best assignment. Some bins may remain unchanged, ensuring a diverse set of
potential solutions. For each iteration, the 20 best assignments are stored as well. These are used
during the current iteration to randomly generate new assignments.

6.5. Model compression 43

0.0 0.1 0.2 0.3 0.4
Linear attenuation [cm^-1]

102

103

104

105

106

107
Fr

eq
ue

nc
y

Bin boundary
Frequency

Figure 6.6: Histogram showing the resulting bins based on strategy 1.

Table 6.4: Table showing the resulting assignment of strategy 1.

Material Index Range [cm−1] Voxel count Material value [cm−1] Bin error [cm−1]
0 0.000 - 0.002 2.9× 107 0.0 0.000
1 0.002 - 0.173 5.2× 104 0.055 2532.429
2 0.173 - 0.189 4.0× 105 0.174 915.633
3 0.189 - 0.193 1.5× 106 0.189 832.453
4 0.193 - 0.194 9.9× 106 0.193 0.000
5 0.194 - 0.200 4.5× 104 0.196 38.080
6 0.200 - 0.237 4.5× 104 0.210 401.809
7 0.237 - 0.293 3.6× 104 0.270 515.530
8 0.293 - 0.300 3.6× 104 0.297 51.302
9 0.300 - 0.302 7.2× 105 0.300 0.000
10 0.302 - 0.320 5.1× 104 0.307 225.892
11 0.320 - 0.384 4.9× 104 0.349 806.583
12 0.384 - 0.436 5.1× 104 0.413 653.446
13 0.436 - 0.452 5.3× 104 0.445 194.670
14 0.452 - 0.455 4.8× 104 0.453 0.000
15 > 0.455 8.5× 105 0.455 30.418
Total: - - - 7198.251

6.5. Model compression 44

Listing 6.1: Pseudo code for strategy 2
1 #1. Initialize best configuration
2 global best assignment = equally spaced material bin set; # strategy 0
3 global best error = error of the equally spaced material bin set;
4

5 #2. Iterative optimisation
6 repeat until the iteration limit has been reached:
7 # Preserve current best
8 current best assignments = global best assignment; # list initialised with single item
9

10 # Optimisation loop
11 repeat 2000 times:
12 load previous best assignments from current iteration;
13 generate new assignments by randomly changing previous best assignments;
14 compute the error for each assignment;
15 update current best assignments so it includes 20 best assignments of current iteration;
16

17 # Update global best
18 if lowest error of the current 20 best assignments is lower than the best error:
19 update global best assignment and error;

After completing the optimization loop, the algorithm updates the global best assignment if the lowest
error among the current iteration’s top 20 assignments is lower than the previous global best error. This
process repeats until the iteration limit is reached, continuously refining the bin assignments.

In order to prevent reaching a local minimum, the algorithm was run several times. From these trials
the best result was chosen. Figure 6.7 shows the resulting bins created by this strategy. Table 6.4
shows both the material value as well as the error based on this assignment.

6.5.4. Comparison
Before the different material values produced by the two strategies are compared, let us first consider
strategy 0 introduced in Section 6.5 as a baseline. This strategy choses bins of equal width. The
computed total error produced by such an assignment is 14085.262 cm−1. The total error produced by
strategy 1 is 7198.251 cm−1. The total error produced by strategy 2 is 4136.402 cm−1.

Both strategies are an improvement on the baseline. However, they produce vastly different bins.
Strategy 1 produces eight bins which are relatively narrow, having a width of less than 0.01 cm−1. For
strategy 2, there are only three narrow bins. The error in these bins is low due to the accurate repre-
sentation of the original value. In the case of strategy 1, the other bins suffer because of this. Table 6.6
shows this. The materials corresponding to narrow bins have a low error per voxel, defined as the total
bin error divided by the number of voxels. For the other materials, their error is relatively high compared
to strategy 2.

Based on both the total error as well as the average error per voxel, strategy 2 performs better and is
therefore chosen for the implementation.

6.5. Model compression 45

0.0 0.1 0.2 0.3 0.4
Linear attenuation [cm^-1]

102

103

104

105

106

107
Fr

eq
ue

nc
y

Bin boundary
Frequency

Figure 6.7: Histogram showing the resulting bins based on strategy 2.

Table 6.5: Table showing the resulting assignment of strategy 2.

Material Index Range [cm−1] Voxel count Material value [cm−1] Total bin error [cm−1]
0 0.000 - 0.002 2.9× 107 0.000 0.000
1 0.002 - 0.025 2.4× 104 0.008 123.280
2 0.025 - 0.070 9.9× 103 0.044 106.798
3 0.070 - 0.123 8.5× 103 0.095 126.632
4 0.123 - 0.182 3.8× 105 0.173 418.627
5 0.182 - 0.191 1.3× 106 0.189 250.295
6 0.191 - 0.216 1.0× 107 0.193 1001.675
7 0.216 - 0.239 1.3× 104 0.226 77.437
8 0.239 - 0.270 1.5× 104 0.254 114.187
9 0.270 - 0.291 1.8× 104 0.281 94.756
10 0.291 - 0.311 7.9× 105 0.300 294.401
11 0.311 - 0.348 4.0× 104 0.325 392.743
12 0.348 - 0.395 3.2× 104 0.370 376.297
13 0.395 - 0.432 3.9× 104 0.414 360.225
14 0.432 - 0.454 7.5× 104 0.445 368.629
15 > 0.454 8.5× 105 0.455 30.419
Total: - - - 4136.402

6.5. Model compression 46

Table 6.6: Comparison of the error per voxel for the different strategies.

Material Index Voxel error strategy 1 [cm−1] Voxel error strategy 2 [cm−1]
0 0.00 0.00
1 4.87× 10−2 5.12× 10−3

2 2.27× 10−3 1.08× 10−2

3 5.63× 10−4 1.50× 10−2

4 0.00 1.10× 10−3

5 8.54× 10−4 1.99× 10−4

6 8.83× 10−3 9.80× 10−5

7 1.41× 10−2 5.84× 10−3

8 1.41× 10−3 7.50× 10−3

9 0.00 5.32× 10−3

10 4.46× 10−3 3.72× 10−4

11 1.64× 10−2 9.86× 10−3

12 1.27× 10−2 1.16× 10−2

13 3.70× 10−3 9.31× 10−3

14 0.00 3.44× 10−5

15 3.44× 10−5 4.89× 10−3

Average: 7.13× 10−3 5.44× 10−3

7
Results and analysis

In this chapter the simulation results are discussed. Section 7.1 will study the effect of the material
choice on the outcome of the simulation. Section 7.2 will compare the results produced by the FPGA
simulation with a CPU based simulation. Section 7.3 will analyse the performance of the FPGA simu-
lation for several configurations. Finally, Section 7.4 will compare an upsampled simulation result with
a reference in order to evaluate the validity of the method.

7.1. Material error
To study the effect of the material selection on the attenuation map, three material sets described
in Section 6.5 were compared. The material set based on strategy 0 was created by dividing the
attenuation coefficient range into 16 equally spaced materials. A second material set was generated
using strategy 1, which attempts to include a roughly equal number of voxels in each material. The third
material set was based on the results of strategy 2, which tries to optimize the material set through a
random search algorithm. Attenuation maps were generated for each material set using a CPU-based
simulation under identical configurations. These maps were compared to a reference attenuation map
created using an uncompressed model which represents the attenuation coefficients using floating
point values. Based on the error defined in Section 5.5.1 the effectiveness of each material selection
strategy was evaluated.

Figure 7.1 shows the normalized difference in attenuation for each material selection strategy. Both
the strategy 0 material set and the strategy 1 set produce regions of higher attenuation compared to
the reference. For the strategy 0 set, the maximum error is 0.9% of the maximum attenuation, while for
strategy 1, this increases slightly to 1.0%. For strategy 2, this maximum error is only 0.1%. All three
strategies result in areas with lower attenuation than the reference, with the maximum error in these
regions being approximately 0.9% lower for each strategy.

Based on visual inspection, the strategy 0 material set performs the worst among the three strategies.
Many regions show a significantly different attenuation compared to the reference, including both high-
density materials such as bone and lower-density materials like tissue. For strategy 1 and strategy 2,
the differences appear less pronounced. Based on the MAE shown in Table 7.1, strategy 1 performs
better.

This result aligns with the total bin errors defined in Section 6.5. The attenuation map is largely influ-
enced by the brain due to the coverage on the attenuation map. An inspection of the model shows that
most of the tissue within this area falls within the attenuation coefficient range of 0.189 cm−1 to 0.194
cm −1 , with the majority being 0.194 cm −1. strategy 1 represents this tissue more accurately than
strategy 2 as shown in Table 6.6. Furthermore, both attenuation maps show a high-contrast cluster
near the centre of the brain, corresponding to voxels with an attenuation coefficient of approximately
0.205 cm−1. This cluster turned out to be a cerebral edema, which is a type of swelling in the brain
which causes a slight increase in radiation absorption [23]. Strategy 1 assigns this cluster a coefficient
of 0.210 cm−1, which is higher than the true value. However, this is still closer to the true value com-

47

7.1. Material error 48

0 50 100 150 200 250
0

50

100

150

200

250

-0.8%

-0.4%

0.0%

0.4%

0.8%

i,j

(a) Strategy 0

0 50 100 150 200 250
0

50

100

150

200

250

-0.8%

-0.4%

0.0%

0.4%

0.8%

i,j

(b) Strategy 1

0 50 100 150 200 250
0

50

100

150

200

250

-0.8%

-0.4%

0.0%

0.4%

0.8%

i,j

(c) Strategy 2

Figure 7.1: Comparison of the error ϵi,j for three different material assignments relative to a reference attenuation map
generated using an uncompressed model.

7.2. CPU- and FPGA-based result comparison 49

Table 7.1: Mean absolute error for different material choices.

Material choice MAE
Strategy 0 0.33%
Strategy 1 0.16%
Strategy 2 0.30%

pared to the coefficient assigned by strategy 2, which is 0.193 cm−1. Even though strategy 2 has a
lower total bin error compared to strategy 1, the results show that this does not necessarily lead to a
more accurate attenuation map.

These results indicate that there is likely no universal solution that benefits all scenarios. Should the
user care more about the accurate representation of tissue, this consideration must be made when
deciding on the material assignment. If the focus lies with studying bone, more details can be put in
that range of voxels. Neither of the current strategies is able to accurately image the edema well. A
strategy which is able to do this would be ideal, since this implies that such a strategy would be able to
incorporate special features or details from the voxel model. In the end, it is up to the user to decide the
level of detail they want to portray in different ranges. Future work can further study the relation between
the chosen materials and the resulting attenuation map. In case high tissue attenuation resolution is
needed, increasing the number of materials is also still an option, though this comes with a performance
penalty.

7.2. CPU- and FPGA-based result comparison
To validate the results of FPGA-based simulation, it is important to compare it with a CPU-based simula-
tions. While FPGA-based simulations introduce several sources of error, as discussed throughout this
thesis, many of these errors are not present in a CPU-based simulation. An example of this is the type
of arithmetic used. The CPU simulation uses single-precision floating-point arithmetic, whereas the
FPGA simulation uses fixed-point arithmetic. Additionally, a CPU-based simulations does not require
a detector step, since rays can be generated that directly target the detector pixels. Both simulations
use the same compressed model as a fair comparison.

The outcomes of a simulation without rotation applied are shown in Figure 7.2. Figure 7.2b provides the
reference results from the CPU-based simulation, while Figure 7.2a displays the corresponding FPGA-
based simulation. The results from both methods appear to be nearly identical, with the exception
of a noticeable area of pixels at the bottom of the FPGA-based simulation. In this area, the map
produced by the FPGA contains higher attenuation values compared to the map produced by the CPU.
These observations are confirmed by Figure 7.2c, which shows the error according to the definition
in Section 5.5.1. A similar comparison was made for a simulation with 15-degrees of rotation applied
around the vertical axis. Figure 7.3b shows the reference CPU-based simulation and Figure 7.3a shows
the corresponding FPGA-based simulation. The same large error is present at the bottom of the map,
which is visible in Figure 7.3c.

The significant error at the bottom of the attenuation maps likely does not have a single cause. Instead,
it is probably a culmination of the various error sources, which are most significant near the edges.
These sources of error include inaccuracies in ray length estimation and the errors introduced by fixed-
point precision. Additionally, it could also be a simulation artifact caused by the fact that the voxel
model cuts off this area of the skull, resulting in a perfect two-dimensional plane of high attenuation.
This would not be representative of a real head. Ignoring the bottom of the map, the remaining error
is the highest near the edge of the skull. The attenuation map produced by the FPGA appears to be
slightly shifted towards the left compared to the CPUmap. This can be deduced from the error maps by
observing that on the left, there is a positive error which means the attenuation computed by the FPGA
is higher here compared to the reference. On the right the inverse is true, indicated by the negative
error.

The bilinear interpolation method appears to interpolate the high contrast areas well. This is suggested
by the top of the skull, which contains a relatively low error. This area would not suffer from the shift
towards the left. Despite the areas with a large error, the MAE of the attenuation map without any

7.3. FPGA performance 50

0 50 100 150 200 250
0

50

100

150

200

250

(a) FPGA

0 50 100 150 200 250
0

50

100

150

200

250

(b) CPU

0 50 100 150 200 250
0

50

100

150

200

250

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

i,j

(c) Normalized difference between (a) and (b).

Figure 7.2: Comparison between CPU simulation and FPGA simulation (θ = 0◦, ϕ = 0◦).

rotation applied is only 2.26% of the maximum attenuation, excluding areas with no attenuation which
are represented by the black pixels. With rotation applied, the MAE is approximately 3.00% of the
maximum reference attenuation. This level of error is considered acceptable for the purposes of the
simulation.

7.3. FPGA performance
To determine whether an FPGA-based simulation is a feasible replacement for a CPU-based simulation,
it is important to measure its performance. The duration of a single simulation run is influenced by
several factors. As noted earlier, the resolution of the detector is a significant factor, as it directly
determines the number of rays that must be simulated. Additionally, the size of the model also has an
impact. This is not due to the increased number of layers that need to be traversed, as the addition of
more engines compensates for this effect. Instead, the primary factor is the increased memory transfer
required for larger models. More voxels must be loaded from memory to process a single line, which
is a costly operation.

Furthermore, the relative positioning of the source and detector with respect to the model also impacts
the simulation time. When the components are closer together, the simulated X-ray beam becomes
wider, causing more lines in the model to be intersected. This results in an increase in memory trans-

7.3. FPGA performance 51

0 50 100 150 200 250
0

50

100

150

200

250

(a) FPGA

0 50 100 150 200 250
0

50

100

150

200

250

(b) CPU

0 50 100 150 200 250
0

50

100

150

200

250

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

i,j

(c) Normalized difference between (a) and (b).

Figure 7.3: Comparison between CPU simulation and FPGA simulation (θ = 15◦)

7.3. FPGA performance 52

181 x 181 256 x 256 512 x 512
Detector Resolution

0

200

400

600

800

1000

1200

FP
S

60

1220

609

152

378

285

146

271
232

144132 129 123

Small
Medium
Large
FPS Goal
Max. FPS

Figure 7.4: Achieved performance for different model- and detector sizes. In the simulation the detector was placed at the
maximum distance from the model.

fer affecting the performance. To evaluate the speed of the simulation, first the theoretical maximum
number of frames is presented. Next, the runtime of simulations are presented.

7.3.1. Theoretical performance
The theoretical maximum number of frames possible, first described in [19], can be calculated using
Equation (7.1). The cycles per image, or CPI, is calculated by determining how many clock cycles
it will take to process each ray. The first ray will arrive after the engines have completed their first
computations. This is equal to nine cycles multiplied by the number of engines. After this initial ray, a
new ray will arrive at the output every ten cycles. The number of frames per second, or FPS, is equal
to the clock frequency of the FPGA divided by the CPI.

CPI = Nengines · 9 + (npixels − 1) · 10

FPS =
fFPGA

CPI

(7.1)

The Alveo U50 card runs at a clock frequency of 400 MHz. Since the number of pixels dominates the
CPI, the theoretical maximum is the same independent of the model size. For a detector of 256 x 256
pixel, this is approximately 609 FPS. For a detector of 512 x 512 pixel, this is approximately 152 FPS.

7.3.2. Measured performance
Figure 7.4 shows an overview of the achieved frames per second for different model and detector sizes.
The best performance is achieved by the smallest model at the lowest detector resolution, reaching a
speed of 378 frames per second. However, this is less than a third of the theoretical maximum at
this configuration. For the highest detector resolution, the theoretical maximum is nearly achieved
independent of the model size. Contrary to predictions regarding maximum speed, the model size
does influence the computation time per frame at the lower detector resolutions, with the time per
image increasing for larger model sizes. For the highest detector resolution, the performance remains
nearly the same. For every configuration, the goal of 60 frames per second is met.

7.3.3. Analysis
There are two reasons why the theoretical performance is not achieved, both of which are related to
the engine buffers used to store the voxel lines. First, Equation (7.1) assumes that the first ray takes
nine clock cycles per engine to traverse the model. This is inaccurate, because the time to initialise the
buffers is not included in this calculation. To compensate for this, Equation (7.2) can be used to calculate
the time it takes for the first ray to arrive at the output. It can also be measured using the simulation
waveform, which is more accurate. For the smallest model, the initialisation time is approximately 0.26
ms. For the largest model, it increases to 0.70 ms.

7.4. Upsampling error 53

(a) Output of engine chain for the smallest model.

(b) Output of engine chain for the largest model.

Figure 7.5: Waveform showing the output of the engine chain over a span of 0.4 ms.

Figure 7.6: Waveform showing the output of the engine chain over a span of 0.4 ms for the smallest model.

Tinit = (Trequest ·Nbuffers ∗ 8) ∗Nengines (7.2)

The second reason the theoretical maximum is not achieved is because Equation (7.1) assumes that
only ten clock cycles are required to process a ray. This is only the case if no stalls occur within
the engine chain. Stalls happen when rays cannot be send to or received from adjacent engines. The
reason for stalls is when voxel lines are required which have not yet been loaded into the engine buffers.
During these periods, engines must wait for the requested lines to be fetched, preventing new rays from
being processed. These stalls are noticeable at the output of the engine chain. Figure 7.5 shows the
output of the chain for both a small and large model. In this waveform, the pcout_valid signal indicates
when the result of a ray is ready. As can be seen in both waveforms, there are extended periods
where the engines are waiting on new voxel lines, during which no rays are being processed. Because
the requests for larger models take longer to complete due to the increase in memory transfer, the
stall duration is also increased. This explains the difference in processing times observed for different
model sizes.

At the lowest detector resolution, the buffers are processed faster than new ones can be fetched. This
is not the case for the larger resolution. The exact number varies depending on the configuration, but
quadrupling the resolution means theoretically four times as many rays are processed per line in the
buffer, providing the engines with more time to request new lines in advance. Figure 7.6 shows the
output of the engine chain in such a scenario for the smallest model. As can be seen in the waveform,
stalls no longer occur and rays arrive uninterrupted at the output. For the medium model, similar
behaviour can be observed. For the largest model size stalls still occur however, though they are
shorter compared to lower resolutions. Still, this lowers the performance. The initial delay is also
present at higher resolutions. This explains why the theoretical maximum cannot be achieved.

7.4. Upsampling error
To evaluate the effectiveness of upsampling, two FPGA simulations were compared. First, a reference
output was generated using a detector with a resolution of 256 x 256 pixels, positioned relatively close
to the model. In the second simulation, a detector with a resolution of 181 x 181 pixels was used, and
no rotation was applied. The absence of rotation was not expected to influence the results, as the error
introduced by the detection step, when compared to the CPU reference, should be similar for both

7.4. Upsampling error 54

simulations. The attenuation map from the lower-resolution detector was then upsampled using the
bilinear interpolation method, identified as the most effective method in Section 5.5.3.

The results are shown in Figure 7.7. The attenuation map at a detector resolution of 181 x 181 was
computed in 2.64 ms. At a resolution of 256 x 256, the map was computed in 3.50 ms. This means that
a speed up of 33% was achieved for this configuration. The two attenuation maps appear to be nearly
identical. The maximum error is 6% of the maximum attenuation. Similar to other results, the largest
errors occur in high-contrast areas near the edge of the skull. These differences are attributed to the
interpolation method. However, the MAE is only 0.6%, which is a good result. This outcome means
that the simulation time can easily be sped up by 33% for only a small increase in the error. At higher
resolution detectors, the introduced error will be even smaller. This is true because the differences
in distance between the pixels will be smaller, meaning that more of the same voxels will have been
interacted with.

While the upsampling approach demonstrates promising results, there are some downsides to consider.
The largest errors, up to 6% of themaximum attenuation, are concentrated in high-contrast regions such
as the edges of the skull. If the highest accuracy possible must be maintained in these areas, it is better
to increase the detector resolution.

Furthermore, upsampling can introduce an increase in noise in a map, which is an undesirable side
effect particularly for machine learning-based applications. Increased noise can reduce the accuracy
of classifiers. Additionally, one application of synthetic X-ray images is the testing and improvement of
reconstruction methods used in computed tomography (CT). Higher noise levels can degrade image
quality, negatively impacting the performance of these reconstruction algorithms [30]. Therefore, for
applications that require minimal noise, it is recommended to avoid the use of upsampling techniques.

7.4. Upsampling error 55

0 50 100 150 200 250
0

50

100

150

200

250

(a) Upsampled FPGA attenuation map simulated at 181 x 181.

0 50 100 150 200 250
0

50

100

150

200

250

(b) Reference FPGA attenuation map simulated at 256 x 256.

0 50 100 150 200 250
0

50

100

150

200

250

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

i,j

(c) Normalized difference
between (a) and (b).

Figure 7.7: Comparison between a reference attenuation map and an upsampled attenuation map.

8
Conclusion and recommendations

This thesis addresses the challenges involved in generating synthetic X-ray images for medical pur-
poses. The goal was to produce images which are as close as possible to their real counterpart at
the speed of existing imaging systems. This was realised using an FPGA-based hardware accelerator
which can simulate the traversal of rays through a voxel model in order to compute an attenuation map
which can be used to determine the intensities of the X-rays on a detector. First, an outline of the sim-
ulation algorithm was provided. This served as a basis for understanding the computations involved
in the process. Next, the architecture required was carefully studied. A separation was made first
between the parts of the algorithm that would be implemented on the host machine and what would
be implemented on the FPGA. This is possible since not all parts of the algorithm are timing critical.
Afterwards, the FPGA implementation was discussed. This included both the hardware components
as well as the memory architecture.

8.1. Conclusion
An analysis of the results showed that realistic images can definitely be produced by the simulation.
Depending on the amount of rotation involved, attenuation maps can be computed which on average
only differ by 2.26% to 3.00% of the maximum attenuation compared to their CPU counterpart. The
choice of materials used in the model is also relevant. Based on this selection, the voxel error changes
which is visible in the final map. The desired performance is also achieved. The number of frames
produced per second is mainly dependant on the detector resolution, since this directly determines
the number of rays simulated. If stalling occurs in the compute engine chain however, the size of the
model is also a relevant factor due to the increased stall duration caused by larger memory transfers.
Performance can be increased through upsampling with a minor 0.6% increase in the error if desired.

This research contributed to the field of synthetic X-ray image generation by studying the system ar-
chitecture required for such tasks. Established methods are reliant on machine learning techniques
which are non-deterministic and unpredictable. A voxel-based simulation is flexible and provides a lot
of control over the output. This research has shown that a set of accelerator kernels can be utilised in
order to speed up computations otherwise executed on a CPU. In combination with some hardware to
support these kernels, real-time generation of images is definitely possible.

The memory architecture required was based on conclusions from earlier work. It quickly became
apparent that a specialised memory architecture was required in order to achieve the desired data
throughput. To meet this goal, the Xilinx High Bandwidth Memory architecture was carefully studied
and optimised. This research has shown that many parallel channels benefit the accelerator kernels
and that the maximum throughput can almost be achieved if the access pattern is optimised for the
chip access times.

To determine the maximum performance achievable using FPGAs, hardware simulations were stud-
ied. FPGAs are a great tool which can effectively be used for parallel work. The use-case discussed
throughout this thesis fits the paradigm perfectly, since many accelerator kernels that are configured

56

8.2. Recommendations 57

as a chain are used for parallel processing. This results in a setup which, dependent on the simulation
parameters, can produce images at a speed ranging from 123 frames per second to 378 frames per
second. This result satisfies the desired speed of 60 frames per second and is definitely enough for
real-time synthetic image generation.

8.2. Recommendations
Future work should focus on validation on real hardware. While the system architecture has been tested
extensively in simulation, unknown issues always emerge when implemented on physical hardware.
The communication between the host and the FPGA will also have to be implemented. Based on
the trajectory of the source and the model, the voxel models which are needed in the future must be
predicted. This requires some changes to the algorithms.

Another opportunity for future work lies with assessing the effects of simplifications used in the simu-
lation. The first is related to the source, which is modelled to produce a monochromatic beam. The
simplification could be studied by simulating multiple energy levels and combining the results into a
composite map. The second simplification involves the path of the ray through a model layer. The
current approach assumes that each ray intersects only a single voxel per layer. This is not true and
modifications can be studied which can account for contributions from multiple voxels per layer. Lastly,
the compression of the model leads to a loss in detail. Not only can the choice of materials further be
investigated, but the inclusion of more materials can also be studied. Both may lead to an improved
material assignment strategy which better suits the end user of the produced synthetic images.

Finally, incorporating more realistic effects into the simulation is still a possibility. Currently, sources of
noise such as radiation noise and scatter are not included. Furthermore, real-world imaging artifacts
such as beam hardening and Compton scattering are still absent from the simulated results. Including
these effects could aid in the development of methods to mitigate their impact on image quality in
real-life.

References

[1] URL: https://www.philips.co.uk/c-dam/b2bhc/gb/resource-catalog/landing/brightont
ender/philips-azurion-bi-plane-specifications-7b20-15.pdf.

[2] 10.4.3. Bank Interleaving. URL: https://www.intel.com/content/www/us/en/docs/programm
able/683216/23-1-2-7-0/bank-interleaving.html.

[3] Shiras Abdurahman et al. “Beam Hardening Correction Using Cone Beam Consistency Condi-
tions”. In: IEEE Transactions on Medical Imaging 37.10 (2018), pp. 2266–2277. DOI: 10.1109/
TMI.2018.2840343.

[4] Alveo U50 Data Center Accelerator Card Data Sheet. DS965. v1.2. Xilinx. Nov. 2019.
[5] AMD. AXI High Bandwidth Memory Controller LogiCORE IP Product Guide (PG276). 2024. URL:

https://docs.amd.com/r/en-US/pg276-axi-hbm (visited on 12/09/2024).
[6] AMD. UltraScale Architecture Libraries Guide (UG974). 2025. URL: https://docs.amd.com/r/

en-US/ug974-vivado-ultrascale-libraries/XPM_CDC_PULSE (visited on 01/17/2025).
[7] Kazi Asifuzzaman et al. “Demystifying the Characteristics of High Bandwidth Memory for Real-

Time Systems”. In: 2021 IEEE/ACM International Conference On Computer Aided Design (IC-
CAD). 2021, pp. 1–9. DOI: 10.1109/ICCAD51958.2021.9643473.

[8] Rolf Behling. “X-ray sources: 125 years of developments of this intriguing technology”. In:Physica
Medica 79 (2020). 125 Years of X-Rays, pp. 162–187. ISSN: 1120-1797. DOI: https://doi.org/
10.1016/j.ejmp.2020.07.021. URL: https://www.sciencedirect.com/science/article/
pii/S1120179720301812.

[9] Giorgio Ciano et al. “A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and
Segmentation”. In: Mathematics 9.22 (2021). ISSN: 2227-7390. DOI: 10.3390/math9222896.
URL: https://www.mdpi.com/2227-7390/9/22/2896.

[10] C Cromjongh et al. “Hardware-Accelerator Design by Composition”. In: (2024).
[11] DDR4 SDRAM. Micron, Sept. 2021. URL: https : / / www . mouser . com / datasheet / 2 / 671 /

Micron_05092023_8gb_ddr4_sdram-3175546.pdf.
[12] R. Dosselmann. “An evaluation of existing and emerging digital image and video quality metrics.”

In: Faculty of Graduate Studies and Research, University of Regina, 2006. ISBN: 978-0-494-
20204-3.

[13] The Editors of Encyclopaedia Britannica. Britannica. 2024. URL: https://www.britannica.com/
biography/Wilhelm-Rontgen (visited on 09/17/2024).

[14] Haruki Hattori et al. “Learning Scatter Artifact Correction in Cone-Beam X-Ray CT Using Incom-
plete Projections with Beam Ho le Array”. In: Journal of Nondestructive Evaluation 43.3 (Aug.
2024), p. 99. ISSN: 1573-4862. DOI: 10.1007/s10921-024-01113-5. URL: https://doi.org/
10.1007/s10921-024-01113-5.

[15] Trang Hoang and Ayush Goel. Compton effect. en. Aug. 2014. DOI: 10.53347/rid-30308. URL:
http://dx.doi.org/10.53347/rID-30308.

[16] Joost Hoozemans et al. “Frame-based Programming, Stream-Based Processing for Medical Im-
age Processing Applications”. In: Journal of Signal Processing Systems 91.1 (Jan. 2019), pp. 47–
59. ISSN: 1939-8115. DOI: 10.1007/s11265-018-1422-3. URL: https://doi.org/10.1007/
s11265-018-1422-3.

[17] Ian Smalley Josh Schneider.What is a field programmable gate array (FPGA)? 2024. URL: https:
//www.ibm.com/think/topics/field-programmable-gate-arrays (visited on 09/18/2024).

[18] Radiology Key. Projection X-ray imaging. Aug. 2020. URL: https://radiologykey.com/proje
ction-x-ray-imaging/.

58

https://www.philips.co.uk/c-dam/b2bhc/gb/resource-catalog/landing/brightontender/philips-azurion-bi-plane-specifications-7b20-15.pdf
https://www.philips.co.uk/c-dam/b2bhc/gb/resource-catalog/landing/brightontender/philips-azurion-bi-plane-specifications-7b20-15.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683216/23-1-2-7-0/bank-interleaving.html
https://www.intel.com/content/www/us/en/docs/programmable/683216/23-1-2-7-0/bank-interleaving.html
https://doi.org/10.1109/TMI.2018.2840343
https://doi.org/10.1109/TMI.2018.2840343
https://docs.amd.com/r/en-US/pg276-axi-hbm
https://docs.amd.com/r/en-US/ug974-vivado-ultrascale-libraries/XPM_CDC_PULSE
https://docs.amd.com/r/en-US/ug974-vivado-ultrascale-libraries/XPM_CDC_PULSE
https://doi.org/10.1109/ICCAD51958.2021.9643473
https://doi.org/https://doi.org/10.1016/j.ejmp.2020.07.021
https://doi.org/https://doi.org/10.1016/j.ejmp.2020.07.021
https://www.sciencedirect.com/science/article/pii/S1120179720301812
https://www.sciencedirect.com/science/article/pii/S1120179720301812
https://doi.org/10.3390/math9222896
https://www.mdpi.com/2227-7390/9/22/2896
https://www.mouser.com/datasheet/2/671/Micron_05092023_8gb_ddr4_sdram-3175546.pdf
https://www.mouser.com/datasheet/2/671/Micron_05092023_8gb_ddr4_sdram-3175546.pdf
https://www.britannica.com/biography/Wilhelm-Rontgen
https://www.britannica.com/biography/Wilhelm-Rontgen
https://doi.org/10.1007/s10921-024-01113-5
https://doi.org/10.1007/s10921-024-01113-5
https://doi.org/10.1007/s10921-024-01113-5
https://doi.org/10.53347/rid-30308
http://dx.doi.org/10.53347/rID-30308
https://doi.org/10.1007/s11265-018-1422-3
https://doi.org/10.1007/s11265-018-1422-3
https://doi.org/10.1007/s11265-018-1422-3
https://www.ibm.com/think/topics/field-programmable-gate-arrays
https://www.ibm.com/think/topics/field-programmable-gate-arrays
https://radiologykey.com/projection-x-ray-imaging/
https://radiologykey.com/projection-x-ray-imaging/

References 59

[19] H.J.M.T. Knops. Hardware acceleration of artificial X-ray image generation. 2024. URL: http
s://resolver.tudelft.nl/uuid:f243012c- 1380- 45d9- ae98- de6211defac1 (visited on
12/24/2024).

[20] Knowino.Euler’s theorem (rotation)—Knowino, an encyclopedia. [Online; accessed 15-February-
2015]. 2011. URL: http://knowino.org/w/index.php?title=Euler%27s_theorem_(rotation)
&oldid=6892.

[21] Andreas Maier et al., eds. Medical Imaging Systems: An Introductory Guide. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2018. ISBN: 9783319965192
9783319965208. URL: http://link.springer.com/10.1007/978-3-319-96520-8 (visited on
09/17/2024).

[22] Thiago Moraes et al. “Medical image interpolation based on 3D Lanczos filtering”. In: Computer
Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 8.3 (Nov. 2019),
pp. 294–300. ISSN: 2168-1171. DOI: 10.1080/21681163.2019.1683469. URL: http://dx.doi.
org/10.1080/21681163.2019.1683469.

[23] Sara M Nehring, Prasanna Tadi, and Steven Tenny. “Cerebral Edema”. en. In: StatPearls. Trea-
sure Island (FL): StatPearls Publishing, Jan. 2025.

[24] Denis Prokopenko et al. “Unpaired Synthetic Image Generation in Radiology Using GANs”. In:
Artificial Intelligence in Radiation Therapy. Ed. by Dan Nguyen, Lei Xing, and Steve Jiang. Cham:
Springer International Publishing, 2019, pp. 94–101. ISBN: 978-3-030-32486-5.

[25] Dheeraj Punia. FPGA Design, Architecture and Applications. 2023. URL: https://www.log
ic - fruit . com / blog / fpga / fpga - design - architecture - and - applications/ (visited on
02/03/2025).

[26] Olivier Rukundo andHanqiangCao. “Nearest Neighbor Value Interpolation”. In:CoRR abs/1211.1768
(2012). arXiv: 1211.1768. URL: http://arxiv.org/abs/1211.1768.

[27] Daniel B Russakoff et al. “Fast generation of digitally reconstructed radiographs using attenuation
fields with application to 2D-3D image registration”. en. In: IEEE Trans Med Imaging 24.11 (Nov.
2005), pp. 1441–1454.

[28] James Seibert and John Boone. “X-Ray Imaging Physics for Nuclear Medicine Technologists.
Part 2: X-Ray Interactions and Image Formation”. In: Journal of nuclear medicine technology 33
(Apr. 2005), pp. 3–18.

[29] Jakob Spoerk et al. “High-performance GPU-based rendering for real-time, rigid 2D/3D-image
registration and motion prediction in radiation oncology”. In: Zeitschrift für Medizinische Physik
22.1 (2012), pp. 13–20. ISSN: 0939-3889. DOI: https://doi.org/10.1016/j.zemedi.2011.
06.002. URL: https://www.sciencedirect.com/science/article/pii/S0939388911000651.

[30] Wolfram Stiller. “Basics of iterative reconstruction methods in computed tomography: A vendor-
independent overview”. In: European Journal of Radiology 109 (2018), pp. 147–154. ISSN: 0720-
048X. DOI: https://doi.org/10.1016/j.ejrad.2018.10.025. URL: https://www.sciencedi
rect.com/science/article/pii/S0720048X18303747.

[31] Dawood Tafti and Christopher V Maani. “X-ray production”. en. In: StatPearls. Treasure Island
(FL): StatPearls Publishing, Jan. 2025.

[32] Tasti: Application-Tailored Synthetic Image Generation. Jan. 2025. URL: https://tasti-proje
ct.eu/.

[33] Gábor János Tornai, György Cserey, and Ion Pappas. “Fast DRR generation for 2D to 3D regis-
tration on GPUs”. en. In: Med Phys 39.8 (Aug. 2012), pp. 4795–4799.

[34] Trixell. Detector Matrix. [Online; accessed 30-January-2025]. URL: https://www.trixell.com/
technology.

[35] Wikipedia. Bilinear interpolation — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Bilinear%20interpolation&oldid=1250588270. [Online; accessed
09-December-2024]. 2024.

https://resolver.tudelft.nl/uuid:f243012c-1380-45d9-ae98-de6211defac1
https://resolver.tudelft.nl/uuid:f243012c-1380-45d9-ae98-de6211defac1
http://knowino.org/w/index.php?title=Euler%27s_theorem_(rotation)&oldid=6892
http://knowino.org/w/index.php?title=Euler%27s_theorem_(rotation)&oldid=6892
http://link.springer.com/10.1007/978-3-319-96520-8
https://doi.org/10.1080/21681163.2019.1683469
http://dx.doi.org/10.1080/21681163.2019.1683469
http://dx.doi.org/10.1080/21681163.2019.1683469
https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/
https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/
https://arxiv.org/abs/1211.1768
http://arxiv.org/abs/1211.1768
https://doi.org/https://doi.org/10.1016/j.zemedi.2011.06.002
https://doi.org/https://doi.org/10.1016/j.zemedi.2011.06.002
https://www.sciencedirect.com/science/article/pii/S0939388911000651
https://doi.org/https://doi.org/10.1016/j.ejrad.2018.10.025
https://www.sciencedirect.com/science/article/pii/S0720048X18303747
https://www.sciencedirect.com/science/article/pii/S0720048X18303747
https://tasti-project.eu/
https://tasti-project.eu/
https://www.trixell.com/technology
https://www.trixell.com/technology
http://en.wikipedia.org/w/index.php?title=Bilinear%20interpolation&oldid=1250588270
http://en.wikipedia.org/w/index.php?title=Bilinear%20interpolation&oldid=1250588270

References 60

[36] Wikipedia. Rotation matrix —Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/
index.php?title=Rotation%20matrix&oldid=1250574232. [Online; accessed 08-December-
2024]. 2024.

[37] Zelda B. Zabinsky. “Random Search Algorithms”. In:Wiley Encyclopedia of Operations Research
and Management Science. John Wiley & Sons, Ltd, 2011. ISBN: 9780470400531. DOI: https:
//doi.org/10.1002/9780470400531.eorms0704. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/9780470400531.eorms0704. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9780470400531.eorms0704.

http://en.wikipedia.org/w/index.php?title=Rotation%20matrix&oldid=1250574232
http://en.wikipedia.org/w/index.php?title=Rotation%20matrix&oldid=1250574232
https://doi.org/https://doi.org/10.1002/9780470400531.eorms0704
https://doi.org/https://doi.org/10.1002/9780470400531.eorms0704
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.eorms0704
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470400531.eorms0704
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0704
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0704

	Abstract
	Preface
	Nomenclature
	Introduction
	Challenge
	Research questions
	Thesis outline

	Background
	X-rays and imaging systems
	X-ray generation
	Matter interaction
	Imaging systems

	FPGA
	Related work

	Simulation outline and algorithm explanation
	Simulation model
	Simulation arrangement
	Source
	Voxel model
	Detector
	Computational model

	Algorithm
	Projection step
	Computation step
	Detector step

	System architecture
	Requirements
	System design
	Host machine
	FPGA components
	Memory components

	System implementation
	Processor
	Ray generator
	Engines
	Computations
	Engine memory

	Ray scaler
	First order approximation
	Second order approximation
	Final approximation
	Hardware implementation

	Detector
	Error definition
	Interpolation
	Upsampling

	Memory architecture
	HBM architecture
	Request manager
	Response manager
	Memory layout
	Small model
	Medium model
	Large model

	Model compression
	Error function
	Strategy 1
	Strategy 2
	Comparison

	Results and analysis
	Material error
	CPU- and FPGA-based result comparison
	FPGA performance
	Theoretical performance
	Measured performance
	Analysis

	Upsampling error

	Conclusion and recommendations
	Conclusion
	Recommendations

	References

