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A B S T R A C T

Degradation of subsea pipelines in the presence of corrosive agents and cyclic loads may lead to the failure of
these structures. In order to improve their reliability, the deterioration process through pitting and corrosion-
fatigue phenomena should be considered simultaneously for prognosis. This process starts with pitting nucle-
ation, transits to fatigue damage and leads to fracture and is influenced by many factors such as material and
process conditions, each incorporating a high level of uncertainty. This study proposes a novel probabilistic
methodology for integrated modelling of pitting and corrosion-fatigue degradation processes of subsea pipelines.
The entire process is modelled using a Dynamic Bayesian Network (DBN) methodology, representing its temporal
nature and varying growth rates. The model also takes into account the factors influencing each stage of the
process. To demonstrate its application, the methodology is applied to estimate the remaining useful life of high
strength steel pipelines. This information along with Bayesian updating based on monitoring results can be
adopted for the development of effective maintenance strategies.
1. Introduction

One of the major causes of failure of offshore structures such as oil
and gas pipelines is degradation of structural properties during their
lifespan (Dey and Gupta, 2001; Sulaiman and Tan, 2014; Yang et al.,
2017). Corrosion is the most well-known form of steel deterioration
resulting in generation of pits or more extended damage (Bhandari et al.,
2015b, 2016, 2017). Fatigue, on the other hand, is the disintegration of
material due to cyclic loads applied on the structure. Coupled corrosion-
fatigue results from applied cyclic stresses in tandem with presence of
corrosive agents, where localized corrosion in the form of pits may pro-
vide the required conditions for initiation of fatigue crack initiation.

Many parameters including material properties and environmental
conditions influence this process. These factors, each incorporating a
level of uncertainty, may be adopted to estimate the remaining useful life
of the structure. While these predictions will provide reliable measures
for improving maintenance strategies, a dynamic framework is also
required for updating the estimations based on new observations during
the service life.

A great deal of research has been conducted to predict the state of
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damage and fatigue life in steel and aluminum alloy structures that are
subjected to pitting and corrosion-fatigue. Kondo (1989) developed a
model for the prediction of fatigue crack initiation time based on pit
growth, however, the damage process was not entirely simulated. Gos-
wami and Hoeppner (1995) proposed a seven-stage model that considers
the effect of electrochemical processes on pit formation as well as the role
of pitting in fatigue crack initiation. This model however, was conceptual
and failed to provide a computational framework. A probabilistic model
was developed by Harlow and Wei (1994) for prediction of
corrosion-fatigue life comprising the time for crack initiation, surface
crack growth and the growth of damage to the critical size. This model,
however, does not consider the time of pit nucleation as well as the effect
of short cracks in service life modelling. Kaynak and Baker (1996)
assessed the effect of short cracks on fatigue life of steel structures
concluding that the growth rates of short cracks are different (usually
smaller) from those of long cracks. Shi and Mahadevan (2001) proposed
a mechanics-based probabilistic model of the entire pitting and
corrosion-fatigue process suggested by Goswami and Hoeppner (1995).
They adopted Monte Carlo simulations and the First-Order Reliability
Method (FORM) approach to conduct the probabilistic analysis.
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Although, their framework provides a guideline for estimating fatigue
life, application of FORM may result in computational complications.

Alternatively, Bayesian network (BN) as an advanced probabilistic
model has widely been applied to reliability analysis of complex systems.
Application of BN significantly reduces the method complexity and
computational time of inference, by factorizing the joint probability
distribution of the parameters of interest based on local dependencies.

Various applications of BN in risk and reliability engineering can be
found in Weber et al. (2012), Abbassi et al. (2016), Bhandari et al.
(2015), Yeo et al. (2016) and Abaei et al. (2017). However, only a few
studies adopted BNs for modelling deterioration processes in structures.
Friis-Hansen (2000) studied the application of Dynamic Bayesian
Network (DBN) in modelling fatigue crack growth of offshore jacket
structures. The developed probabilistic network was also used to identify
optimum inspection plans. Straub (2009) developed a generic compu-
tational framework using DBN for modelling deterioration processes with
potential applications in inspection, maintenance, and repair planning.
Arzaghi et al. (2017) developed a methodology for probabilistic model-
ling of fatigue crack growth using BN. The model was extended to an
Influence Diagram for finding the optimum maintenance plan among
multiple repair alternatives with different economic impacts.

In the present study, a probabilistic methodology is developed for
modelling corrosion-fatigue deterioration in offshore structures. This
methodology consolidates the entire damage process including pit
nucleation, pit growth transited to short and long fatigue cracks, and the
fracture of structure. To improve the accuracy of corrosion-fatigue life
estimations, the model incorporates the randomness in the parameters
influencing the process. For this purpose, DBN is adopted as an efficient
probabilistic tool. The advantages of this methodology are illustrated
through the remaining useful life assessment of an offshore pipeline
subjected to pitting and corrosion-fatigue.

2. Bayesian networks

2.1. Conventional Bayesian network

BNs are directed acyclic graphs used for reasoning under uncertainty
by considering the causal relationships (represented by directed edges)
among a number of random variables (represented by chance nodes)
(Pearl, 1988). BN estimates the joint probability distribution of a set of
random variables based on the conditional independencies and the chain
rule, as in Eq. (1):

PðUÞ ¼ PðX1;X2;…;XnÞ ¼
Yn
i¼1

PðXijpaðXiÞÞ (1)

where PðUÞ is the joint probability distribution, and paðXiÞ is the parent
Figure 1. A conventional Bayesian network.
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set of random variables Xi. Fig. 1 depicts a conventional BN comprising
random variables X1-X4. The main advantage of Bayesian networks is
that when new information about any of the chance nodes becomes
available, the model can update the probabilities for a more efficient
knowledge elicitation. For instance, if variable X2 is observed to be in
state e, the joint probability distribution is updated based on Bayes'
theorem:

PðX1;X3;X4jeÞ ¼ PðX1;X3;X4; eÞP
X1 ;X3 ;X4

PðX1;X3;X4; eÞ (2)

Dynamic Bayesian networks (DBNs) particularly represent stochastic
processes and enable explicit modelling of the evolution process of a set
of random variables (Jensen and Nielsen, 2007). A DBN divides the time
line into a discrete number of time slices t 2 ½0;T� and allows a node in
time slice iþ 1 to be conditionally dependent on a node in time slice i as
well as its parents in time slice iþ 1. Fig. 2 illustrates a DBN in which the
evolving process of the variable Yt is modelled. This variable in time slice
t is dependent on Yt-1 as well as Xt. In order to establish a DBN, the
conditional probability tables for evolving nodes should be completed,
for instance P(Yt jYt-1, Xt)for variable Yt in the DBN presented in Fig. 2.

The transition between two consecutive time slices may for instance
be dependent upon the physical features of the stochastic process being
modelled. A detailed explanation of inference algorithms developed
specifically for DBN structures can be found in Murphy (2002).

3. Pitting and corrosion-fatigue modelling methodology

To develop the probabilistic model, it is first necessary to assess the
entire damage process identifying the physics behind pitting and the
corrosion-fatigue phenomena. This will also facilitate developing the
computational framework for predicting damage states and establishing
the DBN. The seven-stage model proposed by Goswami and Hoeppner
(1995) is adopted as the basis for analyzing the service life in the present
study. Fig. 3 illustrates the total corrosion fatigue life (tfl) initiated with
pit nucleation time (tpn) and eventually resulting in fracture. This process
also includes three damage growth times for pit (tpg), short crack (tsc) and
long crack (tlc) as well as two transition stages, i.e., “pit-to-crack transi-
tion” and “short-crack to long–crack transition”.

tfl ¼ tpn þ tpg þ tsc þ tlc (3)

The proposed methodology models the entire deterioration process
including pitting corrosion and fatigue damage growth. Fig. 4 presents an
overview of the entire methodology and its key elements.

The computational methods for each component of the total failure
time represented in Eq. (3) will be discussed in the following subsections:

3.1. Pit nucleation

The time for pit initiation has attracted a great deal of research, yet
the dependence on many influencing factors such as materials and
electrochemical has not been fully investigated. Hence, the developed
model considers this stage of damage life as a random variable modelled
by a lognormal distribution. The adopted distribution parameters, sug-
gested by Shi and Mahadevan (2001) are provided later in the following
sections.

3.2. Pit growth

According to Kondo (1989) and Harlow and Wei (1994), pits are
assumed to remain in a hemispherical shape while growing at a constant
volumetric rate. This yields a pit growth rate, given by:

dc
dt

¼ Cp

2πc2
(4)



Figure 2. A Dynamic Bayesian network.

Figure 3. Different stages of pitting corrosion-fatigue life.

Figure 4. Developed methodology for service-life prediction of deteriorating subsea pipelines.
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Cp ¼ MIP0
nFρ

exp
�
�ΔH
RT

�
(5)

where c is the pit radius,M is the molecular weight of the material, IP0 is
the pitting current constant, n is the valence number, F ¼ 96; 514 (c/mol)
is Faraday's constant, ρ is density, ΔH is the activation energy,
R ¼ 8:314(J/molK) is the universal gas constant, and T is the tempera-
ture.

The transition from pit growth to crack initiation is dependent on
mechanical characteristics such as stress intensity factor, ΔK. Two
criteria are considered as the boundary conditions for crack initiation: (1)
the stress intensity factor for the equivalent surface crack growth of the
pit reaches the threshold stress intensity factor of the fatigue crack
growth (Eq. (6)), and (2) the fatigue crack growth rate exceeds the pit
growth rate.
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ΔKpit ¼ ΔKcrack (6)

Kondo (1989) suggests that the critical crack length (ccr) that satisfies
the conditions for transition from pit growth and crack initiation can be
calculated as:

ccr ¼
�
1
2

��
2Q
πα

��
ΔKcr

2:24Δσ

�2
(7)

where Q ¼ 1:464α1:65 is the shape factor, α ¼ a
c ¼ 0:7 is the aspect ratio

of pit (c and a are half the length of the major and minor axes of pit
shape), ΔKcr ¼ 2:4Mpa

ffiffiffiffi
m

p
is the threshold stress intensity factor, and Δσ

is the stress range experienced by the structure.

3.3. Short and long crack growth

Long cracks are usually considered when using fracture mechanics for



Table 1
Random values used in pitting corrosion-fatigue model.

Variable Description Distribution Mean Standard
Deviation

Δσ Stress range (MPa) Normal 60 10
T Temperature (K) Normal 293 1
A Weibull scale parameter

(MPa)
Normal 5.35 0.963

MU Model uncertainty Normal 1 0.18
C0 Initial pit size (m) Exponential 1.98 � 10-

6
0.99 � 10-7

Ccr Initial crack size (m) [from
Monte Carlo sim]

Exponential 0.8 � 10-3 -

Cth Fatigue crack threshold
(short to long) (m)

Normal 2.0 � 10-3
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fatigue analysis, and Paris' law is widely used for estimating damage
sizes. The effect of short cracks on fatigue life has attracted the attention
of researchers, however, there is no explicit formula derived for short
crack growth. According to Kaynak and Baker (1996) and (Shi and
Mahadevan, 2001), a probabilistic model based on Paris’ law that ac-
counts for the uncertainty of parameters such as stress intensity factor,
may be applied. Eq. (8) represents the empirical formula for damage
growth:

da
dN

¼ CðΔKÞ3 (8)

where N is the number of applied load cycles, c and m are material pa-
rameters specifically obtained for short and long cracks resulting in two
identical growth rates from the equation. ΔK is the stress intensity factor,
which can be expressed empirically as:

ΔK ¼ YðcÞΔσ ffiffiffiffiffi
πc

p
(9)

where YðcÞ is the geometry function dependent on the crack depth, and
Δσ is the stress range. While the explicit solution of Eq. (8) is not possible,
by assuming that the geometry function is independent of crack depth c
and the stress range Δσ follows a Weibull distribution, an analytical so-
lution can be achieved (Madsen et al., 1986):

atþ1 ¼
�
a
2�m
m
t þMUSAm

� 2
2�m

;m 6¼ 2 (10)

S ¼ C NΓ
�
1þ m

B

�
Ymπ

m
2

�
1� m

2

�
(11)

where A and B are the scale and shape parameters of the Weibull dis-
tribution, respectively, and Γ is the gamma function. Eq. (10) enables the
computation of crack size in current time step as a function of crack size
in the previous time step and the material constantsm and c, where these
parameters are obtained from empirical models for short and long cracks.
Different methods are developed to identify the transition size cth from
Figure 5. Developed Bayesian network
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short crack growth to long crack growth. Kaynak and Baker (1996)
suggested this value is about 1–2 mm for En7A steel. Similarly, in this
study the critical size is regarded as a random variable with a mean value
of 2 mm.

3.4. Probabilistic analysis and BN model

The probability analysis was performed using Monte Carlo simula-
tions in tandem with implementation of a DBN. To estimate the time for
the initial part of damage life where pitting corrosion is dominant, 104

samples where generated from random variables involved in Eq. (4), (5)
and (7). The distributions of these variables are listed in Table 1. It should
be noted that initial pit size (C0) was considered as the initial condition
when solving Eq. (4). The remainder of service life, where fatigue dam-
age progresses, is estimated using a DBN. For this purpose, the generic
DBN developed by Straub (2009) was adopted to model each of the two
growth processes indicated in Fig. 5. The developed network qualita-
tively represents a deterioration process describing the state of damage
over the life time divided into a discrete number of slices. That is, the
damage size is a function of the initial condition (nodeCcr) which is fol-
lowed by the process of short crack growth (nodes Csc

1 to Csc
n ), transition

to long crack at a critical crack size (node Cth) and eventually the long
crack growth process (nodes Clc

1 to Clc
m). The occurrence of failure event is

assessed by defining a limit state G, as :

G ¼ Cf � Ci (12)

where Ciand Cf are the actual and critical crack size, respectively.

4. Application: corrosion fatigue damage of a subsea pipeline

To demonstrate the applicability of the developed method in predi-
cating corrosion-fatigue service life, a numerical study is carried out on
the failure of an offshore pipeline. The mechanical properties of the
structure are listed in Table 2. It is assumed that N ¼ 106 load cycles are
experienced by the pipeline every year and critical size of damage for
failure is Cf ¼ 10� 10�3m.

The results of Monte Carlo simulation showed that the critical pit size
for transition to short crack has a mean of E½Ccr � ¼ 8� 10�4m. The cu-
mulative probability distribution of this variable is presented in Fig. 6.
This distribution was discretized into 20 exponentially growing intervals
which form the upper bounds of states of damage size nodes in the DBN.
This was performed to avoid rounding errors caused by uniform interval
lengths in the last intervals where the probabilities are significantly low.

As illustrated in Fig. 5, the DBN model contained two consecutive
periods corresponding to corrosion fatigue cracks with different growth
rates. An adequate number of time slices were included in the short crack
growth process so that the mean size of predicted damage equals the
critical transition sizeCth, before long crack growth is initiated. The long
crack process was then extended for a number of time slices (each rep-
resenting a year) until fracture occurred,PðF ¼ 1Þ ¼ 1.
for modelling corrosion-fatigue life.



Table 2
Deterministic values used in pitting corrosion-fatigue model.

Variable Description Mean

ρ Density (gm/m3) 7.8 � 106

n Valence 2
M Molecular weight (gm) 55.75
ΔH Activation energy (KJ/mol) 5.0 � 104

msc;mlc Short/long crack growth exponent 3.0
Csc;Clc Material parameter for short/long crack 2.17 � 10-13

1.45 � 10-14

Y Geometry function 1
B Weibull shape parameter 0.66
N Load cycles 106/year

Figure 6. Cumulative probability distribution of critical pit size leading to the transition
to short crack.

E. Arzaghi et al. Ocean Engineering 150 (2018) 391–396
The results of the case study, presented in Fig. 7, suggest that within
the third year of operation the grown pits will satisfy the conditions
required for initiation of fatigue cracks and damage will be growing in
the form of short cracks. The prediction of pipeline corrosion fatigue life
indicates that the transition from short crack to long crack takes place in
year 12 after which the damage develops at a significantly faster rate. 15
years after the start of the operation the extent of damage will be
significantly increasing where the probability of failure is about 0.1 in the
20th year, given no repairs were performed. This probability will increase
to almost 0.5 in the 25th year of operation and approximately 10 years
later the structure is extremely close to failure event,PðF ¼ 1Þ«0:95.
Figure 7. Cumulative probability distribution of corrosion-fatigue life for an
offshore pipeline.
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These results highlight the strength of the methodology for predicting
the service life of a corroded subsea pipeline subjected to cyclic loads.
The proposed methodology can be readily used to update the predictions
based on new damage size inspection results and also provides a great
potential for optimization of maintenance plans. Moreover, by enhancing
the DBN model with a monitoring capacity, the predictions can be
updated during the operation period with observation of influencing
parameters.

5. Conclusion

This paper presents a probabilistic methodology for prediction of
pitting and corrosion fatigue service life in offshore pipelines. For this
purpose, Monte Carlo simulations are used to analyze the time of pit
growth as well as estimating the size of pit in which transition to short
crack growth occurs. It was observed that pits with mean size of about
0.8 mm have the required condition for crack initiation in steel pipelines.
A DBN model was implemented for simulating short and long crack
growth which may lead to fracture. The predictions suggest that in the
20th year of operation, probability of failure event is about 0.1 where this
value reaches to about 0.95 in 15 years, given that no maintenance is
performed on the pipeline. The results of this study highlights the
capability of the method in prediction of corrosion fatigue life consid-
ering the randomness of the parameters involved in the problem. These
capabilities can also be enhanced for efficient monitoring, inspection and
maintenance planning strategies.
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