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Abstract. During the design of development concepts for the exploitation of oil and gas 
reservoirs, frequent use is made of numerical simulation of the flow of multi-phase fluids 
through porous rock. Recently, increased attention has been paid to systematic optimization 
of well positions and operating parameters (rates, pressures) over the life of the reservoir. 
Here we consider optimization of the displacement of oil towards production wells through 
the injection of water in other wells. Model-based optimal control of this “water flooding” 
process generally involves multiple simulations, which makes it into a time-consuming 
process. A potential way to address this issue is through the use of proper orthogonal 
decomposition (POD), We addressed the scope to speed up optimization of water-flooding a 
heterogeneous reservoir with multiple injectors and producers. We used an adjoint-based 
optimal control methodology that requires multiple passes of forward simulation of the 
reservoir model and backward simulation of an adjoint system of equations. We developed a 
nested approach in which POD was first used to reduce the state space dimensions of both the 
forward model and the adjoint system. After obtaining an optimized injection and production 
strategy using the reduced-order system, we verified the results using the original, high-order 
model. If necessary, we repeated the optimization cycle using new reduced-order systems 
based on snapshots from the verification run We tested the methodology on a reservoir model 
with 882 states (441 pressures, 441 saturations) and an adjoint model of 882 states 
(Lagrange multipliers). We obtained reduced-order models with 35-43 states only. The 
reduction in computing time was 52%.  
 
1 INTRODUCTION 

An important aspect of the development of oil and gas reservoirs involves the numerical 
simulation of multi-phase fluid flow through porous rock. The governing differential 
equations can be derived from the mass balance equations for the components of the reservoir 
fluids, the equations of state for the phase behavior, and a semi-empirical relation, known as 
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Darcy’s law, which describes the relation between pressure drop and fluid velocity1,2. 
Reynolds numbers are typically much smaller than one, and inertia effects are therefore 
disregarded. However, capillary forces and the mutual interference of the various phases (oil, 
gas, water) result in nonlinearities that complicate the analysis. Here, we restrict ourselves to 
the flow of oil and water, in which case we can obtain the governing equations as two coupled 
differential equations that are of second order in space and of first order in time. Under some 
mild assumptions they can be expressed as a weakly nonlinear parabolic equation with time-
varying coefficients for the pressure field, coupled to a strongly nonlinear hyperbolic-
parabolic equation for the phase saturation field. Discretization in space is mostly done using 
finite differences with upstream weighting for the saturation-dependent parameters. The most 
popular time-stepping schemes are fully implicit Euler integration using Newton iteration, or 
a combination of implicit pressure integration and explicit saturation updates. Here we use a 
semi-implicit integration, i.e. implicit in the primary variables (pressures and saturations) but 
explicit in the saturation-dependent parameters. Typical reservoir models contain 104 - 106 
grid blocks and take many hours to run. The major use of such models is in the design phase 
of field development, to predict the performance of alternative development schemes. This 
involves the positioning of the wells and assessment of the effectiveness of different recovery 
techniques. Most oil fields initially produce oil naturally because of the high subsurface 
pressure, but this “primary recovery” phase usually ends because of a decreasing reservoir 
pressure with increasing cumulative hydrocarbon production. Typically, at the end of this 
phase 70% to 95% of the oil is still left in the reservoir. A “secondary recovery phase” is then 
entered during which the reservoir pressure is maintained or restored through the injection of 
gas or water. In addition to pressure maintenance, the injected fluids help to displace the oil 
from the injection wells to the production wells. Several authors investigated the scope to 
optimize the design of secondary recovery through combining reservoir simulation with 
systematic optimization techniques. In particular the scope to optimize oil recovery through 
water injection, a recovery technique known as “water flooding” has been studied using 
optimal control theory (OCT)3,4,5. The objective functions in these studies were either oil 
recovery or monetary value, and the controls were the injection and production rates of the 
wells over the entire life of the reservoir. OCT is a gradient-based local optimization 
technique where the derivative information is obtained through solving a set of adjoint 
differential equations backward in time. At the price of having to derive the adjoint equations, 
OCT provides a computationally efficient means to obtain the derivatives of the objective 
function with respect to all control parameters in a single set of forward and adjoint 
simulations. Over the past years, the interest in OCT for flooding optimization has increased 
because of the development of “smart” horizontal wells, equipped with downhole sensors and 
downhole valves that allow for individual control of the inflow or injection from different 
segments of the wells6,7. Calculating the optimal valve settings using OCT requires several 
passes of forward simulation of the reservoir model and backward simulation of the adjoint 
system of equations. The time needed to calculate optimized controls increases with the 
number of grid blocks and the complexity of the reservoir model. Reduced-order modeling 
and reduced-order control may provide a means to reduce the computational burden. 
Moreover, the use of reduced-order models may also lead to accelerated convergence in 
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iterative solutions. In this paper we concentrate on the use of proper orthogonal 
decomposition (POD)8. POD, also known as principal component analysis, Karhunen-Loève 
decomposition or the method of empirical orthogonal functions, is a frequently used tool for 
model reduction but only recently it has been used for control applications9,10,11,12. Moreover 
its application to the simulation of flow through porous media has also been scarce13,14,15,16. In 
this paper we will describe a methodology using nested loops, where the inner iterative loop 
makes use of a truncated basis of POD functions to calculate optimized injection and 
production rates. After convergence in this loop we simulate in the outer loop the original, 
high-order model with the optimized rates and subsequently adapt the basis and the truncation 
of the POD functions. They are used in the next inner loop to calculate new optimized 
injection and production rates. We published the theory behind this methodology earlier, and 
illustrated it with a numerical example17. More recently we developed a different approach to 
use POD for the improvement of computational efficiency in reservoir simulation18. Here we 
will present a shortened version of the theory from the former publication and an application 
to a different, simple two-dimensional water flooding example.  

2 HIGH-ORDER RESERVOIR MODEL 
To generate a reduced-order model with POD we first need to run a full-order simulation 

and produce snapshots. For the full-order model we use a two-dimensional, two-phase, 
reservoir simulator based on a spatial finite difference discretization of the governing flow 
equations, which can be represented as a set of coupled nonlinear differential equations in 
continuous time t: 

 
( ) ( ) ( ) ( ) ( )t t= +x A x x B x u t

. (1)  
Here, x is the n-dimensional state vector containing oil pressures po and water saturations 

Sw for each grid block, A and B are saturation-dependent matrices and u is the input vector 
containing water rates qw at the injectors and liquid (i.e. the sum of oil and water) rates ql = qo 
+ qw at the producers. We choose Neumann (no-flow) boundary conditions around the entire 
domain, while the initial conditions are specified as ( ) 00 .=x x  Implicit Euler discretization 
can be written as, 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )1
1 ,

k k
k k k k

t
x x

A x x B x u
+ −

= + +
Δ  (2) 

resulting in the nonlinear system of equations 

 , (3) 
( )( ) ( ) ( ) ( )( ) ( )1t k k k t kI A x x x B x u⎡ ⎤−Δ + = +Δ⎢ ⎥⎣ ⎦ k

where k is discrete time. By solving system (3) every time step without iteration on the 
saturation-dependent parameters in A and B we obtain a semi-implicit time stepping scheme, 
with a stability limit governed by the throughput limit of the grid blocks1. 
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3 PROPER ORTHOGONAL DECOMPOSITION 
An approximation of the system dynamics is obtained by projecting the original n-

dimensional state space onto an l-dimensional subspace. First, during simulation of an n-
dimensional discrete-time model we record a total of κ snapshots for the oil pressure state xp 
and the water saturation state xs. In our case the dimension n is equal to twice the number of 
grid blocks. We keep the pressure and the saturation states segregated because they 
correspond to different physical processes and will consequently generate different dominant 
structures. Moreover, it allows us to choose a different degree of reduction for the pressures 
and the saturations. For clarity of notation, we will omit the indication of pressure or 
saturation for the variables in this section, but we note that all steps in the order reduction 
process should be performed twice, once for the pressures and once for the saturations. After 
subtracting the mean ( ) (1

1
i

iκκ
=

= ∑x )x  from the snapshots, we construct a data matrix: 

 ( ) ( ) ( ) ( ) ( ) ( ): = 1 ,   2 ,  ...,  = 1 - ,   2 - ,  ...,  -κ κ′ ′ ′⎡ ⎤ ⎡⎣ ⎦ ⎣X x x x x x x x x x⎤⎦ . (4) 
The goal of POD is, given the data matrix X, to find a transformation 

 , (5) 
l′ = +x Φ z r

where Φl is an n × l transformation matrix, z is a reduced state vector of length l and r are 
residuals, such that the squared sum of the snapshot residuals, ( ) 2

1i
iκ

=∑ r , is minimized. It 
can be shown, that this minimum is given by 

 
( ) 1

1

2
jj l

i

i
κ

κ
λ

= +
=

=∑ ∑r
, (6) 

where  are the ordered solutions of the eigenvalue 
problem 

1 2 1 0nκ κλ λ λ λ λ+≥ ≥ ≥ ≥ = = =… …

 
n i i iλ=R φ φ

, (7) 
and  are the corresponding eigenvectors. According to equation ( ( 1, ,i i =φ … )n 6) the 

squared sum of the snapshot residuals is determined by the κ – l highest eigenvalues. The 
eigenvectors corresponding to the remaining l eigenvalues, i.e. the first l columns of matrix Φ, 
form the optimal transformation matrix Φl. We may, alternatively, compute the eigenvectors 
ϕ with the aid of the singular value decomposition (SVD) of the data matrix19: 

 , (8) 

T=X ΦΣΨ

where the n × κ matrix Σ is given by 
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1

2

0 0
0 0

0 0

0 0 0

κ

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Σ
 , (9) 

Here σ1 ≥ … ≥ σl >> σl+1 ≥ … ≥ σκ ≥ 0 are the singular values of X and are the square 
roots of the eigenvalues λi, i = 1, 2 , …, κ. The number of singular values l, i.e. the number of 
POD basis functions that we want to keep can now be determined as follows. The total 
amount of relative ‘energy’ present in the snapshots can be expressed as 1 2

1tot ii
E κ σ−

=
= ∑ . The 

reduced number of basis functions is the largest number {1, , 1}l κ∈ −…  that satisfies 

 

2

1

l

i
i

tot

E
E

σ
α=

∑
= ≤

,  (10) 
whereα denotes the fraction of relative energy we want to be captured. If the singular 

values, ordered by magnitude, display a clear drop, the system apparently has a natural set of 
dominant singular values. Otherwise, the choice of α becomes somewhat arbitrary. Frequently 
used cut-off levels are 0.9 < α < 1.0. The transformation matrix  is now taken as the first l 
columns of the matrix , and we obtain the transformation: 

lΦ
Φ

 
l +x Φ z x

. (11) 

4 REDUCED-ORDER RESERVOIR MODEL 
After replacing the  sign by the = sign, and dropping the subscript l to simplify the 

notation, we can substitute relation (11) into equation (3) to obtain 

 
( )( ) ( ) ( ) ( )( ) ( )1t k k k t kI A Φz x Φz Φz B Φz x u⎡ ⎤−Δ + + = +Δ +⎢ ⎥⎣ ⎦ k

. (12) 
This transformation can be interpreted as a system of discrete-time differential equations in 

reduced-order state space, obtained by projecting the normalized state vector ′ = −x x x  of the 
original problem on the reduced-order space. In our implementation we successfully used 

( )( ) ( ) ( ) ( )( ) ( )1T T
c c

lxl

t k k k t kΦ I A Φz x Φ z z Φ B Φz x u⎡ ⎤−Δ + + = + Δ +⎢ ⎥⎣ ⎦ k

s

, (13) 
which is obtained from equation (12) by pre-multiplying with ΦT. The number of state 

variables is thus reduced from n to pl l l= + . Note that we now use the variable l to indicate 
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the total number of reduced state variables. The matrix dimensions for the total system are 
consequently reduced from  to .n n× l l×  The simulation time of the reduced-order model 
using semi-implicit discretization is decreased because we have to solve l equations instead of 
n equations in the full-order model, where l << n. For fully-implicit simulation where more 
than one systems of equations have to be solved during every time step the decrease in 
simulation time is expected to be even higher. Unfortunately, the original penta-diagonal 
matrix structure is changed to a full matrix, because we multiply the penta-diagonal matrix 
with a full matrix Φ  from the left side and from the right side. This counteracts the 
computational advantage obtained by reducing the size of the state vector. When we 
simulated reduced-order reservoir models with the same controls as the original full-order 
models we obtained almost identical states, as long as a sufficient fraction of the relative 
energy of the full-order model was preserved. However, when we strongly altered the 
controls, and therefore the structures of the states, the states of the full-order model were less 
well represented by the reduced-order model. Because it is not possible to specify a priori the 
validity of a reduced-order model, we will use a nested approach in the development of the 
optimization methodology below, such that the reduced-order results are frequently validated 
by the full-order model. 

5 REDUCED-ORDER OPTIMAL CONTROL 
Adjoint-based OCT is an effective technique to optimize the settings of control variables 

u(k) over the life of the reservoir to maximize an objective function 
. OCT is a gradient-based optimization technique, where the 

gradients are obtained with the aid of an adjoint equation in terms of Lagrange multipliers λ. 
The multipliers represent the objective function’s sensitivities to changes in the state variables 
and originate from adding the dynamic system as a constraint to the objective function. In our 
application, the controls are formed by the injection and production rates in the smart well 
segments at every time step. Following the derivation in reference [6], the adjoint equation 
can be written as in discrete time as 

( ) (k )( )1
,K

kk
J J k

=
= ∑ x u

 
( ) ( )

( ) ( ) ( )
( )

( )
( )

1
1  T T kk k

k k
k k

⎛ ⎞ ⎡∂ − ∂ ∂
= − + −⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠ ⎣

g g
λ λ

x x
J k

k
⎤

∂ ⎦x , (14) 
where  

 
( ) ( )( ) ( ) ( ) ( )( ) ( )1k t k k k t k k⎡ ⎤= − Δ + − − Δ =⎣ ⎦g I A x x x B x u 0

 (15) 
is a compact representation of the system equations (3). For our implementation, instead of 

using the full-order model, we added the reduced-order model as a constraint to the objective 
function J with the aid of a set of low-order Lagrange multipliers μ: 

 
( ) ( )( ) ( ) ( ) ( ) ( )( )

1

0

, 1 1 , ,
K

T T
red k

k
J J k k k k k k

−

=

⎡ ⎤= + + +⎣ ⎦∑ Φz u μ Φ g Φz Φz u
, (16) 
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where we note that we need to add x  to each product Φz, in line with equation (11). 
Taking the first variation of Eq. 16, and reworking the results, we obtain a reduced-order 
equation in terms of reduced-order Lagrange multipliers:  

( )( ) ( )
( ) ( )( ) ( )

( )
( )
( )

1

1
1

T
T T kT T

lxl lxl xl

k k
k k

k k

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛∂ − ∂ ∂

= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝
⎢ ⎥⎣ ⎦

g g
μ Φ Φ μ Φ Φ Φ

x x
J k

k
⎞
⎟⎟∂ ⎠x  , (17) 

Starting from the final condition μ(K)T = 0 it can be integrated backward in time. Because 
the derivatives in Eq. (17) consist of state-dependent parameters we first calculate the full-
order derivatives. They are then transformed and reduced by projecting them on the axes of 
the low-order model. After calculating μ every time step we can calculate: 

 

( )
( )

( )
( ) ( ) ( )

( )
1 Tk Tk J k k

k
k k k

⎧ ⎫∂ ∂ ∂⎪ ⎪= + + ⎨ ⎬∂ ∂ ∂⎪ ⎪⎩

g
μ Φ

u u u
L

⎭ . (18) 
We compute improved controls using a steepest ascend method according to 

( ) ( )new old kε= + ∂ ∂u u uL k  where ε is a weight factor. The computational advantage of 
using reduced-order models in OCT is that the system of equations involves only l unknowns, 
whereas the original system involved n unknowns. This decreases the simulation time 
considerably, especially for large systems where l << n. Unfortunately, the original block 
penta-diagonal matrix structure of ( ) ( )1k∂ − ∂g x k  and the block-diagonal matrix structure 

of ( ) ( )k∂ ∂g x k  are changed to full matrices, because we multiply them with full matrices Φ  

and . This counteracts the computational advantage obtained by using reduced-order 
optimal control.  

TΦ

6 METHODOLOGY 
The implementation of the full-order OCT algorithm for water flooding was described in 

reference [6]. In reduced-order optimal control based on POD (see Figure 1) we first simulate 
the dynamical behavior of the system over time interval 0 to K with an initial choice of u and 
compute the NPV. Following reference [6], the initial choice of u reflects a flooding strategy 
with constant rates in the wells. Every time step we record and store a total of κ snapshots of 
pressures and saturations and calculate POD transformation matrices Φ. Now instead of using 
the full-order derivatives of the system we use the reduced-order derivatives for the backward 
calculation and calculate μ with Eq. (17). Based on the derivatives computed with Eq. (18) we 
compute new controls and use them for the next reduced-order forward simulation. For this 
simulation we use the same transformation matrices Φ. This means that the computational 
‘overhead’ of calculating Φ is shared by multiple runs of the reduced-order model. To 
determine convergence of the inner loop we use a convergence criterion c. The inner loop has 
converged when the NPV of a reduced-order forward simulation is less than c times the NPV 
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of the previous reduced-order simulation. Convergence of the inner loop may occur because a 
local maximum of the NPV has been reached or because the controls have changed too much 
to be accurately captured in the reduced system representation. Entering the outer loop again 
we use the improved controls in a full-order forward simulation and verify if the controls have 
indeed maximized the NPV. If necessary, the transformation matrices Φ are replaced with 
new ones that reflect the altered dynamics and the inner loop is repeated. The outer loop has 
converged when the NPV of the full-order forward simulation is less than the NPV of the 
previous full-order simulation.  

We implemented the methodology in a MATLAB algorithm. The advantage of the 
methodology is that we use reduced-order forward simulations and reduced-order optimal 
control, which have a shorter simulation time. A disadvantage is that an improved control of 
the reduced-order model is not necessarily an improved control for the full-order model. In 
the numerical example below we will see that in our example this is, however, not a problem. 
Assessment of the robustness of this approach requires further research on more realistic 
reservoir models. 

 

Calculate NPV reduced model 

No 

Yes

Apply initial input u 

Simulate full forward model 

Calculate NPV full model 

Full NPV 
converged? 

START 

No Yes

Calculate (truncated) transformation matrix Φ

Substitute x = Φz into the Hamiltonian and 
run the reduced adjoint 

Produce optimized input 

Simulate reduced forward model 

Reduced NPV 
converged? 

DONE 

 

 Figure 1: Flow chart for reduced-order OCT for water flooding 

7 NUMERICAL EXAMPLE 
The methodology as described in the previous section was tested on a 2-dimensional model 

with 21x21 grid blocks, where each grid block is 10x10x10 m. The permeability field is 
assumed to be known and is shown in Figure 2. We assign liquid compressibilities to water 
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and oil of 1×1010 Pa-1. Before production, the reservoir is saturated with oil except for a small 
amount of “connate” water, and it is assumed that all wells start production and injection at 
the same time. In total nine wells are introduced and they are organized in a nine-spot. This 
means that we have four producer wells in the corners of the reservoir and one producer well 
in the middle of the reservoir. Between the producer wells at the corners and the producer 
well in the center are four injectors. The wells operate under rate-constraint and the total 
production and injection rates are equal to each other during the entire simulation time. The 
objective function represents a simple NPV, defined as the sum of the incremental discounted 
oil production income and water production costs over the life of the reservoir. In the NPV 
calculation we use an oil price ro = $80/m3 and a produced water cost rw = $20/m3. We 
compare the NPV obtained with the reduced-order and full-order optimal control algorithms 
with the NPV of a reference case. In the reference case the injection and production rates are 
constant over time and a function of water and oil mobility, reflecting a conventional water 
flood where the wells are operated at constant bottom hole pressure. We simulate the reservoir 
model for 900 days with variable time step size and in this period we inject and produce one 
pore volume of liquid. The resulting saturation distribution is depicted in Figure 3. The total 
NPV for the reference case is $ 3.0 million. It can be seen that the water saturation (red) 
around the injector wells is high and the water is pushing the oil towards the producer wells in 
the center and in the corners. 
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Figure 2: Permeability field (m2). 
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Figure 3: Final water saturation after 1 pore volume 
of injection and production for the reference case. 

Red: oil; blue: water. 

7.1 Full-order optimal control example 
Starting from the reference case we ran the full-order control algorithm. With a 1.86 Gh 

Pentium M processor and 1 Gb RAM memory it took 950 s to run the full-order algorithm. 
We reached convergence after 24 full-order forward simulations and 23 full-order backward 
simulations. The average simulation time for the full-order forward simulation was 12 s and 
for the full-order backward simulation 24 s, approximately a factor of 2 slower. The resulting 
optimized rates are given in the left and the middle picture of Figure 4, which correspond to a 
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final oil/water saturation distribution as depicted in the right picture of Figure 4. The 
maximum value of the NPV is $4.5 million and in further iterations the NPV is not increasing 
anymore. The maximum value for NPV should be regarded as a lower bound of the possible 
improvements, because our optimization routine is local. 
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Figure 4: The three pictures in the left column are generated with full-order optimal control: the picture top left 
represents optimized injection rates for all four injectors (m3/d vs. the simulation time), the picture middle left 
production rates for all five producers (m3/d vs. the simulation time), and the picture bottom left the resulting 
water saturation distribution (Red: oil; blue: water). The three pictures in the right column are generated with 

reduced-order optimal control: the picture top right represents optimized injection rates (m3/d vs. the simulation 
time), the picture middle right production rates (m3/d vs. the simulation time), and the picture bottom right the 

resulting water saturation distribution (Red: oil; blue: water). 
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7.2 Reduced-order optimal control example 
To illustrate reduced-order optimal control we test the methodology as described in Section 

6, starting from the reference case. Using a cut-off criterion of 0.999 convergence is reached 
after 450 s, which is a reduction with 52 % of the time used for the full-order optimal control. 
With this cut-off level we obtain a maximum NPV of $ 4.42 million, which is an increase of 
46% with respect to the reference case. In order to maintain an energy level of 0.999 we need 
for the reference case 35 POD basis functions. The number of POD basis functions gradually 
increases when we apply improved controls and for the optimal case we need 43 POD basis 
functions. This speaks in favor of our nested approach where we adapt the transformation 
matrix after a full-order forward simulation. The resulting rates for this case are given in the 
right part of Figure 4. The resulting rates and the final saturation distribution obtained with 
reduced-order optimal control differed from the resulting rates and final saturation distribution 
obtained with full-order optimal control. Apparently we end up in two different optima. The 
maximum NPV obtained with reduced-order control approaches the NPV obtained with full-
order optimal control within 99%. 

8 CONCLUSIONS 
In the example discussed we found that reduced-order optimal control of water flooding 

using POD improved the NPV with respect to an uncontrolled reference case. Within a shorter 
simulation time, the NPV obtained by the full-order optimal control algorithm was 
approached closely by the NPV obtained by the reduced-order algorithm. The increase in 
computational efficiency was achieved by reducing the number of states in the forward and 
backward simulations considerably and consequently the number of equations that needed to 
be solved every time step. Considering a reservoir model with 882 states (441 pressures, 441 
saturations) and an adjoint model of 882 states (Lagrange multipliers) we obtained reduced-
order models with 35-43 states only. The NPV obtained by reduced-order optimal control was 
approached to within 99% of the NPV obtained by full-order optimal control. The resulting 
reduction in computing time was 52%. In general, the number of POD basis functions 
preserving a certain fixed level of relative energy increases during optimization, which speaks 
in favor of our nested reduced-order optimal control algorithm where we adapt the 
transformation matrix after simulating the full-order reservoir model with improved controls. 
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