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Abstract: This paper presents a learning Dempster-Shafer model for the detection of 
buildings in aerial image and range data. The process of evidence assignment in the 
Dempster-Shafer method is implemented through membership functions in an adaptive-
network-based fuzzy inference system, where a back propagation learning rule is employed to 
tune the evidence assignment functions using training samples. The advantage of this method 
is that it incorporates our knowledge about various features that can be extracted from multi-
source aerial data, and the evidence that these features provide for buildings and other objects 
in urban and suburban areas. Experimental results show that the proposed learning model 
improves the performance of the Dempster-Shafer classifier in detecting buildings in multi-
source aerial data. 

1. Introduction 
Automated building detection in aerial data is a complex problem that has challenged 
researchers in the field of photogrammetry and computer vision for many years. In recent 
years, a growing interest has been shown in the application of the Dempster-Shafer theory of 
evidence (Dempster, 1967; Shafer, 1976) to automated building detection in multi-source 
aerial data (Frontoni et al., 2008; Khoshelham et al., 2008; Lu et al., 2006; Rottensteiner et al., 
2005; Rottensteiner et al., 2004). The Dempster-Shafer approach to building detection is 
based on fusing pieces of uncertain evidence derived from various sources of data. Evidences 
are basic probabilities that support the belief that an object belongs to a certain class 
hypothesis. The treatment of uncertainty in data is a main advantage of the Dempster-Shafer 
approach over previous probabilistic methods (Gordon and Shortliffe, 1990). 

A major problem associated with the Dempster-Shafer method is the assignment of basic 
probabilities to features extracted from the data. Often, the probabilities are assigned by 
means of some mass probability assignment functions, which are defined based on an expert’s 
knowledge about the object. Previous attempts to devise a learning mechanism wherein the 
mass probability assignment functions can be automatically tuned and learnt from training 
data mainly focus on combining the Dempster-Shafer model with non-deterministic methods 
such as fuzzy reasoning (Binaghi and Madella, 1999), neural networks (Basir et al., 2005; 
Binaghi et al., 2000), and genetic algorithms (Sosnowski and Walijewski, 2005). These 

Khoshelham, Nardinocchi 71



  
 
 
 
combinations lead to general data-driven classifiers which do not necessarily incorporate 
available knowledge of the specific problem at hand.  

In this paper, we propose a learning Dempster-Shafer model for the detection of buildings in 
aerial range and image data. In the proposed model, the mass probability assignment 
functions are treated as membership functions in an adaptive-network-based fuzzy inference 
system (Jang, 1993), where a back propagation learning rule is employed to adapt the mass 
probability assignment functions with respect to given training samples. The advantage of the 
proposed method is that it incorporates our knowledge about various features that can be 
extracted from multi-source aerial data, and the evidence that these features provide for 
buildings and other objects in urban and suburban areas. We show that the proposed learning 
model improves the performance of the Dempster-Shafer classifier in detecting buildings in 
multi-source aerial data. 

The paper proceeds with a description of the Dempster-Shafer approach to building detection 
in Section 2. In Section 3, the learning model for the tuning of the mass probability 
assignment functions using training samples is described. Experimental results and 
comparisons with other methods are presented in Section 4. Conclusions appear in Section 5. 

2. Building Detection Based on Evidence  
The Dempster-Shafer approach to building detection relies on gathering evidence from the 
data for the hypothesized classes. The evidence that a feature extracted from the data provides 
for a class hypothesis is represented by mass probabilities in the range [0,1] assigned to class 
hypotheses such that the mass probabilities sum to one. If a feature provides evidence against 
a class hypothesis, a large mass probability (close to 1) may be given to the negation of that 
hypothesis, and a small probability (close to 0) to the union of all hypotheses. The mass 
probabilities derived from multiple features are combined using Dempster’s rule of 
combination: 

where m1(Ci) and m2(Cj) are the mass probabilities (from two features) assigned respectively 
to the class hypotheses Ci and Cj, and m(B) is the combined evidence for the class hypothesis 
B, which is the intersection of the two sets Ci and Cj. The sum of the combined evidences 
assigned to all subsets of a class hypothesis gives rise to an amount of belief for that 
hypothesis: 

The computed belief is the basis for classification. A pixel or object is assigned to class A if 
the amount of belief in support of A is larger than that supporting its negation and the other 
single class hypotheses. 

Based on the Dempster-Shafer theory we develop a model for the classification of multi-
source aerial data into four classes: Building (B), Tree (T), Land (L), and Grass (G). The 
aerial data should include imagery in red and near-infrared bands as well as laser range data in 
the form of a first echo digital surface model (DSM), a last echo DSM, and a filtered version 
of the last echo DSM in which all the objects on the surface of the terrain are flattened out. 
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This latter dataset is a representation of the terrain only and is referred to as DTM. The 
Dempster-Shafer classification model works with three features extracted from the data: 

• le-dtm: height difference between the last echo DSM and the DTM; 
• fe-le: height difference between the first echo DSM and the last echo DSM; 
• ndvi: normalized difference vegetation index derived from the red and near infrared 

image bands. 
 

The basic assumption in the proposed Dempster-Shafer classification model is that le-dtm 
provides evidence for the class building (corresponding to probability s), while fe-le provides 
evidence for the class tree (corresponding to probability t), and ndvi is evidence for both tree 
and grass (corresponding to probability u). These assumptions are represented in three initial 
mass probability assignment functions that determine roughly the amount of mass 
probabilities that each feature provides for the class hypotheses. The initial mass probability 
assignment functions can be easily constructed based on available knowledge about the study 
area, such as the minimum and maximum height of the buildings and trees. Figure 1 shows an 
example of initial mass probability assignment functions that we have used in this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The initial mass probability assignment functions. 

 

Having considered four classes of objects present in the data, a set of 16 class hypotheses is 
obtained. The mass probabilities derived from each feature are assigned to the class 
hypotheses using the probability assignment functions shown in Figure 1. The mass 
probabilities are then combined using the combination rule (Eq. 1) and an amount of belief is 
computed for each class hypothesis. Table 1 summarizes the class hypotheses, and the 
assignment and combination of the mass probabilities. 
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Table 1: The assignment and combination of the mass probabilities. 

3. Neuro-Fuzzy Learning Model 
The tuning of the mass probability assignment functions is carried out in two steps: in the first 
step, the initial mass probability assignment functions are imported as membership functions 
in a fuzzy inference system; in the second step, the membership functions are tuned in an 
adaptive feedforward neural network using a set of training samples. In the following, these 
processes are described in more detail. 

3.1. Fuzzy Reasoning for Evidence Assignment 
The process of mass probability assignment is in essence a fuzzy reasoning process. We, 
therefore, implement this process in a fuzzy inference system (Zadeh, 1973), wherein the 
initial mass probability assignment functions are imported as membership functions. The core 
of this fuzzy inference system is a set of four linguistic fuzzy rules, which translate our 
knowledge of the features and the characteristics of the objects into a mathematical 
representation. The rules establish the relation between the features as input and the object 
classes as output. Figure 2 (left) demonstrates the fuzzy rules for evidence assignment. The 
conditional statement that a feature provides evidence for an object class is fuzzified by 
means of a membership function. The membership functions specify the amount of evidence 
derived from the features in the exact same way as the mass probability assignment functions 
do in the Dempster-Shafer approach. Therefore, the initial probability assignment functions 
are used in the fuzzy inference system as the input membership functions. The output of each 
rule is evaluated using a Sugeno-type membership function (Sugeno, 1985), which associates 
each object class with a constant number in the range [0 1] (Here 0.1 for B, 0.2 for T, 0.3 for 
L, and 0.4 for G). Figure 2 (right) depicts the membership functions corresponding to the 
inputs and outputs of the four fuzzy rules. The fuzzy inference system maps the input features 
to an output object class by evaluating each rule and aggregating the outputs. 

 

Mass probabilities Class 
hypothesis le-dtm fe-le ndvi Combination (s, t) Combination (s, t, u) 

{Ø} 0 0 0 0 0 
{B} s 0 0 s(1-t)/(1-st) s(1-t)(1-3u)/(1-t-u-2su+3tu) 
{T} 0 t u (1-s)t/(1-st) 2(1-s)tu/(1-t-u-2su+3tu) 
{L} 0 0 0 0 (1-s)(1-t)(1-3u)/(1-t-u-2su+3tu)
{G} 0 0 u 0 2(1-s)(1-t)u/(1-t-u-2su+3tu) 

{B, T} 0 0 0 0 0 
{B, L} 0 0 1-3u 0 0 
{B, G} 0 0 0 0 0 
{T, L} 0 0 0 0 0 
{T, G} 0 0 u 0 0 
{L, G} 0 0 0 (1-s)(1-t)/(1-st) 0 

{B, T, L} 0 0 0 0 0 
{B, T, G} 0 0 0 0 0 
{B, L, G} 0 1-t 0 0 0 
{T, L, G} 1-s 0 0 0 0 

{B, T, L, G} 0 0 0 0 0 
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Figure 2: Fuzzy inference system for evidence assignment; left: the fuzzy rules; right: the 
corresponding membership functions. 

3.2. Learning within an Adaptive Network 
To Tune the membership functions, we adopt the back propagation learning rule using the 
gradient descent method as described by Jang (1993), which is based on constructing an 
adaptive neural network corresponding to a fuzzy inference system. An adaptive neural 
network is a set of (adaptive) nodes and connections, which map an input set of variables to 
an output, similar to a fuzzy inference system. The input and output variables, membership 
functions, and operations within the fuzzy inference system are represented by nodes and 
connections in the network architecture. Figure 3 shows the adaptive network construction 
corresponding to our fuzzy inference system for evidence assignment. 

Figure 3: Adaptive network for the learning of the probability assignment functions. 

 
The membership functions are contained within the adaptive nodes in the first layer of the 
network. An adaptive node is one whose output is a parametric function of the inputs to the 
node. The goal of the learning algorithm is to adjust the parameters of the adaptive node 
functions using a set of training samples such that an error measure is minimized. Each 
training sample is a set of input-output values, where the inputs are features extracted from 

 

1. If le-dtm is evidence for B, then object is B; 

2. If fe-le is evidence for T, then object is T; 

3. If le-dtm is not evidence for B, and fe-le is not evidence 
for T, and ndvi is evidence for G&T, then object is G; 

4. If le-dtm is not evidence for B, and fe-le is not 
evidence for T, and ndvi is not evidence for G&T, 
then object is L. 
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the data, and the output value represents an object class. The error measure is usually the sum 
of the squared differences between the output values from the training samples and the 
outputs of the network (given inputs from the training set).  

The gradient descent algorithm for adjusting the parameters of the membership functions is an 
iterative learning procedure. Each epoch of the iteration consists of a forward pass and a 
backward pass. In the forward pass, the input values from the training set are presented to the 
network, and a vector of outputs is computed. A total error measure is obtained as the sum of 
the squared differences between the entries of this output vector and the actual output values 
given in the training set. In the backward pass, this total error is back propagated to partial 
error rates at the output of each internal node. From the partial error rates at the output of the 
adaptive nodes in the first layer of the network an update formula is obtained for the 
adjustment of the parameters of the membership functions. With the updated parameters a 
new error measure is obtained, which is again back propagated to the internal adaptive nodes 
to update again the parameters of the membership functions. The error back propagation and 
update procedures are iterated until a minimum acceptable total error is obtained, or a certain 
number of iterations is reached. More details about the back propagation rule and the update 
formula can be found in (Jang, 1993). 

4. Experiments 
To experiment with the learning Dempster-Shafer model a set of aerial image and laser data 
acquired over a built-up area at the centre of Mannheim, Germany was used. The laser data 
included first echo and last echo recordings and a filtered version of the last echo data 
representing the terrain height. All laser data were interpolated at a regular grid with 0.5m 
point spacing. The image data contained orthorectified images in visible and near infrared 
spectral bands with a ground pixel size of 0.25m. To assess the performance of the method in 
detecting buildings a reference map of the area containing all building boundaries was 
manually compiled from the data. Figure 4 shows the aerial image, the last echo DSM, and 
the manually measured reference map of the area. 

Figure 4: The dataset used in the experiment; Left: aerial orthoimage; Middle: last echo DSM; 
Right: reference map of the area. 

 
Three features were extracted from the data as described in Section 2. These features were 
input to the Dempster-Shafer model with initial probability assignment functions shown in 
Figure 1. For the tuning of these probability assignment functions a set of training samples 
was obtained from the data. Figure 4 (left) depicts the regions, where training samples were 
collected, superimposed on the aerial orthoimage. The learning of the initial probability 
assignment functions was carried out by feeding the training samples to the adaptive network 
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shown in Figure 3, and performing the iterative gradient descent procedure. Figure 5 
illustrates the result of the learning process. As can be seen, within the first 150 iterations the 
total error reduces almost linearly to about half of its initial value. After 150 iterations the 
convergence rate slows down and the computed updates become very small, implying that the 
iterations can be terminated. 
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Figure 5: Reduction of the total error rate in the iterative gradient descent learning process. 

 
The reduced error of the learned adaptive network is evident also from the performance of the 
network in the classification of the input samples. Figure 6 demonstrates the performance of 
the learned adaptive network, given a set of 100 check samples which were not used for the 
learning. As can be seen, the adaptive network yields a correct classification for 98% of the 
samples. 

 
 

Figure 6: Performance of the learned adaptive network in the classification of check samples. 

 
A complete classification of the dataset shown in Figure 4 was performed by using the 
updated membership functions of the learned adaptive network as probability assignment 
functions in the Dempster-Shafer classifier. Buildings were extracted from the classification 
result into a binary building image, and an evaluation of this building image was carried out 
using the reference map and based on the following error measures: 

• False Negative Rate (FNR): The ratio of the number of building pixels wrongly 
classified as other objects to the total number of building pixels; 
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• False Positive Rate (FPR): The ratio of the number of non-building pixels wrongly 
classified as building to the total number of non-building pixels; 

• Unclassified Positive Rate (UPR): The ratio of unclassified building pixels to the 
total number of building pixels; 

• Total Error Rate (TER): The ratio of the total number of wrongly classified pixels to 
the total number of pixels. 

 
The results of the learned Dempster-Shafer classifier were compared with those of the 
Dempster-Shafer classifier without learning, i.e. with the initial probability assignment 
functions. In addition, the results of a less elaborated method of thresholding a Normalized 
DSM (nDSM) (Weidner and Forstner, 1995) were included in the comparison. This method is 
simply based on finding pixels in the le-dtm feature set whose values exceed a height 
threshold (e.g. 2 meters).  

Table 2 summarizes the error measures obtained for the learned Dempster-Shafer classifier, 
the Dempster-Shafer method without learning, and the nDSM method. As can be seen, the 
learned Dempster-Shafer method yields a lower false positive rate, false negative rate and 
total error rate in comparison with the other two methods. The unclassified positive rates, 
however, show that the learned Dempster-Shafer classifier leaves about 5% of the building 
pixels unclassified. The rate of unclassified pixels can be interpreted as the rate of pixels for 
which the extracted features did not provide sufficient evidence for a correct classification. 
Figure 7 shows the distribution of the false positive, false negative and unclassified pixels. It 
is evident that the Dempster-Shafer method without learning misses a large number of 
building pixels, and with the nDSM method many trees are confused with buildings. The 
result of the Dempster-Shafer with learning shows a better performance where only a small 
number of building parts appear to be missed. 

 

Table 2: Results of the learned Dempster-Shafer classifier in comparison with those of the 
Dempster-Shafer method without learning and the method of thresholding a normalized DSM 

(nDSM). 

 
A visualized comparison of the error metrics is provided in Figure 8. It can be noted that the 
Dempster-Shafer method without learning already outperforms the nDSM method in terms of 
the total error. Although the nDSM method has a lower false negative rate, the Dempster-
Shafer without learning performs much better in terms of the false positive rate. The learning 
model improves the performance of the Dempster-Shafer classifier over all metrics. In 
particular, the improvement is more noticeable in the rate of false negative pixels, where the 
learned Dempster-Shafer model yields an error rate that is about two times smaller than that 
of the Dempster-Shafer without learning.  

Method 
 

False 
Negative Rate 

(FNR %) 

False 
Positive Rate 

(FPR %) 

Unclassified 
Positive Rate 

(UPR %) 

Total Error 
Rate 

(TER %) 
nDSM 5.51 10.69 0.00 8.76 

Dempster-Shafer 
without learning 8.38 4.04 1.80 5.66 

Dempster-Shafer 
with learning 4.40 3.35 5.14 3.74 
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 Figure 7: Distribution of false positive (red), false negative (blue) and unclassified positive 
(gray) pixels in the results of nDSM (left), Dempster-Shafer without learning (middle), and 

Dempster-Shafer with learning (right). 

 

 
Figure 8: Comparison of the error metrics indicating the performance of the three methods.  

5. Concluding Remarks  
The process of evidence assignment in the Dempster-Shafer classifier usually requires 
interactive tuning of the mass probability assignment functions. In this paper, we presented a 
method for automated learning of the mass probability assignment functions from a set of 
training samples. In the context of building detection, the training samples can be 
automatically derived from an existing GIS database. Therefore, the learning Dempster-
Shafer model provides a method for automated detection of buildings in multi-source aerial 
data. Our results show that the learning model improves the performance of the Dempster-
Shafer classifier in detecting buildings in an urban study area. 

The present implementation of the method works with three features extracted from image 
and range data. Future research will focus on extending the learning model with additional 
features including various texture descriptors. Another direction for future research is to 
investigate the relevance of features for a more accurate and reliable detection of buildings. 
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