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A B S T R A C T

Entanglement is an essential resource for a variety of applications, such as dis-
tributed quantum computing and quantum cryptography. However, long-distance
entanglement generation is challenging because of two reasons: photon loss occurs
as an exponential function of distance through an optical fiber and the no-cloning
theorem prevent us from directly amplifying the photons. Therefore, quantum re-
peaters that enable long-distance communication to realize quantum information-
based protocols are desired. One way to achieve a higher entanglement generation
rate is to make many attempts of generating entangled states in parallel, a process
known as time-multiplexing. There has been previous work investigating the per-
formance of time-multiplexed entanglement generation using processing nodes, but
only at the elementary link level. Furthermore, this analysis was restricted to the
rate of entanglement generation, with no concern for the fidelity. In this work, we
go further by investigating both the fidelity and the rate of entanglement genera-
tion of time-multiplexed protocols by analyzing the secret key rate (SKR) of quan-
tum key distribution. Moreover, we also study setups with one and two repeaters.
Specifically, we investigate the impact of different hardware parameters on the SKR.
Among other results, we conclude that swap gate time is a key factor for achieving
higher SKR. We also examine what effect different repeater-chain protocols have on
the performance of repeater chains with limited hardware resources. We find that
having the repeater send photons in alternating fashion towards both end nodes
results in a higher SKR than generating entanglement sequentially. Besides, we
investigate what is the most efficient distribution of communication qubit (CQ) in
a protocol with multiple repeaters. We ascertain that the repeater chain setup in
which the number of CQs in a node is equal to that node’s number of neighbors
makes best use of its resources.
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1 I N T R O D U C T I O N

Entanglement is an essential resource for a variety of applications, such as dis-
tributed quantum computing [Cirac et al., 1999] and quantum cryptography [Jen-
newein et al., 2000]. Distributed quantum computation, a model in which com-
ponents of a software system are shared among multiple quantum computers, is
expected as a way of creating fault tolerant quantum computers with a few million
qubits [Cuomo et al., 2020]. Quantum cryptography is a cryptographic technology
that aims to provide secure communications by utilizing the properties of quantum
mechanics. Quantum cryptography technology is essential because the rise of quan-
tum computers is expected to make it easier to break the RSA cryptosystem, which
is the foundation of current internet security. One of the applications of quantum
cryptography is the quantum key distribution (QKD) protocol [Bennett and Bras-
sard, 1984]. This is the protocol that uses quantum mechanics to share random
secret keys. Through QKD, we can achieve secure communication between two
communicating parties. In general, the higher the entanglement generation is, the
faster we can execute any application we might want to use. Therefore, it is nec-
essary to achieve a high entanglement generation rate between long-distance nodes.

However, achieving long-distance entanglement generation is challenging because
photon loss occurs as an exponential function of distance when a photon passes
through an optical fiber [Bouwmeester and Zeilinger, 2000]. Besides, non-orthogonal
quantum states cannot be amplified like classical states due to the no-cloning theo-
rem [Wootters· and Zurek, 1982].

Therefore, a quantum repeater is desired. These are intermediate nodes between
two end-nodes that may enable long-distance quantum communication. Several
physical systems are being investigated as possible hardware platforms for quan-
tum repeaters. Due to the advance stage of development of Nitrogen-vacancy (NV)
center experiments, repeaters based on NV center might be feasible in the short
term [Rozpdek et al., 2019]. In fact, a three-node entanglement-based NV center
quantum network has recently been realized [Pompili et al., 2021]. Even though
Matteo and Sophie’s 3-node network experiment is extremely impressive, it was
done at a very small scale. Scaling up to real-world distances will require large
improvements in entanglement generation rate.
One way to achieve a higher entanglement generation rate is to make many at-
tempts of generating entangled states in parallel, which is called time-multiplexing
protocol. In the protocol, a quantum state in a communication qubit (CQ), which
can emit an entangled photon, entangled with the photon is swapped with a mem-
ory qubit (MQ), which is good at keeping quantum states, after it emits the photon.
Therefore, the communication qubit can send another photon soon, and repeating
this process enables us to attempt to send photons in parallel. Hence, it allows
higher entanglement generation.

There are several reasons for this low rate. At first, Suzanne van Dam et al. found
that the bottleneck to improving the entanglement rate is the swap gate time when
using the time-multiplexing protocol [Collins et al., 2007] explained in Section 3.3.
However, no studies have yet reported that this value can be improved sufficiently.
In addition, since the number of available communication qubits is limited to one
in an NV center, we have to wait for the time until the swap gate is completed for
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4 introduction

the next attempt and that make attempts of sending an entangled photon in parallel
impossible. This also leads to a low entanglement generation rate. Therefore, it is
necessary to put aside the perspective of feasibility and consider cases when chang-
ing various hardware parameters or using the other platforms with an emphasis on
achieving a higher entanglement rate.

Besides, only elementary links were considered in the research by Suzanne et
al. [Dam et al., 2017]. However, generating entanglement over long distances will
likely require the use of multiple repeaters. It is then important to study what effect
different repeater-chain protocols have on the performance of repeater chains with
limited hardware resources.

Finally, in addition to the rate of quantum entanglement generation, it is signif-
icant to evaluate fidelity at the same time. The fidelity is a measure of the quality
of the state, and if it’s too low the entanglement is actually not usable. In an ap-
plication, secret key rate (SKR), the amount of key generated per unit of time, is
defined as important metric which reflects the entanglement generation rate and
the fidelity. There are many studies that evaluate only rates of quantum entangle-
ment generation with fidelity above a certain value [Pfister et al., 2016]. Hence, the
major contributions of this thesis are:

• Analyzing impact of different hardware parameters on both entanglement
generation rate and fidelity in an elementary link when we change some hard-
ware parameters. To do so, we use the BB84 secret key rate (SKR) as the metric,
because it is influenced by both rate and fidelity. Hence, we will conduct the
research to obtain suggestions on what parameters are also key for improving
it.

• Analyzing the SKR with a chain with 1 or 2 repeaters when we change re-
peater chain protocol or the resources in the repeaters. The evaluation can
make us evaluate protocols more accurately allowing us to find more realistic
protocols for QKD. This is a novel approach as previous research discussed
only entanglement rate keeping a fidelity above a certain value.

Outline

This thesis is structured to guide the reader from the basic elements of the quan-
tum mechanical theory to the final results acquired.

At first, in Chapter 2 we introduce the basics of quantum mechanics needed to
understand our project. In Section 2.1, general information about quantum mechan-
ics is explained. Then, fidelity to evaluate a quality for quantum states is introduced
in Section 2.2. In Section 2.3, the noise model we use in the thesis is shown. No-
cloning theorem, which is the key to understanding the motivation for quantum
repeaters, is given in Section 2.4. Finally, Section 2.5 introduces the secret key rate,
which is influenced by both the fidelity and the rate, to reflect on both the fidelity
and the entanglement generation rate in the BB84 protocol.

Chapter 3 discusses how to share high-quality entangled states between two par-
ties. In Section 3.1, the necessity of the quantum repeaters is explained. It is shown
that there are several protocols to generate entanglement between the two quantum
nodes in Section 3.2. Time multiplexing entanglement is introduced in Section 3.3.
In Section 3.4, the entanglement swap, which can be used to extend the distance
spanned by entanglement, is introduced. Finally, two types of hardware platforms
to realize the quantum repeaters will be introduced in Section 3.5.
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Chapter 4 and Chapter 5 start with the introduction of the research questions that
will be investigated, followed by the setups under study and the results obtained.
Chapter 4 concerns itself with effects on SKR by changing some hardware parame-
ters. Chapter 5 investigate how repeater chain which has limited resources affects
SKR and how to optimally distribute the resources to obtain larger SKR in setups
consisting of two end nodes connected by up to two repeaters.

The thesis concludes in Chapter 6 with a summary of our research results and
some suggestions for future work.





2 B A C KG R O U N D

In this section, we will go through the basics of quantum mechanics needed to
understand our project. The introduction given here is brief. For a more detailed
exposition, see [Chuang and I.L., 2011].

2.1 basic concepts
Hilbert space

A quantum state is described by an element |ψ⟩ ∈ H of a complex Hilbert space, a
complex linear space where the inner product is defined and completeness is guar-
anteed. For a finite-dimensional complex Hilbert space, |ψ⟩ can be expressed as a
complex column vector (c1, . . . , cd)

T . Elements on the dual space H are described
as ⟨ψ| and the inner product with |ϕ⟩ is depicted as ⟨ψ | ϕ⟩. The elements on the
dual space can be expressed as the complex row vector ⟨ψ| =

(
c∗1 , . . . , c∗d

)
. Thus, the

description of a Hilbert space and its dual space using |⟩(ket) and ⟨| (bra) is called
Dirac’s bra-ket notation.
The smallest unit of information in classical information is the bit, a variable with
two values, 0 and 1. Similarly, the smallest unit of quantum information is the
qubit, a state in a two-dimensional complex Hilbert space. A qubit can be written
in general as a linear sum of two orthogonal states (|0⟩ and |1⟩, which we will call
the computational basis) as shown in Equation 2.1.

|ψ⟩ = α|0⟩+ β|1⟩ (2.1)

α and β are complex numbers satisfying |α|2 + |β|2 = 1. Any two orthogonal
quantum states, such as the two energy states of an atom, the orthogonal polar-
ization states of a photon, or electron and nuclear spin can be the two orthogonal
states of |0⟩ and |1⟩. These complex numbers can be written using θ ∈ [0, 2π) and
ϕ ∈ [0, π/2) as shown in Equation 2.2.

α = cos
θ

2
, β = eiφ sin

θ

2
(2.2)

Using these θ and ϕ, the state of a qubit can be represented on a sphere of radius
1 (Bloch sphere) as shown in Figure 2.1.

In order to study n interacting quantum systems, we must consider composite
quantum systems. The quantum state of a composite system can be written as ele-
ments of a Hilbert space H1,2,. . . ,n such as H1 ⊗ · · · ⊗ Hn which is called the tensor
product. When we have two vectors, [x0, x1] and [y0, y1], the tensor product can be
calculated as shown in Equation 2.3.

[
x0
x1

]
⊗
[

y0
y1

]
=

 x0

[
y0
y1

]
x1

[
y0
y1

]
 =


x0y0
x0y1
x1y0
x1y1

 (2.3)
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8 background

Figure 2.1: The Bloch sphere is a visualization of a single-qubit quantum state on a 3-
dimensional sphere. For example, if the quantum state |ψ⟩ is |0⟩, it is represented
on the Bloch sphere by the vector in the positive direction on the z axis. If the
state is |+⟩ = 1√

2
(|0⟩+ |1⟩), it is represented by the vector in the positive direc-

tion on the x-axis.

For example, the product state of |ψ⟩1 ∈ H1 and |ϕ⟩2 ∈ H2, |ψ⟩1 ⊗ |ϕ⟩2, is in
a composite system consisting of two quantum systems. Composition of quantum
systems is linear, therefore the linear sum of the two product states of |ψ⟩1 ⊗ |ϕ⟩2
and |ψ′⟩1 ⊗ |ϕ′⟩2 is also contained in the composite system H1,2. Thus, the linear
space spanned by the product states of elements of H1 and H2 is H1,2 = H1 ⊗H2.
Similarly, the Hilbert space of a composite system consisting of n quantum systems
can be written as H1 ⊗ · · · ⊗ Hn. The computational basis in the space with 2n ele-
ments is spanned by the vectors Cn = {|j⟩ | j ∈ {0, 1}n}, where {0, 1}n is the space
of all the combinations of n 0 and 1. However, not all states can be written as tensor
products. In particular, the states that can be written like this are product states,
while the states that cannot are called entangled states. Well-known examples of
two-qubit entangled states are the Bell states, shown in Equation 2.4.

|Φ+⟩ =
1√
2
[|00⟩+ |11⟩]

|Ψ+⟩ =
1√
2
[|01⟩+ |10⟩]

|Φ−⟩ =
1√
2
[|00⟩ − |11⟩]

|Ψ−⟩ =
1√
2
[|01⟩ − |10⟩]

(2.4)

Time-evolution of closed quantum systems

The time evolution of a closed quantum system, i.e., a system which does not in-
teract with its environment, is represented by the Schrödinger equation using a
Hermitian operator, H,as shown in Equation 2.5.

ih̄
∂

∂t
|ψ(x, t)⟩ = H|ψ(x, t)⟩ (2.5)

Given a state |ψ(x, 0)⟩ at time t = 0, we can solve the Schrödinger equation as
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shown in Equation 2.6.

|ψ(x, t)⟩ = e−iHt/h̄|ψ(x, 0)⟩ (2.6)

Since H is a Hermitian operator, U = e−iHt/h̄ is a unitary operator satisfying
U†U = I. Thus, the time evolution of a quantum system is described by the unitary
operator U acting in the complex Hilbert space.

Measurement for pure states

Equation 2.5 holds only for closed quantum systems. Interactions between a quan-
tum system and outside the world, such as a measurement, cannot be described
by a unitary operator. Measurement of a quantum system can be described by a
projective measurement with a projection operator {Pi}d

i=1. Projection operators are
a set of Hermitian operators satisfying PiPj = δijPi and ∑d

i=1 Pi = I. For a state |ψ⟩,
the probability pi of obtaining the measurement result i when performing a projec-
tive measurement with the projection operator {Pi} can be calculated as shown in
Equation 2.7.

pi = ∥Pi|ψ⟩∥2 = ⟨ψ |Pi|ψ⟩ (2.7)

It follows that ∑i pi = 1. The post-measurement state after getting the measurement
result i is Pi|ψ⟩/

√
pi.

Measurement for mixed states

In the above, we have considered situations where one quantum state |ψ⟩ is given
with probability 1. However, a qubit that is initially a pure state |ψ⟩ may become
mixed, since external noise occurs due to undesired interactions with the environ-
ment. Therefore, we need to extend this to consider cases where different quantum
states with some probabilities are given. To consider this, it is convenient to describe
the quantum state using the density operator ρ = |ψ⟩⟨ψ|. The probability of the pro-
jective measurement with the projection operator {Pk} can be computed as in Equa-
tion 2.8 using the trace, Tr[· · · ] = ∑d

i=1⟨i| · · · |i⟩. The completeness (∑i |i⟩⟨i| = I) of
the orthonormal basis ({|i⟩}d

i=1) is used. And, it satisfies Tr[ABC] = Tr[CAB].
Assuming different quantum states

{∣∣ψj
〉}

with probability
{

qj
}

, the projective
measurement {Pi} is performed. Using the joint law of probability, the probabil-
ity of obtaining the measurement result i is as shown in Equation 2.8.

pi = ∑
j

qj Tr
[
Pi
∣∣ψj
〉 〈

ψj
∣∣] = Tr

[
Pi ∑

j
qj
∣∣ψj
〉 〈

ψj
∣∣] (2.8)

Therefore, using ρ ≡ ∑j qj
∣∣ψj
〉 〈

ψj
∣∣ as the density operator, the probability distri-

bution of the projective measurement for such a stochastic mixed state is given by
Tr [Piρ]. To let ∑i pi = 1 hold, Tr[ρ] = 1 is required.

Quantum gates

Quantum gates are linear and unitary. That is, all operations are linear transfor-
mations of states. Besides, unitarity means that U†U = UU† = I for any quantum
gate U, with I being the identity matrix.
The Pauli matrices, together with the identity matrix, constitute a basis for all single-
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qubit quantum gates as shown in Equation 2.9.

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2.9)

In is the identity matrix of dimension n. The identity matrix in Equation 2.9 should
then be denoted as I2 for consistency.

X corresponds to the classical bit inversion (NOT) and its effect on the computa-
tional basis states is shown in Equation 2.10.

X|0⟩ = |1⟩, X|1⟩ = |0⟩ (2.10)

Z acts like Equation 2.11, and corresponds to reversing the phases of |0⟩ and |1⟩.

Z|0⟩ = |0⟩, Z|1⟩ = −|1⟩ (2.11)

The Y operator can be written as Y = iXZ, combining phase inversion and bit in-
version.

One other important operator is the Hadamard gate as shown in Equation 2.12.
This operator transforms one Pauli basis into another. In other words, the Hadamard
gate corresponds to the interchange of the x-axis and z-axis on the Bloch sphere.

H =
1√
2

(
1 1
1 −1

)
(2.12)

To perform operations on arbitrary n qubits, two-qubit interactive operations are
needed. The typical two-qubit operation is controlled-not (CNOT) gate as shown in
Equation 2.13. The CNOT gate flips the target qubit when the state of the control
qubit is |1⟩. Furthermore, the CNOT gate, the Hadamard gate, and the Pauli gates
constitutes a universal gate set which is finite set of gates that can approximate any
unitary matrix arbitrarily well [Chuang and I.L., 2011].

H =

(
I O
O X

)
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.13)

2.2 fidelity
Quantum states often deviate from their expected state due to noise. It is then
useful to quantify this deviation, which corresponds to the distance between two
quantum states. Commonly used indicators are fidelity and trace distance. The
fidelity of states ρ and σ is defined as Equation 2.14 [Jozsa, 1994]. It takes values
from 0 to 1. It is 1 if the states are equal, and 0 if they are orthogonal.

F(ρ, σ) =

(
tr
[√√

ρσ
√

ρ

])2
(2.14)

This expression can be simplified in some situations: the first is when ρ and σ com-
mute and the second is when comparing the fidelity between a pure state |ψ⟩ and
an arbitrary mixed state ρ.
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When ρ and σ commute, i.e. ρσ − σρ = 0 holds, they are diagonal in the same basis
for some orthonormal basis |i⟩. In other words, ρ = ∑i ai|i⟩ ⟨i |, σ = ∑i bi| i⟩ ⟨i|.
In this special case, we can think F(ρ, σ) as a classical fidelity F(ai, bi) between the
eigenvalues ai and bi(Equation 2.15).

F(ρ, σ) =

(
tr

[√
∑

i
aibi|i⟩⟨i|

])2

= ∑
i

aibi

= F (ai, bi)

(2.15)

Fidelity is also easily expressed when comparing a pure state |ψ⟩ and an arbi-
trary mixed state ρ. By expanding Equation 2.14, we get the expression similar to
Equation 2.7 like Equation 2.16. In other words, this can be thought of as a kind of
probability of measuring |ψ⟩ from ρ. If ρ is also a pure state |ϕ⟩, then F(|ψ⟩, |ϕ⟩)
can be expressed as ⟨ψ|ϕ⟩.

F(|ψ⟩, ρ) =

(
tr
[√

⟨ψ|ρ|ψ⟩|ψ⟩⟨ψ|
])2

= ⟨ψ|ρ|ψ⟩
(2.16)

2.3 quantum channels and operations with noise
Although the time evolution of a closed system is described by unitary transforma-
tions, the same is not true for open quantum systems. Open quantum systems are
systems that interact with their environment. Their evolution is generally expressed
by non-unitary transformations. There are three main ways to describe the quan-
tum state of the system apart from the environment in such cases: partial tracing of
environment, the Kraus operators formalism and completely positive trace preserv-
ing (CPTP) maps. Since these representations are equivalent to each other, we only
discuss the Kraus representation.
We start by describing the partial trace operation, since it is of general interest.
When the density operator of the system of interest (S) is ρs and the initial state
of the environment (E) is |0⟩E ⟨0|E , the entire quantum state can be described by
ρs ⊗ |0⟩E ⟨0|E . Since this is the closed system, the time evolution is described by
unitary transformation on the joint system of the state and environment. In other
words, when we consider interactions such as noise, the entire system can be de-
scribed as Equation 2.17 using a certain unitary transformation U.

ρs ⊗ |0⟩E⟨0|E → U (ρs ⊗ |0⟩E⟨0|E)U† (2.17)

In this case, the time evolution of the system of interest can be described by tak-
ing a partial trace of the environmental system as shown in Equation 2.18.

Γ(ρs) = TrE{U(ρs ⊗ |0⟩E⟨0|E)U†}
= ∑

j
⟨j|EU(ρs ⊗ |0⟩E⟨0|E)U†|j⟩E

= ∑
j
⟨j|EU | 0⟩Eρs⟨0|EU† | j⟩E

= ∑
j

Mjρs M†
j

(2.18)
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Mj ≡ ⟨ j|E U | 0⟩E is called the Kraus operator, and the last expression in Equa-
tion 2.18 is called the Kraus expression.

One of the environmental effects is depolarizing noise. The depolarizing noise is
a non-dissipative channel and a single state affected by the noise can be expressed
by Equation 2.19. This represents that the single state ρ before being affected by
noise will be the fully mixed state I/2, the state where all the information is re-
moved, with probability p. This is widely used as a worst case scenario approach
to model noise [Chuang and I.L., 2011].

Γ(ρ) = p
I
2
+ (1 − p)ρ (2.19)

This expression can be derived from the Equation 2.18 assuming M0 =
√

1 − qI, M1 =√
q
3 X, M2 =

√
q
3 Y, M3 =

√
q
3 Z and using the identity related to density operations

(Γ(ρ) = (1 − q)ρ + q
3 (XρX + YρY + ZρZ), q = 3p/4) as Equation 2.20.

Γ(ρ) = ∑
j

MjρM†
j

= (1 − q)ρ +
q
3

(
XρX† + YρY† + ZρZ†

)
=

2q
3

I + (1 − 4q
3

ρ)

= p
I
2
+ (1 − p)ρ

(2.20)

2.4 no-cloning theorem
The no-cloning theorem states that it is impossible to make perfect copies of non-
orthogonal states [Wootters· and Zurek, 1982]. It is at the basis of several quantum
information security properties. For example, the security of the BB84 protocol in-
troduced in Section 2.5 is based on this theorem. Intuitively, it makes eavesdropping
impossible because the eavesdropper cannot learn anything about the state without
disturbing it. On the other hand, the theorem makes it impossible to convey infor-
mation over long distances as done classically, i.e., through amplification.

There are several ways to prove the no-cloning theorem. For example, it can be
proven by showing that assuming that there is a quantum gate that clones a state
leads to a contradiction.
First, cloning a state |ψ⟩ can be expressed by Equation 2.21.

|ψ⟩ −→ |ψ⟩|ψ⟩ (2.21)

This equation must hold for any quantum state, so Equation 2.22 should also be
true for ϕ different than ψ.

|ϕ⟩ −→ |ϕ⟩|ϕ⟩ (2.22)
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Assuming linearity in clone, the clone of a linear combination of the left-hand
side of the two equations above must be a linear combination of the right-hand side
as shown in Equation 2.23.

a|ψ⟩+ b|ϕ⟩ −→ a|ψ⟩|ψ⟩+ b|ϕ⟩|ϕ⟩ (2.23)

On the other hand, if we consider |s⟩ = a|ψ⟩ + b|ϕ⟩ as one state and clone it,
Equation 2.24 should hold.

|s⟩ −→ |s⟩|s⟩ = a2|ψ⟩|ψ⟩+ b2|ϕ⟩|ϕ⟩+ ab|ϕ⟩|ψ⟩+ ab|ψ⟩|ϕ⟩ (2.24)

However, since |s⟩|s⟩ ̸= a|ψ⟩|ψ⟩ + b|ϕ⟩|ϕ⟩, the clone is not possible. Therefore,
no-cloning theorem holds.

2.5 quantum key distribution
It has been suggested that the 2048-bit RSA algorithm, which is in common use
today, could be deciphered by a large-scale quantum computer, which could be put
into practical use around 2030 [Lily Chen, 2016]. For example, it has been shown
that a quantum computer with 20 million noisy qubits can factor 2048-bit integers
in 8 hours [Gidney and Ekerå, 2021]. A possible solution lies in quantum key distri-
bution (QKD), which is a protocol in which two parties share random secret keys,
is a provably secure communication method. By using the key generated through
QKD to, for example, perform one-time pad (OTP), secure communication can be
achieved. BB84 [Bennett and Brassard, 1984] is an original example of QKD pro-
posed by H. Bennett et al. in 1984. Since it was first proposed in 1984, great strides
have been made. More recently, in 2018, H.Yuen et al. implemented a variant pro-
tocol of the BB84 and achieved a secret key rate of over 10 Mb/s [Yuan et al., 2018].
Besides, we can buy QKD system such as Clavis XG QKD System produced by ID
Quantique, Inc.. Since it has attracted great social attention, BB84 is used in our
thesis as the application of entanglement generation.

2.5.1 BB84

Originally, single-photon sources are used in the BB84 protocol, and quantum entan-
glement generation sources are used in the other QKD protocols such as E91 [Ekert,
1992]. We assume the entanglement-based version of BB84 protocol such as E91.
The entanglement-based BB84 protocol is implemented by the following steps.

Entanglement-based BB84 protocol

(step 1) Alice and Bob share entangled states.
(step 2) Alice and Bob measure the photons in a basis from X or Z basis.
(step 3) Alice and Bob exchange the bases with each other through the classical
channel, and the keys in the rounds in which the measurement is performed using
a different basis are discarded.
(step 4) To consider eavesdroppers, they sacrifice m bits to estimate their average
correlation. If the error rate is lower than 15%, the remaining bits constitute the raw
key [Branciard et al., 2005]. If not, the key is discarded.
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2.5.2 Secret Key Rate

When performing entanglement-based QKD, secret key rate (SKR), the amount of
key generated per unit of time, is an important metric and can be calculated as
secret key fraction (SKF) × entanglement generation rate. The SKF represents what
fraction of the entangled states shared between them is available as keys and can
be calculated as in Equation 2.25. The quantum bit error rate in the Z(X) basis,
QZ(QX), is the probability that Alice and Bob get different outcomes when they
both measure their systems in the basis Z(X). h(x) is the binary entropy func-
tion which represents the average amount of information (entropy) when an event
occurs. In other words, in Equation 2.25, we deduct the amount of useless informa-
tion as a key obtained when measuring quantum states in the X or Z basis in the
entanglement-based BB84 protocol described above from the total.

SKF = 1 − h (QX)− h (QZ) , h(x) = −x log x − (1 − x) log(1 − x) (2.25)

SKR reflects both the fidelity and the entanglement generation rate. Therefore, in
this thesis, we adopt SKR as an important metric to evaluate various entanglement
generation protocols.



3 R E P E AT E R C H A I N

In this chapter, we specifically discuss how to share high quality entangled states
between two distant parties. As mentioned in Chapter 1, quantum repeaters are
necessary because photon loss grows exponentially with distance. Protocols for en-
tangling neighboring quantum nodes that can generate light-matter entanglement
are introduced in Section 3.2. Time multiplexing entanglement Section 3.3 is a way
to create quantum entanglement in these protocols more efficiently. Entanglement
between these two nodes is then swapped Section 3.4 to expand the distance at
which entanglement can be established. By performing this operation with an effi-
cient repeater chain network protocol, high quality entangled states can be shared
between the two parties. Finally, in Section 3.5, we introduced some physical sys-
tems that can be used to realize such entanglement generation protocols.

3.1 introduction
In order to share end-to-end entanglement, or to send quantum information from
one node to another, it is essential to have a quantum repeater with a long quan-
tum memory. This is because the survival probability of a photon decreases ex-
ponentially with transmission distance and no-cloning theorem makes information
amplification impossible. The latest research by Simon et al. shows that a typical
fiber has a loss of 0.22 dB/km at a wavelength of 1550 nm, and the probability of
transmission can be as low as 10−22 when communicating over a distance of 1000

km [Bayliss and Hardy, 2012]. Furthermore, more efficient entanglement genera-
tion protocols (e.g., time-multiplexed) require the property of long-lived memory.
In [Muralidharan et al., 2016], repeaters are classified into different generations ac-
cording to their level of technological development. We only consider the first gen-
eration repeater. And in our research, we look at only processing-node repeaters
with the ability to measure quantum states, emit entangled photons and do entan-
glement swap. In first generation repeaters, loss errors are suppressed by heralded
entanglement generation, and operation errors are suppressed by heralded entan-
glement purification that consumes two or more entangled states to create an entan-
gled state with higher fidelity [Horodecki et al., 1997].These conduct quantum state
measurements in the process. Depending on the result of the quantum state mea-
surement, the quantum manipulation method to obtain the correct entanglement
will change. Therefore, by heralding the outcomes of measurement to each node,
we can manipulate quantum states and correct entangled states are generated. The
process of the heralding requires two-way communication. Finally, end-to-end en-
tanglement is eventually generated by swapping.

3.2 entanglement generation protocol
One of the methods to generate quantum entanglement using the processing-node
repeaters is heralded entanglement generation protocol. That means that the station
with photon detectors and a beam splitter between two nodes can let us know the
success or failure for attempts. We consider the two heralded entanglement gen-

15
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eration protocol: the extreme-photon-loss entanglement generation and the Barrett-
Kok (double-click)Section 3.2. The former performs entanglement purification in
addition to single-click, which detects a single photon at the heralding station.
The latter detects two photons at an heralding station. The underlying building
blocks for these protocols are the single-click protocol and entanglement purifi-
cationSection 3.2. Therefore, we will introduce them at first, and explain about
extreme-photon-loss and Barrett-Kok in Section 3.2

Single-click

In this protocol, a weakly entangled state is generated. We start by creating the
following superposition state(Equation 3.1) on a matter qubit at each node. |0⟩ rep-
resents the bright state, i.e., a state that decays through photon emission. α is the
bright-state population which is same as the probability of photon emission.

|α⟩ =
√

α|0⟩+
√

1 − α|1⟩ (3.1)

Decay of the bright state is accompanied by photon emission, resulting in the
creation of an entangled matter-light state, as seen in Equation 3.2. p denotes the
state of a photon and |1⟩ represents presence of a photon (|0⟩ represents absence
of a photon). Incidentally, the matter is called communication qubit which emits
photons. In addition, qubit which cannot emit photons and tends to be used for
keeping quantum states is called memory qubit.

|α, p⟩ =
√

α|0⟩|1⟩p +
√

1 − α|1⟩|0⟩p (3.2)

After the matter-light entangled state is generated, the emitted photon(s) are sent
through the fiber to the heralding station which consists of a beam splitter and pho-
ton detectors.

The beam splitter at the heralding station removes information about the node
from which the photon arrived. The state before going through the beam splitter is
the following:

|ΨmAmB pA pB⟩ = α|0011⟩+
√

α(1 − α)|0110⟩+
√

α(1 − α)|1001⟩+ (1 − α)|1100⟩
(3.3)

After passing through the 50:50 beam splitter, the following quantum state is ob-
tained.∣∣ΨmAmB pA pB⟩ = (1 − α)|11⟩|00⟩

+
√

α(1 − α)[
1√
2
(−i|01⟩+ |10⟩)|01⟩+ 1√

2
(|01⟩ − i|10⟩)|10⟩]

− i
2

α|00⟩(|20⟩+ |02⟩)

(3.4)

If a single photon detector clicks, then we know that an entangled state has
been created, as shown in Equation 3.5. We will have a mixed state of |ψ−⟩ =

1√
2
[|01⟩ − i|10⟩] (or, if the photon is detected by another photon detector, |ψ+⟩ =

1√
2
[|01⟩+ i|10⟩]) and |00⟩.

If both nodes emit a photon and two photons are detected by the same detector, we
get the state |00⟩ instead of the intended entangled state. Note that we assume that
the detectors are not number-resolving, i.e., they don’t know if one or more photons
arrive. In Equation 3.5, α′ equals (2 − 5α

4 )/(2 − α). From Equation 3.4, we can see
that the larger α is, the more likely photon emission is. In other words, the protocol
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has a higher success probability. However, from Equation 3.5, we can see that the
fidelity of the entangled state obtained is small if α is large. Therefore, α is usually
picked to be small so that the fidelity is high which then results in a low success
probability.

ρmAmB = α′|ψ±⟩⟨ψ±|+ (1 − α′)|00⟩⟨00| (3.5)

More precisely, the weakly entangled state obtained by single-click is generally
represented as Equation 3.6 from the effects of phase difference ϕ the state acquires
as it travel through the fiber [Kalb et al., 2017]. |ψϕ⟩ = (|01⟩+ eiϕ|10⟩)/

√
2.

ρmAmB = α′
∣∣ψϕ

〉 〈
ψϕ|+ (1 − α′)|00

〉
⟨00| (3.6)

Entanglement purification

Entanglement purification can probabilistically generate fewer highly entangled
states from many weakly entangled ones. For example, in the extreme-photon-loss
protocol, a highly entangled state is generated from two weakly entangled states.
The following paragraph explains this protocol.

In order to distill the two quantum states that can be represented by Equation 3.6,
in other words to remove the term of |00⟩, the process depicted in Figure 3.1 is
performed. CNOT gates are applied to communication qubits at both nodes using
the memory qubit as the control qubits. The communication qubit is then measured
at both nodes, which proceed to share their measurement results. If the result is
11, the resulting state is shown in Equation 3.7. It is not important whether or not
each quantum state is stored in which type of qubit, but it is general that a final
entangled state is stored in the memory qubit that is less susceptible to noise. If the
time difference with which the two quantum states are obtained is small, we can
obtain the proper quantum state after distillation even if we do not know the phase
ϕ. When the measurement outcome is different from 11, the protocol fails and the
final state is still a weakly entangled state.

|ΨAB⟩ = eiϕ[
1√
2
(|01⟩+ |10⟩)] (3.7)

3.2.1 Extreme-photon-loss protocol

The Extreme-photon-loss protocol can generate high-quality entangled states by dis-
tilling two weakly-entangled states created by the single-click protocol. The entire
process of creating a entangled state is described in Figure 3.2.

(step 1)Generating entanglement by single-click
As described in Section 3.2, mixed state, i.e., a weakly entangled state, in Equa-
tion 3.5 is generated.

(step 2) Swap between communication qubit and memory qubit
The communication qubit must be freed up so that the node can again attempt en-
tanglement generation. Therefore, we swap the quantum state into memory qubit.
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Figure 3.1: Quantum circuit of entanglement purification; CNOT gates are applied to com-
munication qubits at both nodes using the memory qubit as the control qubits.
The communication qubit is then measured at both nodes and the results are
sent to the other node. If the result is 11, the entangled state can be obtained.
|ΨmA ⟩ represents the state in memory qubit at node A. |ΨcA ⟩ represents the state
in communication qubit at node A.

Figure 3.2: Extreme-photon-loss entanglement generation protocol; In step 1, the CQ states
in both nodes are entangled through a single-click protocol. In step 2, the states
stored in the CQs are swapped to the MQs; in step 3, the same as step 1 is done.
In step 4, the CQ and MQ are distilled, and finally the entangled state is stored
in the memory qubit. The PD stands for photon detector and BS stands for beam
splitter.
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(step 3) Repeat step 1

(step 4) Distillation
Perform the entanglement generation protocol described in Section 3.2. If the mea-
surement outcomes are 11, the protocol concludes successfully. Otherwise, go back
to step 1.

3.2.2 Barrett-Kok protocol

The single-click protocol inherently has fidelity less than 1, even in the absence
of noise. In double-click protocols, on the other hand, this trade-off is not present.
These are protocols in which success is heralded by the detection of two photons. In
the Barrett-Kok protocol proposed by Barrett et al. in 2005 [Barrett and Kok, 2005],
the single-click protocol described in the Section 3.2 is performed twice in succes-
sion, effectively requiring two photons to be measured. More generally, double-click
protocols can be performed using any suitable degree of freedom, such as polariza-
tion or time-bin [Simon and Irvine, 2003]. Due to this fact, the entanglement gener-
ation probability is proportional to the square of the transmission efficiency in both
cases. Therefore, if the transmission efficiency is smaller than 1, the success proba-
bility of quantum entanglement generation is generally lower than for single-click
protocol.

(step 1)
In the Barrett-Kok protocol, the quantum states of both nodes are first set to the
state of |+⟩ = (|0⟩+ |1⟩)/

√
2. Then the bright state is excited using a laser. After

traveling through the fiber, the photon arrives at a beam splitter and the state shown
in Equation 3.8 is obtained. m denotes the matter and p denotes the photon.

∣∣ΨmAmB pA pB⟩ =
1
2
|11⟩|00⟩

+
1
2
[

1√
2
(−i|01⟩+ |10⟩)|01⟩+ 1√

2
(|01⟩ − i|10⟩)|10⟩]

− i
4
|00⟩(|20⟩+ |02⟩)

(3.8)

(step 2)
After the beam splitter, two photon detectors are placed as shown in step1 of Fig-
ure 3.2. If only one of the detectors detects a photon, e.g., the photon of system
pA, then we will have the mixed state shown in Equation 3.9 of |01⟩ − i|10⟩(If the
photon of system pB is detected, −i|01⟩+ |10⟩) and |00⟩.

|ΨmAmB⟩ =
2√
5
[

1√
2
(|01⟩ − i|10⟩)− i

2
|00⟩] or

=
2√
5
[

1√
2
(−i|01⟩+ |10⟩)− i

2
|00⟩]

(3.9)

(step 3-1)
The next step is to apply an X gate to the matter of both nodes. We change the
quantum state of |00⟩ into |11⟩, a state in which no photons can be emitted, without
changing the quantum state of |01⟩ − i|10⟩ (or −i|01⟩+ |10⟩) up to a phase. After
waiting for any remaining excited states to relax, photon detection heralds the en-
tangled state shown in Equation 3.10. If the photon is detected by the same detector
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as step 2, the final state will be |ψ+⟩, if detected by different detectors, it will be
|ψ−⟩.

ρmAmB = |ψ+⟩⟨ψ+| or |ψ−⟩⟨ψ−|, with |ψ±⟩ = (|01⟩ ± |10⟩) /
√

2 (3.10)

(step 3-2)
If photons are not detected after applying X gates and waiting for the further time
for relaxation, we re-start from step 1 again.

3.3 time-multiplexed entanglement generation
The single-click and double-click protocols described in Section 3.2 tend to have low
success probabilities. This is because the probability of collecting the photons into
the fiber once they have been emitted is small and the probability of photon loss in a
fiber is very large [Tanzilli et al., 2005]. One way to improve the success probability
is to perform many entanglement generation attempts in parallel, which is called
multiplexing. There are several types of multiplexing methods: time multiplexing,
spectral multiplexing and spatial multiplexing [Collins et al., 2007; Munro et al.,
2010; Sinclair et al., 2014].
Here, we will focus on the time multiplexing method, which can be achieved by the
process shown in Figure 3.3. This has two advantages: first, the average time for
generating entanglement can be reduced by a factor of order N, with N being the
number of used memory qubits, compared to the non-time multiplexing protocols.
Second, states can be held in memory qubits, which tend to have a longer coherence
time than communication qubits.
On the other hand, it has limitations. First, swapping the state from the communi-
cation to the memory qubit inevitably introduces noise, reducing the state’s fidelity.
However, it might be that this decrease in fidelity is still compensated by the fact
that the state is then held in a memory qubit, which has a longer coherence time. In
addition, the time a swap takes might be too long for some platforms. For example,
if the distance between the heralding station and a node is 20 km, an entanglement
generation attempt takes 0.2 ms. If the swap time is larger than this communication
time then time-multiplexing is not useful.

Time multiplexing protocol

(step 1) Perform an entanglement generation attempt.
(step 2) Swap between the communication qubit and a memory qubit.
(step 3) After the swap, repeat step 1 and step 2 until success is heralded.

3.4 entanglement swap
Entanglement swaps, which are applications of quantum teleportation, allow for
glueing together short entangled links to make longer ones. By using entanglement
swap, we can connect two elementary links so that longer entangled links are finally
generated between two distant nodes. Quantum teleportation is method for trans-
ferring a quantum state stored in one node to a distant node, and can be performed
as shown in Figure 3.4.
Incidentally, if a state of one quantum system that is entangled with another quan-
tum system is determined, then the state of the second one is also instantaneously
determined. Since this happens regardless of the distance between the two particles,
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Figure 3.3: Time-multiplexed entanglement generation. The protocol starts with performing
an entanglement generation attempt. (step 1). The CQ is swapped immediately
to the MQ (step 2). After the swap, repeat step 1 and step 2 until success is
heralded (step 3). The PD stands for photon detector and BS stands for beam
splitter [Dam et al., 2017].

Figure 3.4: Quantum circuit for entanglement teleportation. By applying CNOT gate and
Hadamard gate, make entanglement between |ϕA⟩ and the qubit of |ψAB⟩ held
by node A. Both states in node A are measured in the computational basis, which
results in one four possible different outcomes. Node A sends the measurement
results to node B. Then, node B applied Z or X gate on the state which node B
has based on the results.

the entanglement is the basis for quantum teleportation [Bennett et al., 1993].

Quantum teleportation
As a setup for the quantum teleportation, two nodes A and B share the entangled
state |ψAB⟩ and the node A wants to send |ϕA⟩ to node B.

(step 1)
Apply a CNOT gate to the qubit of |ψAB⟩ held by node A with |ϕA⟩ as the control
qubit, followed by a H gate on |ϕA⟩.
(step 2)
Both states in node A are measured in the computational basis, which results in one
four possible different outcomes: 00 or 01 or 10 or 11.
(step 3)
A sends the measurement results to B. Then, B applies Z or X gate on the state
based on the results. When we assume that a is the node A’s measurement outcome
and b is the node B’s one, the node B applies ZbXa on his state.
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Figure 3.5: Quantum circuit for entanglement swap. Node A and node B each share an
entangled state, |ψ⟩ and |ϕ⟩, with the repeater node. In the repeater, the two
photons are entangled. After that, the same process of entanglement teleportation
is conducted.

Through quantum teleportation, we can transfer quantum information between
distant nodes. In short, by using the entanglement swap protocol, an entangled
state can be shared between distant nodes. In the entanglement swap protocol, two
(entangled) states instead of the |ϕA⟩ prepared in step 1 of quantum teleportation
are prepared and one of them is sent to the repeater. Then, by teleporting this qubit,
the entangled state |ϕ⟩ is shared between A and B. The specific method is shown in
Figure 3.5.

Entanglement swap

As a setup for the entanglement swap, node A and node B each share an entan-
gled state, |ψ⟩ and |ϕ⟩, with a repeater node. The repeater is an intermediate node
between A and B.
(step 1)
In the repeater, a CNOT gate is applied to the quantum state which is entangled
with B, with a qubit in node A as control qubit. Then, an H gate is applied to it.
(step 2)
Both states in the repeater are measured in the computational basis, then obtaining
four possible outcomes.
(step 3)
The repeater sends the measurement results to B. Then, a Z and/or X gate is applied
to the qubit based on the results at node B. When we assume that a is the measure-
ment outcome of the node R’s state entangled with the state in node A and b is the
measurement outcome of the node R’s state entangled with the state in node B, the
node B applies ZbXa on his state.

Entanglement swap allows entangled states to be shared between two distant
nodes.

3.5 quantum repeater hardware platform
There are several different physical systems being considered as possible platforms
for realizing quantum repeaters such as Nitrogen-vacancy (NV) center in diamond,
trapped-ions [Zwerger et al., 2017], and atomic ensembles [Sangouard et al., 2009].
Each platform has its advantages and disadvantages, and it is important to consider
the trade-offs between them. The advantages and disadvantages of each platform
are described in this section. In our research, we do not focus on a particular im-
plementation and focus on processing-node repeaters. So, the atomic ensembles
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platform is not captured by our work.

NV Center

NV centers consist of a diamond lattice in which one of the carbon atoms has been
replaced by a nitrogen atom, next to a vacancy in the lattice. This gives rise to an
optically-active electronic spin that can be used as a communication qubit. Around
the vacancy, there are naturally 1% isotope of carbon 13C which can couple to nearby
electron spins. It can act as a memory qubit which has long coherence time. C. E.
Bradley et al. achieved coherence times of a few seconds for individual nuclear spin
qubits under dynamical decoupling [Bradley et al., 2019]. An NV center can then
be seen as a quantum processor with a star topology [Zhu and Ma, 2018], with
the communication qubit in the center and the memory qubits surrounding it. This
means that the communication qubit can interact with the memory qubits, but these
cannot interact directly with one another.
NV centers are good candidates for realizing quantum repeaters, having already
demonstrated many required primitives such as purification, entanglement genera-
tion and teleportation. Kalb et al. achieved purification of distant electron-nuclear
two-qubit nodes using combination of generating, holding in memory and process-
ing distant entangled qubits [Kalb et al., 2017]. Humphreys et al. demonstrated 39

Hz of entanglement generation between nodes 2 meters apart [Humphreys et al.,
2018]. Hermans et al. demonstrated quantum teleportation between remote, non-
neighboring nodes using three-node network with approximately 70% fidelity in
about 10 ms [Hermans et al., 2021]. Swap gate was also demonstrated in relatively
short time by J. Cramer et al. [Cramer et al., 2016].
Note that NV centers have only one communication qubit, therefore a swap between
communication qubit and memory qubit must be completed in time-multiplexing
protocol before a new photon can be emitted.

Trapped-ion

An ion trap consists of multiple ions confined by electromagnetic fields. These ions
are trapped in ultrahigh vacuum and are isolated from the outside world. They are
also cooled down to a temperature of approximately a few µK by laser cooling, so
they remain still. Incidentally, the trapped-ion system is not only used for quantum
repeaters, but is also one of the leading platforms to realize quantum computers. C.
Monroe founded IonQ in 2015 and has been focusing on research to realize a large
scale quantum computer using the trapped ion system [D.Kielpinski and Monroe,
2002].
Malinovsky et al. [Malinovsky et al., 2019] presented a repeater architecture based
on dual-species trapped-ion (DSTI) modules with lasers and light collection appa-
ratuses. This combination of different ions can achieve required property for the
quantum repeaters. For example, 138Ba+ ion can emit a photon so that it can per-
form as communication qubits. By using several 138Ba+ ion in a module, we can say
that multiple communication qubit can be incorporated into a node. 171Yb+ ions,
which has better coherence time, serve as the memory ions. Actually, for a single
qubit quantum memory of 171Yb+, 10 minute of coherence time have been reported
by Wang et al. [Wang et al., 2017]. By the lasers, operations on these ions are per-
formed, but since the transition frequencies of the two ions are different, they can
be controlled without interference. Malinovsky et al. proposed swap gate model
between a memory qubit and a communication qubit. Besides, they also proposed
entanglement swap between memory ions using CNOT gate, X or Z measurement
and heralded entanglement generation between communication ions at different
nodes.
The group of Ben Lanyon at the University of Innsbruck uses Ca+ ion for commu-
nication qubit because it has low noise when it is converted from a trapped-ion
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wavelength (854 nm) to telecom (1550 nm), which is useful frequency for a fiber
communication. Note that there is no distinction between memory qubit and com-
munication qubit. Therefore, the coherence time for the communication qubit and
the memory qubit in the trapped-ion is reported as 85 ms by them. In this research,
we use this value for the coherence time of the communication qubit and the mem-
ory qubit [Krutyanskiy et al., 2022].



4 E F F E C T O F H A R D W A R E
I M P E R F E C T I O N S O N S K R

In Chapter 4, we will investigate the impact of different hardware parameters on
the SKR that can be achieved by two nodes connected without a repeater (i.e., in an
elementary link).

4.1 models
In this section, we will explain problem setups for the following three research
questions:

• For which parameter regimes does time-multiplexing allow for getting higher
SKR than without multiplexing?

• Which hardware parameters are most important for improving SKR?

• What is the impact of the number of CQs on the SKR?

4.1.1 Common settings

For all experiments in Chapter 4, we assume that there are two end nodes 100 km
apart and that a heralding station with two photon detectors and a beam splitter
lies in the middle. In this setup, the hardware parameter values shown in Table 4.1
are assumed. On the other hand, values of depolarizing noise at swap gate, swap
gate time and number of CQ (MQ), and number of memory qubits used in a node
(Nmax) are different for each research question and will be explained again in each
subsection.

Hardware modeling

Here, we introduce our modeling for the setup we consider in Chapter 4.

Overall system transmission efficiency (η)

The probability that a photon is emitted from each node and reaches the heralding
station can be calculated by multiplying the following three parameters: coupling
efficiency, frequency conversion efficiency, and fiber loss. Photons excited at the
NV center or trapped-ion platform need to be collected on a communication fiber.
We assume that with probability pout the coupling succeeds, and with probability
1 − pout the photon is lost. The wavelength band that is favorable for transmitting
photons over long distances is different from the wavelength band that allows pho-
tons to interact with matter [Krutyanskiy et al., 2017]. Therefore, it is necessary to
perform frequency conversion. The frequency conversion efficiency is p f c. Finally,
as we mentioned in Section 3.1, loss in fiber can be represented as 10−dploss/20, since
photon loss grows exponentially with distance. Therefore, the overall system trans-
mission efficiency can be calculated by η = pout pfc10−dploss/20.

25
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Number of memory qubits used in a node (Nmax)

We assume that Nmax, which is the maximum number of MQs that a node can use
assuming a number of CQ and an entanglement generation protocol, is deployed
in each node in all experiments. For example, in the mSC protocol, the value can
be calculated by Nmax = ⌈ Tatt

Tsg
⌉. The numerator (Tatt) represents the time it takes

for a photon to reach the heralding station and for the result to return to the orig-
inal node. The denominator (Tsg) represents the time it takes to perform a swap
between the communication qubit and the memory qubit. Nmax can be calculated
by applying the ceiling function to this fraction. To be accurate, the coefficients
multiplied by the formula or variables in the formula, Nmax = ⌈ Tatt

Tsg
⌉, depend on

the entanglement generation protocol and the number of CQs. Therefore, the exact
values will be mentioned when the model is introduced for each experiment.

Memory decoherence (Tm)

We assume a depolarizing noise model, which is worst-case scenario, for both the
memory qubits and the communication qubits. Then, we can model the depolariz-

ing noise using pm = 1 − e−
t

Tm as shown in Equation 4.1. Tm is coherence time that
it takes for a state to lose 1/e of its information and gain a random state in memory
(communication) qubit. t represents elapsed time. In the same way, we apply this
model to CQ using coherence time of CQ (Tc).

ρdep = (1 − pm)ρ +
pm

4
I4 (4.1)

Depolarizing noise at swap gate (pdepsg)

We assume that depolarizing noise is introduced when performing swap gate with
probability pdepsg.

Hardware parameter values

The values of some of the parameters used in the experiments for Chapter 4 are
shown in Table 4.1.

Overall system transmission efficiency (η)

We assume the coupling efficiency (pout) of 0.3 as in [Dam et al., 2017]. Besides,
we assume that the frequency conversion efficiency (p f c) is 0.3 as in [Zaske et al.,
2012]. We also assume ploss to be 0.2 dB/km for the same reason. Therefore, the
overall system transmission efficiency can be calculated by η = pout pfc10−0.2d/20 =
0.3 × 0.3 × 10−0.2×100/20 = 0.009.

Number of memory qubits used in a node (Nmax)

The coefficients multiplied by the formula or variables in the formula, Nmax = ⌈ Tatt
Tsg

⌉,
depend on the entanglement generation protocol and the number of CQs. There-
fore, the exact values will be mentioned when the model is introduced for each
experiment.
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Table 4.1: Common parameter settings. The parameters used in all the experiments of Chap-
ter 4 are listed. Basically, they are based on experimentally realized values. η is
the probability that a photon is emitted from each node and reaches the herald-
ing station. p f c is the frequency conversion efficiency from the NV center or the
trapped ion wavelength to a telecom fiber. ploss is the probability that a coupling
succeeds from the matter to the fiber. Nmax is the maximum number of MQs that a
node can use assuming a number of CQ and an entanglement generation protocol.
Tm(Tc) is the coherence time of MQ (CQ). Tsg is the swap gate time. pdepsg is the
probability of introducing depolarizing noise when performing the swap gate. α′

is the probability of generating entangled states in Equation 3.5. d is the distance
between two end nodes. c is the photon speed in a fiber.

Parameters NV center Trapped-ion
η 0.009 [Dam et al., 2017; Zaske et al., 2012]

p f c 0.3 [Zaske et al., 2012]
ploss[dB/km] 0.2

Nmax depends on entanglement generation protocol
Tm[s] 1 [Bradley et al., 2019] 0.085 [Krutyanskiy et al., 2022]
Tc[s] 0.5 [Pompili et al., 2021] 0.085 [Krutyanskiy et al., 2022]

Tsg[µs] 200 [Cramer et al., 2016] 3000 [Schupp et al., 2021]
pdepsg 0.17 [Hermans et al., 2021] 0.06 [Krutyanskiy et al., 2022]

α′

(in Equation 3.5) 0.1
d[km] 100

c[km/s] 200000

Memory decoherence

We assume the coherence time of MQ of 1 s [Bradley et al., 2019] and the co-
herence time of CQ of 0.5 s [Pompili et al., 2021] for NV center. For trapped ions,
we assume 85 ms for both values [Krutyanskiy et al., 2022], as reported by the group
of Ben Lanyon at the University of Innsbruck.

Swap gate time (Tsg)

In Chapter 4, several simulations assuming that this parameter has been improved
have also been investigated. Therefore, we show the experimentally realized value
below, but note that we do not necessarily use this value. For NV centers, we as-
sume Tsg = 200µs, which may be feasible in the near-term [Cramer et al., 2016]. For
trapped ions, we assume an experimentally realized value of 3 ms [Schupp et al.,
2021].

Depolarizing noise at swap gate (pdepsg)

In Chapter 4, several simulations assuming that this parameter has been improved
have also been investigated. Therefore, we show the experimentally realized value
below, but note that we do not necessarily use this value. For the NV center, 0.17 is
assumed as experimentally realized value [Hermans et al., 2021]. For the trapped
ion, 0.06 is assumed as experimentally realized value [Krutyanskiy et al., 2022].

The other parameters

α′ is the probability of generating entangled states in Equation 3.5 and we assume
that α′ is 0.1. We assume that the distance between the two end nodes (d) is 100 km
and the photon speed in a fiber (c) is 200,000 km/s. Therefore, combined quantum
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and classical communication time required to know whether a photon click or not
at the heralding station, Tatt, is 0.5ms. Incidentally, we assume that gates and mea-
surements in the distillation protocol are done perfectly.

Rate and quality of entangled states

We use the following four protocols in our thesis: single-click (SC), time-multiplexed
SC (mSC), time-multiplexed extreme-photon loss (mEPL), and time-multiplexed
Barrett-Kok (mBK). Therefore, we show the calculation process of the entanglement
generation rate and SKF for the four protocols. We assume that the target entangled
state is |ψ+⟩ in all protocols.

Calculation of secret key fraction

SC

Here, we show how the final state shared by the two nodes is derived. We start
by generating entanglement between node A and node B by single-click protocol
and get the state as shown in Equation 4.2 which is the same as Equation 3.5. ρca(b)
represents the state in a CQ at the node A(B)

ρcacb = (1 − α′)|Ψ+⟩⟨Ψ+|+ α′|00⟩⟨00| (4.2)

Furthermore, the state decoheres in the CQ. When we set t = 0 as the time imme-
diately after the entangled state is generated, the state at time t can be represented

by Equation 4.3. pc = 1 − e−
t

Tc , which represents how much the state in CQ has
decohered.

ρcacb = (1 − pc) [(1 − α′)|Ψ+⟩⟨Ψ+|+ α′|00⟩⟨00|] + pc

4
I4 (4.3)

Using this state, the quantum bit error rate (QBER (Qx(Qz))) can be calculated
by Equation 4.4.

Qx = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨00|ρcacb |00⟩+ ⟨11|ρcacb |11⟩
Qz = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨++ |ρcacb |++⟩+ ⟨− − |ρcacb | − −⟩

(4.4)

The SKF can be calculated by substituting these quantum bit error rates into Equa-
tion 2.25.

mSC

Here, we show how the final state shared by the two nodes is derived. We start
by generating entanglement between node A and node B by the single-click proto-
col. Then, the state is swapped from the CQ to an MQ, resulting in the state shown
in Equation 4.5. ρma(b) represents the state in an MQ at node A (B).

ρmamb =
(

1 − pdepsg

)
[(1 − α′)|Ψ+⟩⟨Ψ+|+ α′|00⟩⟨00|] +

pdepsg

4
I4 (4.5)

Furthermore, the state decoheres in the MQ. When we set t = 0 as the time imme-
diately after the entangled state is generated, the state at time t can be represented
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by Equation 4.6. pm = 1 − e−
t

Tm represents how much the state in MQ has deco-
hered.

ρmamb(t)

= (1 − pm)

{(
1 − pdepsg

)
[(1 − α′)|Ψ+⟩⟨Ψ+|+ α′|00⟩⟨00|] +

pdepsg

4
I4

}
+

pm

4
I4

(4.6)

Using this state, the QBER (Qx(Qz)) can be calculated by Equation 4.7.

Qx = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨00|ρmamb |00⟩+ ⟨11|ρmamb |11⟩
Qz = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨++ |ρmamb |++⟩+ ⟨− − |ρmamb | − −⟩

(4.7)

The SKF can be calculated by substituting these quantum bit error rates into Equa-
tion 2.25.

mEPL

Here, we show how the final state shared by the two nodes is derived. We start by
generating entanglement between node A and node B by time-multiplexed single-
click protocol and get the same state as Equation 4.6.

ρm′
am′

b
(t)

= (1 − pm)

{(
1 − pdepsg

)
[(1 − α′)|Ψ+⟩⟨Ψ+|+ α′|00⟩⟨00|] +

pdepsg

4
I4

}
+

pm

4
I4

(4.8)

Then, we create the second entangled state by the same process, and get the state
as shown in Equation 4.6.
Then we will do distillation using these two states, ρm′

am′
b
(t = Tatt − Tsg) and

ρmamb(t = 1
x” + Tatt − Tsg), immediately after the second entangled state(ρmamb(t))

is generated. We consume ρmamb by the distillation. x” represents the rate of en-
tanglement generation to generate the second entangled state. Since an entangled
state is already stored in one memory, x” = (Nmax − 1)ηα′/Tatt. Incidentally, in
the same way, the first entanglement generation rate (x’) is Nmaxηα′/Tatt. All states
after applying the two CNOT gates in the distillation step can be calculated by Equa-
tion 4.9. U1 is CNOT operator using ma as the target qubit and m′

a as the control
qubit. U2 is CNOT operator using mb as the target qubit and m′

b as the control qubit.

ρmambm′
am′

b
= U2U1(ρmamb(t′=

1
x”+Tatt−Tsg)

⊗ ρm′
am′

b(t=Tatt−Tsg))U
+
1 U+

2 (4.9)

Then, ρmamb is measured, and the final state of ρma‘m′
b

can be calculated by Equa-
tion 4.10. P11 = |1⟩⟨1| ⊗ |1⟩⟨1| ⊗ I2 ⊗ I2 is the projective operator when both mea-
surement results are 1. Also, Pi = Tr[P11ρmambm′

am′
b
] is the probability that both

measurement results are 1.

ρm′
am′

b
= Trmamb [

P11ρmambm′
am′

b
P11

Pi
] (4.10)
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Using this state, the QBER (Qx(Qz)) can be calculated by Equation 4.11.

Qx = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨00|ρm′
am′

b
|00⟩+ ⟨11|ρm′

am′
b
|11⟩

Qz = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨++ |ρm′
am′

b
|++⟩+ ⟨− − |ρm′

am′
b
| − −⟩

(4.11)

The SKF can be calculated by substituting these quantum bit error rates into Equa-
tion 2.25.

mBK

Here, we show how the final state shared by the two nodes is derived. We start
by generating entanglement between node A and node B by the Barrett-Kok pro-
tocol and get the same state as Equation 3.10. We assume the process succeeds
deterministically and will compensate for the assumption by considering the actual
success probability when calculating the entanglement generation rate. After the
first photon is emitted, we swap the state from CQ to MQ and get the state as
shown in Equation 4.12. In our experiment, it is assumed that only |ψ+⟩ is gener-
ated, since we can anyway perform correction.

ρmamb = (1 − pdepsg)|Ψ+⟩⟨Ψ+|+
pdepsg

4
I4 (4.12)

When we assume t=0 is the time immediately after the end of swap, the final state
is generated at t = 2Tatt − Tsg as shown in Equation 4.13.

ρmamb(t) = (1 − pm)

{(
1 − pdepsg

)
|Ψ+⟩⟨Ψ+|+

pdepsg

4
I4

}
+

pm

4
I4 (4.13)

Using this state, the QBER (Qx(Qz)) can be calculated by Equation 4.14.

Qx = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨00|ρmamb |00⟩+ ⟨11|ρmamb |11⟩
Qz = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨++ |ρmamb |++⟩+ ⟨− − |ρmamb | − −⟩

(4.14)

The SKF can be calculated by substituting these quantum bit error rates into Equa-
tion 2.25.

Calculation of entanglement generation rate
SC

• The entanglement generation rate can be calculated by ηα′/Tatt = 1.8(Hz).

• η = 0.3 × 0.3 × 10−0.2×100/20 is the overall system transmission efficiency.

• α′ = 0.1 is the probability of generating entangled states by the SC protocol
and Tatt = d/c is 0.5ms.

mSC

• The entanglement generation rate can be calculated by Nmaxηα′/Tatt.

• When the number of CQ is 1, Nmax = ⌈ Tatt
Tsg

⌉.
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mEPL

• The entanglement generation rate can be calculated by Pi
1
x′ +

1
x′′

.

• When the number of CQ is 1, Nmax = ⌈ Tatt
Tsg

⌉. When the number of CQ is 2,

Nmax = 2⌈ Tatt
Tsg

⌉.

mBK

• The entanglement generation rate can be calculated by Nmaxη2 × 0.6/2Tatt.

• When the number of CQ is 1, Nmax = ⌈ 2Tatt
Tsg

⌉. When the number of CQ is 2,

Nmax = 2⌈ 2Tatt
Tsg

⌉.

• The 0.6η2 in the numerator indicates the probability that the mBK protocol
succeeds, calculated by multiplying the probability that the first click succeeds,
(3η/4), by the probability that the second click succeeds, (4η/5).

4.1.2 For which parameter regimes does time-multiplexing allow for getting
higher SKR than without multiplexing?

Experimentally realized values of the current parameters such as pdepsg, which are
relevant with time-multiplexing protocol, are large. It results in the prediction that
using time-multiplexing protocol using such values might not be currently useful
[Dam et al., 2017]. Therefore, we would like to know how much improvement of
a hardware parameter would allow a time-multiplexed protocol to achieve a better
SKR than a non time-multiplexed protocol. To investigate it, we compare the SKRs
of SC and mSC when we improve pdepsg from 0.17 (experimentally realized value in
NV) to 0 (ideal value). For the other parameters, the experimentally realized values
are used as described above. As a result, we try to see where the break-even point
to get better SKR by mSC is for the parameter of pdepsg.
Under this experiment, we fix the value of Tsg (200 µs). Therefore, Nmax in mSC is
also fixed and calculated as three.

4.1.3 Which hardware parameters are most important for improving SKR?

Besides pdepsg, which improves fidelity, Tsg, which can improve both entanglement
generation rate and fidelity, also contributes to improvement of SKR. Because of
this, we would like to know which one can improve SKR more efficiently. To inves-
tigate it, we compare the improvement rate of SKR in the following two cases. The
first case is that only the probability of depolarizing noise is improved from 0.17

(experimentally realized value in NV) to 1.7 × 10−4 (corresponding to 99.9 % im-
provement). The second case is the one where only the swap gate time is improved
from 2 × 10−4 (experimentally realized value in NV) to 2 × 10−7 (corresponding to
99.9 % improvement). In the first case, Nmax is fixed at 3. On the other hand, in the
second case, the value will change from 3 to 2500, since the value depends on Tsg.
In addition to mEPL, we also do the same experiment above using mBK.

4.1.4 What is the impact of the number of CQs on the SKR?

If the trapped ion is used as the platform, the number of communication qubits
that limit Nmax can be increased. In other words, a large number of memory qubits
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Figure 4.1: SKR when pdepsg is changed from the realistic value (0.17) to an ideal value (0).
The yellow line represents the SKR of the SC protocol, and the blue line represents
the SKR of the mSC protocol. We can see that mSC protocol yields higher SKR
when pdepsg is less than 0.002.

can be implemented. As a result, the entanglement generation rate and SKF are
increased, contributing to the improvement of SKR. Therefore, when changing the
number of CQ from 1 to 2, we would like to know how much SKR can be improved
in mEPL and mBK. We note that the same could be achieved with NV centers by
placing multiple diamonds in one node. But in this research, we investigate only
the trapped ion platform.
In the investigation of this research question, we use experimentally realized val-
ues in trapped-ions for every parameter except for the number of CQs. However,
when we use the value for the parameter of Tsg, 3 × 10−3, SKF is zero. Therefore,
as for Tsg, we use three values, 3 × 10−5(corresponding to 99 % improvement) or
3× 10−6(corresponding to 99.9 % improvement) or 3× 10−7(corresponding to 99.99

% improvement), for the parameter.

4.2 results

4.2.1 For which parameter regimes does time-multiplexing allow for getting
higher SKR than without multiplexing?

From Figure 4.1, we can see that it is not useful to perform time-multiplexing when
using a single-click protocol unless pdepsg is improved to at most 0.002. As described
before, the experimentally realized value of pdepsg in the NV centers is approxi-
mately 0.17, so there is no point in using mSC protocol unless it will be improved
by 98.8 %. In this setup, Nmax is three, and it turns out that this small amount of
parallelism cannot compensate for the current large pdepsg, which has a significant
negative impact on SKR. However, the dramatic improvement of pdepsg would be
difficult to achieve in the near future. Therefore, improvement of the other parame-
ters such as Tsg should be achieved simultaneously.
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Figure 4.2: The improvement rate of SKR, (SKR using the improved values - SKR using the
experimentally realized value) / SKR using the improved values, in the mEPL
protocol are represented for the two cases. The orange line represents the first
case where only the probability of depolarizing noise is improved from 0.17 (ex-
perimentally realized value) to 1.7× 10−4 (99.9 % improved case compared to the
value). The grey line represents the second case where only the swap gate time
is improved from 2 × 10−4 (experimentally realized value) to 2 × 10−7 (99.9 %
improved case compared to the value). With the case without any improvements
for Tsg and pdepsg, the SKR is 0.007. For example, the improvement rate of pdepsg
or Tsg is 15 %, the SKR is approximately 0.05 and the improvement rate of SKR
is approximately 500 %.

4.2.2 Which hardware parameters are most important for improving SKR?

From Figure 4.2, improving only Tsg has a larger impact on the improvement of SKR
compared to the case of improving only pdepsg when they improve by more than ap-
proximately 15 % in mEPL protocols. When they improve by 15 %, the value of
SKR is small (0.05). Therefore, it cannot be said that SKR is sufficiently improved
considering use for real applications such as QKD. In addition, from Figure 4.3, the
same results can be seen when they are improved by more than approximately 77 %
in the mBK protocols. When it is improved by 77 %, the value of SKR is also small
(0.17). Therefore, it cannot be said that the SKR is improved enough. Hence, for
both protocols, the improvement of Tsg is more important to obtain a better SKR.
As for mEPL, since the experimentally realized value of pdepsg is currently 0.17, the
improvement rate of SKR is improved until 90 % improvement (0.017) is achieved.
However, if the improvement rate is greater than 90 %, the impact on the improve-
ment rate of SKR will be small because the SKF is already high. On the other hand,
when only Tsg is improved, the improvement rate of SKR is also improved exponen-
tially.
Tsg and Nmax are in an inverse proportion. Therefore, the more Tsg is improved, the
more Nmax increases. This improves the entanglement generation rate exponentially.
The SKF is also improved because the time until the second entangled state is gen-
erated is shortened. Thus, the improvement rate of SKR is improved exponentially.
As for mBK, although we can reach the same result, its break-even point is slightly
larger ( approximately 77%) than mEPL.
On the other hand, it might be more difficult to improve Tsg than improving pdepsg.
Therefore, we also have to consider trade-off between impact and feasibility.

4.2.3 What is the impact of the number of CQs on the SKR?

mEPL



34 effect of hardware imperfections on skr

Figure 4.3: The improvement rate of SKR, (SKR using the improved values - SKR using the
experimentally realized value) / SKR using the improved values, in the mBK pro-
tocol are represented for the two cases. The yellow line represents the first case
where only the probability of depolarizing noise is improved from 0.17 (exper-
imentally realized value) to 1.7 × 10−4 (99.9 % improved case compared to the
value). The green line represents the second case where only the swap gate time
is improved from 2 × 10−4 (experimentally realized value) to 2 × 10−7 (99.9 %
improved case compared to the value). With the case without any improvements
for Tsg and pdepsg, the SKR is 0.039. For example, the improvement rate of pdepsg
or Tsg is 77 %, the SKR is approximately 0.17 and the improvement rate of SKR
is approximately 350 %.

From the result of SKR using mEPL (Table 4.2), when pdepsg=0.06 and Tsg = 3× 10−5,
the SKR of mEPL (CQ=2) is improved by 452% compared to mEPL SKR (CQ = 1).
When pdepsg=0.06 and Tsg = 3 × 10−6, SKR of mEPL (CQ=2) is improved by 113%
compared to the SKR of mEPL (CQ=1). When pdepsg=0.06 and Tsg = 3 × 10−7, SKR
of mEPL (CQ=2) is improved by 101% compared to the SKR of mEPL (CQ=1). From
these results, we can see that the SKR and the entanglement generation rate increase
proportionally to the number of CQs under ideal conditions of Tsg. SKF reaches the
same value in the case of mEPL (CQ=1), if Tsg is ideally small.
The entanglement generation rate increases proportionally to the number of CQ.
This is because Nmax is proportional to the number of CQ and Pi

1
x′ +

1
x′′

is also propor-

tional to the number of CQ.
On the other hand, The two states before distillation, ρm′

am′
b
(t = Tatt − Tsg) and

ρmamb(t
′ = 1

x” + Tatt − Tsg), converge to ρmamb(t
′ = Tatt) which has no relation-

ship with Tsg under ideal Tsg. If Tsg is very small, Nmax becomes large. Therefore,
1/x′ ′ << Tatt holds. As a result, SKF(CQ=1) and SKF(CQ=2) are almost the same.

Table 4.2: Entanglement generation rate, SKF and SKR in mEPL when changing the number
of CQ. We can see that the SKR and the entanglement generation rate increase
proportionally to the number of CQs under ideal conditions of Tsg. SKF reaches
the same value in the case of mEPL (CQ=1), if Tsg is ideally small.

Tsg[s] Entanglement generation rate SKF SKR
mEPL(CQ=1) 3 × 10−5

5.04 0.147 0.740

mEPL(CQ=2) 3 × 10−5
10.9 0.375 4.08

mEPL(CQ=1) 3 × 10−6
57.0 0.606 34.5

mEPL(CQ=2) 3 × 10−6
115 0.641 73.6

mEPL(CQ=1) 3 × 10−7
577 0.669 386

mEPL(CQ=2) 3 × 10−7
116E+01 0.673 777
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mBK

Under all parameter settings, the SKR of mBK (CQ=2) is improved by 100% com-
pared to the SKR of mEPL (CQ=1) as shown in Table 4.3. The entanglement gener-
ation rate increases proportionally to the number of CQs. SKF is the same value in
the case of mEPL (CQ=1) in every case.
As for entanglement generation rate, Pi

1
x′ +

1
x′′

, it is proportional to the number of CQ.

On the other hand, SKF does not change, because the final state, ρmamb(t = 2Tatt −
Tsg), is regardless of the number of CQs.

As a result, we can see that if Tsg is ideally small for both mEPL and mBK, the SKR
increases proportionally to the number of CQ. However, the ideal Tsg is 1/10000 of
the value of 3 ms which is an experimentally realized value in the trapped-ion and
difficult to achieve. In cases where the improvement rate of Tsg is not high in mEPL,
not only the entanglement generation rate but also SKF are improved, so that the
number of CQs has more than twice the impact on SKR.

Table 4.3: Entanglement generation rate, SKF and SKR in mBK when changing the number
of CQ. Under all parameter settings, the SKR of mBK (CQ=2) is improved by
100% compared to the SKR of mEPL (CQ=1). The entanglement generation rate
increases proportionally to the number of CQs. SKF is the same value in the case
of mEPL (CQ=1) in every case.

Tsg[s] Entanglement generation rate SKF SKR
mBK(CQ=1) 3 × 10−5

1.65 0.559 0.924

mBK(CQ=2) 3 × 10−5
3.30 0.559 1.85

mBK(CQ=1) 3 × 10−6
16.2 0.558 9.05

mBK(CQ=2) 3 × 10−6
32.5 0.558 18.1

mBK(CQ=1) 3 × 10−7
162 0.558 90.0

mBK(CQ=2) 3 × 10−7
324 0.558 180

4.3 summary
• We would like to know how much improvement of the hardware parameter,

pdepsg, would allow a time-multiplexed protocol to achieve a better SKR than
a non time-multiplexed protocol. We find that time-multiplexing in the SC
protocol is not useful unless pdepsg is improved to be less than 0.002.

• When improving only pdepsg or Tsg, we would like to know how much SKR
can be improved in mEPL and mBK. According to our research, improving
Tsg is more important in obtaining a better SKR for both protocols.

• When changing the number of CQ from 1 to 2, we would like to know how
much SKR can be improved in mEPL and mBK. From our research results,
we can see that if Tsg is ideally small for both mEPL and mBK, SKR increases
proportionally to the number of CQ.





5
E F F E C T O F P R OTO C O L C H O I C E I N
S K R A C H I E VA B L E B Y R E P E AT E R
C H A I N S W I T H L I M I T E D R E S O U R C E S

In Chapter 5, we will investigate how to distribute resources in order to maximize
the SKR in setups of two end nodes connected by up to two repeaters.

5.1 models
In this section, we will explain problem setups for the following research questions:

• What is the best order in which to perform entanglement generation attempts?

• How is the best way to distribute CQs in a chain with two repeaters?

5.1.1 Common settings

For all experiments in Chapter 5, we assume the common hardware parameters
shown in Table 5.1 except for the parameters where NV center and trapped ion use
different values. For the first research question, we assume NV center parameters.
Note that Tsg is improved by 99% (or 99.9 %) and pdepsg is improved by 99% to get
non-zero SKR. For the second research question, we assume that trapped ions are
used, since we allow for the possibility that a repeater has more than one communi-
cation qubit. We note that the same could be achieved with NV centers by placing
multiple diamonds in one node. Besides,Tsg is improved by more than 99.9% (or
99.99 %) and pdepsg is improved by 99% to get non-zero SKR.
On the other hand, the number of repeaters between end nodes, repeater chain pro-
tocol, and the number of CQs (MQs) in the repeaters are different for each research
question and will be explained again in each subsection.
With the exception of the above, we employ the same models and calculations for
entanglement generation rate and fidelity as explained in Chapter 4 except for the
above things. We then start by introducing models for each research question.

5.1.2 What is the best order in which to perform entanglement generation at-
tempts?

Assuming the situation depicted in Figure 5.1 where there is a processing node re-
peater halfway between Alice and Bob, we want to find which protocol the nodes
should employ in order to generate the largest possible end-to-end SKR. In such a
case, the ratio of photons emitted by the CQ in the central repeater toward Alice and
Bob will affect the SKR. For example, we can think of an extreme case (protocol 1).
In protocol 1, we start by sending photons only toward Bob. After it is confirmed
that one entangled state between the repeater and Bob has been generated, then
photons are sent only toward Alice until entanglement is generated. Finally, an en-
tanglement swap is performed at the repeater and we get end-to-end entanglement.
Although the entanglement generation rate between the repeater and each of the
end nodes is high, the entangled pair shared by Bob and the repeater will have to

37
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Table 5.1: Common parameter settings in Chapter 5 are listed. Basically, they are based
on experimentally realized values. η is the probability that a photon is emitted
from each node and reaches the heralding station. p f c is the frequency conversion
efficiency from the NV center or the trapped ion wavelength to a telecom fiber.
ploss is the probability that a coupling succeeds from the matter to the fiber. Nmax is
the maximum number of MQs that a node can use assuming a number of CQ and
an entanglement generation protocol. Tm(Tc) is the coherence time of MQ (CQ).
Tsg is the swap gate time. pdepsg is the probability of introducing depolarizing
noise when performing the swap gate. α′ is the probability of generating entangled
states in Equation 3.5. d is the distance between two end nodes. c is the photon
speed in a fiber.

Parameters NV center Trapped-ion
η 0.009 [Dam et al., 2017; Zaske et al., 2012]

p f c 0.3 [Zaske et al., 2012]
ploss[dB/km] 0.2

Nmax depends on entanglement generation protocol
Tm[s] 1 [Bradley et al., 2019] 0.085 [Krutyanskiy et al., 2022]
Tc[s] 0.5 [Pompili et al., 2021] 0.085 [Krutyanskiy et al., 2022]

Tsg[µs] 2 or 0.2 2 or 0.2
pdepsg 0.0017 0.06 [Krutyanskiy et al., 2022]

α′ 0.01

d[km] 100

c[km/s] 200,000

Entanglement
generation

protocol mSC

wait a long time before a new entangled state is generated between Alice and the
repeater, which will deteriorate SKF.
On the other hand, we can think of another case when photons are alternately sent
to Alice and Bob at equal rates (protocol 2). The entanglement generation rate be-
tween Alice (Bob) and the repeater is lower compared to the protocol 1, but the
time until the second entangled state is generated from the generation of the first
entanglement is shorter. Therefore, it is expected to obtain a higher SKF. We would
like to investigate which protocol can obtain a larger SKR.

Calculation of secret key fraction between Alice and Bob

Protocol 1

Here, we show how the final state shared between Alice and Bob is derived. We
start by generating entanglement between the repeater and Bob by the mSC proto-
col, which results in the state shown in Equation 4.6. After we know that the first
entangled state between the repeater and Bob is generated, we generate the second,
between Alice and the repeater which is the same state as Equation 4.6. We set t
= 0 as the time immediately after which the first state to be successfully entangled
is moved to the memory qubit. Therefore, when we assume that the entanglement
generation rate between Alice and the repeater is xa, the entangled state shared
by the repeater and Bob when we learn that two entangled states are generated is
ρmrbmb(t =

1
xa

+ Tatt − Tsg). The state shared by Alice and the repeater in the same
moment is ρmamra(t

′ = Tatt − Tsg). We set t’ = 0 as the time immediately after which
the second state to be successfully entangled is moved to the memory qubit. There-
fore, when an entangled state is generated between them and the repeater, we get
the state of Equation 5.1. ρmra(ρmrb) represents the state in the MQ that is entangled
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Figure 5.1: Two end nodes (Alice and Bob) are connected by a processing node repeater
placed at the halfway point. At each node, there is only one CQ and Nmax = ⌈ Tatt

Tsg
⌉

MQs. Tatt = d/c is 0.25ms

with Alice (Bob) and the repeater. Note that the second state is also moved to a
memory qubit, since we use time-multiplexing protocol.

ρmamramrbmb = ρmamra(t
′ = Tatt − Tsg)⊗ ρmrbmb(t =

1
xa

+ Tatt − Tsg) (5.1)

Then, we perform an entanglement swap as shown in Figure 3.5, with the re-
sulting state being the one given in Equation 5.2. We assume that U1 = I2 ⊗
|0⟩⟨0| ⊗ I2 ⊗ I2 + I2 ⊗ |1⟩⟨1| ⊗ X ⊗ I2 is the CNOT operator using mrb as the tar-
get qubit and mra as the control qubit. U2 = I2 ⊗ H ⊗ I2 ⊗ I2 is Hadamard op-
erator on mra. Besides, we only assume that the measurement results are always
“01” in order to simplify the calculation steps. In other words, we can simply
do corrections. Obtaining another measurement outcome would result in iden-
tical fidelity, assuming that the correction operations are performed noiselessly.
P01 = I2 ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ I2 is the projective operator when the measurement
results are ”01”. Also, Pi = Tr[P01ρmamramrbmb ] is the probability that the measure-
ment results are ”01”.

ρmamb = Trmramrb [
P01U2U1(ρmamramrbmb)U

+
1 U+

2 P01

Pi
] (5.2)

Using this state, the quantum bit error rate (Qx(Qz)) can be calculated by Equa-
tion 5.3.

Qx = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨00|ρmamb |00⟩+ ⟨11|ρmamb |11⟩
Qz = Pr((xA = 0 ∧ xB = 0) ∨ (xA = 1 ∧ xB = 1))

= ⟨++ |ρmamb |++⟩+ ⟨− − |ρmamb | − −⟩

(5.3)

The SKF can be calculated by substituting these quantum bit error rates in Equa-
tion 2.25.

Protocol 2

We start by generating entanglement between the repeater and Bob (Alice) simul-
taneously at the same rate by mSC protocol, which results in the state shown in
Equation 4.6. Without loss of generality, we assume that an entangled state is gen-
erated between the repeater and Bob at first for convenience. Besides, for simplicity,
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we assume that each entangled state is generated at almost same time. Since the
second entangled state is generated at the next attempt after the first entangled
state is generated, the difference between their generation times is Tsg. The overall
state when an entangled state is generated between them and the repeater results in
Equation 5.4. We set t (t’) = 0 as the time immediately after which the first (second)
state to be successfully entangled is moved to the memory qubit.

ρmamramrbmb = ρmamra(t
′ = Tatt − Tsg)⊗ ρmrbmb(t = Tatt) (5.4)

Subsequent steps are identical to protocol 1.

Calculation of entanglement generation rate between Alice and Bob

Protocol 1

The entanglement generation rate between the repeater and Bob, xb, can be cal-
culated by Equation 5.5 as explained in Chapter 4.

xb = Nmaxηα′/Tatt =
⌈ (d/2)/c

Tsg
⌉

d/2
c

ηα′ (5.5)

On the other hand, entanglement generation rate between the repeater and Alice,
xa, can be calculated by Equation 5.6 since an MQ has been already occupied by an
entangled state.

xa = (Nmax − 1)ηα′/Tatt =
⌈ (d/2)/c

Tsg
⌉ − 1

d/2
c

ηα′ (5.6)

Therefore, the entanglement generation rate between Alice and Bob (xtot1) can be
calculated by Equation 5.7

xtot1 =
1

1
xa

+ 1
xb

(5.7)

Protocol 2

Since we assume that entanglement between the repeater and each of the end nodes
is generated at almost the same time, the entanglement generation rate between Al-
ice and Bob, xtot2, can be calculated by 1

1
x
= x. We assume that x = 0.5Nmaxηα′/Tatt

is the entanglement generation rate between Alice (Bob) and the repeater.

5.1.3 How is the best way to distribute CQs in a chain with two repeaters?

From the results shown in Section 4.2.3, the number of CQs has a big impact on the
SKR. However, having access to many CQs per node might be costly. For NVs, it
is obvious that it is costly; having multiple CQs would imply having multiple NVs.
Therefore, we want to ensure that CQs are distributed in an efficient fashion and
obtain large SKR with maximum efficiency.
Assuming the situation as explained in Figure 5.2 where there are two processing
node repeaters with the ability to attempt to establish entanglement between Alice
and Bob at regular intervals, we want to obtain the largest SKR between Alice and
Bob with maximum efficiency. Therefore, we will find the most efficient number of
CQs by comparing end-to-end SKRs per CQ for the following three setups.
In setup A (Figure 5.3), there are 2 repeaters, R1 and R2, between Alice and Bob,
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Figure 5.2: There are two processing node repeaters with the ability to emit entangled pho-
tons between Alice and Bob at regular intervals. Although a number of CQs is
distributed for each node, it should be distributed efficiently because having ac-
cess to many CQs per node might be costly. Therefore, we want to ensure that
CQs are distributed in an efficient fashion and obtain large SKR with maximum
efficiency.

and all nodes have only one CQ. As for the number of MQ, we deploy Nmax, which
is the maximum number of MQs that a node can use. Therefore, all nodes have

Nmax =

⌈
d
3 /c
Tsg

⌉
MQs.

In this situation, we generate entangled pairs between Alice and Bob as follows.
We start by generating entanglement between Alice (Bob) and R1 (R2) by mSC. Sec-
ondly, when entanglement between them is generated, an entangled pair between
R1 and R2 is generated by mSC. Furthermore, an entanglement swap is performed
at R1 and R2, and finally an entangled state is generated between Alice and Bob.
In setup B (Figure 5.4), there are 2 repeaters, R1 and R2, between Alice and Bob.
Alice and Bob have only one CQ. On the other hand, R1 and R2 have two CQs. As
for the number of MQ, we deploy Nmax, which is the maximum number of MQs

that a node can use. In other words, R1 and R2 have Nmax = 2
⌈

d
3 /c
Tsg

⌉
MQs. Alice

and Bob have Nmax =

⌈
d
3 /c
Tsg

⌉
MQs.

In this situation, we generate entangled pairs between Alice and Bob as follows.
We start by generating an entangled pair between all nodes (Alice-R1, R1-R2, R2-
Bob) by mSC. Furthermore, when an entangled pair between them is generated, an
entanglement swap is performed at R1 and R2, and finally an entangled state is
generated between Alice and Bob.
In setup C (Figure 5.5), there are 2 repeaters, R1 and R2, between Alice and Bob,
and all nodes have two CQs. As for the number of MQ, we deploy Nmax, which is
the maximum number of MQs that a node can use. In other words, all nodes have

Nmax = 2
⌈

d
3 /c
Tsg

⌉
MQs.

In this situation, we generate entangled pairs between Alice and Bob as follows.
We start by generating entangled pairs between Alice (Bob) and the R1 (R2) by
mSC. Secondly, when entanglement between them is generated, an entangled pair
between R1 and R2 is generated by mSC. Furthermore, an entanglement swap is
performed at R1 and R2, and finally an entangled state is generated between Alice
and Bob. Compared to the setup A, the entanglement generation rate is doubled.

Calculation of secret key fraction between Alice and Bob

Setup A

Here, we show how the final state shared between Alice and Bob is derived. We
start by generating entanglement between R1 and Alice, and R2 and Bob by mSC
protocol. The resulting state is shown in Equation 4.6. After we know that the
first entangled state between both R1 and Alice, and R2 and Bob is generated, we
generate the second entangled state between R1 and R2 which is the same state
as Equation 4.6. When this state has also been generated, we get the overall state
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Figure 5.3: Problem setting of setup A. All nodes have only one CQ and Nmax =

⌈
d
3 /c
Tsg

⌉
MQs in each repeater. We start by generating entanglement between Alice (Bob)
and R1 (R2) by mSC. Secondly, when entanglement between them is generated,
an entangled pair between R1 and R2 is generated by mSC. Furthermore, an
entanglement swap is performed at R1 and R2, and finally an entangled state is
generated between Alice and Bob.

Figure 5.4: Problem setting of setup B. Alice and Bob have only one CQ and Nmax =

⌈
d
3 /c
Tsg

⌉
MQs in each repeater. R1 and R2 have two CQs and Nmax = 2

⌈
d
3 /c
Tsg

⌉
MQs in

each repeater. We start by generating an entangled pair between all nodes (Alice-
R1, R1-R2, R2-Bob) by mSC. Furthermore, when an entangled pair between them
is generated, an entanglement swap is performed at R1 and R2, and finally an
entangled state is generated between Alice and Bob.
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Figure 5.5: Problem setting of setup C. All nodes have two CQs and Nmax = 2
⌈

d
3 /c
Tsg

⌉
MQs

in each repeater. We start by generating entangled pairs between Alice (Bob) and
the R1 (R2) by mSC. Secondly, when entanglement between them is generated,
an entangled pair between R1 and R2 is generated by mSC. Furthermore, an
entanglement swap is performed at R1 and R2, and finally an entangled state is
generated between Alice and Bob.

shown in Equation 5.8.
We set t (t’) = 0 as the time immediately after which the first (second) state to be
successfully entangled is moved to the memory qubit. In addition, we assume that
the entanglement generation rate between R1 and R2 is x2. Note that we also as-
sume that the time at which an entangled pair is generated between both R1 and
Alice, and R2 and Bob is the same. ρmr1(ρmr1′ ) represents the state at R1 which is
entangled with the state in MQ at Alice (R2). ρmr2′ (ρmr2) represents the state at R2

which is entangled with the state in MQ at Bob (R1).

ρmamr1mr1′mr2mr2′mb

= ρmamr1(t =
1
x2

+ Tatt − Tsg)⊗ ρmr1′mr2(t
′ = Tatt − Tsg)

⊗ ρmr2′mb(t =
1
x2

+ Tatt − Tsg)

(5.8)

Then, we perform an entanglement swap as shown in Figure 3.5 at R1 and R2

and the state after performing an entanglement swap at R1 results in Equation 5.9.
We assume that U3 = I2 ⊗ |0⟩⟨0| ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 + I2 ⊗ |1⟩⟨1| ⊗ X ⊗ I2 ⊗ I2 ⊗ I2 is
the CNOT operator using mr1′ as the target qubit and mr1 as the control qubit. U4 =
I2 ⊗ H ⊗ I2 ⊗ I2 ⊗ I2 ⊗ I2 is the Hadamard operator on mr1. Besides, we only assume
that the measurement results are always “01” in order to simplify the calculation.
In other words, we can simply do corrections. Obtaining another measurement out-
come would result in identical fidelity, assuming that the correction operations are
performed noiselessly. P01′ = I2 ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ I2 ⊗ I2 ⊗ I2 is the projective op-
erator when the measurement results are ”01”. Also, Pi′ = Tr[P01′ρmamr1mr1′mr2mr2′mb ]
is the probability that the measurement results are ”01”.

ρmamr2mr2′mb = Trmr1mr1′ [
P01′U4U3(ρmamr1mr1′mr2mr2′mb)U

+
3 U+

4 P01′

Pi′
] (5.9)

Then, the state after performing the entanglement swap at both R1 and R2 results
in Equation 5.10. We assume that U5 = I2 ⊗ I2 ⊗ I2 ⊗ |0⟩⟨0| ⊗ I2 ⊗ I2 + I2 ⊗ I2 ⊗
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I2 ⊗ |1⟩⟨1| ⊗ X ⊗ I2 is the CNOT operator using mr2′ as the target qubit and mr2 as
the control qubit. U6 = I2 ⊗ I2 ⊗ I2 ⊗ H ⊗ I2 ⊗ I2 is the Hadamard operator on mr2.
P01′′ = I2 ⊗ I2 ⊗ I2 ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ I2 is the projective operator when the measure-
ment results are ”01”. Also, Pi′′ = Tr[P01′′ρmamr1mr1′mr2mr2′mb ] is the probability that
the measurement results are ”01”.

ρmamb = Trmr2mr2′ [
P01′′U6U5(ρmamr2mr2′mb)U

+
5 U+

6 P01′′

Pi′′
] (5.10)

Using this state, the quantum bit error rate(Qx(Qz))can be calculated by Equa-
tion 5.3. The SKF can be calculated by substituting these quantum bit error rates
into Equation 2.25.

Setup B

Here, we show how the final state shared between Alice and Bob is derived. We
start by generating entanglement between R1 and Alice , R1 and R2, and R2 and
Bob by mSC protocol. The resulting state is shown in Equation 4.6. After we know
that the first entangled state between both R1 and Alice, R1 and R2, and R2 and
Bob is generated, we get the overall state shown in Equation 5.11.
We set t = 0 as the time immediately after which the first state to be successfully
entangled is moved to the memory qubit. Note that we also assume that the timing
at which entanglement is generated between both R1 and Alice, R1 and R2, and R2

and Bob is same.

ρmamr1mr1′mr2mr2′mb

= ρmamr1(t = Tatt − Tsg)⊗ ρmr1′mr2(t = Tatt − Tsg)⊗ ρmr2′mb(t = Tatt − Tsg)
(5.11)

After that, we can calculate the SKF using the same process as setup A.

Setup C

We can calculate SKF using the same process as setup A. But we use 2x2 instead of
x2 as entanglement generation rate between R1 and R2.

Calculation of entanglement generation rate between Alice and Bob

Setup A

The entanglement generation rate between Alice (Bob) and R1 (R2), x1, can be
calculated by Equation 5.5 as explained in Chapter 4. Besides, the entanglement
generation rate between R1 and R2, x2, can be calculated by Equation 5.6 since an
MQ has already been occupied by an entangled state. Note that Nmax = ⌈ (d/3)/c

Tsg
⌉,

and Tatt =
3/d

c in this research question.
Therefore, the entanglement generation rate between Alice and Bob (xtotA) can be
calculated by Equation 5.7.

Setup B

We assume the entanglement generation rate between R1 and R2, xB, can be cal-
culated by Equation 5.5 too. Note that Nmax = ⌈ (d/3)/c

Tsg
⌉, and Tatt = 3/d

c in this
research question. Since we assume that the time at which entanglement is gen-
erated between both R1 and Alice, R1 and R2, and R2 and Bob is same, the total
entanglement generation rate between Alice and Bob, xtotB, is also xB.
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Setup C

We can calculate SKF using the same process as setup A. But we use Nmax =

2⌈ (d/3)/c
Tsg

⌉ instead of Nmax = ⌈ (d/3)/c
Tsg

⌉.

5.2 results

5.2.1 What is the best order in which to perform entanglement generation at-
tempts?

From Table 5.2, we can see that protocol 1 at Tsg = 2 × 10−6 has smaller SKR
compared to protocol 2 by 5.90 %. Specifically, protocol 1 has worse SKF and entan-
glement generation rate compared to the protocol 2. Therefore, when we assume
the situation that there is a repeater in the middle of two end nodes, it is better to
send photons at the same rate toward the two nodes. After entanglement between
Alice (Bob) and the repeater is generated, an entanglement swap is performed at the
repeater. If the value of Tsg is further improved, the advantage decreases. However,
since it is quite difficult to improve Tsg by 99.9%, we can still say that protocol 2 has
some advantages.
As for the SKF, the value of protocol 1 at Tsg = 2 × 10−6 is worse than that of proto-
col 2 by 5.58 %. This is because ρmamra in Equation 5.1 and Equation 5.4 are the same
state, but for ρmrbmb , the value of t (t’) is 1

xa
− Tsg larger in protocol 1 than protocol

2. Therefore, the SKF of protocol 1 is worse due to the longer time the state is held
in MQ. Incidentally, if the value of Tsg is further improved, the difference decreases.
This is because Tatt term in ρmrbmb(t =

1
xa

+ Tatt − Tsg) becomes dominant. Actually,
we can see this from Table 5.2.
As for the entanglement generation rate, protocol 1 at Tsg = 2 × 10−6 is 0.423 %
smaller than protocol 2. If Tsg is further improved, in other words, Nmax is further
increased, the difference will converge to 0%.
On the other hand, when we consider the case that Nmax is decreased considering
the difficulty of implementing multiple MQs in a node, the advantage of protocol
2 will increase. If Nmax is smaller, that is, 1

xa
− Tsg is larger, the SKF of protocol

1 would deteriorate further and the advantage of protocol 2 will increase. As for
the entanglement generation rate, the difference between protocol 1 and protocol 2

increases. In other words, the advantage of protocol 2 will increase. This is because
the term of ”−1” in Equation 5.6 produce greater asymmetry between xtot1 and
xtot2 when Nmax is smaller. However, we still make sure that this result is biased
due to the fact that we consider that entanglement generation between both end
nodes succeeds almost simultaneously in protocol 2.

Table 5.2: Results of protocol 1 and protocol 2. When changing the value of Tsg, we compare
SKF, entanglement generation rate, and SKR between the two protocols. Protocol
1 at Tsg = 2 × 10−6 has smaller SKR compared to protocol 2 by 5.90 %. But if the
value of Tsg is further improved to 2 × 10−7, the advantage decreases.

Tsg[s] SKF Entanglement generation rate SKR
Protocol 1 2 × 10−6

0.717 70.9 50.8
Protocol 2 2 × 10−6

0.757 71.2 53.8
Protocol 1 2 × 10−7

0.753 711 535

Protocol 2 2 × 10−7
0.757 712 538
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5.2.2 How is the best way to distribute CQs in a chain with two repeaters?

From Table 5.3, we can see that the SKR per CQ is largest in setup B. Therefore, we
can say that setup B, in which the number of CQs in a node is equal to that node’s
number of neighbors, makes best use of its resources. In addition, setup B remains
the best even if the value of Tsg is further improved.
As for SKF, in setup B entanglement between neighboring nodes is generated si-
multaneously, which results in shorter waiting time. In other words, entangled
states generated between each node do not have to wait for entanglement swap.
Therefore, better SKF can be obtained compared to setup C and setup A. In setup
A, x2 is smaller than the one of setup C. Therefore, the entanglement between
Alice (Bob) and R1 (R2) gets worse. As a result, SKF of setup A is worse than
the one of setup C. Further improving Tsg has little effect on the SKF. This is
because the state before the entanglement swap, ρmamr1mr1′mr2mr2′mb , converges to
ρmamr1(t = Tatt)⊗ ρmr1′mr2(t

′ = Tatt)⊗ ρmr2′mb(t = Tatt). Therefore, the ranking of
setups according to SKF per CQ is not affected by improvements in Tsg.
Regarding the entanglement generation rate, each entanglement generation rate in
setup C is twice as fast as the one of setup B. However, setup C needs two steps
to generate entangled states between Alice and Bob. As a result, the entanglement
generation rate of setup B and setup C is the same. Further improving Tsg does not
change the relative ordering of the setups.

Table 5.3: Results of setup A, setup B, and setup C. Protocol 1 at Tsg = 2 × 10−6 has smaller
SKR compared to protocol 2 by 5.90 %. But if the value of Tsg is further improved
to 2 × 10−7, the advantage decreases. As for SKF, in setup B, better SKF can
be obtained compared to setup C and setup A, since entangled states generated
between each node do not have to wait for the entanglement swap. Entanglement
generation rate of setup B and setup C is the same. Besides, further improving Tsg
does not change the relative ordering of the setups.

Tsg[s] SKF Entanglement generation rate SKR SKR per CQ
Setup A 2 × 10−6

0.0737 71.3 5.26 1.32

Setup B 2 × 10−6
0.659 143 94.5 15.8

Setup C 2 × 10−6
0.319 143 45.5 5.69

Setup A 2 × 10−7
0.579 712 412 103

Setup B 2 × 10−7
0.658 1420 937 156

Setup C 2 × 10−7
0.618 1420 879 110

5.3 summary
• When considering a situation where there is one repeater in the middle of

two nodes, we would like to know what is the best order in which to perform
entanglement generation attempts. We find that having the repeater send
photons at the same rate towards both end nodes results in a higher SKR than
generating entanglement sequentially.

• We would like to know what is the most efficient number of CQ in a protocol
with multiple repeaters. We ascertain that the setup B, in which the number of
CQs in a node is equal to that node’s number of neighbors, makes best use of
its resources. Entanglement should be generated in parallel among all nodes.



6 C O N C L U S I O N

In this section, we summarize all results which are investigated in our research and
propose about future works.

6.1 summary

In this thesis, we investigate how hardware parameters and repeater chain protocols
affect the entanglement generation rate and the fidelity by time-multiplexed entan-
glement generation protocols. As an indicator reflecting both fidelity and entangle-
ment generation rate, the secret key rate (SKR) in quantum key distribution, which
has already been commercialized and attracted great public interest, is investigated.

In Chapter 4, we investigate the impact of different hardware parameters on the
SKR that can be achieved by two nodes connected without a repeater. Specifically,
we examine the following three research questions.
At first, we investigate how much hardware parameter should be improved from
an experimentally realized value to achieve a higher SKR using time-multiplexed
protocol compared to the non time-multiplexed protocol. From the results in Sec-
tion 4.2.1, we ascertain that it is not useful to perform time-multiplexing when using
a single-click protocol unless pdepsg is improved by 98.8 % from the experimentally
realized value.
From the previous results, if pdepsg is dramatically improved, we know that time-
multiplexed protocol can achieve better SKR. However, In addition to pdepsg, Tsg
is also a significant parameter to increase the number of available memory qubits
(MQ) and improve SKR in the time-multiplexed protocol. Therefore, in Section 4.2.2,
we investigate which hardware parameters are most important for improving SKR.
As a result, the improvement of Tsg is more important to obtain a higher SKR than
the improvement of pdepsg.
Besides changing such hardware parameters, SKR can also can be improved by
adding extra communication qubits (CQs) in a node. However, in an NV center,
there is the limitation that only one communication qubit can be used per an NV
center. For example, the trapped ion is a good candidate to use multiple CQs
although some hardware parameters’ values are worse than the NV center. In Sec-
tion 4.2.3, we investigate the impact on SKR when changing the number of CQs.
Consequently, we ascertain that SKR increases proportionally to the number of CQs
under ideal conditions of Tsg.

In Chapter 5, we investigate how repeater chain protocols with limited resources,
entanglement generation attempt rate in a repeater and the number of CQs, affect
SKR and how to optimally distribute the resources to maximize the SKR that can be
obtained. We investigate setups with either one or two repeaters. Specifically, we
examine the two research questions.
Firstly, when considering a situation where there is one repeater connecting the
end nodes, we investigate what the best order is in which to perform entanglement
generation attempts in a repeater. From our research results of Section 5.2.1, we
find that having the repeater send photons at the same rate towards both end nodes
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results in a higher SKR than generating entanglement sequentially.
From the results we got in Section 4.2.3, we know that increasing the number of
CQs in a node leads to an increase in the SKR. However, implementing many CQs
might be costly. Therefore, secondly, we would like to investigate what is the most
efficient number of CQs in a protocol with multiple repeaters. From our research
of Section 5.2.2, we ascertain that the setup in which the number of CQs in a node
is equal to that node’s number of neighbors makes best use of its resources.

6.2 future work
We have found that employing time-multiplexed entanglement generation proto-
cols in devices with experimentally-realized hardware parameters does not lead to
an increase in the achievable SKR when compared to non-time-multiplexed pro-
tocols. This could be due to several reasons. For example, our research assumes
that the swap gate introduces some depolarizing noise, which is the worst-case sce-
nario. Therefore, investigating the case where we use a dephasing noise channel
that more accurately represents decoherence and is milder against memory qubits
might achieve a larger SKR.

The research also ascertains that dramatic improvements in Tsg and the implemen-
tation of multiple CQs are key to achieving a larger SKR. However, those dramatic
improvements are difficult to achieve immediately. Therefore, it would be interest-
ing to limit the improvement rate of hardware parameters’ value and perform the
same simulations by improving many parameters gradually instead of improving a
single parameter dramatically.
Also, in Section 5.2.1, it is assumed that the repeater is placed in the center of the
two nodes. However, this might not be the case. For example, the case where the
repeater is placed in an asymmetric position can be possible. Therefore, it is impor-
tant to conduct a similar investigation for the case.



B I B L I O G R A P H Y

Barrett, S. D. and Kok, P. (2005). Efficient high-fidelity quantum computation using
matter qubits and linear optics. Physical Review A - Atomic, Molecular, and Optical
Physics, 71(6):2–5.

Bayliss, C. R. and Hardy, B. (2012). Cables 12.1. Ingenieria electrica de transmision y
distribucion, 4ta edicio:397–466.

Bennett, C. H. and Brassard, G. (1984). Quantum cryptography: Public key distri-
bution and coin tossing.
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