
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Integration of Data Validation and User
Interface Concerns in a DSL for Web

Applications

Danny M. Groenewegen, Eelco Visser

Report TUD-SERG-2010-033

SERG

TUD-SERG-2010-033

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Danny M. Groenewegen, Eelco Visser. Integration of Data Validation and User Interface Concerns in a DSL
for Web Applications. In Geert-Jan Houben, Nora Koch, Gustavo Rossi, and Antonio Vallecillo, editors,
Journal on Software and Systems Modeling - Theme Issue on Model-Driven Web Engineering, Springer,
2010.

@inproceedings{GV10,
title = {Integration of Data Validation and User Interface Concerns

in a DSL for Web Applications},
author = {Danny M. Groenewegen and Eelco Visser},
journal = {Journal on Software and Systems Modeling - Theme Issue on

Model-Driven Web Engineering},
editor = {Geert-Jan Houben and Nora Koch and Gustavo Rossi

and Antonio Vallecillo},
year = {2010},
publisher = {Springer},

}

c© copyright 2010, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Integration of Data Validation and User Interface
Concerns in a DSL for Web Applications

Danny M. Groenewegen, Eelco Visser

Software Engineering Research Group, Delft University of Technology, The Netherlands
d.m.groenewegen@tudelft.nl, visser@acm.org

Abstract. Data validation rules constitute the constraints that data input and pro-
cessing must adhere to in addition to the structural constraints imposed by a data
model. Web modeling tools do not make all types of data validation explicit in
their models, hampering full code generation and model expressivity. Web appli-
cation frameworks do not offer a consistent interface for data validation. In this
paper, we present a solution for the integration of declarative data validation rules
with user interface models in the domain of web applications, unifying syntax,
mechanisms for error handling, and semantics of validation checks, and covering
value well-formedness, data invariants, input assertions, and action assertions.
We have implemented the approach in WebDSL, a domain-specific language for
the definition of web applications.

1 Introduction

The engineering of web applications requires catering for a number of different con-
cerns including data models, user interfaces, actions, data validation, and access con-
trol. In the mainstream technology for web application development these concerns are
supported by loosely coupled languages that require abundant boilerplate code and lack
static verification. The domain-specific language engineering challenge for the web ap-
plication domain [31] is to realize a concise, high-level, declarative language for the
definition of web applications in which the various concerns are supported by special-
ized sub-languages, yet linguistically integrated, and from which implementations can
be derived automatically. This requires investigation and understanding of, and the de-
sign of appropriate domain-specific languages for each of the sub-domains of the web
application domain. Moreover, it requires the seamless linguistic integration of these
separate languages that ensures the consistency of models in the different domains and
that leverages their combination. This research program is relevant for the discovery of
good abstractions for the web engineering domain. It is also relevant as a case study in
the systematic development of families of domain-specific languages.

In previous work we have studied the domains of data models and user interface
definitions [31], access control [13], and workflow [15], the results of which have been
implemented as sub-languages of the WebDSL language [32]. In this paper, we address
the domain of data validation and its interaction with the user interface. This paper is
an extension of the identically titled short paper presented at the Second International
Conference on Software Language Engineering (SLE 2009) [14].

The core of a data-intensive web application is its data model. The web application
must be organized to preserve the consistency of data with respect to the data model
during updates, deletes, and insertions. The core consistency properties of a data model

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 1

are formed by structural constraints, that is, the data members of and relations between
entities. Some consistency properties cannot be expressed as structural constraints. Fur-
thermore, some data integrity constraints do not pertain directly to persistent data.

Data validation rules constitute the constraints that data input and processing must
adhere to in addition to the structural constraints imposed by the data model. Four
essential kinds of data validation in web applications are: value well-formedness rules,
data invariants, input assertions, and action assertions. Value well-formedness rules
define the syntax of values of particular entity properties. Value properties are typically
stored as strings, but may have to satisfy additional well-formedness constraints. For
example, email addresses and zip codes cannot be arbitrary strings, but must conform
to a particular syntax. Data invariants are functional constraints of single properties that
cannot be expressed as syntactic constraints of single values, or coordination constraints
between properties. For example, uniqueness of a primary key property, or a size limit
on a collection property encoded by an integer property. Input assertions are checks
based on input data that is not connected (directly) to persistent data, and hence cannot
be specified as constraints on the data model. For example, a double password entry
field requires the user to enter the same password twice to prevent typos. Only one of
the password fields is actually stored in the data model. Thus, the equality constraint
cannot be expressed as a data model invariant. Finally, action assertions are checks on
the execution of operations. For example, the conclusion of an operation might notify
the user by email. An assertion may require the notification to succeed.

Data validation rules are commonly used in combination with data models, e.g.
OCL [1] constraints that specify class member invariants in UML class models. For
other technical domains such as user interfaces and actions, where ordering and con-
trol flow is involved, data validation rules are usually implicitly defined in low-level
code. Moreover, integration with these domains often results in separate mechanisms
for data validation, having an adverse effect on application consistency. In addition to
declarative and consistent notation, another issue is consistent error reporting. Valida-
tion feedback should be handled transparently, but also materialize in a way that fits
naturally into the user interface.

A high-level web engineering solution should provide a uniform and declarative
validation model that integrates with the other relevant technical models. In addition to
ensuring data consistency by enforcing a validation model, the integration of data vali-
dation in a web application requires a mechanism for reporting constraint violations to
the user, indicating the origin of the violation in the user interface with a sensible error
message and consistent styling. Model-driven methodologies such as OOHDM [28],
WebML [8], UWE [19], OOWS [25], and Hera [30] do not make all types of data val-
idation explicit in their models. When generating code from models, as demonstrated
for UWE [20], WebML [5], and Hera [11], validating data requires an escape from
model to code, hampering full code generation and model expressivity. Web applica-
tion frameworks provide high-level support for a subset of data validation tasks. For
instance, Ruby on Rails [26] provides support for data invariants, whereas Java Server
Faces (JSF) [7] supports input assertions, validating forms directly without taking the
relation to the data model into consideration. In such approaches, the expression of other
types of validation requires a fall back to low-level coding to implement the checking

2

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

2 TUD-SERG-2010-033

of rules as well as the handling of error messages. ASP.NET [22] supports both input
assertions and data invariants, but with an inconsistent interface.

In this paper, we present a language design that integrates declarative data valida-
tion rules with user interface models in the domain of web applications, unifying syn-
tax, mechanisms for error handling, and semantics of validation checks, and that covers
value well-formedness, data invariants, input assertions, and action assertions. We have
implemented the approach in WebDSL [31], a domain-specific language for the defini-
tion of web applications. The main contributions of this paper are (1) the design of ab-
stractions for data validation in web applications for concise and uniform specification
of value well-formedness, data invariants, input assertions, and action assertions, (2) the
seamless integration of data validation rules and user interface definitions, (3) an exam-
ple of the integration of models for multiple technical domains, and (4) an application
of compilation by normalization for achieving a flexible and extensible implementation.

In the next section we give a brief introduction to WebDSL and the running exam-
ple used in the rest of the paper. Section 3 discusses validation features necessary for
web applications, namely value well-formedness, data invariants, input assertions, and
action assertions. Section 4 discusses the inclusion of data validation in the WebDSL
request lifecycle. Section 5 describes the implementation of data validation which is
based on compilation by normalization. Section 6 evaluates the approach. Section 7
discusses related and future work, and Section 8 concludes.

2 WebDSL

WebDSL [31] is a domain-specific language for the development of web applications
that integrates data models, user interface models, user interface actions, styling, access
control [13], and workflow [15]. While these different concerns are supported by sep-
arate domain-specific sub-languages, the static semantics of the language enforces the
integrity of the different concerns of an application model. What distinguishes WebDSL
from web application frameworks in general purpose languages [18, 22, 26] is static
verification and abstraction from accidental complexity (boilerplate code). Compared
to web modeling tools [29, 20, 24, 5], WebDSL combines high expressivity with good
coverage (customization options). The WebDSL compiler generates a complete imple-
mentation in Java.

In this section we give an overview of the features of WebDSL needed in this paper
and introduce the running example used to discuss data validation in this paper. We
illustrate the various categories of data validation with a small user management appli-
cation. The example application consists of two data model entities, namely User and
UserGroup (Figure 1). Data model definitions describe the persistent data model in a
WebDSL application. Data model entities consist of properties with a name and a type.
Types of properties are either value types (indicated by ::) or associations to other en-
tities defined in the data model. Value types are basic data types such as String and
Int, but also domain-specific types such as Email that carry additional functionality.
Associations are composite (the referer owns the object, indicated by <>) or referential
(the object may be shared, indicated by ->). Associations can be to collections such as
Set or List, demonstrated by the members property of the UserGroup entity.

3

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 3

entity User {
username :: String
email :: Email

}

entity UserGroup {
name :: String (id)
members -> Set<User>

}

define page editUser(u:User) {
form {

group("User") {
label("Username") { input(u.username) }
label("Email") { input(u.email) }
action("Save", save())

}
}
action save() {

return user(u);
}

}

Fig. 1. Value well-formedness for Email type.

Page definitions in WebDSL describe the web pages that allow users to view and
modify data model entities. Page definitions consist of the name of the page, the names
and types of the objects passed as parameters, and a presentation of the data contained
in the parameter objects. For example, the editUser(u:User) definition in Figure 1
creates a page for editing the properties of User u. WebDSL provides basic markup
operators such as group and label for defining the structure of a page. Navigation
is realized using the navigate element, which takes a link text and a page with pa-
rameters as arguments. Furthermore, page definitions can be reused by declaring them
as template. Templates can be included in page definitions by supplying the associated
parameters. In addition to presenting data objects, pages can also modify objects. For
example, the content of a User entity can be modified with the editUser page. The
page element input(u.username) declares an appropriate form input element based
on the type of its argument; in this case a text field. A data modification is finalized
by means of an action, which can apply further modifications to the objects involved.
For example, in the save action the changes to the User object are saved. Changes to
existing entities are automatically stored, new entities need to be saved explicitly using
the built-in save() entity method. The return statement of an action is used to real-
ize page flow by specifying the page and its arguments where the browser should be
directed after finishing the action.

In previous work we introduced the core components of WebDSL — pages, enti-
ties and actions — and described their implementation with transformations to the Seam
Java framework [31]. Data validation is identified as part of the web application domain,
but it is not addressed in the design. In our work on access control [13] we analyze var-
ious access control policies and show how to implement them in the WebDSL access
control sub-language. Access control definitions are implemented by transformation to
the existing core language. We have also examined workflow abstractions [15], which
are built on top of the core and access control languages. Since we encountered prob-
lems in the ‘translate to existing framework’ approach [12], we changed to a custom
framework which matches WebDSL better. While data validation can be encoded using
checks in WebDSL actions, the core language provides no mechanism for placing er-
ror messages at the related components in pages. This requires a change in the request
processing lifecycle of the core language. Furthermore, many validation constraints are
expressible declaratively, associated to the data model.

4

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

4 TUD-SERG-2010-033

3 Validation Abstractions

Data validation is required in multiple contexts in web applications. In this section we
distinguish four variants, show how these are expressed in WebDSL using declarative
data validation rules, and how error messages are integrated in the user interface.

3.1 Value Well-Formedness

Value well-formedness checks verify that a provided input value conforms to the value
type. In other words, the conversion of the input value from request parameter to an
instance of the actual type must succeed. This type of validation is usually provided by
libraries or frameworks. However, it has to be declared explicitly, and possibly at each
input of a value of the type. In WebDSL, value well-formedness rules are checked auto-
matically. WebDSL supports types specific for the web domain, including Email, URL,
WikiText, and Image. Automatic value well-formedness constraints for all value types
provides decent input validation by default. Note that validation rules are only used for
input checks that require notification to the user. Checks and filtering to prevent post-
data tampering and javascript injection are taken care of by the input and output com-
ponents of WebDSL, such filtering should not have to be expressed in an application’s
validation rules. For example, in the case of WikiText, there is only a validation for the
(very large) max length allowed, however, output(WikiText) filters HTML elements
based on a restrictive whitelist after processing Markdown. Furthermore, checks and
messages for built-in type validation can be customized in an application. For example,
Figure 2 shows how the Int type format check and message can be controlled in an
application.

type Int {
checkFormat = /-?\d+/.match(this)
messageFormat = this + " is not a valid number"

}

Fig. 2. Built-in validation customization.

The editUser page in Figure 1 consists of a form with labeled inputs for the User
properties. The save action persists the changes to the database, provided that all vali-
dation checks succeed. Since well-formedness validation checks are automatically ap-
plied to properties, the email property is validated against its well-formedness criteria.
The result of entering an invalid email address is shown in the screenshot: a message is
presented to the user and the action is not executed.

3.2 Data Invariants

Data invariants are constraints on the data model, i.e. restrictions on the properties
of data model entities. These validation rules can check any type of property, such as
a reference, a collection, or a value type. By declaring validation in the data model,
the validation is reused for any input or operation on that data. In Ruby on Rails [26]
data invariants can be defined in a ‘validate’ method of the active record class, which

5

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 5

entity User { username :: String (id) password :: Secret email :: Email }

extend entity User {
username(validate(isUnique(),"Username is taken"))
validate(password.length >= 8, "Password needs to be at least 8 characters")
validate(/[a-z]/.find(password), "Password must contain a lower-case character")
validate(/[A-Z]/.find(password), "Password must contain an upper-case character")
validate(/[0-9]/.find(password), "Password must contain a digit")

}

define page editUser(u:User) {
form {

group("User") {
label("Username"){ input(u.username) }
label("Email"){ input(u.email) }
label("New Password") {

input(u.password)
}
action("Save", save())

}
}
action save() {

return user(u);
}

}

Fig. 3. Data invariants for User entity validation.

entity UserGroup {
name :: String (id)
owner -> User
memberLimit :: Int
moderators -> Set<User>
members -> Set<User>

}

extend entity UserGroup {
validate(owner in moderators,"Owner must always be a moderator"))
validate(owner in members,"Owner must always be a member")
members(validate(membersWithinLimit(),"Exceeds member limit"))
predicate membersWithinLimit() { members.length <= memberLimit }

}

define page editUserGroup(ug:UserGroup) {
form {

group("User Group") {
label("Name") { input(ug.name) }
label("Member Limit") {

input(ug.memberLimit)
}
label("Moderators") {

input(ug.moderators)
}
label("Members") { input(ug.members) }
action("Save", save())

}
}
action save() {

return userGroup(ug);
}

}

Fig. 4. Data invariants for UserGroup entity validation.

6

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

6 TUD-SERG-2010-033

then gets called by the framework when validation is required. Multiple checks in a
validation method tangle validation for different properties. The Seam [18] framework
supports the specification of data invariants declaratively through annotations. However,
these annotations consist of a limited number of built-in checks and an escape to specify
a custom class that handles validation for a property. In the worst case each validation
rule needs a separate class, incurring the syntactic overhead of Java class declarations
several times.

Validation rules in WebDSL are of the form validate(e,s) and consist of a
Boolean expression e to be validated, and a String expression s to be displayed as
error message. Any globally visible functions or data can be accessed as well as any of
the properties and functions in scope of the validation rule context. In the examples in
this paper, error messages are placed inline for conciseness. In general, error messages
can also be placed inside a function or even be stored in the database (as entity prop-
erty), depending on the requirements for configuration and internationalization of the
application.

Validation checks on the data model are performed when a property on which data
validation is specified is changed and when the entity is saved or updated. Valida-
tion is connected to properties either by adding the validation in the property anno-
tation or by referring to a property in the validation check. More specific validation
checks are supported which are only checked when the entity is in a certain state,
these are validatesave, which is checked when an entity is saved for the first time,
validateupdate, checked on any update, and validatedelete, checked before delet-
ing the entity. The validation mechanism takes care of correctly presenting validation
errors originating from the data model. For form inputs causing data invariant violations
the message is placed at the input being processed. When data model validation fails
during the execution of an action, the error is shown at the corresponding button.

Figure 3 presents an extended User entity with several invariants and a password

property. The username property has the id annotation, which indicates the property
is unique and can be used to identify this entity type. The isUnique member function
(a generated function that takes into account the existence of an ‘id’ property) is called
to verify this constraint. The password property is annotated with validation rules that
express requirements for a stronger password. By declaring validation rules in the entity,
explicit checks in the user interface can be avoided. Both the WebDSL page definition
and the resulting web application page are shown below the entity definition.

Figure 4 shows more advanced validation rules, which express dependencies be-
tween the properties of an entity. The UserGroup entity is extended with an owner

reference, a moderators set, and a memberLimit value. The editUserGroup page
allows the owner to edit some of the UserGroup properties. The validation rule on
the moderators set expresses that the owner should always be in this set of moderators
(similarly, the owner should always be a member). The member set is constrained in size
based on the memberLimit value. Validation rules that cover multiple properties, such
as the ‘owner in moderators’ check, are performed for all input components of proper-
ties the validation is specified on. However, the checks can be added to a single property
as well, in order to specialize the error message. This is illustrated by the member limit
check, which is added to the members properties. Note that although the check is only

7

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 7

define page editUser(u:User) {
var p: Secret;
form {

group("User") {
label("Username") { input(u.username) }
label("Email") { input(u.email) }
label("New Password") {

input(u.password) }
label("Re-enter Password") { input(p) {

validate(u.password == p,
"Password does not match") }

}
action("Save", action{ }) } } }

Fig. 5. Form validation with input assertions.

attached to the members property, a form and action that changes only memberLimit

would still check invariants for the whole entity before committing changes. Duplica-
tion in checks can be avoided by putting checks in predicates or functions. A predicate
in WebDSL is a function that returns a Bool, its body a single expression that produces
the result value.

3.3 Input Assertions

Input assertions are necessary when the validation rule targets an input that is not di-
rectly connected to the persisted data model. These types of constraints are easy to
address in the form environment itself. For example, a validation check in XForms [4]
verifies properties of the entered form data. The model in XForms, on which valida-
tion is specified, is a model of the input data produced by the form. Unfortunately,
such form validation solutions are not integrated with validation on the application data
model. For example, an input for an entity produces the identifier as form data, in the
XForms model it is just text, but in the application data model it is an entity reference.

Validation checks in WebDSL pages have access to all variables in scope, including
page variables and page arguments. Since storing inputs happens before these validation
rules are checked (see Section 4), the placement and order of validation rules does not
influence the results of the checks. Visualization of errors resulting from validation in
forms are placed at the location of the validation declaration. Usually such a validation
rule is connected to an input, which can be expressed by placing the validation rule as
a child element of input.

The example in Figure 5 demonstrates the final addition to the user edit form, an
extra password input field in which the user must repeat the entered password. This
validation cannot be expressed as a data invariant, since the extra password field is not
part of the User entity. Therefore, the rule is expressed in the form directly, where it
has access to the page variable p. This variable contains the repeated password whereas
the first password entry is saved in the password field of User entity u. When entering
a different value in the second field the validation error is presented, as can be seen in
the screenshot.

8

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

8 TUD-SERG-2010-033

define page createGroup() {
var ug := UserGroup {}
form {

group("User Group") {
label("Name") { input(ug.name) }
label("Owner") { input(ug.owner) }
action("Save", save()) } }

action save() {
validate(email(newGroupNotify(ug))
,"Owner could not be notified by email");
return userGroup(ug); } }

Fig. 6. Action assertion for UserGroup creation.

define page editUser(u:User) {
... form ...
action save() {

message("User information success...");
return user(u);

} }

define page user(u:User) {
group("User") {

label("Username") { output(u.username) }
label("Email") { output(u.email) }
navigate(editUser(u)) {"edit"} } }

Fig. 7. Success message.

3.4 Action Assertions

Action assertions are predicate checks at any point in the execution of actions and func-
tions for verification during the processing of inputs. If such an assertion fails, the action
processing needs to be aborted, reverting any changes made, and the validation message
has to be presented in the user interface. This type of validation is not directly supported
in existing solutions, requiring an investment in finding appropriate hooks in the imple-
mentation. For example, Ruby on Rails [26] assumes validation is specified in data
model classes, errors are passed through those model classes and the form mechanism
is built around that. There is no mechanism for a validation check as part of a controller
action, this requires a low-level encoding that passes the check result and error message,
or wrapping validation in a data model class.

WebDSL supports this type of validation transparently using the validate syntax.
The errors resulting from action assertion failures are displayed at the place the execu-
tion originated, e.g. above the submit button which triggered the erroneous action.

Figure 6 provides an example of an action assertion. On the right is a page defi-
nition for a createGroup page which allows creating new UserGroup entities. The
constraint expressed in the save action is that creating a new group requires email no-
tification to the specified owner (which might not be the user executing this operation).
The newGroupNotify email definition retrieves an email address from its UserGroup
argument (through ug.owner.email) and tries to send a notification email to the owner
of the new group. When this fails, for instance because there is no mail server respond-
ing to the email address, the call returns false and the validation check produces the
error. This result is shown on the left in the screenshot.

9

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 9

Generic error handling, such as problems with a database commit, can also be ex-
pressed using action assertions. The web application can then display an error message
in the form instead of redirecting to a default error page.

3.5 Messages

This section has described assertions that report erroneous behavior in actions. Related
to such action assertions, is a generic messaging mechanism for giving feedback about
the correct execution of an action. This requires a place to show messages, for instance
by adding a default message template at the top of each page. Furthermore, the message
should be declared in the action code. An example of such messaging is shown in Fig-
ure 7. The save action of the editUser page gives a message to the page redirected
to, namely user. The result of the executed action is shown on the left.

4 Validation Mechanics

We have found that data validation concerns are often delegated to a web application
framework in web engineering research, e.g. Struts for WebML [8] and Ruby on Rails
for HyperDe [24], assuming that the framework will provide sufficient support. Ex-
amining such web frameworks (in our case Seam [18], ASP.NET [22], and Ruby on
Rails [26]) reveals limitations in the data validation solutions. For example, validation
is sometimes only supported in the view layer, making it hard to access the database and
the data that is already loaded. Another issue can be that validation hooks are only pro-
vided for single input components, ignoring validation between multiple inputs. Value
well-formedness checks might have to be repeated ad nauseam. The next problem is
getting the messages in the right place. Usually, this is organized well for the directly
supported validation features. However, for more advanced cases like multi-input and
database access it becomes cumbersome, e.g. create an entire class for a single val-
idation check, and error-prone, e.g. hook into the object-relational mapping (ORM)
session. In the worst case, messages will need to be passed explicitly and message
components need to be included in page definitions that can retrieve and display those
passed messages. In the data validation solution we propose, these problems are ad-
dressed. Validation checks have access to all inputs and the ORM context. This section
describes the integration of data validation into the request processing lifecycle, which
is needed for such flexibility. A request is processed in five phases: convert request pa-
rameters, update model values, validate forms, handle actions, and render page or redi-
rect. A database transaction is started for each request, this transaction is rolled back
when there are validation errors, otherwise it is committed. The phases are illustrated
in Figure 8 and will be covered separately.

4.1 Convert Request Parameters

Users interact with web applications through the browser. This process consists of re-
quest and response strings being exchanged between the web server and the browser.
A form, such as displayed in the example in Figure 1, is defined by a response string,

10

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

10 TUD-SERG-2010-033

Fig. 8. WebDSL request processing lifecycle.

which is interpreted by the browser to produce components that allow user interaction.
A user can fill in data in a text field, and press the submit button. The browser first
collects the data from the form input fields, and constructs a request string to send to
the web server, which receives the request string and parses it. Values from input fields
can be accessed separately but are represented as strings. A web application bears the
responsibility of converting these strings to actual types to be used in further process-
ing of the request. Since such conversions are common in web applications, they are
typically directly supported in frameworks. The supported types are the native types
available in the language used to build the framework. WebDSL extends the usual set
of primitive types with domain-specific types such as Email and Secret. Conversions
from and to strings for these types are supported in the language itself.

Request parameter conversion is not possible if the incoming value is not well-
formed. For example, a value of "3f" cannot be converted to an integer. Since a failed
conversion invalidates any input it is not necessary to update the model before re-
rendering the page with error messages. The Value Well-formedness Errors ar-
row indicates this situation. In a page render resulting from validation errors, input com-
ponents that were submitted restore the submitted value instead of the original value.
This allows a user to fix the entered data.

Each input in a page definition includes a template that renders the corresponding
conversion error. This template wraps around inputs and labeled inputs which allows
explicit indication of the erroneous input element. Validation message templates can
be overridden in the application model to support flexibility in layout and style. A tem-
plate definition in WebDSL can contain the same elements as a page definition. An error
rendering template takes as argument the list of messages (a List<String>). The mes-
sages can be shown in several ways, e.g. as items in a bullet list, or on new lines below
the input (as illustrated in Figure 1). Error templates and customization is discussed in
more detail in Section 5.

4.2 Update Model Values

In the first phase, parameters are decoded from strings. In the ‘Update Model Values’
phase, these parameters are automatically inserted in data model entities. WebDSL sup-
ports such data binding through input elements. For example, the input(u.email)

element declares that an input field should be displayed with the current contents of
the email property of variable u of type User. Furthermore, when a user submits the
containing form with a new value in the email field, the new value will be assigned to

11

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 11

u.email. An action finalizing this operation just needs to save the variable u in order
to persist the new email address.

4.3 Validate Forms

The changes made through data binding have to be validated, this is performed after data
binding for the whole form is completed. When an entity property is being validated,
each validation rule defined on that property is checked, possibly producing multiple
error messages. This can be observed in the password property example in Figure 3.
Besides entity validations, there can also be validation rules in pages which need to be
enforced; e.g., the repeat password check in Figure 5. The ‘Validate Forms’ phase tra-
verses the form that is submitted and checks any validation it encounters. When at least
one validation fails during this phase, further processing is disabled and errors are dis-
played, indicated by the Data Invariant Errors and Input Assertion Errors

arrows.
Messages originating from entity validation are rendered in the same way as the

conversion error messages. The same template is used, but now the argument contains
validation error messages originating from the data model. The screenshot in Figure 3
shows this type of message. The validation messages for page validations are displayed
at the location of the check in the form. If the validation is expressed in the context
of an input element, then the input will display the error as if originating from a data
model invariant (see Figure 5). If the validation check is not in the context of an input,
it is rendered in-place.

4.4 Handle Actions

When all validation checks in previous phases have succeeded, the selected action is
executed. During the execution of an action there can be action assertions that val-
idate the data in the current execution state of the action. Moreover, data invariants
are still checked during this phase and can produce validation errors as well. If any
validation check fails, the entire action is cancelled. This means all the changes to
the data model are reverted and rendering is initiated (Data Invariant or Action

Assertion Error arrow). Only one error can be produced at a time since action pro-
cessing will not continue when a validation fails.

Error messages produced during the ‘Handle Actions’ phase are placed at the exe-
cuted action button (Figure 6). In this case, the error template wraps around the action
invoking button instead of an input or label.

4.5 Render Page or Redirect

Validation messages produced in the previous phases result in a re-render of the same
page with error messages inserted. If all validations succeed, the action results in a
redirect to the same or a different page, possibly sending messages along which describe
successful execution of the action (Messages arrow).

Success messages to other pages are handled by adding an implicit argument to each
page containing the list of messages. When an action is finished executing and initiates

12

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

12 TUD-SERG-2010-033

a redirect or re-render, the messages are passed along. A different template is used for
success messages, since these are likely to use different colors than the templates for
errors. By default this template is added at the top of each page, but the position can be
customized as well by adding an explicit messages component in a page.

4.6 Ajax

WebDSL also supports asynchronous page updates. Instead of a full page refresh as
response to an action, an action may selectively replace elements of the page with new
elements. For example, a content-heavy page can have a small sidebar containing a
placeholder with a login button. The action connected to this button can replace the
placeholder with a login form. When a validation rule fails in such a form, the entire
placeholder is replaced again, it will display the login form with validation errors just
as with the validation in earlier examples in this paper. Automatically deriving more
fine-grained validation checks while entering data in the form is not addressed in this
paper.

5 Compilation by Normalization

The implementation of data validation is based on compilation by normalization [17].
Data validation language elements are transformed to more generic lower-level con-
structs in the WebDSL language. These lower-level constructs are reusable for other
language features. Moreover, they can easily be tested in isolation, resulting in a ro-
bust implementation. Since these lower-level constructs are still at a higher abstraction
level than the code that is ultimately generated, they greatly simplify the translation for
the data validation abstraction. This section describes the implementation of validation
checks (Section 5.1), the visualization of generated error messages (Section 5.2), and
the mechanism for generic messages (Section 5.3).

5.1 Validation Checks

This section provides a more detailed explanation of the implementation of validation
checks. The type of checks introduced in Section 3 are discussed separately.

Value Well-Formedness To implement or customize value well-formedness checks,
a hook is needed to add validation to value types. The WebDSL definition type x

{ typeelem* } allows adding validation to (built-in) value types. For instance, the
definition in Figure 9 checks that a request parameter of type Int can be successfully
created from the incoming String (input is a special variable in this context that refers
to the incoming request parameter String).

Figure 10 describes the semantics of these type validations using a transformation.
The WebDSL code that does the parameter conversion is shown on the left, converting
input (type String is added for clarity, it can be omitted because WebDSL supports
local type inference in variable initializations) to inputX, where X is a value type. A

13

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 13

type Int {
validate(input.parseInt() != null, "Not a valid Int")

}

Fig. 9. Value well-formedness definition.

value well-formedness definition on the type (similar to what is shown in Figure 9) adds
validation to type X. This results in a transformation of the conversion code to include
the validation checks, before performing data binding (ref := inputX;). Validations
on built-in value types are part of the standard library, and custom value types can
also take advantage of automatic well-formedness checks for inputs using the type

definition.

var input : String :=
requestParams().get(elemId());

if(input != null) {
var inputX := input.parseX();
if(inputX != null) {

... ref := inputX; ...
}

}

type X { ... validate(check,message) ... }

⇒

var input : String :=
requestParams().get(elemId());

if(input != null){
validate(check,message);
var inputX := input.parseX();
if(inputX != null) {

... ref := inputX; ...
}

}

Fig. 10. Well-formedness checks transformation.

The validate function that is called is shown in Figure 11. The function checks the
passed condition and throws an exception with the message, contained in a Validation-
Exception entity. Where this exception is caught and how errors are displayed is de-
scribed later in this section. The cancel() function is a built-in function for cancelling
changes made during request handling. More specifically, after finishing the current
phase, any changes due to data binding or actions are reverted, and any phase between
the current and render phase is skipped.

entity ValidationException { message :: String }

function validate(check : Bool, message : String) {
if(!check) {

cancel();
throw ValidationException{ message := message };

}
}

Fig. 11. Validate utility definitions.

Data Invariants Figure 12 illustrates the implementation of data invariant checks us-
ing transformations. These validations on entity properties are checked at two places in
the lifecycle. Firstly, they are checked in the ‘Validate Forms’ phase. The transforma-
tion on input(e.x) adds the validation to each input of entity property x. Secondly,
they are checked for every entity instance that is new or has changes at the end of
an action. This is handled by adding the validation checks to an entity function hook,
beforeCommit(), created specifically for this purpose. The Object-Relational Map-

14

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

14 TUD-SERG-2010-033

ping (ORM) library is instructed to call this function for each ‘dirty’ object, before
committing the changes.

entity E {
x :: TypeOfX (..., validate(checkn,messagen), ...)

}

input(e.f) {
...

}

⇓
input(e.f){

...
validate(checkn, messagen)

}

entity E {
...

}

⇓
entity E {

...
extend function beforeCommit(){

validate(checkn, messagen);
}

}

Fig. 12. Property validation transformation.

When multiple failed validation rules have to produce messages, e.g. an input with
multiple nested validations, they are combined into a single call. This is illustrated in
Figure 13. The call to validateMultiple will create multiple messages ([elem1,
..., elemn] is a list construction expression in WebDSL), the utility function and
entities used for checking multiple validation rules at once are shown in Figure 14. The
Validation entity stores a validation result and its message. ValidationException-
Multiple can be used to throw an exception with multiple messages. In the validate-
Multiple function all checks are first performed, then if any check failed, the messages
of all failed checks are put into the thrown exception.

...
validate(checkn,messagen)
...

⇒

validateMultiple([..., Validation{
check := checkn,
message := messagen

}, ...])

Fig. 13. Combine validations transformation.

entity ValidationExceptionMultiple {
messages :: List<String>

}

entity Validation {
check :: Bool
message :: String

}

function validateMultiple(valList : List<Validation>) {
var messages := List<String>();
for(val : Validation in valList where !val.check) {

messages.add(val.message);
}
if(messages.length > 0) {

cancel();
throw ValidationExceptionMultiple{ messages := messages };

}
}

Fig. 14. Multiple validate utility definitions.

15

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 15

Input Assertions Input assertions (validation checks in a form) call the utility tem-
plate definition in Figure 15. The validate template consists of an executeValidate
block, which contains action code to be executed during the ‘Validate Forms’ phase of
request processing (see Section 4). In this block the validate function is called, which
was shown in Figure 11. A similar template is defined for validateMultiple.

define validate(check:Bool, message:String) {
executeValidate { validate(check, message); }

}
define validateMultiple(list : List<Validation>) {

executeValidate { validateMultiple(list); }
}

Fig. 15. Page validation utility template.

Action Assertions Action checks call the utility validate function (Figure 11) di-
rectly, the cancel function and exception mechanics are supported in this context as
well. By reusing the validate function for each type of data validation the consis-
tency of handling validation checks is enforced.

5.2 Reporting Validation Errors

Validation checks can produce error messages which have to be presented to the user.
Applications can have various requirements for displaying such error messages, e.g. a
specific style and the location of the error. The validation abstraction needs to cope with
these requirements and should be flexible enough to easily create customizations.

In order to visualize validation errors, inputs, labels, and action buttons/links are
wrapped in a validationContext. This wrapping is illustrated in Figure 16. The
input(x) is wrapped in a validationContext element, which includes a refer-
ence to the error template that needs to be used for displaying the error, in this case
errorTemplate (shown in Figure 17). This is further desugared to a template call
with two explicit template arguments, the error template and the contents. This wrap-
ping is done automatically, but a validationContext can also be explicitly added
in an application in order to customize the error template that is used in that specific
context.

input(x) ⇒ validationContext errorTemplate {
input(x)

}

⇒ validationContext with {
error(m : List<String>) {

errorTemplate(m)
}
content() {

input(x)
}

}

Fig. 16. Validation feedback transformation.

The validationContext template is shown in Figure 18. This template takes care
of catching the thrown exceptions and calling the error template. try-catch-finally

16

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

16 TUD-SERG-2010-033

define allow-override errorTemplate(messages : List<String>) {
block[class: error] {

for(m: String in messages) {
output(m)

}
elements

}
}

Fig. 17. Error template.

in the context of a template has the following semantics: the try and finally body
are handled in the pre-render phases, if no exception is caught they are handled in the
render phase as well. If an exception is thrown in one of the earlier phases, the entire
construct will be ignored from that point and in subsequent pre-render phases, and the
exception is reproduced at the same point during the render phase. In the render phase,
the matching catch and finally blocks are executed. In the catch block the error
template is called with the wrapped content. The template call elements produces the
elements that are children elements in the template call (in this case content). The
default errorTemplate template can be redefined in an application, this behavior is
enabled by the allow-override modifier. Note that the error template can also be cus-
tomized for a specific case, using validationContext directly, or in a whole template
call context, shown later in this section. The request-scoped variable validation-

ContextCount keeps track of nesting. Request-scoped variable variables are created
at the beginning of the request and cleaned up at the end of the request, and they are
accessible from anywhere in the application. The executeRender block contains ac-
tion code that is executed during the render phase of the request processing lifecycle
(Section 4). validationContextCount counts the number of validationContext
templates that have been entered recursively. The validation message will be shown at
the outer validation context, when validationContextCount == 1. This will make
sure that inputs with labels take the label as part of the erroneous content, and that
an explicit validationContext template call takes precedence over an automatically
generated one. It also becomes possible to place the error higher in the page element
tree by adding an explicit validationContext element, e.g. to show errors above or
below the form that encloses the input.

request var validationContextCount := 0

define validationContext() requires error(m: List<String>), content() {
executeRender { validationContextCount++; }
try { content }
catch(ve : ValidationException) {

if(validationContextCount == 1) { error([ve.message]) { content } }
else { throw ve; }

}
catch(vem : ValidationExceptionMultiple) {

if(validationContextCount == 1) { error(vem.messages) { content } }
else { throw vem; }

}
finally { executeRender { validationContextCount--; } }

}

Fig. 18. Validation context template.

17

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 17

Customization of the error template can be done in an entire template context to
avoid repetitively calling the custom template. Figure 19 shows a custom error template,
errorTemplateCustom, and a call to useValidationError, which declares a new
default error template for the content. The implementation of this context is done by
generating a new uniquely named template and reusing the dynamically scoped local
template redefinitions of WebDSL to set errorTemplate for the content. Each call to
errorTemplate in the context of CustomValidationContext1 calls the redefined
version of errorTemplate, which uses the custom error template to show messages
(errorTemplateCustom). The call to useValidationError is transformed to a call
to the generated template (customValidationContext in the example). These error
contexts can be used to allow a library with layout to enforce a corresponding error
layout, without requiring the user of the library to set the error template.

useValidationError errorTemplateCustom {
... content ...

}

⇒ customValidationContext1 {
... content ...

}

define errorTemplateCustom(
messages : List<String>) {

for(m: String in messages) {
output(m)

} separated-by { ", " }
elements

}

define customValidationContext1() {
elements
define errorTemplate(m : List<String>) {

errorTemplateCustom(m)
}

}

Fig. 19. Custom error context transformation.

5.3 Messages

Besides error messages we have also described generic messages. These messages are
stored in a session entity (Figure 20). The messageStorage session entity has one
property, a list of String messages. Session entities in WebDSL behave like singletons
(one per browser session) that are automatically stored in the server session, and re-
trieved upon the next request. Since an action always results in a redirect (to avoid
accidental repeated ‘post’ requests), the messages can be immediately retrieved and re-
moved from the session when rendering the next page. This approach avoids polluting
the URL with messages when redirecting. The message function is added for conve-
niently adding messages to the session entity.

The display of these messages is illustrated in Figure 20. Since messages are stored
in the session entity messageStorage, they need to be retrieved and removed so they
will not be shown again. They are taken from the session and put into the request-scoped
variable incomingMessages. A call to the messages template is transformed to a call
to the default messageTemplate which retrieves the messages through the function
getMessages(). This function marks the messages as being shown, so they will not
show up at the top of the page, and returns the list of messages. Since getMessages()
can also be called directly the template used for showing messages can be customized.
Furthermore, an application can override messageTemplate.

18

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

18 TUD-SERG-2010-033

session messageStorage {
messages :: List<String>

}

function message(m : String) {
messageStorage.messages.add(m);

}

extend session messageStorage {
function retrieve() : List<String> {

var temp := List<String>();
temp.addAll(messages);
messages.clear();
return temp;

}
}
request var incomingMessages :=

messageStorage.retrieve()
function getMessages() : List<String> {

messagesShown := true;
return incomingMessages;

}

request var messagesShown := false
function getMessages() : List<String> {

messagesShown := true;
return incomingMessages;

}
define allow-override
messageTemplate(messages : List<String>) {
block[class := success] {

for(m: String in messages) {
output(m)

}
elements

}
}

messages ⇒ messageTemplate(getMessages())

Fig. 20. Storing and receiving messages.

6 Evaluation

In order to assess the data validation abstraction presented in this paper, we have per-
formed two case studies in which we analyzed the application of data validation in
existing applications written in WebDSL.

Goal and Research Questions Our goal in these case studies is to analyze the coverage
of the data validation abstraction, to assess the conciseness of data validation defini-
tions, and to review the flexibility in presenting messages to the user. Our research
questions are the following:

RQ1 What is the coverage of the validation abstraction with respect to the data valida-
tion requirements of the application?

RQ2 How concise are the data validation definitions?

RQ3 Is the default way of presenting errors acceptable, and are the customization op-
tions sufficient?

6.1 Case Study 1: Webdslorg

The Webdslorg application is used for the homepage of WebDSL1. It is a wiki appli-
cation that allows developers and invited users to create a manual online, and to show
news related to WebDSL. The application contains wiki page versioning, page compo-
sition, user management, and access control management. This application consists of
around 1800 lines of WebDSL code. These lines constitute 10 data model entities, 27
pages, 70 templates, and 30 actions. Webdslorg is open source2.

1 http://webdsl.org
2 https://svn.strategoxt.org/repos/WebDSL/webdslorg/trunk/

19

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 19

The main data validation requirements in this application occur in the create and
edit user forms, the login form, and the create and edit page forms. To address RQ1
we first look at the usage of data validation in the application. The results are shown
in Figure 21. There are 30 input components in the application, each input validates
well-formedness implicitly. 8 data invariants are used, checking e.g. uniqueness and
existence of properties (‘not null’ checks). The other types of data validation do not
occur frequently, there are 3 input assertions and 2 action assertions.

Implicit Checks Explicit Checks
Value Well-Formedness Data Invariants Input Assertions Action Assertions

30 8 3 2

Fig. 21. webdsl.org data validation

In the wikipage editing template there is a check to verify that the version being
edited is still the latest version of that wikipage, and if not, the user is warned and the
newer template is shown before finalizing the edit. This kind of warning behavior is
not in the data validation abstraction and a workaround is created here using generic
messages and action assertions. For the other data validation requirements the data val-
idation abstraction is sufficient.

For RQ2 we look at the expressions used in data validation checks. In 9 out of
13 cases the check is a simple comparison, in the other 4 cases a function is called
which decides the validation outcome. These functions are e.g. querying the database
for uniqueness. Also the warning behavior mentioned requires a function to encode a
workaround.

For RQ3 we determine how much error message customization is applied in Webd-
slorg. In this application there is a global override of the error and success messages.
Since all the forms have a consistent layout, the error messages can also be displayed
in one consistent way.

6.2 Case Study 2: Researchr

Researchr3 is a tool for indexing, managing, and sharing bibliographic information of
scientific publications. An important feature of Researchr is the identification of au-
thors, editors, and advisors. Other features include:

– Author profiles with publications, affiliations, reviews
– Theses with advisors
– Indexing of proceedings and journals

Basic bibliography information can be further enriched by:

– Tagging: categorize publications with keywords
– Reviewing: private or public reviews of publications
– Bibliographies: collect publications on a subject

3 http://researchr.org

20

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

20 TUD-SERG-2010-033

– Usergroups: share bibliographies

Researchr consists of around 15000 lines of WebDSL code, which constitute 50 data
model entities, 100 pages, 600 templates, and 190 actions.

To address RQ1 we look at the application of data validation in Researchr. The re-
sults are shown in Figure 22. Researchr contains 160 input fields which all get implicit
value well-formedness checks. There are 20 data invariants, which enforce uniqueness
of identifying properties and some multi-property constraints. 5 input assertions cover
cases similar to the ‘repeat password’ check in Figure 5. Finally, there are 14 action as-
sertions. Several complex operations in Researchr are related to conversion of imported
data from DBLP4 and from bibtex entries, these benefit from having action assertions
to notify the user of problems occuring in the import and to prevent importing incorrect
data.

Implicit Checks Explicit Checks
Value Well-Formedness Data Invariants Input Assertions Action Assertions

160 20 5 14

Fig. 22. researchr.org data validation

Similar to what we found in case study 1 for RQ2, the checks in Researchr are
mostly simple comparisons and a few more complex checks encapsulated in function
definitions.

Researchr has several layouts for forms, some are placed in the main part of the
page, others are small and located in a sidebar. This requires customization of error
messages specific to these contexts (RQ3). The error messages for normal forms are
customized by redefining the global template for error messages. The sidebar is nested
in a useValidationError call (see Figure 19), in order to specify a different error
template in that entire context.

7 Discussion

This section contains a discussion of related work, covering web modeling tools (Sec-
tion 7.1), web application frameworks (Section 7.2), and form replacements (Section 7.3).
This is followed by a discussion of future work (Section 7.4).

7.1 Web Modeling Tools

Several model-driven methodologies for creating web applications have been proposed
in recent years, including OOHDM [28], SHDM [21], WebML [8], UWE [19], OOWS
[25], and Hera [30]. WebDSL goes beyond being a methodology for designing web
applications and providing a path to actual implementation by leveraging full code gen-
eration. The transformation from problem space to solution space is completely auto-
mated. In this paragraph we discuss how these methodologies and their tools relate to
WebDSL in general, and data validation integration in particular.

4 http://dblp.uni-trier.de

21

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 21

The Hera Presentation Generator [11] allows modeling forms to support editing data
in the session. The persisted domain data of the application cannot be changed. Hera-
S [29] also incorporates persisting form input data through update queries. The only
example in the paper of such an update shows incrementing a view counter, a simple
operation that does not process form input data. Kraus et al. [20] present the generation
of partial web applications from UWE models. An application skeleton is generated
including JSP pages and navigation between them. Forms and input data are not dis-
cussed, which probably means it is part of the custom code. HyperDe [24] is a tool that
allows online creation of web applications designed with the SHDM method. The paper
shows an example of an input field for a person’s email address. This involves manual
construction of data binding (showing the email and reading it from the submitted data)
and does not indicate how validation of that input can be performed. WebRatio [5] is
a tool for generating web applications based on the WebML method. The conceptual
WebML models do not model data validation concerns, while WebRatio does have form
validation features. These can be directly mapped to validation features in the under-
lying Struts [6] framework. Validation which goes beyond the form, such as querying
the database, has to be implemented in a Struts validator class. This implementation
requires intricate knowledge of the translation process and implementation platform.

Book et al. [3] describe a formal model for user input evaluation and interface
responses. Rules define validity, visibility, and availability of user interface widgets.
Technical validation rules in their model correspond to value well-formedness rules,
automatic checks based on the type of the input. Data model validation is similar to
input assertions in this paper, validations related to specific inputs in forms. Only vari-
ables of primitive types are included in the model, so there is no clear connection to
validation on data model entities. Their model does include intermediate validation of
data while entering the form, e.g. validating when an input loses focus. Validation rules
are constructed in a visual expression editor and execution is interpreted at run-time.
The implementation of this model is part of the Cepheus framework.

From our study of the web modeling literature we conclude that data validation is
not a large research theme in this area. The languages and tools typically only address
simple form validation, without accessing the persisted data model.

7.2 Web Application Frameworks

JavaServer Faces (JSF) [7] provides abstractions for creating user interfaces in Java
web applications. The core of the request processing lifecycle in JSF (without events
and short-circuiting) is illustrated in Figure 23. The lifecycle is critically different at one
point compared to the WebDSL lifecycle shown in Section 4, the ‘Process Validations’
phase occurs before updating of model values. Since the connection to the model has
not been made at the point of validation, these validation rules only support checks
based on the input value. Expressing validation rules covering multiple input fields is
cumbersome as it requires that each relevant input has been processed (this validation
needs to be expressed below the inputs in the page component structure) and requires
accessing the components with identifiers.

The Seam framework [18] combines JSF with the Java Persistence API (JPA) [10]/Hi-
bernate [2] for data model persistence. Because the data model is not updated before

22

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

22 TUD-SERG-2010-033

Fig. 23. JSF request processing lifecycle.

processing validations, validation constraints cannot be expressed on the data model
(e.g. the member limit validation in Figure 4). It is necessary to encode these kinds of
constraints as part of the ‘Invoke Application’ phase (Figure 23), in which the ‘business
logic’ of the application is executed. Unfortunately, in the Seam framework the ‘Update
Model Values’ phase also results in database updates. The database transaction has to
be explicitly aborted in case the validation check fails at the ‘Invoke Application’ phase,
and the old values have to be restored before rendering the response. Furthermore, plac-
ing error messages at this point in the lifecycle requires referring to explicitly named
JSF page components. Keeping such names in sync is hard to maintain.

ASP.NET [22] provides form input validation controls which are executed at the
client and the server. There are several built-in validation controls, such as required
field and regular expression. Moreover, developers can create custom validation con-
trols to provide code for validating the input (client-side is optional). These form con-
trols are similar to the validation support in JSF, also not taking data models into
account. Visual Studio provides a visual designer to create data models and gener-
ate classes with database mappings to be used with the Language-Integrated Query
(LINQ) [23] feature in .NET. These generated classes allow validation to be expressed
on the data model through predefined method names, such as OnFieldChanging and
OnValidate, which can be implemented in partial classes. An issue is that validation
is not defined in the same place as the entity, and has to be synchronized with the gener-
ated classes. The implemented function has to throw a specific exception, which needs
to be caught in the page code and requires custom code to display the error message.
Consequently, form validation and data model validation are supported by inconsistent
mechanisms in this framework. Both mechanisms have limited access to the rest of the
application.

In Ruby on Rails [26] validation can be specified in Active Record objects, which
constitute data model entities. The implementation consists of defining functions with
specific names, such as validate and validate on create, which are the hooks for
validation. These functions get called when an object is saved. Defining such functions
is more verbose than the validation rules in WebDSL and there is no static verifica-
tion of the validation check. Built-in validation checks can be declared more concisely,
leveraging the fertile ground of Ruby for embedded DSLs [9]. Nevertheless, this in-
troduces two notations for the same concept. Value well-formedness checks, such as
checking whether an input is a number, are typically built-in checks. These are not
added automatically. Displaying errors for data model validation checks also has to be
done manually by adding error message components to pages, which refer to an entity
property or the entity as a whole. Form validation related to values not in the data model
can be validated in the action handling code, and the message can be added by explicitly

23

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 23

placing it in the page template and connecting it by name. Generic errors and messages
are handled similarly.

What can be observed in the various existing web framework solutions for valida-
tion is that the different types of validation are addressed with separate mechanisms.
Furthermore, there is no automatic way of placing messages in pages for each of the
validation types, often one type is preferred over the others.

7.3 Form Replacements

The XForms [4] standard is a successor to HTML forms. XForms separates the classical
form into model, instance data, and user interface to allow better reuse. It provides a rich
standard for interactive forms, which improves device-independence and reduces the
need for scripting. Values are strongly typed, which allows automatic well-formedness
checks. Furthermore, XForms supports validation rules to constrain the value space of
data values collected by the model. While the standardization of an improved form
component is a positive development, the features proposed are already available as
Javascript libraries. It does not solve the integration problems with user interface and
data validation, since only part of the validation concerns can be addressed in the envi-
ronment of the form.

7.4 Future Work

In this paper we have not considered intermediate validation checks. Validation could
be requested from the server for each input component separately, while the user is
entering data into a form. In the examples shown, validation is performed when the
save button is pressed. Providing feedback as early as possible can improve the user
experience.

Checks are currently always performed on the server. Implementing checks client-
side could be considered an optimization and does not obviate the need for server-
side checks, since submitted data can be tampered with. Moreover, checks that require
access to the database can only be performed at the server.

Besides strict validation errors which deny the operation, there are also softer con-
straints involved in developing a web application. The validation mechanism could be
extended to include warnings and confirmations, e.g. require the user to click again to
finalize an action. Furthermore, information messages could be added to assist the user
in repairing typical mistakes, e.g. when the user repeats an error a few times, show extra
information to help the user fill in the form.

Some data invariants can be translated to database schema constraints. Adding these
to the underlying database schema will improve robustness of the application. For ex-
ample, it will protect the programmer from certain errors when migrating old data to a
new version of the application.

The current validation model focuses on verifying that the data satisfies a set of
constraints. Actions that break these constraints are forbidden and result in an error
message. An alternative approach would be to solve constraints automatically [16] and
repair data so that it complies with the constraints or to suggest such repairs to the user.

24

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

24 TUD-SERG-2010-033

In this paper we focus on how and where to express data validation. The checks con-
sist of arbitrary expressions such as simple comparisons, collection membership tests,
or function calls. Since most inputs in web application forms are strings, expressivity
could be increased by incorporating a domain-specific language for string constraints.
Scaffidi et al. [27] demonstrate that parsing technology can provide rich string input
validation and feedback.

8 Conclusion

The domain-specific language engineering challenge for the web application domain [31]
is to realize a concise, high-level, declarative language for the definition of web appli-
cations in which the various concerns are supported by specialized sub-languages, yet
linguistically integrated, and from which implementations can be derived automatically.
This paper presents a solution for the integration of data validation, a vital component of
web applications, into a web application DSL that includes data models, user interfaces,
and actions. This solution unifies syntax, mechanisms for error handling, and semantics
for data validation checks covering value well-formedness, data invariants, input asser-
tions, and action assertions. Our approach improves over current web modeling tools
by providing declarative data validation rules from which a complete implementation
is generated. Unlike web application frameworks, our solution supports different kinds
of data validation uniformly. The integration of data validation rules into WebDSL, a
web application DSL that supports data models, user interfaces, and actions, allows web
application developers to take a truly model-driven approach to the design of web appli-
cations, concentrating on the logical design of an application rather than the accidental
complexity of low-level implementation techniques.

References

1. Object Constraint Language, OMG Available Specification, Version 2.0, 2006.
2. C. Bauer and G. King, editors. Java Persistence with Hibernate. Manning Publ. Co., 2006.
3. M. Book, T. Brückmann, V. Gruhn, and M. Hülder. Specification and control of interface

responses to user input in rich internet applications. In ASE ’09: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering, pages 321–331,
Washington, DC, USA, 2009. IEEE Computer Society.

4. J. M. Boyer, editor. XForms 1.0 (Third Edition). W3C Recommendation, 2007.
5. M. Brambilla, S. Comai, P. Fraternali, and M. Matera. Designing web applications with

WebML and WebRatio. Web Engineering: Modelling and Implementing Web Applications,
pages 221–260, 2007.

6. D. Brown, C. Davis, and S. Stanlick, editors. Struts 2 in Action. Manning Publ. Co., 2008.
7. E. Burns and R. Kitain, editors. JavaServer Faces Specification. Version 1.2. Sun, 2006.
8. S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): a modeling lan-

guage for designing Web sites. Computer Networks, 33(1-6):137–157, 2000.
9. J. Cuadrado and J. Molina. Building Domain-Specific Languages for Model-Driven Devel-

opment. IEEE Software, pages 48–55, 2007.
10. L. DeMichiel and M. Keith, editors. JSR 220: Enterprise JavaBeans, Version 3.0. Java

Persistence API. Sun Microsystems, 2006.
11. F. Frasincar, G. Houben, and P. Barna. HPG: the Hera Presentation Generator. Journal of

Web Engineering, 5(2):175, 2006.

25

SERG Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

TUD-SERG-2010-033 25

12. D. M. Groenewegen, Z. Hemel, L. C. L. Kats, and E. Visser. When frameworks let you down.
platform-imposed constraints on the design and evolution of domain-specific languages. In
J. Gray et al., editors, Domain Specific Modelling (DSM’08), pages 64–66, October 2008.

13. D. M. Groenewegen and E. Visser. Declarative access control for WebDSL: Combining
language integration and separation of concerns. In D. Schwabe and F. Curbera, editors,
International Conference on Web Engineering (ICWE’08), pages 175–188, July 2008.

14. D. M. Groenewegen and E. Visser. Integration of Data Validation and User Interface Con-
cerns in a DSL for Web Applications. In M. van den Brand and J. Gray, editors, Software
Language Engineering, Second International Conference, SLE 2009, Denver, USA, October,
2009. Revised Selected Short Papers, Lecture Notes in Computer Science. Springer, 2009.

15. Z. Hemel, R. Verhaaf, and E. Visser. WebWorkFlow: An object-oriented workflow model-
ing language for web applications. In K. Czarnecki et al., editors, Proceedings of the 11th
International Conference on Model Driven Engineering Languages and Systems (MODELS
2008), volume 5301 of LNCS, pages 113–127. Springer, September 2008.

16. J. Järvi, M. Marcus, S. Parent, J. Freeman, and J. N. Smith. Property models: from incidental
algorithms to reusable components. In GPCE, pages 89–98, 2008.

17. L. C. L. Kats, M. Bravenboer, and E. Visser. Mixing source and bytecode. A case for com-
pilation by normalization. In G. Kiczales, editor, Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA 2008), pages 91–108. ACM, October 2008.

18. S. Kittoli, editor. Seam - Contextual Components. A Framework for Enterprise Java. Red
Hat Middleware, LLC, 2008.

19. N. Koch, A. Kraus, and R. Hennicker. The authoring process of the UML-based web engi-
neering approach. In Web-Oriented Software Technology, 2001.

20. A. Kraus, A. Knapp, and N. Koch. Model-driven generation of web applications in UWE.
Model-Driven Web Engineering (MDWE 2007), Como, Italy (July 2007).

21. F. Lima and D. Schwabe. Application modeling for the semantic web. In Latin American Web
Congress (LA-WEB’03), page 93, Washington, DC, USA, 2003. IEEE Computer Society.

22. M. MacDonald and M. Szpuszta. Pro ASP. NET 3.5 in C# 2008. Apress, 2007.
23. E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object, relations and XML in

the .NET framework. In Management of Data, pages 706–706, 2006.
24. D. Nunes and D. Schwabe. Rapid prototyping of web applications combining domain spe-

cific languages and model driven design. In International Conference on Web Engineering
(ICWE’06), pages 153–160, 2006.

25. O. Pastor, J. Fons, and V. Pelechano. OOWS: A method to develop web applications from
web-oriented conceptual models. In Web Oriented Software Technology (IWWOST’03),
pages 65–70, 2003.

26. S. Ruby, D. Thomas, and D. Heinemeier Hansson. Agile Web Development with Rails, Third
Edition. Pragmatic Programmers, 2009.

27. C. Scaffidi, B. A. Myers, and M. Shaw. Topes: reusable abstractions for validating data. In
ICSE’08, pages 1–10, 2008.

28. D. Schwabe, G. Rossi, and S. Barbosa. Systematic hypermedia application design with
OOHDM. In Proceedings of the the seventh ACM conference on Hypertext, pages 116–128.
ACM New York, NY, USA, 1996.

29. K. van der Sluijs, G. Houben, J. Broekstra, and S. Casteleyn. Hera-S: web design using
sesame. In International Conference on Web Engineering (ICWE’06), pages 337–344, 2006.

30. R. Vdovjak, F. Frasincar, G. Houben, and P. Barna. Engineering semantic web information
systems in hera. Journal of Web Engineering, 2:3–26, 2003.

31. E. Visser. WebDSL: A case study in domain-specific language engineering. In R. Lämmel,
J. Visser, and J. Saraiva, editors, Generative and Transformational Techniques in Software
Engineering (GTTSE’07), volume 5235 of LNCS, pages 291–373. Springer, October 2008.

32. E. Visser et al. WebDSL. http://webdsl.org, 2007–2009.

26

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SERG

26 TUD-SERG-2010-033

TUD-SERG-2010-033
ISSN 1872-5392 SERG

